xref: /netbsd-src/sys/dev/ic/elinkxl.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: elinkxl.c,v 1.86 2005/12/11 12:21:26 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Frank van der Linden.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.86 2005/12/11 12:21:26 christos Exp $");
41 
42 #include "bpfilter.h"
43 #include "rnd.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/syslog.h>
54 #include <sys/select.h>
55 #include <sys/device.h>
56 #if NRND > 0
57 #include <sys/rnd.h>
58 #endif
59 
60 #include <uvm/uvm_extern.h>
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_ether.h>
65 #include <net/if_media.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #include <net/bpfdesc.h>
70 #endif
71 
72 #include <machine/cpu.h>
73 #include <machine/bus.h>
74 #include <machine/intr.h>
75 #include <machine/endian.h>
76 
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/elink3reg.h>
82 /* #include <dev/ic/elink3var.h> */
83 #include <dev/ic/elinkxlreg.h>
84 #include <dev/ic/elinkxlvar.h>
85 
86 #ifdef DEBUG
87 int exdebug = 0;
88 #endif
89 
90 /* ifmedia callbacks */
91 int ex_media_chg(struct ifnet *ifp);
92 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
93 
94 void ex_probe_media(struct ex_softc *);
95 void ex_set_filter(struct ex_softc *);
96 void ex_set_media(struct ex_softc *);
97 void ex_set_xcvr(struct ex_softc *, u_int16_t);
98 struct mbuf *ex_get(struct ex_softc *, int);
99 u_int16_t ex_read_eeprom(struct ex_softc *, int);
100 int ex_init(struct ifnet *);
101 void ex_read(struct ex_softc *);
102 void ex_reset(struct ex_softc *);
103 void ex_set_mc(struct ex_softc *);
104 void ex_getstats(struct ex_softc *);
105 void ex_printstats(struct ex_softc *);
106 void ex_tick(void *);
107 
108 void ex_power(int, void *);
109 
110 static int ex_eeprom_busy(struct ex_softc *);
111 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
112 static void ex_init_txdescs(struct ex_softc *);
113 
114 static void ex_shutdown(void *);
115 static void ex_start(struct ifnet *);
116 static void ex_txstat(struct ex_softc *);
117 
118 int ex_mii_readreg(struct device *, int, int);
119 void ex_mii_writereg(struct device *, int, int, int);
120 void ex_mii_statchg(struct device *);
121 
122 void ex_probemedia(struct ex_softc *);
123 
124 /*
125  * Structure to map media-present bits in boards to ifmedia codes and
126  * printable media names.  Used for table-driven ifmedia initialization.
127  */
128 struct ex_media {
129 	int	exm_mpbit;		/* media present bit */
130 	const char *exm_name;		/* name of medium */
131 	int	exm_ifmedia;		/* ifmedia word for medium */
132 	int	exm_epmedia;		/* ELINKMEDIA_* constant */
133 };
134 
135 /*
136  * Media table for 3c90x chips.  Note that chips with MII have no
137  * `native' media.
138  */
139 struct ex_media ex_native_media[] = {
140 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
141 	  ELINKMEDIA_10BASE_T },
142 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
143 	  ELINKMEDIA_10BASE_T },
144 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
145 	  ELINKMEDIA_AUI },
146 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
147 	  ELINKMEDIA_10BASE_2 },
148 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
149 	  ELINKMEDIA_100BASE_TX },
150 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 	  ELINKMEDIA_100BASE_TX },
152 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
153 	  ELINKMEDIA_100BASE_FX },
154 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
155 	  ELINKMEDIA_MII },
156 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
157 	  ELINKMEDIA_100BASE_T4 },
158 	{ 0,			NULL,		0,
159 	  0 },
160 };
161 
162 /*
163  * MII bit-bang glue.
164  */
165 u_int32_t ex_mii_bitbang_read(struct device *);
166 void ex_mii_bitbang_write(struct device *, u_int32_t);
167 
168 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
169 	ex_mii_bitbang_read,
170 	ex_mii_bitbang_write,
171 	{
172 		ELINK_PHY_DATA,		/* MII_BIT_MDO */
173 		ELINK_PHY_DATA,		/* MII_BIT_MDI */
174 		ELINK_PHY_CLK,		/* MII_BIT_MDC */
175 		ELINK_PHY_DIR,		/* MII_BIT_DIR_HOST_PHY */
176 		0,			/* MII_BIT_DIR_PHY_HOST */
177 	}
178 };
179 
180 /*
181  * Back-end attach and configure.
182  */
183 void
184 ex_config(sc)
185 	struct ex_softc *sc;
186 {
187 	struct ifnet *ifp;
188 	u_int16_t val;
189 	u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
190 	bus_space_tag_t iot = sc->sc_iot;
191 	bus_space_handle_t ioh = sc->sc_ioh;
192 	int i, error, attach_stage;
193 
194 	callout_init(&sc->ex_mii_callout);
195 
196 	ex_reset(sc);
197 
198 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
199 	macaddr[0] = val >> 8;
200 	macaddr[1] = val & 0xff;
201 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
202 	macaddr[2] = val >> 8;
203 	macaddr[3] = val & 0xff;
204 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
205 	macaddr[4] = val >> 8;
206 	macaddr[5] = val & 0xff;
207 
208 	aprint_normal("%s: MAC address %s\n", sc->sc_dev.dv_xname,
209 	    ether_sprintf(macaddr));
210 
211 	if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
212 		GO_WINDOW(2);
213 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
214 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
215 			val |= ELINK_RESET_OPT_LEDPOLAR;
216 		if (sc->ex_conf & EX_CONF_PHY_POWER)
217 			val |= ELINK_RESET_OPT_PHYPOWER;
218 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
219 	}
220 	if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
221 		GO_WINDOW(0);
222 		bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
223 		    EX_XCVR_PWR_MAGICBITS);
224 	}
225 
226 	attach_stage = 0;
227 
228 	/*
229 	 * Allocate the upload descriptors, and create and load the DMA
230 	 * map for them.
231 	 */
232 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
233 	    EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
234             &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
235 		aprint_error(
236 		    "%s: can't allocate upload descriptors, error = %d\n",
237 		    sc->sc_dev.dv_xname, error);
238 		goto fail;
239 	}
240 
241 	attach_stage = 1;
242 
243 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
244 	    EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
245 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
246 		aprint_error("%s: can't map upload descriptors, error = %d\n",
247 		    sc->sc_dev.dv_xname, error);
248 		goto fail;
249 	}
250 
251 	attach_stage = 2;
252 
253 	if ((error = bus_dmamap_create(sc->sc_dmat,
254 	    EX_NUPD * sizeof (struct ex_upd), 1,
255 	    EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
256 	    &sc->sc_upd_dmamap)) != 0) {
257 		aprint_error(
258 		    "%s: can't create upload desc. DMA map, error = %d\n",
259 		    sc->sc_dev.dv_xname, error);
260 		goto fail;
261 	}
262 
263 	attach_stage = 3;
264 
265 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
266 	    sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
267 	    BUS_DMA_NOWAIT)) != 0) {
268 		aprint_error(
269 		    "%s: can't load upload desc. DMA map, error = %d\n",
270 		    sc->sc_dev.dv_xname, error);
271 		goto fail;
272 	}
273 
274 	attach_stage = 4;
275 
276 	/*
277 	 * Allocate the download descriptors, and create and load the DMA
278 	 * map for them.
279 	 */
280 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
281 	    EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
282 	    &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
283 		aprint_error(
284 		    "%s: can't allocate download descriptors, error = %d\n",
285 		    sc->sc_dev.dv_xname, error);
286 		goto fail;
287 	}
288 
289 	attach_stage = 5;
290 
291 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
292 	    EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
293 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
294 		aprint_error("%s: can't map download descriptors, error = %d\n",
295 		    sc->sc_dev.dv_xname, error);
296 		goto fail;
297 	}
298 	memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
299 
300 	attach_stage = 6;
301 
302 	if ((error = bus_dmamap_create(sc->sc_dmat,
303 	    EX_NDPD * sizeof (struct ex_dpd), 1,
304 	    EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
305 	    &sc->sc_dpd_dmamap)) != 0) {
306 		aprint_error(
307 		    "%s: can't create download desc. DMA map, error = %d\n",
308 		    sc->sc_dev.dv_xname, error);
309 		goto fail;
310 	}
311 
312 	attach_stage = 7;
313 
314 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
315 	    sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
316 	    BUS_DMA_NOWAIT)) != 0) {
317 		aprint_error(
318 		    "%s: can't load download desc. DMA map, error = %d\n",
319 		    sc->sc_dev.dv_xname, error);
320 		goto fail;
321 	}
322 
323 	attach_stage = 8;
324 
325 
326 	/*
327 	 * Create the transmit buffer DMA maps.
328 	 */
329 	for (i = 0; i < EX_NDPD; i++) {
330 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
331 		    EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
332 		    &sc->sc_tx_dmamaps[i])) != 0) {
333 			aprint_error(
334 			    "%s: can't create tx DMA map %d, error = %d\n",
335 			    sc->sc_dev.dv_xname, i, error);
336 			goto fail;
337 		}
338 	}
339 
340 	attach_stage = 9;
341 
342 	/*
343 	 * Create the receive buffer DMA maps.
344 	 */
345 	for (i = 0; i < EX_NUPD; i++) {
346 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
347 		    EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
348 		    &sc->sc_rx_dmamaps[i])) != 0) {
349 			aprint_error(
350 			    "%s: can't create rx DMA map %d, error = %d\n",
351 			    sc->sc_dev.dv_xname, i, error);
352 			goto fail;
353 		}
354 	}
355 
356 	attach_stage = 10;
357 
358 	/*
359 	 * Create ring of upload descriptors, only once. The DMA engine
360 	 * will loop over this when receiving packets, stalling if it
361 	 * hits an UPD with a finished receive.
362 	 */
363 	for (i = 0; i < EX_NUPD; i++) {
364 		sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
365 		sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
366 		sc->sc_upd[i].upd_frags[0].fr_len =
367 		    htole32((MCLBYTES - 2) | EX_FR_LAST);
368 		if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
369 			aprint_error("%s: can't allocate or map rx buffers\n",
370 			    sc->sc_dev.dv_xname);
371 			goto fail;
372 		}
373 	}
374 
375 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
376 	    EX_NUPD * sizeof (struct ex_upd),
377 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
378 
379 	ex_init_txdescs(sc);
380 
381 	attach_stage = 11;
382 
383 
384 	GO_WINDOW(3);
385 	val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
386 	if (val & ELINK_MEDIACAP_MII)
387 		sc->ex_conf |= EX_CONF_MII;
388 
389 	ifp = &sc->sc_ethercom.ec_if;
390 
391 	/*
392 	 * Initialize our media structures and MII info.  We'll
393 	 * probe the MII if we discover that we have one.
394 	 */
395 	sc->ex_mii.mii_ifp = ifp;
396 	sc->ex_mii.mii_readreg = ex_mii_readreg;
397 	sc->ex_mii.mii_writereg = ex_mii_writereg;
398 	sc->ex_mii.mii_statchg = ex_mii_statchg;
399 	ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
400 	    ex_media_stat);
401 
402 	if (sc->ex_conf & EX_CONF_MII) {
403 		/*
404 		 * Find PHY, extract media information from it.
405 		 * First, select the right transceiver.
406 		 */
407 		ex_set_xcvr(sc, val);
408 
409 		mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
410 		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
411 		if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
412 			ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
413 			    0, NULL);
414 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
415 		} else {
416 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
417 		}
418 	} else
419 		ex_probemedia(sc);
420 
421 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
422 	ifp->if_softc = sc;
423 	ifp->if_start = ex_start;
424 	ifp->if_ioctl = ex_ioctl;
425 	ifp->if_watchdog = ex_watchdog;
426 	ifp->if_init = ex_init;
427 	ifp->if_stop = ex_stop;
428 	ifp->if_flags =
429 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
430 	sc->sc_if_flags = ifp->if_flags;
431 	IFQ_SET_READY(&ifp->if_snd);
432 
433 	/*
434 	 * We can support 802.1Q VLAN-sized frames.
435 	 */
436 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
437 
438 	/*
439 	 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
440 	 */
441 	if (sc->ex_conf & EX_CONF_90XB)
442 		sc->sc_ethercom.ec_if.if_capabilities |=
443 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
444 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
445 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
446 
447 	if_attach(ifp);
448 	ether_ifattach(ifp, macaddr);
449 
450 	GO_WINDOW(1);
451 
452 	sc->tx_start_thresh = 20;
453 	sc->tx_succ_ok = 0;
454 
455 	/* TODO: set queues to 0 */
456 
457 #if NRND > 0
458 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
459 			  RND_TYPE_NET, 0);
460 #endif
461 
462 	/*  Establish callback to reset card when we reboot. */
463 	sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
464 	if (sc->sc_sdhook == NULL)
465 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
466 			sc->sc_dev.dv_xname);
467 
468 	/* Add a suspend hook to make sure we come back up after a resume. */
469 	sc->sc_powerhook = powerhook_establish(ex_power, sc);
470 	if (sc->sc_powerhook == NULL)
471 		aprint_error("%s: WARNING: unable to establish power hook\n",
472 			sc->sc_dev.dv_xname);
473 
474 	/* The attach is successful. */
475 	sc->ex_flags |= EX_FLAGS_ATTACHED;
476 	return;
477 
478  fail:
479 	/*
480 	 * Free any resources we've allocated during the failed attach
481 	 * attempt.  Do this in reverse order and fall though.
482 	 */
483 	switch (attach_stage) {
484 	case 11:
485 	    {
486 		struct ex_rxdesc *rxd;
487 
488 		for (i = 0; i < EX_NUPD; i++) {
489 			rxd = &sc->sc_rxdescs[i];
490 			if (rxd->rx_mbhead != NULL) {
491 				bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
492 				m_freem(rxd->rx_mbhead);
493 			}
494 		}
495 	    }
496 		/* FALLTHROUGH */
497 
498 	case 10:
499 		for (i = 0; i < EX_NUPD; i++)
500 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
501 		/* FALLTHROUGH */
502 
503 	case 9:
504 		for (i = 0; i < EX_NDPD; i++)
505 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
506 		/* FALLTHROUGH */
507 	case 8:
508 		bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
509 		/* FALLTHROUGH */
510 
511 	case 7:
512 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
513 		/* FALLTHROUGH */
514 
515 	case 6:
516 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
517 		    EX_NDPD * sizeof (struct ex_dpd));
518 		/* FALLTHROUGH */
519 
520 	case 5:
521 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
522 		break;
523 
524 	case 4:
525 		bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
526 		/* FALLTHROUGH */
527 
528 	case 3:
529 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
530 		/* FALLTHROUGH */
531 
532 	case 2:
533 		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
534 		    EX_NUPD * sizeof (struct ex_upd));
535 		/* FALLTHROUGH */
536 
537 	case 1:
538 		bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
539 		break;
540 	}
541 
542 }
543 
544 /*
545  * Find the media present on non-MII chips.
546  */
547 void
548 ex_probemedia(sc)
549 	struct ex_softc *sc;
550 {
551 	bus_space_tag_t iot = sc->sc_iot;
552 	bus_space_handle_t ioh = sc->sc_ioh;
553 	struct ifmedia *ifm = &sc->ex_mii.mii_media;
554 	struct ex_media *exm;
555 	u_int16_t config1, reset_options, default_media;
556 	int defmedia = 0;
557 	const char *sep = "", *defmedianame = NULL;
558 
559 	GO_WINDOW(3);
560 	config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
561 	reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
562 	GO_WINDOW(0);
563 
564 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
565 
566 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
567 
568 	/* Sanity check that there are any media! */
569 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
570 		aprint_error("no media present!\n");
571 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
572 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
573 		return;
574 	}
575 
576 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
577 
578 	for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
579 		if (reset_options & exm->exm_mpbit) {
580 			/*
581 			 * Default media is a little complicated.  We
582 			 * support full-duplex which uses the same
583 			 * reset options bit.
584 			 *
585 			 * XXX Check EEPROM for default to FDX?
586 			 */
587 			if (exm->exm_epmedia == default_media) {
588 				if ((exm->exm_ifmedia & IFM_FDX) == 0) {
589 					defmedia = exm->exm_ifmedia;
590 					defmedianame = exm->exm_name;
591 				}
592 			} else if (defmedia == 0) {
593 				defmedia = exm->exm_ifmedia;
594 				defmedianame = exm->exm_name;
595 			}
596 			ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
597 			    NULL);
598 			PRINT(exm->exm_name);
599 		}
600 	}
601 
602 #undef PRINT
603 
604 #ifdef DIAGNOSTIC
605 	if (defmedia == 0)
606 		panic("ex_probemedia: impossible");
607 #endif
608 
609 	aprint_normal(", default %s\n", defmedianame);
610 	ifmedia_set(ifm, defmedia);
611 }
612 
613 /*
614  * Bring device up.
615  */
616 int
617 ex_init(ifp)
618 	struct ifnet *ifp;
619 {
620 	struct ex_softc *sc = ifp->if_softc;
621 	bus_space_tag_t iot = sc->sc_iot;
622 	bus_space_handle_t ioh = sc->sc_ioh;
623 	int i;
624 	int error = 0;
625 
626 	if ((error = ex_enable(sc)) != 0)
627 		goto out;
628 
629 	ex_waitcmd(sc);
630 	ex_stop(ifp, 0);
631 
632 	/*
633 	 * Set the station address and clear the station mask. The latter
634 	 * is needed for 90x cards, 0 is the default for 90xB cards.
635 	 */
636 	GO_WINDOW(2);
637 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
638 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
639 		    LLADDR(ifp->if_sadl)[i]);
640 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
641 	}
642 
643 	GO_WINDOW(3);
644 
645 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
646 	ex_waitcmd(sc);
647 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
648 	ex_waitcmd(sc);
649 
650 	/*
651 	 * Disable reclaim threshold for 90xB, set free threshold to
652 	 * 6 * 256 = 1536 for 90x.
653 	 */
654 	if (sc->ex_conf & EX_CONF_90XB)
655 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
656 		    ELINK_TXRECLTHRESH | 255);
657 	else
658 		bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
659 
660 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
661 	    SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
662 
663 	bus_space_write_4(iot, ioh, ELINK_DMACTRL,
664 	    bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
665 
666 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
667 	    SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
668 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
669 	    SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
670 
671 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
672 	if (sc->intr_ack)
673 	    (* sc->intr_ack)(sc);
674 	ex_set_media(sc);
675 	ex_set_mc(sc);
676 
677 
678 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
679 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
680 	bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
681 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
682 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
683 
684 	if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
685 		u_int16_t cbcard_config;
686 
687 		GO_WINDOW(2);
688 		cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
689 		if (sc->ex_conf & EX_CONF_PHY_POWER) {
690 			cbcard_config |= 0x4000; /* turn on PHY power */
691 		}
692 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
693 			cbcard_config |= 0x0010; /* invert LED polarity */
694 		}
695 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
696 
697 		GO_WINDOW(3);
698 	}
699 
700 	ifp->if_flags |= IFF_RUNNING;
701 	ifp->if_flags &= ~IFF_OACTIVE;
702 	ex_start(ifp);
703 	sc->sc_if_flags = ifp->if_flags;
704 
705 	GO_WINDOW(1);
706 
707 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
708 
709  out:
710 	if (error) {
711 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
712 		ifp->if_timer = 0;
713 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
714 	}
715 	return (error);
716 }
717 
718 #define	MCHASHSIZE		256
719 #define	ex_mchash(addr)		(ether_crc32_be((addr), ETHER_ADDR_LEN) & \
720 				    (MCHASHSIZE - 1))
721 
722 /*
723  * Set multicast receive filter. Also take care of promiscuous mode
724  * here (XXX).
725  */
726 void
727 ex_set_mc(sc)
728 	struct ex_softc *sc;
729 {
730 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
731 	struct ethercom *ec = &sc->sc_ethercom;
732 	struct ether_multi *enm;
733 	struct ether_multistep estep;
734 	int i;
735 	u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
736 
737 	if (ifp->if_flags & IFF_PROMISC) {
738 		mask |= FIL_PROMISC;
739 		goto allmulti;
740 	}
741 
742 	ETHER_FIRST_MULTI(estep, ec, enm);
743 	if (enm == NULL)
744 		goto nomulti;
745 
746 	if ((sc->ex_conf & EX_CONF_90XB) == 0)
747 		/* No multicast hash filtering. */
748 		goto allmulti;
749 
750 	for (i = 0; i < MCHASHSIZE; i++)
751 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
752 		    ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
753 
754 	do {
755 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
756 		    ETHER_ADDR_LEN) != 0)
757 			goto allmulti;
758 
759 		i = ex_mchash(enm->enm_addrlo);
760 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
761 		    ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
762 		ETHER_NEXT_MULTI(estep, enm);
763 	} while (enm != NULL);
764 	mask |= FIL_MULTIHASH;
765 
766 nomulti:
767 	ifp->if_flags &= ~IFF_ALLMULTI;
768 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
769 	    SET_RX_FILTER | mask);
770 	return;
771 
772 allmulti:
773 	ifp->if_flags |= IFF_ALLMULTI;
774 	mask |= FIL_MULTICAST;
775 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
776 	    SET_RX_FILTER | mask);
777 }
778 
779 
780 static void
781 ex_txstat(sc)
782 	struct ex_softc *sc;
783 {
784 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
785 	bus_space_tag_t iot = sc->sc_iot;
786 	bus_space_handle_t ioh = sc->sc_ioh;
787 	int i;
788 
789 	/*
790 	 * We need to read+write TX_STATUS until we get a 0 status
791 	 * in order to turn off the interrupt flag.
792 	 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER
793 	 * XXX: Big Endian? Can we assume that TXSTATUS will be the
794 	 * upper byte?
795 	 */
796 	while ((i = bus_space_read_2(iot, ioh, ELINK_TIMER)) & TXS_COMPLETE) {
797 		bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
798 
799 		if (i & TXS_JABBER) {
800 			++sc->sc_ethercom.ec_if.if_oerrors;
801 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
802 				printf("%s: jabber (%x)\n",
803 				       sc->sc_dev.dv_xname, i);
804 			ex_init(ifp);
805 			/* TODO: be more subtle here */
806 		} else if (i & TXS_UNDERRUN) {
807 			++sc->sc_ethercom.ec_if.if_oerrors;
808 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
809 				printf("%s: fifo underrun (%x) @%d\n",
810 				       sc->sc_dev.dv_xname, i,
811 				       sc->tx_start_thresh);
812 			if (sc->tx_succ_ok < 100)
813 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
814 					    sc->tx_start_thresh + 20);
815 			sc->tx_succ_ok = 0;
816 			ex_init(ifp);
817 			/* TODO: be more subtle here */
818 		} else if (i & TXS_MAX_COLLISION) {
819 			++sc->sc_ethercom.ec_if.if_oerrors;
820 			++sc->sc_ethercom.ec_if.if_collisions;
821 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
822 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
823 		} else if (sc->tx_succ_ok < 100)
824 			sc->tx_succ_ok++;
825 	}
826 }
827 
828 int
829 ex_media_chg(ifp)
830 	struct ifnet *ifp;
831 {
832 
833 	if (ifp->if_flags & IFF_UP)
834 		ex_init(ifp);
835 	return 0;
836 }
837 
838 void
839 ex_set_xcvr(sc, media)
840 	struct ex_softc *sc;
841 	const u_int16_t media;
842 {
843 	bus_space_tag_t iot = sc->sc_iot;
844 	bus_space_handle_t ioh = sc->sc_ioh;
845 	u_int32_t icfg;
846 
847 	/*
848 	 * We're already in Window 3
849 	 */
850 	icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
851 	icfg &= ~(CONFIG_XCVR_SEL << 16);
852 	if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
853 		icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
854 	if (media & ELINK_MEDIACAP_100BASETX)
855 		icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
856 	if (media & ELINK_MEDIACAP_100BASEFX)
857 		icfg |= ELINKMEDIA_100BASE_FX
858 			<< (CONFIG_XCVR_SEL_SHIFT + 16);
859 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
860 }
861 
862 void
863 ex_set_media(sc)
864 	struct ex_softc *sc;
865 {
866 	bus_space_tag_t iot = sc->sc_iot;
867 	bus_space_handle_t ioh = sc->sc_ioh;
868 	u_int32_t configreg;
869 
870 	if (((sc->ex_conf & EX_CONF_MII) &&
871 	    (sc->ex_mii.mii_media_active & IFM_FDX))
872 	    || (!(sc->ex_conf & EX_CONF_MII) &&
873 	    (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
874 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
875 		    MAC_CONTROL_FDX);
876 	} else {
877 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
878 	}
879 
880 	/*
881 	 * If the device has MII, select it, and then tell the
882 	 * PHY which media to use.
883 	 */
884 	if (sc->ex_conf & EX_CONF_MII) {
885 		u_int16_t val;
886 
887 		GO_WINDOW(3);
888 		val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
889 		ex_set_xcvr(sc, val);
890 		mii_mediachg(&sc->ex_mii);
891 		return;
892 	}
893 
894 	GO_WINDOW(4);
895 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
896 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
897 	delay(800);
898 
899 	/*
900 	 * Now turn on the selected media/transceiver.
901 	 */
902 	switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
903 	case IFM_10_T:
904 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
905 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
906 		break;
907 
908 	case IFM_10_2:
909 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
910 		DELAY(800);
911 		break;
912 
913 	case IFM_100_TX:
914 	case IFM_100_FX:
915 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
916 		    LINKBEAT_ENABLE);
917 		DELAY(800);
918 		break;
919 
920 	case IFM_10_5:
921 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
922 		    SQE_ENABLE);
923 		DELAY(800);
924 		break;
925 
926 	case IFM_MANUAL:
927 		break;
928 
929 	case IFM_NONE:
930 		return;
931 
932 	default:
933 		panic("ex_set_media: impossible");
934 	}
935 
936 	GO_WINDOW(3);
937 	configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
938 
939 	configreg &= ~(CONFIG_MEDIAMASK << 16);
940 	configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
941 	    (CONFIG_MEDIAMASK_SHIFT + 16));
942 
943 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
944 }
945 
946 /*
947  * Get currently-selected media from card.
948  * (if_media callback, may be called before interface is brought up).
949  */
950 void
951 ex_media_stat(ifp, req)
952 	struct ifnet *ifp;
953 	struct ifmediareq *req;
954 {
955 	struct ex_softc *sc = ifp->if_softc;
956 	u_int16_t help;
957 
958 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
959 		if (sc->ex_conf & EX_CONF_MII) {
960 			mii_pollstat(&sc->ex_mii);
961 			req->ifm_status = sc->ex_mii.mii_media_status;
962 			req->ifm_active = sc->ex_mii.mii_media_active;
963 		} else {
964 			GO_WINDOW(4);
965 			req->ifm_status = IFM_AVALID;
966 			req->ifm_active =
967 			    sc->ex_mii.mii_media.ifm_cur->ifm_media;
968 			help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
969 						ELINK_W4_MEDIA_TYPE);
970 			if (help & LINKBEAT_DETECT)
971 				req->ifm_status |= IFM_ACTIVE;
972 			GO_WINDOW(1);
973 		}
974 	}
975 }
976 
977 
978 
979 /*
980  * Start outputting on the interface.
981  */
982 static void
983 ex_start(ifp)
984 	struct ifnet *ifp;
985 {
986 	struct ex_softc *sc = ifp->if_softc;
987 	bus_space_tag_t iot = sc->sc_iot;
988 	bus_space_handle_t ioh = sc->sc_ioh;
989 	volatile struct ex_fraghdr *fr = NULL;
990 	volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
991 	struct ex_txdesc *txp;
992 	struct mbuf *mb_head;
993 	bus_dmamap_t dmamap;
994 	int offset, totlen, segment, error;
995 	u_int32_t csum_flags;
996 
997 	if (sc->tx_head || sc->tx_free == NULL)
998 		return;
999 
1000 	txp = NULL;
1001 
1002 	/*
1003 	 * We're finished if there is nothing more to add to the list or if
1004 	 * we're all filled up with buffers to transmit.
1005 	 */
1006 	while (sc->tx_free != NULL) {
1007 		/*
1008 		 * Grab a packet to transmit.
1009 		 */
1010 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1011 		if (mb_head == NULL)
1012 			break;
1013 
1014 		/*
1015 		 * Get pointer to next available tx desc.
1016 		 */
1017 		txp = sc->tx_free;
1018 		dmamap = txp->tx_dmamap;
1019 
1020 		/*
1021 		 * Go through each of the mbufs in the chain and initialize
1022 		 * the transmit buffer descriptors with the physical address
1023 		 * and size of the mbuf.
1024 		 */
1025  reload:
1026 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1027 		    mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1028 		switch (error) {
1029 		case 0:
1030 			/* Success. */
1031 			break;
1032 
1033 		case EFBIG:
1034 		    {
1035 			struct mbuf *mn;
1036 
1037 			/*
1038 			 * We ran out of segments.  We have to recopy this
1039 			 * mbuf chain first.  Bail out if we can't get the
1040 			 * new buffers.
1041 			 */
1042 			printf("%s: too many segments, ", sc->sc_dev.dv_xname);
1043 
1044 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1045 			if (mn == NULL) {
1046 				m_freem(mb_head);
1047 				printf("aborting\n");
1048 				goto out;
1049 			}
1050 			if (mb_head->m_pkthdr.len > MHLEN) {
1051 				MCLGET(mn, M_DONTWAIT);
1052 				if ((mn->m_flags & M_EXT) == 0) {
1053 					m_freem(mn);
1054 					m_freem(mb_head);
1055 					printf("aborting\n");
1056 					goto out;
1057 				}
1058 			}
1059 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1060 			    mtod(mn, caddr_t));
1061 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1062 			m_freem(mb_head);
1063 			mb_head = mn;
1064 			printf("retrying\n");
1065 			goto reload;
1066 		    }
1067 
1068 		default:
1069 			/*
1070 			 * Some other problem; report it.
1071 			 */
1072 			printf("%s: can't load mbuf chain, error = %d\n",
1073 			    sc->sc_dev.dv_xname, error);
1074 			m_freem(mb_head);
1075 			goto out;
1076 		}
1077 
1078 		/*
1079 		 * remove our tx desc from freelist.
1080 		 */
1081 		sc->tx_free = txp->tx_next;
1082 		txp->tx_next = NULL;
1083 
1084 		fr = &txp->tx_dpd->dpd_frags[0];
1085 		totlen = 0;
1086 		for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1087 			fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1088 			fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
1089 			totlen += dmamap->dm_segs[segment].ds_len;
1090 		}
1091 		fr--;
1092 		fr->fr_len |= htole32(EX_FR_LAST);
1093 		txp->tx_mbhead = mb_head;
1094 
1095 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1096 		    BUS_DMASYNC_PREWRITE);
1097 
1098 		dpd = txp->tx_dpd;
1099 		dpd->dpd_nextptr = 0;
1100 		dpd->dpd_fsh = htole32(totlen);
1101 
1102 		/* Byte-swap constants so compiler can optimize. */
1103 
1104 		if (sc->ex_conf & EX_CONF_90XB) {
1105 			csum_flags = 0;
1106 
1107 			if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
1108 				csum_flags |= htole32(EX_DPD_IPCKSUM);
1109 
1110 			if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
1111 				csum_flags |= htole32(EX_DPD_TCPCKSUM);
1112 			else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
1113 				csum_flags |= htole32(EX_DPD_UDPCKSUM);
1114 
1115 			dpd->dpd_fsh |= csum_flags;
1116 		} else {
1117 			KDASSERT((mb_head->m_pkthdr.csum_flags &
1118 			    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1119 		}
1120 
1121 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1122 		    ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1123 		    sizeof (struct ex_dpd),
1124 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1125 
1126 		/*
1127 		 * No need to stall the download engine, we know it's
1128 		 * not busy right now.
1129 		 *
1130 		 * Fix up pointers in both the "soft" tx and the physical
1131 		 * tx list.
1132 		 */
1133 		if (sc->tx_head != NULL) {
1134 			prevdpd = sc->tx_tail->tx_dpd;
1135 			offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1136 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1137 			    offset, sizeof (struct ex_dpd),
1138 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1139 			prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1140 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1141 			    offset, sizeof (struct ex_dpd),
1142 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1143 			sc->tx_tail->tx_next = txp;
1144 			sc->tx_tail = txp;
1145 		} else {
1146 			sc->tx_tail = sc->tx_head = txp;
1147 		}
1148 
1149 #if NBPFILTER > 0
1150 		/*
1151 		 * Pass packet to bpf if there is a listener.
1152 		 */
1153 		if (ifp->if_bpf)
1154 			bpf_mtap(ifp->if_bpf, mb_head);
1155 #endif
1156 	}
1157  out:
1158 	if (sc->tx_head) {
1159 		sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1160 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1161 		    ((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
1162 		    sizeof (struct ex_dpd),
1163 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1164 		ifp->if_flags |= IFF_OACTIVE;
1165 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1166 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1167 		    DPD_DMADDR(sc, sc->tx_head));
1168 
1169 		/* trigger watchdog */
1170 		ifp->if_timer = 5;
1171 	}
1172 }
1173 
1174 
1175 int
1176 ex_intr(arg)
1177 	void *arg;
1178 {
1179 	struct ex_softc *sc = arg;
1180 	bus_space_tag_t iot = sc->sc_iot;
1181 	bus_space_handle_t ioh = sc->sc_ioh;
1182 	u_int16_t stat;
1183 	int ret = 0;
1184 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1185 
1186 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1187 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1188 		return (0);
1189 
1190 	for (;;) {
1191 		stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1192 
1193 		if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1194 			if ((stat & INTR_LATCH) == 0) {
1195 #if 0
1196 				printf("%s: intr latch cleared\n",
1197 				       sc->sc_dev.dv_xname);
1198 #endif
1199 				break;
1200 			}
1201 		}
1202 
1203 		ret = 1;
1204 
1205 		/*
1206 		 * Acknowledge interrupts.
1207 		 */
1208 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1209 		    (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1210 		if (sc->intr_ack)
1211 			(*sc->intr_ack)(sc);
1212 
1213 		if (stat & HOST_ERROR) {
1214 			printf("%s: adapter failure (%x)\n",
1215 			    sc->sc_dev.dv_xname, stat);
1216 			ex_reset(sc);
1217 			ex_init(ifp);
1218 			return 1;
1219 		}
1220 		if (stat & TX_COMPLETE) {
1221 			ex_txstat(sc);
1222 		}
1223 		if (stat & UPD_STATS) {
1224 			ex_getstats(sc);
1225 		}
1226 		if (stat & DN_COMPLETE) {
1227 			struct ex_txdesc *txp, *ptxp = NULL;
1228 			bus_dmamap_t txmap;
1229 
1230 			/* reset watchdog timer, was set in ex_start() */
1231 			ifp->if_timer = 0;
1232 
1233 			for (txp = sc->tx_head; txp != NULL;
1234 			    txp = txp->tx_next) {
1235 				bus_dmamap_sync(sc->sc_dmat,
1236 				    sc->sc_dpd_dmamap,
1237 				    (caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
1238 				    sizeof (struct ex_dpd),
1239 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1240 				if (txp->tx_mbhead != NULL) {
1241 					txmap = txp->tx_dmamap;
1242 					bus_dmamap_sync(sc->sc_dmat, txmap,
1243 					    0, txmap->dm_mapsize,
1244 					    BUS_DMASYNC_POSTWRITE);
1245 					bus_dmamap_unload(sc->sc_dmat, txmap);
1246 					m_freem(txp->tx_mbhead);
1247 					txp->tx_mbhead = NULL;
1248 				}
1249 				ptxp = txp;
1250 			}
1251 
1252 			/*
1253 			 * Move finished tx buffers back to the tx free list.
1254 			 */
1255 			if (sc->tx_free) {
1256 				sc->tx_ftail->tx_next = sc->tx_head;
1257 				sc->tx_ftail = ptxp;
1258 			} else
1259 				sc->tx_ftail = sc->tx_free = sc->tx_head;
1260 
1261 			sc->tx_head = sc->tx_tail = NULL;
1262 			ifp->if_flags &= ~IFF_OACTIVE;
1263 		}
1264 
1265 		if (stat & UP_COMPLETE) {
1266 			struct ex_rxdesc *rxd;
1267 			struct mbuf *m;
1268 			struct ex_upd *upd;
1269 			bus_dmamap_t rxmap;
1270 			u_int32_t pktstat;
1271 
1272  rcvloop:
1273 			rxd = sc->rx_head;
1274 			rxmap = rxd->rx_dmamap;
1275 			m = rxd->rx_mbhead;
1276 			upd = rxd->rx_upd;
1277 
1278 			bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1279 			    rxmap->dm_mapsize,
1280 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1281 			bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1282 			    ((caddr_t)upd - (caddr_t)sc->sc_upd),
1283 			    sizeof (struct ex_upd),
1284 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1285 			pktstat = le32toh(upd->upd_pktstatus);
1286 
1287 			if (pktstat & EX_UPD_COMPLETE) {
1288 				/*
1289 				 * Remove first packet from the chain.
1290 				 */
1291 				sc->rx_head = rxd->rx_next;
1292 				rxd->rx_next = NULL;
1293 
1294 				/*
1295 				 * Add a new buffer to the receive chain.
1296 				 * If this fails, the old buffer is recycled
1297 				 * instead.
1298 				 */
1299 				if (ex_add_rxbuf(sc, rxd) == 0) {
1300 					u_int16_t total_len;
1301 
1302 					if (pktstat &
1303 					    ((sc->sc_ethercom.ec_capenable &
1304 					    ETHERCAP_VLAN_MTU) ?
1305 					    EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1306 						ifp->if_ierrors++;
1307 						m_freem(m);
1308 						goto rcvloop;
1309 					}
1310 
1311 					total_len = pktstat & EX_UPD_PKTLENMASK;
1312 					if (total_len <
1313 					    sizeof(struct ether_header)) {
1314 						m_freem(m);
1315 						goto rcvloop;
1316 					}
1317 					m->m_pkthdr.rcvif = ifp;
1318 					m->m_pkthdr.len = m->m_len = total_len;
1319 #if NBPFILTER > 0
1320 					if (ifp->if_bpf)
1321 						bpf_mtap(ifp->if_bpf, m);
1322 #endif
1323 		/*
1324 		 * Set the incoming checksum information for the packet.
1325 		 */
1326 		if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1327 		    (pktstat & EX_UPD_IPCHECKED) != 0) {
1328 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1329 			if (pktstat & EX_UPD_IPCKSUMERR)
1330 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1331 			if (pktstat & EX_UPD_TCPCHECKED) {
1332 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1333 				if (pktstat & EX_UPD_TCPCKSUMERR)
1334 					m->m_pkthdr.csum_flags |=
1335 					    M_CSUM_TCP_UDP_BAD;
1336 			} else if (pktstat & EX_UPD_UDPCHECKED) {
1337 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1338 				if (pktstat & EX_UPD_UDPCKSUMERR)
1339 					m->m_pkthdr.csum_flags |=
1340 					    M_CSUM_TCP_UDP_BAD;
1341 			}
1342 		}
1343 					(*ifp->if_input)(ifp, m);
1344 				}
1345 				goto rcvloop;
1346 			}
1347 			/*
1348 			 * Just in case we filled up all UPDs and the DMA engine
1349 			 * stalled. We could be more subtle about this.
1350 			 */
1351 			if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1352 				printf("%s: uplistptr was 0\n",
1353 				       sc->sc_dev.dv_xname);
1354 				ex_init(ifp);
1355 			} else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1356 				   & 0x2000) {
1357 				printf("%s: receive stalled\n",
1358 				       sc->sc_dev.dv_xname);
1359 				bus_space_write_2(iot, ioh, ELINK_COMMAND,
1360 						  ELINK_UPUNSTALL);
1361 			}
1362 		}
1363 
1364 #if NRND > 0
1365 		if (stat)
1366 			rnd_add_uint32(&sc->rnd_source, stat);
1367 #endif
1368 	}
1369 
1370 	/* no more interrupts */
1371 	if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1372 		ex_start(ifp);
1373 	return ret;
1374 }
1375 
1376 int
1377 ex_ioctl(ifp, cmd, data)
1378 	struct ifnet *ifp;
1379 	u_long cmd;
1380 	caddr_t data;
1381 {
1382 	struct ex_softc *sc = ifp->if_softc;
1383 	struct ifreq *ifr = (struct ifreq *)data;
1384 	int s, error;
1385 
1386 	s = splnet();
1387 
1388 	switch (cmd) {
1389 	case SIOCSIFMEDIA:
1390 	case SIOCGIFMEDIA:
1391 		error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1392 		break;
1393 	case SIOCSIFFLAGS:
1394 		/* If the interface is up and running, only modify the receive
1395 		 * filter when setting promiscuous or debug mode.  Otherwise
1396 		 * fall through to ether_ioctl, which will reset the chip.
1397 		 */
1398 #define RESETIGN (IFF_CANTCHANGE|IFF_DEBUG)
1399 		if (((ifp->if_flags & (IFF_UP|IFF_RUNNING))
1400 		    == (IFF_UP|IFF_RUNNING))
1401 		    && ((ifp->if_flags & (~RESETIGN))
1402 		    == (sc->sc_if_flags & (~RESETIGN)))) {
1403 			ex_set_mc(sc);
1404 			error = 0;
1405 			break;
1406 #undef RESETIGN
1407 		}
1408 		/* FALLTHROUGH */
1409 	default:
1410 		error = ether_ioctl(ifp, cmd, data);
1411 		if (error == ENETRESET) {
1412 			/*
1413 			 * Multicast list has changed; set the hardware filter
1414 			 * accordingly.
1415 			 */
1416 			if (ifp->if_flags & IFF_RUNNING)
1417 				ex_set_mc(sc);
1418 			error = 0;
1419 		}
1420 		break;
1421 	}
1422 
1423 	sc->sc_if_flags = ifp->if_flags;
1424 	splx(s);
1425 	return (error);
1426 }
1427 
1428 void
1429 ex_getstats(sc)
1430 	struct ex_softc *sc;
1431 {
1432 	bus_space_handle_t ioh = sc->sc_ioh;
1433 	bus_space_tag_t iot = sc->sc_iot;
1434 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1435 	u_int8_t upperok;
1436 
1437 	GO_WINDOW(6);
1438 	upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1439 	ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1440 	ifp->if_ipackets += (upperok & 0x03) << 8;
1441 	ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1442 	ifp->if_opackets += (upperok & 0x30) << 4;
1443 	ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1444 	ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1445 	/*
1446 	 * There seems to be no way to get the exact number of collisions,
1447 	 * this is the number that occurred at the very least.
1448 	 */
1449 	ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1450 	    TX_AFTER_X_COLLISIONS);
1451 	/*
1452 	 * Interface byte counts are counted by ether_input() and
1453 	 * ether_output(), so don't accumulate them here.  Just
1454 	 * read the NIC counters so they don't generate overflow interrupts.
1455 	 * Upper byte counters are latched from reading the totals, so
1456 	 * they don't need to be read if we don't need their values.
1457 	 */
1458 	bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1459 	bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1460 
1461 	/*
1462 	 * Clear the following to avoid stats overflow interrupts
1463 	 */
1464 	bus_space_read_1(iot, ioh, TX_DEFERRALS);
1465 	bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1466 	bus_space_read_1(iot, ioh, TX_NO_SQE);
1467 	bus_space_read_1(iot, ioh, TX_CD_LOST);
1468 	GO_WINDOW(4);
1469 	bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1470 	GO_WINDOW(1);
1471 }
1472 
1473 void
1474 ex_printstats(sc)
1475 	struct ex_softc *sc;
1476 {
1477 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1478 
1479 	ex_getstats(sc);
1480 	printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1481 	    "%llu\n", (unsigned long long)ifp->if_ipackets,
1482 	    (unsigned long long)ifp->if_opackets,
1483 	    (unsigned long long)ifp->if_ierrors,
1484 	    (unsigned long long)ifp->if_oerrors,
1485 	    (unsigned long long)ifp->if_ibytes,
1486 	    (unsigned long long)ifp->if_obytes);
1487 }
1488 
1489 void
1490 ex_tick(arg)
1491 	void *arg;
1492 {
1493 	struct ex_softc *sc = arg;
1494 	int s;
1495 
1496 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1497 		return;
1498 
1499 	s = splnet();
1500 
1501 	if (sc->ex_conf & EX_CONF_MII)
1502 		mii_tick(&sc->ex_mii);
1503 
1504 	if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1505 	    & COMMAND_IN_PROGRESS))
1506 		ex_getstats(sc);
1507 
1508 	splx(s);
1509 
1510 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1511 }
1512 
1513 void
1514 ex_reset(sc)
1515 	struct ex_softc *sc;
1516 {
1517 	u_int16_t val = GLOBAL_RESET;
1518 
1519 	if (sc->ex_conf & EX_CONF_RESETHACK)
1520 		val |= 0x10;
1521 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1522 	/*
1523 	 * XXX apparently the command in progress bit can't be trusted
1524 	 * during a reset, so we just always wait this long. Fortunately
1525 	 * we normally only reset the chip during autoconfig.
1526 	 */
1527 	delay(100000);
1528 	ex_waitcmd(sc);
1529 }
1530 
1531 void
1532 ex_watchdog(ifp)
1533 	struct ifnet *ifp;
1534 {
1535 	struct ex_softc *sc = ifp->if_softc;
1536 
1537 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1538 	++sc->sc_ethercom.ec_if.if_oerrors;
1539 
1540 	ex_reset(sc);
1541 	ex_init(ifp);
1542 }
1543 
1544 void
1545 ex_stop(ifp, disable)
1546 	struct ifnet *ifp;
1547 	int disable;
1548 {
1549 	struct ex_softc *sc = ifp->if_softc;
1550 	bus_space_tag_t iot = sc->sc_iot;
1551 	bus_space_handle_t ioh = sc->sc_ioh;
1552 	struct ex_txdesc *tx;
1553 	struct ex_rxdesc *rx;
1554 	int i;
1555 
1556 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1557 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1558 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1559 
1560 	for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1561 		if (tx->tx_mbhead == NULL)
1562 			continue;
1563 		m_freem(tx->tx_mbhead);
1564 		tx->tx_mbhead = NULL;
1565 		bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1566 		tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1567 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1568 		    ((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
1569 		    sizeof (struct ex_dpd),
1570 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1571 	}
1572 	sc->tx_tail = sc->tx_head = NULL;
1573 	ex_init_txdescs(sc);
1574 
1575 	sc->rx_tail = sc->rx_head = 0;
1576 	for (i = 0; i < EX_NUPD; i++) {
1577 		rx = &sc->sc_rxdescs[i];
1578 		if (rx->rx_mbhead != NULL) {
1579 			bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1580 			m_freem(rx->rx_mbhead);
1581 			rx->rx_mbhead = NULL;
1582 		}
1583 		ex_add_rxbuf(sc, rx);
1584 	}
1585 
1586 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1587 
1588 	callout_stop(&sc->ex_mii_callout);
1589 	if (sc->ex_conf & EX_CONF_MII)
1590 		mii_down(&sc->ex_mii);
1591 
1592 	if (disable)
1593 		ex_disable(sc);
1594 
1595 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1596 	sc->sc_if_flags = ifp->if_flags;
1597 	ifp->if_timer = 0;
1598 }
1599 
1600 static void
1601 ex_init_txdescs(sc)
1602 	struct ex_softc *sc;
1603 {
1604 	int i;
1605 
1606 	for (i = 0; i < EX_NDPD; i++) {
1607 		sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1608 		sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1609 		if (i < EX_NDPD - 1)
1610 			sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1611 		else
1612 			sc->sc_txdescs[i].tx_next = NULL;
1613 	}
1614 	sc->tx_free = &sc->sc_txdescs[0];
1615 	sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1616 }
1617 
1618 
1619 int
1620 ex_activate(self, act)
1621 	struct device *self;
1622 	enum devact act;
1623 {
1624 	struct ex_softc *sc = (void *) self;
1625 	int s, error = 0;
1626 
1627 	s = splnet();
1628 	switch (act) {
1629 	case DVACT_ACTIVATE:
1630 		error = EOPNOTSUPP;
1631 		break;
1632 
1633 	case DVACT_DEACTIVATE:
1634 		if (sc->ex_conf & EX_CONF_MII)
1635 			mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
1636 			    MII_OFFSET_ANY);
1637 		if_deactivate(&sc->sc_ethercom.ec_if);
1638 		break;
1639 	}
1640 	splx(s);
1641 
1642 	return (error);
1643 }
1644 
1645 int
1646 ex_detach(sc)
1647 	struct ex_softc *sc;
1648 {
1649 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1650 	struct ex_rxdesc *rxd;
1651 	int i;
1652 
1653 	/* Succeed now if there's no work to do. */
1654 	if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1655 		return (0);
1656 
1657 	/* Unhook our tick handler. */
1658 	callout_stop(&sc->ex_mii_callout);
1659 
1660 	if (sc->ex_conf & EX_CONF_MII) {
1661 		/* Detach all PHYs */
1662 		mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1663 	}
1664 
1665 	/* Delete all remaining media. */
1666 	ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1667 
1668 #if NRND > 0
1669 	rnd_detach_source(&sc->rnd_source);
1670 #endif
1671 	ether_ifdetach(ifp);
1672 	if_detach(ifp);
1673 
1674 	for (i = 0; i < EX_NUPD; i++) {
1675 		rxd = &sc->sc_rxdescs[i];
1676 		if (rxd->rx_mbhead != NULL) {
1677 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1678 			m_freem(rxd->rx_mbhead);
1679 			rxd->rx_mbhead = NULL;
1680 		}
1681 	}
1682 	for (i = 0; i < EX_NUPD; i++)
1683 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1684 	for (i = 0; i < EX_NDPD; i++)
1685 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1686 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1687 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1688 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
1689 	    EX_NDPD * sizeof (struct ex_dpd));
1690 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1691 	bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1692 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1693 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
1694 	    EX_NUPD * sizeof (struct ex_upd));
1695 	bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1696 
1697 	shutdownhook_disestablish(sc->sc_sdhook);
1698 	powerhook_disestablish(sc->sc_powerhook);
1699 
1700 	return (0);
1701 }
1702 
1703 /*
1704  * Before reboots, reset card completely.
1705  */
1706 static void
1707 ex_shutdown(arg)
1708 	void *arg;
1709 {
1710 	struct ex_softc *sc = arg;
1711 
1712 	ex_stop(&sc->sc_ethercom.ec_if, 1);
1713 	/*
1714 	 * Make sure the interface is powered up when we reboot,
1715 	 * otherwise firmware on some systems gets really confused.
1716 	 */
1717 	(void) ex_enable(sc);
1718 }
1719 
1720 /*
1721  * Read EEPROM data.
1722  * XXX what to do if EEPROM doesn't unbusy?
1723  */
1724 u_int16_t
1725 ex_read_eeprom(sc, offset)
1726 	struct ex_softc *sc;
1727 	int offset;
1728 {
1729 	bus_space_tag_t iot = sc->sc_iot;
1730 	bus_space_handle_t ioh = sc->sc_ioh;
1731 	u_int16_t data = 0, cmd = READ_EEPROM;
1732 	int off;
1733 
1734 	off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1735 	cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1736 
1737 	GO_WINDOW(0);
1738 	if (ex_eeprom_busy(sc))
1739 		goto out;
1740 	bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1741 	    cmd | (off + (offset & 0x3f)));
1742 	if (ex_eeprom_busy(sc))
1743 		goto out;
1744 	data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1745 out:
1746 	return data;
1747 }
1748 
1749 static int
1750 ex_eeprom_busy(sc)
1751 	struct ex_softc *sc;
1752 {
1753 	bus_space_tag_t iot = sc->sc_iot;
1754 	bus_space_handle_t ioh = sc->sc_ioh;
1755 	int i = 100;
1756 
1757 	while (i--) {
1758 		if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1759 		    EEPROM_BUSY))
1760 			return 0;
1761 		delay(100);
1762 	}
1763 	printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
1764 	return (1);
1765 }
1766 
1767 /*
1768  * Create a new rx buffer and add it to the 'soft' rx list.
1769  */
1770 static int
1771 ex_add_rxbuf(sc, rxd)
1772 	struct ex_softc *sc;
1773 	struct ex_rxdesc *rxd;
1774 {
1775 	struct mbuf *m, *oldm;
1776 	bus_dmamap_t rxmap;
1777 	int error, rval = 0;
1778 
1779 	oldm = rxd->rx_mbhead;
1780 	rxmap = rxd->rx_dmamap;
1781 
1782 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1783 	if (m != NULL) {
1784 		MCLGET(m, M_DONTWAIT);
1785 		if ((m->m_flags & M_EXT) == 0) {
1786 			m_freem(m);
1787 			if (oldm == NULL)
1788 				return 1;
1789 			m = oldm;
1790 			MRESETDATA(m);
1791 			rval = 1;
1792 		}
1793 	} else {
1794 		if (oldm == NULL)
1795 			return 1;
1796 		m = oldm;
1797 		MRESETDATA(m);
1798 		rval = 1;
1799 	}
1800 
1801 	/*
1802 	 * Setup the DMA map for this receive buffer.
1803 	 */
1804 	if (m != oldm) {
1805 		if (oldm != NULL)
1806 			bus_dmamap_unload(sc->sc_dmat, rxmap);
1807 		error = bus_dmamap_load(sc->sc_dmat, rxmap,
1808 		    m->m_ext.ext_buf, MCLBYTES, NULL,
1809 		    BUS_DMA_READ|BUS_DMA_NOWAIT);
1810 		if (error) {
1811 			printf("%s: can't load rx buffer, error = %d\n",
1812 			    sc->sc_dev.dv_xname, error);
1813 			panic("ex_add_rxbuf");	/* XXX */
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * Align for data after 14 byte header.
1819 	 */
1820 	m->m_data += 2;
1821 
1822 	rxd->rx_mbhead = m;
1823 	rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1824 	rxd->rx_upd->upd_frags[0].fr_addr =
1825 	    htole32(rxmap->dm_segs[0].ds_addr + 2);
1826 	rxd->rx_upd->upd_nextptr = 0;
1827 
1828 	/*
1829 	 * Attach it to the end of the list.
1830 	 */
1831 	if (sc->rx_head != NULL) {
1832 		sc->rx_tail->rx_next = rxd;
1833 		sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1834 		    ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
1835 		bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1836 		    (caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
1837 		    sizeof (struct ex_upd),
1838 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1839 	} else {
1840 		sc->rx_head = rxd;
1841 	}
1842 	sc->rx_tail = rxd;
1843 
1844 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1845 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1846 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1847 	    ((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
1848 	    sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1849 	return (rval);
1850 }
1851 
1852 u_int32_t
1853 ex_mii_bitbang_read(self)
1854 	struct device *self;
1855 {
1856 	struct ex_softc *sc = (void *) self;
1857 
1858 	/* We're already in Window 4. */
1859 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1860 }
1861 
1862 void
1863 ex_mii_bitbang_write(self, val)
1864 	struct device *self;
1865 	u_int32_t val;
1866 {
1867 	struct ex_softc *sc = (void *) self;
1868 
1869 	/* We're already in Window 4. */
1870 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1871 }
1872 
1873 int
1874 ex_mii_readreg(v, phy, reg)
1875 	struct device *v;
1876 	int phy, reg;
1877 {
1878 	struct ex_softc *sc = (struct ex_softc *)v;
1879 	int val;
1880 
1881 	if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1882 		return 0;
1883 
1884 	GO_WINDOW(4);
1885 
1886 	val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1887 
1888 	GO_WINDOW(1);
1889 
1890 	return (val);
1891 }
1892 
1893 void
1894 ex_mii_writereg(v, phy, reg, data)
1895         struct device *v;
1896         int phy;
1897         int reg;
1898         int data;
1899 {
1900 	struct ex_softc *sc = (struct ex_softc *)v;
1901 
1902 	GO_WINDOW(4);
1903 
1904 	mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1905 
1906 	GO_WINDOW(1);
1907 }
1908 
1909 void
1910 ex_mii_statchg(v)
1911 	struct device *v;
1912 {
1913 	struct ex_softc *sc = (struct ex_softc *)v;
1914 	bus_space_tag_t iot = sc->sc_iot;
1915 	bus_space_handle_t ioh = sc->sc_ioh;
1916 	int mctl;
1917 
1918 	GO_WINDOW(3);
1919 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1920 	if (sc->ex_mii.mii_media_active & IFM_FDX)
1921 		mctl |= MAC_CONTROL_FDX;
1922 	else
1923 		mctl &= ~MAC_CONTROL_FDX;
1924 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1925 	GO_WINDOW(1);   /* back to operating window */
1926 }
1927 
1928 int
1929 ex_enable(sc)
1930 	struct ex_softc *sc;
1931 {
1932 	if (sc->enabled == 0 && sc->enable != NULL) {
1933 		if ((*sc->enable)(sc) != 0) {
1934 			printf("%s: de/vice enable failed\n",
1935 				sc->sc_dev.dv_xname);
1936 			return (EIO);
1937 		}
1938 		sc->enabled = 1;
1939 	}
1940 	return (0);
1941 }
1942 
1943 void
1944 ex_disable(sc)
1945 	struct ex_softc *sc;
1946 {
1947 	if (sc->enabled == 1 && sc->disable != NULL) {
1948 		(*sc->disable)(sc);
1949 		sc->enabled = 0;
1950 	}
1951 }
1952 
1953 void
1954 ex_power(why, arg)
1955 	int why;
1956 	void *arg;
1957 {
1958 	struct ex_softc *sc = (void *)arg;
1959 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1960 	int s;
1961 
1962 	s = splnet();
1963 	switch (why) {
1964 	case PWR_SUSPEND:
1965 	case PWR_STANDBY:
1966 		ex_stop(ifp, 0);
1967 		if (sc->power != NULL)
1968 			(*sc->power)(sc, why);
1969 		break;
1970 	case PWR_RESUME:
1971 		if (ifp->if_flags & IFF_UP) {
1972 			if (sc->power != NULL)
1973 				(*sc->power)(sc, why);
1974 			ex_init(ifp);
1975 		}
1976 		break;
1977 	case PWR_SOFTSUSPEND:
1978 	case PWR_SOFTSTANDBY:
1979 	case PWR_SOFTRESUME:
1980 		break;
1981 	}
1982 	splx(s);
1983 }
1984