xref: /netbsd-src/sys/dev/ic/elink3.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: elink3.c,v 1.131 2010/04/05 07:19:34 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
35  * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *      This product includes software developed by Herb Peyerl.
49  * 4. The name of Herb Peyerl may not be used to endorse or promote products
50  *    derived from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.131 2010/04/05 07:19:34 joerg Exp $");
66 
67 #include "opt_inet.h"
68 #include "rnd.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/kernel.h>
74 #include <sys/mbuf.h>
75 #include <sys/socket.h>
76 #include <sys/ioctl.h>
77 #include <sys/errno.h>
78 #include <sys/syslog.h>
79 #include <sys/select.h>
80 #include <sys/device.h>
81 #if NRND > 0
82 #include <sys/rnd.h>
83 #endif
84 
85 #include <net/if.h>
86 #include <net/if_dl.h>
87 #include <net/if_ether.h>
88 #include <net/if_media.h>
89 
90 #include <net/bpf.h>
91 #include <net/bpfdesc.h>
92 
93 #include <sys/cpu.h>
94 #include <sys/bus.h>
95 #include <sys/intr.h>
96 
97 #include <dev/mii/mii.h>
98 #include <dev/mii/miivar.h>
99 #include <dev/mii/mii_bitbang.h>
100 
101 #include <dev/ic/elink3var.h>
102 #include <dev/ic/elink3reg.h>
103 
104 #ifdef DEBUG
105 int epdebug = 0;
106 #endif
107 
108 /*
109  * XXX endian workaround for big-endian CPUs  with pcmcia:
110  * if stream methods for bus_space_multi are not provided, define them
111  * using non-stream bus_space_{read,write}_multi_.
112  * Assumes host CPU is same endian-ness as bus.
113  */
114 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
115 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
116 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
117 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
118 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
119 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
120 
121 /*
122  * Structure to map media-present bits in boards to ifmedia codes and
123  * printable media names. Used for table-driven ifmedia initialization.
124  */
125 struct ep_media {
126 	int	epm_mpbit;		/* media present bit */
127 	const char *epm_name;		/* name of medium */
128 	int	epm_ifmedia;		/* ifmedia word for medium */
129 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
130 };
131 
132 /*
133  * Media table for the Demon/Vortex/Boomerang chipsets.
134  *
135  * Note that MII on the Demon and Vortex (3c59x) indicates an external
136  * MII connector (for connecting an external PHY) ... I think.  Treat
137  * it as `manual' on these chips.
138  *
139  * Any Boomerang (3c90x) chips with MII really do have an internal
140  * MII and real PHYs attached; no `native' media.
141  */
142 const struct ep_media ep_vortex_media[] = {
143 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
144 	  ELINKMEDIA_10BASE_T },
145 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
146 	  ELINKMEDIA_10BASE_T },
147 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
148 	  ELINKMEDIA_AUI },
149 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
150 	  ELINKMEDIA_10BASE_2 },
151 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
152 	  ELINKMEDIA_100BASE_TX },
153 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
154 	  ELINKMEDIA_100BASE_TX },
155 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
156 	  ELINKMEDIA_100BASE_FX },
157 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
158 	  ELINKMEDIA_MII },
159 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
160 	  ELINKMEDIA_100BASE_T4 },
161 	{ 0,			NULL,		0,
162 	  0 },
163 };
164 
165 /*
166  * Media table for the older 3Com Etherlink III chipset, used
167  * in the 3c509, 3c579, and 3c589.
168  */
169 const struct ep_media ep_509_media[] = {
170 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
171 	  ELINKMEDIA_10BASE_T },
172 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
173 	  ELINKMEDIA_AUI },
174 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
175 	  ELINKMEDIA_10BASE_2 },
176 	{ 0,			NULL,		0,
177 	  0 },
178 };
179 
180 void	ep_internalconfig(struct ep_softc *sc);
181 void	ep_vortex_probemedia(struct ep_softc *sc);
182 void	ep_509_probemedia(struct ep_softc *sc);
183 
184 static void eptxstat(struct ep_softc *);
185 static int epstatus(struct ep_softc *);
186 int	epinit(struct ifnet *);
187 void	epstop(struct ifnet *, int);
188 int	epioctl(struct ifnet *, u_long, void *);
189 void	epstart(struct ifnet *);
190 void	epwatchdog(struct ifnet *);
191 void	epreset(struct ep_softc *);
192 static bool epshutdown(device_t, int);
193 void	epread(struct ep_softc *);
194 struct mbuf *epget(struct ep_softc *, int);
195 void	epmbuffill(void *);
196 void	epmbufempty(struct ep_softc *);
197 void	epsetfilter(struct ep_softc *);
198 void	ep_roadrunner_mii_enable(struct ep_softc *);
199 void	epsetmedia(struct ep_softc *);
200 
201 /* ifmedia callbacks */
202 int	ep_media_change(struct ifnet *ifp);
203 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
204 
205 /* MII callbacks */
206 int	ep_mii_readreg(device_t, int, int);
207 void	ep_mii_writereg(device_t, int, int, int);
208 void	ep_statchg(device_t);
209 
210 void	ep_tick(void *);
211 
212 static int epbusyeeprom(struct ep_softc *);
213 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
214 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
215 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
216 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
217 static inline int ep_w1_reg(struct ep_softc *, int);
218 
219 /*
220  * MII bit-bang glue.
221  */
222 u_int32_t ep_mii_bitbang_read(device_t);
223 void ep_mii_bitbang_write(device_t, u_int32_t);
224 
225 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
226 	ep_mii_bitbang_read,
227 	ep_mii_bitbang_write,
228 	{
229 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
230 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
231 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
232 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
233 		0,			/* MII_BIT_DIR_PHY_HOST */
234 	}
235 };
236 
237 /*
238  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
239  * Window 1 registers offset!
240  */
241 static inline int
242 ep_w1_reg(struct ep_softc *sc, int reg)
243 {
244 
245 	switch (sc->ep_chipset) {
246 	case ELINK_CHIPSET_CORKSCREW:
247 		return (reg + 0x10);
248 
249 	case ELINK_CHIPSET_ROADRUNNER:
250 		switch (reg) {
251 		case ELINK_W1_FREE_TX:
252 		case ELINK_W1_RUNNER_RDCTL:
253 		case ELINK_W1_RUNNER_WRCTL:
254 			return (reg);
255 		}
256 		return (reg + 0x10);
257 	}
258 
259 	return (reg);
260 }
261 
262 /*
263  * Wait for any pending reset to complete.
264  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
265  * but older hardware doesn't implement it and we must delay.
266  */
267 static inline void
268 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
269 {
270 	int i;
271 
272 	for (i = 0; i < 10000; i++) {
273 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
274 		    COMMAND_IN_PROGRESS) == 0)
275 			break;
276 		DELAY(10);
277 	}
278 }
279 
280 /*
281  * Issue a (reset) command, and be sure it has completed.
282  * Used for global reset, TX_RESET, RX_RESET.
283  */
284 static inline void
285 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
286 {
287 	bus_space_tag_t iot = sc->sc_iot;
288 	bus_space_handle_t ioh = sc->sc_ioh;
289 
290 	bus_space_write_2(iot, ioh, cmd, arg);
291 	ep_finish_reset(iot, ioh);
292 }
293 
294 
295 static inline void
296 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
297 {
298 	int i;
299 
300 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
301 
302         /*
303 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
304 	 * every received packet (adding latency and  limiting pkt-recv rate).
305 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
306 	 * is about right.
307 	 */
308 	for (i = 0; i < 8000; i++) {
309 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
310 		    COMMAND_IN_PROGRESS) == 0)
311 		    return;
312 	}
313 
314 	/*  Didn't complete in a hurry. Do DELAY()s. */
315 	ep_finish_reset(iot, ioh);
316 }
317 
318 /*
319  * Back-end attach and configure.
320  */
321 int
322 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
323 {
324 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
325 	bus_space_tag_t iot = sc->sc_iot;
326 	bus_space_handle_t ioh = sc->sc_ioh;
327 	u_int16_t i;
328 	u_int8_t myla[ETHER_ADDR_LEN];
329 
330 	callout_init(&sc->sc_mii_callout, 0);
331 	callout_init(&sc->sc_mbuf_callout, 0);
332 
333 	sc->ep_chipset = chipset;
334 
335 	/*
336 	 * We could have been groveling around in other register
337 	 * windows in the front-end; make sure we're in window 0
338 	 * to read the EEPROM.
339 	 */
340 	GO_WINDOW(0);
341 
342 	if (enaddr == NULL) {
343 		/*
344 		 * Read the station address from the eeprom.
345 		 */
346 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
347 			u_int16_t x = ep_read_eeprom(sc, i);
348 			myla[(i << 1)] = x >> 8;
349 			myla[(i << 1) + 1] = x;
350 		}
351 		enaddr = myla;
352 	}
353 
354 	/*
355 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
356 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
357 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
358 	 * packet length.
359 	 * Commands to these cards implicitly upshift a packet size
360 	 * or threshold by 2 bits.
361 	 * To detect  cards with large-packet support, we probe by setting
362 	 * the transmit threshold register, then change windows and
363 	 * read back the threshold register directly, and see if the
364 	 * threshold value was shifted or not.
365 	 */
366 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
367 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
368 	GO_WINDOW(5);
369 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
370 	GO_WINDOW(1);
371 	switch (i)  {
372 	case ELINK_LARGEWIN_PROBE:
373 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
374 		sc->ep_pktlenshift = 0;
375 		break;
376 
377 	case (ELINK_LARGEWIN_PROBE << 2):
378 		sc->ep_pktlenshift = 2;
379 		break;
380 
381 	default:
382 		aprint_error_dev(sc->sc_dev,
383 		    "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
384 		    "Interface disabled\n",
385 		    ELINK_LARGEWIN_PROBE, (int) i);
386 		return (1);
387 	}
388 
389 	/*
390 	 * Ensure Tx-available interrupts are enabled for
391 	 * start the interface.
392 	 * XXX should be in epinit()?
393 	 */
394 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
395 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
396 
397 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
398 	ifp->if_softc = sc;
399 	ifp->if_start = epstart;
400 	ifp->if_ioctl = epioctl;
401 	ifp->if_watchdog = epwatchdog;
402 	ifp->if_init = epinit;
403 	ifp->if_stop = epstop;
404 	ifp->if_flags =
405 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
406 	IFQ_SET_READY(&ifp->if_snd);
407 
408 	if_attach(ifp);
409 	ether_ifattach(ifp, enaddr);
410 
411 	/*
412 	 * Finish configuration:
413 	 * determine chipset if the front-end couldn't do so,
414 	 * show board details, set media.
415 	 */
416 
417 	/*
418 	 * Print RAM size.  We also print the Ethernet address in here.
419 	 * It's extracted from the ifp, so we have to make sure it's
420 	 * been attached first.
421 	 */
422 	ep_internalconfig(sc);
423 	GO_WINDOW(0);
424 
425 	/*
426 	 * Display some additional information, if pertinent.
427 	 */
428 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
429 		aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
430 
431 	/*
432 	 * Initialize our media structures and MII info.  We'll
433 	 * probe the MII if we discover that we have one.
434 	 */
435 	sc->sc_mii.mii_ifp = ifp;
436 	sc->sc_mii.mii_readreg = ep_mii_readreg;
437 	sc->sc_mii.mii_writereg = ep_mii_writereg;
438 	sc->sc_mii.mii_statchg = ep_statchg;
439 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
440 	    ep_media_status);
441 
442 	/*
443 	 * All CORKSCREW chips have MII.
444 	 */
445 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
446 		sc->ep_flags |= ELINK_FLAGS_MII;
447 
448 	/*
449 	 * Now, determine which media we have.
450 	 */
451 	switch (sc->ep_chipset) {
452 	case ELINK_CHIPSET_ROADRUNNER:
453 		if (sc->ep_flags & ELINK_FLAGS_MII) {
454 			ep_roadrunner_mii_enable(sc);
455 			GO_WINDOW(0);
456 		}
457 		/* FALLTHROUGH */
458 
459 	case ELINK_CHIPSET_CORKSCREW:
460 	case ELINK_CHIPSET_BOOMERANG:
461 		/*
462 		 * If the device has MII, probe it.  We won't be using
463 		 * any `native' media in this case, only PHYs.  If
464 		 * we don't, just treat the Boomerang like the Vortex.
465 		 */
466 		if (sc->ep_flags & ELINK_FLAGS_MII) {
467 			mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
468 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
469 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
470 				ifmedia_add(&sc->sc_mii.mii_media,
471 				    IFM_ETHER|IFM_NONE, 0, NULL);
472 				ifmedia_set(&sc->sc_mii.mii_media,
473 				    IFM_ETHER|IFM_NONE);
474 			} else {
475 				ifmedia_set(&sc->sc_mii.mii_media,
476 				    IFM_ETHER|IFM_AUTO);
477 			}
478 			break;
479 		}
480 		/* FALLTHROUGH */
481 
482 	case ELINK_CHIPSET_VORTEX:
483 		ep_vortex_probemedia(sc);
484 		break;
485 
486 	default:
487 		ep_509_probemedia(sc);
488 		break;
489 	}
490 
491 	GO_WINDOW(1);		/* Window 1 is operating window */
492 
493 #if NRND > 0
494 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
495 	    RND_TYPE_NET, 0);
496 #endif
497 
498 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
499 
500 	/*  Establish callback to reset card when we reboot. */
501 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
502 		pmf_class_network_register(sc->sc_dev, ifp);
503 	else
504 		aprint_error_dev(sc->sc_dev,
505 		    "couldn't establish power handler\n");
506 
507 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
508 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
509 
510 	/* The attach is successful. */
511 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
512 	return (0);
513 }
514 
515 
516 /*
517  * Show interface-model-independent info from window 3
518  * internal-configuration register.
519  */
520 void
521 ep_internalconfig(struct ep_softc *sc)
522 {
523 	bus_space_tag_t iot = sc->sc_iot;
524 	bus_space_handle_t ioh = sc->sc_ioh;
525 
526 	u_int config0;
527 	u_int config1;
528 
529 	int  ram_size, ram_width, ram_split;
530 	/*
531 	 * NVRAM buffer Rx:Tx config names for busmastering cards
532 	 * (Demon, Vortex, and later).
533 	 */
534 	const char *const onboard_ram_config[] = {
535 		"5:3", "3:1", "1:1", "3:5" };
536 
537 	GO_WINDOW(3);
538 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
539 	config1 = (u_int)bus_space_read_2(iot, ioh,
540 	    ELINK_W3_INTERNAL_CONFIG + 2);
541 	GO_WINDOW(0);
542 
543 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
544 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
545 
546 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
547 
548 	aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
549 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
550 	       8 << ram_size,
551 	       (ram_width) ? "word" : "byte",
552 	       onboard_ram_config[ram_split]);
553 }
554 
555 
556 /*
557  * Find supported media on 3c509-generation hardware that doesn't have
558  * a "reset_options" register in window 3.
559  * Use the config_cntrl register  in window 0 instead.
560  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
561  * that implement  CONFIG_CTRL.  We don't have a good way to set the
562  * default active medium; punt to ifconfig  instead.
563  */
564 void
565 ep_509_probemedia(struct ep_softc *sc)
566 {
567 	bus_space_tag_t iot = sc->sc_iot;
568 	bus_space_handle_t ioh = sc->sc_ioh;
569 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
570 	u_int16_t ep_w0_config, port;
571 	const struct ep_media *epm;
572 	const char *sep = "", *defmedianame = NULL;
573 	int defmedia = 0;
574 
575 	GO_WINDOW(0);
576 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
577 
578 	aprint_normal_dev(sc->sc_dev, "");
579 
580 	/* Sanity check that there are any media! */
581 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
582 		aprint_error("no media present!\n");
583 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
584 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
585 		return;
586 	}
587 
588 	/*
589 	 * Get the default media from the EEPROM.
590 	 */
591 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
592 
593 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
594 
595 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
596 		if (ep_w0_config & epm->epm_mpbit) {
597 			/*
598 			 * This simple test works because 509 chipsets
599 			 * don't do full-duplex.
600 			 */
601 			if (epm->epm_epmedia == port || defmedia == 0) {
602 				defmedia = epm->epm_ifmedia;
603 				defmedianame = epm->epm_name;
604 			}
605 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
606 			    NULL);
607 			PRINT(epm->epm_name);
608 		}
609 	}
610 
611 #undef PRINT
612 
613 #ifdef DIAGNOSTIC
614 	if (defmedia == 0)
615 		panic("ep_509_probemedia: impossible");
616 #endif
617 
618 	aprint_normal(" (default %s)\n", defmedianame);
619 	ifmedia_set(ifm, defmedia);
620 }
621 
622 /*
623  * Find media present on large-packet-capable elink3 devices.
624  * Show onboard configuration of large-packet-capable elink3 devices
625  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
626  * Use media and card-version info in window 3 instead.
627  */
628 void
629 ep_vortex_probemedia(struct ep_softc *sc)
630 {
631 	bus_space_tag_t iot = sc->sc_iot;
632 	bus_space_handle_t ioh = sc->sc_ioh;
633 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
634 	const struct ep_media *epm;
635 	u_int config1;
636 	int reset_options;
637 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
638 	int defmedia = 0;
639 	const char *sep = "", *defmedianame = NULL;
640 
641 	GO_WINDOW(3);
642 	config1 = (u_int)bus_space_read_2(iot, ioh,
643 	    ELINK_W3_INTERNAL_CONFIG + 2);
644 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
645 	GO_WINDOW(0);
646 
647 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
648 
649 	aprint_normal_dev(sc->sc_dev, "");
650 
651 	/* Sanity check that there are any media! */
652 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
653 		aprint_error("no media present!\n");
654 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
655 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
656 		return;
657 	}
658 
659 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
660 
661 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
662 		if (reset_options & epm->epm_mpbit) {
663 			/*
664 			 * Default media is a little more complicated
665 			 * on the Vortex.  We support full-duplex which
666 			 * uses the same reset options bit.
667 			 *
668 			 * XXX Check EEPROM for default to FDX?
669 			 */
670 			if (epm->epm_epmedia == default_media) {
671 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
672 					defmedia = epm->epm_ifmedia;
673 					defmedianame = epm->epm_name;
674 				}
675 			} else if (defmedia == 0) {
676 				defmedia = epm->epm_ifmedia;
677 				defmedianame = epm->epm_name;
678 			}
679 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
680 			    NULL);
681 			PRINT(epm->epm_name);
682 		}
683 	}
684 
685 #undef PRINT
686 
687 #ifdef DIAGNOSTIC
688 	if (defmedia == 0)
689 		panic("ep_vortex_probemedia: impossible");
690 #endif
691 
692 	aprint_normal(" (default %s)\n", defmedianame);
693 	ifmedia_set(ifm, defmedia);
694 }
695 
696 /*
697  * One second timer, used to tick the MII.
698  */
699 void
700 ep_tick(void *arg)
701 {
702 	struct ep_softc *sc = arg;
703 	int s;
704 
705 #ifdef DIAGNOSTIC
706 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
707 		panic("ep_tick");
708 #endif
709 
710 	if (!device_is_active(sc->sc_dev))
711 		return;
712 
713 	s = splnet();
714 	mii_tick(&sc->sc_mii);
715 	splx(s);
716 
717 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
718 }
719 
720 /*
721  * Bring device up.
722  *
723  * The order in here seems important. Otherwise we may not receive
724  * interrupts. ?!
725  */
726 int
727 epinit(struct ifnet *ifp)
728 {
729 	struct ep_softc *sc = ifp->if_softc;
730 	bus_space_tag_t iot = sc->sc_iot;
731 	bus_space_handle_t ioh = sc->sc_ioh;
732 	int i, error;
733 	const u_int8_t *addr;
734 
735 	if (!sc->enabled && (error = epenable(sc)) != 0)
736 		return (error);
737 
738 	/* Make sure any pending reset has completed before touching board */
739 	ep_finish_reset(iot, ioh);
740 
741 	/*
742 	 * Cancel any pending I/O.
743 	 */
744 	epstop(ifp, 0);
745 
746 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
747 	    && sc->bustype != ELINK_BUS_MCA) {
748 		GO_WINDOW(0);
749 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
750 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
751 		    ENABLE_DRQ_IRQ);
752 	}
753 
754 	if (sc->bustype == ELINK_BUS_PCMCIA) {
755 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
756 	}
757 
758 	GO_WINDOW(2);
759 	/* Reload the ether_addr. */
760 	addr = CLLADDR(ifp->if_sadl);
761 	for (i = 0; i < 6; i += 2)
762 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
763 		    (addr[i] << 0) | (addr[i + 1] << 8));
764 
765 	/*
766 	 * Reset the station-address receive filter.
767 	 * A bug workaround for busmastering (Vortex, Demon) cards.
768 	 */
769 	for (i = 0; i < 6; i += 2)
770 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
771 
772 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
773 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
774 
775 	GO_WINDOW(1);		/* Window 1 is operating window */
776 	for (i = 0; i < 31; i++)
777 		(void)bus_space_read_2(iot, ioh,
778 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
779 
780 	/* Set threshold for Tx-space available interrupt. */
781 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
782 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
783 
784 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
785 		/*
786 		 * Enable options in the PCMCIA LAN COR register, via
787 		 * RoadRunner Window 1.
788 		 *
789 		 * XXX MAGIC CONSTANTS!
790 		 */
791 		u_int16_t cor;
792 
793 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
794 
795 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
796 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
797 			cor |= 0x10;
798 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
799 			cor |= 0x20;
800 		bus_space_write_2(iot, ioh, 0, cor);
801 
802 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
803 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
804 
805 		if (sc->ep_flags & ELINK_FLAGS_MII) {
806 			ep_roadrunner_mii_enable(sc);
807 			GO_WINDOW(1);
808 		}
809 	}
810 
811 	/* Enable interrupts. */
812 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
813 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
814 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
815 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
816 
817 	/*
818 	 * Attempt to get rid of any stray interrupts that occurred during
819 	 * configuration.  On the i386 this isn't possible because one may
820 	 * already be queued.  However, a single stray interrupt is
821 	 * unimportant.
822 	 */
823 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
824 
825 	epsetfilter(sc);
826 	epsetmedia(sc);
827 
828 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
829 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
830 
831 	epmbuffill(sc);
832 
833 	/* Interface is now `running', with no output active. */
834 	ifp->if_flags |= IFF_RUNNING;
835 	ifp->if_flags &= ~IFF_OACTIVE;
836 
837 	if (sc->ep_flags & ELINK_FLAGS_MII) {
838 		/* Start the one second clock. */
839 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
840 	}
841 
842 	/* Attempt to start output, if any. */
843 	epstart(ifp);
844 
845 	return (0);
846 }
847 
848 
849 /*
850  * Set multicast receive filter.
851  * elink3 hardware has no selective multicast filter in hardware.
852  * Enable reception of all multicasts and filter in software.
853  */
854 void
855 epsetfilter(struct ep_softc *sc)
856 {
857 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
858 
859 	GO_WINDOW(1);		/* Window 1 is operating window */
860 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
861 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
862 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
863 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
864 }
865 
866 int
867 ep_media_change(struct ifnet *ifp)
868 {
869 	struct ep_softc *sc = ifp->if_softc;
870 
871 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
872 		epreset(sc);
873 
874 	return (0);
875 }
876 
877 /*
878  * Reset and enable the MII on the RoadRunner.
879  */
880 void
881 ep_roadrunner_mii_enable(struct ep_softc *sc)
882 {
883 	bus_space_tag_t iot = sc->sc_iot;
884 	bus_space_handle_t ioh = sc->sc_ioh;
885 
886 	GO_WINDOW(3);
887 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
888 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
889 	delay(1000);
890 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
891 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
892 	    ELINK_RUNNER_ENABLE_MII);
893 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
894 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
895 	delay(1000);
896 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
897 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
898 }
899 
900 /*
901  * Set the card to use the specified media.
902  */
903 void
904 epsetmedia(struct ep_softc *sc)
905 {
906 	bus_space_tag_t iot = sc->sc_iot;
907 	bus_space_handle_t ioh = sc->sc_ioh;
908 
909 	/* Turn everything off.  First turn off linkbeat and UTP. */
910 	GO_WINDOW(4);
911 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
912 
913 	/* Turn off coax */
914 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
915 	delay(1000);
916 
917 	/*
918 	 * If the device has MII, select it, and then tell the
919 	 * PHY which media to use.
920 	 */
921 	if (sc->ep_flags & ELINK_FLAGS_MII) {
922 		int config0, config1;
923 
924 		GO_WINDOW(3);
925 
926 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
927 			int resopt;
928 
929 			resopt = bus_space_read_2(iot, ioh,
930 			    ELINK_W3_RESET_OPTIONS);
931 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
932 			    resopt | ELINK_RUNNER_ENABLE_MII);
933 		}
934 
935 		config0 = (u_int)bus_space_read_2(iot, ioh,
936 		    ELINK_W3_INTERNAL_CONFIG);
937 		config1 = (u_int)bus_space_read_2(iot, ioh,
938 		    ELINK_W3_INTERNAL_CONFIG + 2);
939 
940 		config1 = config1 & ~CONFIG_MEDIAMASK;
941 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
942 
943 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
944 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
945 		    config1);
946 		GO_WINDOW(1);	/* back to operating window */
947 
948 		mii_mediachg(&sc->sc_mii);
949 		return;
950 	}
951 
952 	/*
953 	 * Now turn on the selected media/transceiver.
954 	 */
955 	GO_WINDOW(4);
956 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
957 	case IFM_10_T:
958 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
959 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
960 		break;
961 
962 	case IFM_10_2:
963 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
964 		DELAY(1000);	/* 50ms not enmough? */
965 		break;
966 
967 	case IFM_100_TX:
968 	case IFM_100_FX:
969 	case IFM_100_T4:		/* XXX check documentation */
970 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
971 		    LINKBEAT_ENABLE);
972 		DELAY(1000);	/* not strictly necessary? */
973 		break;
974 
975 	case IFM_10_5:
976 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
977 		    SQE_ENABLE);
978 		DELAY(1000);	/* not strictly necessary? */
979 		break;
980 
981 	case IFM_MANUAL:
982 		/*
983 		 * Nothing to do here; we are actually enabling the
984 		 * external PHY on the MII port.
985 		 */
986 		break;
987 
988 	case IFM_NONE:
989 		printf("%s: interface disabled\n", device_xname(sc->sc_dev));
990 		return;
991 
992 	default:
993 		panic("epsetmedia: impossible");
994 	}
995 
996 	/*
997 	 * Tell the chip which port to use.
998 	 */
999 	switch (sc->ep_chipset) {
1000 	case ELINK_CHIPSET_VORTEX:
1001 	case ELINK_CHIPSET_BOOMERANG:
1002 	    {
1003 		int mctl, config0, config1;
1004 
1005 		GO_WINDOW(3);
1006 		config0 = (u_int)bus_space_read_2(iot, ioh,
1007 		    ELINK_W3_INTERNAL_CONFIG);
1008 		config1 = (u_int)bus_space_read_2(iot, ioh,
1009 		    ELINK_W3_INTERNAL_CONFIG + 2);
1010 
1011 		config1 = config1 & ~CONFIG_MEDIAMASK;
1012 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1013 		    CONFIG_MEDIAMASK_SHIFT);
1014 
1015 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1016 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1017 		    config1);
1018 
1019 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1020 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1021 			mctl |= MAC_CONTROL_FDX;
1022 		else
1023 			mctl &= ~MAC_CONTROL_FDX;
1024 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1025 		break;
1026 	    }
1027 	default:
1028 	    {
1029 		int w0_addr_cfg;
1030 
1031 		GO_WINDOW(0);
1032 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1033 		w0_addr_cfg &= 0x3fff;
1034 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1035 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1036 		DELAY(1000);
1037 		break;
1038 	    }
1039 	}
1040 
1041 	GO_WINDOW(1);		/* Window 1 is operating window */
1042 }
1043 
1044 /*
1045  * Get currently-selected media from card.
1046  * (if_media callback, may be called before interface is brought up).
1047  */
1048 void
1049 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
1050 {
1051 	struct ep_softc *sc = ifp->if_softc;
1052 	bus_space_tag_t iot = sc->sc_iot;
1053 	bus_space_handle_t ioh = sc->sc_ioh;
1054 
1055 	if (sc->enabled == 0) {
1056 		req->ifm_active = IFM_ETHER|IFM_NONE;
1057 		req->ifm_status = 0;
1058 		return;
1059 	}
1060 
1061 	/*
1062 	 * If we have MII, go ask the PHY what's going on.
1063 	 */
1064 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1065 		mii_pollstat(&sc->sc_mii);
1066 		req->ifm_active = sc->sc_mii.mii_media_active;
1067 		req->ifm_status = sc->sc_mii.mii_media_status;
1068 		return;
1069 	}
1070 
1071 	/*
1072 	 * Ok, at this point we claim that our active media is
1073 	 * the currently selected media.  We'll update our status
1074 	 * if our chipset allows us to detect link.
1075 	 */
1076 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1077 	req->ifm_status = 0;
1078 
1079 	switch (sc->ep_chipset) {
1080 	case ELINK_CHIPSET_VORTEX:
1081 	case ELINK_CHIPSET_BOOMERANG:
1082 		GO_WINDOW(4);
1083 		req->ifm_status = IFM_AVALID;
1084 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1085 		    LINKBEAT_DETECT)
1086 			req->ifm_status |= IFM_ACTIVE;
1087 		GO_WINDOW(1);	/* back to operating window */
1088 		break;
1089 	}
1090 }
1091 
1092 
1093 
1094 /*
1095  * Start outputting on the interface.
1096  * Always called as splnet().
1097  */
1098 void
1099 epstart(struct ifnet *ifp)
1100 {
1101 	struct ep_softc *sc = ifp->if_softc;
1102 	bus_space_tag_t iot = sc->sc_iot;
1103 	bus_space_handle_t ioh = sc->sc_ioh;
1104 	struct mbuf *m, *m0;
1105 	int sh, len, pad;
1106 	bus_size_t txreg;
1107 
1108 	/* Don't transmit if interface is busy or not running */
1109 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1110 		return;
1111 
1112 startagain:
1113 	/* Sneak a peek at the next packet */
1114 	IFQ_POLL(&ifp->if_snd, m0);
1115 	if (m0 == 0)
1116 		return;
1117 
1118 	/* We need to use m->m_pkthdr.len, so require the header */
1119 	if ((m0->m_flags & M_PKTHDR) == 0)
1120 		panic("epstart: no header mbuf");
1121 	len = m0->m_pkthdr.len;
1122 
1123 	pad = (4 - len) & 3;
1124 
1125 	/*
1126 	 * The 3c509 automatically pads short packets to minimum ethernet
1127 	 * length, but we drop packets that are too large. Perhaps we should
1128 	 * truncate them instead?
1129 	 */
1130 	if (len + pad > ETHER_MAX_LEN) {
1131 		/* packet is obviously too large: toss it */
1132 		++ifp->if_oerrors;
1133 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1134 		m_freem(m0);
1135 		goto readcheck;
1136 	}
1137 
1138 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1139 	    len + pad + 4) {
1140 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1141 		    SET_TX_AVAIL_THRESH |
1142 		    ((len + pad + 4) >> sc->ep_pktlenshift));
1143 		/* not enough room in FIFO */
1144 		ifp->if_flags |= IFF_OACTIVE;
1145 		return;
1146 	} else {
1147 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1148 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1149 	}
1150 
1151 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1152 	if (m0 == 0)		/* not really needed */
1153 		return;
1154 
1155 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1156 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1157 
1158 	bpf_mtap(ifp, m0);
1159 
1160 	/*
1161 	 * Do the output at a high interrupt priority level so that an
1162 	 * interrupt from another device won't cause a FIFO underrun.
1163 	 * We choose splsched() since that blocks essentially everything
1164 	 * except for interrupts from serial devices (which typically
1165 	 * lose data if their interrupt isn't serviced fast enough).
1166 	 *
1167 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1168 	 */
1169 	sh = splsched();
1170 
1171 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1172 
1173 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1174 		/*
1175 		 * Prime the FIFO buffer counter (number of 16-bit
1176 		 * words about to be written to the FIFO).
1177 		 *
1178 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1179 		 * COUNTER IS NON-ZERO!
1180 		 */
1181 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1182 		    (len + pad) >> 1);
1183 	}
1184 
1185 	bus_space_write_2(iot, ioh, txreg, len);
1186 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1187 	if (ELINK_IS_BUS_32(sc->bustype)) {
1188 		for (m = m0; m;) {
1189 			if (m->m_len > 3)  {
1190 				/* align our reads from core */
1191 				if (mtod(m, u_long) & 3)  {
1192 					u_long count =
1193 					    4 - (mtod(m, u_long) & 3);
1194 					bus_space_write_multi_1(iot, ioh,
1195 					    txreg, mtod(m, u_int8_t *), count);
1196 					m->m_data =
1197 					    (void *)(mtod(m, u_long) + count);
1198 					m->m_len -= count;
1199 				}
1200 				bus_space_write_multi_stream_4(iot, ioh,
1201 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1202 				m->m_data = (void *)(mtod(m, u_long) +
1203 					(u_long)(m->m_len & ~3));
1204 				m->m_len -= m->m_len & ~3;
1205 			}
1206 			if (m->m_len)  {
1207 				bus_space_write_multi_1(iot, ioh,
1208 				    txreg, mtod(m, u_int8_t *), m->m_len);
1209 			}
1210 			MFREE(m, m0);
1211 			m = m0;
1212 		}
1213 	} else {
1214 		for (m = m0; m;) {
1215 			if (m->m_len > 1)  {
1216 				if (mtod(m, u_long) & 1)  {
1217 					bus_space_write_1(iot, ioh,
1218 					    txreg, *(mtod(m, u_int8_t *)));
1219 					m->m_data =
1220 					    (void *)(mtod(m, u_long) + 1);
1221 					m->m_len -= 1;
1222 				}
1223 				bus_space_write_multi_stream_2(iot, ioh,
1224 				    txreg, mtod(m, u_int16_t *),
1225 				    m->m_len >> 1);
1226 			}
1227 			if (m->m_len & 1)  {
1228 				bus_space_write_1(iot, ioh, txreg,
1229 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
1230 			}
1231 			MFREE(m, m0);
1232 			m = m0;
1233 		}
1234 	}
1235 	while (pad--)
1236 		bus_space_write_1(iot, ioh, txreg, 0);
1237 
1238 	splx(sh);
1239 
1240 	++ifp->if_opackets;
1241 
1242 readcheck:
1243 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1244 	    ERR_INCOMPLETE) == 0) {
1245 		/* We received a complete packet. */
1246 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1247 
1248 		if ((status & INTR_LATCH) == 0) {
1249 			/*
1250 			 * No interrupt, read the packet and continue
1251 			 * Is  this supposed to happen? Is my motherboard
1252 			 * completely busted?
1253 			 */
1254 			epread(sc);
1255 		} else {
1256 			/* Got an interrupt, return so that it gets serviced. */
1257 			return;
1258 		}
1259 	} else {
1260 		/* Check if we are stuck and reset [see XXX comment] */
1261 		if (epstatus(sc)) {
1262 			if (ifp->if_flags & IFF_DEBUG)
1263 				printf("%s: adapter reset\n",
1264 				    device_xname(sc->sc_dev));
1265 			epreset(sc);
1266 		}
1267 	}
1268 
1269 	goto startagain;
1270 }
1271 
1272 
1273 /*
1274  * XXX: The 3c509 card can get in a mode where both the fifo status bit
1275  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1276  *	We detect this situation and we reset the adapter.
1277  *	It happens at times when there is a lot of broadcast traffic
1278  *	on the cable (once in a blue moon).
1279  */
1280 static int
1281 epstatus(struct ep_softc *sc)
1282 {
1283 	bus_space_tag_t iot = sc->sc_iot;
1284 	bus_space_handle_t ioh = sc->sc_ioh;
1285 	u_int16_t fifost;
1286 
1287 	/*
1288 	 * Check the FIFO status and act accordingly
1289 	 */
1290 	GO_WINDOW(4);
1291 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1292 	GO_WINDOW(1);
1293 
1294 	if (fifost & FIFOS_RX_UNDERRUN) {
1295 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1296 			printf("%s: RX underrun\n", device_xname(sc->sc_dev));
1297 		epreset(sc);
1298 		return 0;
1299 	}
1300 
1301 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1302 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1303 			printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
1304 		return 1;
1305 	}
1306 
1307 	if (fifost & FIFOS_RX_OVERRUN) {
1308 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1309 			printf("%s: RX overrun\n", device_xname(sc->sc_dev));
1310 		return 1;
1311 	}
1312 
1313 	if (fifost & FIFOS_TX_OVERRUN) {
1314 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1315 			printf("%s: TX overrun\n", device_xname(sc->sc_dev));
1316 		epreset(sc);
1317 		return 0;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 
1324 static void
1325 eptxstat(struct ep_softc *sc)
1326 {
1327 	bus_space_tag_t iot = sc->sc_iot;
1328 	bus_space_handle_t ioh = sc->sc_ioh;
1329 	int i;
1330 
1331 	/*
1332 	 * We need to read+write TX_STATUS until we get a 0 status
1333 	 * in order to turn off the interrupt flag.
1334 	 */
1335 	while ((i = bus_space_read_2(iot, ioh,
1336 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1337 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1338 		    0x0);
1339 
1340 		if (i & TXS_JABBER) {
1341 			++sc->sc_ethercom.ec_if.if_oerrors;
1342 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1343 				printf("%s: jabber (%x)\n",
1344 				       device_xname(sc->sc_dev), i);
1345 			epreset(sc);
1346 		} else if (i & TXS_UNDERRUN) {
1347 			++sc->sc_ethercom.ec_if.if_oerrors;
1348 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1349 				printf("%s: fifo underrun (%x) @%d\n",
1350 				       device_xname(sc->sc_dev), i,
1351 				       sc->tx_start_thresh);
1352 			if (sc->tx_succ_ok < 100)
1353 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
1354 					    sc->tx_start_thresh + 20);
1355 			sc->tx_succ_ok = 0;
1356 			epreset(sc);
1357 		} else if (i & TXS_MAX_COLLISION) {
1358 			++sc->sc_ethercom.ec_if.if_collisions;
1359 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1360 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1361 		} else
1362 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1363 	}
1364 }
1365 
1366 int
1367 epintr(void *arg)
1368 {
1369 	struct ep_softc *sc = arg;
1370 	bus_space_tag_t iot = sc->sc_iot;
1371 	bus_space_handle_t ioh = sc->sc_ioh;
1372 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1373 	u_int16_t status;
1374 	int ret = 0;
1375 
1376 	if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
1377 		return (0);
1378 
1379 
1380 	for (;;) {
1381 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1382 
1383 		if ((status & WATCHED_INTERRUPTS) == 0) {
1384 			if ((status & INTR_LATCH) == 0) {
1385 #if 0
1386 				printf("%s: intr latch cleared\n",
1387 				       device_xname(&sc->sc_dev));
1388 #endif
1389 				break;
1390 			}
1391 		}
1392 
1393 		ret = 1;
1394 
1395 		/*
1396 		 * Acknowledge any interrupts.  It's important that we do this
1397 		 * first, since there would otherwise be a race condition.
1398 		 * Due to the i386 interrupt queueing, we may get spurious
1399 		 * interrupts occasionally.
1400 		 */
1401 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1402 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
1403 
1404 #if 0
1405 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1406 
1407 		printf("%s: intr%s%s%s%s\n", device_xname(&sc->sc_dev),
1408 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
1409 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
1410 		       (status & TX_AVAIL)?" TX_AVAIL":"",
1411 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
1412 #endif
1413 
1414 		if (status & RX_COMPLETE) {
1415 			epread(sc);
1416 		}
1417 		if (status & TX_AVAIL) {
1418 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1419 			epstart(&sc->sc_ethercom.ec_if);
1420 		}
1421 		if (status & CARD_FAILURE) {
1422 			printf("%s: adapter failure (%x)\n",
1423 			    device_xname(sc->sc_dev), status);
1424 #if 1
1425 			epinit(ifp);
1426 #else
1427 			epreset(sc);
1428 #endif
1429 			return (1);
1430 		}
1431 		if (status & TX_COMPLETE) {
1432 			eptxstat(sc);
1433 			epstart(ifp);
1434 		}
1435 
1436 #if NRND > 0
1437 		if (status)
1438 			rnd_add_uint32(&sc->rnd_source, status);
1439 #endif
1440 	}
1441 
1442 	/* no more interrupts */
1443 	return (ret);
1444 }
1445 
1446 void
1447 epread(struct ep_softc *sc)
1448 {
1449 	bus_space_tag_t iot = sc->sc_iot;
1450 	bus_space_handle_t ioh = sc->sc_ioh;
1451 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1452 	struct mbuf *m;
1453 	int len;
1454 
1455 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1456 
1457 again:
1458 	if (ifp->if_flags & IFF_DEBUG) {
1459 		int err = len & ERR_MASK;
1460 		const char *s = NULL;
1461 
1462 		if (len & ERR_INCOMPLETE)
1463 			s = "incomplete packet";
1464 		else if (err == ERR_OVERRUN)
1465 			s = "packet overrun";
1466 		else if (err == ERR_RUNT)
1467 			s = "runt packet";
1468 		else if (err == ERR_ALIGNMENT)
1469 			s = "bad alignment";
1470 		else if (err == ERR_CRC)
1471 			s = "bad crc";
1472 		else if (err == ERR_OVERSIZE)
1473 			s = "oversized packet";
1474 		else if (err == ERR_DRIBBLE)
1475 			s = "dribble bits";
1476 
1477 		if (s)
1478 			printf("%s: %s\n", device_xname(sc->sc_dev), s);
1479 	}
1480 
1481 	if (len & ERR_INCOMPLETE)
1482 		return;
1483 
1484 	if (len & ERR_RX) {
1485 		++ifp->if_ierrors;
1486 		goto abort;
1487 	}
1488 
1489 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
1490 
1491 	/* Pull packet off interface. */
1492 	m = epget(sc, len);
1493 	if (m == 0) {
1494 		ifp->if_ierrors++;
1495 		goto abort;
1496 	}
1497 
1498 	++ifp->if_ipackets;
1499 
1500 	/*
1501 	 * Check if there's a BPF listener on this interface.
1502 	 * If so, hand off the raw packet to BPF.
1503 	 */
1504 	bpf_mtap(ifp, m);
1505 
1506 	(*ifp->if_input)(ifp, m);
1507 
1508 	/*
1509 	 * In periods of high traffic we can actually receive enough
1510 	 * packets so that the fifo overrun bit will be set at this point,
1511 	 * even though we just read a packet. In this case we
1512 	 * are not going to receive any more interrupts. We check for
1513 	 * this condition and read again until the fifo is not full.
1514 	 * We could simplify this test by not using epstatus(), but
1515 	 * rechecking the RX_STATUS register directly. This test could
1516 	 * result in unnecessary looping in cases where there is a new
1517 	 * packet but the fifo is not full, but it will not fix the
1518 	 * stuck behavior.
1519 	 *
1520 	 * Even with this improvement, we still get packet overrun errors
1521 	 * which are hurting performance. Maybe when I get some more time
1522 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1523 	 */
1524 	if (epstatus(sc)) {
1525 		len = bus_space_read_2(iot, ioh,
1526 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1527 		/* Check if we are stuck and reset [see XXX comment] */
1528 		if (len & ERR_INCOMPLETE) {
1529 			if (ifp->if_flags & IFF_DEBUG)
1530 				printf("%s: adapter reset\n",
1531 				    device_xname(sc->sc_dev));
1532 			epreset(sc);
1533 			return;
1534 		}
1535 		goto again;
1536 	}
1537 
1538 	return;
1539 
1540 abort:
1541 	ep_discard_rxtop(iot, ioh);
1542 
1543 }
1544 
1545 struct mbuf *
1546 epget(struct ep_softc *sc, int totlen)
1547 {
1548 	bus_space_tag_t iot = sc->sc_iot;
1549 	bus_space_handle_t ioh = sc->sc_ioh;
1550 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1551 	struct mbuf *m;
1552 	bus_size_t rxreg;
1553 	int len, remaining;
1554 	int s;
1555 	void *newdata;
1556 	u_long offset;
1557 
1558 	m = sc->mb[sc->next_mb];
1559 	sc->mb[sc->next_mb] = 0;
1560 	if (m == 0) {
1561 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1562 		if (m == 0)
1563 			return 0;
1564 	} else {
1565 		/* If the queue is no longer full, refill. */
1566 		if (sc->last_mb == sc->next_mb)
1567 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1568 
1569 		/* Convert one of our saved mbuf's. */
1570 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1571 		m->m_data = m->m_pktdat;
1572 		m->m_flags = M_PKTHDR;
1573 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1574 	}
1575 	m->m_pkthdr.rcvif = ifp;
1576 	m->m_pkthdr.len = totlen;
1577 	len = MHLEN;
1578 
1579 	/*
1580 	 * Allocate big enough space to hold whole packet, to avoid
1581 	 * allocating new mbufs on splsched().
1582 	 */
1583 	if (totlen + ALIGNBYTES > len) {
1584 		if (totlen + ALIGNBYTES > MCLBYTES) {
1585 			len = ALIGN(totlen + ALIGNBYTES);
1586 			MEXTMALLOC(m, len, M_DONTWAIT);
1587 		} else {
1588 			len = MCLBYTES;
1589 			MCLGET(m, M_DONTWAIT);
1590 		}
1591 		if ((m->m_flags & M_EXT) == 0) {
1592 			m_free(m);
1593 			return 0;
1594 		}
1595 	}
1596 
1597 	/* align the struct ip header */
1598 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
1599 	    - sizeof(struct ether_header);
1600 	m->m_data = newdata;
1601 	m->m_len = totlen;
1602 
1603 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1604 	remaining = totlen;
1605 	offset = mtod(m, u_long);
1606 
1607 	/*
1608 	 * We read the packet at a high interrupt priority level so that
1609 	 * an interrupt from another device won't cause the card's packet
1610 	 * buffer to overflow.  We choose splsched() since that blocks
1611 	 * essentially everything except for interrupts from serial
1612 	 * devices (which typically lose data if their interrupt isn't
1613 	 * serviced fast enough).
1614 	 *
1615 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1616 	 */
1617 	s = splsched();
1618 
1619 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1620 		/*
1621 		 * Prime the FIFO buffer counter (number of 16-bit
1622 		 * words about to be read from the FIFO).
1623 		 *
1624 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1625 		 * COUNTER IS NON-ZERO!
1626 		 */
1627 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1628 	}
1629 
1630 	if (ELINK_IS_BUS_32(sc->bustype)) {
1631 		/*
1632 		 * Read bytes up to the point where we are aligned.
1633 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
1634 		 * here because we're later reading 4-byte chunks.)
1635 		 */
1636 		if ((remaining > 3) && (offset & 3))  {
1637 			int count = (4 - (offset & 3));
1638 			bus_space_read_multi_1(iot, ioh,
1639 			    rxreg, (u_int8_t *) offset, count);
1640 			offset += count;
1641 			remaining -= count;
1642 		}
1643 		if (remaining > 3) {
1644 			bus_space_read_multi_stream_4(iot, ioh,
1645 			    rxreg, (u_int32_t *) offset,
1646 				    remaining >> 2);
1647 			offset += remaining & ~3;
1648 			remaining &= 3;
1649 		}
1650 		if (remaining)  {
1651 			bus_space_read_multi_1(iot, ioh,
1652 			    rxreg, (u_int8_t *) offset, remaining);
1653 		}
1654 	} else {
1655 		if ((remaining > 1) && (offset & 1))  {
1656 			bus_space_read_multi_1(iot, ioh,
1657 			    rxreg, (u_int8_t *) offset, 1);
1658 			remaining -= 1;
1659 			offset += 1;
1660 		}
1661 		if (remaining > 1) {
1662 			bus_space_read_multi_stream_2(iot, ioh,
1663 			    rxreg, (u_int16_t *) offset,
1664 			    remaining >> 1);
1665 			offset += remaining & ~1;
1666 		}
1667 		if (remaining & 1)  {
1668 				bus_space_read_multi_1(iot, ioh,
1669 			    rxreg, (u_int8_t *) offset, remaining & 1);
1670 		}
1671 	}
1672 
1673 	ep_discard_rxtop(iot, ioh);
1674 
1675 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1676 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1677 	splx(s);
1678 
1679 	return (m);
1680 }
1681 
1682 int
1683 epioctl(struct ifnet *ifp, u_long cmd, void *data)
1684 {
1685 	struct ep_softc *sc = ifp->if_softc;
1686 	struct ifreq *ifr = (struct ifreq *)data;
1687 	int s, error = 0;
1688 
1689 	s = splnet();
1690 
1691 	switch (cmd) {
1692 
1693 	case SIOCSIFMEDIA:
1694 	case SIOCGIFMEDIA:
1695 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1696 		break;
1697 
1698 	case SIOCADDMULTI:
1699 	case SIOCDELMULTI:
1700 		if (sc->enabled == 0) {
1701 			error = EIO;
1702 			break;
1703 		}
1704 
1705 	default:
1706 		error = ether_ioctl(ifp, cmd, data);
1707 
1708 		if (error == ENETRESET) {
1709 			/*
1710 			 * Multicast list has changed; set the hardware filter
1711 			 * accordingly.
1712 			 */
1713 			if (ifp->if_flags & IFF_RUNNING)
1714 				epreset(sc);
1715 			error = 0;
1716 		}
1717 		break;
1718 	}
1719 
1720 	splx(s);
1721 	return (error);
1722 }
1723 
1724 void
1725 epreset(struct ep_softc *sc)
1726 {
1727 	int s;
1728 
1729 	s = splnet();
1730 	epinit(&sc->sc_ethercom.ec_if);
1731 	splx(s);
1732 }
1733 
1734 void
1735 epwatchdog(struct ifnet *ifp)
1736 {
1737 	struct ep_softc *sc = ifp->if_softc;
1738 
1739 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1740 	++sc->sc_ethercom.ec_if.if_oerrors;
1741 
1742 	epreset(sc);
1743 }
1744 
1745 void
1746 epstop(struct ifnet *ifp, int disable)
1747 {
1748 	struct ep_softc *sc = ifp->if_softc;
1749 	bus_space_tag_t iot = sc->sc_iot;
1750 	bus_space_handle_t ioh = sc->sc_ioh;
1751 
1752 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1753 		/* Stop the one second clock. */
1754 		callout_stop(&sc->sc_mbuf_callout);
1755 
1756 		/* Down the MII. */
1757 		mii_down(&sc->sc_mii);
1758 	}
1759 
1760 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1761 		/*
1762 		 * Clear the FIFO buffer count, thus halting
1763 		 * any currently-running transactions.
1764 		 */
1765 		GO_WINDOW(1);		/* sanity */
1766 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1767 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1768 	}
1769 
1770 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1771 	ep_discard_rxtop(iot, ioh);
1772 
1773 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1774 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1775 
1776 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1777 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1778 
1779 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1780 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1781 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1782 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1783 
1784 	epmbufempty(sc);
1785 
1786 	if (disable)
1787 		epdisable(sc);
1788 
1789 	ifp->if_flags &= ~IFF_RUNNING;
1790 }
1791 
1792 
1793 /*
1794  * Before reboots, reset card completely.
1795  */
1796 static bool
1797 epshutdown(device_t self, int howto)
1798 {
1799 	struct ep_softc *sc = device_private(self);
1800 	int s = splnet();
1801 
1802 	if (sc->enabled) {
1803 		epstop(&sc->sc_ethercom.ec_if, 0);
1804 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1805 		epdisable(sc);
1806 		sc->enabled = 0;
1807 	}
1808 	splx(s);
1809 
1810 	return true;
1811 }
1812 
1813 /*
1814  * We get eeprom data from the id_port given an offset into the
1815  * eeprom.  Basically; after the ID_sequence is sent to all of
1816  * the cards; they enter the ID_CMD state where they will accept
1817  * command requests. 0x80-0xbf loads the eeprom data.  We then
1818  * read the port 16 times and with every read; the cards check
1819  * for contention (ie: if one card writes a 0 bit and another
1820  * writes a 1 bit then the host sees a 0. At the end of the cycle;
1821  * each card compares the data on the bus; if there is a difference
1822  * then that card goes into ID_WAIT state again). In the meantime;
1823  * one bit of data is returned in the AX register which is conveniently
1824  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
1825  * bit of data with each read.
1826  *
1827  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1828  */
1829 u_int16_t
1830 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
1831 {
1832 	u_int16_t data = 0;
1833 	int i;
1834 
1835 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1836 	delay(1000);
1837 	for (i = 0; i < 16; i++)
1838 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1839 	return (data);
1840 }
1841 
1842 static int
1843 epbusyeeprom(struct ep_softc *sc)
1844 {
1845 	bus_space_tag_t iot = sc->sc_iot;
1846 	bus_space_handle_t ioh = sc->sc_ioh;
1847 	bus_size_t eecmd;
1848 	int i = 100, j;
1849 	uint16_t busybit;
1850 
1851 	if (sc->bustype == ELINK_BUS_PCMCIA) {
1852 		delay(1000);
1853 		return 0;
1854 	}
1855 
1856 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1857 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1858 		busybit = CORK_EEPROM_BUSY;
1859 	} else {
1860 		eecmd = ELINK_W0_EEPROM_COMMAND;
1861 		busybit = EEPROM_BUSY;
1862 	}
1863 
1864 	j = 0;		/* bad GCC flow analysis */
1865 	while (i--) {
1866 		j = bus_space_read_2(iot, ioh, eecmd);
1867 		if (j & busybit)
1868 			delay(100);
1869 		else
1870 			break;
1871 	}
1872 	if (i == 0) {
1873 		aprint_normal("\n");
1874 		aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
1875 		return (1);
1876 	}
1877 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1878 	    (j & EEPROM_TST_MODE) != 0) {
1879 		/* XXX PnP mode? */
1880 		printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
1881 		return (1);
1882 	}
1883 	return (0);
1884 }
1885 
1886 u_int16_t
1887 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
1888 {
1889 	bus_size_t eecmd, eedata;
1890 	u_int16_t readcmd;
1891 
1892 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1893 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1894 		eedata = CORK_ASIC_EEPROM_DATA;
1895 	} else {
1896 		eecmd = ELINK_W0_EEPROM_COMMAND;
1897 		eedata = ELINK_W0_EEPROM_DATA;
1898 	}
1899 
1900 	/*
1901 	 * RoadRunner has a larger EEPROM, so a different read command
1902 	 * is required.
1903 	 */
1904 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1905 		readcmd = READ_EEPROM_RR;
1906 	else
1907 		readcmd = READ_EEPROM;
1908 
1909 	if (epbusyeeprom(sc))
1910 		return (0);		/* XXX why is eeprom busy? */
1911 
1912 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1913 
1914 	if (epbusyeeprom(sc))
1915 		return (0);		/* XXX why is eeprom busy? */
1916 
1917 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1918 }
1919 
1920 void
1921 epmbuffill(void *v)
1922 {
1923 	struct ep_softc *sc = v;
1924 	struct mbuf *m;
1925 	int s, i;
1926 
1927 	s = splnet();
1928 	i = sc->last_mb;
1929 	do {
1930 		if (sc->mb[i] == 0) {
1931 			MGET(m, M_DONTWAIT, MT_DATA);
1932 			if (m == 0)
1933 				break;
1934 			sc->mb[i] = m;
1935 		}
1936 		i = (i + 1) % MAX_MBS;
1937 	} while (i != sc->next_mb);
1938 	sc->last_mb = i;
1939 	/* If the queue was not filled, try again. */
1940 	if (sc->last_mb != sc->next_mb)
1941 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1942 	splx(s);
1943 }
1944 
1945 void
1946 epmbufempty(struct ep_softc *sc)
1947 {
1948 	int s, i;
1949 
1950 	s = splnet();
1951 	for (i = 0; i < MAX_MBS; i++) {
1952 		if (sc->mb[i]) {
1953 			m_freem(sc->mb[i]);
1954 			sc->mb[i] = NULL;
1955 		}
1956 	}
1957 	sc->last_mb = sc->next_mb = 0;
1958 	callout_stop(&sc->sc_mbuf_callout);
1959 	splx(s);
1960 }
1961 
1962 int
1963 epenable(struct ep_softc *sc)
1964 {
1965 
1966 	if (sc->enabled == 0 && sc->enable != NULL) {
1967 		if ((*sc->enable)(sc) != 0) {
1968 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
1969 			return (EIO);
1970 		}
1971 	}
1972 
1973 	sc->enabled = 1;
1974 	return (0);
1975 }
1976 
1977 void
1978 epdisable(struct ep_softc *sc)
1979 {
1980 
1981 	if (sc->enabled != 0 && sc->disable != NULL) {
1982 		(*sc->disable)(sc);
1983 		sc->enabled = 0;
1984 	}
1985 }
1986 
1987 /*
1988  * ep_activate:
1989  *
1990  *	Handle device activation/deactivation requests.
1991  */
1992 int
1993 ep_activate(device_t self, enum devact act)
1994 {
1995 	struct ep_softc *sc = device_private(self);
1996 
1997 	switch (act) {
1998 	case DVACT_DEACTIVATE:
1999 		if_deactivate(&sc->sc_ethercom.ec_if);
2000 		return 0;
2001 	default:
2002 		return EOPNOTSUPP;
2003 	}
2004 }
2005 
2006 /*
2007  * ep_detach:
2008  *
2009  *	Detach a elink3 interface.
2010  */
2011 int
2012 ep_detach(device_t self, int flags)
2013 {
2014 	struct ep_softc *sc = device_private(self);
2015 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2016 
2017 	/* Succeed now if there's no work to do. */
2018 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2019 		return (0);
2020 
2021 	epdisable(sc);
2022 
2023 	callout_stop(&sc->sc_mii_callout);
2024 	callout_stop(&sc->sc_mbuf_callout);
2025 
2026 	if (sc->ep_flags & ELINK_FLAGS_MII) {
2027 		/* Detach all PHYs */
2028 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2029 	}
2030 
2031 	/* Delete all remaining media. */
2032 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2033 
2034 #if NRND > 0
2035 	rnd_detach_source(&sc->rnd_source);
2036 #endif
2037 	ether_ifdetach(ifp);
2038 	if_detach(ifp);
2039 
2040 	pmf_device_deregister(sc->sc_dev);
2041 
2042 	return (0);
2043 }
2044 
2045 u_int32_t
2046 ep_mii_bitbang_read(device_t self)
2047 {
2048 	struct ep_softc *sc = device_private(self);
2049 
2050 	/* We're already in Window 4. */
2051 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2052 	    ELINK_W4_BOOM_PHYSMGMT));
2053 }
2054 
2055 void
2056 ep_mii_bitbang_write(device_t self, u_int32_t val)
2057 {
2058 	struct ep_softc *sc = device_private(self);
2059 
2060 	/* We're already in Window 4. */
2061 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2062 	    ELINK_W4_BOOM_PHYSMGMT, val);
2063 }
2064 
2065 int
2066 ep_mii_readreg(device_t self, int phy, int reg)
2067 {
2068 	struct ep_softc *sc = device_private(self);
2069 	int val;
2070 
2071 	GO_WINDOW(4);
2072 
2073 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2074 
2075 	GO_WINDOW(1);
2076 
2077 	return (val);
2078 }
2079 
2080 void
2081 ep_mii_writereg(device_t self, int phy, int reg, int val)
2082 {
2083 	struct ep_softc *sc = device_private(self);
2084 
2085 	GO_WINDOW(4);
2086 
2087 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2088 
2089 	GO_WINDOW(1);
2090 }
2091 
2092 void
2093 ep_statchg(device_t self)
2094 {
2095 	struct ep_softc *sc = device_private(self);
2096 	bus_space_tag_t iot = sc->sc_iot;
2097 	bus_space_handle_t ioh = sc->sc_ioh;
2098 	int mctl;
2099 
2100 	GO_WINDOW(3);
2101 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2102 	if (sc->sc_mii.mii_media_active & IFM_FDX)
2103 		mctl |= MAC_CONTROL_FDX;
2104 	else
2105 		mctl &= ~MAC_CONTROL_FDX;
2106 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2107 	GO_WINDOW(1);	/* back to operating window */
2108 }
2109 
2110 void
2111 ep_power(int why, void *arg)
2112 {
2113 	struct ep_softc *sc = arg;
2114 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2115 	int s;
2116 
2117 	s = splnet();
2118 	switch (why) {
2119 	case PWR_SUSPEND:
2120 	case PWR_STANDBY:
2121 		epstop(ifp, 1);
2122 		break;
2123 	case PWR_RESUME:
2124 		if (ifp->if_flags & IFF_UP) {
2125 			(void)epinit(ifp);
2126 		}
2127 		break;
2128 	case PWR_SOFTSUSPEND:
2129 	case PWR_SOFTSTANDBY:
2130 	case PWR_SOFTRESUME:
2131 		break;
2132 	}
2133 	splx(s);
2134 }
2135