1 /* $NetBSD: elink3.c,v 1.113 2005/12/11 12:21:26 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org> 42 * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org> 43 * All rights reserved. 44 * 45 * Redistribution and use in source and binary forms, with or without 46 * modification, are permitted provided that the following conditions 47 * are met: 48 * 1. Redistributions of source code must retain the above copyright 49 * notice, this list of conditions and the following disclaimer. 50 * 2. Redistributions in binary form must reproduce the above copyright 51 * notice, this list of conditions and the following disclaimer in the 52 * documentation and/or other materials provided with the distribution. 53 * 3. All advertising materials mentioning features or use of this software 54 * must display the following acknowledgement: 55 * This product includes software developed by Herb Peyerl. 56 * 4. The name of Herb Peyerl may not be used to endorse or promote products 57 * derived from this software without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.113 2005/12/11 12:21:26 christos Exp $"); 73 74 #include "opt_inet.h" 75 #include "opt_ns.h" 76 #include "bpfilter.h" 77 #include "rnd.h" 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/callout.h> 82 #include <sys/kernel.h> 83 #include <sys/mbuf.h> 84 #include <sys/socket.h> 85 #include <sys/ioctl.h> 86 #include <sys/errno.h> 87 #include <sys/syslog.h> 88 #include <sys/select.h> 89 #include <sys/device.h> 90 #if NRND > 0 91 #include <sys/rnd.h> 92 #endif 93 94 #include <net/if.h> 95 #include <net/if_dl.h> 96 #include <net/if_ether.h> 97 #include <net/if_media.h> 98 99 #if NBPFILTER > 0 100 #include <net/bpf.h> 101 #include <net/bpfdesc.h> 102 #endif 103 104 #include <machine/cpu.h> 105 #include <machine/bus.h> 106 #include <machine/intr.h> 107 108 #include <dev/mii/mii.h> 109 #include <dev/mii/miivar.h> 110 #include <dev/mii/mii_bitbang.h> 111 112 #include <dev/ic/elink3var.h> 113 #include <dev/ic/elink3reg.h> 114 115 #ifdef DEBUG 116 int epdebug = 0; 117 #endif 118 119 /* 120 * XXX endian workaround for big-endian CPUs with pcmcia: 121 * if stream methods for bus_space_multi are not provided, define them 122 * using non-stream bus_space_{read,write}_multi_. 123 * Assumes host CPU is same endian-ness as bus. 124 */ 125 #ifndef __BUS_SPACE_HAS_STREAM_METHODS 126 #define bus_space_read_multi_stream_2 bus_space_read_multi_2 127 #define bus_space_read_multi_stream_4 bus_space_read_multi_4 128 #define bus_space_write_multi_stream_2 bus_space_write_multi_2 129 #define bus_space_write_multi_stream_4 bus_space_write_multi_4 130 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */ 131 132 /* 133 * Structure to map media-present bits in boards to ifmedia codes and 134 * printable media names. Used for table-driven ifmedia initialization. 135 */ 136 struct ep_media { 137 int epm_mpbit; /* media present bit */ 138 const char *epm_name; /* name of medium */ 139 int epm_ifmedia; /* ifmedia word for medium */ 140 int epm_epmedia; /* ELINKMEDIA_* constant */ 141 }; 142 143 /* 144 * Media table for the Demon/Vortex/Boomerang chipsets. 145 * 146 * Note that MII on the Demon and Vortex (3c59x) indicates an external 147 * MII connector (for connecting an external PHY) ... I think. Treat 148 * it as `manual' on these chips. 149 * 150 * Any Boomerang (3c90x) chips with MII really do have an internal 151 * MII and real PHYs attached; no `native' media. 152 */ 153 const struct ep_media ep_vortex_media[] = { 154 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T, 155 ELINKMEDIA_10BASE_T }, 156 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX, 157 ELINKMEDIA_10BASE_T }, 158 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5, 159 ELINKMEDIA_AUI }, 160 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2, 161 ELINKMEDIA_10BASE_2 }, 162 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX, 163 ELINKMEDIA_100BASE_TX }, 164 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX, 165 ELINKMEDIA_100BASE_TX }, 166 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX, 167 ELINKMEDIA_100BASE_FX }, 168 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL, 169 ELINKMEDIA_MII }, 170 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4, 171 ELINKMEDIA_100BASE_T4 }, 172 { 0, NULL, 0, 173 0 }, 174 }; 175 176 /* 177 * Media table for the older 3Com Etherlink III chipset, used 178 * in the 3c509, 3c579, and 3c589. 179 */ 180 const struct ep_media ep_509_media[] = { 181 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T, 182 ELINKMEDIA_10BASE_T }, 183 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5, 184 ELINKMEDIA_AUI }, 185 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2, 186 ELINKMEDIA_10BASE_2 }, 187 { 0, NULL, 0, 188 0 }, 189 }; 190 191 void ep_internalconfig(struct ep_softc *sc); 192 void ep_vortex_probemedia(struct ep_softc *sc); 193 void ep_509_probemedia(struct ep_softc *sc); 194 195 static void eptxstat(struct ep_softc *); 196 static int epstatus(struct ep_softc *); 197 int epinit(struct ifnet *); 198 void epstop(struct ifnet *, int); 199 int epioctl(struct ifnet *, u_long, caddr_t); 200 void epstart(struct ifnet *); 201 void epwatchdog(struct ifnet *); 202 void epreset(struct ep_softc *); 203 static void epshutdown(void *); 204 void epread(struct ep_softc *); 205 struct mbuf *epget(struct ep_softc *, int); 206 void epmbuffill(void *); 207 void epmbufempty(struct ep_softc *); 208 void epsetfilter(struct ep_softc *); 209 void ep_roadrunner_mii_enable(struct ep_softc *); 210 void epsetmedia(struct ep_softc *); 211 212 /* ifmedia callbacks */ 213 int ep_media_change(struct ifnet *ifp); 214 void ep_media_status(struct ifnet *ifp, struct ifmediareq *req); 215 216 /* MII callbacks */ 217 int ep_mii_readreg(struct device *, int, int); 218 void ep_mii_writereg(struct device *, int, int, int); 219 void ep_statchg(struct device *); 220 221 void ep_tick(void *); 222 223 static int epbusyeeprom(struct ep_softc *); 224 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t); 225 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg); 226 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t); 227 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t); 228 static __inline int ep_w1_reg(struct ep_softc *, int); 229 230 /* 231 * MII bit-bang glue. 232 */ 233 u_int32_t ep_mii_bitbang_read(struct device *); 234 void ep_mii_bitbang_write(struct device *, u_int32_t); 235 236 const struct mii_bitbang_ops ep_mii_bitbang_ops = { 237 ep_mii_bitbang_read, 238 ep_mii_bitbang_write, 239 { 240 PHYSMGMT_DATA, /* MII_BIT_MDO */ 241 PHYSMGMT_DATA, /* MII_BIT_MDI */ 242 PHYSMGMT_CLK, /* MII_BIT_MDC */ 243 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */ 244 0, /* MII_BIT_DIR_PHY_HOST */ 245 } 246 }; 247 248 /* 249 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have 250 * Window 1 registers offset! 251 */ 252 static __inline int 253 ep_w1_reg(sc, reg) 254 struct ep_softc *sc; 255 int reg; 256 { 257 258 switch (sc->ep_chipset) { 259 case ELINK_CHIPSET_CORKSCREW: 260 return (reg + 0x10); 261 262 case ELINK_CHIPSET_ROADRUNNER: 263 switch (reg) { 264 case ELINK_W1_FREE_TX: 265 case ELINK_W1_RUNNER_RDCTL: 266 case ELINK_W1_RUNNER_WRCTL: 267 return (reg); 268 } 269 return (reg + 0x10); 270 } 271 272 return (reg); 273 } 274 275 /* 276 * Wait for any pending reset to complete. 277 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS, 278 * but older hardware doesn't implement it and we must delay. 279 */ 280 static inline void 281 ep_finish_reset(iot, ioh) 282 bus_space_tag_t iot; 283 bus_space_handle_t ioh; 284 { 285 int i; 286 287 for (i = 0; i < 10000; i++) { 288 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) & 289 COMMAND_IN_PROGRESS) == 0) 290 break; 291 DELAY(10); 292 } 293 } 294 295 /* 296 * Issue a (reset) command, and be sure it has completed. 297 * Used for global reset, TX_RESET, RX_RESET. 298 */ 299 static inline void 300 ep_reset_cmd(sc, cmd, arg) 301 struct ep_softc *sc; 302 u_int cmd, arg; 303 { 304 bus_space_tag_t iot = sc->sc_iot; 305 bus_space_handle_t ioh = sc->sc_ioh; 306 307 bus_space_write_2(iot, ioh, cmd, arg); 308 ep_finish_reset(iot, ioh); 309 } 310 311 312 static inline void 313 ep_discard_rxtop(iot, ioh) 314 bus_space_tag_t iot; 315 bus_space_handle_t ioh; 316 { 317 int i; 318 319 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK); 320 321 /* 322 * Spin for about 1 msec, to avoid forcing a DELAY() between 323 * every received packet (adding latency and limiting pkt-recv rate). 324 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations 325 * is about right. 326 */ 327 for (i = 0; i < 8000; i++) { 328 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) & 329 COMMAND_IN_PROGRESS) == 0) 330 return; 331 } 332 333 /* Didn't complete in a hurry. Do DELAY()s. */ 334 ep_finish_reset(iot, ioh); 335 } 336 337 /* 338 * Back-end attach and configure. 339 */ 340 int 341 epconfig(sc, chipset, enaddr) 342 struct ep_softc *sc; 343 u_short chipset; 344 u_int8_t *enaddr; 345 { 346 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 347 bus_space_tag_t iot = sc->sc_iot; 348 bus_space_handle_t ioh = sc->sc_ioh; 349 u_int16_t i; 350 u_int8_t myla[ETHER_ADDR_LEN]; 351 352 callout_init(&sc->sc_mii_callout); 353 callout_init(&sc->sc_mbuf_callout); 354 355 sc->ep_chipset = chipset; 356 357 /* 358 * We could have been groveling around in other register 359 * windows in the front-end; make sure we're in window 0 360 * to read the EEPROM. 361 */ 362 GO_WINDOW(0); 363 364 if (enaddr == NULL) { 365 /* 366 * Read the station address from the eeprom. 367 */ 368 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) { 369 u_int16_t x = ep_read_eeprom(sc, i); 370 myla[(i << 1)] = x >> 8; 371 myla[(i << 1) + 1] = x; 372 } 373 enaddr = myla; 374 } 375 376 /* 377 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards 378 * allow FDDI-sized (4500) byte packets. Commands only take an 379 * 11-bit parameter, and 11 bits isn't enough to hold a full-size 380 * packet length. 381 * Commands to these cards implicitly upshift a packet size 382 * or threshold by 2 bits. 383 * To detect cards with large-packet support, we probe by setting 384 * the transmit threshold register, then change windows and 385 * read back the threshold register directly, and see if the 386 * threshold value was shifted or not. 387 */ 388 bus_space_write_2(iot, ioh, ELINK_COMMAND, 389 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE); 390 GO_WINDOW(5); 391 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH); 392 GO_WINDOW(1); 393 switch (i) { 394 case ELINK_LARGEWIN_PROBE: 395 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK): 396 sc->ep_pktlenshift = 0; 397 break; 398 399 case (ELINK_LARGEWIN_PROBE << 2): 400 sc->ep_pktlenshift = 2; 401 break; 402 403 default: 404 aprint_error( 405 "%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. " 406 "Interface disabled\n", 407 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i); 408 return (1); 409 } 410 411 /* 412 * Ensure Tx-available interrupts are enabled for 413 * start the interface. 414 * XXX should be in epinit()? 415 */ 416 bus_space_write_2(iot, ioh, ELINK_COMMAND, 417 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift)); 418 419 strcpy(ifp->if_xname, sc->sc_dev.dv_xname); 420 ifp->if_softc = sc; 421 ifp->if_start = epstart; 422 ifp->if_ioctl = epioctl; 423 ifp->if_watchdog = epwatchdog; 424 ifp->if_init = epinit; 425 ifp->if_stop = epstop; 426 ifp->if_flags = 427 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; 428 IFQ_SET_READY(&ifp->if_snd); 429 430 if_attach(ifp); 431 ether_ifattach(ifp, enaddr); 432 433 /* 434 * Finish configuration: 435 * determine chipset if the front-end couldn't do so, 436 * show board details, set media. 437 */ 438 439 /* 440 * Print RAM size. We also print the Ethernet address in here. 441 * It's extracted from the ifp, so we have to make sure it's 442 * been attached first. 443 */ 444 ep_internalconfig(sc); 445 GO_WINDOW(0); 446 447 /* 448 * Display some additional information, if pertinent. 449 */ 450 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) 451 aprint_normal("%s: RoadRunner FIFO buffer enabled\n", 452 sc->sc_dev.dv_xname); 453 454 /* 455 * Initialize our media structures and MII info. We'll 456 * probe the MII if we discover that we have one. 457 */ 458 sc->sc_mii.mii_ifp = ifp; 459 sc->sc_mii.mii_readreg = ep_mii_readreg; 460 sc->sc_mii.mii_writereg = ep_mii_writereg; 461 sc->sc_mii.mii_statchg = ep_statchg; 462 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change, 463 ep_media_status); 464 465 /* 466 * All CORKSCREW chips have MII. 467 */ 468 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) 469 sc->ep_flags |= ELINK_FLAGS_MII; 470 471 /* 472 * Now, determine which media we have. 473 */ 474 switch (sc->ep_chipset) { 475 case ELINK_CHIPSET_ROADRUNNER: 476 if (sc->ep_flags & ELINK_FLAGS_MII) { 477 ep_roadrunner_mii_enable(sc); 478 GO_WINDOW(0); 479 } 480 /* FALLTHROUGH */ 481 482 case ELINK_CHIPSET_CORKSCREW: 483 case ELINK_CHIPSET_BOOMERANG: 484 /* 485 * If the device has MII, probe it. We won't be using 486 * any `native' media in this case, only PHYs. If 487 * we don't, just treat the Boomerang like the Vortex. 488 */ 489 if (sc->ep_flags & ELINK_FLAGS_MII) { 490 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, 491 MII_PHY_ANY, MII_OFFSET_ANY, 0); 492 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 493 ifmedia_add(&sc->sc_mii.mii_media, 494 IFM_ETHER|IFM_NONE, 0, NULL); 495 ifmedia_set(&sc->sc_mii.mii_media, 496 IFM_ETHER|IFM_NONE); 497 } else { 498 ifmedia_set(&sc->sc_mii.mii_media, 499 IFM_ETHER|IFM_AUTO); 500 } 501 break; 502 } 503 /* FALLTHROUGH */ 504 505 case ELINK_CHIPSET_VORTEX: 506 ep_vortex_probemedia(sc); 507 break; 508 509 default: 510 ep_509_probemedia(sc); 511 break; 512 } 513 514 GO_WINDOW(1); /* Window 1 is operating window */ 515 516 #if NRND > 0 517 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 518 RND_TYPE_NET, 0); 519 #endif 520 521 sc->tx_start_thresh = 20; /* probably a good starting point. */ 522 523 /* Establish callback to reset card when we reboot. */ 524 sc->sd_hook = shutdownhook_establish(epshutdown, sc); 525 526 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET); 527 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET); 528 529 /* The attach is successful. */ 530 sc->sc_flags |= ELINK_FLAGS_ATTACHED; 531 return (0); 532 } 533 534 535 /* 536 * Show interface-model-independent info from window 3 537 * internal-configuration register. 538 */ 539 void 540 ep_internalconfig(sc) 541 struct ep_softc *sc; 542 { 543 bus_space_tag_t iot = sc->sc_iot; 544 bus_space_handle_t ioh = sc->sc_ioh; 545 546 u_int config0; 547 u_int config1; 548 549 int ram_size, ram_width, ram_split; 550 /* 551 * NVRAM buffer Rx:Tx config names for busmastering cards 552 * (Demon, Vortex, and later). 553 */ 554 const char *const onboard_ram_config[] = { 555 "5:3", "3:1", "1:1", "3:5" }; 556 557 GO_WINDOW(3); 558 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG); 559 config1 = (u_int)bus_space_read_2(iot, ioh, 560 ELINK_W3_INTERNAL_CONFIG + 2); 561 GO_WINDOW(0); 562 563 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT; 564 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT; 565 566 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT; 567 568 aprint_normal("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n", 569 sc->sc_dev.dv_xname, 570 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)), 571 8 << ram_size, 572 (ram_width) ? "word" : "byte", 573 onboard_ram_config[ram_split]); 574 } 575 576 577 /* 578 * Find supported media on 3c509-generation hardware that doesn't have 579 * a "reset_options" register in window 3. 580 * Use the config_cntrl register in window 0 instead. 581 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards 582 * that implement CONFIG_CTRL. We don't have a good way to set the 583 * default active medium; punt to ifconfig instead. 584 */ 585 void 586 ep_509_probemedia(sc) 587 struct ep_softc *sc; 588 { 589 bus_space_tag_t iot = sc->sc_iot; 590 bus_space_handle_t ioh = sc->sc_ioh; 591 struct ifmedia *ifm = &sc->sc_mii.mii_media; 592 u_int16_t ep_w0_config, port; 593 const struct ep_media *epm; 594 const char *sep = "", *defmedianame = NULL; 595 int defmedia = 0; 596 597 GO_WINDOW(0); 598 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL); 599 600 aprint_normal("%s: ", sc->sc_dev.dv_xname); 601 602 /* Sanity check that there are any media! */ 603 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) { 604 aprint_error("no media present!\n"); 605 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL); 606 ifmedia_set(ifm, IFM_ETHER|IFM_NONE); 607 return; 608 } 609 610 /* 611 * Get the default media from the EEPROM. 612 */ 613 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14; 614 615 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", " 616 617 for (epm = ep_509_media; epm->epm_name != NULL; epm++) { 618 if (ep_w0_config & epm->epm_mpbit) { 619 /* 620 * This simple test works because 509 chipsets 621 * don't do full-duplex. 622 */ 623 if (epm->epm_epmedia == port || defmedia == 0) { 624 defmedia = epm->epm_ifmedia; 625 defmedianame = epm->epm_name; 626 } 627 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia, 628 NULL); 629 PRINT(epm->epm_name); 630 } 631 } 632 633 #undef PRINT 634 635 #ifdef DIAGNOSTIC 636 if (defmedia == 0) 637 panic("ep_509_probemedia: impossible"); 638 #endif 639 640 aprint_normal(" (default %s)\n", defmedianame); 641 ifmedia_set(ifm, defmedia); 642 } 643 644 /* 645 * Find media present on large-packet-capable elink3 devices. 646 * Show onboard configuration of large-packet-capable elink3 devices 647 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0. 648 * Use media and card-version info in window 3 instead. 649 */ 650 void 651 ep_vortex_probemedia(sc) 652 struct ep_softc *sc; 653 { 654 bus_space_tag_t iot = sc->sc_iot; 655 bus_space_handle_t ioh = sc->sc_ioh; 656 struct ifmedia *ifm = &sc->sc_mii.mii_media; 657 const struct ep_media *epm; 658 u_int config1; 659 int reset_options; 660 int default_media; /* 3-bit encoding of default (EEPROM) media */ 661 int defmedia = 0; 662 const char *sep = "", *defmedianame = NULL; 663 664 GO_WINDOW(3); 665 config1 = (u_int)bus_space_read_2(iot, ioh, 666 ELINK_W3_INTERNAL_CONFIG + 2); 667 reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS); 668 GO_WINDOW(0); 669 670 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT; 671 672 aprint_normal("%s: ", sc->sc_dev.dv_xname); 673 674 /* Sanity check that there are any media! */ 675 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) { 676 aprint_error("no media present!\n"); 677 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL); 678 ifmedia_set(ifm, IFM_ETHER|IFM_NONE); 679 return; 680 } 681 682 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", " 683 684 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) { 685 if (reset_options & epm->epm_mpbit) { 686 /* 687 * Default media is a little more complicated 688 * on the Vortex. We support full-duplex which 689 * uses the same reset options bit. 690 * 691 * XXX Check EEPROM for default to FDX? 692 */ 693 if (epm->epm_epmedia == default_media) { 694 if ((epm->epm_ifmedia & IFM_FDX) == 0) { 695 defmedia = epm->epm_ifmedia; 696 defmedianame = epm->epm_name; 697 } 698 } else if (defmedia == 0) { 699 defmedia = epm->epm_ifmedia; 700 defmedianame = epm->epm_name; 701 } 702 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia, 703 NULL); 704 PRINT(epm->epm_name); 705 } 706 } 707 708 #undef PRINT 709 710 #ifdef DIAGNOSTIC 711 if (defmedia == 0) 712 panic("ep_vortex_probemedia: impossible"); 713 #endif 714 715 aprint_normal(" (default %s)\n", defmedianame); 716 ifmedia_set(ifm, defmedia); 717 } 718 719 /* 720 * One second timer, used to tick the MII. 721 */ 722 void 723 ep_tick(arg) 724 void *arg; 725 { 726 struct ep_softc *sc = arg; 727 int s; 728 729 #ifdef DIAGNOSTIC 730 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0) 731 panic("ep_tick"); 732 #endif 733 734 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 735 return; 736 737 s = splnet(); 738 mii_tick(&sc->sc_mii); 739 splx(s); 740 741 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc); 742 } 743 744 /* 745 * Bring device up. 746 * 747 * The order in here seems important. Otherwise we may not receive 748 * interrupts. ?! 749 */ 750 int 751 epinit(ifp) 752 struct ifnet *ifp; 753 { 754 struct ep_softc *sc = ifp->if_softc; 755 bus_space_tag_t iot = sc->sc_iot; 756 bus_space_handle_t ioh = sc->sc_ioh; 757 int i, error; 758 u_int8_t *addr; 759 760 if (!sc->enabled && (error = epenable(sc)) != 0) 761 return (error); 762 763 /* Make sure any pending reset has completed before touching board */ 764 ep_finish_reset(iot, ioh); 765 766 /* 767 * Cancel any pending I/O. 768 */ 769 epstop(ifp, 0); 770 771 if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA 772 && sc->bustype != ELINK_BUS_MCA) { 773 GO_WINDOW(0); 774 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0); 775 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 776 ENABLE_DRQ_IRQ); 777 } 778 779 if (sc->bustype == ELINK_BUS_PCMCIA) { 780 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00); 781 } 782 783 GO_WINDOW(2); 784 /* Reload the ether_addr. */ 785 addr = LLADDR(ifp->if_sadl); 786 for (i = 0; i < 6; i += 2) 787 bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i, 788 (addr[i] << 0) | (addr[i + 1] << 8)); 789 790 /* 791 * Reset the station-address receive filter. 792 * A bug workaround for busmastering (Vortex, Demon) cards. 793 */ 794 for (i = 0; i < 6; i += 2) 795 bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0); 796 797 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET); 798 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET); 799 800 GO_WINDOW(1); /* Window 1 is operating window */ 801 for (i = 0; i < 31; i++) 802 bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS)); 803 804 /* Set threshold for Tx-space available interrupt. */ 805 bus_space_write_2(iot, ioh, ELINK_COMMAND, 806 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift)); 807 808 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) { 809 /* 810 * Enable options in the PCMCIA LAN COR register, via 811 * RoadRunner Window 1. 812 * 813 * XXX MAGIC CONSTANTS! 814 */ 815 u_int16_t cor; 816 817 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11)); 818 819 cor = bus_space_read_2(iot, ioh, 0) & ~0x30; 820 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM) 821 cor |= 0x10; 822 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT) 823 cor |= 0x20; 824 bus_space_write_2(iot, ioh, 0, cor); 825 826 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0); 827 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0); 828 829 if (sc->ep_flags & ELINK_FLAGS_MII) { 830 ep_roadrunner_mii_enable(sc); 831 GO_WINDOW(1); 832 } 833 } 834 835 /* Enable interrupts. */ 836 bus_space_write_2(iot, ioh, ELINK_COMMAND, 837 SET_RD_0_MASK | WATCHED_INTERRUPTS); 838 bus_space_write_2(iot, ioh, ELINK_COMMAND, 839 SET_INTR_MASK | WATCHED_INTERRUPTS); 840 841 /* 842 * Attempt to get rid of any stray interrupts that occurred during 843 * configuration. On the i386 this isn't possible because one may 844 * already be queued. However, a single stray interrupt is 845 * unimportant. 846 */ 847 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff); 848 849 epsetfilter(sc); 850 epsetmedia(sc); 851 852 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE); 853 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE); 854 855 epmbuffill(sc); 856 857 /* Interface is now `running', with no output active. */ 858 ifp->if_flags |= IFF_RUNNING; 859 ifp->if_flags &= ~IFF_OACTIVE; 860 861 if (sc->ep_flags & ELINK_FLAGS_MII) { 862 /* Start the one second clock. */ 863 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc); 864 } 865 866 /* Attempt to start output, if any. */ 867 epstart(ifp); 868 869 return (0); 870 } 871 872 873 /* 874 * Set multicast receive filter. 875 * elink3 hardware has no selective multicast filter in hardware. 876 * Enable reception of all multicasts and filter in software. 877 */ 878 void 879 epsetfilter(sc) 880 struct ep_softc *sc; 881 { 882 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 883 884 GO_WINDOW(1); /* Window 1 is operating window */ 885 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, 886 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST | 887 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) | 888 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0)); 889 } 890 891 int 892 ep_media_change(ifp) 893 struct ifnet *ifp; 894 { 895 struct ep_softc *sc = ifp->if_softc; 896 897 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0) 898 epreset(sc); 899 900 return (0); 901 } 902 903 /* 904 * Reset and enable the MII on the RoadRunner. 905 */ 906 void 907 ep_roadrunner_mii_enable(sc) 908 struct ep_softc *sc; 909 { 910 bus_space_tag_t iot = sc->sc_iot; 911 bus_space_handle_t ioh = sc->sc_ioh; 912 913 GO_WINDOW(3); 914 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS, 915 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII); 916 delay(1000); 917 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS, 918 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET| 919 ELINK_RUNNER_ENABLE_MII); 920 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET); 921 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET); 922 delay(1000); 923 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS, 924 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII); 925 } 926 927 /* 928 * Set the card to use the specified media. 929 */ 930 void 931 epsetmedia(sc) 932 struct ep_softc *sc; 933 { 934 bus_space_tag_t iot = sc->sc_iot; 935 bus_space_handle_t ioh = sc->sc_ioh; 936 937 /* Turn everything off. First turn off linkbeat and UTP. */ 938 GO_WINDOW(4); 939 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0); 940 941 /* Turn off coax */ 942 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER); 943 delay(1000); 944 945 /* 946 * If the device has MII, select it, and then tell the 947 * PHY which media to use. 948 */ 949 if (sc->ep_flags & ELINK_FLAGS_MII) { 950 int config0, config1; 951 952 GO_WINDOW(3); 953 954 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) { 955 int resopt; 956 957 resopt = bus_space_read_2(iot, ioh, 958 ELINK_W3_RESET_OPTIONS); 959 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS, 960 resopt | ELINK_RUNNER_ENABLE_MII); 961 } 962 963 config0 = (u_int)bus_space_read_2(iot, ioh, 964 ELINK_W3_INTERNAL_CONFIG); 965 config1 = (u_int)bus_space_read_2(iot, ioh, 966 ELINK_W3_INTERNAL_CONFIG + 2); 967 968 config1 = config1 & ~CONFIG_MEDIAMASK; 969 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT); 970 971 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0); 972 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2, 973 config1); 974 GO_WINDOW(1); /* back to operating window */ 975 976 mii_mediachg(&sc->sc_mii); 977 return; 978 } 979 980 /* 981 * Now turn on the selected media/transceiver. 982 */ 983 GO_WINDOW(4); 984 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) { 985 case IFM_10_T: 986 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 987 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE); 988 break; 989 990 case IFM_10_2: 991 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER); 992 DELAY(1000); /* 50ms not enmough? */ 993 break; 994 995 case IFM_100_TX: 996 case IFM_100_FX: 997 case IFM_100_T4: /* XXX check documentation */ 998 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 999 LINKBEAT_ENABLE); 1000 DELAY(1000); /* not strictly necessary? */ 1001 break; 1002 1003 case IFM_10_5: 1004 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 1005 SQE_ENABLE); 1006 DELAY(1000); /* not strictly necessary? */ 1007 break; 1008 1009 case IFM_MANUAL: 1010 /* 1011 * Nothing to do here; we are actually enabling the 1012 * external PHY on the MII port. 1013 */ 1014 break; 1015 1016 case IFM_NONE: 1017 printf("%s: interface disabled\n", sc->sc_dev.dv_xname); 1018 return; 1019 1020 default: 1021 panic("epsetmedia: impossible"); 1022 } 1023 1024 /* 1025 * Tell the chip which port to use. 1026 */ 1027 switch (sc->ep_chipset) { 1028 case ELINK_CHIPSET_VORTEX: 1029 case ELINK_CHIPSET_BOOMERANG: 1030 { 1031 int mctl, config0, config1; 1032 1033 GO_WINDOW(3); 1034 config0 = (u_int)bus_space_read_2(iot, ioh, 1035 ELINK_W3_INTERNAL_CONFIG); 1036 config1 = (u_int)bus_space_read_2(iot, ioh, 1037 ELINK_W3_INTERNAL_CONFIG + 2); 1038 1039 config1 = config1 & ~CONFIG_MEDIAMASK; 1040 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data << 1041 CONFIG_MEDIAMASK_SHIFT); 1042 1043 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0); 1044 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2, 1045 config1); 1046 1047 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL); 1048 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX) 1049 mctl |= MAC_CONTROL_FDX; 1050 else 1051 mctl &= ~MAC_CONTROL_FDX; 1052 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl); 1053 break; 1054 } 1055 default: 1056 { 1057 int w0_addr_cfg; 1058 1059 GO_WINDOW(0); 1060 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG); 1061 w0_addr_cfg &= 0x3fff; 1062 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg | 1063 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14)); 1064 DELAY(1000); 1065 break; 1066 } 1067 } 1068 1069 GO_WINDOW(1); /* Window 1 is operating window */ 1070 } 1071 1072 /* 1073 * Get currently-selected media from card. 1074 * (if_media callback, may be called before interface is brought up). 1075 */ 1076 void 1077 ep_media_status(ifp, req) 1078 struct ifnet *ifp; 1079 struct ifmediareq *req; 1080 { 1081 struct ep_softc *sc = ifp->if_softc; 1082 bus_space_tag_t iot = sc->sc_iot; 1083 bus_space_handle_t ioh = sc->sc_ioh; 1084 1085 if (sc->enabled == 0) { 1086 req->ifm_active = IFM_ETHER|IFM_NONE; 1087 req->ifm_status = 0; 1088 return; 1089 } 1090 1091 /* 1092 * If we have MII, go ask the PHY what's going on. 1093 */ 1094 if (sc->ep_flags & ELINK_FLAGS_MII) { 1095 mii_pollstat(&sc->sc_mii); 1096 req->ifm_active = sc->sc_mii.mii_media_active; 1097 req->ifm_status = sc->sc_mii.mii_media_status; 1098 return; 1099 } 1100 1101 /* 1102 * Ok, at this point we claim that our active media is 1103 * the currently selected media. We'll update our status 1104 * if our chipset allows us to detect link. 1105 */ 1106 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media; 1107 req->ifm_status = 0; 1108 1109 switch (sc->ep_chipset) { 1110 case ELINK_CHIPSET_VORTEX: 1111 case ELINK_CHIPSET_BOOMERANG: 1112 GO_WINDOW(4); 1113 req->ifm_status = IFM_AVALID; 1114 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) & 1115 LINKBEAT_DETECT) 1116 req->ifm_status |= IFM_ACTIVE; 1117 GO_WINDOW(1); /* back to operating window */ 1118 break; 1119 } 1120 } 1121 1122 1123 1124 /* 1125 * Start outputting on the interface. 1126 * Always called as splnet(). 1127 */ 1128 void 1129 epstart(ifp) 1130 struct ifnet *ifp; 1131 { 1132 struct ep_softc *sc = ifp->if_softc; 1133 bus_space_tag_t iot = sc->sc_iot; 1134 bus_space_handle_t ioh = sc->sc_ioh; 1135 struct mbuf *m, *m0; 1136 int sh, len, pad; 1137 bus_size_t txreg; 1138 1139 /* Don't transmit if interface is busy or not running */ 1140 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1141 return; 1142 1143 startagain: 1144 /* Sneak a peek at the next packet */ 1145 IFQ_POLL(&ifp->if_snd, m0); 1146 if (m0 == 0) 1147 return; 1148 1149 /* We need to use m->m_pkthdr.len, so require the header */ 1150 if ((m0->m_flags & M_PKTHDR) == 0) 1151 panic("epstart: no header mbuf"); 1152 len = m0->m_pkthdr.len; 1153 1154 pad = (4 - len) & 3; 1155 1156 /* 1157 * The 3c509 automatically pads short packets to minimum ethernet 1158 * length, but we drop packets that are too large. Perhaps we should 1159 * truncate them instead? 1160 */ 1161 if (len + pad > ETHER_MAX_LEN) { 1162 /* packet is obviously too large: toss it */ 1163 ++ifp->if_oerrors; 1164 IFQ_DEQUEUE(&ifp->if_snd, m0); 1165 m_freem(m0); 1166 goto readcheck; 1167 } 1168 1169 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) < 1170 len + pad + 4) { 1171 bus_space_write_2(iot, ioh, ELINK_COMMAND, 1172 SET_TX_AVAIL_THRESH | 1173 ((len + pad + 4) >> sc->ep_pktlenshift)); 1174 /* not enough room in FIFO */ 1175 ifp->if_flags |= IFF_OACTIVE; 1176 return; 1177 } else { 1178 bus_space_write_2(iot, ioh, ELINK_COMMAND, 1179 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE); 1180 } 1181 1182 IFQ_DEQUEUE(&ifp->if_snd, m0); 1183 if (m0 == 0) /* not really needed */ 1184 return; 1185 1186 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH | 1187 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/)); 1188 1189 #if NBPFILTER > 0 1190 if (ifp->if_bpf) 1191 bpf_mtap(ifp->if_bpf, m0); 1192 #endif 1193 1194 /* 1195 * Do the output at a high interrupt priority level so that an 1196 * interrupt from another device won't cause a FIFO underrun. 1197 * We choose splsched() since that blocks essentially everything 1198 * except for interrupts from serial devices (which typically 1199 * lose data if their interrupt isn't serviced fast enough). 1200 * 1201 * XXX THIS CAN CAUSE CLOCK DRIFT! 1202 */ 1203 sh = splsched(); 1204 1205 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1); 1206 1207 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) { 1208 /* 1209 * Prime the FIFO buffer counter (number of 16-bit 1210 * words about to be written to the FIFO). 1211 * 1212 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS 1213 * COUNTER IS NON-ZERO! 1214 */ 1215 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 1216 (len + pad) >> 1); 1217 } 1218 1219 bus_space_write_2(iot, ioh, txreg, len); 1220 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */ 1221 if (ELINK_IS_BUS_32(sc->bustype)) { 1222 for (m = m0; m;) { 1223 if (m->m_len > 3) { 1224 /* align our reads from core */ 1225 if (mtod(m, u_long) & 3) { 1226 u_long count = 1227 4 - (mtod(m, u_long) & 3); 1228 bus_space_write_multi_1(iot, ioh, 1229 txreg, mtod(m, u_int8_t *), count); 1230 m->m_data = 1231 (void *)(mtod(m, u_long) + count); 1232 m->m_len -= count; 1233 } 1234 bus_space_write_multi_stream_4(iot, ioh, 1235 txreg, mtod(m, u_int32_t *), m->m_len >> 2); 1236 m->m_data = (void *)(mtod(m, u_long) + 1237 (u_long)(m->m_len & ~3)); 1238 m->m_len -= m->m_len & ~3; 1239 } 1240 if (m->m_len) { 1241 bus_space_write_multi_1(iot, ioh, 1242 txreg, mtod(m, u_int8_t *), m->m_len); 1243 } 1244 MFREE(m, m0); 1245 m = m0; 1246 } 1247 } else { 1248 for (m = m0; m;) { 1249 if (m->m_len > 1) { 1250 if (mtod(m, u_long) & 1) { 1251 bus_space_write_1(iot, ioh, 1252 txreg, *(mtod(m, u_int8_t *))); 1253 m->m_data = 1254 (void *)(mtod(m, u_long) + 1); 1255 m->m_len -= 1; 1256 } 1257 bus_space_write_multi_stream_2(iot, ioh, 1258 txreg, mtod(m, u_int16_t *), 1259 m->m_len >> 1); 1260 } 1261 if (m->m_len & 1) { 1262 bus_space_write_1(iot, ioh, txreg, 1263 *(mtod(m, u_int8_t *) + m->m_len - 1)); 1264 } 1265 MFREE(m, m0); 1266 m = m0; 1267 } 1268 } 1269 while (pad--) 1270 bus_space_write_1(iot, ioh, txreg, 0); 1271 1272 splx(sh); 1273 1274 ++ifp->if_opackets; 1275 1276 readcheck: 1277 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) & 1278 ERR_INCOMPLETE) == 0) { 1279 /* We received a complete packet. */ 1280 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS); 1281 1282 if ((status & INTR_LATCH) == 0) { 1283 /* 1284 * No interrupt, read the packet and continue 1285 * Is this supposed to happen? Is my motherboard 1286 * completely busted? 1287 */ 1288 epread(sc); 1289 } else { 1290 /* Got an interrupt, return so that it gets serviced. */ 1291 return; 1292 } 1293 } else { 1294 /* Check if we are stuck and reset [see XXX comment] */ 1295 if (epstatus(sc)) { 1296 if (ifp->if_flags & IFF_DEBUG) 1297 printf("%s: adapter reset\n", 1298 sc->sc_dev.dv_xname); 1299 epreset(sc); 1300 } 1301 } 1302 1303 goto startagain; 1304 } 1305 1306 1307 /* 1308 * XXX: The 3c509 card can get in a mode where both the fifo status bit 1309 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set 1310 * We detect this situation and we reset the adapter. 1311 * It happens at times when there is a lot of broadcast traffic 1312 * on the cable (once in a blue moon). 1313 */ 1314 static int 1315 epstatus(sc) 1316 struct ep_softc *sc; 1317 { 1318 bus_space_tag_t iot = sc->sc_iot; 1319 bus_space_handle_t ioh = sc->sc_ioh; 1320 u_int16_t fifost; 1321 1322 /* 1323 * Check the FIFO status and act accordingly 1324 */ 1325 GO_WINDOW(4); 1326 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG); 1327 GO_WINDOW(1); 1328 1329 if (fifost & FIFOS_RX_UNDERRUN) { 1330 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG) 1331 printf("%s: RX underrun\n", sc->sc_dev.dv_xname); 1332 epreset(sc); 1333 return 0; 1334 } 1335 1336 if (fifost & FIFOS_RX_STATUS_OVERRUN) { 1337 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG) 1338 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname); 1339 return 1; 1340 } 1341 1342 if (fifost & FIFOS_RX_OVERRUN) { 1343 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG) 1344 printf("%s: RX overrun\n", sc->sc_dev.dv_xname); 1345 return 1; 1346 } 1347 1348 if (fifost & FIFOS_TX_OVERRUN) { 1349 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG) 1350 printf("%s: TX overrun\n", sc->sc_dev.dv_xname); 1351 epreset(sc); 1352 return 0; 1353 } 1354 1355 return 0; 1356 } 1357 1358 1359 static void 1360 eptxstat(sc) 1361 struct ep_softc *sc; 1362 { 1363 bus_space_tag_t iot = sc->sc_iot; 1364 bus_space_handle_t ioh = sc->sc_ioh; 1365 int i; 1366 1367 /* 1368 * We need to read+write TX_STATUS until we get a 0 status 1369 * in order to turn off the interrupt flag. 1370 */ 1371 while ((i = bus_space_read_2(iot, ioh, 1372 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) { 1373 bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS), 1374 0x0); 1375 1376 if (i & TXS_JABBER) { 1377 ++sc->sc_ethercom.ec_if.if_oerrors; 1378 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG) 1379 printf("%s: jabber (%x)\n", 1380 sc->sc_dev.dv_xname, i); 1381 epreset(sc); 1382 } else if (i & TXS_UNDERRUN) { 1383 ++sc->sc_ethercom.ec_if.if_oerrors; 1384 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG) 1385 printf("%s: fifo underrun (%x) @%d\n", 1386 sc->sc_dev.dv_xname, i, 1387 sc->tx_start_thresh); 1388 if (sc->tx_succ_ok < 100) 1389 sc->tx_start_thresh = min(ETHER_MAX_LEN, 1390 sc->tx_start_thresh + 20); 1391 sc->tx_succ_ok = 0; 1392 epreset(sc); 1393 } else if (i & TXS_MAX_COLLISION) { 1394 ++sc->sc_ethercom.ec_if.if_collisions; 1395 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE); 1396 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE; 1397 } else 1398 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127; 1399 } 1400 } 1401 1402 int 1403 epintr(arg) 1404 void *arg; 1405 { 1406 struct ep_softc *sc = arg; 1407 bus_space_tag_t iot = sc->sc_iot; 1408 bus_space_handle_t ioh = sc->sc_ioh; 1409 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1410 u_int16_t status; 1411 int ret = 0; 1412 1413 if (sc->enabled == 0 || 1414 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 1415 return (0); 1416 1417 1418 for (;;) { 1419 status = bus_space_read_2(iot, ioh, ELINK_STATUS); 1420 1421 if ((status & WATCHED_INTERRUPTS) == 0) { 1422 if ((status & INTR_LATCH) == 0) { 1423 #if 0 1424 printf("%s: intr latch cleared\n", 1425 sc->sc_dev.dv_xname); 1426 #endif 1427 break; 1428 } 1429 } 1430 1431 ret = 1; 1432 1433 /* 1434 * Acknowledge any interrupts. It's important that we do this 1435 * first, since there would otherwise be a race condition. 1436 * Due to the i386 interrupt queueing, we may get spurious 1437 * interrupts occasionally. 1438 */ 1439 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 1440 (status & (INTR_LATCH | ALL_INTERRUPTS))); 1441 1442 #if 0 1443 status = bus_space_read_2(iot, ioh, ELINK_STATUS); 1444 1445 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname, 1446 (status & RX_COMPLETE)?" RX_COMPLETE":"", 1447 (status & TX_COMPLETE)?" TX_COMPLETE":"", 1448 (status & TX_AVAIL)?" TX_AVAIL":"", 1449 (status & CARD_FAILURE)?" CARD_FAILURE":""); 1450 #endif 1451 1452 if (status & RX_COMPLETE) { 1453 epread(sc); 1454 } 1455 if (status & TX_AVAIL) { 1456 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE; 1457 epstart(&sc->sc_ethercom.ec_if); 1458 } 1459 if (status & CARD_FAILURE) { 1460 printf("%s: adapter failure (%x)\n", 1461 sc->sc_dev.dv_xname, status); 1462 #if 1 1463 epinit(ifp); 1464 #else 1465 epreset(sc); 1466 #endif 1467 return (1); 1468 } 1469 if (status & TX_COMPLETE) { 1470 eptxstat(sc); 1471 epstart(ifp); 1472 } 1473 1474 #if NRND > 0 1475 if (status) 1476 rnd_add_uint32(&sc->rnd_source, status); 1477 #endif 1478 } 1479 1480 /* no more interrupts */ 1481 return (ret); 1482 } 1483 1484 void 1485 epread(sc) 1486 struct ep_softc *sc; 1487 { 1488 bus_space_tag_t iot = sc->sc_iot; 1489 bus_space_handle_t ioh = sc->sc_ioh; 1490 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1491 struct mbuf *m; 1492 int len; 1493 1494 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)); 1495 1496 again: 1497 if (ifp->if_flags & IFF_DEBUG) { 1498 int err = len & ERR_MASK; 1499 const char *s = NULL; 1500 1501 if (len & ERR_INCOMPLETE) 1502 s = "incomplete packet"; 1503 else if (err == ERR_OVERRUN) 1504 s = "packet overrun"; 1505 else if (err == ERR_RUNT) 1506 s = "runt packet"; 1507 else if (err == ERR_ALIGNMENT) 1508 s = "bad alignment"; 1509 else if (err == ERR_CRC) 1510 s = "bad crc"; 1511 else if (err == ERR_OVERSIZE) 1512 s = "oversized packet"; 1513 else if (err == ERR_DRIBBLE) 1514 s = "dribble bits"; 1515 1516 if (s) 1517 printf("%s: %s\n", sc->sc_dev.dv_xname, s); 1518 } 1519 1520 if (len & ERR_INCOMPLETE) 1521 return; 1522 1523 if (len & ERR_RX) { 1524 ++ifp->if_ierrors; 1525 goto abort; 1526 } 1527 1528 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */ 1529 1530 /* Pull packet off interface. */ 1531 m = epget(sc, len); 1532 if (m == 0) { 1533 ifp->if_ierrors++; 1534 goto abort; 1535 } 1536 1537 ++ifp->if_ipackets; 1538 1539 #if NBPFILTER > 0 1540 /* 1541 * Check if there's a BPF listener on this interface. 1542 * If so, hand off the raw packet to BPF. 1543 */ 1544 if (ifp->if_bpf) 1545 bpf_mtap(ifp->if_bpf, m); 1546 #endif 1547 1548 (*ifp->if_input)(ifp, m); 1549 1550 /* 1551 * In periods of high traffic we can actually receive enough 1552 * packets so that the fifo overrun bit will be set at this point, 1553 * even though we just read a packet. In this case we 1554 * are not going to receive any more interrupts. We check for 1555 * this condition and read again until the fifo is not full. 1556 * We could simplify this test by not using epstatus(), but 1557 * rechecking the RX_STATUS register directly. This test could 1558 * result in unnecessary looping in cases where there is a new 1559 * packet but the fifo is not full, but it will not fix the 1560 * stuck behavior. 1561 * 1562 * Even with this improvement, we still get packet overrun errors 1563 * which are hurting performance. Maybe when I get some more time 1564 * I'll modify epread() so that it can handle RX_EARLY interrupts. 1565 */ 1566 if (epstatus(sc)) { 1567 len = bus_space_read_2(iot, ioh, 1568 ep_w1_reg(sc, ELINK_W1_RX_STATUS)); 1569 /* Check if we are stuck and reset [see XXX comment] */ 1570 if (len & ERR_INCOMPLETE) { 1571 if (ifp->if_flags & IFF_DEBUG) 1572 printf("%s: adapter reset\n", 1573 sc->sc_dev.dv_xname); 1574 epreset(sc); 1575 return; 1576 } 1577 goto again; 1578 } 1579 1580 return; 1581 1582 abort: 1583 ep_discard_rxtop(iot, ioh); 1584 1585 } 1586 1587 struct mbuf * 1588 epget(sc, totlen) 1589 struct ep_softc *sc; 1590 int totlen; 1591 { 1592 bus_space_tag_t iot = sc->sc_iot; 1593 bus_space_handle_t ioh = sc->sc_ioh; 1594 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1595 struct mbuf *m; 1596 bus_size_t rxreg; 1597 int len, remaining; 1598 int s; 1599 caddr_t newdata; 1600 u_long offset; 1601 1602 m = sc->mb[sc->next_mb]; 1603 sc->mb[sc->next_mb] = 0; 1604 if (m == 0) { 1605 MGETHDR(m, M_DONTWAIT, MT_DATA); 1606 if (m == 0) 1607 return 0; 1608 } else { 1609 /* If the queue is no longer full, refill. */ 1610 if (sc->last_mb == sc->next_mb) 1611 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc); 1612 1613 /* Convert one of our saved mbuf's. */ 1614 sc->next_mb = (sc->next_mb + 1) % MAX_MBS; 1615 m->m_data = m->m_pktdat; 1616 m->m_flags = M_PKTHDR; 1617 memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr)); 1618 } 1619 m->m_pkthdr.rcvif = ifp; 1620 m->m_pkthdr.len = totlen; 1621 len = MHLEN; 1622 1623 /* 1624 * Allocate big enough space to hold whole packet, to avoid 1625 * allocating new mbufs on splsched(). 1626 */ 1627 if (totlen + ALIGNBYTES > len) { 1628 if (totlen + ALIGNBYTES > MCLBYTES) { 1629 len = ALIGN(totlen + ALIGNBYTES); 1630 MEXTMALLOC(m, len, M_DONTWAIT); 1631 } else { 1632 len = MCLBYTES; 1633 MCLGET(m, M_DONTWAIT); 1634 } 1635 if ((m->m_flags & M_EXT) == 0) { 1636 m_free(m); 1637 return 0; 1638 } 1639 } 1640 1641 /* align the struct ip header */ 1642 newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header)) 1643 - sizeof(struct ether_header); 1644 m->m_data = newdata; 1645 m->m_len = totlen; 1646 1647 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1); 1648 remaining = totlen; 1649 offset = mtod(m, u_long); 1650 1651 /* 1652 * We read the packet at a high interrupt priority level so that 1653 * an interrupt from another device won't cause the card's packet 1654 * buffer to overflow. We choose splsched() since that blocks 1655 * essentially everything except for interrupts from serial 1656 * devices (which typically lose data if their interrupt isn't 1657 * serviced fast enough). 1658 * 1659 * XXX THIS CAN CAUSE CLOCK DRIFT! 1660 */ 1661 s = splsched(); 1662 1663 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) { 1664 /* 1665 * Prime the FIFO buffer counter (number of 16-bit 1666 * words about to be read from the FIFO). 1667 * 1668 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS 1669 * COUNTER IS NON-ZERO! 1670 */ 1671 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1); 1672 } 1673 1674 if (ELINK_IS_BUS_32(sc->bustype)) { 1675 /* 1676 * Read bytes up to the point where we are aligned. 1677 * (We can align to 4 bytes, rather than ALIGNBYTES, 1678 * here because we're later reading 4-byte chunks.) 1679 */ 1680 if ((remaining > 3) && (offset & 3)) { 1681 int count = (4 - (offset & 3)); 1682 bus_space_read_multi_1(iot, ioh, 1683 rxreg, (u_int8_t *) offset, count); 1684 offset += count; 1685 remaining -= count; 1686 } 1687 if (remaining > 3) { 1688 bus_space_read_multi_stream_4(iot, ioh, 1689 rxreg, (u_int32_t *) offset, 1690 remaining >> 2); 1691 offset += remaining & ~3; 1692 remaining &= 3; 1693 } 1694 if (remaining) { 1695 bus_space_read_multi_1(iot, ioh, 1696 rxreg, (u_int8_t *) offset, remaining); 1697 } 1698 } else { 1699 if ((remaining > 1) && (offset & 1)) { 1700 bus_space_read_multi_1(iot, ioh, 1701 rxreg, (u_int8_t *) offset, 1); 1702 remaining -= 1; 1703 offset += 1; 1704 } 1705 if (remaining > 1) { 1706 bus_space_read_multi_stream_2(iot, ioh, 1707 rxreg, (u_int16_t *) offset, 1708 remaining >> 1); 1709 offset += remaining & ~1; 1710 } 1711 if (remaining & 1) { 1712 bus_space_read_multi_1(iot, ioh, 1713 rxreg, (u_int8_t *) offset, remaining & 1); 1714 } 1715 } 1716 1717 ep_discard_rxtop(iot, ioh); 1718 1719 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) 1720 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0); 1721 splx(s); 1722 1723 return (m); 1724 } 1725 1726 int 1727 epioctl(ifp, cmd, data) 1728 struct ifnet *ifp; 1729 u_long cmd; 1730 caddr_t data; 1731 { 1732 struct ep_softc *sc = ifp->if_softc; 1733 struct ifreq *ifr = (struct ifreq *)data; 1734 int s, error = 0; 1735 1736 s = splnet(); 1737 1738 switch (cmd) { 1739 1740 case SIOCSIFMEDIA: 1741 case SIOCGIFMEDIA: 1742 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); 1743 break; 1744 1745 case SIOCADDMULTI: 1746 case SIOCDELMULTI: 1747 if (sc->enabled == 0) { 1748 error = EIO; 1749 break; 1750 } 1751 1752 default: 1753 error = ether_ioctl(ifp, cmd, data); 1754 1755 if (error == ENETRESET) { 1756 /* 1757 * Multicast list has changed; set the hardware filter 1758 * accordingly. 1759 */ 1760 if (ifp->if_flags & IFF_RUNNING) 1761 epreset(sc); 1762 error = 0; 1763 } 1764 break; 1765 } 1766 1767 splx(s); 1768 return (error); 1769 } 1770 1771 void 1772 epreset(sc) 1773 struct ep_softc *sc; 1774 { 1775 int s; 1776 1777 s = splnet(); 1778 epinit(&sc->sc_ethercom.ec_if); 1779 splx(s); 1780 } 1781 1782 void 1783 epwatchdog(ifp) 1784 struct ifnet *ifp; 1785 { 1786 struct ep_softc *sc = ifp->if_softc; 1787 1788 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); 1789 ++sc->sc_ethercom.ec_if.if_oerrors; 1790 1791 epreset(sc); 1792 } 1793 1794 void 1795 epstop(ifp, disable) 1796 struct ifnet *ifp; 1797 int disable; 1798 { 1799 struct ep_softc *sc = ifp->if_softc; 1800 bus_space_tag_t iot = sc->sc_iot; 1801 bus_space_handle_t ioh = sc->sc_ioh; 1802 1803 if (sc->ep_flags & ELINK_FLAGS_MII) { 1804 /* Stop the one second clock. */ 1805 callout_stop(&sc->sc_mbuf_callout); 1806 1807 /* Down the MII. */ 1808 mii_down(&sc->sc_mii); 1809 } 1810 1811 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) { 1812 /* 1813 * Clear the FIFO buffer count, thus halting 1814 * any currently-running transactions. 1815 */ 1816 GO_WINDOW(1); /* sanity */ 1817 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0); 1818 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0); 1819 } 1820 1821 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE); 1822 ep_discard_rxtop(iot, ioh); 1823 1824 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE); 1825 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER); 1826 1827 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET); 1828 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET); 1829 1830 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH); 1831 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK); 1832 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK); 1833 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER); 1834 1835 epmbufempty(sc); 1836 1837 if (disable) 1838 epdisable(sc); 1839 1840 ifp->if_flags &= ~IFF_RUNNING; 1841 } 1842 1843 1844 /* 1845 * Before reboots, reset card completely. 1846 */ 1847 static void 1848 epshutdown(arg) 1849 void *arg; 1850 { 1851 struct ep_softc *sc = arg; 1852 int s = splnet(); 1853 1854 if (sc->enabled) { 1855 epstop(&sc->sc_ethercom.ec_if, 0); 1856 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET); 1857 epdisable(sc); 1858 sc->enabled = 0; 1859 } 1860 splx(s); 1861 } 1862 1863 /* 1864 * We get eeprom data from the id_port given an offset into the 1865 * eeprom. Basically; after the ID_sequence is sent to all of 1866 * the cards; they enter the ID_CMD state where they will accept 1867 * command requests. 0x80-0xbf loads the eeprom data. We then 1868 * read the port 16 times and with every read; the cards check 1869 * for contention (ie: if one card writes a 0 bit and another 1870 * writes a 1 bit then the host sees a 0. At the end of the cycle; 1871 * each card compares the data on the bus; if there is a difference 1872 * then that card goes into ID_WAIT state again). In the meantime; 1873 * one bit of data is returned in the AX register which is conveniently 1874 * returned to us by bus_space_read_2(). Hence; we read 16 times getting one 1875 * bit of data with each read. 1876 * 1877 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT! 1878 */ 1879 u_int16_t 1880 epreadeeprom(iot, ioh, offset) 1881 bus_space_tag_t iot; 1882 bus_space_handle_t ioh; 1883 int offset; 1884 { 1885 u_int16_t data = 0; 1886 int i; 1887 1888 bus_space_write_2(iot, ioh, 0, 0x80 + offset); 1889 delay(1000); 1890 for (i = 0; i < 16; i++) 1891 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1); 1892 return (data); 1893 } 1894 1895 static int 1896 epbusyeeprom(sc) 1897 struct ep_softc *sc; 1898 { 1899 bus_space_tag_t iot = sc->sc_iot; 1900 bus_space_handle_t ioh = sc->sc_ioh; 1901 bus_size_t eecmd; 1902 int i = 100, j; 1903 uint16_t busybit; 1904 1905 if (sc->bustype == ELINK_BUS_PCMCIA) { 1906 delay(1000); 1907 return 0; 1908 } 1909 1910 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) { 1911 eecmd = CORK_ASIC_EEPROM_COMMAND; 1912 busybit = CORK_EEPROM_BUSY; 1913 } else { 1914 eecmd = ELINK_W0_EEPROM_COMMAND; 1915 busybit = EEPROM_BUSY; 1916 } 1917 1918 j = 0; /* bad GCC flow analysis */ 1919 while (i--) { 1920 j = bus_space_read_2(iot, ioh, eecmd); 1921 if (j & busybit) 1922 delay(100); 1923 else 1924 break; 1925 } 1926 if (i == 0) { 1927 printf("\n%s: eeprom failed to come ready\n", 1928 sc->sc_dev.dv_xname); 1929 return (1); 1930 } 1931 if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW && 1932 (j & EEPROM_TST_MODE) != 0) { 1933 /* XXX PnP mode? */ 1934 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname); 1935 return (1); 1936 } 1937 return (0); 1938 } 1939 1940 u_int16_t 1941 ep_read_eeprom(sc, offset) 1942 struct ep_softc *sc; 1943 u_int16_t offset; 1944 { 1945 bus_size_t eecmd, eedata; 1946 u_int16_t readcmd; 1947 1948 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) { 1949 eecmd = CORK_ASIC_EEPROM_COMMAND; 1950 eedata = CORK_ASIC_EEPROM_DATA; 1951 } else { 1952 eecmd = ELINK_W0_EEPROM_COMMAND; 1953 eedata = ELINK_W0_EEPROM_DATA; 1954 } 1955 1956 /* 1957 * RoadRunner has a larger EEPROM, so a different read command 1958 * is required. 1959 */ 1960 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) 1961 readcmd = READ_EEPROM_RR; 1962 else 1963 readcmd = READ_EEPROM; 1964 1965 if (epbusyeeprom(sc)) 1966 return (0); /* XXX why is eeprom busy? */ 1967 1968 bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset); 1969 1970 if (epbusyeeprom(sc)) 1971 return (0); /* XXX why is eeprom busy? */ 1972 1973 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata)); 1974 } 1975 1976 void 1977 epmbuffill(v) 1978 void *v; 1979 { 1980 struct ep_softc *sc = v; 1981 struct mbuf *m; 1982 int s, i; 1983 1984 s = splnet(); 1985 i = sc->last_mb; 1986 do { 1987 if (sc->mb[i] == 0) { 1988 MGET(m, M_DONTWAIT, MT_DATA); 1989 if (m == 0) 1990 break; 1991 sc->mb[i] = m; 1992 } 1993 i = (i + 1) % MAX_MBS; 1994 } while (i != sc->next_mb); 1995 sc->last_mb = i; 1996 /* If the queue was not filled, try again. */ 1997 if (sc->last_mb != sc->next_mb) 1998 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc); 1999 splx(s); 2000 } 2001 2002 void 2003 epmbufempty(sc) 2004 struct ep_softc *sc; 2005 { 2006 int s, i; 2007 2008 s = splnet(); 2009 for (i = 0; i<MAX_MBS; i++) { 2010 if (sc->mb[i]) { 2011 m_freem(sc->mb[i]); 2012 sc->mb[i] = NULL; 2013 } 2014 } 2015 sc->last_mb = sc->next_mb = 0; 2016 callout_stop(&sc->sc_mbuf_callout); 2017 splx(s); 2018 } 2019 2020 int 2021 epenable(sc) 2022 struct ep_softc *sc; 2023 { 2024 2025 if (sc->enabled == 0 && sc->enable != NULL) { 2026 if ((*sc->enable)(sc) != 0) { 2027 printf("%s: device enable failed\n", 2028 sc->sc_dev.dv_xname); 2029 return (EIO); 2030 } 2031 } 2032 2033 sc->enabled = 1; 2034 return (0); 2035 } 2036 2037 void 2038 epdisable(sc) 2039 struct ep_softc *sc; 2040 { 2041 2042 if (sc->enabled != 0 && sc->disable != NULL) { 2043 (*sc->disable)(sc); 2044 sc->enabled = 0; 2045 } 2046 } 2047 2048 /* 2049 * ep_activate: 2050 * 2051 * Handle device activation/deactivation requests. 2052 */ 2053 int 2054 ep_activate(self, act) 2055 struct device *self; 2056 enum devact act; 2057 { 2058 struct ep_softc *sc = (struct ep_softc *)self; 2059 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2060 int error = 0, s; 2061 2062 s = splnet(); 2063 switch (act) { 2064 case DVACT_ACTIVATE: 2065 error = EOPNOTSUPP; 2066 break; 2067 2068 case DVACT_DEACTIVATE: 2069 if (sc->ep_flags & ELINK_FLAGS_MII) 2070 mii_activate(&sc->sc_mii, act, MII_PHY_ANY, 2071 MII_OFFSET_ANY); 2072 if_deactivate(ifp); 2073 break; 2074 } 2075 splx(s); 2076 return (error); 2077 } 2078 2079 /* 2080 * ep_detach: 2081 * 2082 * Detach a elink3 interface. 2083 */ 2084 int 2085 ep_detach(self, flags) 2086 struct device *self; 2087 int flags; 2088 { 2089 struct ep_softc *sc = (struct ep_softc *)self; 2090 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2091 2092 /* Succeed now if there's no work to do. */ 2093 if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0) 2094 return (0); 2095 2096 epdisable(sc); 2097 2098 callout_stop(&sc->sc_mii_callout); 2099 callout_stop(&sc->sc_mbuf_callout); 2100 2101 if (sc->ep_flags & ELINK_FLAGS_MII) { 2102 /* Detach all PHYs */ 2103 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 2104 } 2105 2106 /* Delete all remaining media. */ 2107 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); 2108 2109 #if NRND > 0 2110 rnd_detach_source(&sc->rnd_source); 2111 #endif 2112 ether_ifdetach(ifp); 2113 if_detach(ifp); 2114 2115 shutdownhook_disestablish(sc->sd_hook); 2116 2117 return (0); 2118 } 2119 2120 u_int32_t 2121 ep_mii_bitbang_read(self) 2122 struct device *self; 2123 { 2124 struct ep_softc *sc = (void *) self; 2125 2126 /* We're already in Window 4. */ 2127 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, 2128 ELINK_W4_BOOM_PHYSMGMT)); 2129 } 2130 2131 void 2132 ep_mii_bitbang_write(self, val) 2133 struct device *self; 2134 u_int32_t val; 2135 { 2136 struct ep_softc *sc = (void *) self; 2137 2138 /* We're already in Window 4. */ 2139 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 2140 ELINK_W4_BOOM_PHYSMGMT, val); 2141 } 2142 2143 int 2144 ep_mii_readreg(self, phy, reg) 2145 struct device *self; 2146 int phy, reg; 2147 { 2148 struct ep_softc *sc = (void *) self; 2149 int val; 2150 2151 GO_WINDOW(4); 2152 2153 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg); 2154 2155 GO_WINDOW(1); 2156 2157 return (val); 2158 } 2159 2160 void 2161 ep_mii_writereg(self, phy, reg, val) 2162 struct device *self; 2163 int phy, reg, val; 2164 { 2165 struct ep_softc *sc = (void *) self; 2166 2167 GO_WINDOW(4); 2168 2169 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val); 2170 2171 GO_WINDOW(1); 2172 } 2173 2174 void 2175 ep_statchg(self) 2176 struct device *self; 2177 { 2178 struct ep_softc *sc = (struct ep_softc *)self; 2179 bus_space_tag_t iot = sc->sc_iot; 2180 bus_space_handle_t ioh = sc->sc_ioh; 2181 int mctl; 2182 2183 GO_WINDOW(3); 2184 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL); 2185 if (sc->sc_mii.mii_media_active & IFM_FDX) 2186 mctl |= MAC_CONTROL_FDX; 2187 else 2188 mctl &= ~MAC_CONTROL_FDX; 2189 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl); 2190 GO_WINDOW(1); /* back to operating window */ 2191 } 2192