xref: /netbsd-src/sys/dev/ic/elink3.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: elink3.c,v 1.142 2018/06/26 06:48:00 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
35  * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *      This product includes software developed by Herb Peyerl.
49  * 4. The name of Herb Peyerl may not be used to endorse or promote products
50  *    derived from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.142 2018/06/26 06:48:00 msaitoh Exp $");
66 
67 #include "opt_inet.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/callout.h>
72 #include <sys/kernel.h>
73 #include <sys/mbuf.h>
74 #include <sys/socket.h>
75 #include <sys/ioctl.h>
76 #include <sys/errno.h>
77 #include <sys/syslog.h>
78 #include <sys/select.h>
79 #include <sys/device.h>
80 #include <sys/rndsource.h>
81 
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_ether.h>
85 #include <net/if_media.h>
86 #include <net/bpf.h>
87 
88 #include <sys/cpu.h>
89 #include <sys/bus.h>
90 #include <sys/intr.h>
91 
92 #include <dev/mii/mii.h>
93 #include <dev/mii/miivar.h>
94 #include <dev/mii/mii_bitbang.h>
95 
96 #include <dev/ic/elink3var.h>
97 #include <dev/ic/elink3reg.h>
98 
99 #ifdef DEBUG
100 int epdebug = 0;
101 #endif
102 
103 /*
104  * XXX endian workaround for big-endian CPUs  with pcmcia:
105  * if stream methods for bus_space_multi are not provided, define them
106  * using non-stream bus_space_{read,write}_multi_.
107  * Assumes host CPU is same endian-ness as bus.
108  */
109 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
110 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
111 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
112 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
113 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
114 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
115 
116 /*
117  * Structure to map media-present bits in boards to ifmedia codes and
118  * printable media names. Used for table-driven ifmedia initialization.
119  */
120 struct ep_media {
121 	int	epm_mpbit;		/* media present bit */
122 	const char *epm_name;		/* name of medium */
123 	int	epm_ifmedia;		/* ifmedia word for medium */
124 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
125 };
126 
127 /*
128  * Media table for the Demon/Vortex/Boomerang chipsets.
129  *
130  * Note that MII on the Demon and Vortex (3c59x) indicates an external
131  * MII connector (for connecting an external PHY) ... I think.  Treat
132  * it as `manual' on these chips.
133  *
134  * Any Boomerang (3c90x) chips with MII really do have an internal
135  * MII and real PHYs attached; no `native' media.
136  */
137 const struct ep_media ep_vortex_media[] = {
138 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
139 	  ELINKMEDIA_10BASE_T },
140 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
141 	  ELINKMEDIA_10BASE_T },
142 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
143 	  ELINKMEDIA_AUI },
144 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
145 	  ELINKMEDIA_10BASE_2 },
146 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
147 	  ELINKMEDIA_100BASE_TX },
148 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
149 	  ELINKMEDIA_100BASE_TX },
150 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
151 	  ELINKMEDIA_100BASE_FX },
152 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
153 	  ELINKMEDIA_MII },
154 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
155 	  ELINKMEDIA_100BASE_T4 },
156 	{ 0,			NULL,		0,
157 	  0 },
158 };
159 
160 /*
161  * Media table for the older 3Com Etherlink III chipset, used
162  * in the 3c509, 3c579, and 3c589.
163  */
164 const struct ep_media ep_509_media[] = {
165 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
166 	  ELINKMEDIA_10BASE_T },
167 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
168 	  ELINKMEDIA_AUI },
169 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
170 	  ELINKMEDIA_10BASE_2 },
171 	{ 0,			NULL,		0,
172 	  0 },
173 };
174 
175 void	ep_internalconfig(struct ep_softc *sc);
176 void	ep_vortex_probemedia(struct ep_softc *sc);
177 void	ep_509_probemedia(struct ep_softc *sc);
178 
179 static void eptxstat(struct ep_softc *);
180 static int epstatus(struct ep_softc *);
181 int	epinit(struct ifnet *);
182 void	epstop(struct ifnet *, int);
183 int	epioctl(struct ifnet *, u_long, void *);
184 void	epstart(struct ifnet *);
185 void	epwatchdog(struct ifnet *);
186 void	epreset(struct ep_softc *);
187 static bool epshutdown(device_t, int);
188 void	epread(struct ep_softc *);
189 struct mbuf *epget(struct ep_softc *, int);
190 void	epmbuffill(void *);
191 void	epmbufempty(struct ep_softc *);
192 void	epsetfilter(struct ep_softc *);
193 void	ep_roadrunner_mii_enable(struct ep_softc *);
194 void	epsetmedia(struct ep_softc *);
195 
196 /* ifmedia callbacks */
197 int	ep_media_change(struct ifnet *ifp);
198 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
199 
200 /* MII callbacks */
201 int	ep_mii_readreg(device_t, int, int);
202 void	ep_mii_writereg(device_t, int, int, int);
203 void	ep_statchg(struct ifnet *);
204 
205 void	ep_tick(void *);
206 
207 static int epbusyeeprom(struct ep_softc *);
208 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
209 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
210 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
211 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
212 static inline int ep_w1_reg(struct ep_softc *, int);
213 
214 /*
215  * MII bit-bang glue.
216  */
217 u_int32_t ep_mii_bitbang_read(device_t);
218 void ep_mii_bitbang_write(device_t, u_int32_t);
219 
220 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
221 	ep_mii_bitbang_read,
222 	ep_mii_bitbang_write,
223 	{
224 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
225 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
226 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
227 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
228 		0,			/* MII_BIT_DIR_PHY_HOST */
229 	}
230 };
231 
232 /*
233  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
234  * Window 1 registers offset!
235  */
236 static inline int
237 ep_w1_reg(struct ep_softc *sc, int reg)
238 {
239 
240 	switch (sc->ep_chipset) {
241 	case ELINK_CHIPSET_CORKSCREW:
242 		return (reg + 0x10);
243 
244 	case ELINK_CHIPSET_ROADRUNNER:
245 		switch (reg) {
246 		case ELINK_W1_FREE_TX:
247 		case ELINK_W1_RUNNER_RDCTL:
248 		case ELINK_W1_RUNNER_WRCTL:
249 			return (reg);
250 		}
251 		return (reg + 0x10);
252 	}
253 
254 	return (reg);
255 }
256 
257 /*
258  * Wait for any pending reset to complete.
259  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
260  * but older hardware doesn't implement it and we must delay.
261  */
262 static inline void
263 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
264 {
265 	int i;
266 
267 	for (i = 0; i < 10000; i++) {
268 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
269 		    COMMAND_IN_PROGRESS) == 0)
270 			break;
271 		DELAY(10);
272 	}
273 }
274 
275 /*
276  * Issue a (reset) command, and be sure it has completed.
277  * Used for global reset, TX_RESET, RX_RESET.
278  */
279 static inline void
280 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
281 {
282 	bus_space_tag_t iot = sc->sc_iot;
283 	bus_space_handle_t ioh = sc->sc_ioh;
284 
285 	bus_space_write_2(iot, ioh, cmd, arg);
286 	ep_finish_reset(iot, ioh);
287 }
288 
289 
290 static inline void
291 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
292 {
293 	int i;
294 
295 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
296 
297         /*
298 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
299 	 * every received packet (adding latency and  limiting pkt-recv rate).
300 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
301 	 * is about right.
302 	 */
303 	for (i = 0; i < 8000; i++) {
304 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
305 		    COMMAND_IN_PROGRESS) == 0)
306 		    return;
307 	}
308 
309 	/*  Didn't complete in a hurry. Do DELAY()s. */
310 	ep_finish_reset(iot, ioh);
311 }
312 
313 /*
314  * Back-end attach and configure.
315  */
316 int
317 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
318 {
319 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
320 	bus_space_tag_t iot = sc->sc_iot;
321 	bus_space_handle_t ioh = sc->sc_ioh;
322 	u_int16_t i;
323 	u_int8_t myla[ETHER_ADDR_LEN];
324 
325 	callout_init(&sc->sc_mii_callout, 0);
326 	callout_init(&sc->sc_mbuf_callout, 0);
327 
328 	sc->ep_chipset = chipset;
329 
330 	/*
331 	 * We could have been groveling around in other register
332 	 * windows in the front-end; make sure we're in window 0
333 	 * to read the EEPROM.
334 	 */
335 	GO_WINDOW(0);
336 
337 	if (enaddr == NULL) {
338 		/*
339 		 * Read the station address from the eeprom.
340 		 */
341 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
342 			u_int16_t x = ep_read_eeprom(sc, i);
343 			myla[(i << 1)] = x >> 8;
344 			myla[(i << 1) + 1] = x;
345 		}
346 		enaddr = myla;
347 	}
348 
349 	/*
350 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
351 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
352 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
353 	 * packet length.
354 	 * Commands to these cards implicitly upshift a packet size
355 	 * or threshold by 2 bits.
356 	 * To detect  cards with large-packet support, we probe by setting
357 	 * the transmit threshold register, then change windows and
358 	 * read back the threshold register directly, and see if the
359 	 * threshold value was shifted or not.
360 	 */
361 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
362 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
363 	GO_WINDOW(5);
364 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
365 	GO_WINDOW(1);
366 	switch (i)  {
367 	case ELINK_LARGEWIN_PROBE:
368 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
369 		sc->ep_pktlenshift = 0;
370 		break;
371 
372 	case (ELINK_LARGEWIN_PROBE << 2):
373 		sc->ep_pktlenshift = 2;
374 		break;
375 
376 	default:
377 		aprint_error_dev(sc->sc_dev,
378 		    "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
379 		    "Interface disabled\n",
380 		    ELINK_LARGEWIN_PROBE, (int) i);
381 		return (1);
382 	}
383 
384 	/*
385 	 * Ensure Tx-available interrupts are enabled for
386 	 * start the interface.
387 	 * XXX should be in epinit()?
388 	 */
389 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
390 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
391 
392 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
393 	ifp->if_softc = sc;
394 	ifp->if_start = epstart;
395 	ifp->if_ioctl = epioctl;
396 	ifp->if_watchdog = epwatchdog;
397 	ifp->if_init = epinit;
398 	ifp->if_stop = epstop;
399 	ifp->if_flags =
400 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
401 	IFQ_SET_READY(&ifp->if_snd);
402 
403 	if_attach(ifp);
404 	ether_ifattach(ifp, enaddr);
405 
406 	/*
407 	 * Finish configuration:
408 	 * determine chipset if the front-end couldn't do so,
409 	 * show board details, set media.
410 	 */
411 
412 	/*
413 	 * Print RAM size.  We also print the Ethernet address in here.
414 	 * It's extracted from the ifp, so we have to make sure it's
415 	 * been attached first.
416 	 */
417 	ep_internalconfig(sc);
418 	GO_WINDOW(0);
419 
420 	/*
421 	 * Display some additional information, if pertinent.
422 	 */
423 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
424 		aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
425 
426 	/*
427 	 * Initialize our media structures and MII info.  We'll
428 	 * probe the MII if we discover that we have one.
429 	 */
430 	sc->sc_mii.mii_ifp = ifp;
431 	sc->sc_mii.mii_readreg = ep_mii_readreg;
432 	sc->sc_mii.mii_writereg = ep_mii_writereg;
433 	sc->sc_mii.mii_statchg = ep_statchg;
434 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
435 	    ep_media_status);
436 
437 	/*
438 	 * All CORKSCREW chips have MII.
439 	 */
440 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
441 		sc->ep_flags |= ELINK_FLAGS_MII;
442 
443 	/*
444 	 * Now, determine which media we have.
445 	 */
446 	switch (sc->ep_chipset) {
447 	case ELINK_CHIPSET_ROADRUNNER:
448 		if (sc->ep_flags & ELINK_FLAGS_MII) {
449 			ep_roadrunner_mii_enable(sc);
450 			GO_WINDOW(0);
451 		}
452 		/* FALLTHROUGH */
453 
454 	case ELINK_CHIPSET_CORKSCREW:
455 	case ELINK_CHIPSET_BOOMERANG:
456 		/*
457 		 * If the device has MII, probe it.  We won't be using
458 		 * any `native' media in this case, only PHYs.  If
459 		 * we don't, just treat the Boomerang like the Vortex.
460 		 */
461 		if (sc->ep_flags & ELINK_FLAGS_MII) {
462 			mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
463 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
464 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
465 				ifmedia_add(&sc->sc_mii.mii_media,
466 				    IFM_ETHER|IFM_NONE, 0, NULL);
467 				ifmedia_set(&sc->sc_mii.mii_media,
468 				    IFM_ETHER|IFM_NONE);
469 			} else {
470 				ifmedia_set(&sc->sc_mii.mii_media,
471 				    IFM_ETHER|IFM_AUTO);
472 			}
473 			break;
474 		}
475 		/* FALLTHROUGH */
476 
477 	case ELINK_CHIPSET_VORTEX:
478 		ep_vortex_probemedia(sc);
479 		break;
480 
481 	default:
482 		ep_509_probemedia(sc);
483 		break;
484 	}
485 
486 	GO_WINDOW(1);		/* Window 1 is operating window */
487 
488 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
489 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
490 
491 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
492 
493 	/*  Establish callback to reset card when we reboot. */
494 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
495 		pmf_class_network_register(sc->sc_dev, ifp);
496 	else
497 		aprint_error_dev(sc->sc_dev,
498 		    "couldn't establish power handler\n");
499 
500 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
501 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
502 
503 	/* The attach is successful. */
504 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
505 	return (0);
506 }
507 
508 
509 /*
510  * Show interface-model-independent info from window 3
511  * internal-configuration register.
512  */
513 void
514 ep_internalconfig(struct ep_softc *sc)
515 {
516 	bus_space_tag_t iot = sc->sc_iot;
517 	bus_space_handle_t ioh = sc->sc_ioh;
518 
519 	u_int config0;
520 	u_int config1;
521 
522 	int  ram_size, ram_width, ram_split;
523 	/*
524 	 * NVRAM buffer Rx:Tx config names for busmastering cards
525 	 * (Demon, Vortex, and later).
526 	 */
527 	const char *const onboard_ram_config[] = {
528 		"5:3", "3:1", "1:1", "3:5" };
529 
530 	GO_WINDOW(3);
531 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
532 	config1 = (u_int)bus_space_read_2(iot, ioh,
533 	    ELINK_W3_INTERNAL_CONFIG + 2);
534 	GO_WINDOW(0);
535 
536 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
537 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
538 
539 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
540 
541 	aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
542 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
543 	       8 << ram_size,
544 	       (ram_width) ? "word" : "byte",
545 	       onboard_ram_config[ram_split]);
546 }
547 
548 
549 /*
550  * Find supported media on 3c509-generation hardware that doesn't have
551  * a "reset_options" register in window 3.
552  * Use the config_cntrl register  in window 0 instead.
553  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
554  * that implement  CONFIG_CTRL.  We don't have a good way to set the
555  * default active medium; punt to ifconfig  instead.
556  */
557 void
558 ep_509_probemedia(struct ep_softc *sc)
559 {
560 	bus_space_tag_t iot = sc->sc_iot;
561 	bus_space_handle_t ioh = sc->sc_ioh;
562 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
563 	u_int16_t ep_w0_config, port;
564 	const struct ep_media *epm;
565 	const char *sep = "", *defmedianame = NULL;
566 	int defmedia = 0;
567 
568 	GO_WINDOW(0);
569 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
570 
571 	aprint_normal_dev(sc->sc_dev, "");
572 
573 	/* Sanity check that there are any media! */
574 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
575 		aprint_error("no media present!\n");
576 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
577 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
578 		return;
579 	}
580 
581 	/*
582 	 * Get the default media from the EEPROM.
583 	 */
584 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
585 
586 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
587 
588 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
589 		if (ep_w0_config & epm->epm_mpbit) {
590 			/*
591 			 * This simple test works because 509 chipsets
592 			 * don't do full-duplex.
593 			 */
594 			if (epm->epm_epmedia == port || defmedia == 0) {
595 				defmedia = epm->epm_ifmedia;
596 				defmedianame = epm->epm_name;
597 			}
598 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
599 			    NULL);
600 			PRINT(epm->epm_name);
601 		}
602 	}
603 
604 #undef PRINT
605 
606 #ifdef DIAGNOSTIC
607 	if (defmedia == 0)
608 		panic("ep_509_probemedia: impossible");
609 #endif
610 
611 	aprint_normal(" (default %s)\n", defmedianame);
612 	ifmedia_set(ifm, defmedia);
613 }
614 
615 /*
616  * Find media present on large-packet-capable elink3 devices.
617  * Show onboard configuration of large-packet-capable elink3 devices
618  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
619  * Use media and card-version info in window 3 instead.
620  */
621 void
622 ep_vortex_probemedia(struct ep_softc *sc)
623 {
624 	bus_space_tag_t iot = sc->sc_iot;
625 	bus_space_handle_t ioh = sc->sc_ioh;
626 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
627 	const struct ep_media *epm;
628 	u_int config1;
629 	int reset_options;
630 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
631 	int defmedia = 0;
632 	const char *sep = "", *defmedianame = NULL;
633 
634 	GO_WINDOW(3);
635 	config1 = (u_int)bus_space_read_2(iot, ioh,
636 	    ELINK_W3_INTERNAL_CONFIG + 2);
637 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
638 	GO_WINDOW(0);
639 
640 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
641 
642 	aprint_normal_dev(sc->sc_dev, "");
643 
644 	/* Sanity check that there are any media! */
645 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
646 		aprint_error("no media present!\n");
647 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
648 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
649 		return;
650 	}
651 
652 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
653 
654 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
655 		if (reset_options & epm->epm_mpbit) {
656 			/*
657 			 * Default media is a little more complicated
658 			 * on the Vortex.  We support full-duplex which
659 			 * uses the same reset options bit.
660 			 *
661 			 * XXX Check EEPROM for default to FDX?
662 			 */
663 			if (epm->epm_epmedia == default_media) {
664 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
665 					defmedia = epm->epm_ifmedia;
666 					defmedianame = epm->epm_name;
667 				}
668 			} else if (defmedia == 0) {
669 				defmedia = epm->epm_ifmedia;
670 				defmedianame = epm->epm_name;
671 			}
672 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
673 			    NULL);
674 			PRINT(epm->epm_name);
675 		}
676 	}
677 
678 #undef PRINT
679 
680 #ifdef DIAGNOSTIC
681 	if (defmedia == 0)
682 		panic("ep_vortex_probemedia: impossible");
683 #endif
684 
685 	aprint_normal(" (default %s)\n", defmedianame);
686 	ifmedia_set(ifm, defmedia);
687 }
688 
689 /*
690  * One second timer, used to tick the MII.
691  */
692 void
693 ep_tick(void *arg)
694 {
695 	struct ep_softc *sc = arg;
696 	int s;
697 
698 #ifdef DIAGNOSTIC
699 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
700 		panic("ep_tick");
701 #endif
702 
703 	if (!device_is_active(sc->sc_dev))
704 		return;
705 
706 	s = splnet();
707 	mii_tick(&sc->sc_mii);
708 	splx(s);
709 
710 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
711 }
712 
713 /*
714  * Bring device up.
715  *
716  * The order in here seems important. Otherwise we may not receive
717  * interrupts. ?!
718  */
719 int
720 epinit(struct ifnet *ifp)
721 {
722 	struct ep_softc *sc = ifp->if_softc;
723 	bus_space_tag_t iot = sc->sc_iot;
724 	bus_space_handle_t ioh = sc->sc_ioh;
725 	int i, error;
726 	const u_int8_t *addr;
727 
728 	if (!sc->enabled && (error = epenable(sc)) != 0)
729 		return (error);
730 
731 	/* Make sure any pending reset has completed before touching board */
732 	ep_finish_reset(iot, ioh);
733 
734 	/*
735 	 * Cancel any pending I/O.
736 	 */
737 	epstop(ifp, 0);
738 
739 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
740 	    && sc->bustype != ELINK_BUS_MCA) {
741 		GO_WINDOW(0);
742 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
743 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
744 		    ENABLE_DRQ_IRQ);
745 	}
746 
747 	if (sc->bustype == ELINK_BUS_PCMCIA) {
748 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
749 	}
750 
751 	GO_WINDOW(2);
752 	/* Reload the ether_addr. */
753 	addr = CLLADDR(ifp->if_sadl);
754 	for (i = 0; i < 6; i += 2)
755 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
756 		    (addr[i] << 0) | (addr[i + 1] << 8));
757 
758 	/*
759 	 * Reset the station-address receive filter.
760 	 * A bug workaround for busmastering (Vortex, Demon) cards.
761 	 */
762 	for (i = 0; i < 6; i += 2)
763 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
764 
765 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
766 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
767 
768 	GO_WINDOW(1);		/* Window 1 is operating window */
769 	for (i = 0; i < 31; i++)
770 		(void)bus_space_read_2(iot, ioh,
771 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
772 
773 	/* Set threshold for Tx-space available interrupt. */
774 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
775 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
776 
777 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
778 		/*
779 		 * Enable options in the PCMCIA LAN COR register, via
780 		 * RoadRunner Window 1.
781 		 *
782 		 * XXX MAGIC CONSTANTS!
783 		 */
784 		u_int16_t cor;
785 
786 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
787 
788 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
789 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
790 			cor |= 0x10;
791 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
792 			cor |= 0x20;
793 		bus_space_write_2(iot, ioh, 0, cor);
794 
795 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
796 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
797 
798 		if (sc->ep_flags & ELINK_FLAGS_MII) {
799 			ep_roadrunner_mii_enable(sc);
800 			GO_WINDOW(1);
801 		}
802 	}
803 
804 	/* Enable interrupts. */
805 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
806 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
807 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
808 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
809 
810 	/*
811 	 * Attempt to get rid of any stray interrupts that occurred during
812 	 * configuration.  On the i386 this isn't possible because one may
813 	 * already be queued.  However, a single stray interrupt is
814 	 * unimportant.
815 	 */
816 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
817 
818 	epsetfilter(sc);
819 	epsetmedia(sc);
820 
821 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
822 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
823 
824 	epmbuffill(sc);
825 
826 	/* Interface is now `running', with no output active. */
827 	ifp->if_flags |= IFF_RUNNING;
828 	ifp->if_flags &= ~IFF_OACTIVE;
829 
830 	if (sc->ep_flags & ELINK_FLAGS_MII) {
831 		/* Start the one second clock. */
832 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
833 	}
834 
835 	/* Attempt to start output, if any. */
836 	epstart(ifp);
837 
838 	return (0);
839 }
840 
841 
842 /*
843  * Set multicast receive filter.
844  * elink3 hardware has no selective multicast filter in hardware.
845  * Enable reception of all multicasts and filter in software.
846  */
847 void
848 epsetfilter(struct ep_softc *sc)
849 {
850 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
851 
852 	GO_WINDOW(1);		/* Window 1 is operating window */
853 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
854 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
855 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
856 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
857 }
858 
859 int
860 ep_media_change(struct ifnet *ifp)
861 {
862 	struct ep_softc *sc = ifp->if_softc;
863 
864 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
865 		epreset(sc);
866 
867 	return (0);
868 }
869 
870 /*
871  * Reset and enable the MII on the RoadRunner.
872  */
873 void
874 ep_roadrunner_mii_enable(struct ep_softc *sc)
875 {
876 	bus_space_tag_t iot = sc->sc_iot;
877 	bus_space_handle_t ioh = sc->sc_ioh;
878 
879 	GO_WINDOW(3);
880 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
881 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
882 	delay(1000);
883 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
884 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
885 	    ELINK_RUNNER_ENABLE_MII);
886 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
887 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
888 	delay(1000);
889 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
890 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
891 }
892 
893 /*
894  * Set the card to use the specified media.
895  */
896 void
897 epsetmedia(struct ep_softc *sc)
898 {
899 	bus_space_tag_t iot = sc->sc_iot;
900 	bus_space_handle_t ioh = sc->sc_ioh;
901 
902 	/* Turn everything off.  First turn off linkbeat and UTP. */
903 	GO_WINDOW(4);
904 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
905 
906 	/* Turn off coax */
907 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
908 	delay(1000);
909 
910 	/*
911 	 * If the device has MII, select it, and then tell the
912 	 * PHY which media to use.
913 	 */
914 	if (sc->ep_flags & ELINK_FLAGS_MII) {
915 		int config0, config1;
916 
917 		GO_WINDOW(3);
918 
919 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
920 			int resopt;
921 
922 			resopt = bus_space_read_2(iot, ioh,
923 			    ELINK_W3_RESET_OPTIONS);
924 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
925 			    resopt | ELINK_RUNNER_ENABLE_MII);
926 		}
927 
928 		config0 = (u_int)bus_space_read_2(iot, ioh,
929 		    ELINK_W3_INTERNAL_CONFIG);
930 		config1 = (u_int)bus_space_read_2(iot, ioh,
931 		    ELINK_W3_INTERNAL_CONFIG + 2);
932 
933 		config1 = config1 & ~CONFIG_MEDIAMASK;
934 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
935 
936 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
937 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
938 		    config1);
939 		GO_WINDOW(1);	/* back to operating window */
940 
941 		mii_mediachg(&sc->sc_mii);
942 		return;
943 	}
944 
945 	/*
946 	 * Now turn on the selected media/transceiver.
947 	 */
948 	GO_WINDOW(4);
949 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
950 	case IFM_10_T:
951 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
952 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
953 		break;
954 
955 	case IFM_10_2:
956 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
957 		DELAY(1000);	/* 50ms not enmough? */
958 		break;
959 
960 	case IFM_100_TX:
961 	case IFM_100_FX:
962 	case IFM_100_T4:		/* XXX check documentation */
963 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
964 		    LINKBEAT_ENABLE);
965 		DELAY(1000);	/* not strictly necessary? */
966 		break;
967 
968 	case IFM_10_5:
969 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
970 		    SQE_ENABLE);
971 		DELAY(1000);	/* not strictly necessary? */
972 		break;
973 
974 	case IFM_MANUAL:
975 		/*
976 		 * Nothing to do here; we are actually enabling the
977 		 * external PHY on the MII port.
978 		 */
979 		break;
980 
981 	case IFM_NONE:
982 		printf("%s: interface disabled\n", device_xname(sc->sc_dev));
983 		return;
984 
985 	default:
986 		panic("epsetmedia: impossible");
987 	}
988 
989 	/*
990 	 * Tell the chip which port to use.
991 	 */
992 	switch (sc->ep_chipset) {
993 	case ELINK_CHIPSET_VORTEX:
994 	case ELINK_CHIPSET_BOOMERANG:
995 	    {
996 		int mctl, config0, config1;
997 
998 		GO_WINDOW(3);
999 		config0 = (u_int)bus_space_read_2(iot, ioh,
1000 		    ELINK_W3_INTERNAL_CONFIG);
1001 		config1 = (u_int)bus_space_read_2(iot, ioh,
1002 		    ELINK_W3_INTERNAL_CONFIG + 2);
1003 
1004 		config1 = config1 & ~CONFIG_MEDIAMASK;
1005 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1006 		    CONFIG_MEDIAMASK_SHIFT);
1007 
1008 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1009 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1010 		    config1);
1011 
1012 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1013 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1014 			mctl |= MAC_CONTROL_FDX;
1015 		else
1016 			mctl &= ~MAC_CONTROL_FDX;
1017 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1018 		break;
1019 	    }
1020 	default:
1021 	    {
1022 		int w0_addr_cfg;
1023 
1024 		GO_WINDOW(0);
1025 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1026 		w0_addr_cfg &= 0x3fff;
1027 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1028 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1029 		DELAY(1000);
1030 		break;
1031 	    }
1032 	}
1033 
1034 	GO_WINDOW(1);		/* Window 1 is operating window */
1035 }
1036 
1037 /*
1038  * Get currently-selected media from card.
1039  * (if_media callback, may be called before interface is brought up).
1040  */
1041 void
1042 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
1043 {
1044 	struct ep_softc *sc = ifp->if_softc;
1045 	bus_space_tag_t iot = sc->sc_iot;
1046 	bus_space_handle_t ioh = sc->sc_ioh;
1047 
1048 	if (sc->enabled == 0) {
1049 		req->ifm_active = IFM_ETHER|IFM_NONE;
1050 		req->ifm_status = 0;
1051 		return;
1052 	}
1053 
1054 	/*
1055 	 * If we have MII, go ask the PHY what's going on.
1056 	 */
1057 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1058 		mii_pollstat(&sc->sc_mii);
1059 		req->ifm_active = sc->sc_mii.mii_media_active;
1060 		req->ifm_status = sc->sc_mii.mii_media_status;
1061 		return;
1062 	}
1063 
1064 	/*
1065 	 * Ok, at this point we claim that our active media is
1066 	 * the currently selected media.  We'll update our status
1067 	 * if our chipset allows us to detect link.
1068 	 */
1069 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1070 	req->ifm_status = 0;
1071 
1072 	switch (sc->ep_chipset) {
1073 	case ELINK_CHIPSET_VORTEX:
1074 	case ELINK_CHIPSET_BOOMERANG:
1075 		GO_WINDOW(4);
1076 		req->ifm_status = IFM_AVALID;
1077 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1078 		    LINKBEAT_DETECT)
1079 			req->ifm_status |= IFM_ACTIVE;
1080 		GO_WINDOW(1);	/* back to operating window */
1081 		break;
1082 	}
1083 }
1084 
1085 
1086 
1087 /*
1088  * Start outputting on the interface.
1089  * Always called as splnet().
1090  */
1091 void
1092 epstart(struct ifnet *ifp)
1093 {
1094 	struct ep_softc *sc = ifp->if_softc;
1095 	bus_space_tag_t iot = sc->sc_iot;
1096 	bus_space_handle_t ioh = sc->sc_ioh;
1097 	struct mbuf *m, *m0;
1098 	int sh, len, pad;
1099 	bus_size_t txreg;
1100 
1101 	/* Don't transmit if interface is busy or not running */
1102 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1103 		return;
1104 
1105 startagain:
1106 	/* Sneak a peek at the next packet */
1107 	IFQ_POLL(&ifp->if_snd, m0);
1108 	if (m0 == 0)
1109 		return;
1110 
1111 	/* We need to use m->m_pkthdr.len, so require the header */
1112 	if ((m0->m_flags & M_PKTHDR) == 0)
1113 		panic("epstart: no header mbuf");
1114 	len = m0->m_pkthdr.len;
1115 
1116 	pad = (4 - len) & 3;
1117 
1118 	/*
1119 	 * The 3c509 automatically pads short packets to minimum ethernet
1120 	 * length, but we drop packets that are too large. Perhaps we should
1121 	 * truncate them instead?
1122 	 */
1123 	if (len + pad > ETHER_MAX_LEN) {
1124 		/* packet is obviously too large: toss it */
1125 		++ifp->if_oerrors;
1126 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1127 		m_freem(m0);
1128 		goto readcheck;
1129 	}
1130 
1131 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1132 	    len + pad + 4) {
1133 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1134 		    SET_TX_AVAIL_THRESH |
1135 		    ((len + pad + 4) >> sc->ep_pktlenshift));
1136 		/* not enough room in FIFO */
1137 		ifp->if_flags |= IFF_OACTIVE;
1138 		return;
1139 	} else {
1140 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1141 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1142 	}
1143 
1144 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1145 	if (m0 == 0)		/* not really needed */
1146 		return;
1147 
1148 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1149 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1150 
1151 	bpf_mtap(ifp, m0, BPF_D_OUT);
1152 
1153 	/*
1154 	 * Do the output at a high interrupt priority level so that an
1155 	 * interrupt from another device won't cause a FIFO underrun.
1156 	 * We choose splsched() since that blocks essentially everything
1157 	 * except for interrupts from serial devices (which typically
1158 	 * lose data if their interrupt isn't serviced fast enough).
1159 	 *
1160 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1161 	 */
1162 	sh = splsched();
1163 
1164 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1165 
1166 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1167 		/*
1168 		 * Prime the FIFO buffer counter (number of 16-bit
1169 		 * words about to be written to the FIFO).
1170 		 *
1171 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1172 		 * COUNTER IS NON-ZERO!
1173 		 */
1174 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1175 		    (len + pad) >> 1);
1176 	}
1177 
1178 	bus_space_write_2(iot, ioh, txreg, len);
1179 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1180 	if (ELINK_IS_BUS_32(sc->bustype)) {
1181 		for (m = m0; m;) {
1182 			if (m->m_len > 3)  {
1183 				/* align our reads from core */
1184 				if (mtod(m, u_long) & 3)  {
1185 					u_long count =
1186 					    4 - (mtod(m, u_long) & 3);
1187 					bus_space_write_multi_1(iot, ioh,
1188 					    txreg, mtod(m, u_int8_t *), count);
1189 					m->m_data =
1190 					    (void *)(mtod(m, u_long) + count);
1191 					m->m_len -= count;
1192 				}
1193 				bus_space_write_multi_stream_4(iot, ioh,
1194 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1195 				m->m_data = (void *)(mtod(m, u_long) +
1196 					(u_long)(m->m_len & ~3));
1197 				m->m_len -= m->m_len & ~3;
1198 			}
1199 			if (m->m_len)  {
1200 				bus_space_write_multi_1(iot, ioh,
1201 				    txreg, mtod(m, u_int8_t *), m->m_len);
1202 			}
1203 			m = m0 = m_free(m);
1204 		}
1205 	} else {
1206 		for (m = m0; m;) {
1207 			if (m->m_len > 1)  {
1208 				if (mtod(m, u_long) & 1)  {
1209 					bus_space_write_1(iot, ioh,
1210 					    txreg, *(mtod(m, u_int8_t *)));
1211 					m->m_data =
1212 					    (void *)(mtod(m, u_long) + 1);
1213 					m->m_len -= 1;
1214 				}
1215 				bus_space_write_multi_stream_2(iot, ioh,
1216 				    txreg, mtod(m, u_int16_t *),
1217 				    m->m_len >> 1);
1218 			}
1219 			if (m->m_len & 1)  {
1220 				bus_space_write_1(iot, ioh, txreg,
1221 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
1222 			}
1223 			m = m0 = m_free(m);
1224 		}
1225 	}
1226 	while (pad--)
1227 		bus_space_write_1(iot, ioh, txreg, 0);
1228 
1229 	splx(sh);
1230 
1231 	++ifp->if_opackets;
1232 
1233 readcheck:
1234 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1235 	    ERR_INCOMPLETE) == 0) {
1236 		/* We received a complete packet. */
1237 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1238 
1239 		if ((status & INTR_LATCH) == 0) {
1240 			/*
1241 			 * No interrupt, read the packet and continue
1242 			 * Is  this supposed to happen? Is my motherboard
1243 			 * completely busted?
1244 			 */
1245 			epread(sc);
1246 		} else {
1247 			/* Got an interrupt, return so that it gets serviced. */
1248 			return;
1249 		}
1250 	} else {
1251 		/* Check if we are stuck and reset [see XXX comment] */
1252 		if (epstatus(sc)) {
1253 			if (ifp->if_flags & IFF_DEBUG)
1254 				printf("%s: adapter reset\n",
1255 				    device_xname(sc->sc_dev));
1256 			epreset(sc);
1257 		}
1258 	}
1259 
1260 	goto startagain;
1261 }
1262 
1263 
1264 /*
1265  * XXX: The 3c509 card can get in a mode where both the fifo status bit
1266  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1267  *	We detect this situation and we reset the adapter.
1268  *	It happens at times when there is a lot of broadcast traffic
1269  *	on the cable (once in a blue moon).
1270  */
1271 static int
1272 epstatus(struct ep_softc *sc)
1273 {
1274 	bus_space_tag_t iot = sc->sc_iot;
1275 	bus_space_handle_t ioh = sc->sc_ioh;
1276 	u_int16_t fifost;
1277 
1278 	/*
1279 	 * Check the FIFO status and act accordingly
1280 	 */
1281 	GO_WINDOW(4);
1282 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1283 	GO_WINDOW(1);
1284 
1285 	if (fifost & FIFOS_RX_UNDERRUN) {
1286 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1287 			printf("%s: RX underrun\n", device_xname(sc->sc_dev));
1288 		epreset(sc);
1289 		return 0;
1290 	}
1291 
1292 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1293 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1294 			printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
1295 		return 1;
1296 	}
1297 
1298 	if (fifost & FIFOS_RX_OVERRUN) {
1299 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1300 			printf("%s: RX overrun\n", device_xname(sc->sc_dev));
1301 		return 1;
1302 	}
1303 
1304 	if (fifost & FIFOS_TX_OVERRUN) {
1305 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1306 			printf("%s: TX overrun\n", device_xname(sc->sc_dev));
1307 		epreset(sc);
1308 		return 0;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
1314 
1315 static void
1316 eptxstat(struct ep_softc *sc)
1317 {
1318 	bus_space_tag_t iot = sc->sc_iot;
1319 	bus_space_handle_t ioh = sc->sc_ioh;
1320 	int i;
1321 
1322 	/*
1323 	 * We need to read+write TX_STATUS until we get a 0 status
1324 	 * in order to turn off the interrupt flag.
1325 	 */
1326 	while ((i = bus_space_read_2(iot, ioh,
1327 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1328 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1329 		    0x0);
1330 
1331 		if (i & TXS_JABBER) {
1332 			++sc->sc_ethercom.ec_if.if_oerrors;
1333 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1334 				printf("%s: jabber (%x)\n",
1335 				       device_xname(sc->sc_dev), i);
1336 			epreset(sc);
1337 		} else if (i & TXS_UNDERRUN) {
1338 			++sc->sc_ethercom.ec_if.if_oerrors;
1339 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1340 				printf("%s: fifo underrun (%x) @%d\n",
1341 				       device_xname(sc->sc_dev), i,
1342 				       sc->tx_start_thresh);
1343 			if (sc->tx_succ_ok < 100)
1344 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
1345 					    sc->tx_start_thresh + 20);
1346 			sc->tx_succ_ok = 0;
1347 			epreset(sc);
1348 		} else if (i & TXS_MAX_COLLISION) {
1349 			++sc->sc_ethercom.ec_if.if_collisions;
1350 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1351 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1352 		} else
1353 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1354 	}
1355 }
1356 
1357 int
1358 epintr(void *arg)
1359 {
1360 	struct ep_softc *sc = arg;
1361 	bus_space_tag_t iot = sc->sc_iot;
1362 	bus_space_handle_t ioh = sc->sc_ioh;
1363 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1364 	u_int16_t status;
1365 	int ret = 0;
1366 
1367 	if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
1368 		return (0);
1369 
1370 
1371 	for (;;) {
1372 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1373 
1374 		if ((status & WATCHED_INTERRUPTS) == 0) {
1375 			if ((status & INTR_LATCH) == 0) {
1376 #if 0
1377 				printf("%s: intr latch cleared\n",
1378 				       device_xname(sc->sc_dev));
1379 #endif
1380 				break;
1381 			}
1382 		}
1383 
1384 		ret = 1;
1385 
1386 		/*
1387 		 * Acknowledge any interrupts.  It's important that we do this
1388 		 * first, since there would otherwise be a race condition.
1389 		 * Due to the i386 interrupt queueing, we may get spurious
1390 		 * interrupts occasionally.
1391 		 */
1392 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1393 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
1394 
1395 #if 0
1396 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1397 
1398 		printf("%s: intr%s%s%s%s\n", device_xname(sc->sc_dev),
1399 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
1400 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
1401 		       (status & TX_AVAIL)?" TX_AVAIL":"",
1402 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
1403 #endif
1404 
1405 		if (status & RX_COMPLETE) {
1406 			epread(sc);
1407 		}
1408 		if (status & TX_AVAIL) {
1409 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1410 			epstart(&sc->sc_ethercom.ec_if);
1411 		}
1412 		if (status & CARD_FAILURE) {
1413 			printf("%s: adapter failure (%x)\n",
1414 			    device_xname(sc->sc_dev), status);
1415 #if 1
1416 			epinit(ifp);
1417 #else
1418 			epreset(sc);
1419 #endif
1420 			return (1);
1421 		}
1422 		if (status & TX_COMPLETE) {
1423 			eptxstat(sc);
1424 			epstart(ifp);
1425 		}
1426 
1427 		if (status)
1428 			rnd_add_uint32(&sc->rnd_source, status);
1429 	}
1430 
1431 	/* no more interrupts */
1432 	return (ret);
1433 }
1434 
1435 void
1436 epread(struct ep_softc *sc)
1437 {
1438 	bus_space_tag_t iot = sc->sc_iot;
1439 	bus_space_handle_t ioh = sc->sc_ioh;
1440 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1441 	struct mbuf *m;
1442 	int len;
1443 
1444 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1445 
1446 again:
1447 	if (ifp->if_flags & IFF_DEBUG) {
1448 		int err = len & ERR_MASK;
1449 		const char *s = NULL;
1450 
1451 		if (len & ERR_INCOMPLETE)
1452 			s = "incomplete packet";
1453 		else if (err == ERR_OVERRUN)
1454 			s = "packet overrun";
1455 		else if (err == ERR_RUNT)
1456 			s = "runt packet";
1457 		else if (err == ERR_ALIGNMENT)
1458 			s = "bad alignment";
1459 		else if (err == ERR_CRC)
1460 			s = "bad crc";
1461 		else if (err == ERR_OVERSIZE)
1462 			s = "oversized packet";
1463 		else if (err == ERR_DRIBBLE)
1464 			s = "dribble bits";
1465 
1466 		if (s)
1467 			printf("%s: %s\n", device_xname(sc->sc_dev), s);
1468 	}
1469 
1470 	if (len & ERR_INCOMPLETE)
1471 		return;
1472 
1473 	if (len & ERR_RX) {
1474 		++ifp->if_ierrors;
1475 		goto abort;
1476 	}
1477 
1478 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
1479 
1480 	/* Pull packet off interface. */
1481 	m = epget(sc, len);
1482 	if (m == 0) {
1483 		ifp->if_ierrors++;
1484 		goto abort;
1485 	}
1486 
1487 	if_percpuq_enqueue(ifp->if_percpuq, m);
1488 
1489 	/*
1490 	 * In periods of high traffic we can actually receive enough
1491 	 * packets so that the fifo overrun bit will be set at this point,
1492 	 * even though we just read a packet. In this case we
1493 	 * are not going to receive any more interrupts. We check for
1494 	 * this condition and read again until the fifo is not full.
1495 	 * We could simplify this test by not using epstatus(), but
1496 	 * rechecking the RX_STATUS register directly. This test could
1497 	 * result in unnecessary looping in cases where there is a new
1498 	 * packet but the fifo is not full, but it will not fix the
1499 	 * stuck behavior.
1500 	 *
1501 	 * Even with this improvement, we still get packet overrun errors
1502 	 * which are hurting performance. Maybe when I get some more time
1503 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1504 	 */
1505 	if (epstatus(sc)) {
1506 		len = bus_space_read_2(iot, ioh,
1507 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1508 		/* Check if we are stuck and reset [see XXX comment] */
1509 		if (len & ERR_INCOMPLETE) {
1510 			if (ifp->if_flags & IFF_DEBUG)
1511 				printf("%s: adapter reset\n",
1512 				    device_xname(sc->sc_dev));
1513 			epreset(sc);
1514 			return;
1515 		}
1516 		goto again;
1517 	}
1518 
1519 	return;
1520 
1521 abort:
1522 	ep_discard_rxtop(iot, ioh);
1523 
1524 }
1525 
1526 struct mbuf *
1527 epget(struct ep_softc *sc, int totlen)
1528 {
1529 	bus_space_tag_t iot = sc->sc_iot;
1530 	bus_space_handle_t ioh = sc->sc_ioh;
1531 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1532 	struct mbuf *m;
1533 	bus_size_t rxreg;
1534 	int len, remaining;
1535 	int s;
1536 	void *newdata;
1537 	u_long offset;
1538 
1539 	m = sc->mb[sc->next_mb];
1540 	sc->mb[sc->next_mb] = 0;
1541 	if (m == 0) {
1542 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1543 		if (m == 0)
1544 			return 0;
1545 	} else {
1546 		/* If the queue is no longer full, refill. */
1547 		if (sc->last_mb == sc->next_mb)
1548 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1549 
1550 		/* Convert one of our saved mbuf's. */
1551 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1552 		m->m_data = m->m_pktdat;
1553 		m->m_flags = M_PKTHDR;
1554 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1555 	}
1556 	m_set_rcvif(m, ifp);
1557 	m->m_pkthdr.len = totlen;
1558 	len = MHLEN;
1559 
1560 	/*
1561 	 * Allocate big enough space to hold whole packet, to avoid
1562 	 * allocating new mbufs on splsched().
1563 	 */
1564 	if (totlen + ALIGNBYTES > len) {
1565 		if (totlen + ALIGNBYTES > MCLBYTES) {
1566 			len = ALIGN(totlen + ALIGNBYTES);
1567 			MEXTMALLOC(m, len, M_DONTWAIT);
1568 		} else {
1569 			len = MCLBYTES;
1570 			MCLGET(m, M_DONTWAIT);
1571 		}
1572 		if ((m->m_flags & M_EXT) == 0) {
1573 			m_free(m);
1574 			return 0;
1575 		}
1576 	}
1577 
1578 	/* align the struct ip header */
1579 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
1580 	    - sizeof(struct ether_header);
1581 	m->m_data = newdata;
1582 	m->m_len = totlen;
1583 
1584 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1585 	remaining = totlen;
1586 	offset = mtod(m, u_long);
1587 
1588 	/*
1589 	 * We read the packet at a high interrupt priority level so that
1590 	 * an interrupt from another device won't cause the card's packet
1591 	 * buffer to overflow.  We choose splsched() since that blocks
1592 	 * essentially everything except for interrupts from serial
1593 	 * devices (which typically lose data if their interrupt isn't
1594 	 * serviced fast enough).
1595 	 *
1596 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1597 	 */
1598 	s = splsched();
1599 
1600 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1601 		/*
1602 		 * Prime the FIFO buffer counter (number of 16-bit
1603 		 * words about to be read from the FIFO).
1604 		 *
1605 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1606 		 * COUNTER IS NON-ZERO!
1607 		 */
1608 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1609 	}
1610 
1611 	if (ELINK_IS_BUS_32(sc->bustype)) {
1612 		/*
1613 		 * Read bytes up to the point where we are aligned.
1614 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
1615 		 * here because we're later reading 4-byte chunks.)
1616 		 */
1617 		if ((remaining > 3) && (offset & 3))  {
1618 			int count = (4 - (offset & 3));
1619 			bus_space_read_multi_1(iot, ioh,
1620 			    rxreg, (u_int8_t *) offset, count);
1621 			offset += count;
1622 			remaining -= count;
1623 		}
1624 		if (remaining > 3) {
1625 			bus_space_read_multi_stream_4(iot, ioh,
1626 			    rxreg, (u_int32_t *) offset,
1627 				    remaining >> 2);
1628 			offset += remaining & ~3;
1629 			remaining &= 3;
1630 		}
1631 		if (remaining)  {
1632 			bus_space_read_multi_1(iot, ioh,
1633 			    rxreg, (u_int8_t *) offset, remaining);
1634 		}
1635 	} else {
1636 		if ((remaining > 1) && (offset & 1))  {
1637 			bus_space_read_multi_1(iot, ioh,
1638 			    rxreg, (u_int8_t *) offset, 1);
1639 			remaining -= 1;
1640 			offset += 1;
1641 		}
1642 		if (remaining > 1) {
1643 			bus_space_read_multi_stream_2(iot, ioh,
1644 			    rxreg, (u_int16_t *) offset,
1645 			    remaining >> 1);
1646 			offset += remaining & ~1;
1647 		}
1648 		if (remaining & 1)  {
1649 				bus_space_read_multi_1(iot, ioh,
1650 			    rxreg, (u_int8_t *) offset, remaining & 1);
1651 		}
1652 	}
1653 
1654 	ep_discard_rxtop(iot, ioh);
1655 
1656 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1657 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1658 	splx(s);
1659 
1660 	return (m);
1661 }
1662 
1663 int
1664 epioctl(struct ifnet *ifp, u_long cmd, void *data)
1665 {
1666 	struct ep_softc *sc = ifp->if_softc;
1667 	struct ifreq *ifr = (struct ifreq *)data;
1668 	int s, error = 0;
1669 
1670 	s = splnet();
1671 
1672 	switch (cmd) {
1673 
1674 	case SIOCSIFMEDIA:
1675 	case SIOCGIFMEDIA:
1676 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1677 		break;
1678 
1679 	case SIOCADDMULTI:
1680 	case SIOCDELMULTI:
1681 		if (sc->enabled == 0) {
1682 			error = EIO;
1683 			break;
1684 		}
1685 
1686 	default:
1687 		error = ether_ioctl(ifp, cmd, data);
1688 
1689 		if (error == ENETRESET) {
1690 			/*
1691 			 * Multicast list has changed; set the hardware filter
1692 			 * accordingly.
1693 			 */
1694 			if (ifp->if_flags & IFF_RUNNING)
1695 				epreset(sc);
1696 			error = 0;
1697 		}
1698 		break;
1699 	}
1700 
1701 	splx(s);
1702 	return (error);
1703 }
1704 
1705 void
1706 epreset(struct ep_softc *sc)
1707 {
1708 	int s;
1709 
1710 	s = splnet();
1711 	epinit(&sc->sc_ethercom.ec_if);
1712 	splx(s);
1713 }
1714 
1715 void
1716 epwatchdog(struct ifnet *ifp)
1717 {
1718 	struct ep_softc *sc = ifp->if_softc;
1719 
1720 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1721 	++sc->sc_ethercom.ec_if.if_oerrors;
1722 
1723 	epreset(sc);
1724 }
1725 
1726 void
1727 epstop(struct ifnet *ifp, int disable)
1728 {
1729 	struct ep_softc *sc = ifp->if_softc;
1730 	bus_space_tag_t iot = sc->sc_iot;
1731 	bus_space_handle_t ioh = sc->sc_ioh;
1732 
1733 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1734 		/* Stop the one second clock. */
1735 		callout_stop(&sc->sc_mbuf_callout);
1736 
1737 		/* Down the MII. */
1738 		mii_down(&sc->sc_mii);
1739 	}
1740 
1741 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1742 		/*
1743 		 * Clear the FIFO buffer count, thus halting
1744 		 * any currently-running transactions.
1745 		 */
1746 		GO_WINDOW(1);		/* sanity */
1747 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1748 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1749 	}
1750 
1751 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1752 	ep_discard_rxtop(iot, ioh);
1753 
1754 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1755 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1756 
1757 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1758 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1759 
1760 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1761 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1762 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1763 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1764 
1765 	epmbufempty(sc);
1766 
1767 	if (disable)
1768 		epdisable(sc);
1769 
1770 	ifp->if_flags &= ~IFF_RUNNING;
1771 }
1772 
1773 
1774 /*
1775  * Before reboots, reset card completely.
1776  */
1777 static bool
1778 epshutdown(device_t self, int howto)
1779 {
1780 	struct ep_softc *sc = device_private(self);
1781 	int s = splnet();
1782 
1783 	if (sc->enabled) {
1784 		epstop(&sc->sc_ethercom.ec_if, 0);
1785 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1786 		epdisable(sc);
1787 		sc->enabled = 0;
1788 	}
1789 	splx(s);
1790 
1791 	return true;
1792 }
1793 
1794 /*
1795  * We get eeprom data from the id_port given an offset into the
1796  * eeprom.  Basically; after the ID_sequence is sent to all of
1797  * the cards; they enter the ID_CMD state where they will accept
1798  * command requests. 0x80-0xbf loads the eeprom data.  We then
1799  * read the port 16 times and with every read; the cards check
1800  * for contention (ie: if one card writes a 0 bit and another
1801  * writes a 1 bit then the host sees a 0. At the end of the cycle;
1802  * each card compares the data on the bus; if there is a difference
1803  * then that card goes into ID_WAIT state again). In the meantime;
1804  * one bit of data is returned in the AX register which is conveniently
1805  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
1806  * bit of data with each read.
1807  *
1808  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1809  */
1810 u_int16_t
1811 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
1812 {
1813 	u_int16_t data = 0;
1814 	int i;
1815 
1816 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1817 	delay(1000);
1818 	for (i = 0; i < 16; i++)
1819 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1820 	return (data);
1821 }
1822 
1823 static int
1824 epbusyeeprom(struct ep_softc *sc)
1825 {
1826 	bus_space_tag_t iot = sc->sc_iot;
1827 	bus_space_handle_t ioh = sc->sc_ioh;
1828 	bus_size_t eecmd;
1829 	int i = 100, j;
1830 	uint16_t busybit;
1831 
1832 	if (sc->bustype == ELINK_BUS_PCMCIA) {
1833 		delay(1000);
1834 		return 0;
1835 	}
1836 
1837 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1838 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1839 		busybit = CORK_EEPROM_BUSY;
1840 	} else {
1841 		eecmd = ELINK_W0_EEPROM_COMMAND;
1842 		busybit = EEPROM_BUSY;
1843 	}
1844 
1845 	j = 0;		/* bad GCC flow analysis */
1846 	while (i--) {
1847 		j = bus_space_read_2(iot, ioh, eecmd);
1848 		if (j & busybit)
1849 			delay(100);
1850 		else
1851 			break;
1852 	}
1853 	if (i == 0) {
1854 		aprint_normal("\n");
1855 		aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
1856 		return (1);
1857 	}
1858 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1859 	    (j & EEPROM_TST_MODE) != 0) {
1860 		/* XXX PnP mode? */
1861 		printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
1862 		return (1);
1863 	}
1864 	return (0);
1865 }
1866 
1867 u_int16_t
1868 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
1869 {
1870 	bus_size_t eecmd, eedata;
1871 	u_int16_t readcmd;
1872 
1873 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1874 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1875 		eedata = CORK_ASIC_EEPROM_DATA;
1876 	} else {
1877 		eecmd = ELINK_W0_EEPROM_COMMAND;
1878 		eedata = ELINK_W0_EEPROM_DATA;
1879 	}
1880 
1881 	/*
1882 	 * RoadRunner has a larger EEPROM, so a different read command
1883 	 * is required.
1884 	 */
1885 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1886 		readcmd = READ_EEPROM_RR;
1887 	else
1888 		readcmd = READ_EEPROM;
1889 
1890 	if (epbusyeeprom(sc))
1891 		return (0);		/* XXX why is eeprom busy? */
1892 
1893 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1894 
1895 	if (epbusyeeprom(sc))
1896 		return (0);		/* XXX why is eeprom busy? */
1897 
1898 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1899 }
1900 
1901 void
1902 epmbuffill(void *v)
1903 {
1904 	struct ep_softc *sc = v;
1905 	struct mbuf *m;
1906 	int s, i;
1907 
1908 	s = splnet();
1909 	i = sc->last_mb;
1910 	do {
1911 		if (sc->mb[i] == 0) {
1912 			MGET(m, M_DONTWAIT, MT_DATA);
1913 			if (m == 0)
1914 				break;
1915 			sc->mb[i] = m;
1916 		}
1917 		i = (i + 1) % MAX_MBS;
1918 	} while (i != sc->next_mb);
1919 	sc->last_mb = i;
1920 	/* If the queue was not filled, try again. */
1921 	if (sc->last_mb != sc->next_mb)
1922 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1923 	splx(s);
1924 }
1925 
1926 void
1927 epmbufempty(struct ep_softc *sc)
1928 {
1929 	int s, i;
1930 
1931 	s = splnet();
1932 	for (i = 0; i < MAX_MBS; i++) {
1933 		if (sc->mb[i]) {
1934 			m_freem(sc->mb[i]);
1935 			sc->mb[i] = NULL;
1936 		}
1937 	}
1938 	sc->last_mb = sc->next_mb = 0;
1939 	callout_stop(&sc->sc_mbuf_callout);
1940 	splx(s);
1941 }
1942 
1943 int
1944 epenable(struct ep_softc *sc)
1945 {
1946 
1947 	if (sc->enabled == 0 && sc->enable != NULL) {
1948 		if ((*sc->enable)(sc) != 0) {
1949 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
1950 			return (EIO);
1951 		}
1952 	}
1953 
1954 	sc->enabled = 1;
1955 	return (0);
1956 }
1957 
1958 void
1959 epdisable(struct ep_softc *sc)
1960 {
1961 
1962 	if (sc->enabled != 0 && sc->disable != NULL) {
1963 		(*sc->disable)(sc);
1964 		sc->enabled = 0;
1965 	}
1966 }
1967 
1968 /*
1969  * ep_activate:
1970  *
1971  *	Handle device activation/deactivation requests.
1972  */
1973 int
1974 ep_activate(device_t self, enum devact act)
1975 {
1976 	struct ep_softc *sc = device_private(self);
1977 
1978 	switch (act) {
1979 	case DVACT_DEACTIVATE:
1980 		if_deactivate(&sc->sc_ethercom.ec_if);
1981 		return 0;
1982 	default:
1983 		return EOPNOTSUPP;
1984 	}
1985 }
1986 
1987 /*
1988  * ep_detach:
1989  *
1990  *	Detach a elink3 interface.
1991  */
1992 int
1993 ep_detach(device_t self, int flags)
1994 {
1995 	struct ep_softc *sc = device_private(self);
1996 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1997 
1998 	/* Succeed now if there's no work to do. */
1999 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2000 		return (0);
2001 
2002 	epdisable(sc);
2003 
2004 	callout_stop(&sc->sc_mii_callout);
2005 	callout_stop(&sc->sc_mbuf_callout);
2006 
2007 	if (sc->ep_flags & ELINK_FLAGS_MII) {
2008 		/* Detach all PHYs */
2009 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2010 	}
2011 
2012 	/* Delete all remaining media. */
2013 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2014 
2015 	rnd_detach_source(&sc->rnd_source);
2016 	ether_ifdetach(ifp);
2017 	if_detach(ifp);
2018 
2019 	pmf_device_deregister(sc->sc_dev);
2020 
2021 	return (0);
2022 }
2023 
2024 u_int32_t
2025 ep_mii_bitbang_read(device_t self)
2026 {
2027 	struct ep_softc *sc = device_private(self);
2028 
2029 	/* We're already in Window 4. */
2030 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2031 	    ELINK_W4_BOOM_PHYSMGMT));
2032 }
2033 
2034 void
2035 ep_mii_bitbang_write(device_t self, u_int32_t val)
2036 {
2037 	struct ep_softc *sc = device_private(self);
2038 
2039 	/* We're already in Window 4. */
2040 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2041 	    ELINK_W4_BOOM_PHYSMGMT, val);
2042 }
2043 
2044 int
2045 ep_mii_readreg(device_t self, int phy, int reg)
2046 {
2047 	struct ep_softc *sc = device_private(self);
2048 	int val;
2049 
2050 	GO_WINDOW(4);
2051 
2052 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2053 
2054 	GO_WINDOW(1);
2055 
2056 	return (val);
2057 }
2058 
2059 void
2060 ep_mii_writereg(device_t self, int phy, int reg, int val)
2061 {
2062 	struct ep_softc *sc = device_private(self);
2063 
2064 	GO_WINDOW(4);
2065 
2066 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2067 
2068 	GO_WINDOW(1);
2069 }
2070 
2071 void
2072 ep_statchg(struct ifnet *ifp)
2073 {
2074 	struct ep_softc *sc = ifp->if_softc;
2075 	bus_space_tag_t iot = sc->sc_iot;
2076 	bus_space_handle_t ioh = sc->sc_ioh;
2077 	int mctl;
2078 
2079 	GO_WINDOW(3);
2080 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2081 	if (sc->sc_mii.mii_media_active & IFM_FDX)
2082 		mctl |= MAC_CONTROL_FDX;
2083 	else
2084 		mctl &= ~MAC_CONTROL_FDX;
2085 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2086 	GO_WINDOW(1);	/* back to operating window */
2087 }
2088 
2089 void
2090 ep_power(int why, void *arg)
2091 {
2092 	struct ep_softc *sc = arg;
2093 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2094 	int s;
2095 
2096 	s = splnet();
2097 	switch (why) {
2098 	case PWR_SUSPEND:
2099 	case PWR_STANDBY:
2100 		epstop(ifp, 1);
2101 		break;
2102 	case PWR_RESUME:
2103 		if (ifp->if_flags & IFF_UP) {
2104 			(void)epinit(ifp);
2105 		}
2106 		break;
2107 	case PWR_SOFTSUSPEND:
2108 	case PWR_SOFTSTANDBY:
2109 	case PWR_SOFTRESUME:
2110 		break;
2111 	}
2112 	splx(s);
2113 }
2114