xref: /netbsd-src/sys/dev/ic/elink3.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: elink3.c,v 1.106 2003/01/31 00:26:29 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
42  * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
43  * All rights reserved.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. All advertising materials mentioning features or use of this software
54  *    must display the following acknowledgement:
55  *      This product includes software developed by Herb Peyerl.
56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
57  *    derived from this software without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.106 2003/01/31 00:26:29 thorpej Exp $");
73 
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/mbuf.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/syslog.h>
88 #include <sys/select.h>
89 #include <sys/device.h>
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
93 
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_ether.h>
97 #include <net/if_media.h>
98 
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #include <net/bpfdesc.h>
102 #endif
103 
104 #include <machine/cpu.h>
105 #include <machine/bus.h>
106 #include <machine/intr.h>
107 
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 #include <dev/mii/mii_bitbang.h>
111 
112 #include <dev/ic/elink3var.h>
113 #include <dev/ic/elink3reg.h>
114 
115 #ifdef DEBUG
116 int epdebug = 0;
117 #endif
118 
119 /*
120  * XXX endian workaround for big-endian CPUs  with pcmcia:
121  * if stream methods for bus_space_multi are not provided, define them
122  * using non-stream bus_space_{read,write}_multi_.
123  * Assumes host CPU is same endian-ness as bus.
124  */
125 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
126 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
127 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
128 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
129 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
130 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
131 
132 /*
133  * Structure to map media-present bits in boards to ifmedia codes and
134  * printable media names. Used for table-driven ifmedia initialization.
135  */
136 struct ep_media {
137 	int	epm_mpbit;		/* media present bit */
138 	const char *epm_name;		/* name of medium */
139 	int	epm_ifmedia;		/* ifmedia word for medium */
140 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
141 };
142 
143 /*
144  * Media table for the Demon/Vortex/Boomerang chipsets.
145  *
146  * Note that MII on the Demon and Vortex (3c59x) indicates an external
147  * MII connector (for connecting an external PHY) ... I think.  Treat
148  * it as `manual' on these chips.
149  *
150  * Any Boomerang (3c90x) chips with MII really do have an internal
151  * MII and real PHYs attached; no `native' media.
152  */
153 const struct ep_media ep_vortex_media[] = {
154 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
155 	  ELINKMEDIA_10BASE_T },
156 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
157 	  ELINKMEDIA_10BASE_T },
158 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
159 	  ELINKMEDIA_AUI },
160 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
161 	  ELINKMEDIA_10BASE_2 },
162 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
163 	  ELINKMEDIA_100BASE_TX },
164 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
165 	  ELINKMEDIA_100BASE_TX },
166 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
167 	  ELINKMEDIA_100BASE_FX },
168 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
169 	  ELINKMEDIA_MII },
170 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
171 	  ELINKMEDIA_100BASE_T4 },
172 	{ 0,			NULL,		0,
173 	  0 },
174 };
175 
176 /*
177  * Media table for the older 3Com Etherlink III chipset, used
178  * in the 3c509, 3c579, and 3c589.
179  */
180 const struct ep_media ep_509_media[] = {
181 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
182 	  ELINKMEDIA_10BASE_T },
183 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
184 	  ELINKMEDIA_AUI },
185 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
186 	  ELINKMEDIA_10BASE_2 },
187 	{ 0,			NULL,		0,
188 	  0 },
189 };
190 
191 void	ep_internalconfig __P((struct ep_softc *sc));
192 void	ep_vortex_probemedia __P((struct ep_softc *sc));
193 void	ep_509_probemedia __P((struct ep_softc *sc));
194 
195 static void eptxstat __P((struct ep_softc *));
196 static int epstatus __P((struct ep_softc *));
197 int	epinit __P((struct ifnet *));
198 void	epstop __P((struct ifnet *, int));
199 int	epioctl __P((struct ifnet *, u_long, caddr_t));
200 void	epstart __P((struct ifnet *));
201 void	epwatchdog __P((struct ifnet *));
202 void	epreset __P((struct ep_softc *));
203 static void epshutdown __P((void *));
204 void	epread __P((struct ep_softc *));
205 struct mbuf *epget __P((struct ep_softc *, int));
206 void	epmbuffill __P((void *));
207 void	epmbufempty __P((struct ep_softc *));
208 void	epsetfilter __P((struct ep_softc *));
209 void	ep_roadrunner_mii_enable __P((struct ep_softc *));
210 void	epsetmedia __P((struct ep_softc *));
211 
212 /* ifmedia callbacks */
213 int	ep_media_change __P((struct ifnet *ifp));
214 void	ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
215 
216 /* MII callbacks */
217 int	ep_mii_readreg __P((struct device *, int, int));
218 void	ep_mii_writereg __P((struct device *, int, int, int));
219 void	ep_statchg __P((struct device *));
220 
221 void	ep_tick __P((void *));
222 
223 static int epbusyeeprom __P((struct ep_softc *));
224 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
225 static inline void ep_reset_cmd __P((struct ep_softc *sc,
226 					u_int cmd, u_int arg));
227 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
228 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
229 static __inline int ep_w1_reg __P((struct ep_softc *, int));
230 
231 /*
232  * MII bit-bang glue.
233  */
234 u_int32_t ep_mii_bitbang_read __P((struct device *));
235 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
236 
237 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
238 	ep_mii_bitbang_read,
239 	ep_mii_bitbang_write,
240 	{
241 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
242 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
243 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
244 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
245 		0,			/* MII_BIT_DIR_PHY_HOST */
246 	}
247 };
248 
249 /*
250  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
251  * Window 1 registers offset!
252  */
253 static __inline int
254 ep_w1_reg(sc, reg)
255 	struct ep_softc *sc;
256 	int reg;
257 {
258 
259 	switch (sc->ep_chipset) {
260 	case ELINK_CHIPSET_CORKSCREW:
261 		return (reg + 0x10);
262 
263 	case ELINK_CHIPSET_ROADRUNNER:
264 		switch (reg) {
265 		case ELINK_W1_FREE_TX:
266 		case ELINK_W1_RUNNER_RDCTL:
267 		case ELINK_W1_RUNNER_WRCTL:
268 			return (reg);
269 		}
270 		return (reg + 0x10);
271 	}
272 
273 	return (reg);
274 }
275 
276 /*
277  * Wait for any pending reset to complete.
278  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
279  * but older hardware doesn't implement it and we must delay.
280  */
281 static inline void
282 ep_finish_reset(iot, ioh)
283 	bus_space_tag_t iot;
284 	bus_space_handle_t ioh;
285 {
286 	int i;
287 
288 	for (i = 0; i < 10000; i++) {
289 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
290 		    COMMAND_IN_PROGRESS) == 0)
291 			break;
292 		DELAY(10);
293 	}
294 }
295 
296 /*
297  * Issue a (reset) command, and be sure it has completed.
298  * Used for global reset, TX_RESET, RX_RESET.
299  */
300 static inline void
301 ep_reset_cmd(sc, cmd, arg)
302 	struct ep_softc *sc;
303 	u_int cmd, arg;
304 {
305 	bus_space_tag_t iot = sc->sc_iot;
306 	bus_space_handle_t ioh = sc->sc_ioh;
307 
308 	bus_space_write_2(iot, ioh, cmd, arg);
309 	ep_finish_reset(iot, ioh);
310 }
311 
312 
313 static inline void
314 ep_discard_rxtop(iot, ioh)
315 	bus_space_tag_t iot;
316 	bus_space_handle_t ioh;
317 {
318 	int i;
319 
320 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
321 
322         /*
323 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
324 	 * every received packet (adding latency and  limiting pkt-recv rate).
325 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
326 	 * is about right.
327 	 */
328 	for (i = 0; i < 8000; i++) {
329 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
330 		    COMMAND_IN_PROGRESS) == 0)
331 		    return;
332 	}
333 
334 	/*  Didn't complete in a hurry. Do DELAY()s. */
335 	ep_finish_reset(iot, ioh);
336 }
337 
338 /*
339  * Back-end attach and configure.
340  */
341 int
342 epconfig(sc, chipset, enaddr)
343 	struct ep_softc *sc;
344 	u_short chipset;
345 	u_int8_t *enaddr;
346 {
347 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
348 	bus_space_tag_t iot = sc->sc_iot;
349 	bus_space_handle_t ioh = sc->sc_ioh;
350 	u_int16_t i;
351 	u_int8_t myla[ETHER_ADDR_LEN];
352 
353 	callout_init(&sc->sc_mii_callout);
354 	callout_init(&sc->sc_mbuf_callout);
355 
356 	sc->ep_chipset = chipset;
357 
358 	/*
359 	 * We could have been groveling around in other register
360 	 * windows in the front-end; make sure we're in window 0
361 	 * to read the EEPROM.
362 	 */
363 	GO_WINDOW(0);
364 
365 	if (enaddr == NULL) {
366 		/*
367 		 * Read the station address from the eeprom.
368 		 */
369 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
370 			u_int16_t x = ep_read_eeprom(sc, i);
371 			myla[(i << 1)] = x >> 8;
372 			myla[(i << 1) + 1] = x;
373 		}
374 		enaddr = myla;
375 	}
376 
377 	/*
378 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
379 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
380 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
381 	 * packet length.
382 	 * Commands to these cards implicitly upshift a packet size
383 	 * or threshold by 2 bits.
384 	 * To detect  cards with large-packet support, we probe by setting
385 	 * the transmit threshold register, then change windows and
386 	 * read back the threshold register directly, and see if the
387 	 * threshold value was shifted or not.
388 	 */
389 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
390 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
391 	GO_WINDOW(5);
392 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
393 	GO_WINDOW(1);
394 	switch (i)  {
395 	case ELINK_LARGEWIN_PROBE:
396 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
397 		sc->ep_pktlenshift = 0;
398 		break;
399 
400 	case (ELINK_LARGEWIN_PROBE << 2):
401 		sc->ep_pktlenshift = 2;
402 		break;
403 
404 	default:
405 		aprint_error(
406 		    "%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
407 		    "Interface disabled\n",
408 		    sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
409 		return (1);
410 	}
411 
412 	/*
413 	 * Ensure Tx-available interrupts are enabled for
414 	 * start the interface.
415 	 * XXX should be in epinit()?
416 	 */
417 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
418 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
419 
420 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
421 	ifp->if_softc = sc;
422 	ifp->if_start = epstart;
423 	ifp->if_ioctl = epioctl;
424 	ifp->if_watchdog = epwatchdog;
425 	ifp->if_init = epinit;
426 	ifp->if_stop = epstop;
427 	ifp->if_flags =
428 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
429 	IFQ_SET_READY(&ifp->if_snd);
430 
431 	if_attach(ifp);
432 	ether_ifattach(ifp, enaddr);
433 
434 	/*
435 	 * Finish configuration:
436 	 * determine chipset if the front-end couldn't do so,
437 	 * show board details, set media.
438 	 */
439 
440 	/*
441 	 * Print RAM size.  We also print the Ethernet address in here.
442 	 * It's extracted from the ifp, so we have to make sure it's
443 	 * been attached first.
444 	 */
445 	ep_internalconfig(sc);
446 	GO_WINDOW(0);
447 
448 	/*
449 	 * Display some additional information, if pertinent.
450 	 */
451 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
452 		aprint_normal("%s: RoadRunner FIFO buffer enabled\n",
453 		    sc->sc_dev.dv_xname);
454 
455 	/*
456 	 * Initialize our media structures and MII info.  We'll
457 	 * probe the MII if we discover that we have one.
458 	 */
459 	sc->sc_mii.mii_ifp = ifp;
460 	sc->sc_mii.mii_readreg = ep_mii_readreg;
461 	sc->sc_mii.mii_writereg = ep_mii_writereg;
462 	sc->sc_mii.mii_statchg = ep_statchg;
463 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
464 	    ep_media_status);
465 
466 	/*
467 	 * All CORKSCREW chips have MII.
468 	 */
469 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
470 		sc->ep_flags |= ELINK_FLAGS_MII;
471 
472 	/*
473 	 * Now, determine which media we have.
474 	 */
475 	switch (sc->ep_chipset) {
476 	case ELINK_CHIPSET_ROADRUNNER:
477 		if (sc->ep_flags & ELINK_FLAGS_MII) {
478 			ep_roadrunner_mii_enable(sc);
479 			GO_WINDOW(0);
480 		}
481 		/* FALLTHROUGH */
482 
483 	case ELINK_CHIPSET_CORKSCREW:
484 	case ELINK_CHIPSET_BOOMERANG:
485 		/*
486 		 * If the device has MII, probe it.  We won't be using
487 		 * any `native' media in this case, only PHYs.  If
488 		 * we don't, just treat the Boomerang like the Vortex.
489 		 */
490 		if (sc->ep_flags & ELINK_FLAGS_MII) {
491 			mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
492 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
493 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
494 				ifmedia_add(&sc->sc_mii.mii_media,
495 				    IFM_ETHER|IFM_NONE, 0, NULL);
496 				ifmedia_set(&sc->sc_mii.mii_media,
497 				    IFM_ETHER|IFM_NONE);
498 			} else {
499 				ifmedia_set(&sc->sc_mii.mii_media,
500 				    IFM_ETHER|IFM_AUTO);
501 			}
502 			break;
503 		}
504 		/* FALLTHROUGH */
505 
506 	case ELINK_CHIPSET_VORTEX:
507 		ep_vortex_probemedia(sc);
508 		break;
509 
510 	default:
511 		ep_509_probemedia(sc);
512 		break;
513 	}
514 
515 	GO_WINDOW(1);		/* Window 1 is operating window */
516 
517 #if NRND > 0
518 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
519 	    RND_TYPE_NET, 0);
520 #endif
521 
522 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
523 
524 	/*  Establish callback to reset card when we reboot. */
525 	sc->sd_hook = shutdownhook_establish(epshutdown, sc);
526 
527 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
528 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
529 
530 	/* The attach is successful. */
531 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
532 	return (0);
533 }
534 
535 
536 /*
537  * Show interface-model-independent info from window 3
538  * internal-configuration register.
539  */
540 void
541 ep_internalconfig(sc)
542 	struct ep_softc *sc;
543 {
544 	bus_space_tag_t iot = sc->sc_iot;
545 	bus_space_handle_t ioh = sc->sc_ioh;
546 
547 	u_int config0;
548 	u_int config1;
549 
550 	int  ram_size, ram_width, ram_split;
551 	/*
552 	 * NVRAM buffer Rx:Tx config names for busmastering cards
553 	 * (Demon, Vortex, and later).
554 	 */
555 	const char *const onboard_ram_config[] = {
556 		"5:3", "3:1", "1:1", "3:5" };
557 
558 	GO_WINDOW(3);
559 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
560 	config1 = (u_int)bus_space_read_2(iot, ioh,
561 	    ELINK_W3_INTERNAL_CONFIG + 2);
562 	GO_WINDOW(0);
563 
564 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
565 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
566 
567 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
568 
569 	aprint_normal("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
570 	       sc->sc_dev.dv_xname,
571 	       ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
572 	       8 << ram_size,
573 	       (ram_width) ? "word" : "byte",
574 	       onboard_ram_config[ram_split]);
575 }
576 
577 
578 /*
579  * Find supported media on 3c509-generation hardware that doesn't have
580  * a "reset_options" register in window 3.
581  * Use the config_cntrl register  in window 0 instead.
582  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
583  * that implement  CONFIG_CTRL.  We don't have a good way to set the
584  * default active medium; punt to ifconfig  instead.
585  */
586 void
587 ep_509_probemedia(sc)
588 	struct ep_softc *sc;
589 {
590 	bus_space_tag_t iot = sc->sc_iot;
591 	bus_space_handle_t ioh = sc->sc_ioh;
592 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
593 	u_int16_t ep_w0_config, port;
594 	const struct ep_media *epm;
595 	const char *sep = "", *defmedianame = NULL;
596 	int defmedia = 0;
597 
598 	GO_WINDOW(0);
599 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
600 
601 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
602 
603 	/* Sanity check that there are any media! */
604 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
605 		aprint_error("no media present!\n");
606 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
607 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
608 		return;
609 	}
610 
611 	/*
612 	 * Get the default media from the EEPROM.
613 	 */
614 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
615 
616 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
617 
618 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
619 		if (ep_w0_config & epm->epm_mpbit) {
620 			/*
621 			 * This simple test works because 509 chipsets
622 			 * don't do full-duplex.
623 			 */
624 			if (epm->epm_epmedia == port || defmedia == 0) {
625 				defmedia = epm->epm_ifmedia;
626 				defmedianame = epm->epm_name;
627 			}
628 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
629 			    NULL);
630 			PRINT(epm->epm_name);
631 		}
632 	}
633 
634 #undef PRINT
635 
636 #ifdef DIAGNOSTIC
637 	if (defmedia == 0)
638 		panic("ep_509_probemedia: impossible");
639 #endif
640 
641 	aprint_normal(" (default %s)\n", defmedianame);
642 	ifmedia_set(ifm, defmedia);
643 }
644 
645 /*
646  * Find media present on large-packet-capable elink3 devices.
647  * Show onboard configuration of large-packet-capable elink3 devices
648  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
649  * Use media and card-version info in window 3 instead.
650  */
651 void
652 ep_vortex_probemedia(sc)
653 	struct ep_softc *sc;
654 {
655 	bus_space_tag_t iot = sc->sc_iot;
656 	bus_space_handle_t ioh = sc->sc_ioh;
657 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
658 	const struct ep_media *epm;
659 	u_int config1;
660 	int reset_options;
661 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
662 	int defmedia = 0;
663 	const char *sep = "", *defmedianame = NULL;
664 
665 	GO_WINDOW(3);
666 	config1 = (u_int)bus_space_read_2(iot, ioh,
667 	    ELINK_W3_INTERNAL_CONFIG + 2);
668 	reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
669 	GO_WINDOW(0);
670 
671 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
672 
673 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
674 
675 	/* Sanity check that there are any media! */
676 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
677 		aprint_error("no media present!\n");
678 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
679 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
680 		return;
681 	}
682 
683 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
684 
685 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
686 		if (reset_options & epm->epm_mpbit) {
687 			/*
688 			 * Default media is a little more complicated
689 			 * on the Vortex.  We support full-duplex which
690 			 * uses the same reset options bit.
691 			 *
692 			 * XXX Check EEPROM for default to FDX?
693 			 */
694 			if (epm->epm_epmedia == default_media) {
695 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
696 					defmedia = epm->epm_ifmedia;
697 					defmedianame = epm->epm_name;
698 				}
699 			} else if (defmedia == 0) {
700 				defmedia = epm->epm_ifmedia;
701 				defmedianame = epm->epm_name;
702 			}
703 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
704 			    NULL);
705 			PRINT(epm->epm_name);
706 		}
707 	}
708 
709 #undef PRINT
710 
711 #ifdef DIAGNOSTIC
712 	if (defmedia == 0)
713 		panic("ep_vortex_probemedia: impossible");
714 #endif
715 
716 	aprint_normal(" (default %s)\n", defmedianame);
717 	ifmedia_set(ifm, defmedia);
718 }
719 
720 /*
721  * One second timer, used to tick the MII.
722  */
723 void
724 ep_tick(arg)
725 	void *arg;
726 {
727 	struct ep_softc *sc = arg;
728 	int s;
729 
730 #ifdef DIAGNOSTIC
731 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
732 		panic("ep_tick");
733 #endif
734 
735 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
736 		return;
737 
738 	s = splnet();
739 	mii_tick(&sc->sc_mii);
740 	splx(s);
741 
742 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
743 }
744 
745 /*
746  * Bring device up.
747  *
748  * The order in here seems important. Otherwise we may not receive
749  * interrupts. ?!
750  */
751 int
752 epinit(ifp)
753 	struct ifnet *ifp;
754 {
755 	struct ep_softc *sc = ifp->if_softc;
756 	bus_space_tag_t iot = sc->sc_iot;
757 	bus_space_handle_t ioh = sc->sc_ioh;
758 	int i, error;
759 
760 	if (!sc->enabled && (error = epenable(sc)) != 0)
761 		return (error);
762 
763 	/* Make sure any pending reset has completed before touching board */
764 	ep_finish_reset(iot, ioh);
765 
766 	/*
767 	 * Cancel any pending I/O.
768 	 */
769 	epstop(ifp, 0);
770 
771 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
772 	    && sc->bustype != ELINK_BUS_MCA) {
773 		GO_WINDOW(0);
774 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
775 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
776 		    ENABLE_DRQ_IRQ);
777 	}
778 
779 	if (sc->bustype == ELINK_BUS_PCMCIA) {
780 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
781 	}
782 
783 	GO_WINDOW(2);
784 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
785 		bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
786 		    LLADDR(ifp->if_sadl)[i]);
787 
788 	/*
789 	 * Reset the station-address receive filter.
790 	 * A bug workaround for busmastering (Vortex, Demon) cards.
791 	 */
792 	for (i = 0; i < 6; i++)
793 		bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
794 
795 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
796 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
797 
798 	GO_WINDOW(1);		/* Window 1 is operating window */
799 	for (i = 0; i < 31; i++)
800 		bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
801 
802 	/* Set threshold for Tx-space available interrupt. */
803 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
804 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
805 
806 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
807 		/*
808 		 * Enable options in the PCMCIA LAN COR register, via
809 		 * RoadRunner Window 1.
810 		 *
811 		 * XXX MAGIC CONSTANTS!
812 		 */
813 		u_int16_t cor;
814 
815 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
816 
817 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
818 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
819 			cor |= 0x10;
820 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
821 			cor |= 0x20;
822 		bus_space_write_2(iot, ioh, 0, cor);
823 
824 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
825 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
826 
827 		if (sc->ep_flags & ELINK_FLAGS_MII) {
828 			ep_roadrunner_mii_enable(sc);
829 			GO_WINDOW(1);
830 		}
831 	}
832 
833 	/* Enable interrupts. */
834 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
835 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
836 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
837 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
838 
839 	/*
840 	 * Attempt to get rid of any stray interrupts that occurred during
841 	 * configuration.  On the i386 this isn't possible because one may
842 	 * already be queued.  However, a single stray interrupt is
843 	 * unimportant.
844 	 */
845 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
846 
847 	epsetfilter(sc);
848 	epsetmedia(sc);
849 
850 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
851 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
852 
853 	epmbuffill(sc);
854 
855 	/* Interface is now `running', with no output active. */
856 	ifp->if_flags |= IFF_RUNNING;
857 	ifp->if_flags &= ~IFF_OACTIVE;
858 
859 	if (sc->ep_flags & ELINK_FLAGS_MII) {
860 		/* Start the one second clock. */
861 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
862 	}
863 
864 	/* Attempt to start output, if any. */
865 	epstart(ifp);
866 
867 	return (0);
868 }
869 
870 
871 /*
872  * Set multicast receive filter.
873  * elink3 hardware has no selective multicast filter in hardware.
874  * Enable reception of all multicasts and filter in software.
875  */
876 void
877 epsetfilter(sc)
878 	struct ep_softc *sc;
879 {
880 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
881 
882 	GO_WINDOW(1);		/* Window 1 is operating window */
883 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
884 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
885 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
886 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
887 }
888 
889 int
890 ep_media_change(ifp)
891 	struct ifnet *ifp;
892 {
893 	struct ep_softc *sc = ifp->if_softc;
894 
895 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
896 		epreset(sc);
897 
898 	return (0);
899 }
900 
901 /*
902  * Reset and enable the MII on the RoadRunner.
903  */
904 void
905 ep_roadrunner_mii_enable(sc)
906 	struct ep_softc *sc;
907 {
908 	bus_space_tag_t iot = sc->sc_iot;
909 	bus_space_handle_t ioh = sc->sc_ioh;
910 
911 	GO_WINDOW(3);
912 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
913 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
914 	delay(1000);
915 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
916 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
917 	    ELINK_RUNNER_ENABLE_MII);
918 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
919 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
920 	delay(1000);
921 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
922 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
923 }
924 
925 /*
926  * Set the card to use the specified media.
927  */
928 void
929 epsetmedia(sc)
930 	struct ep_softc *sc;
931 {
932 	bus_space_tag_t iot = sc->sc_iot;
933 	bus_space_handle_t ioh = sc->sc_ioh;
934 
935 	/* Turn everything off.  First turn off linkbeat and UTP. */
936 	GO_WINDOW(4);
937 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
938 
939 	/* Turn off coax */
940 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
941 	delay(1000);
942 
943 	/*
944 	 * If the device has MII, select it, and then tell the
945 	 * PHY which media to use.
946 	 */
947 	if (sc->ep_flags & ELINK_FLAGS_MII) {
948 		int config0, config1;
949 
950 		GO_WINDOW(3);
951 
952 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
953 			int resopt;
954 
955 			resopt = bus_space_read_2(iot, ioh,
956 			    ELINK_W3_RESET_OPTIONS);
957 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
958 			    resopt | ELINK_RUNNER_ENABLE_MII);
959 		}
960 
961 		config0 = (u_int)bus_space_read_2(iot, ioh,
962 		    ELINK_W3_INTERNAL_CONFIG);
963 		config1 = (u_int)bus_space_read_2(iot, ioh,
964 		    ELINK_W3_INTERNAL_CONFIG + 2);
965 
966 		config1 = config1 & ~CONFIG_MEDIAMASK;
967 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
968 
969 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
970 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
971 		    config1);
972 		GO_WINDOW(1);	/* back to operating window */
973 
974 		mii_mediachg(&sc->sc_mii);
975 		return;
976 	}
977 
978 	/*
979 	 * Now turn on the selected media/transceiver.
980 	 */
981 	GO_WINDOW(4);
982 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
983 	case IFM_10_T:
984 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
985 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
986 		break;
987 
988 	case IFM_10_2:
989 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
990 		DELAY(1000);	/* 50ms not enmough? */
991 		break;
992 
993 	case IFM_100_TX:
994 	case IFM_100_FX:
995 	case IFM_100_T4:		/* XXX check documentation */
996 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
997 		    LINKBEAT_ENABLE);
998 		DELAY(1000);	/* not strictly necessary? */
999 		break;
1000 
1001 	case IFM_10_5:
1002 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
1003 		    SQE_ENABLE);
1004 		DELAY(1000);	/* not strictly necessary? */
1005 		break;
1006 
1007 	case IFM_MANUAL:
1008 		/*
1009 		 * Nothing to do here; we are actually enabling the
1010 		 * external PHY on the MII port.
1011 		 */
1012 		break;
1013 
1014 	case IFM_NONE:
1015 		printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1016 		return;
1017 
1018 	default:
1019 		panic("epsetmedia: impossible");
1020 	}
1021 
1022 	/*
1023 	 * Tell the chip which port to use.
1024 	 */
1025 	switch (sc->ep_chipset) {
1026 	case ELINK_CHIPSET_VORTEX:
1027 	case ELINK_CHIPSET_BOOMERANG:
1028 	    {
1029 		int mctl, config0, config1;
1030 
1031 		GO_WINDOW(3);
1032 		config0 = (u_int)bus_space_read_2(iot, ioh,
1033 		    ELINK_W3_INTERNAL_CONFIG);
1034 		config1 = (u_int)bus_space_read_2(iot, ioh,
1035 		    ELINK_W3_INTERNAL_CONFIG + 2);
1036 
1037 		config1 = config1 & ~CONFIG_MEDIAMASK;
1038 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1039 		    CONFIG_MEDIAMASK_SHIFT);
1040 
1041 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1042 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1043 		    config1);
1044 
1045 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1046 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1047 			mctl |= MAC_CONTROL_FDX;
1048 		else
1049 			mctl &= ~MAC_CONTROL_FDX;
1050 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1051 		break;
1052 	    }
1053 	default:
1054 	    {
1055 		int w0_addr_cfg;
1056 
1057 		GO_WINDOW(0);
1058 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1059 		w0_addr_cfg &= 0x3fff;
1060 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1061 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1062 		DELAY(1000);
1063 		break;
1064 	    }
1065 	}
1066 
1067 	GO_WINDOW(1);		/* Window 1 is operating window */
1068 }
1069 
1070 /*
1071  * Get currently-selected media from card.
1072  * (if_media callback, may be called before interface is brought up).
1073  */
1074 void
1075 ep_media_status(ifp, req)
1076 	struct ifnet *ifp;
1077 	struct ifmediareq *req;
1078 {
1079 	struct ep_softc *sc = ifp->if_softc;
1080 	bus_space_tag_t iot = sc->sc_iot;
1081 	bus_space_handle_t ioh = sc->sc_ioh;
1082 
1083 	if (sc->enabled == 0) {
1084 		req->ifm_active = IFM_ETHER|IFM_NONE;
1085 		req->ifm_status = 0;
1086 		return;
1087 	}
1088 
1089 	/*
1090 	 * If we have MII, go ask the PHY what's going on.
1091 	 */
1092 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1093 		mii_pollstat(&sc->sc_mii);
1094 		req->ifm_active = sc->sc_mii.mii_media_active;
1095 		req->ifm_status = sc->sc_mii.mii_media_status;
1096 		return;
1097 	}
1098 
1099 	/*
1100 	 * Ok, at this point we claim that our active media is
1101 	 * the currently selected media.  We'll update our status
1102 	 * if our chipset allows us to detect link.
1103 	 */
1104 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1105 	req->ifm_status = 0;
1106 
1107 	switch (sc->ep_chipset) {
1108 	case ELINK_CHIPSET_VORTEX:
1109 	case ELINK_CHIPSET_BOOMERANG:
1110 		GO_WINDOW(4);
1111 		req->ifm_status = IFM_AVALID;
1112 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1113 		    LINKBEAT_DETECT)
1114 			req->ifm_status |= IFM_ACTIVE;
1115 		GO_WINDOW(1);	/* back to operating window */
1116 		break;
1117 	}
1118 }
1119 
1120 
1121 
1122 /*
1123  * Start outputting on the interface.
1124  * Always called as splnet().
1125  */
1126 void
1127 epstart(ifp)
1128 	struct ifnet *ifp;
1129 {
1130 	struct ep_softc *sc = ifp->if_softc;
1131 	bus_space_tag_t iot = sc->sc_iot;
1132 	bus_space_handle_t ioh = sc->sc_ioh;
1133 	struct mbuf *m, *m0;
1134 	int sh, len, pad;
1135 	bus_size_t txreg;
1136 
1137 	/* Don't transmit if interface is busy or not running */
1138 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1139 		return;
1140 
1141 startagain:
1142 	/* Sneak a peek at the next packet */
1143 	IFQ_POLL(&ifp->if_snd, m0);
1144 	if (m0 == 0)
1145 		return;
1146 
1147 	/* We need to use m->m_pkthdr.len, so require the header */
1148 	if ((m0->m_flags & M_PKTHDR) == 0)
1149 		panic("epstart: no header mbuf");
1150 	len = m0->m_pkthdr.len;
1151 
1152 	pad = (4 - len) & 3;
1153 
1154 	/*
1155 	 * The 3c509 automatically pads short packets to minimum ethernet
1156 	 * length, but we drop packets that are too large. Perhaps we should
1157 	 * truncate them instead?
1158 	 */
1159 	if (len + pad > ETHER_MAX_LEN) {
1160 		/* packet is obviously too large: toss it */
1161 		++ifp->if_oerrors;
1162 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1163 		m_freem(m0);
1164 		goto readcheck;
1165 	}
1166 
1167 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1168 	    len + pad + 4) {
1169 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1170 		    SET_TX_AVAIL_THRESH |
1171 		    ((len + pad + 4) >> sc->ep_pktlenshift));
1172 		/* not enough room in FIFO */
1173 		ifp->if_flags |= IFF_OACTIVE;
1174 		return;
1175 	} else {
1176 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1177 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1178 	}
1179 
1180 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1181 	if (m0 == 0)		/* not really needed */
1182 		return;
1183 
1184 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1185 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1186 
1187 #if NBPFILTER > 0
1188 	if (ifp->if_bpf)
1189 		bpf_mtap(ifp->if_bpf, m0);
1190 #endif
1191 
1192 	/*
1193 	 * Do the output at a high interrupt priority level so that an
1194 	 * interrupt from another device won't cause a FIFO underrun.
1195 	 * We choose splsched() since that blocks essentially everything
1196 	 * except for interrupts from serial devices (which typically
1197 	 * lose data if their interrupt isn't serviced fast enough).
1198 	 *
1199 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1200 	 */
1201 	sh = splsched();
1202 
1203 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1204 
1205 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1206 		/*
1207 		 * Prime the FIFO buffer counter (number of 16-bit
1208 		 * words about to be written to the FIFO).
1209 		 *
1210 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1211 		 * COUNTER IS NON-ZERO!
1212 		 */
1213 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1214 		    (len + pad) >> 1);
1215 	}
1216 
1217 	bus_space_write_2(iot, ioh, txreg, len);
1218 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1219 	if (ELINK_IS_BUS_32(sc->bustype)) {
1220 		for (m = m0; m;) {
1221 			if (m->m_len > 3)  {
1222 				/* align our reads from core */
1223 				if (mtod(m, u_long) & 3)  {
1224 					u_long count =
1225 					    4 - (mtod(m, u_long) & 3);
1226 					bus_space_write_multi_1(iot, ioh,
1227 					    txreg, mtod(m, u_int8_t *), count);
1228 					m->m_data =
1229 					    (void *)(mtod(m, u_long) + count);
1230 					m->m_len -= count;
1231 				}
1232 				bus_space_write_multi_stream_4(iot, ioh,
1233 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1234 				m->m_data = (void *)(mtod(m, u_long) +
1235 					(u_long)(m->m_len & ~3));
1236 				m->m_len -= m->m_len & ~3;
1237 			}
1238 			if (m->m_len)  {
1239 				bus_space_write_multi_1(iot, ioh,
1240 				    txreg, mtod(m, u_int8_t *), m->m_len);
1241 			}
1242 			MFREE(m, m0);
1243 			m = m0;
1244 		}
1245 	} else {
1246 		for (m = m0; m;) {
1247 			if (m->m_len > 1)  {
1248 				if (mtod(m, u_long) & 1)  {
1249 					bus_space_write_1(iot, ioh,
1250 					    txreg, *(mtod(m, u_int8_t *)));
1251 					m->m_data =
1252 					    (void *)(mtod(m, u_long) + 1);
1253 					m->m_len -= 1;
1254 				}
1255 				bus_space_write_multi_stream_2(iot, ioh,
1256 				    txreg, mtod(m, u_int16_t *),
1257 				    m->m_len >> 1);
1258 			}
1259 			if (m->m_len & 1)  {
1260 				bus_space_write_1(iot, ioh, txreg,
1261 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
1262 			}
1263 			MFREE(m, m0);
1264 			m = m0;
1265 		}
1266 	}
1267 	while (pad--)
1268 		bus_space_write_1(iot, ioh, txreg, 0);
1269 
1270 	splx(sh);
1271 
1272 	++ifp->if_opackets;
1273 
1274 readcheck:
1275 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1276 	    ERR_INCOMPLETE) == 0) {
1277 		/* We received a complete packet. */
1278 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1279 
1280 		if ((status & INTR_LATCH) == 0) {
1281 			/*
1282 			 * No interrupt, read the packet and continue
1283 			 * Is  this supposed to happen? Is my motherboard
1284 			 * completely busted?
1285 			 */
1286 			epread(sc);
1287 		} else {
1288 			/* Got an interrupt, return so that it gets serviced. */
1289 			return;
1290 		}
1291 	} else {
1292 		/* Check if we are stuck and reset [see XXX comment] */
1293 		if (epstatus(sc)) {
1294 			if (ifp->if_flags & IFF_DEBUG)
1295 				printf("%s: adapter reset\n",
1296 				    sc->sc_dev.dv_xname);
1297 			epreset(sc);
1298 		}
1299 	}
1300 
1301 	goto startagain;
1302 }
1303 
1304 
1305 /*
1306  * XXX: The 3c509 card can get in a mode where both the fifo status bit
1307  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1308  *	We detect this situation and we reset the adapter.
1309  *	It happens at times when there is a lot of broadcast traffic
1310  *	on the cable (once in a blue moon).
1311  */
1312 static int
1313 epstatus(sc)
1314 	struct ep_softc *sc;
1315 {
1316 	bus_space_tag_t iot = sc->sc_iot;
1317 	bus_space_handle_t ioh = sc->sc_ioh;
1318 	u_int16_t fifost;
1319 
1320 	/*
1321 	 * Check the FIFO status and act accordingly
1322 	 */
1323 	GO_WINDOW(4);
1324 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1325 	GO_WINDOW(1);
1326 
1327 	if (fifost & FIFOS_RX_UNDERRUN) {
1328 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1329 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1330 		epreset(sc);
1331 		return 0;
1332 	}
1333 
1334 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1335 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1336 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1337 		return 1;
1338 	}
1339 
1340 	if (fifost & FIFOS_RX_OVERRUN) {
1341 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1342 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1343 		return 1;
1344 	}
1345 
1346 	if (fifost & FIFOS_TX_OVERRUN) {
1347 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1348 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1349 		epreset(sc);
1350 		return 0;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
1356 
1357 static void
1358 eptxstat(sc)
1359 	struct ep_softc *sc;
1360 {
1361 	bus_space_tag_t iot = sc->sc_iot;
1362 	bus_space_handle_t ioh = sc->sc_ioh;
1363 	int i;
1364 
1365 	/*
1366 	 * We need to read+write TX_STATUS until we get a 0 status
1367 	 * in order to turn off the interrupt flag.
1368 	 */
1369 	while ((i = bus_space_read_1(iot, ioh,
1370 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1371 		bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1372 		    0x0);
1373 
1374 		if (i & TXS_JABBER) {
1375 			++sc->sc_ethercom.ec_if.if_oerrors;
1376 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1377 				printf("%s: jabber (%x)\n",
1378 				       sc->sc_dev.dv_xname, i);
1379 			epreset(sc);
1380 		} else if (i & TXS_UNDERRUN) {
1381 			++sc->sc_ethercom.ec_if.if_oerrors;
1382 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1383 				printf("%s: fifo underrun (%x) @%d\n",
1384 				       sc->sc_dev.dv_xname, i,
1385 				       sc->tx_start_thresh);
1386 			if (sc->tx_succ_ok < 100)
1387 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
1388 					    sc->tx_start_thresh + 20);
1389 			sc->tx_succ_ok = 0;
1390 			epreset(sc);
1391 		} else if (i & TXS_MAX_COLLISION) {
1392 			++sc->sc_ethercom.ec_if.if_collisions;
1393 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1394 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1395 		} else
1396 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1397 	}
1398 }
1399 
1400 int
1401 epintr(arg)
1402 	void *arg;
1403 {
1404 	struct ep_softc *sc = arg;
1405 	bus_space_tag_t iot = sc->sc_iot;
1406 	bus_space_handle_t ioh = sc->sc_ioh;
1407 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1408 	u_int16_t status;
1409 	int ret = 0;
1410 
1411 	if (sc->enabled == 0 ||
1412 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1413 		return (0);
1414 
1415 
1416 	for (;;) {
1417 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1418 
1419 		if ((status & WATCHED_INTERRUPTS) == 0) {
1420 			if ((status & INTR_LATCH) == 0) {
1421 #if 0
1422 				printf("%s: intr latch cleared\n",
1423 				       sc->sc_dev.dv_xname);
1424 #endif
1425 				break;
1426 			}
1427 		}
1428 
1429 		ret = 1;
1430 
1431 		/*
1432 		 * Acknowledge any interrupts.  It's important that we do this
1433 		 * first, since there would otherwise be a race condition.
1434 		 * Due to the i386 interrupt queueing, we may get spurious
1435 		 * interrupts occasionally.
1436 		 */
1437 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1438 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
1439 
1440 #if 0
1441 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1442 
1443 		printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1444 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
1445 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
1446 		       (status & TX_AVAIL)?" TX_AVAIL":"",
1447 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
1448 #endif
1449 
1450 		if (status & RX_COMPLETE) {
1451 			epread(sc);
1452 		}
1453 		if (status & TX_AVAIL) {
1454 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1455 			epstart(&sc->sc_ethercom.ec_if);
1456 		}
1457 		if (status & CARD_FAILURE) {
1458 			printf("%s: adapter failure (%x)\n",
1459 			    sc->sc_dev.dv_xname, status);
1460 #if 1
1461 			epinit(ifp);
1462 #else
1463 			epreset(sc);
1464 #endif
1465 			return (1);
1466 		}
1467 		if (status & TX_COMPLETE) {
1468 			eptxstat(sc);
1469 			epstart(ifp);
1470 		}
1471 
1472 #if NRND > 0
1473 		if (status)
1474 			rnd_add_uint32(&sc->rnd_source, status);
1475 #endif
1476 	}
1477 
1478 	/* no more interrupts */
1479 	return (ret);
1480 }
1481 
1482 void
1483 epread(sc)
1484 	struct ep_softc *sc;
1485 {
1486 	bus_space_tag_t iot = sc->sc_iot;
1487 	bus_space_handle_t ioh = sc->sc_ioh;
1488 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1489 	struct mbuf *m;
1490 	int len;
1491 
1492 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1493 
1494 again:
1495 	if (ifp->if_flags & IFF_DEBUG) {
1496 		int err = len & ERR_MASK;
1497 		char *s = NULL;
1498 
1499 		if (len & ERR_INCOMPLETE)
1500 			s = "incomplete packet";
1501 		else if (err == ERR_OVERRUN)
1502 			s = "packet overrun";
1503 		else if (err == ERR_RUNT)
1504 			s = "runt packet";
1505 		else if (err == ERR_ALIGNMENT)
1506 			s = "bad alignment";
1507 		else if (err == ERR_CRC)
1508 			s = "bad crc";
1509 		else if (err == ERR_OVERSIZE)
1510 			s = "oversized packet";
1511 		else if (err == ERR_DRIBBLE)
1512 			s = "dribble bits";
1513 
1514 		if (s)
1515 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1516 	}
1517 
1518 	if (len & ERR_INCOMPLETE)
1519 		return;
1520 
1521 	if (len & ERR_RX) {
1522 		++ifp->if_ierrors;
1523 		goto abort;
1524 	}
1525 
1526 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
1527 
1528 	/* Pull packet off interface. */
1529 	m = epget(sc, len);
1530 	if (m == 0) {
1531 		ifp->if_ierrors++;
1532 		goto abort;
1533 	}
1534 
1535 	++ifp->if_ipackets;
1536 
1537 #if NBPFILTER > 0
1538 	/*
1539 	 * Check if there's a BPF listener on this interface.
1540 	 * If so, hand off the raw packet to BPF.
1541 	 */
1542 	if (ifp->if_bpf)
1543 		bpf_mtap(ifp->if_bpf, m);
1544 #endif
1545 
1546 	(*ifp->if_input)(ifp, m);
1547 
1548 	/*
1549 	 * In periods of high traffic we can actually receive enough
1550 	 * packets so that the fifo overrun bit will be set at this point,
1551 	 * even though we just read a packet. In this case we
1552 	 * are not going to receive any more interrupts. We check for
1553 	 * this condition and read again until the fifo is not full.
1554 	 * We could simplify this test by not using epstatus(), but
1555 	 * rechecking the RX_STATUS register directly. This test could
1556 	 * result in unnecessary looping in cases where there is a new
1557 	 * packet but the fifo is not full, but it will not fix the
1558 	 * stuck behavior.
1559 	 *
1560 	 * Even with this improvement, we still get packet overrun errors
1561 	 * which are hurting performance. Maybe when I get some more time
1562 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1563 	 */
1564 	if (epstatus(sc)) {
1565 		len = bus_space_read_2(iot, ioh,
1566 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1567 		/* Check if we are stuck and reset [see XXX comment] */
1568 		if (len & ERR_INCOMPLETE) {
1569 			if (ifp->if_flags & IFF_DEBUG)
1570 				printf("%s: adapter reset\n",
1571 				    sc->sc_dev.dv_xname);
1572 			epreset(sc);
1573 			return;
1574 		}
1575 		goto again;
1576 	}
1577 
1578 	return;
1579 
1580 abort:
1581 	ep_discard_rxtop(iot, ioh);
1582 
1583 }
1584 
1585 struct mbuf *
1586 epget(sc, totlen)
1587 	struct ep_softc *sc;
1588 	int totlen;
1589 {
1590 	bus_space_tag_t iot = sc->sc_iot;
1591 	bus_space_handle_t ioh = sc->sc_ioh;
1592 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1593 	struct mbuf *m;
1594 	bus_size_t rxreg;
1595 	int len, remaining;
1596 	int s;
1597 	caddr_t newdata;
1598 	u_long offset;
1599 
1600 	m = sc->mb[sc->next_mb];
1601 	sc->mb[sc->next_mb] = 0;
1602 	if (m == 0) {
1603 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1604 		if (m == 0)
1605 			return 0;
1606 	} else {
1607 		/* If the queue is no longer full, refill. */
1608 		if (sc->last_mb == sc->next_mb)
1609 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1610 
1611 		/* Convert one of our saved mbuf's. */
1612 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1613 		m->m_data = m->m_pktdat;
1614 		m->m_flags = M_PKTHDR;
1615 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1616 	}
1617 	m->m_pkthdr.rcvif = ifp;
1618 	m->m_pkthdr.len = totlen;
1619 	len = MHLEN;
1620 
1621 	/*
1622 	 * Allocate big enough space to hold whole packet, to avoid
1623 	 * allocating new mbufs on splsched().
1624 	 */
1625 	if (totlen + ALIGNBYTES > len) {
1626 		if (totlen + ALIGNBYTES > MCLBYTES) {
1627 			len = ALIGN(totlen + ALIGNBYTES);
1628 			MEXTMALLOC(m, len, M_DONTWAIT);
1629 		} else {
1630 			len = MCLBYTES;
1631 			MCLGET(m, M_DONTWAIT);
1632 		}
1633 		if ((m->m_flags & M_EXT) == 0) {
1634 			m_free(m);
1635 			return 0;
1636 		}
1637 	}
1638 
1639 	/* align the struct ip header */
1640 	newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
1641 		    - sizeof(struct ether_header);
1642 	m->m_data = newdata;
1643 	m->m_len = totlen;
1644 
1645 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1646 	remaining = totlen;
1647 	offset = mtod(m, u_long);
1648 
1649 	/*
1650 	 * We read the packet at a high interrupt priority level so that
1651 	 * an interrupt from another device won't cause the card's packet
1652 	 * buffer to overflow.  We choose splsched() since that blocks
1653 	 * essentially everything except for interrupts from serial
1654 	 * devices (which typically lose data if their interrupt isn't
1655 	 * serviced fast enough).
1656 	 *
1657 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1658 	 */
1659 	s = splsched();
1660 
1661 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1662 		/*
1663 		 * Prime the FIFO buffer counter (number of 16-bit
1664 		 * words about to be read from the FIFO).
1665 		 *
1666 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1667 		 * COUNTER IS NON-ZERO!
1668 		 */
1669 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1670 	}
1671 
1672 	if (ELINK_IS_BUS_32(sc->bustype)) {
1673 		/*
1674 		 * Read bytes up to the point where we are aligned.
1675 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
1676 		 * here because we're later reading 4-byte chunks.)
1677 		 */
1678 		if ((remaining > 3) && (offset & 3))  {
1679 			int count = (4 - (offset & 3));
1680 			bus_space_read_multi_1(iot, ioh,
1681 			    rxreg, (u_int8_t *) offset, count);
1682 			offset += count;
1683 			remaining -= count;
1684 		}
1685 		if (remaining > 3) {
1686 			bus_space_read_multi_stream_4(iot, ioh,
1687 			    rxreg, (u_int32_t *) offset,
1688 				    remaining >> 2);
1689 			offset += remaining & ~3;
1690 			remaining &= 3;
1691 		}
1692 		if (remaining)  {
1693 			bus_space_read_multi_1(iot, ioh,
1694 			    rxreg, (u_int8_t *) offset, remaining);
1695 		}
1696 	} else {
1697 		if ((remaining > 1) && (offset & 1))  {
1698 			bus_space_read_multi_1(iot, ioh,
1699 			    rxreg, (u_int8_t *) offset, 1);
1700 			remaining -= 1;
1701 			offset += 1;
1702 		}
1703 		if (remaining > 1) {
1704 			bus_space_read_multi_stream_2(iot, ioh,
1705 			    rxreg, (u_int16_t *) offset,
1706 			    remaining >> 1);
1707 			offset += remaining & ~1;
1708 		}
1709 		if (remaining & 1)  {
1710 				bus_space_read_multi_1(iot, ioh,
1711 			    rxreg, (u_int8_t *) offset, remaining & 1);
1712 		}
1713 	}
1714 
1715 	ep_discard_rxtop(iot, ioh);
1716 
1717 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1718 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1719 	splx(s);
1720 
1721 	return (m);
1722 }
1723 
1724 int
1725 epioctl(ifp, cmd, data)
1726 	struct ifnet *ifp;
1727 	u_long cmd;
1728 	caddr_t data;
1729 {
1730 	struct ep_softc *sc = ifp->if_softc;
1731 	struct ifreq *ifr = (struct ifreq *)data;
1732 	int s, error = 0;
1733 
1734 	s = splnet();
1735 
1736 	switch (cmd) {
1737 
1738 	case SIOCSIFMEDIA:
1739 	case SIOCGIFMEDIA:
1740 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1741 		break;
1742 
1743 	case SIOCADDMULTI:
1744 	case SIOCDELMULTI:
1745 		if (sc->enabled == 0) {
1746 			error = EIO;
1747 			break;
1748 		}
1749 
1750 	default:
1751 		error = ether_ioctl(ifp, cmd, data);
1752 
1753 		if (error == ENETRESET) {
1754 			/*
1755 			 * Multicast list has changed; set the hardware filter
1756 			 * accordingly.
1757 			 */
1758 			epreset(sc);
1759 			error = 0;
1760 		}
1761 		break;
1762 	}
1763 
1764 	splx(s);
1765 	return (error);
1766 }
1767 
1768 void
1769 epreset(sc)
1770 	struct ep_softc *sc;
1771 {
1772 	int s;
1773 
1774 	s = splnet();
1775 	epinit(&sc->sc_ethercom.ec_if);
1776 	splx(s);
1777 }
1778 
1779 void
1780 epwatchdog(ifp)
1781 	struct ifnet *ifp;
1782 {
1783 	struct ep_softc *sc = ifp->if_softc;
1784 
1785 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1786 	++sc->sc_ethercom.ec_if.if_oerrors;
1787 
1788 	epreset(sc);
1789 }
1790 
1791 void
1792 epstop(ifp, disable)
1793 	struct ifnet *ifp;
1794 	int disable;
1795 {
1796 	struct ep_softc *sc = ifp->if_softc;
1797 	bus_space_tag_t iot = sc->sc_iot;
1798 	bus_space_handle_t ioh = sc->sc_ioh;
1799 
1800 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1801 		/* Stop the one second clock. */
1802 		callout_stop(&sc->sc_mbuf_callout);
1803 
1804 		/* Down the MII. */
1805 		mii_down(&sc->sc_mii);
1806 	}
1807 
1808 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1809 		/*
1810 		 * Clear the FIFO buffer count, thus halting
1811 		 * any currently-running transactions.
1812 		 */
1813 		GO_WINDOW(1);		/* sanity */
1814 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1815 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1816 	}
1817 
1818 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1819 	ep_discard_rxtop(iot, ioh);
1820 
1821 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1822 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1823 
1824 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1825 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1826 
1827 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1828 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1829 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1830 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1831 
1832 	epmbufempty(sc);
1833 
1834 	if (disable)
1835 		epdisable(sc);
1836 
1837 	ifp->if_flags &= ~IFF_RUNNING;
1838 }
1839 
1840 
1841 /*
1842  * Before reboots, reset card completely.
1843  */
1844 static void
1845 epshutdown(arg)
1846 	void *arg;
1847 {
1848 	struct ep_softc *sc = arg;
1849 	int s = splnet();
1850 
1851 	if (sc->enabled) {
1852 		epstop(&sc->sc_ethercom.ec_if, 1);
1853 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1854 		sc->enabled = 0;
1855 	}
1856 	splx(s);
1857 }
1858 
1859 /*
1860  * We get eeprom data from the id_port given an offset into the
1861  * eeprom.  Basically; after the ID_sequence is sent to all of
1862  * the cards; they enter the ID_CMD state where they will accept
1863  * command requests. 0x80-0xbf loads the eeprom data.  We then
1864  * read the port 16 times and with every read; the cards check
1865  * for contention (ie: if one card writes a 0 bit and another
1866  * writes a 1 bit then the host sees a 0. At the end of the cycle;
1867  * each card compares the data on the bus; if there is a difference
1868  * then that card goes into ID_WAIT state again). In the meantime;
1869  * one bit of data is returned in the AX register which is conveniently
1870  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
1871  * bit of data with each read.
1872  *
1873  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1874  */
1875 u_int16_t
1876 epreadeeprom(iot, ioh, offset)
1877 	bus_space_tag_t iot;
1878 	bus_space_handle_t ioh;
1879 	int offset;
1880 {
1881 	u_int16_t data = 0;
1882 	int i;
1883 
1884 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1885 	delay(1000);
1886 	for (i = 0; i < 16; i++)
1887 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1888 	return (data);
1889 }
1890 
1891 static int
1892 epbusyeeprom(sc)
1893 	struct ep_softc *sc;
1894 {
1895 	bus_space_tag_t iot = sc->sc_iot;
1896 	bus_space_handle_t ioh = sc->sc_ioh;
1897 	bus_size_t eecmd;
1898 	int i = 100, j;
1899 	uint16_t busybit;
1900 
1901 	if (sc->bustype == ELINK_BUS_PCMCIA) {
1902 		delay(1000);
1903 		return 0;
1904 	}
1905 
1906 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1907 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1908 		busybit = CORK_EEPROM_BUSY;
1909 	} else {
1910 		eecmd = ELINK_W0_EEPROM_COMMAND;
1911 		busybit = EEPROM_BUSY;
1912 	}
1913 
1914 	j = 0;		/* bad GCC flow analysis */
1915 	while (i--) {
1916 		j = bus_space_read_2(iot, ioh, eecmd);
1917 		if (j & busybit)
1918 			delay(100);
1919 		else
1920 			break;
1921 	}
1922 	if (i == 0) {
1923 		printf("\n%s: eeprom failed to come ready\n",
1924 		    sc->sc_dev.dv_xname);
1925 		return (1);
1926 	}
1927 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1928 	    (j & EEPROM_TST_MODE) != 0) {
1929 		/* XXX PnP mode? */
1930 		printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1931 		return (1);
1932 	}
1933 	return (0);
1934 }
1935 
1936 u_int16_t
1937 ep_read_eeprom(sc, offset)
1938 	struct ep_softc *sc;
1939 	u_int16_t offset;
1940 {
1941 	bus_size_t eecmd, eedata;
1942 	u_int16_t readcmd;
1943 
1944 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1945 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1946 		eedata = CORK_ASIC_EEPROM_DATA;
1947 	} else {
1948 		eecmd = ELINK_W0_EEPROM_COMMAND;
1949 		eedata = ELINK_W0_EEPROM_DATA;
1950 	}
1951 
1952 	/*
1953 	 * RoadRunner has a larger EEPROM, so a different read command
1954 	 * is required.
1955 	 */
1956 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1957 		readcmd = READ_EEPROM_RR;
1958 	else
1959 		readcmd = READ_EEPROM;
1960 
1961 	if (epbusyeeprom(sc))
1962 		return (0);		/* XXX why is eeprom busy? */
1963 
1964 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1965 
1966 	if (epbusyeeprom(sc))
1967 		return (0);		/* XXX why is eeprom busy? */
1968 
1969 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1970 }
1971 
1972 void
1973 epmbuffill(v)
1974 	void *v;
1975 {
1976 	struct ep_softc *sc = v;
1977 	struct mbuf *m;
1978 	int s, i;
1979 
1980 	s = splnet();
1981 	i = sc->last_mb;
1982 	do {
1983 		if (sc->mb[i] == 0) {
1984 			MGET(m, M_DONTWAIT, MT_DATA);
1985 			if (m == 0)
1986 				break;
1987 			sc->mb[i] = m;
1988 		}
1989 		i = (i + 1) % MAX_MBS;
1990 	} while (i != sc->next_mb);
1991 	sc->last_mb = i;
1992 	/* If the queue was not filled, try again. */
1993 	if (sc->last_mb != sc->next_mb)
1994 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1995 	splx(s);
1996 }
1997 
1998 void
1999 epmbufempty(sc)
2000 	struct ep_softc *sc;
2001 {
2002 	int s, i;
2003 
2004 	s = splnet();
2005 	for (i = 0; i<MAX_MBS; i++) {
2006 		if (sc->mb[i]) {
2007 			m_freem(sc->mb[i]);
2008 			sc->mb[i] = NULL;
2009 		}
2010 	}
2011 	sc->last_mb = sc->next_mb = 0;
2012 	callout_stop(&sc->sc_mbuf_callout);
2013 	splx(s);
2014 }
2015 
2016 int
2017 epenable(sc)
2018 	struct ep_softc *sc;
2019 {
2020 
2021 	if (sc->enabled == 0 && sc->enable != NULL) {
2022 		if ((*sc->enable)(sc) != 0) {
2023 			printf("%s: device enable failed\n",
2024 			    sc->sc_dev.dv_xname);
2025 			return (EIO);
2026 		}
2027 	}
2028 
2029 	sc->enabled = 1;
2030 	return (0);
2031 }
2032 
2033 void
2034 epdisable(sc)
2035 	struct ep_softc *sc;
2036 {
2037 
2038 	if (sc->enabled != 0 && sc->disable != NULL) {
2039 		(*sc->disable)(sc);
2040 		sc->enabled = 0;
2041 	}
2042 }
2043 
2044 /*
2045  * ep_activate:
2046  *
2047  *	Handle device activation/deactivation requests.
2048  */
2049 int
2050 ep_activate(self, act)
2051 	struct device *self;
2052 	enum devact act;
2053 {
2054 	struct ep_softc *sc = (struct ep_softc *)self;
2055 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2056 	int error = 0, s;
2057 
2058 	s = splnet();
2059 	switch (act) {
2060 	case DVACT_ACTIVATE:
2061 		error = EOPNOTSUPP;
2062 		break;
2063 
2064 	case DVACT_DEACTIVATE:
2065 		if (sc->ep_flags & ELINK_FLAGS_MII)
2066 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2067 			    MII_OFFSET_ANY);
2068 		if_deactivate(ifp);
2069 		break;
2070 	}
2071 	splx(s);
2072 	return (error);
2073 }
2074 
2075 /*
2076  * ep_detach:
2077  *
2078  *	Detach a elink3 interface.
2079  */
2080 int
2081 ep_detach(self, flags)
2082 	struct device *self;
2083 	int flags;
2084 {
2085 	struct ep_softc *sc = (struct ep_softc *)self;
2086 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2087 
2088 	/* Succeed now if there's no work to do. */
2089 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2090 		return (0);
2091 
2092 	epdisable(sc);
2093 
2094 	callout_stop(&sc->sc_mii_callout);
2095 	callout_stop(&sc->sc_mbuf_callout);
2096 
2097 	if (sc->ep_flags & ELINK_FLAGS_MII) {
2098 		/* Detach all PHYs */
2099 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2100 	}
2101 
2102 	/* Delete all remaining media. */
2103 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2104 
2105 #if NRND > 0
2106 	rnd_detach_source(&sc->rnd_source);
2107 #endif
2108 	ether_ifdetach(ifp);
2109 	if_detach(ifp);
2110 
2111 	shutdownhook_disestablish(sc->sd_hook);
2112 
2113 	return (0);
2114 }
2115 
2116 u_int32_t
2117 ep_mii_bitbang_read(self)
2118 	struct device *self;
2119 {
2120 	struct ep_softc *sc = (void *) self;
2121 
2122 	/* We're already in Window 4. */
2123 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2124 	    ELINK_W4_BOOM_PHYSMGMT));
2125 }
2126 
2127 void
2128 ep_mii_bitbang_write(self, val)
2129 	struct device *self;
2130 	u_int32_t val;
2131 {
2132 	struct ep_softc *sc = (void *) self;
2133 
2134 	/* We're already in Window 4. */
2135 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2136 	    ELINK_W4_BOOM_PHYSMGMT, val);
2137 }
2138 
2139 int
2140 ep_mii_readreg(self, phy, reg)
2141 	struct device *self;
2142 	int phy, reg;
2143 {
2144 	struct ep_softc *sc = (void *) self;
2145 	int val;
2146 
2147 	GO_WINDOW(4);
2148 
2149 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2150 
2151 	GO_WINDOW(1);
2152 
2153 	return (val);
2154 }
2155 
2156 void
2157 ep_mii_writereg(self, phy, reg, val)
2158 	struct device *self;
2159 	int phy, reg, val;
2160 {
2161 	struct ep_softc *sc = (void *) self;
2162 
2163 	GO_WINDOW(4);
2164 
2165 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2166 
2167 	GO_WINDOW(1);
2168 }
2169 
2170 void
2171 ep_statchg(self)
2172 	struct device *self;
2173 {
2174 	struct ep_softc *sc = (struct ep_softc *)self;
2175 	bus_space_tag_t iot = sc->sc_iot;
2176 	bus_space_handle_t ioh = sc->sc_ioh;
2177 	int mctl;
2178 
2179 	GO_WINDOW(3);
2180 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2181 	if (sc->sc_mii.mii_media_active & IFM_FDX)
2182 		mctl |= MAC_CONTROL_FDX;
2183 	else
2184 		mctl &= ~MAC_CONTROL_FDX;
2185 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2186 	GO_WINDOW(1);	/* back to operating window */
2187 }
2188