xref: /netbsd-src/sys/dev/ic/elinkxl.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: elinkxl.c,v 1.115 2012/07/22 14:32:57 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Frank van der Linden.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.115 2012/07/22 14:32:57 matt Exp $");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/callout.h>
38 #include <sys/kernel.h>
39 #include <sys/mbuf.h>
40 #include <sys/socket.h>
41 #include <sys/ioctl.h>
42 #include <sys/errno.h>
43 #include <sys/syslog.h>
44 #include <sys/select.h>
45 #include <sys/device.h>
46 #include <sys/rnd.h>
47 
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_ether.h>
51 #include <net/if_media.h>
52 
53 #include <net/bpf.h>
54 #include <net/bpfdesc.h>
55 
56 #include <sys/cpu.h>
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59 #include <machine/endian.h>
60 
61 #include <dev/mii/miivar.h>
62 #include <dev/mii/mii.h>
63 #include <dev/mii/mii_bitbang.h>
64 
65 #include <dev/ic/elink3reg.h>
66 /* #include <dev/ic/elink3var.h> */
67 #include <dev/ic/elinkxlreg.h>
68 #include <dev/ic/elinkxlvar.h>
69 
70 #ifdef DEBUG
71 int exdebug = 0;
72 #endif
73 
74 /* ifmedia callbacks */
75 int ex_media_chg(struct ifnet *ifp);
76 void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
77 
78 static int ex_ifflags_cb(struct ethercom *);
79 
80 void ex_probe_media(struct ex_softc *);
81 void ex_set_filter(struct ex_softc *);
82 void ex_set_media(struct ex_softc *);
83 void ex_set_xcvr(struct ex_softc *, uint16_t);
84 struct mbuf *ex_get(struct ex_softc *, int);
85 uint16_t ex_read_eeprom(struct ex_softc *, int);
86 int ex_init(struct ifnet *);
87 void ex_read(struct ex_softc *);
88 void ex_reset(struct ex_softc *);
89 void ex_set_mc(struct ex_softc *);
90 void ex_getstats(struct ex_softc *);
91 void ex_printstats(struct ex_softc *);
92 void ex_tick(void *);
93 
94 static int ex_eeprom_busy(struct ex_softc *);
95 static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
96 static void ex_init_txdescs(struct ex_softc *);
97 
98 static void ex_setup_tx(struct ex_softc *);
99 static bool ex_shutdown(device_t, int);
100 static void ex_start(struct ifnet *);
101 static void ex_txstat(struct ex_softc *);
102 
103 int ex_mii_readreg(device_t, int, int);
104 void ex_mii_writereg(device_t, int, int, int);
105 void ex_mii_statchg(struct ifnet *);
106 
107 void ex_probemedia(struct ex_softc *);
108 
109 /*
110  * Structure to map media-present bits in boards to ifmedia codes and
111  * printable media names.  Used for table-driven ifmedia initialization.
112  */
113 struct ex_media {
114 	int	exm_mpbit;		/* media present bit */
115 	const char *exm_name;		/* name of medium */
116 	int	exm_ifmedia;		/* ifmedia word for medium */
117 	int	exm_epmedia;		/* ELINKMEDIA_* constant */
118 };
119 
120 /*
121  * Media table for 3c90x chips.  Note that chips with MII have no
122  * `native' media.
123  */
124 struct ex_media ex_native_media[] = {
125 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
126 	  ELINKMEDIA_10BASE_T },
127 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
128 	  ELINKMEDIA_10BASE_T },
129 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
130 	  ELINKMEDIA_AUI },
131 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
132 	  ELINKMEDIA_10BASE_2 },
133 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
134 	  ELINKMEDIA_100BASE_TX },
135 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
136 	  ELINKMEDIA_100BASE_TX },
137 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
138 	  ELINKMEDIA_100BASE_FX },
139 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
140 	  ELINKMEDIA_MII },
141 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
142 	  ELINKMEDIA_100BASE_T4 },
143 	{ 0,			NULL,		0,
144 	  0 },
145 };
146 
147 /*
148  * MII bit-bang glue.
149  */
150 uint32_t ex_mii_bitbang_read(device_t);
151 void ex_mii_bitbang_write(device_t, uint32_t);
152 
153 const struct mii_bitbang_ops ex_mii_bitbang_ops = {
154 	ex_mii_bitbang_read,
155 	ex_mii_bitbang_write,
156 	{
157 		ELINK_PHY_DATA,		/* MII_BIT_MDO */
158 		ELINK_PHY_DATA,		/* MII_BIT_MDI */
159 		ELINK_PHY_CLK,		/* MII_BIT_MDC */
160 		ELINK_PHY_DIR,		/* MII_BIT_DIR_HOST_PHY */
161 		0,			/* MII_BIT_DIR_PHY_HOST */
162 	}
163 };
164 
165 /*
166  * Back-end attach and configure.
167  */
168 void
169 ex_config(struct ex_softc *sc)
170 {
171 	struct ifnet *ifp;
172 	uint16_t val;
173 	uint8_t macaddr[ETHER_ADDR_LEN] = {0};
174 	bus_space_tag_t iot = sc->sc_iot;
175 	bus_space_handle_t ioh = sc->sc_ioh;
176 	int i, error, attach_stage;
177 
178 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
179 
180 	callout_init(&sc->ex_mii_callout, 0);
181 
182 	ex_reset(sc);
183 
184 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
185 	macaddr[0] = val >> 8;
186 	macaddr[1] = val & 0xff;
187 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
188 	macaddr[2] = val >> 8;
189 	macaddr[3] = val & 0xff;
190 	val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
191 	macaddr[4] = val >> 8;
192 	macaddr[5] = val & 0xff;
193 
194 	aprint_normal_dev(sc->sc_dev, "MAC address %s\n", ether_sprintf(macaddr));
195 
196 	if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
197 		GO_WINDOW(2);
198 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
199 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
200 			val |= ELINK_RESET_OPT_LEDPOLAR;
201 		if (sc->ex_conf & EX_CONF_PHY_POWER)
202 			val |= ELINK_RESET_OPT_PHYPOWER;
203 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
204 	}
205 	if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
206 		GO_WINDOW(0);
207 		bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
208 		    EX_XCVR_PWR_MAGICBITS);
209 	}
210 
211 	attach_stage = 0;
212 
213 	/*
214 	 * Allocate the upload descriptors, and create and load the DMA
215 	 * map for them.
216 	 */
217 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
218 	    EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
219             &sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
220 		aprint_error_dev(sc->sc_dev,
221 		    "can't allocate upload descriptors, error = %d\n", error);
222 		goto fail;
223 	}
224 
225 	attach_stage = 1;
226 
227 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
228 	    EX_NUPD * sizeof (struct ex_upd), (void **)&sc->sc_upd,
229 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
230 		aprint_error_dev(sc->sc_dev,
231 		    "can't map upload descriptors, error = %d\n", error);
232 		goto fail;
233 	}
234 
235 	attach_stage = 2;
236 
237 	if ((error = bus_dmamap_create(sc->sc_dmat,
238 	    EX_NUPD * sizeof (struct ex_upd), 1,
239 	    EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
240 	    &sc->sc_upd_dmamap)) != 0) {
241 		aprint_error_dev(sc->sc_dev,
242 		    "can't create upload desc. DMA map, error = %d\n", error);
243 		goto fail;
244 	}
245 
246 	attach_stage = 3;
247 
248 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
249 	    sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
250 	    BUS_DMA_NOWAIT)) != 0) {
251 		aprint_error_dev(sc->sc_dev,
252 		    "can't load upload desc. DMA map, error = %d\n", error);
253 		goto fail;
254 	}
255 
256 	attach_stage = 4;
257 
258 	/*
259 	 * Allocate the download descriptors, and create and load the DMA
260 	 * map for them.
261 	 */
262 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
263 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, PAGE_SIZE, 0, &sc->sc_dseg, 1,
264 	    &sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
265 		aprint_error_dev(sc->sc_dev,
266 		    "can't allocate download descriptors, error = %d\n", error);
267 		goto fail;
268 	}
269 
270 	attach_stage = 5;
271 
272 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
273 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, (void **)&sc->sc_dpd,
274 	    BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
275 		aprint_error_dev(sc->sc_dev,
276 		    "can't map download descriptors, error = %d\n", error);
277 		goto fail;
278 	}
279 	memset(sc->sc_dpd, 0, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN);
280 
281 	attach_stage = 6;
282 
283 	if ((error = bus_dmamap_create(sc->sc_dmat,
284 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 1,
285 	    DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 0, BUS_DMA_NOWAIT,
286 	    &sc->sc_dpd_dmamap)) != 0) {
287 		aprint_error_dev(sc->sc_dev,
288 		    "can't create download desc. DMA map, error = %d\n", error);
289 		goto fail;
290 	}
291 
292 	attach_stage = 7;
293 
294 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
295 	    sc->sc_dpd, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, NULL,
296 	    BUS_DMA_NOWAIT)) != 0) {
297 		aprint_error_dev(sc->sc_dev,
298 		    "can't load download desc. DMA map, error = %d\n", error);
299 		goto fail;
300 	}
301 	bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
302 	    DPDMEMPAD_OFF, EX_IP4CSUMTX_PADLEN, BUS_DMASYNC_PREWRITE);
303 
304 	attach_stage = 8;
305 
306 
307 	/*
308 	 * Create the transmit buffer DMA maps.
309 	 */
310 	for (i = 0; i < EX_NDPD; i++) {
311 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
312 		    EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
313 		    &sc->sc_tx_dmamaps[i])) != 0) {
314 			aprint_error_dev(sc->sc_dev,
315 			    "can't create tx DMA map %d, error = %d\n",
316 			    i, error);
317 			goto fail;
318 		}
319 	}
320 
321 	attach_stage = 9;
322 
323 	/*
324 	 * Create the receive buffer DMA maps.
325 	 */
326 	for (i = 0; i < EX_NUPD; i++) {
327 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
328 		    EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
329 		    &sc->sc_rx_dmamaps[i])) != 0) {
330 			aprint_error_dev(sc->sc_dev,
331 			    "can't create rx DMA map %d, error = %d\n",
332 			    i, error);
333 			goto fail;
334 		}
335 	}
336 
337 	attach_stage = 10;
338 
339 	/*
340 	 * Create ring of upload descriptors, only once. The DMA engine
341 	 * will loop over this when receiving packets, stalling if it
342 	 * hits an UPD with a finished receive.
343 	 */
344 	for (i = 0; i < EX_NUPD; i++) {
345 		sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
346 		sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
347 		sc->sc_upd[i].upd_frags[0].fr_len =
348 		    htole32((MCLBYTES - 2) | EX_FR_LAST);
349 		if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
350 			aprint_error_dev(sc->sc_dev,
351 			    "can't allocate or map rx buffers\n");
352 			goto fail;
353 		}
354 	}
355 
356 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
357 	    EX_NUPD * sizeof (struct ex_upd),
358 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
359 
360 	ex_init_txdescs(sc);
361 
362 	attach_stage = 11;
363 
364 
365 	GO_WINDOW(3);
366 	val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
367 	if (val & ELINK_MEDIACAP_MII)
368 		sc->ex_conf |= EX_CONF_MII;
369 
370 	ifp = &sc->sc_ethercom.ec_if;
371 
372 	/*
373 	 * Initialize our media structures and MII info.  We'll
374 	 * probe the MII if we discover that we have one.
375 	 */
376 	sc->ex_mii.mii_ifp = ifp;
377 	sc->ex_mii.mii_readreg = ex_mii_readreg;
378 	sc->ex_mii.mii_writereg = ex_mii_writereg;
379 	sc->ex_mii.mii_statchg = ex_mii_statchg;
380 	ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
381 	    ex_media_stat);
382 
383 	if (sc->ex_conf & EX_CONF_MII) {
384 		/*
385 		 * Find PHY, extract media information from it.
386 		 * First, select the right transceiver.
387 		 */
388 		ex_set_xcvr(sc, val);
389 
390 		mii_attach(sc->sc_dev, &sc->ex_mii, 0xffffffff,
391 		    MII_PHY_ANY, MII_OFFSET_ANY, 0);
392 		if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
393 			ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
394 			    0, NULL);
395 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
396 		} else {
397 			ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
398 		}
399 	} else
400 		ex_probemedia(sc);
401 
402 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
403 	ifp->if_softc = sc;
404 	ifp->if_start = ex_start;
405 	ifp->if_ioctl = ex_ioctl;
406 	ifp->if_watchdog = ex_watchdog;
407 	ifp->if_init = ex_init;
408 	ifp->if_stop = ex_stop;
409 	ifp->if_flags =
410 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
411 	sc->sc_if_flags = ifp->if_flags;
412 	IFQ_SET_READY(&ifp->if_snd);
413 
414 	/*
415 	 * We can support 802.1Q VLAN-sized frames.
416 	 */
417 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
418 
419 	/*
420 	 * The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
421 	 */
422 	if (sc->ex_conf & EX_CONF_90XB)
423 		sc->sc_ethercom.ec_if.if_capabilities |=
424 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
425 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
426 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
427 
428 	if_attach(ifp);
429 	ether_ifattach(ifp, macaddr);
430 	ether_set_ifflags_cb(&sc->sc_ethercom, ex_ifflags_cb);
431 
432 	GO_WINDOW(1);
433 
434 	sc->tx_start_thresh = 20;
435 	sc->tx_succ_ok = 0;
436 
437 	/* TODO: set queues to 0 */
438 
439 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
440 			  RND_TYPE_NET, 0);
441 
442 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, ex_shutdown))
443 		pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
444 	else
445 		aprint_error_dev(sc->sc_dev,
446 		    "couldn't establish power handler\n");
447 
448 	/* The attach is successful. */
449 	sc->ex_flags |= EX_FLAGS_ATTACHED;
450 	return;
451 
452  fail:
453 	/*
454 	 * Free any resources we've allocated during the failed attach
455 	 * attempt.  Do this in reverse order and fall though.
456 	 */
457 	switch (attach_stage) {
458 	case 11:
459 	    {
460 		struct ex_rxdesc *rxd;
461 
462 		for (i = 0; i < EX_NUPD; i++) {
463 			rxd = &sc->sc_rxdescs[i];
464 			if (rxd->rx_mbhead != NULL) {
465 				bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
466 				m_freem(rxd->rx_mbhead);
467 			}
468 		}
469 	    }
470 		/* FALLTHROUGH */
471 
472 	case 10:
473 		for (i = 0; i < EX_NUPD; i++)
474 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
475 		/* FALLTHROUGH */
476 
477 	case 9:
478 		for (i = 0; i < EX_NDPD; i++)
479 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
480 		/* FALLTHROUGH */
481 	case 8:
482 		bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
483 		/* FALLTHROUGH */
484 
485 	case 7:
486 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
487 		/* FALLTHROUGH */
488 
489 	case 6:
490 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
491 		    EX_NDPD * sizeof (struct ex_dpd));
492 		/* FALLTHROUGH */
493 
494 	case 5:
495 		bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
496 		break;
497 
498 	case 4:
499 		bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
500 		/* FALLTHROUGH */
501 
502 	case 3:
503 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
504 		/* FALLTHROUGH */
505 
506 	case 2:
507 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
508 		    EX_NUPD * sizeof (struct ex_upd));
509 		/* FALLTHROUGH */
510 
511 	case 1:
512 		bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
513 		break;
514 	}
515 
516 }
517 
518 /*
519  * Find the media present on non-MII chips.
520  */
521 void
522 ex_probemedia(struct ex_softc *sc)
523 {
524 	bus_space_tag_t iot = sc->sc_iot;
525 	bus_space_handle_t ioh = sc->sc_ioh;
526 	struct ifmedia *ifm = &sc->ex_mii.mii_media;
527 	struct ex_media *exm;
528 	uint16_t config1, reset_options, default_media;
529 	int defmedia = 0;
530 	const char *sep = "", *defmedianame = NULL;
531 
532 	GO_WINDOW(3);
533 	config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
534 	reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
535 	GO_WINDOW(0);
536 
537 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
538 
539 	/* Sanity check that there are any media! */
540 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
541 		aprint_error_dev(sc->sc_dev, "no media present!\n");
542 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
543 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
544 		return;
545 	}
546 
547 	aprint_normal_dev(sc->sc_dev, "");
548 
549 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
550 
551 	for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
552 		if (reset_options & exm->exm_mpbit) {
553 			/*
554 			 * Default media is a little complicated.  We
555 			 * support full-duplex which uses the same
556 			 * reset options bit.
557 			 *
558 			 * XXX Check EEPROM for default to FDX?
559 			 */
560 			if (exm->exm_epmedia == default_media) {
561 				if ((exm->exm_ifmedia & IFM_FDX) == 0) {
562 					defmedia = exm->exm_ifmedia;
563 					defmedianame = exm->exm_name;
564 				}
565 			} else if (defmedia == 0) {
566 				defmedia = exm->exm_ifmedia;
567 				defmedianame = exm->exm_name;
568 			}
569 			ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
570 			    NULL);
571 			PRINT(exm->exm_name);
572 		}
573 	}
574 
575 #undef PRINT
576 
577 #ifdef DIAGNOSTIC
578 	if (defmedia == 0)
579 		panic("ex_probemedia: impossible");
580 #endif
581 
582 	aprint_normal(", default %s\n", defmedianame);
583 	ifmedia_set(ifm, defmedia);
584 }
585 
586 /*
587  * Setup transmitter parameters.
588  */
589 static void
590 ex_setup_tx(struct ex_softc *sc)
591 {
592 	bus_space_tag_t iot = sc->sc_iot;
593 	bus_space_handle_t ioh = sc->sc_ioh;
594 
595 	/*
596 	 * Disable reclaim threshold for 90xB, set free threshold to
597 	 * 6 * 256 = 1536 for 90x.
598 	 */
599 	if (sc->ex_conf & EX_CONF_90XB)
600 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
601 		    ELINK_TXRECLTHRESH | 255);
602 	else
603 		bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
604 
605 	/* Setup early transmission start threshold. */
606 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
607 	    ELINK_TXSTARTTHRESH | sc->tx_start_thresh);
608 }
609 
610 /*
611  * Bring device up.
612  */
613 int
614 ex_init(struct ifnet *ifp)
615 {
616 	struct ex_softc *sc = ifp->if_softc;
617 	bus_space_tag_t iot = sc->sc_iot;
618 	bus_space_handle_t ioh = sc->sc_ioh;
619 	int i;
620 	uint16_t val;
621 	int error = 0;
622 
623 	if ((error = ex_enable(sc)) != 0)
624 		goto out;
625 
626 	ex_waitcmd(sc);
627 	ex_stop(ifp, 0);
628 
629 	GO_WINDOW(2);
630 
631 	/* Turn on PHY power. */
632 	if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
633 		val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
634 		if (sc->ex_conf & EX_CONF_PHY_POWER)
635 			val |= ELINK_RESET_OPT_PHYPOWER; /* turn on PHY power */
636 		if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
637 			val |= ELINK_RESET_OPT_LEDPOLAR; /* invert LED polarity */
638 		bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
639 	}
640 
641 	/*
642 	 * Set the station address and clear the station mask. The latter
643 	 * is needed for 90x cards, 0 is the default for 90xB cards.
644 	 */
645 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
646 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
647 		    CLLADDR(ifp->if_sadl)[i]);
648 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
649 	}
650 
651 	GO_WINDOW(3);
652 
653 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
654 	ex_waitcmd(sc);
655 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
656 	ex_waitcmd(sc);
657 
658 	/* Load Tx parameters. */
659 	ex_setup_tx(sc);
660 
661 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
662 	    SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
663 
664 	bus_space_write_4(iot, ioh, ELINK_DMACTRL,
665 	    bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
666 
667 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
668 	    SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
669 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
670 	    SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
671 
672 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
673 	if (sc->intr_ack)
674 	    (* sc->intr_ack)(sc);
675 	ex_set_media(sc);
676 	ex_set_mc(sc);
677 
678 
679 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
680 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
681 	bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
682 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
683 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
684 
685 	ifp->if_flags |= IFF_RUNNING;
686 	ifp->if_flags &= ~IFF_OACTIVE;
687 	ex_start(ifp);
688 	sc->sc_if_flags = ifp->if_flags;
689 
690 	GO_WINDOW(1);
691 
692 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
693 
694  out:
695 	if (error) {
696 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
697 		ifp->if_timer = 0;
698 		aprint_error_dev(sc->sc_dev, "interface not running\n");
699 	}
700 	return (error);
701 }
702 
703 #define	MCHASHSIZE		256
704 #define	ex_mchash(addr)		(ether_crc32_be((addr), ETHER_ADDR_LEN) & \
705 				    (MCHASHSIZE - 1))
706 
707 /*
708  * Set multicast receive filter. Also take care of promiscuous mode
709  * here (XXX).
710  */
711 void
712 ex_set_mc(struct ex_softc *sc)
713 {
714 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
715 	struct ethercom *ec = &sc->sc_ethercom;
716 	struct ether_multi *enm;
717 	struct ether_multistep estep;
718 	int i;
719 	uint16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
720 
721 	if (ifp->if_flags & IFF_PROMISC) {
722 		mask |= FIL_PROMISC;
723 		goto allmulti;
724 	}
725 
726 	ETHER_FIRST_MULTI(estep, ec, enm);
727 	if (enm == NULL)
728 		goto nomulti;
729 
730 	if ((sc->ex_conf & EX_CONF_90XB) == 0)
731 		/* No multicast hash filtering. */
732 		goto allmulti;
733 
734 	for (i = 0; i < MCHASHSIZE; i++)
735 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
736 		    ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
737 
738 	do {
739 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
740 		    ETHER_ADDR_LEN) != 0)
741 			goto allmulti;
742 
743 		i = ex_mchash(enm->enm_addrlo);
744 		bus_space_write_2(sc->sc_iot, sc->sc_ioh,
745 		    ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
746 		ETHER_NEXT_MULTI(estep, enm);
747 	} while (enm != NULL);
748 	mask |= FIL_MULTIHASH;
749 
750 nomulti:
751 	ifp->if_flags &= ~IFF_ALLMULTI;
752 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
753 	    SET_RX_FILTER | mask);
754 	return;
755 
756 allmulti:
757 	ifp->if_flags |= IFF_ALLMULTI;
758 	mask |= FIL_MULTICAST;
759 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
760 	    SET_RX_FILTER | mask);
761 }
762 
763 
764 /*
765  * The Tx Complete interrupts occur only on errors,
766  * and this is the error handler.
767  */
768 static void
769 ex_txstat(struct ex_softc *sc)
770 {
771 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
772 	bus_space_tag_t iot = sc->sc_iot;
773 	bus_space_handle_t ioh = sc->sc_ioh;
774 	int i, err = 0;
775 
776 	/*
777 	 * We need to read+write TX_STATUS until we get a 0 status
778 	 * in order to turn off the interrupt flag.
779 	 * ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER.
780 	 */
781 	for (;;) {
782 		i = bus_space_read_2(iot, ioh, ELINK_TIMER);
783 		if ((i & TXS_COMPLETE) == 0)
784 			break;
785 		bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
786 		err |= i;
787 	}
788 	err &= ~TXS_TIMER;
789 
790 	if ((err & (TXS_UNDERRUN | TXS_JABBER | TXS_RECLAIM))
791 	    || err == 0 /* should not happen, just in case */) {
792 		/*
793 		 * Make sure the transmission is stopped.
794 		 */
795 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNSTALL);
796 		for (i = 1000; i > 0; i--)
797 			if ((bus_space_read_4(iot, ioh, ELINK_DMACTRL) &
798 			    ELINK_DMAC_DNINPROG) == 0)
799 				break;
800 
801 		/*
802 		 * Reset the transmitter.
803 		 */
804 		bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
805 
806 		/* Resetting takes a while and we will do more than wait. */
807 
808 		ifp->if_flags &= ~IFF_OACTIVE;
809 		++sc->sc_ethercom.ec_if.if_oerrors;
810 		aprint_error_dev(sc->sc_dev, "%s%s%s",
811 		    (err & TXS_UNDERRUN) ? " transmit underrun" : "",
812 		    (err & TXS_JABBER) ? " jabber" : "",
813 		    (err & TXS_RECLAIM) ? " reclaim" : "");
814 		if (err == 0)
815 			aprint_error(" unknown Tx error");
816 		printf(" (%x)", err);
817 		if (err & TXS_UNDERRUN) {
818 			aprint_error(" @%d", sc->tx_start_thresh);
819 			if (sc->tx_succ_ok < 256 &&
820 			    (i = min(ETHER_MAX_LEN, sc->tx_start_thresh + 20))
821 			    > sc->tx_start_thresh) {
822 				aprint_error(", new threshold is %d", i);
823 				sc->tx_start_thresh = i;
824 			}
825 			sc->tx_succ_ok = 0;
826 		}
827 		aprint_error("\n");
828 		if (err & TXS_MAX_COLLISION)
829 			++sc->sc_ethercom.ec_if.if_collisions;
830 
831 		/* Wait for TX_RESET to finish. */
832 		ex_waitcmd(sc);
833 
834 		/* Reload Tx parameters. */
835 		ex_setup_tx(sc);
836 	} else {
837 		if (err & TXS_MAX_COLLISION)
838 			++sc->sc_ethercom.ec_if.if_collisions;
839 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
840 	}
841 
842 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
843 
844 	/* Retransmit current packet if any. */
845 	if (sc->tx_head) {
846 		ifp->if_flags |= IFF_OACTIVE;
847 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
848 		    ELINK_DNUNSTALL);
849 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
850 		    DPD_DMADDR(sc, sc->tx_head));
851 
852 		/* Retrigger watchdog if stopped. */
853 		if (ifp->if_timer == 0)
854 			ifp->if_timer = 1;
855 	}
856 }
857 
858 int
859 ex_media_chg(struct ifnet *ifp)
860 {
861 
862 	if (ifp->if_flags & IFF_UP)
863 		ex_init(ifp);
864 	return 0;
865 }
866 
867 void
868 ex_set_xcvr(struct ex_softc *sc, const uint16_t media)
869 {
870 	bus_space_tag_t iot = sc->sc_iot;
871 	bus_space_handle_t ioh = sc->sc_ioh;
872 	uint32_t icfg;
873 
874 	/*
875 	 * We're already in Window 3
876 	 */
877 	icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
878 	icfg &= ~(CONFIG_XCVR_SEL << 16);
879 	if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
880 		icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
881 	if (media & ELINK_MEDIACAP_100BASETX)
882 		icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
883 	if (media & ELINK_MEDIACAP_100BASEFX)
884 		icfg |= ELINKMEDIA_100BASE_FX
885 			<< (CONFIG_XCVR_SEL_SHIFT + 16);
886 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
887 }
888 
889 void
890 ex_set_media(struct ex_softc *sc)
891 {
892 	bus_space_tag_t iot = sc->sc_iot;
893 	bus_space_handle_t ioh = sc->sc_ioh;
894 	uint32_t configreg;
895 
896 	if (((sc->ex_conf & EX_CONF_MII) &&
897 	    (sc->ex_mii.mii_media_active & IFM_FDX))
898 	    || (!(sc->ex_conf & EX_CONF_MII) &&
899 	    (sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
900 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
901 		    MAC_CONTROL_FDX);
902 	} else {
903 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
904 	}
905 
906 	/*
907 	 * If the device has MII, select it, and then tell the
908 	 * PHY which media to use.
909 	 */
910 	if (sc->ex_conf & EX_CONF_MII) {
911 		uint16_t val;
912 
913 		GO_WINDOW(3);
914 		val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
915 		ex_set_xcvr(sc, val);
916 		mii_mediachg(&sc->ex_mii);
917 		return;
918 	}
919 
920 	GO_WINDOW(4);
921 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
922 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
923 	delay(800);
924 
925 	/*
926 	 * Now turn on the selected media/transceiver.
927 	 */
928 	switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
929 	case IFM_10_T:
930 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
931 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
932 		break;
933 
934 	case IFM_10_2:
935 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
936 		DELAY(800);
937 		break;
938 
939 	case IFM_100_TX:
940 	case IFM_100_FX:
941 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
942 		    LINKBEAT_ENABLE);
943 		DELAY(800);
944 		break;
945 
946 	case IFM_10_5:
947 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
948 		    SQE_ENABLE);
949 		DELAY(800);
950 		break;
951 
952 	case IFM_MANUAL:
953 		break;
954 
955 	case IFM_NONE:
956 		return;
957 
958 	default:
959 		panic("ex_set_media: impossible");
960 	}
961 
962 	GO_WINDOW(3);
963 	configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
964 
965 	configreg &= ~(CONFIG_MEDIAMASK << 16);
966 	configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
967 	    (CONFIG_MEDIAMASK_SHIFT + 16));
968 
969 	bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
970 }
971 
972 /*
973  * Get currently-selected media from card.
974  * (if_media callback, may be called before interface is brought up).
975  */
976 void
977 ex_media_stat(struct ifnet *ifp, struct ifmediareq *req)
978 {
979 	struct ex_softc *sc = ifp->if_softc;
980 	uint16_t help;
981 
982 	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
983 		if (sc->ex_conf & EX_CONF_MII) {
984 			mii_pollstat(&sc->ex_mii);
985 			req->ifm_status = sc->ex_mii.mii_media_status;
986 			req->ifm_active = sc->ex_mii.mii_media_active;
987 		} else {
988 			GO_WINDOW(4);
989 			req->ifm_status = IFM_AVALID;
990 			req->ifm_active =
991 			    sc->ex_mii.mii_media.ifm_cur->ifm_media;
992 			help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
993 						ELINK_W4_MEDIA_TYPE);
994 			if (help & LINKBEAT_DETECT)
995 				req->ifm_status |= IFM_ACTIVE;
996 			GO_WINDOW(1);
997 		}
998 	}
999 }
1000 
1001 
1002 
1003 /*
1004  * Start outputting on the interface.
1005  */
1006 static void
1007 ex_start(struct ifnet *ifp)
1008 {
1009 	struct ex_softc *sc = ifp->if_softc;
1010 	bus_space_tag_t iot = sc->sc_iot;
1011 	bus_space_handle_t ioh = sc->sc_ioh;
1012 	volatile struct ex_fraghdr *fr = NULL;
1013 	volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
1014 	struct ex_txdesc *txp;
1015 	struct mbuf *mb_head;
1016 	bus_dmamap_t dmamap;
1017 	int m_csumflags, offset, seglen, totlen, segment, error;
1018 	uint32_t csum_flags;
1019 
1020 	if (sc->tx_head || sc->tx_free == NULL)
1021 		return;
1022 
1023 	txp = NULL;
1024 
1025 	/*
1026 	 * We're finished if there is nothing more to add to the list or if
1027 	 * we're all filled up with buffers to transmit.
1028 	 */
1029 	while (sc->tx_free != NULL) {
1030 		/*
1031 		 * Grab a packet to transmit.
1032 		 */
1033 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1034 		if (mb_head == NULL)
1035 			break;
1036 
1037 		/*
1038 		 * mb_head might be updated later,
1039 		 * so preserve csum_flags here.
1040 		 */
1041 		m_csumflags = mb_head->m_pkthdr.csum_flags;
1042 
1043 		/*
1044 		 * Get pointer to next available tx desc.
1045 		 */
1046 		txp = sc->tx_free;
1047 		dmamap = txp->tx_dmamap;
1048 
1049 		/*
1050 		 * Go through each of the mbufs in the chain and initialize
1051 		 * the transmit buffer descriptors with the physical address
1052 		 * and size of the mbuf.
1053 		 */
1054  reload:
1055 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
1056 		    mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1057 		switch (error) {
1058 		case 0:
1059 			/* Success. */
1060 			break;
1061 
1062 		case EFBIG:
1063 		    {
1064 			struct mbuf *mn;
1065 
1066 			/*
1067 			 * We ran out of segments.  We have to recopy this
1068 			 * mbuf chain first.  Bail out if we can't get the
1069 			 * new buffers.
1070 			 */
1071 			aprint_error_dev(sc->sc_dev, "too many segments, ");
1072 
1073 			MGETHDR(mn, M_DONTWAIT, MT_DATA);
1074 			if (mn == NULL) {
1075 				m_freem(mb_head);
1076 				aprint_error("aborting\n");
1077 				goto out;
1078 			}
1079 			if (mb_head->m_pkthdr.len > MHLEN) {
1080 				MCLGET(mn, M_DONTWAIT);
1081 				if ((mn->m_flags & M_EXT) == 0) {
1082 					m_freem(mn);
1083 					m_freem(mb_head);
1084 					aprint_error("aborting\n");
1085 					goto out;
1086 				}
1087 			}
1088 			m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
1089 			    mtod(mn, void *));
1090 			mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
1091 			m_freem(mb_head);
1092 			mb_head = mn;
1093 			aprint_error("retrying\n");
1094 			goto reload;
1095 		    }
1096 
1097 		default:
1098 			/*
1099 			 * Some other problem; report it.
1100 			 */
1101 			aprint_error_dev(sc->sc_dev,
1102 			    "can't load mbuf chain, error = %d\n", error);
1103 			m_freem(mb_head);
1104 			goto out;
1105 		}
1106 
1107 		/*
1108 		 * remove our tx desc from freelist.
1109 		 */
1110 		sc->tx_free = txp->tx_next;
1111 		txp->tx_next = NULL;
1112 
1113 		fr = &txp->tx_dpd->dpd_frags[0];
1114 		totlen = 0;
1115 		for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
1116 			fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
1117 			seglen = dmamap->dm_segs[segment].ds_len;
1118 			fr->fr_len = htole32(seglen);
1119 			totlen += seglen;
1120 		}
1121 		if (__predict_false(totlen <= EX_IP4CSUMTX_PADLEN &&
1122 		    (m_csumflags & M_CSUM_IPv4) != 0)) {
1123 			/*
1124 			 * Pad short packets to avoid ip4csum-tx bug.
1125 			 *
1126 			 * XXX Should we still consider if such short
1127 			 *     (36 bytes or less) packets might already
1128 			 *     occupy EX_NTFRAG (== 32) fragments here?
1129 			 */
1130 			KASSERT(segment < EX_NTFRAGS);
1131 			fr->fr_addr = htole32(DPDMEMPAD_DMADDR(sc));
1132 			seglen = EX_IP4CSUMTX_PADLEN + 1 - totlen;
1133 			fr->fr_len = htole32(EX_FR_LAST | seglen);
1134 			totlen += seglen;
1135 		} else {
1136 			fr--;
1137 			fr->fr_len |= htole32(EX_FR_LAST);
1138 		}
1139 		txp->tx_mbhead = mb_head;
1140 
1141 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1142 		    BUS_DMASYNC_PREWRITE);
1143 
1144 		dpd = txp->tx_dpd;
1145 		dpd->dpd_nextptr = 0;
1146 		dpd->dpd_fsh = htole32(totlen);
1147 
1148 		/* Byte-swap constants so compiler can optimize. */
1149 
1150 		if (sc->ex_conf & EX_CONF_90XB) {
1151 			csum_flags = 0;
1152 
1153 			if (m_csumflags & M_CSUM_IPv4)
1154 				csum_flags |= htole32(EX_DPD_IPCKSUM);
1155 
1156 			if (m_csumflags & M_CSUM_TCPv4)
1157 				csum_flags |= htole32(EX_DPD_TCPCKSUM);
1158 			else if (m_csumflags & M_CSUM_UDPv4)
1159 				csum_flags |= htole32(EX_DPD_UDPCKSUM);
1160 
1161 			dpd->dpd_fsh |= csum_flags;
1162 		} else {
1163 			KDASSERT((mb_head->m_pkthdr.csum_flags &
1164 			    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
1165 		}
1166 
1167 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1168 		    ((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
1169 		    sizeof (struct ex_dpd),
1170 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1171 
1172 		/*
1173 		 * No need to stall the download engine, we know it's
1174 		 * not busy right now.
1175 		 *
1176 		 * Fix up pointers in both the "soft" tx and the physical
1177 		 * tx list.
1178 		 */
1179 		if (sc->tx_head != NULL) {
1180 			prevdpd = sc->tx_tail->tx_dpd;
1181 			offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
1182 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1183 			    offset, sizeof (struct ex_dpd),
1184 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1185 			prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
1186 			bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1187 			    offset, sizeof (struct ex_dpd),
1188 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1189 			sc->tx_tail->tx_next = txp;
1190 			sc->tx_tail = txp;
1191 		} else {
1192 			sc->tx_tail = sc->tx_head = txp;
1193 		}
1194 
1195 		/*
1196 		 * Pass packet to bpf if there is a listener.
1197 		 */
1198 		bpf_mtap(ifp, mb_head);
1199 	}
1200  out:
1201 	if (sc->tx_head) {
1202 		sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
1203 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1204 		    ((char *)sc->tx_tail->tx_dpd - (char *)sc->sc_dpd),
1205 		    sizeof (struct ex_dpd),
1206 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1207 		ifp->if_flags |= IFF_OACTIVE;
1208 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
1209 		bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
1210 		    DPD_DMADDR(sc, sc->tx_head));
1211 
1212 		/* trigger watchdog */
1213 		ifp->if_timer = 5;
1214 	}
1215 }
1216 
1217 
1218 int
1219 ex_intr(void *arg)
1220 {
1221 	struct ex_softc *sc = arg;
1222 	bus_space_tag_t iot = sc->sc_iot;
1223 	bus_space_handle_t ioh = sc->sc_ioh;
1224 	uint16_t stat;
1225 	int ret = 0;
1226 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1227 
1228 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1229 	    !device_is_active(sc->sc_dev))
1230 		return (0);
1231 
1232 	for (;;) {
1233 		stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
1234 
1235 		if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
1236 			if ((stat & INTR_LATCH) == 0) {
1237 #if 0
1238 				aprint_error_dev(sc->sc_dev,
1239 				       "intr latch cleared\n");
1240 #endif
1241 				break;
1242 			}
1243 		}
1244 
1245 		ret = 1;
1246 
1247 		/*
1248 		 * Acknowledge interrupts.
1249 		 */
1250 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1251 		    (stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
1252 		if (sc->intr_ack)
1253 			(*sc->intr_ack)(sc);
1254 
1255 		if (stat & HOST_ERROR) {
1256 			aprint_error_dev(sc->sc_dev,
1257 			    "adapter failure (%x)\n", stat);
1258 			ex_reset(sc);
1259 			ex_init(ifp);
1260 			return 1;
1261 		}
1262 		if (stat & UPD_STATS) {
1263 			ex_getstats(sc);
1264 		}
1265 		if (stat & TX_COMPLETE) {
1266 			ex_txstat(sc);
1267 #if 0
1268 			if (stat & DN_COMPLETE)
1269 				aprint_error_dev(sc->sc_dev,
1270 				    "Ignoring Dn interrupt (%x)\n", stat);
1271 #endif
1272 			/*
1273 			 * In some rare cases, both Tx Complete and
1274 			 * Dn Complete bits are set.  However, the packet
1275 			 * has been reloaded in ex_txstat() and should not
1276 			 * handle the Dn Complete event here.
1277 			 * Hence the "else" below.
1278 			 */
1279 		} else if (stat & DN_COMPLETE) {
1280 			struct ex_txdesc *txp, *ptxp = NULL;
1281 			bus_dmamap_t txmap;
1282 
1283 			/* reset watchdog timer, was set in ex_start() */
1284 			ifp->if_timer = 0;
1285 
1286 			for (txp = sc->tx_head; txp != NULL;
1287 			    txp = txp->tx_next) {
1288 				bus_dmamap_sync(sc->sc_dmat,
1289 				    sc->sc_dpd_dmamap,
1290 				    (char *)txp->tx_dpd - (char *)sc->sc_dpd,
1291 				    sizeof (struct ex_dpd),
1292 				    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1293 				if (txp->tx_mbhead != NULL) {
1294 					txmap = txp->tx_dmamap;
1295 					bus_dmamap_sync(sc->sc_dmat, txmap,
1296 					    0, txmap->dm_mapsize,
1297 					    BUS_DMASYNC_POSTWRITE);
1298 					bus_dmamap_unload(sc->sc_dmat, txmap);
1299 					m_freem(txp->tx_mbhead);
1300 					txp->tx_mbhead = NULL;
1301 				}
1302 				ptxp = txp;
1303 			}
1304 
1305 			/*
1306 			 * Move finished tx buffers back to the tx free list.
1307 			 */
1308 			if (sc->tx_free) {
1309 				sc->tx_ftail->tx_next = sc->tx_head;
1310 				sc->tx_ftail = ptxp;
1311 			} else
1312 				sc->tx_ftail = sc->tx_free = sc->tx_head;
1313 
1314 			sc->tx_head = sc->tx_tail = NULL;
1315 			ifp->if_flags &= ~IFF_OACTIVE;
1316 
1317 			if (sc->tx_succ_ok < 256)
1318 				sc->tx_succ_ok++;
1319 		}
1320 
1321 		if (stat & UP_COMPLETE) {
1322 			struct ex_rxdesc *rxd;
1323 			struct mbuf *m;
1324 			struct ex_upd *upd;
1325 			bus_dmamap_t rxmap;
1326 			uint32_t pktstat;
1327 
1328  rcvloop:
1329 			rxd = sc->rx_head;
1330 			rxmap = rxd->rx_dmamap;
1331 			m = rxd->rx_mbhead;
1332 			upd = rxd->rx_upd;
1333 
1334 			bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
1335 			    rxmap->dm_mapsize,
1336 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1337 			bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1338 			    ((char *)upd - (char *)sc->sc_upd),
1339 			    sizeof (struct ex_upd),
1340 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1341 			pktstat = le32toh(upd->upd_pktstatus);
1342 
1343 			if (pktstat & EX_UPD_COMPLETE) {
1344 				/*
1345 				 * Remove first packet from the chain.
1346 				 */
1347 				sc->rx_head = rxd->rx_next;
1348 				rxd->rx_next = NULL;
1349 
1350 				/*
1351 				 * Add a new buffer to the receive chain.
1352 				 * If this fails, the old buffer is recycled
1353 				 * instead.
1354 				 */
1355 				if (ex_add_rxbuf(sc, rxd) == 0) {
1356 					uint16_t total_len;
1357 
1358 					if (pktstat &
1359 					    ((sc->sc_ethercom.ec_capenable &
1360 					    ETHERCAP_VLAN_MTU) ?
1361 					    EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
1362 						ifp->if_ierrors++;
1363 						m_freem(m);
1364 						goto rcvloop;
1365 					}
1366 
1367 					total_len = pktstat & EX_UPD_PKTLENMASK;
1368 					if (total_len <
1369 					    sizeof(struct ether_header)) {
1370 						m_freem(m);
1371 						goto rcvloop;
1372 					}
1373 					m->m_pkthdr.rcvif = ifp;
1374 					m->m_pkthdr.len = m->m_len = total_len;
1375 					bpf_mtap(ifp, m);
1376 		/*
1377 		 * Set the incoming checksum information for the packet.
1378 		 */
1379 		if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
1380 		    (pktstat & EX_UPD_IPCHECKED) != 0) {
1381 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1382 			if (pktstat & EX_UPD_IPCKSUMERR)
1383 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1384 			if (pktstat & EX_UPD_TCPCHECKED) {
1385 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1386 				if (pktstat & EX_UPD_TCPCKSUMERR)
1387 					m->m_pkthdr.csum_flags |=
1388 					    M_CSUM_TCP_UDP_BAD;
1389 			} else if (pktstat & EX_UPD_UDPCHECKED) {
1390 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1391 				if (pktstat & EX_UPD_UDPCKSUMERR)
1392 					m->m_pkthdr.csum_flags |=
1393 					    M_CSUM_TCP_UDP_BAD;
1394 			}
1395 		}
1396 					(*ifp->if_input)(ifp, m);
1397 				}
1398 				goto rcvloop;
1399 			}
1400 			/*
1401 			 * Just in case we filled up all UPDs and the DMA engine
1402 			 * stalled. We could be more subtle about this.
1403 			 */
1404 			if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
1405 				aprint_error_dev(sc->sc_dev,
1406 				       "uplistptr was 0\n");
1407 				ex_init(ifp);
1408 			} else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
1409 				   & 0x2000) {
1410 				aprint_error_dev(sc->sc_dev,
1411 				       "receive stalled\n");
1412 				bus_space_write_2(iot, ioh, ELINK_COMMAND,
1413 						  ELINK_UPUNSTALL);
1414 			}
1415 		}
1416 
1417 		if (stat)
1418 			rnd_add_uint32(&sc->rnd_source, stat);
1419 	}
1420 
1421 	/* no more interrupts */
1422 	if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
1423 		ex_start(ifp);
1424 	return ret;
1425 }
1426 
1427 static int
1428 ex_ifflags_cb(struct ethercom *ec)
1429 {
1430 	struct ifnet *ifp = &ec->ec_if;
1431 	struct ex_softc *sc = ifp->if_softc;
1432 	int change = ifp->if_flags ^ sc->sc_if_flags;
1433 
1434 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
1435 		return ENETRESET;
1436 	else if ((change & IFF_PROMISC) != 0)
1437 		ex_set_mc(sc);
1438 	return 0;
1439 }
1440 
1441 int
1442 ex_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1443 {
1444 	struct ex_softc *sc = ifp->if_softc;
1445 	struct ifreq *ifr = (struct ifreq *)data;
1446 	int s, error;
1447 
1448 	s = splnet();
1449 
1450 	switch (cmd) {
1451 	case SIOCSIFMEDIA:
1452 	case SIOCGIFMEDIA:
1453 		error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
1454 		break;
1455 	default:
1456 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1457 			break;
1458 
1459 		error = 0;
1460 
1461 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1462 			;
1463 		else if (ifp->if_flags & IFF_RUNNING) {
1464 			/*
1465 			 * Multicast list has changed; set the hardware filter
1466 			 * accordingly.
1467 			 */
1468 			ex_set_mc(sc);
1469 		}
1470 		break;
1471 	}
1472 
1473 	sc->sc_if_flags = ifp->if_flags;
1474 	splx(s);
1475 	return (error);
1476 }
1477 
1478 void
1479 ex_getstats(struct ex_softc *sc)
1480 {
1481 	bus_space_handle_t ioh = sc->sc_ioh;
1482 	bus_space_tag_t iot = sc->sc_iot;
1483 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1484 	uint8_t upperok;
1485 
1486 	GO_WINDOW(6);
1487 	upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
1488 	ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
1489 	ifp->if_ipackets += (upperok & 0x03) << 8;
1490 	ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
1491 	ifp->if_opackets += (upperok & 0x30) << 4;
1492 	ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
1493 	ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
1494 	/*
1495 	 * There seems to be no way to get the exact number of collisions,
1496 	 * this is the number that occurred at the very least.
1497 	 */
1498 	ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
1499 	    TX_AFTER_X_COLLISIONS);
1500 	/*
1501 	 * Interface byte counts are counted by ether_input() and
1502 	 * ether_output(), so don't accumulate them here.  Just
1503 	 * read the NIC counters so they don't generate overflow interrupts.
1504 	 * Upper byte counters are latched from reading the totals, so
1505 	 * they don't need to be read if we don't need their values.
1506 	 */
1507 	(void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
1508 	(void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
1509 
1510 	/*
1511 	 * Clear the following to avoid stats overflow interrupts
1512 	 */
1513 	(void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
1514 	(void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
1515 	(void)bus_space_read_1(iot, ioh, TX_NO_SQE);
1516 	(void)bus_space_read_1(iot, ioh, TX_CD_LOST);
1517 	GO_WINDOW(4);
1518 	(void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
1519 	GO_WINDOW(1);
1520 }
1521 
1522 void
1523 ex_printstats(struct ex_softc *sc)
1524 {
1525 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1526 
1527 	ex_getstats(sc);
1528 	printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
1529 	    "%llu\n", (unsigned long long)ifp->if_ipackets,
1530 	    (unsigned long long)ifp->if_opackets,
1531 	    (unsigned long long)ifp->if_ierrors,
1532 	    (unsigned long long)ifp->if_oerrors,
1533 	    (unsigned long long)ifp->if_ibytes,
1534 	    (unsigned long long)ifp->if_obytes);
1535 }
1536 
1537 void
1538 ex_tick(void *arg)
1539 {
1540 	struct ex_softc *sc = arg;
1541 	int s;
1542 
1543 	if (!device_is_active(sc->sc_dev))
1544 		return;
1545 
1546 	s = splnet();
1547 
1548 	if (sc->ex_conf & EX_CONF_MII)
1549 		mii_tick(&sc->ex_mii);
1550 
1551 	if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
1552 	    & COMMAND_IN_PROGRESS))
1553 		ex_getstats(sc);
1554 
1555 	splx(s);
1556 
1557 	callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
1558 }
1559 
1560 void
1561 ex_reset(struct ex_softc *sc)
1562 {
1563 	uint16_t val = GLOBAL_RESET;
1564 
1565 	if (sc->ex_conf & EX_CONF_RESETHACK)
1566 		val |= 0x10;
1567 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
1568 	/*
1569 	 * XXX apparently the command in progress bit can't be trusted
1570 	 * during a reset, so we just always wait this long. Fortunately
1571 	 * we normally only reset the chip during autoconfig.
1572 	 */
1573 	delay(100000);
1574 	ex_waitcmd(sc);
1575 }
1576 
1577 void
1578 ex_watchdog(struct ifnet *ifp)
1579 {
1580 	struct ex_softc *sc = ifp->if_softc;
1581 
1582 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1583 	++sc->sc_ethercom.ec_if.if_oerrors;
1584 
1585 	ex_reset(sc);
1586 	ex_init(ifp);
1587 }
1588 
1589 void
1590 ex_stop(struct ifnet *ifp, int disable)
1591 {
1592 	struct ex_softc *sc = ifp->if_softc;
1593 	bus_space_tag_t iot = sc->sc_iot;
1594 	bus_space_handle_t ioh = sc->sc_ioh;
1595 	struct ex_txdesc *tx;
1596 	struct ex_rxdesc *rx;
1597 	int i;
1598 
1599 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1600 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1601 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1602 
1603 	for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
1604 		if (tx->tx_mbhead == NULL)
1605 			continue;
1606 		m_freem(tx->tx_mbhead);
1607 		tx->tx_mbhead = NULL;
1608 		bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
1609 		tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
1610 		bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
1611 		    ((char *)tx->tx_dpd - (char *)sc->sc_dpd),
1612 		    sizeof (struct ex_dpd),
1613 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1614 	}
1615 	sc->tx_tail = sc->tx_head = NULL;
1616 	ex_init_txdescs(sc);
1617 
1618 	sc->rx_tail = sc->rx_head = 0;
1619 	for (i = 0; i < EX_NUPD; i++) {
1620 		rx = &sc->sc_rxdescs[i];
1621 		if (rx->rx_mbhead != NULL) {
1622 			bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
1623 			m_freem(rx->rx_mbhead);
1624 			rx->rx_mbhead = NULL;
1625 		}
1626 		ex_add_rxbuf(sc, rx);
1627 	}
1628 
1629 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1630 
1631 	callout_stop(&sc->ex_mii_callout);
1632 	if (sc->ex_conf & EX_CONF_MII)
1633 		mii_down(&sc->ex_mii);
1634 
1635 	if (disable)
1636 		ex_disable(sc);
1637 
1638 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1639 	sc->sc_if_flags = ifp->if_flags;
1640 	ifp->if_timer = 0;
1641 }
1642 
1643 static void
1644 ex_init_txdescs(struct ex_softc *sc)
1645 {
1646 	int i;
1647 
1648 	for (i = 0; i < EX_NDPD; i++) {
1649 		sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
1650 		sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
1651 		if (i < EX_NDPD - 1)
1652 			sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
1653 		else
1654 			sc->sc_txdescs[i].tx_next = NULL;
1655 	}
1656 	sc->tx_free = &sc->sc_txdescs[0];
1657 	sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
1658 }
1659 
1660 
1661 int
1662 ex_activate(device_t self, enum devact act)
1663 {
1664 	struct ex_softc *sc = device_private(self);
1665 
1666 	switch (act) {
1667 	case DVACT_DEACTIVATE:
1668 		if_deactivate(&sc->sc_ethercom.ec_if);
1669 		return 0;
1670 	default:
1671 		return EOPNOTSUPP;
1672 	}
1673 }
1674 
1675 int
1676 ex_detach(struct ex_softc *sc)
1677 {
1678 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1679 	struct ex_rxdesc *rxd;
1680 	int i, s;
1681 
1682 	/* Succeed now if there's no work to do. */
1683 	if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
1684 		return (0);
1685 
1686 	s = splnet();
1687 	/* Stop the interface. Callouts are stopped in it. */
1688 	ex_stop(ifp, 1);
1689 	splx(s);
1690 
1691 	/* Destroy our callout. */
1692 	callout_destroy(&sc->ex_mii_callout);
1693 
1694 	if (sc->ex_conf & EX_CONF_MII) {
1695 		/* Detach all PHYs */
1696 		mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1697 	}
1698 
1699 	/* Delete all remaining media. */
1700 	ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
1701 
1702 	rnd_detach_source(&sc->rnd_source);
1703 	ether_ifdetach(ifp);
1704 	if_detach(ifp);
1705 
1706 	for (i = 0; i < EX_NUPD; i++) {
1707 		rxd = &sc->sc_rxdescs[i];
1708 		if (rxd->rx_mbhead != NULL) {
1709 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1710 			m_freem(rxd->rx_mbhead);
1711 			rxd->rx_mbhead = NULL;
1712 		}
1713 	}
1714 	for (i = 0; i < EX_NUPD; i++)
1715 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
1716 	for (i = 0; i < EX_NDPD; i++)
1717 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
1718 	bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
1719 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
1720 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
1721 	    EX_NDPD * sizeof (struct ex_dpd));
1722 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
1723 	bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
1724 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
1725 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
1726 	    EX_NUPD * sizeof (struct ex_upd));
1727 	bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
1728 
1729 	pmf_device_deregister(sc->sc_dev);
1730 
1731 	return (0);
1732 }
1733 
1734 /*
1735  * Before reboots, reset card completely.
1736  */
1737 static bool
1738 ex_shutdown(device_t self, int flags)
1739 {
1740 	struct ex_softc *sc = device_private(self);
1741 
1742 	ex_stop(&sc->sc_ethercom.ec_if, 1);
1743 	/*
1744 	 * Make sure the interface is powered up when we reboot,
1745 	 * otherwise firmware on some systems gets really confused.
1746 	 */
1747 	(void) ex_enable(sc);
1748 	return true;
1749 }
1750 
1751 /*
1752  * Read EEPROM data.
1753  * XXX what to do if EEPROM doesn't unbusy?
1754  */
1755 uint16_t
1756 ex_read_eeprom(struct ex_softc *sc, int offset)
1757 {
1758 	bus_space_tag_t iot = sc->sc_iot;
1759 	bus_space_handle_t ioh = sc->sc_ioh;
1760 	uint16_t data = 0, cmd = READ_EEPROM;
1761 	int off;
1762 
1763 	off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
1764 	cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
1765 
1766 	GO_WINDOW(0);
1767 	if (ex_eeprom_busy(sc))
1768 		goto out;
1769 	bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
1770 	    cmd | (off + (offset & 0x3f)));
1771 	if (ex_eeprom_busy(sc))
1772 		goto out;
1773 	data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
1774 out:
1775 	return data;
1776 }
1777 
1778 static int
1779 ex_eeprom_busy(struct ex_softc *sc)
1780 {
1781 	bus_space_tag_t iot = sc->sc_iot;
1782 	bus_space_handle_t ioh = sc->sc_ioh;
1783 	int i = 100;
1784 
1785 	while (i--) {
1786 		if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
1787 		    EEPROM_BUSY))
1788 			return 0;
1789 		delay(100);
1790 	}
1791 	aprint_error_dev(sc->sc_dev, "eeprom stays busy.\n");
1792 	return (1);
1793 }
1794 
1795 /*
1796  * Create a new rx buffer and add it to the 'soft' rx list.
1797  */
1798 static int
1799 ex_add_rxbuf(struct ex_softc *sc, struct ex_rxdesc *rxd)
1800 {
1801 	struct mbuf *m, *oldm;
1802 	bus_dmamap_t rxmap;
1803 	int error, rval = 0;
1804 
1805 	oldm = rxd->rx_mbhead;
1806 	rxmap = rxd->rx_dmamap;
1807 
1808 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1809 	if (m != NULL) {
1810 		MCLGET(m, M_DONTWAIT);
1811 		if ((m->m_flags & M_EXT) == 0) {
1812 			m_freem(m);
1813 			if (oldm == NULL)
1814 				return 1;
1815 			m = oldm;
1816 			MRESETDATA(m);
1817 			rval = 1;
1818 		}
1819 	} else {
1820 		if (oldm == NULL)
1821 			return 1;
1822 		m = oldm;
1823 		MRESETDATA(m);
1824 		rval = 1;
1825 	}
1826 
1827 	/*
1828 	 * Setup the DMA map for this receive buffer.
1829 	 */
1830 	if (m != oldm) {
1831 		if (oldm != NULL)
1832 			bus_dmamap_unload(sc->sc_dmat, rxmap);
1833 		error = bus_dmamap_load(sc->sc_dmat, rxmap,
1834 		    m->m_ext.ext_buf, MCLBYTES, NULL,
1835 		    BUS_DMA_READ|BUS_DMA_NOWAIT);
1836 		if (error) {
1837 			aprint_error_dev(sc->sc_dev, "can't load rx buffer, error = %d\n",
1838 			    error);
1839 			panic("ex_add_rxbuf");	/* XXX */
1840 		}
1841 	}
1842 
1843 	/*
1844 	 * Align for data after 14 byte header.
1845 	 */
1846 	m->m_data += 2;
1847 
1848 	rxd->rx_mbhead = m;
1849 	rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
1850 	rxd->rx_upd->upd_frags[0].fr_addr =
1851 	    htole32(rxmap->dm_segs[0].ds_addr + 2);
1852 	rxd->rx_upd->upd_nextptr = 0;
1853 
1854 	/*
1855 	 * Attach it to the end of the list.
1856 	 */
1857 	if (sc->rx_head != NULL) {
1858 		sc->rx_tail->rx_next = rxd;
1859 		sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
1860 		    ((char *)rxd->rx_upd - (char *)sc->sc_upd));
1861 		bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1862 		    (char *)sc->rx_tail->rx_upd - (char *)sc->sc_upd,
1863 		    sizeof (struct ex_upd),
1864 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1865 	} else {
1866 		sc->rx_head = rxd;
1867 	}
1868 	sc->rx_tail = rxd;
1869 
1870 	bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
1871 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1872 	bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
1873 	    ((char *)rxd->rx_upd - (char *)sc->sc_upd),
1874 	    sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1875 	return (rval);
1876 }
1877 
1878 uint32_t
1879 ex_mii_bitbang_read(device_t self)
1880 {
1881 	struct ex_softc *sc = device_private(self);
1882 
1883 	/* We're already in Window 4. */
1884 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
1885 }
1886 
1887 void
1888 ex_mii_bitbang_write(device_t self, uint32_t val)
1889 {
1890 	struct ex_softc *sc = device_private(self);
1891 
1892 	/* We're already in Window 4. */
1893 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
1894 }
1895 
1896 int
1897 ex_mii_readreg(device_t v, int phy, int reg)
1898 {
1899 	struct ex_softc *sc = device_private(v);
1900 	int val;
1901 
1902 	if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
1903 		return 0;
1904 
1905 	GO_WINDOW(4);
1906 
1907 	val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
1908 
1909 	GO_WINDOW(1);
1910 
1911 	return (val);
1912 }
1913 
1914 void
1915 ex_mii_writereg(device_t v, int phy, int reg, int data)
1916 {
1917 	struct ex_softc *sc = device_private(v);
1918 
1919 	GO_WINDOW(4);
1920 
1921 	mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
1922 
1923 	GO_WINDOW(1);
1924 }
1925 
1926 void
1927 ex_mii_statchg(struct ifnet *ifp)
1928 {
1929 	struct ex_softc *sc = ifp->if_softc;
1930 	bus_space_tag_t iot = sc->sc_iot;
1931 	bus_space_handle_t ioh = sc->sc_ioh;
1932 	int mctl;
1933 
1934 	GO_WINDOW(3);
1935 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1936 	if (sc->ex_mii.mii_media_active & IFM_FDX)
1937 		mctl |= MAC_CONTROL_FDX;
1938 	else
1939 		mctl &= ~MAC_CONTROL_FDX;
1940 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1941 	GO_WINDOW(1);   /* back to operating window */
1942 }
1943 
1944 int
1945 ex_enable(struct ex_softc *sc)
1946 {
1947 	if (sc->enabled == 0 && sc->enable != NULL) {
1948 		if ((*sc->enable)(sc) != 0) {
1949 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
1950 			return (EIO);
1951 		}
1952 		sc->enabled = 1;
1953 	}
1954 	return (0);
1955 }
1956 
1957 void
1958 ex_disable(struct ex_softc *sc)
1959 {
1960 	if (sc->enabled == 1 && sc->disable != NULL) {
1961 		(*sc->disable)(sc);
1962 		sc->enabled = 0;
1963 	}
1964 }
1965 
1966