xref: /netbsd-src/sys/dev/ic/elinkxl.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: elinkxl.c,v 1.110 2010/01/19 22:06:24 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Frank van der Linden.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.110 2010/01/19 22:06:24 pooka Exp $");
34 
35 #include "rnd.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/callout.h>
40 #include <sys/kernel.h>
41 #include <sys/mbuf.h>
42 #include <sys/socket.h>
43 #include <sys/ioctl.h>
44 #include <sys/errno.h>
45 #include <sys/syslog.h>
46 #include <sys/select.h>
47 #include <sys/device.h>
48 #if NRND > 0
49 #include <sys/rnd.h>
50 #endif
51 
52 #include <uvm/uvm_extern.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_ether.h>
57 #include <net/if_media.h>
58 
59 #include <net/bpf.h>
60 #include <net/bpfdesc.h>
61 
62 #include <sys/cpu.h>
63 #include <sys/bus.h>
64 #include <sys/intr.h>
65 #include <machine/endian.h>
66 
67 #include <dev/mii/miivar.h>
68 #include <dev/mii/mii.h>
69 #include <dev/mii/mii_bitbang.h>
70 
71 #include <dev/ic/elink3reg.h>
72 /* #include <dev/ic/elink3var.h> */
73 #include <dev/ic/elinkxlreg.h>
74 #include <dev/ic/elinkxlvar.h>
75 
76 #ifdef DEBUG
77 int exdebug = 0;
78 #endif
79 
80 /* ifmedia callbacks */
81 int ex_media_chg(struct ifnet *ifp);
82 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
83 
84 static int ex_ifflags_cb(struct ethercom *);
85 
86 void ex_probe_media(struct ex_softc *);
87 void ex_set_filter(struct ex_softc *);
88 void ex_set_media(struct ex_softc *);
89 void ex_set_xcvr(struct ex_softc *, uint16_t);
90 struct mbuf *ex_get(struct ex_softc *, int);
91 uint16_t ex_read_eeprom(struct ex_softc *, int);
92 int ex_init(struct ifnet *);
93 void ex_read(struct ex_softc *);
94 void ex_reset(struct ex_softc *);
95 void ex_set_mc(struct ex_softc *);
96 void ex_getstats(struct ex_softc *);
97 void ex_printstats(struct ex_softc *);
98 void ex_tick(void *);
99 
100 static int ex_eeprom_busy(struct ex_softc *);
101 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
102 static void ex_init_txdescs(struct ex_softc *);
103 
104 static void ex_setup_tx(struct ex_softc *);
105 static bool ex_shutdown(device_t, int);
106 static void ex_start(struct ifnet *);
107 static void ex_txstat(struct ex_softc *);
108 
109 int ex_mii_readreg(device_t, int, int);
110 void ex_mii_writereg(device_t, int, int, int);
111 void ex_mii_statchg(device_t);
112 
113 void ex_probemedia(struct ex_softc *);
114 
115 /*
116  * Structure to map media-present bits in boards to ifmedia codes and
117  * printable media names.  Used for table-driven ifmedia initialization.
118  */
119 struct ex_media {
120 	int	exm_mpbit;		/* media present bit */
121 	const char *exm_name;		/* name of medium */
122 	int	exm_ifmedia;		/* ifmedia word for medium */
123 	int	exm_epmedia;		/* ELINKMEDIA_* constant */
124 };
125 
126 /*
127  * Media table for 3c90x chips.  Note that chips with MII have no
128  * `native' media.
129  */
130 struct ex_media ex_native_media[] = {
131 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
132 	  ELINKMEDIA_10BASE_T },
133 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
134 	  ELINKMEDIA_10BASE_T },
135 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
136 	  ELINKMEDIA_AUI },
137 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
138 	  ELINKMEDIA_10BASE_2 },
139 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
140 	  ELINKMEDIA_100BASE_TX },
141 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
142 	  ELINKMEDIA_100BASE_TX },
143 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
144 	  ELINKMEDIA_100BASE_FX },
145 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
146 	  ELINKMEDIA_MII },
147 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
148 	  ELINKMEDIA_100BASE_T4 },
149 	{ 0,			NULL,		0,
150 	  0 },
151 };
152 
153 /*
154  * MII bit-bang glue.
155  */
156 uint32_t ex_mii_bitbang_read(device_t);
157 void ex_mii_bitbang_write(device_t, uint32_t);
158 
159 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
160 	ex_mii_bitbang_read,
161 	ex_mii_bitbang_write,
162 	{
163 		ELINK_PHY_DATA,		/* MII_BIT_MDO */
164 		ELINK_PHY_DATA,		/* MII_BIT_MDI */
165 		ELINK_PHY_CLK,		/* MII_BIT_MDC */
166 		ELINK_PHY_DIR,		/* MII_BIT_DIR_HOST_PHY */
167 		0,			/* MII_BIT_DIR_PHY_HOST */
168 	}
169 };
170 
171 /*
172  * Back-end attach and configure.
173  */
174 void
175 ex_config(struct ex_softc *sc)
176 {
177 	struct ifnet *ifp;
178 	uint16_t val;
179 	uint8_t macaddr[ETHER_ADDR_LEN] = {0};
180 	bus_space_tag_t iot = sc->sc_iot;
181 	bus_space_handle_t ioh = sc->sc_ioh;
182 	int i, error, attach_stage;
183 
184 	callout_init(&sc->ex_mii_callout, 0);
185 
186 	ex_reset(sc);
187 
188 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
189 	macaddr[0] = val >> 8;
190 	macaddr[1] = val & 0xff;
191 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
192 	macaddr[2] = val >> 8;
193 	macaddr[3] = val & 0xff;
194 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
195 	macaddr[4] = val >> 8;
196 	macaddr[5] = val & 0xff;
197 
198 	aprint_normal_dev(sc->sc_dev, "MAC address %s\n", ether_sprintf(macaddr));
199 
200 	if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
201 		GO_WINDOW(2);
202 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
203 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
204 			val |= ELINK_RESET_OPT_LEDPOLAR;
205 		if (sc->ex_conf & EX_CONF_PHY_POWER)
206 			val |= ELINK_RESET_OPT_PHYPOWER;
207 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
208 	}
209 	if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
210 		GO_WINDOW(0);
211 		bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
212 		    EX_XCVR_PWR_MAGICBITS);
213 	}
214 
215 	attach_stage = 0;
216 
217 	/*
218 	 * Allocate the upload descriptors, and create and load the DMA
219 	 * map for them.
220 	 */
221 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
222 	    EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
223             &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
224 		aprint_error_dev(sc->sc_dev,
225 		    "can't allocate upload descriptors, error = %d\n", error);
226 		goto fail;
227 	}
228 
229 	attach_stage = 1;
230 
231 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
232 	    EX_NUPD * sizeof (struct ex_upd), (void **)&sc->sc_upd,
233 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
234 		aprint_error_dev(sc->sc_dev,
235 		    "can't map upload descriptors, error = %d\n", error);
236 		goto fail;
237 	}
238 
239 	attach_stage = 2;
240 
241 	if ((error = bus_dmamap_create(sc->sc_dmat,
242 	    EX_NUPD * sizeof (struct ex_upd), 1,
243 	    EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
244 	    &sc->sc_upd_dmamap)) != 0) {
245 		aprint_error_dev(sc->sc_dev,
246 		    "can't create upload desc. DMA map, error = %d\n", error);
247 		goto fail;
248 	}
249 
250 	attach_stage = 3;
251 
252 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
253 	    sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
254 	    BUS_DMA_NOWAIT)) != 0) {
255 		aprint_error_dev(sc->sc_dev,
256 		    "can't load upload desc. DMA map, error = %d\n", error);
257 		goto fail;
258 	}
259 
260 	attach_stage = 4;
261 
262 	/*
263 	 * Allocate the download descriptors, and create and load the DMA
264 	 * map for them.
265 	 */
266 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
267 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, PAGE_SIZE, 0, &sc->sc_dseg, 1,
268 	    &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
269 		aprint_error_dev(sc->sc_dev,
270 		    "can't allocate download descriptors, error = %d\n", error);
271 		goto fail;
272 	}
273 
274 	attach_stage = 5;
275 
276 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
277 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, (void **)&sc->sc_dpd,
278 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
279 		aprint_error_dev(sc->sc_dev,
280 		    "can't map download descriptors, error = %d\n", error);
281 		goto fail;
282 	}
283 	memset(sc->sc_dpd, 0, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN);
284 
285 	attach_stage = 6;
286 
287 	if ((error = bus_dmamap_create(sc->sc_dmat,
288 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 1,
289 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 0, BUS_DMA_NOWAIT,
290 	    &sc->sc_dpd_dmamap)) != 0) {
291 		aprint_error_dev(sc->sc_dev,
292 		    "can't create download desc. DMA map, error = %d\n", error);
293 		goto fail;
294 	}
295 
296 	attach_stage = 7;
297 
298 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
299 	    sc->sc_dpd, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, NULL,
300 	    BUS_DMA_NOWAIT)) != 0) {
301 		aprint_error_dev(sc->sc_dev,
302 		    "can't load download desc. DMA map, error = %d\n", error);
303 		goto fail;
304 	}
305 	bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
306 	    DPDMEMPAD_OFF, EX_IP4CSUMTX_PADLEN, BUS_DMASYNC_PREWRITE);
307 
308 	attach_stage = 8;
309 
310 
311 	/*
312 	 * Create the transmit buffer DMA maps.
313 	 */
314 	for (i = 0; i < EX_NDPD; i++) {
315 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
316 		    EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
317 		    &sc->sc_tx_dmamaps[i])) != 0) {
318 			aprint_error_dev(sc->sc_dev,
319 			    "can't create tx DMA map %d, error = %d\n",
320 			    i, error);
321 			goto fail;
322 		}
323 	}
324 
325 	attach_stage = 9;
326 
327 	/*
328 	 * Create the receive buffer DMA maps.
329 	 */
330 	for (i = 0; i < EX_NUPD; i++) {
331 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
332 		    EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
333 		    &sc->sc_rx_dmamaps[i])) != 0) {
334 			aprint_error_dev(sc->sc_dev,
335 			    "can't create rx DMA map %d, error = %d\n",
336 			    i, error);
337 			goto fail;
338 		}
339 	}
340 
341 	attach_stage = 10;
342 
343 	/*
344 	 * Create ring of upload descriptors, only once. The DMA engine
345 	 * will loop over this when receiving packets, stalling if it
346 	 * hits an UPD with a finished receive.
347 	 */
348 	for (i = 0; i < EX_NUPD; i++) {
349 		sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
350 		sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
351 		sc->sc_upd[i].upd_frags[0].fr_len =
352 		    htole32((MCLBYTES - 2) | EX_FR_LAST);
353 		if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
354 			aprint_error_dev(sc->sc_dev,
355 			    "can't allocate or map rx buffers\n");
356 			goto fail;
357 		}
358 	}
359 
360 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
361 	    EX_NUPD * sizeof (struct ex_upd),
362 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
363 
364 	ex_init_txdescs(sc);
365 
366 	attach_stage = 11;
367 
368 
369 	GO_WINDOW(3);
370 	val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
371 	if (val & ELINK_MEDIACAP_MII)
372 		sc->ex_conf |= EX_CONF_MII;
373 
374 	ifp = &sc->sc_ethercom.ec_if;
375 
376 	/*
377 	 * Initialize our media structures and MII info.  We'll
378 	 * probe the MII if we discover that we have one.
379 	 */
380 	sc->ex_mii.mii_ifp = ifp;
381 	sc->ex_mii.mii_readreg = ex_mii_readreg;
382 	sc->ex_mii.mii_writereg = ex_mii_writereg;
383 	sc->ex_mii.mii_statchg = ex_mii_statchg;
384 	ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
385 	    ex_media_stat);
386 
387 	if (sc->ex_conf & EX_CONF_MII) {
388 		/*
389 		 * Find PHY, extract media information from it.
390 		 * First, select the right transceiver.
391 		 */
392 		ex_set_xcvr(sc, val);
393 
394 		mii_attach(sc->sc_dev, &sc->ex_mii, 0xffffffff,
395 		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
396 		if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
397 			ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
398 			    0, NULL);
399 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
400 		} else {
401 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
402 		}
403 	} else
404 		ex_probemedia(sc);
405 
406 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
407 	ifp->if_softc = sc;
408 	ifp->if_start = ex_start;
409 	ifp->if_ioctl = ex_ioctl;
410 	ifp->if_watchdog = ex_watchdog;
411 	ifp->if_init = ex_init;
412 	ifp->if_stop = ex_stop;
413 	ifp->if_flags =
414 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
415 	sc->sc_if_flags = ifp->if_flags;
416 	IFQ_SET_READY(&ifp->if_snd);
417 
418 	/*
419 	 * We can support 802.1Q VLAN-sized frames.
420 	 */
421 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
422 
423 	/*
424 	 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
425 	 */
426 	if (sc->ex_conf & EX_CONF_90XB)
427 		sc->sc_ethercom.ec_if.if_capabilities |=
428 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
429 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
430 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
431 
432 	if_attach(ifp);
433 	ether_ifattach(ifp, macaddr);
434 	ether_set_ifflags_cb(&sc->sc_ethercom, ex_ifflags_cb);
435 
436 	GO_WINDOW(1);
437 
438 	sc->tx_start_thresh = 20;
439 	sc->tx_succ_ok = 0;
440 
441 	/* TODO: set queues to 0 */
442 
443 #if NRND > 0
444 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
445 			  RND_TYPE_NET, 0);
446 #endif
447 
448 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, ex_shutdown))
449 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
450 	else
451 		aprint_error_dev(sc->sc_dev,
452 		    "couldn't establish power handler\n");
453 
454 	/* The attach is successful. */
455 	sc->ex_flags |= EX_FLAGS_ATTACHED;
456 	return;
457 
458  fail:
459 	/*
460 	 * Free any resources we've allocated during the failed attach
461 	 * attempt.  Do this in reverse order and fall though.
462 	 */
463 	switch (attach_stage) {
464 	case 11:
465 	    {
466 		struct ex_rxdesc *rxd;
467 
468 		for (i = 0; i < EX_NUPD; i++) {
469 			rxd = &sc->sc_rxdescs[i];
470 			if (rxd->rx_mbhead != NULL) {
471 				bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
472 				m_freem(rxd->rx_mbhead);
473 			}
474 		}
475 	    }
476 		/* FALLTHROUGH */
477 
478 	case 10:
479 		for (i = 0; i < EX_NUPD; i++)
480 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
481 		/* FALLTHROUGH */
482 
483 	case 9:
484 		for (i = 0; i < EX_NDPD; i++)
485 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
486 		/* FALLTHROUGH */
487 	case 8:
488 		bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
489 		/* FALLTHROUGH */
490 
491 	case 7:
492 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
493 		/* FALLTHROUGH */
494 
495 	case 6:
496 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
497 		    EX_NDPD * sizeof (struct ex_dpd));
498 		/* FALLTHROUGH */
499 
500 	case 5:
501 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
502 		break;
503 
504 	case 4:
505 		bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
506 		/* FALLTHROUGH */
507 
508 	case 3:
509 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
510 		/* FALLTHROUGH */
511 
512 	case 2:
513 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
514 		    EX_NUPD * sizeof (struct ex_upd));
515 		/* FALLTHROUGH */
516 
517 	case 1:
518 		bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
519 		break;
520 	}
521 
522 }
523 
524 /*
525  * Find the media present on non-MII chips.
526  */
527 void
528 ex_probemedia(struct ex_softc *sc)
529 {
530 	bus_space_tag_t iot = sc->sc_iot;
531 	bus_space_handle_t ioh = sc->sc_ioh;
532 	struct ifmedia *ifm = &sc->ex_mii.mii_media;
533 	struct ex_media *exm;
534 	uint16_t config1, reset_options, default_media;
535 	int defmedia = 0;
536 	const char *sep = "", *defmedianame = NULL;
537 
538 	GO_WINDOW(3);
539 	config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
540 	reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
541 	GO_WINDOW(0);
542 
543 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
544 
545 	/* Sanity check that there are any media! */
546 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
547 		aprint_error_dev(sc->sc_dev, "no media present!\n");
548 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
549 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
550 		return;
551 	}
552 
553 	aprint_normal_dev(sc->sc_dev, "");
554 
555 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
556 
557 	for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
558 		if (reset_options & exm->exm_mpbit) {
559 			/*
560 			 * Default media is a little complicated.  We
561 			 * support full-duplex which uses the same
562 			 * reset options bit.
563 			 *
564 			 * XXX Check EEPROM for default to FDX?
565 			 */
566 			if (exm->exm_epmedia == default_media) {
567 				if ((exm->exm_ifmedia & IFM_FDX) == 0) {
568 					defmedia = exm->exm_ifmedia;
569 					defmedianame = exm->exm_name;
570 				}
571 			} else if (defmedia == 0) {
572 				defmedia = exm->exm_ifmedia;
573 				defmedianame = exm->exm_name;
574 			}
575 			ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
576 			    NULL);
577 			PRINT(exm->exm_name);
578 		}
579 	}
580 
581 #undef PRINT
582 
583 #ifdef DIAGNOSTIC
584 	if (defmedia == 0)
585 		panic("ex_probemedia: impossible");
586 #endif
587 
588 	aprint_normal(", default %s\n", defmedianame);
589 	ifmedia_set(ifm, defmedia);
590 }
591 
592 /*
593  * Setup transmitter parameters.
594  */
595 static void
596 ex_setup_tx(struct ex_softc *sc)
597 {
598 	bus_space_tag_t iot = sc->sc_iot;
599 	bus_space_handle_t ioh = sc->sc_ioh;
600 
601 	/*
602 	 * Disable reclaim threshold for 90xB, set free threshold to
603 	 * 6 * 256 = 1536 for 90x.
604 	 */
605 	if (sc->ex_conf & EX_CONF_90XB)
606 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
607 		    ELINK_TXRECLTHRESH | 255);
608 	else
609 		bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
610 
611 	/* Setup early transmission start threshold. */
612 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
613 	    ELINK_TXSTARTTHRESH | sc->tx_start_thresh);
614 }
615 
616 /*
617  * Bring device up.
618  */
619 int
620 ex_init(struct ifnet *ifp)
621 {
622 	struct ex_softc *sc = ifp->if_softc;
623 	bus_space_tag_t iot = sc->sc_iot;
624 	bus_space_handle_t ioh = sc->sc_ioh;
625 	int i;
626 	uint16_t val;
627 	int error = 0;
628 
629 	if ((error = ex_enable(sc)) != 0)
630 		goto out;
631 
632 	ex_waitcmd(sc);
633 	ex_stop(ifp, 0);
634 
635 	GO_WINDOW(2);
636 
637 	/* Turn on PHY power. */
638 	if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
639 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
640 		if (sc->ex_conf & EX_CONF_PHY_POWER)
641 			val |= ELINK_RESET_OPT_PHYPOWER; /* turn on PHY power */
642 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
643 			val |= ELINK_RESET_OPT_LEDPOLAR; /* invert LED polarity */
644 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
645 	}
646 
647 	/*
648 	 * Set the station address and clear the station mask. The latter
649 	 * is needed for 90x cards, 0 is the default for 90xB cards.
650 	 */
651 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
652 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
653 		    CLLADDR(ifp->if_sadl)[i]);
654 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
655 	}
656 
657 	GO_WINDOW(3);
658 
659 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
660 	ex_waitcmd(sc);
661 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
662 	ex_waitcmd(sc);
663 
664 	/* Load Tx parameters. */
665 	ex_setup_tx(sc);
666 
667 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
668 	    SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
669 
670 	bus_space_write_4(iot, ioh, ELINK_DMACTRL,
671 	    bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
672 
673 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
674 	    SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
675 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
676 	    SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
677 
678 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
679 	if (sc->intr_ack)
680 	    (* sc->intr_ack)(sc);
681 	ex_set_media(sc);
682 	ex_set_mc(sc);
683 
684 
685 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
686 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
687 	bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
688 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
689 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
690 
691 	ifp->if_flags |= IFF_RUNNING;
692 	ifp->if_flags &= ~IFF_OACTIVE;
693 	ex_start(ifp);
694 	sc->sc_if_flags = ifp->if_flags;
695 
696 	GO_WINDOW(1);
697 
698 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
699 
700  out:
701 	if (error) {
702 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
703 		ifp->if_timer = 0;
704 		aprint_error_dev(sc->sc_dev, "interface not running\n");
705 	}
706 	return (error);
707 }
708 
709 #define	MCHASHSIZE		256
710 #define	ex_mchash(addr)		(ether_crc32_be((addr), ETHER_ADDR_LEN) & \
711 				    (MCHASHSIZE - 1))
712 
713 /*
714  * Set multicast receive filter. Also take care of promiscuous mode
715  * here (XXX).
716  */
717 void
718 ex_set_mc(struct ex_softc *sc)
719 {
720 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
721 	struct ethercom *ec = &sc->sc_ethercom;
722 	struct ether_multi *enm;
723 	struct ether_multistep estep;
724 	int i;
725 	uint16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
726 
727 	if (ifp->if_flags & IFF_PROMISC) {
728 		mask |= FIL_PROMISC;
729 		goto allmulti;
730 	}
731 
732 	ETHER_FIRST_MULTI(estep, ec, enm);
733 	if (enm == NULL)
734 		goto nomulti;
735 
736 	if ((sc->ex_conf & EX_CONF_90XB) == 0)
737 		/* No multicast hash filtering. */
738 		goto allmulti;
739 
740 	for (i = 0; i < MCHASHSIZE; i++)
741 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
742 		    ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
743 
744 	do {
745 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
746 		    ETHER_ADDR_LEN) != 0)
747 			goto allmulti;
748 
749 		i = ex_mchash(enm->enm_addrlo);
750 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
751 		    ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
752 		ETHER_NEXT_MULTI(estep, enm);
753 	} while (enm != NULL);
754 	mask |= FIL_MULTIHASH;
755 
756 nomulti:
757 	ifp->if_flags &= ~IFF_ALLMULTI;
758 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
759 	    SET_RX_FILTER | mask);
760 	return;
761 
762 allmulti:
763 	ifp->if_flags |= IFF_ALLMULTI;
764 	mask |= FIL_MULTICAST;
765 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
766 	    SET_RX_FILTER | mask);
767 }
768 
769 
770 /*
771  * The Tx Complete interrupts occur only on errors,
772  * and this is the error handler.
773  */
774 static void
775 ex_txstat(struct ex_softc *sc)
776 {
777 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
778 	bus_space_tag_t iot = sc->sc_iot;
779 	bus_space_handle_t ioh = sc->sc_ioh;
780 	int i, err = 0;
781 
782 	/*
783 	 * We need to read+write TX_STATUS until we get a 0 status
784 	 * in order to turn off the interrupt flag.
785 	 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER.
786 	 */
787 	for (;;) {
788 		i = bus_space_read_2(iot, ioh, ELINK_TIMER);
789 		if ((i & TXS_COMPLETE) == 0)
790 			break;
791 		bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
792 		err |= i;
793 	}
794 	err &= ~TXS_TIMER;
795 
796 	if ((err & (TXS_UNDERRUN | TXS_JABBER | TXS_RECLAIM))
797 	    || err == 0 /* should not happen, just in case */) {
798 		/*
799 		 * Make sure the transmission is stopped.
800 		 */
801 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNSTALL);
802 		for (i = 1000; i > 0; i--)
803 			if ((bus_space_read_4(iot, ioh, ELINK_DMACTRL) &
804 			    ELINK_DMAC_DNINPROG) == 0)
805 				break;
806 
807 		/*
808 		 * Reset the transmitter.
809 		 */
810 		bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
811 
812 		/* Resetting takes a while and we will do more than wait. */
813 
814 		ifp->if_flags &= ~IFF_OACTIVE;
815 		++sc->sc_ethercom.ec_if.if_oerrors;
816 		aprint_error_dev(sc->sc_dev, "%s%s%s",
817 		    (err & TXS_UNDERRUN) ? " transmit underrun" : "",
818 		    (err & TXS_JABBER) ? " jabber" : "",
819 		    (err & TXS_RECLAIM) ? " reclaim" : "");
820 		if (err == 0)
821 			aprint_error(" unknown Tx error");
822 		printf(" (%x)", err);
823 		if (err & TXS_UNDERRUN) {
824 			aprint_error(" @%d", sc->tx_start_thresh);
825 			if (sc->tx_succ_ok < 256 &&
826 			    (i = min(ETHER_MAX_LEN, sc->tx_start_thresh + 20))
827 			    > sc->tx_start_thresh) {
828 				aprint_error(", new threshold is %d", i);
829 				sc->tx_start_thresh = i;
830 			}
831 			sc->tx_succ_ok = 0;
832 		}
833 		aprint_error("\n");
834 		if (err & TXS_MAX_COLLISION)
835 			++sc->sc_ethercom.ec_if.if_collisions;
836 
837 		/* Wait for TX_RESET to finish. */
838 		ex_waitcmd(sc);
839 
840 		/* Reload Tx parameters. */
841 		ex_setup_tx(sc);
842 	} else {
843 		if (err & TXS_MAX_COLLISION)
844 			++sc->sc_ethercom.ec_if.if_collisions;
845 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
846 	}
847 
848 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
849 
850 	/* Retransmit current packet if any. */
851 	if (sc->tx_head) {
852 		ifp->if_flags |= IFF_OACTIVE;
853 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
854 		    ELINK_DNUNSTALL);
855 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
856 		    DPD_DMADDR(sc, sc->tx_head));
857 
858 		/* Retrigger watchdog if stopped. */
859 		if (ifp->if_timer == 0)
860 			ifp->if_timer = 1;
861 	}
862 }
863 
864 int
865 ex_media_chg(struct ifnet *ifp)
866 {
867 
868 	if (ifp->if_flags & IFF_UP)
869 		ex_init(ifp);
870 	return 0;
871 }
872 
873 void
874 ex_set_xcvr(struct ex_softc *sc, const uint16_t media)
875 {
876 	bus_space_tag_t iot = sc->sc_iot;
877 	bus_space_handle_t ioh = sc->sc_ioh;
878 	uint32_t icfg;
879 
880 	/*
881 	 * We're already in Window 3
882 	 */
883 	icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
884 	icfg &= ~(CONFIG_XCVR_SEL << 16);
885 	if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
886 		icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
887 	if (media & ELINK_MEDIACAP_100BASETX)
888 		icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
889 	if (media & ELINK_MEDIACAP_100BASEFX)
890 		icfg |= ELINKMEDIA_100BASE_FX
891 			<< (CONFIG_XCVR_SEL_SHIFT + 16);
892 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
893 }
894 
895 void
896 ex_set_media(struct ex_softc *sc)
897 {
898 	bus_space_tag_t iot = sc->sc_iot;
899 	bus_space_handle_t ioh = sc->sc_ioh;
900 	uint32_t configreg;
901 
902 	if (((sc->ex_conf & EX_CONF_MII) &&
903 	    (sc->ex_mii.mii_media_active & IFM_FDX))
904 	    || (!(sc->ex_conf & EX_CONF_MII) &&
905 	    (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
906 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
907 		    MAC_CONTROL_FDX);
908 	} else {
909 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
910 	}
911 
912 	/*
913 	 * If the device has MII, select it, and then tell the
914 	 * PHY which media to use.
915 	 */
916 	if (sc->ex_conf & EX_CONF_MII) {
917 		uint16_t val;
918 
919 		GO_WINDOW(3);
920 		val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
921 		ex_set_xcvr(sc, val);
922 		mii_mediachg(&sc->ex_mii);
923 		return;
924 	}
925 
926 	GO_WINDOW(4);
927 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
928 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
929 	delay(800);
930 
931 	/*
932 	 * Now turn on the selected media/transceiver.
933 	 */
934 	switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
935 	case IFM_10_T:
936 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
937 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
938 		break;
939 
940 	case IFM_10_2:
941 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
942 		DELAY(800);
943 		break;
944 
945 	case IFM_100_TX:
946 	case IFM_100_FX:
947 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
948 		    LINKBEAT_ENABLE);
949 		DELAY(800);
950 		break;
951 
952 	case IFM_10_5:
953 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
954 		    SQE_ENABLE);
955 		DELAY(800);
956 		break;
957 
958 	case IFM_MANUAL:
959 		break;
960 
961 	case IFM_NONE:
962 		return;
963 
964 	default:
965 		panic("ex_set_media: impossible");
966 	}
967 
968 	GO_WINDOW(3);
969 	configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
970 
971 	configreg &= ~(CONFIG_MEDIAMASK << 16);
972 	configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
973 	    (CONFIG_MEDIAMASK_SHIFT + 16));
974 
975 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
976 }
977 
978 /*
979  * Get currently-selected media from card.
980  * (if_media callback, may be called before interface is brought up).
981  */
982 void
983 ex_media_stat(struct ifnet *ifp, struct ifmediareq *req)
984 {
985 	struct ex_softc *sc = ifp->if_softc;
986 	uint16_t help;
987 
988 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
989 		if (sc->ex_conf & EX_CONF_MII) {
990 			mii_pollstat(&sc->ex_mii);
991 			req->ifm_status = sc->ex_mii.mii_media_status;
992 			req->ifm_active = sc->ex_mii.mii_media_active;
993 		} else {
994 			GO_WINDOW(4);
995 			req->ifm_status = IFM_AVALID;
996 			req->ifm_active =
997 			    sc->ex_mii.mii_media.ifm_cur->ifm_media;
998 			help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
999 						ELINK_W4_MEDIA_TYPE);
1000 			if (help & LINKBEAT_DETECT)
1001 				req->ifm_status |= IFM_ACTIVE;
1002 			GO_WINDOW(1);
1003 		}
1004 	}
1005 }
1006 
1007 
1008 
1009 /*
1010  * Start outputting on the interface.
1011  */
1012 static void
1013 ex_start(struct ifnet *ifp)
1014 {
1015 	struct ex_softc *sc = ifp->if_softc;
1016 	bus_space_tag_t iot = sc->sc_iot;
1017 	bus_space_handle_t ioh = sc->sc_ioh;
1018 	volatile struct ex_fraghdr *fr = NULL;
1019 	volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
1020 	struct ex_txdesc *txp;
1021 	struct mbuf *mb_head;
1022 	bus_dmamap_t dmamap;
1023 	int m_csumflags, offset, seglen, totlen, segment, error;
1024 	uint32_t csum_flags;
1025 
1026 	if (sc->tx_head || sc->tx_free == NULL)
1027 		return;
1028 
1029 	txp = NULL;
1030 
1031 	/*
1032 	 * We're finished if there is nothing more to add to the list or if
1033 	 * we're all filled up with buffers to transmit.
1034 	 */
1035 	while (sc->tx_free != NULL) {
1036 		/*
1037 		 * Grab a packet to transmit.
1038 		 */
1039 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1040 		if (mb_head == NULL)
1041 			break;
1042 
1043 		/*
1044 		 * mb_head might be updated later,
1045 		 * so preserve csum_flags here.
1046 		 */
1047 		m_csumflags = mb_head->m_pkthdr.csum_flags;
1048 
1049 		/*
1050 		 * Get pointer to next available tx desc.
1051 		 */
1052 		txp = sc->tx_free;
1053 		dmamap = txp->tx_dmamap;
1054 
1055 		/*
1056 		 * Go through each of the mbufs in the chain and initialize
1057 		 * the transmit buffer descriptors with the physical address
1058 		 * and size of the mbuf.
1059 		 */
1060  reload:
1061 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1062 		    mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1063 		switch (error) {
1064 		case 0:
1065 			/* Success. */
1066 			break;
1067 
1068 		case EFBIG:
1069 		    {
1070 			struct mbuf *mn;
1071 
1072 			/*
1073 			 * We ran out of segments.  We have to recopy this
1074 			 * mbuf chain first.  Bail out if we can't get the
1075 			 * new buffers.
1076 			 */
1077 			aprint_error_dev(sc->sc_dev, "too many segments, ");
1078 
1079 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1080 			if (mn == NULL) {
1081 				m_freem(mb_head);
1082 				aprint_error("aborting\n");
1083 				goto out;
1084 			}
1085 			if (mb_head->m_pkthdr.len > MHLEN) {
1086 				MCLGET(mn, M_DONTWAIT);
1087 				if ((mn->m_flags & M_EXT) == 0) {
1088 					m_freem(mn);
1089 					m_freem(mb_head);
1090 					aprint_error("aborting\n");
1091 					goto out;
1092 				}
1093 			}
1094 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1095 			    mtod(mn, void *));
1096 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1097 			m_freem(mb_head);
1098 			mb_head = mn;
1099 			aprint_error("retrying\n");
1100 			goto reload;
1101 		    }
1102 
1103 		default:
1104 			/*
1105 			 * Some other problem; report it.
1106 			 */
1107 			aprint_error_dev(sc->sc_dev,
1108 			    "can't load mbuf chain, error = %d\n", error);
1109 			m_freem(mb_head);
1110 			goto out;
1111 		}
1112 
1113 		/*
1114 		 * remove our tx desc from freelist.
1115 		 */
1116 		sc->tx_free = txp->tx_next;
1117 		txp->tx_next = NULL;
1118 
1119 		fr = &txp->tx_dpd->dpd_frags[0];
1120 		totlen = 0;
1121 		for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1122 			fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1123 			seglen = dmamap->dm_segs[segment].ds_len;
1124 			fr->fr_len = htole32(seglen);
1125 			totlen += seglen;
1126 		}
1127 		if (__predict_false(totlen <= EX_IP4CSUMTX_PADLEN &&
1128 		    (m_csumflags & M_CSUM_IPv4) != 0)) {
1129 			/*
1130 			 * Pad short packets to avoid ip4csum-tx bug.
1131 			 *
1132 			 * XXX Should we still consider if such short
1133 			 *     (36 bytes or less) packets might already
1134 			 *     occupy EX_NTFRAG (== 32) fragments here?
1135 			 */
1136 			KASSERT(segment < EX_NTFRAGS);
1137 			fr->fr_addr = htole32(DPDMEMPAD_DMADDR(sc));
1138 			seglen = EX_IP4CSUMTX_PADLEN + 1 - totlen;
1139 			fr->fr_len = htole32(EX_FR_LAST | seglen);
1140 			totlen += seglen;
1141 		} else {
1142 			fr--;
1143 			fr->fr_len |= htole32(EX_FR_LAST);
1144 		}
1145 		txp->tx_mbhead = mb_head;
1146 
1147 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1148 		    BUS_DMASYNC_PREWRITE);
1149 
1150 		dpd = txp->tx_dpd;
1151 		dpd->dpd_nextptr = 0;
1152 		dpd->dpd_fsh = htole32(totlen);
1153 
1154 		/* Byte-swap constants so compiler can optimize. */
1155 
1156 		if (sc->ex_conf & EX_CONF_90XB) {
1157 			csum_flags = 0;
1158 
1159 			if (m_csumflags & M_CSUM_IPv4)
1160 				csum_flags |= htole32(EX_DPD_IPCKSUM);
1161 
1162 			if (m_csumflags & M_CSUM_TCPv4)
1163 				csum_flags |= htole32(EX_DPD_TCPCKSUM);
1164 			else if (m_csumflags & M_CSUM_UDPv4)
1165 				csum_flags |= htole32(EX_DPD_UDPCKSUM);
1166 
1167 			dpd->dpd_fsh |= csum_flags;
1168 		} else {
1169 			KDASSERT((mb_head->m_pkthdr.csum_flags &
1170 			    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1171 		}
1172 
1173 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1174 		    ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1175 		    sizeof (struct ex_dpd),
1176 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1177 
1178 		/*
1179 		 * No need to stall the download engine, we know it's
1180 		 * not busy right now.
1181 		 *
1182 		 * Fix up pointers in both the "soft" tx and the physical
1183 		 * tx list.
1184 		 */
1185 		if (sc->tx_head != NULL) {
1186 			prevdpd = sc->tx_tail->tx_dpd;
1187 			offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1188 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1189 			    offset, sizeof (struct ex_dpd),
1190 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1191 			prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1192 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1193 			    offset, sizeof (struct ex_dpd),
1194 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1195 			sc->tx_tail->tx_next = txp;
1196 			sc->tx_tail = txp;
1197 		} else {
1198 			sc->tx_tail = sc->tx_head = txp;
1199 		}
1200 
1201 		/*
1202 		 * Pass packet to bpf if there is a listener.
1203 		 */
1204 		if (ifp->if_bpf)
1205 			bpf_ops->bpf_mtap(ifp->if_bpf, mb_head);
1206 	}
1207  out:
1208 	if (sc->tx_head) {
1209 		sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1210 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1211 		    ((char *)sc->tx_tail->tx_dpd - (char *)sc->sc_dpd),
1212 		    sizeof (struct ex_dpd),
1213 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1214 		ifp->if_flags |= IFF_OACTIVE;
1215 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1216 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1217 		    DPD_DMADDR(sc, sc->tx_head));
1218 
1219 		/* trigger watchdog */
1220 		ifp->if_timer = 5;
1221 	}
1222 }
1223 
1224 
1225 int
1226 ex_intr(void *arg)
1227 {
1228 	struct ex_softc *sc = arg;
1229 	bus_space_tag_t iot = sc->sc_iot;
1230 	bus_space_handle_t ioh = sc->sc_ioh;
1231 	uint16_t stat;
1232 	int ret = 0;
1233 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1234 
1235 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1236 	    !device_is_active(sc->sc_dev))
1237 		return (0);
1238 
1239 	for (;;) {
1240 		stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1241 
1242 		if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1243 			if ((stat & INTR_LATCH) == 0) {
1244 #if 0
1245 				aprint_error_dev(sc->sc_dev,
1246 				       "intr latch cleared\n");
1247 #endif
1248 				break;
1249 			}
1250 		}
1251 
1252 		ret = 1;
1253 
1254 		/*
1255 		 * Acknowledge interrupts.
1256 		 */
1257 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1258 		    (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1259 		if (sc->intr_ack)
1260 			(*sc->intr_ack)(sc);
1261 
1262 		if (stat & HOST_ERROR) {
1263 			aprint_error_dev(sc->sc_dev,
1264 			    "adapter failure (%x)\n", stat);
1265 			ex_reset(sc);
1266 			ex_init(ifp);
1267 			return 1;
1268 		}
1269 		if (stat & UPD_STATS) {
1270 			ex_getstats(sc);
1271 		}
1272 		if (stat & TX_COMPLETE) {
1273 			ex_txstat(sc);
1274 #if 0
1275 			if (stat & DN_COMPLETE)
1276 				aprint_error_dev(sc->sc_dev,
1277 				    "Ignoring Dn interrupt (%x)\n", stat);
1278 #endif
1279 			/*
1280 			 * In some rare cases, both Tx Complete and
1281 			 * Dn Complete bits are set.  However, the packet
1282 			 * has been reloaded in ex_txstat() and should not
1283 			 * handle the Dn Complete event here.
1284 			 * Hence the "else" below.
1285 			 */
1286 		} else if (stat & DN_COMPLETE) {
1287 			struct ex_txdesc *txp, *ptxp = NULL;
1288 			bus_dmamap_t txmap;
1289 
1290 			/* reset watchdog timer, was set in ex_start() */
1291 			ifp->if_timer = 0;
1292 
1293 			for (txp = sc->tx_head; txp != NULL;
1294 			    txp = txp->tx_next) {
1295 				bus_dmamap_sync(sc->sc_dmat,
1296 				    sc->sc_dpd_dmamap,
1297 				    (char *)txp->tx_dpd - (char *)sc->sc_dpd,
1298 				    sizeof (struct ex_dpd),
1299 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1300 				if (txp->tx_mbhead != NULL) {
1301 					txmap = txp->tx_dmamap;
1302 					bus_dmamap_sync(sc->sc_dmat, txmap,
1303 					    0, txmap->dm_mapsize,
1304 					    BUS_DMASYNC_POSTWRITE);
1305 					bus_dmamap_unload(sc->sc_dmat, txmap);
1306 					m_freem(txp->tx_mbhead);
1307 					txp->tx_mbhead = NULL;
1308 				}
1309 				ptxp = txp;
1310 			}
1311 
1312 			/*
1313 			 * Move finished tx buffers back to the tx free list.
1314 			 */
1315 			if (sc->tx_free) {
1316 				sc->tx_ftail->tx_next = sc->tx_head;
1317 				sc->tx_ftail = ptxp;
1318 			} else
1319 				sc->tx_ftail = sc->tx_free = sc->tx_head;
1320 
1321 			sc->tx_head = sc->tx_tail = NULL;
1322 			ifp->if_flags &= ~IFF_OACTIVE;
1323 
1324 			if (sc->tx_succ_ok < 256)
1325 				sc->tx_succ_ok++;
1326 		}
1327 
1328 		if (stat & UP_COMPLETE) {
1329 			struct ex_rxdesc *rxd;
1330 			struct mbuf *m;
1331 			struct ex_upd *upd;
1332 			bus_dmamap_t rxmap;
1333 			uint32_t pktstat;
1334 
1335  rcvloop:
1336 			rxd = sc->rx_head;
1337 			rxmap = rxd->rx_dmamap;
1338 			m = rxd->rx_mbhead;
1339 			upd = rxd->rx_upd;
1340 
1341 			bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1342 			    rxmap->dm_mapsize,
1343 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1344 			bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1345 			    ((char *)upd - (char *)sc->sc_upd),
1346 			    sizeof (struct ex_upd),
1347 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1348 			pktstat = le32toh(upd->upd_pktstatus);
1349 
1350 			if (pktstat & EX_UPD_COMPLETE) {
1351 				/*
1352 				 * Remove first packet from the chain.
1353 				 */
1354 				sc->rx_head = rxd->rx_next;
1355 				rxd->rx_next = NULL;
1356 
1357 				/*
1358 				 * Add a new buffer to the receive chain.
1359 				 * If this fails, the old buffer is recycled
1360 				 * instead.
1361 				 */
1362 				if (ex_add_rxbuf(sc, rxd) == 0) {
1363 					uint16_t total_len;
1364 
1365 					if (pktstat &
1366 					    ((sc->sc_ethercom.ec_capenable &
1367 					    ETHERCAP_VLAN_MTU) ?
1368 					    EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1369 						ifp->if_ierrors++;
1370 						m_freem(m);
1371 						goto rcvloop;
1372 					}
1373 
1374 					total_len = pktstat & EX_UPD_PKTLENMASK;
1375 					if (total_len <
1376 					    sizeof(struct ether_header)) {
1377 						m_freem(m);
1378 						goto rcvloop;
1379 					}
1380 					m->m_pkthdr.rcvif = ifp;
1381 					m->m_pkthdr.len = m->m_len = total_len;
1382 					if (ifp->if_bpf)
1383 						bpf_ops->bpf_mtap(
1384 						    ifp->if_bpf, m);
1385 		/*
1386 		 * Set the incoming checksum information for the packet.
1387 		 */
1388 		if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1389 		    (pktstat & EX_UPD_IPCHECKED) != 0) {
1390 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1391 			if (pktstat & EX_UPD_IPCKSUMERR)
1392 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1393 			if (pktstat & EX_UPD_TCPCHECKED) {
1394 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1395 				if (pktstat & EX_UPD_TCPCKSUMERR)
1396 					m->m_pkthdr.csum_flags |=
1397 					    M_CSUM_TCP_UDP_BAD;
1398 			} else if (pktstat & EX_UPD_UDPCHECKED) {
1399 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1400 				if (pktstat & EX_UPD_UDPCKSUMERR)
1401 					m->m_pkthdr.csum_flags |=
1402 					    M_CSUM_TCP_UDP_BAD;
1403 			}
1404 		}
1405 					(*ifp->if_input)(ifp, m);
1406 				}
1407 				goto rcvloop;
1408 			}
1409 			/*
1410 			 * Just in case we filled up all UPDs and the DMA engine
1411 			 * stalled. We could be more subtle about this.
1412 			 */
1413 			if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1414 				aprint_error_dev(sc->sc_dev,
1415 				       "uplistptr was 0\n");
1416 				ex_init(ifp);
1417 			} else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1418 				   & 0x2000) {
1419 				aprint_error_dev(sc->sc_dev,
1420 				       "receive stalled\n");
1421 				bus_space_write_2(iot, ioh, ELINK_COMMAND,
1422 						  ELINK_UPUNSTALL);
1423 			}
1424 		}
1425 
1426 #if NRND > 0
1427 		if (stat)
1428 			rnd_add_uint32(&sc->rnd_source, stat);
1429 #endif
1430 	}
1431 
1432 	/* no more interrupts */
1433 	if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1434 		ex_start(ifp);
1435 	return ret;
1436 }
1437 
1438 static int
1439 ex_ifflags_cb(struct ethercom *ec)
1440 {
1441 	struct ifnet *ifp = &ec->ec_if;
1442 	struct ex_softc *sc = ifp->if_softc;
1443 	int change = ifp->if_flags ^ sc->sc_if_flags;
1444 
1445 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
1446 		return ENETRESET;
1447 	else if ((change & IFF_PROMISC) != 0)
1448 		ex_set_mc(sc);
1449 	return 0;
1450 }
1451 
1452 int
1453 ex_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1454 {
1455 	struct ex_softc *sc = ifp->if_softc;
1456 	struct ifreq *ifr = (struct ifreq *)data;
1457 	int s, error;
1458 
1459 	s = splnet();
1460 
1461 	switch (cmd) {
1462 	case SIOCSIFMEDIA:
1463 	case SIOCGIFMEDIA:
1464 		error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1465 		break;
1466 	default:
1467 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1468 			break;
1469 
1470 		error = 0;
1471 
1472 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1473 			;
1474 		else if (ifp->if_flags & IFF_RUNNING) {
1475 			/*
1476 			 * Multicast list has changed; set the hardware filter
1477 			 * accordingly.
1478 			 */
1479 			ex_set_mc(sc);
1480 		}
1481 		break;
1482 	}
1483 
1484 	sc->sc_if_flags = ifp->if_flags;
1485 	splx(s);
1486 	return (error);
1487 }
1488 
1489 void
1490 ex_getstats(struct ex_softc *sc)
1491 {
1492 	bus_space_handle_t ioh = sc->sc_ioh;
1493 	bus_space_tag_t iot = sc->sc_iot;
1494 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1495 	uint8_t upperok;
1496 
1497 	GO_WINDOW(6);
1498 	upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1499 	ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1500 	ifp->if_ipackets += (upperok & 0x03) << 8;
1501 	ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1502 	ifp->if_opackets += (upperok & 0x30) << 4;
1503 	ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1504 	ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1505 	/*
1506 	 * There seems to be no way to get the exact number of collisions,
1507 	 * this is the number that occurred at the very least.
1508 	 */
1509 	ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1510 	    TX_AFTER_X_COLLISIONS);
1511 	/*
1512 	 * Interface byte counts are counted by ether_input() and
1513 	 * ether_output(), so don't accumulate them here.  Just
1514 	 * read the NIC counters so they don't generate overflow interrupts.
1515 	 * Upper byte counters are latched from reading the totals, so
1516 	 * they don't need to be read if we don't need their values.
1517 	 */
1518 	(void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1519 	(void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1520 
1521 	/*
1522 	 * Clear the following to avoid stats overflow interrupts
1523 	 */
1524 	(void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
1525 	(void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1526 	(void)bus_space_read_1(iot, ioh, TX_NO_SQE);
1527 	(void)bus_space_read_1(iot, ioh, TX_CD_LOST);
1528 	GO_WINDOW(4);
1529 	(void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1530 	GO_WINDOW(1);
1531 }
1532 
1533 void
1534 ex_printstats(struct ex_softc *sc)
1535 {
1536 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1537 
1538 	ex_getstats(sc);
1539 	printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1540 	    "%llu\n", (unsigned long long)ifp->if_ipackets,
1541 	    (unsigned long long)ifp->if_opackets,
1542 	    (unsigned long long)ifp->if_ierrors,
1543 	    (unsigned long long)ifp->if_oerrors,
1544 	    (unsigned long long)ifp->if_ibytes,
1545 	    (unsigned long long)ifp->if_obytes);
1546 }
1547 
1548 void
1549 ex_tick(void *arg)
1550 {
1551 	struct ex_softc *sc = arg;
1552 	int s;
1553 
1554 	if (!device_is_active(sc->sc_dev))
1555 		return;
1556 
1557 	s = splnet();
1558 
1559 	if (sc->ex_conf & EX_CONF_MII)
1560 		mii_tick(&sc->ex_mii);
1561 
1562 	if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1563 	    & COMMAND_IN_PROGRESS))
1564 		ex_getstats(sc);
1565 
1566 	splx(s);
1567 
1568 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1569 }
1570 
1571 void
1572 ex_reset(struct ex_softc *sc)
1573 {
1574 	uint16_t val = GLOBAL_RESET;
1575 
1576 	if (sc->ex_conf & EX_CONF_RESETHACK)
1577 		val |= 0x10;
1578 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1579 	/*
1580 	 * XXX apparently the command in progress bit can't be trusted
1581 	 * during a reset, so we just always wait this long. Fortunately
1582 	 * we normally only reset the chip during autoconfig.
1583 	 */
1584 	delay(100000);
1585 	ex_waitcmd(sc);
1586 }
1587 
1588 void
1589 ex_watchdog(struct ifnet *ifp)
1590 {
1591 	struct ex_softc *sc = ifp->if_softc;
1592 
1593 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1594 	++sc->sc_ethercom.ec_if.if_oerrors;
1595 
1596 	ex_reset(sc);
1597 	ex_init(ifp);
1598 }
1599 
1600 void
1601 ex_stop(struct ifnet *ifp, int disable)
1602 {
1603 	struct ex_softc *sc = ifp->if_softc;
1604 	bus_space_tag_t iot = sc->sc_iot;
1605 	bus_space_handle_t ioh = sc->sc_ioh;
1606 	struct ex_txdesc *tx;
1607 	struct ex_rxdesc *rx;
1608 	int i;
1609 
1610 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1611 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1612 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1613 
1614 	for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1615 		if (tx->tx_mbhead == NULL)
1616 			continue;
1617 		m_freem(tx->tx_mbhead);
1618 		tx->tx_mbhead = NULL;
1619 		bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1620 		tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1621 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1622 		    ((char *)tx->tx_dpd - (char *)sc->sc_dpd),
1623 		    sizeof (struct ex_dpd),
1624 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1625 	}
1626 	sc->tx_tail = sc->tx_head = NULL;
1627 	ex_init_txdescs(sc);
1628 
1629 	sc->rx_tail = sc->rx_head = 0;
1630 	for (i = 0; i < EX_NUPD; i++) {
1631 		rx = &sc->sc_rxdescs[i];
1632 		if (rx->rx_mbhead != NULL) {
1633 			bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1634 			m_freem(rx->rx_mbhead);
1635 			rx->rx_mbhead = NULL;
1636 		}
1637 		ex_add_rxbuf(sc, rx);
1638 	}
1639 
1640 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1641 
1642 	callout_stop(&sc->ex_mii_callout);
1643 	if (sc->ex_conf & EX_CONF_MII)
1644 		mii_down(&sc->ex_mii);
1645 
1646 	if (disable)
1647 		ex_disable(sc);
1648 
1649 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1650 	sc->sc_if_flags = ifp->if_flags;
1651 	ifp->if_timer = 0;
1652 }
1653 
1654 static void
1655 ex_init_txdescs(struct ex_softc *sc)
1656 {
1657 	int i;
1658 
1659 	for (i = 0; i < EX_NDPD; i++) {
1660 		sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1661 		sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1662 		if (i < EX_NDPD - 1)
1663 			sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1664 		else
1665 			sc->sc_txdescs[i].tx_next = NULL;
1666 	}
1667 	sc->tx_free = &sc->sc_txdescs[0];
1668 	sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1669 }
1670 
1671 
1672 int
1673 ex_activate(device_t self, enum devact act)
1674 {
1675 	struct ex_softc *sc = device_private(self);
1676 
1677 	switch (act) {
1678 	case DVACT_DEACTIVATE:
1679 		if_deactivate(&sc->sc_ethercom.ec_if);
1680 		return 0;
1681 	default:
1682 		return EOPNOTSUPP;
1683 	}
1684 }
1685 
1686 int
1687 ex_detach(struct ex_softc *sc)
1688 {
1689 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1690 	struct ex_rxdesc *rxd;
1691 	int i;
1692 
1693 	/* Succeed now if there's no work to do. */
1694 	if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1695 		return (0);
1696 
1697 	/* Unhook our tick handler. */
1698 	callout_stop(&sc->ex_mii_callout);
1699 
1700 	if (sc->ex_conf & EX_CONF_MII) {
1701 		/* Detach all PHYs */
1702 		mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1703 	}
1704 
1705 	/* Delete all remaining media. */
1706 	ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1707 
1708 #if NRND > 0
1709 	rnd_detach_source(&sc->rnd_source);
1710 #endif
1711 	ether_ifdetach(ifp);
1712 	if_detach(ifp);
1713 
1714 	for (i = 0; i < EX_NUPD; i++) {
1715 		rxd = &sc->sc_rxdescs[i];
1716 		if (rxd->rx_mbhead != NULL) {
1717 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1718 			m_freem(rxd->rx_mbhead);
1719 			rxd->rx_mbhead = NULL;
1720 		}
1721 	}
1722 	for (i = 0; i < EX_NUPD; i++)
1723 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1724 	for (i = 0; i < EX_NDPD; i++)
1725 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1726 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1727 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1728 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
1729 	    EX_NDPD * sizeof (struct ex_dpd));
1730 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1731 	bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1732 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1733 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
1734 	    EX_NUPD * sizeof (struct ex_upd));
1735 	bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1736 
1737 	pmf_device_deregister(sc->sc_dev);
1738 
1739 	return (0);
1740 }
1741 
1742 /*
1743  * Before reboots, reset card completely.
1744  */
1745 static bool
1746 ex_shutdown(device_t self, int flags)
1747 {
1748 	struct ex_softc *sc = device_private(self);
1749 
1750 	ex_stop(&sc->sc_ethercom.ec_if, 1);
1751 	/*
1752 	 * Make sure the interface is powered up when we reboot,
1753 	 * otherwise firmware on some systems gets really confused.
1754 	 */
1755 	(void) ex_enable(sc);
1756 	return true;
1757 }
1758 
1759 /*
1760  * Read EEPROM data.
1761  * XXX what to do if EEPROM doesn't unbusy?
1762  */
1763 uint16_t
1764 ex_read_eeprom(struct ex_softc *sc, int offset)
1765 {
1766 	bus_space_tag_t iot = sc->sc_iot;
1767 	bus_space_handle_t ioh = sc->sc_ioh;
1768 	uint16_t data = 0, cmd = READ_EEPROM;
1769 	int off;
1770 
1771 	off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1772 	cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1773 
1774 	GO_WINDOW(0);
1775 	if (ex_eeprom_busy(sc))
1776 		goto out;
1777 	bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1778 	    cmd | (off + (offset & 0x3f)));
1779 	if (ex_eeprom_busy(sc))
1780 		goto out;
1781 	data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1782 out:
1783 	return data;
1784 }
1785 
1786 static int
1787 ex_eeprom_busy(struct ex_softc *sc)
1788 {
1789 	bus_space_tag_t iot = sc->sc_iot;
1790 	bus_space_handle_t ioh = sc->sc_ioh;
1791 	int i = 100;
1792 
1793 	while (i--) {
1794 		if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1795 		    EEPROM_BUSY))
1796 			return 0;
1797 		delay(100);
1798 	}
1799 	aprint_error_dev(sc->sc_dev, "eeprom stays busy.\n");
1800 	return (1);
1801 }
1802 
1803 /*
1804  * Create a new rx buffer and add it to the 'soft' rx list.
1805  */
1806 static int
1807 ex_add_rxbuf(struct ex_softc *sc, struct ex_rxdesc *rxd)
1808 {
1809 	struct mbuf *m, *oldm;
1810 	bus_dmamap_t rxmap;
1811 	int error, rval = 0;
1812 
1813 	oldm = rxd->rx_mbhead;
1814 	rxmap = rxd->rx_dmamap;
1815 
1816 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1817 	if (m != NULL) {
1818 		MCLGET(m, M_DONTWAIT);
1819 		if ((m->m_flags & M_EXT) == 0) {
1820 			m_freem(m);
1821 			if (oldm == NULL)
1822 				return 1;
1823 			m = oldm;
1824 			MRESETDATA(m);
1825 			rval = 1;
1826 		}
1827 	} else {
1828 		if (oldm == NULL)
1829 			return 1;
1830 		m = oldm;
1831 		MRESETDATA(m);
1832 		rval = 1;
1833 	}
1834 
1835 	/*
1836 	 * Setup the DMA map for this receive buffer.
1837 	 */
1838 	if (m != oldm) {
1839 		if (oldm != NULL)
1840 			bus_dmamap_unload(sc->sc_dmat, rxmap);
1841 		error = bus_dmamap_load(sc->sc_dmat, rxmap,
1842 		    m->m_ext.ext_buf, MCLBYTES, NULL,
1843 		    BUS_DMA_READ|BUS_DMA_NOWAIT);
1844 		if (error) {
1845 			aprint_error_dev(sc->sc_dev, "can't load rx buffer, error = %d\n",
1846 			    error);
1847 			panic("ex_add_rxbuf");	/* XXX */
1848 		}
1849 	}
1850 
1851 	/*
1852 	 * Align for data after 14 byte header.
1853 	 */
1854 	m->m_data += 2;
1855 
1856 	rxd->rx_mbhead = m;
1857 	rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1858 	rxd->rx_upd->upd_frags[0].fr_addr =
1859 	    htole32(rxmap->dm_segs[0].ds_addr + 2);
1860 	rxd->rx_upd->upd_nextptr = 0;
1861 
1862 	/*
1863 	 * Attach it to the end of the list.
1864 	 */
1865 	if (sc->rx_head != NULL) {
1866 		sc->rx_tail->rx_next = rxd;
1867 		sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1868 		    ((char *)rxd->rx_upd - (char *)sc->sc_upd));
1869 		bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1870 		    (char *)sc->rx_tail->rx_upd - (char *)sc->sc_upd,
1871 		    sizeof (struct ex_upd),
1872 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1873 	} else {
1874 		sc->rx_head = rxd;
1875 	}
1876 	sc->rx_tail = rxd;
1877 
1878 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1879 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1880 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1881 	    ((char *)rxd->rx_upd - (char *)sc->sc_upd),
1882 	    sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1883 	return (rval);
1884 }
1885 
1886 uint32_t
1887 ex_mii_bitbang_read(device_t self)
1888 {
1889 	struct ex_softc *sc = device_private(self);
1890 
1891 	/* We're already in Window 4. */
1892 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1893 }
1894 
1895 void
1896 ex_mii_bitbang_write(device_t self, uint32_t val)
1897 {
1898 	struct ex_softc *sc = device_private(self);
1899 
1900 	/* We're already in Window 4. */
1901 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1902 }
1903 
1904 int
1905 ex_mii_readreg(device_t v, int phy, int reg)
1906 {
1907 	struct ex_softc *sc = device_private(v);
1908 	int val;
1909 
1910 	if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1911 		return 0;
1912 
1913 	GO_WINDOW(4);
1914 
1915 	val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1916 
1917 	GO_WINDOW(1);
1918 
1919 	return (val);
1920 }
1921 
1922 void
1923 ex_mii_writereg(device_t v, int phy, int reg, int data)
1924 {
1925 	struct ex_softc *sc = device_private(v);
1926 
1927 	GO_WINDOW(4);
1928 
1929 	mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1930 
1931 	GO_WINDOW(1);
1932 }
1933 
1934 void
1935 ex_mii_statchg(device_t v)
1936 {
1937 	struct ex_softc *sc = device_private(v);
1938 	bus_space_tag_t iot = sc->sc_iot;
1939 	bus_space_handle_t ioh = sc->sc_ioh;
1940 	int mctl;
1941 
1942 	GO_WINDOW(3);
1943 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1944 	if (sc->ex_mii.mii_media_active & IFM_FDX)
1945 		mctl |= MAC_CONTROL_FDX;
1946 	else
1947 		mctl &= ~MAC_CONTROL_FDX;
1948 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1949 	GO_WINDOW(1);   /* back to operating window */
1950 }
1951 
1952 int
1953 ex_enable(struct ex_softc *sc)
1954 {
1955 	if (sc->enabled == 0 && sc->enable != NULL) {
1956 		if ((*sc->enable)(sc) != 0) {
1957 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
1958 			return (EIO);
1959 		}
1960 		sc->enabled = 1;
1961 	}
1962 	return (0);
1963 }
1964 
1965 void
1966 ex_disable(struct ex_softc *sc)
1967 {
1968 	if (sc->enabled == 1 && sc->disable != NULL) {
1969 		(*sc->disable)(sc);
1970 		sc->enabled = 0;
1971 	}
1972 }
1973 
1974