xref: /netbsd-src/sys/dev/ic/elink3.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: elink3.c,v 1.124 2007/10/19 11:59:51 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
42  * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
43  * All rights reserved.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. All advertising materials mentioning features or use of this software
54  *    must display the following acknowledgement:
55  *      This product includes software developed by Herb Peyerl.
56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
57  *    derived from this software without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.124 2007/10/19 11:59:51 ad Exp $");
73 
74 #include "opt_inet.h"
75 #include "bpfilter.h"
76 #include "rnd.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/kernel.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/ioctl.h>
85 #include <sys/errno.h>
86 #include <sys/syslog.h>
87 #include <sys/select.h>
88 #include <sys/device.h>
89 #if NRND > 0
90 #include <sys/rnd.h>
91 #endif
92 
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_ether.h>
96 #include <net/if_media.h>
97 
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #include <net/bpfdesc.h>
101 #endif
102 
103 #include <sys/cpu.h>
104 #include <sys/bus.h>
105 #include <sys/intr.h>
106 
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include <dev/mii/mii_bitbang.h>
110 
111 #include <dev/ic/elink3var.h>
112 #include <dev/ic/elink3reg.h>
113 
114 #ifdef DEBUG
115 int epdebug = 0;
116 #endif
117 
118 /*
119  * XXX endian workaround for big-endian CPUs  with pcmcia:
120  * if stream methods for bus_space_multi are not provided, define them
121  * using non-stream bus_space_{read,write}_multi_.
122  * Assumes host CPU is same endian-ness as bus.
123  */
124 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
125 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
126 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
127 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
128 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
129 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
130 
131 /*
132  * Structure to map media-present bits in boards to ifmedia codes and
133  * printable media names. Used for table-driven ifmedia initialization.
134  */
135 struct ep_media {
136 	int	epm_mpbit;		/* media present bit */
137 	const char *epm_name;		/* name of medium */
138 	int	epm_ifmedia;		/* ifmedia word for medium */
139 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
140 };
141 
142 /*
143  * Media table for the Demon/Vortex/Boomerang chipsets.
144  *
145  * Note that MII on the Demon and Vortex (3c59x) indicates an external
146  * MII connector (for connecting an external PHY) ... I think.  Treat
147  * it as `manual' on these chips.
148  *
149  * Any Boomerang (3c90x) chips with MII really do have an internal
150  * MII and real PHYs attached; no `native' media.
151  */
152 const struct ep_media ep_vortex_media[] = {
153 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
154 	  ELINKMEDIA_10BASE_T },
155 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
156 	  ELINKMEDIA_10BASE_T },
157 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
158 	  ELINKMEDIA_AUI },
159 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
160 	  ELINKMEDIA_10BASE_2 },
161 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
162 	  ELINKMEDIA_100BASE_TX },
163 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
164 	  ELINKMEDIA_100BASE_TX },
165 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
166 	  ELINKMEDIA_100BASE_FX },
167 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
168 	  ELINKMEDIA_MII },
169 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
170 	  ELINKMEDIA_100BASE_T4 },
171 	{ 0,			NULL,		0,
172 	  0 },
173 };
174 
175 /*
176  * Media table for the older 3Com Etherlink III chipset, used
177  * in the 3c509, 3c579, and 3c589.
178  */
179 const struct ep_media ep_509_media[] = {
180 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
181 	  ELINKMEDIA_10BASE_T },
182 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
183 	  ELINKMEDIA_AUI },
184 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
185 	  ELINKMEDIA_10BASE_2 },
186 	{ 0,			NULL,		0,
187 	  0 },
188 };
189 
190 void	ep_internalconfig(struct ep_softc *sc);
191 void	ep_vortex_probemedia(struct ep_softc *sc);
192 void	ep_509_probemedia(struct ep_softc *sc);
193 
194 static void eptxstat(struct ep_softc *);
195 static int epstatus(struct ep_softc *);
196 int	epinit(struct ifnet *);
197 void	epstop(struct ifnet *, int);
198 int	epioctl(struct ifnet *, u_long, void *);
199 void	epstart(struct ifnet *);
200 void	epwatchdog(struct ifnet *);
201 void	epreset(struct ep_softc *);
202 static void epshutdown(void *);
203 void	epread(struct ep_softc *);
204 struct mbuf *epget(struct ep_softc *, int);
205 void	epmbuffill(void *);
206 void	epmbufempty(struct ep_softc *);
207 void	epsetfilter(struct ep_softc *);
208 void	ep_roadrunner_mii_enable(struct ep_softc *);
209 void	epsetmedia(struct ep_softc *);
210 
211 /* ifmedia callbacks */
212 int	ep_media_change(struct ifnet *ifp);
213 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
214 
215 /* MII callbacks */
216 int	ep_mii_readreg(struct device *, int, int);
217 void	ep_mii_writereg(struct device *, int, int, int);
218 void	ep_statchg(struct device *);
219 
220 void	ep_tick(void *);
221 
222 static int epbusyeeprom(struct ep_softc *);
223 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
224 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
225 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
226 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
227 static inline int ep_w1_reg(struct ep_softc *, int);
228 
229 /*
230  * MII bit-bang glue.
231  */
232 u_int32_t ep_mii_bitbang_read(struct device *);
233 void ep_mii_bitbang_write(struct device *, u_int32_t);
234 
235 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
236 	ep_mii_bitbang_read,
237 	ep_mii_bitbang_write,
238 	{
239 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
240 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
241 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
242 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
243 		0,			/* MII_BIT_DIR_PHY_HOST */
244 	}
245 };
246 
247 /*
248  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
249  * Window 1 registers offset!
250  */
251 static inline int
252 ep_w1_reg(sc, reg)
253 	struct ep_softc *sc;
254 	int reg;
255 {
256 
257 	switch (sc->ep_chipset) {
258 	case ELINK_CHIPSET_CORKSCREW:
259 		return (reg + 0x10);
260 
261 	case ELINK_CHIPSET_ROADRUNNER:
262 		switch (reg) {
263 		case ELINK_W1_FREE_TX:
264 		case ELINK_W1_RUNNER_RDCTL:
265 		case ELINK_W1_RUNNER_WRCTL:
266 			return (reg);
267 		}
268 		return (reg + 0x10);
269 	}
270 
271 	return (reg);
272 }
273 
274 /*
275  * Wait for any pending reset to complete.
276  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
277  * but older hardware doesn't implement it and we must delay.
278  */
279 static inline void
280 ep_finish_reset(iot, ioh)
281 	bus_space_tag_t iot;
282 	bus_space_handle_t ioh;
283 {
284 	int i;
285 
286 	for (i = 0; i < 10000; i++) {
287 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
288 		    COMMAND_IN_PROGRESS) == 0)
289 			break;
290 		DELAY(10);
291 	}
292 }
293 
294 /*
295  * Issue a (reset) command, and be sure it has completed.
296  * Used for global reset, TX_RESET, RX_RESET.
297  */
298 static inline void
299 ep_reset_cmd(sc, cmd, arg)
300 	struct ep_softc *sc;
301 	u_int cmd, arg;
302 {
303 	bus_space_tag_t iot = sc->sc_iot;
304 	bus_space_handle_t ioh = sc->sc_ioh;
305 
306 	bus_space_write_2(iot, ioh, cmd, arg);
307 	ep_finish_reset(iot, ioh);
308 }
309 
310 
311 static inline void
312 ep_discard_rxtop(iot, ioh)
313 	bus_space_tag_t iot;
314 	bus_space_handle_t ioh;
315 {
316 	int i;
317 
318 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
319 
320         /*
321 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
322 	 * every received packet (adding latency and  limiting pkt-recv rate).
323 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
324 	 * is about right.
325 	 */
326 	for (i = 0; i < 8000; i++) {
327 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
328 		    COMMAND_IN_PROGRESS) == 0)
329 		    return;
330 	}
331 
332 	/*  Didn't complete in a hurry. Do DELAY()s. */
333 	ep_finish_reset(iot, ioh);
334 }
335 
336 /*
337  * Back-end attach and configure.
338  */
339 int
340 epconfig(sc, chipset, enaddr)
341 	struct ep_softc *sc;
342 	u_short chipset;
343 	u_int8_t *enaddr;
344 {
345 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
346 	bus_space_tag_t iot = sc->sc_iot;
347 	bus_space_handle_t ioh = sc->sc_ioh;
348 	u_int16_t i;
349 	u_int8_t myla[ETHER_ADDR_LEN];
350 
351 	callout_init(&sc->sc_mii_callout, 0);
352 	callout_init(&sc->sc_mbuf_callout, 0);
353 
354 	sc->ep_chipset = chipset;
355 
356 	/*
357 	 * We could have been groveling around in other register
358 	 * windows in the front-end; make sure we're in window 0
359 	 * to read the EEPROM.
360 	 */
361 	GO_WINDOW(0);
362 
363 	if (enaddr == NULL) {
364 		/*
365 		 * Read the station address from the eeprom.
366 		 */
367 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
368 			u_int16_t x = ep_read_eeprom(sc, i);
369 			myla[(i << 1)] = x >> 8;
370 			myla[(i << 1) + 1] = x;
371 		}
372 		enaddr = myla;
373 	}
374 
375 	/*
376 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
377 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
378 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
379 	 * packet length.
380 	 * Commands to these cards implicitly upshift a packet size
381 	 * or threshold by 2 bits.
382 	 * To detect  cards with large-packet support, we probe by setting
383 	 * the transmit threshold register, then change windows and
384 	 * read back the threshold register directly, and see if the
385 	 * threshold value was shifted or not.
386 	 */
387 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
388 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
389 	GO_WINDOW(5);
390 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
391 	GO_WINDOW(1);
392 	switch (i)  {
393 	case ELINK_LARGEWIN_PROBE:
394 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
395 		sc->ep_pktlenshift = 0;
396 		break;
397 
398 	case (ELINK_LARGEWIN_PROBE << 2):
399 		sc->ep_pktlenshift = 2;
400 		break;
401 
402 	default:
403 		aprint_error(
404 		    "%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
405 		    "Interface disabled\n",
406 		    sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
407 		return (1);
408 	}
409 
410 	/*
411 	 * Ensure Tx-available interrupts are enabled for
412 	 * start the interface.
413 	 * XXX should be in epinit()?
414 	 */
415 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
416 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
417 
418 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
419 	ifp->if_softc = sc;
420 	ifp->if_start = epstart;
421 	ifp->if_ioctl = epioctl;
422 	ifp->if_watchdog = epwatchdog;
423 	ifp->if_init = epinit;
424 	ifp->if_stop = epstop;
425 	ifp->if_flags =
426 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
427 	IFQ_SET_READY(&ifp->if_snd);
428 
429 	if_attach(ifp);
430 	ether_ifattach(ifp, enaddr);
431 
432 	/*
433 	 * Finish configuration:
434 	 * determine chipset if the front-end couldn't do so,
435 	 * show board details, set media.
436 	 */
437 
438 	/*
439 	 * Print RAM size.  We also print the Ethernet address in here.
440 	 * It's extracted from the ifp, so we have to make sure it's
441 	 * been attached first.
442 	 */
443 	ep_internalconfig(sc);
444 	GO_WINDOW(0);
445 
446 	/*
447 	 * Display some additional information, if pertinent.
448 	 */
449 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
450 		aprint_normal("%s: RoadRunner FIFO buffer enabled\n",
451 		    sc->sc_dev.dv_xname);
452 
453 	/*
454 	 * Initialize our media structures and MII info.  We'll
455 	 * probe the MII if we discover that we have one.
456 	 */
457 	sc->sc_mii.mii_ifp = ifp;
458 	sc->sc_mii.mii_readreg = ep_mii_readreg;
459 	sc->sc_mii.mii_writereg = ep_mii_writereg;
460 	sc->sc_mii.mii_statchg = ep_statchg;
461 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
462 	    ep_media_status);
463 
464 	/*
465 	 * All CORKSCREW chips have MII.
466 	 */
467 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
468 		sc->ep_flags |= ELINK_FLAGS_MII;
469 
470 	/*
471 	 * Now, determine which media we have.
472 	 */
473 	switch (sc->ep_chipset) {
474 	case ELINK_CHIPSET_ROADRUNNER:
475 		if (sc->ep_flags & ELINK_FLAGS_MII) {
476 			ep_roadrunner_mii_enable(sc);
477 			GO_WINDOW(0);
478 		}
479 		/* FALLTHROUGH */
480 
481 	case ELINK_CHIPSET_CORKSCREW:
482 	case ELINK_CHIPSET_BOOMERANG:
483 		/*
484 		 * If the device has MII, probe it.  We won't be using
485 		 * any `native' media in this case, only PHYs.  If
486 		 * we don't, just treat the Boomerang like the Vortex.
487 		 */
488 		if (sc->ep_flags & ELINK_FLAGS_MII) {
489 			mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
490 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
491 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
492 				ifmedia_add(&sc->sc_mii.mii_media,
493 				    IFM_ETHER|IFM_NONE, 0, NULL);
494 				ifmedia_set(&sc->sc_mii.mii_media,
495 				    IFM_ETHER|IFM_NONE);
496 			} else {
497 				ifmedia_set(&sc->sc_mii.mii_media,
498 				    IFM_ETHER|IFM_AUTO);
499 			}
500 			break;
501 		}
502 		/* FALLTHROUGH */
503 
504 	case ELINK_CHIPSET_VORTEX:
505 		ep_vortex_probemedia(sc);
506 		break;
507 
508 	default:
509 		ep_509_probemedia(sc);
510 		break;
511 	}
512 
513 	GO_WINDOW(1);		/* Window 1 is operating window */
514 
515 #if NRND > 0
516 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
517 	    RND_TYPE_NET, 0);
518 #endif
519 
520 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
521 
522 	/*  Establish callback to reset card when we reboot. */
523 	sc->sd_hook = shutdownhook_establish(epshutdown, sc);
524 
525 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
526 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
527 
528 	/* The attach is successful. */
529 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
530 	return (0);
531 }
532 
533 
534 /*
535  * Show interface-model-independent info from window 3
536  * internal-configuration register.
537  */
538 void
539 ep_internalconfig(sc)
540 	struct ep_softc *sc;
541 {
542 	bus_space_tag_t iot = sc->sc_iot;
543 	bus_space_handle_t ioh = sc->sc_ioh;
544 
545 	u_int config0;
546 	u_int config1;
547 
548 	int  ram_size, ram_width, ram_split;
549 	/*
550 	 * NVRAM buffer Rx:Tx config names for busmastering cards
551 	 * (Demon, Vortex, and later).
552 	 */
553 	const char *const onboard_ram_config[] = {
554 		"5:3", "3:1", "1:1", "3:5" };
555 
556 	GO_WINDOW(3);
557 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
558 	config1 = (u_int)bus_space_read_2(iot, ioh,
559 	    ELINK_W3_INTERNAL_CONFIG + 2);
560 	GO_WINDOW(0);
561 
562 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
563 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
564 
565 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
566 
567 	aprint_normal("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
568 	       sc->sc_dev.dv_xname,
569 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
570 	       8 << ram_size,
571 	       (ram_width) ? "word" : "byte",
572 	       onboard_ram_config[ram_split]);
573 }
574 
575 
576 /*
577  * Find supported media on 3c509-generation hardware that doesn't have
578  * a "reset_options" register in window 3.
579  * Use the config_cntrl register  in window 0 instead.
580  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
581  * that implement  CONFIG_CTRL.  We don't have a good way to set the
582  * default active medium; punt to ifconfig  instead.
583  */
584 void
585 ep_509_probemedia(sc)
586 	struct ep_softc *sc;
587 {
588 	bus_space_tag_t iot = sc->sc_iot;
589 	bus_space_handle_t ioh = sc->sc_ioh;
590 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
591 	u_int16_t ep_w0_config, port;
592 	const struct ep_media *epm;
593 	const char *sep = "", *defmedianame = NULL;
594 	int defmedia = 0;
595 
596 	GO_WINDOW(0);
597 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
598 
599 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
600 
601 	/* Sanity check that there are any media! */
602 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
603 		aprint_error("no media present!\n");
604 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
605 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
606 		return;
607 	}
608 
609 	/*
610 	 * Get the default media from the EEPROM.
611 	 */
612 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
613 
614 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
615 
616 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
617 		if (ep_w0_config & epm->epm_mpbit) {
618 			/*
619 			 * This simple test works because 509 chipsets
620 			 * don't do full-duplex.
621 			 */
622 			if (epm->epm_epmedia == port || defmedia == 0) {
623 				defmedia = epm->epm_ifmedia;
624 				defmedianame = epm->epm_name;
625 			}
626 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
627 			    NULL);
628 			PRINT(epm->epm_name);
629 		}
630 	}
631 
632 #undef PRINT
633 
634 #ifdef DIAGNOSTIC
635 	if (defmedia == 0)
636 		panic("ep_509_probemedia: impossible");
637 #endif
638 
639 	aprint_normal(" (default %s)\n", defmedianame);
640 	ifmedia_set(ifm, defmedia);
641 }
642 
643 /*
644  * Find media present on large-packet-capable elink3 devices.
645  * Show onboard configuration of large-packet-capable elink3 devices
646  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
647  * Use media and card-version info in window 3 instead.
648  */
649 void
650 ep_vortex_probemedia(sc)
651 	struct ep_softc *sc;
652 {
653 	bus_space_tag_t iot = sc->sc_iot;
654 	bus_space_handle_t ioh = sc->sc_ioh;
655 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
656 	const struct ep_media *epm;
657 	u_int config1;
658 	int reset_options;
659 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
660 	int defmedia = 0;
661 	const char *sep = "", *defmedianame = NULL;
662 
663 	GO_WINDOW(3);
664 	config1 = (u_int)bus_space_read_2(iot, ioh,
665 	    ELINK_W3_INTERNAL_CONFIG + 2);
666 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
667 	GO_WINDOW(0);
668 
669 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
670 
671 	aprint_normal("%s: ", sc->sc_dev.dv_xname);
672 
673 	/* Sanity check that there are any media! */
674 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
675 		aprint_error("no media present!\n");
676 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
677 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
678 		return;
679 	}
680 
681 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
682 
683 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
684 		if (reset_options & epm->epm_mpbit) {
685 			/*
686 			 * Default media is a little more complicated
687 			 * on the Vortex.  We support full-duplex which
688 			 * uses the same reset options bit.
689 			 *
690 			 * XXX Check EEPROM for default to FDX?
691 			 */
692 			if (epm->epm_epmedia == default_media) {
693 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
694 					defmedia = epm->epm_ifmedia;
695 					defmedianame = epm->epm_name;
696 				}
697 			} else if (defmedia == 0) {
698 				defmedia = epm->epm_ifmedia;
699 				defmedianame = epm->epm_name;
700 			}
701 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
702 			    NULL);
703 			PRINT(epm->epm_name);
704 		}
705 	}
706 
707 #undef PRINT
708 
709 #ifdef DIAGNOSTIC
710 	if (defmedia == 0)
711 		panic("ep_vortex_probemedia: impossible");
712 #endif
713 
714 	aprint_normal(" (default %s)\n", defmedianame);
715 	ifmedia_set(ifm, defmedia);
716 }
717 
718 /*
719  * One second timer, used to tick the MII.
720  */
721 void
722 ep_tick(arg)
723 	void *arg;
724 {
725 	struct ep_softc *sc = arg;
726 	int s;
727 
728 #ifdef DIAGNOSTIC
729 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
730 		panic("ep_tick");
731 #endif
732 
733 	if (!device_is_active(&sc->sc_dev))
734 		return;
735 
736 	s = splnet();
737 	mii_tick(&sc->sc_mii);
738 	splx(s);
739 
740 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
741 }
742 
743 /*
744  * Bring device up.
745  *
746  * The order in here seems important. Otherwise we may not receive
747  * interrupts. ?!
748  */
749 int
750 epinit(ifp)
751 	struct ifnet *ifp;
752 {
753 	struct ep_softc *sc = ifp->if_softc;
754 	bus_space_tag_t iot = sc->sc_iot;
755 	bus_space_handle_t ioh = sc->sc_ioh;
756 	int i, error;
757 	const u_int8_t *addr;
758 
759 	if (!sc->enabled && (error = epenable(sc)) != 0)
760 		return (error);
761 
762 	/* Make sure any pending reset has completed before touching board */
763 	ep_finish_reset(iot, ioh);
764 
765 	/*
766 	 * Cancel any pending I/O.
767 	 */
768 	epstop(ifp, 0);
769 
770 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
771 	    && sc->bustype != ELINK_BUS_MCA) {
772 		GO_WINDOW(0);
773 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
774 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
775 		    ENABLE_DRQ_IRQ);
776 	}
777 
778 	if (sc->bustype == ELINK_BUS_PCMCIA) {
779 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
780 	}
781 
782 	GO_WINDOW(2);
783 	/* Reload the ether_addr. */
784 	addr = CLLADDR(ifp->if_sadl);
785 	for (i = 0; i < 6; i += 2)
786 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
787 		    (addr[i] << 0) | (addr[i + 1] << 8));
788 
789 	/*
790 	 * Reset the station-address receive filter.
791 	 * A bug workaround for busmastering (Vortex, Demon) cards.
792 	 */
793 	for (i = 0; i < 6; i += 2)
794 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
795 
796 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
797 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
798 
799 	GO_WINDOW(1);		/* Window 1 is operating window */
800 	for (i = 0; i < 31; i++)
801 		(void)bus_space_read_2(iot, ioh,
802 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
803 
804 	/* Set threshold for Tx-space available interrupt. */
805 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
806 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
807 
808 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
809 		/*
810 		 * Enable options in the PCMCIA LAN COR register, via
811 		 * RoadRunner Window 1.
812 		 *
813 		 * XXX MAGIC CONSTANTS!
814 		 */
815 		u_int16_t cor;
816 
817 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
818 
819 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
820 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
821 			cor |= 0x10;
822 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
823 			cor |= 0x20;
824 		bus_space_write_2(iot, ioh, 0, cor);
825 
826 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
827 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
828 
829 		if (sc->ep_flags & ELINK_FLAGS_MII) {
830 			ep_roadrunner_mii_enable(sc);
831 			GO_WINDOW(1);
832 		}
833 	}
834 
835 	/* Enable interrupts. */
836 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
837 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
838 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
839 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
840 
841 	/*
842 	 * Attempt to get rid of any stray interrupts that occurred during
843 	 * configuration.  On the i386 this isn't possible because one may
844 	 * already be queued.  However, a single stray interrupt is
845 	 * unimportant.
846 	 */
847 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
848 
849 	epsetfilter(sc);
850 	epsetmedia(sc);
851 
852 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
853 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
854 
855 	epmbuffill(sc);
856 
857 	/* Interface is now `running', with no output active. */
858 	ifp->if_flags |= IFF_RUNNING;
859 	ifp->if_flags &= ~IFF_OACTIVE;
860 
861 	if (sc->ep_flags & ELINK_FLAGS_MII) {
862 		/* Start the one second clock. */
863 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
864 	}
865 
866 	/* Attempt to start output, if any. */
867 	epstart(ifp);
868 
869 	return (0);
870 }
871 
872 
873 /*
874  * Set multicast receive filter.
875  * elink3 hardware has no selective multicast filter in hardware.
876  * Enable reception of all multicasts and filter in software.
877  */
878 void
879 epsetfilter(sc)
880 	struct ep_softc *sc;
881 {
882 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
883 
884 	GO_WINDOW(1);		/* Window 1 is operating window */
885 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
886 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
887 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
888 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
889 }
890 
891 int
892 ep_media_change(ifp)
893 	struct ifnet *ifp;
894 {
895 	struct ep_softc *sc = ifp->if_softc;
896 
897 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
898 		epreset(sc);
899 
900 	return (0);
901 }
902 
903 /*
904  * Reset and enable the MII on the RoadRunner.
905  */
906 void
907 ep_roadrunner_mii_enable(sc)
908 	struct ep_softc *sc;
909 {
910 	bus_space_tag_t iot = sc->sc_iot;
911 	bus_space_handle_t ioh = sc->sc_ioh;
912 
913 	GO_WINDOW(3);
914 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
915 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
916 	delay(1000);
917 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
918 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
919 	    ELINK_RUNNER_ENABLE_MII);
920 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
921 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
922 	delay(1000);
923 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
924 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
925 }
926 
927 /*
928  * Set the card to use the specified media.
929  */
930 void
931 epsetmedia(sc)
932 	struct ep_softc *sc;
933 {
934 	bus_space_tag_t iot = sc->sc_iot;
935 	bus_space_handle_t ioh = sc->sc_ioh;
936 
937 	/* Turn everything off.  First turn off linkbeat and UTP. */
938 	GO_WINDOW(4);
939 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
940 
941 	/* Turn off coax */
942 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
943 	delay(1000);
944 
945 	/*
946 	 * If the device has MII, select it, and then tell the
947 	 * PHY which media to use.
948 	 */
949 	if (sc->ep_flags & ELINK_FLAGS_MII) {
950 		int config0, config1;
951 
952 		GO_WINDOW(3);
953 
954 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
955 			int resopt;
956 
957 			resopt = bus_space_read_2(iot, ioh,
958 			    ELINK_W3_RESET_OPTIONS);
959 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
960 			    resopt | ELINK_RUNNER_ENABLE_MII);
961 		}
962 
963 		config0 = (u_int)bus_space_read_2(iot, ioh,
964 		    ELINK_W3_INTERNAL_CONFIG);
965 		config1 = (u_int)bus_space_read_2(iot, ioh,
966 		    ELINK_W3_INTERNAL_CONFIG + 2);
967 
968 		config1 = config1 & ~CONFIG_MEDIAMASK;
969 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
970 
971 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
972 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
973 		    config1);
974 		GO_WINDOW(1);	/* back to operating window */
975 
976 		mii_mediachg(&sc->sc_mii);
977 		return;
978 	}
979 
980 	/*
981 	 * Now turn on the selected media/transceiver.
982 	 */
983 	GO_WINDOW(4);
984 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
985 	case IFM_10_T:
986 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
987 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
988 		break;
989 
990 	case IFM_10_2:
991 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
992 		DELAY(1000);	/* 50ms not enmough? */
993 		break;
994 
995 	case IFM_100_TX:
996 	case IFM_100_FX:
997 	case IFM_100_T4:		/* XXX check documentation */
998 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
999 		    LINKBEAT_ENABLE);
1000 		DELAY(1000);	/* not strictly necessary? */
1001 		break;
1002 
1003 	case IFM_10_5:
1004 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
1005 		    SQE_ENABLE);
1006 		DELAY(1000);	/* not strictly necessary? */
1007 		break;
1008 
1009 	case IFM_MANUAL:
1010 		/*
1011 		 * Nothing to do here; we are actually enabling the
1012 		 * external PHY on the MII port.
1013 		 */
1014 		break;
1015 
1016 	case IFM_NONE:
1017 		printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1018 		return;
1019 
1020 	default:
1021 		panic("epsetmedia: impossible");
1022 	}
1023 
1024 	/*
1025 	 * Tell the chip which port to use.
1026 	 */
1027 	switch (sc->ep_chipset) {
1028 	case ELINK_CHIPSET_VORTEX:
1029 	case ELINK_CHIPSET_BOOMERANG:
1030 	    {
1031 		int mctl, config0, config1;
1032 
1033 		GO_WINDOW(3);
1034 		config0 = (u_int)bus_space_read_2(iot, ioh,
1035 		    ELINK_W3_INTERNAL_CONFIG);
1036 		config1 = (u_int)bus_space_read_2(iot, ioh,
1037 		    ELINK_W3_INTERNAL_CONFIG + 2);
1038 
1039 		config1 = config1 & ~CONFIG_MEDIAMASK;
1040 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1041 		    CONFIG_MEDIAMASK_SHIFT);
1042 
1043 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1044 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1045 		    config1);
1046 
1047 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1048 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1049 			mctl |= MAC_CONTROL_FDX;
1050 		else
1051 			mctl &= ~MAC_CONTROL_FDX;
1052 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1053 		break;
1054 	    }
1055 	default:
1056 	    {
1057 		int w0_addr_cfg;
1058 
1059 		GO_WINDOW(0);
1060 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1061 		w0_addr_cfg &= 0x3fff;
1062 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1063 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1064 		DELAY(1000);
1065 		break;
1066 	    }
1067 	}
1068 
1069 	GO_WINDOW(1);		/* Window 1 is operating window */
1070 }
1071 
1072 /*
1073  * Get currently-selected media from card.
1074  * (if_media callback, may be called before interface is brought up).
1075  */
1076 void
1077 ep_media_status(ifp, req)
1078 	struct ifnet *ifp;
1079 	struct ifmediareq *req;
1080 {
1081 	struct ep_softc *sc = ifp->if_softc;
1082 	bus_space_tag_t iot = sc->sc_iot;
1083 	bus_space_handle_t ioh = sc->sc_ioh;
1084 
1085 	if (sc->enabled == 0) {
1086 		req->ifm_active = IFM_ETHER|IFM_NONE;
1087 		req->ifm_status = 0;
1088 		return;
1089 	}
1090 
1091 	/*
1092 	 * If we have MII, go ask the PHY what's going on.
1093 	 */
1094 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1095 		mii_pollstat(&sc->sc_mii);
1096 		req->ifm_active = sc->sc_mii.mii_media_active;
1097 		req->ifm_status = sc->sc_mii.mii_media_status;
1098 		return;
1099 	}
1100 
1101 	/*
1102 	 * Ok, at this point we claim that our active media is
1103 	 * the currently selected media.  We'll update our status
1104 	 * if our chipset allows us to detect link.
1105 	 */
1106 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1107 	req->ifm_status = 0;
1108 
1109 	switch (sc->ep_chipset) {
1110 	case ELINK_CHIPSET_VORTEX:
1111 	case ELINK_CHIPSET_BOOMERANG:
1112 		GO_WINDOW(4);
1113 		req->ifm_status = IFM_AVALID;
1114 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1115 		    LINKBEAT_DETECT)
1116 			req->ifm_status |= IFM_ACTIVE;
1117 		GO_WINDOW(1);	/* back to operating window */
1118 		break;
1119 	}
1120 }
1121 
1122 
1123 
1124 /*
1125  * Start outputting on the interface.
1126  * Always called as splnet().
1127  */
1128 void
1129 epstart(ifp)
1130 	struct ifnet *ifp;
1131 {
1132 	struct ep_softc *sc = ifp->if_softc;
1133 	bus_space_tag_t iot = sc->sc_iot;
1134 	bus_space_handle_t ioh = sc->sc_ioh;
1135 	struct mbuf *m, *m0;
1136 	int sh, len, pad;
1137 	bus_size_t txreg;
1138 
1139 	/* Don't transmit if interface is busy or not running */
1140 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1141 		return;
1142 
1143 startagain:
1144 	/* Sneak a peek at the next packet */
1145 	IFQ_POLL(&ifp->if_snd, m0);
1146 	if (m0 == 0)
1147 		return;
1148 
1149 	/* We need to use m->m_pkthdr.len, so require the header */
1150 	if ((m0->m_flags & M_PKTHDR) == 0)
1151 		panic("epstart: no header mbuf");
1152 	len = m0->m_pkthdr.len;
1153 
1154 	pad = (4 - len) & 3;
1155 
1156 	/*
1157 	 * The 3c509 automatically pads short packets to minimum ethernet
1158 	 * length, but we drop packets that are too large. Perhaps we should
1159 	 * truncate them instead?
1160 	 */
1161 	if (len + pad > ETHER_MAX_LEN) {
1162 		/* packet is obviously too large: toss it */
1163 		++ifp->if_oerrors;
1164 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1165 		m_freem(m0);
1166 		goto readcheck;
1167 	}
1168 
1169 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1170 	    len + pad + 4) {
1171 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1172 		    SET_TX_AVAIL_THRESH |
1173 		    ((len + pad + 4) >> sc->ep_pktlenshift));
1174 		/* not enough room in FIFO */
1175 		ifp->if_flags |= IFF_OACTIVE;
1176 		return;
1177 	} else {
1178 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1179 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1180 	}
1181 
1182 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1183 	if (m0 == 0)		/* not really needed */
1184 		return;
1185 
1186 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1187 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1188 
1189 #if NBPFILTER > 0
1190 	if (ifp->if_bpf)
1191 		bpf_mtap(ifp->if_bpf, m0);
1192 #endif
1193 
1194 	/*
1195 	 * Do the output at a high interrupt priority level so that an
1196 	 * interrupt from another device won't cause a FIFO underrun.
1197 	 * We choose splsched() since that blocks essentially everything
1198 	 * except for interrupts from serial devices (which typically
1199 	 * lose data if their interrupt isn't serviced fast enough).
1200 	 *
1201 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1202 	 */
1203 	sh = splsched();
1204 
1205 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1206 
1207 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1208 		/*
1209 		 * Prime the FIFO buffer counter (number of 16-bit
1210 		 * words about to be written to the FIFO).
1211 		 *
1212 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1213 		 * COUNTER IS NON-ZERO!
1214 		 */
1215 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1216 		    (len + pad) >> 1);
1217 	}
1218 
1219 	bus_space_write_2(iot, ioh, txreg, len);
1220 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1221 	if (ELINK_IS_BUS_32(sc->bustype)) {
1222 		for (m = m0; m;) {
1223 			if (m->m_len > 3)  {
1224 				/* align our reads from core */
1225 				if (mtod(m, u_long) & 3)  {
1226 					u_long count =
1227 					    4 - (mtod(m, u_long) & 3);
1228 					bus_space_write_multi_1(iot, ioh,
1229 					    txreg, mtod(m, u_int8_t *), count);
1230 					m->m_data =
1231 					    (void *)(mtod(m, u_long) + count);
1232 					m->m_len -= count;
1233 				}
1234 				bus_space_write_multi_stream_4(iot, ioh,
1235 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1236 				m->m_data = (void *)(mtod(m, u_long) +
1237 					(u_long)(m->m_len & ~3));
1238 				m->m_len -= m->m_len & ~3;
1239 			}
1240 			if (m->m_len)  {
1241 				bus_space_write_multi_1(iot, ioh,
1242 				    txreg, mtod(m, u_int8_t *), m->m_len);
1243 			}
1244 			MFREE(m, m0);
1245 			m = m0;
1246 		}
1247 	} else {
1248 		for (m = m0; m;) {
1249 			if (m->m_len > 1)  {
1250 				if (mtod(m, u_long) & 1)  {
1251 					bus_space_write_1(iot, ioh,
1252 					    txreg, *(mtod(m, u_int8_t *)));
1253 					m->m_data =
1254 					    (void *)(mtod(m, u_long) + 1);
1255 					m->m_len -= 1;
1256 				}
1257 				bus_space_write_multi_stream_2(iot, ioh,
1258 				    txreg, mtod(m, u_int16_t *),
1259 				    m->m_len >> 1);
1260 			}
1261 			if (m->m_len & 1)  {
1262 				bus_space_write_1(iot, ioh, txreg,
1263 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
1264 			}
1265 			MFREE(m, m0);
1266 			m = m0;
1267 		}
1268 	}
1269 	while (pad--)
1270 		bus_space_write_1(iot, ioh, txreg, 0);
1271 
1272 	splx(sh);
1273 
1274 	++ifp->if_opackets;
1275 
1276 readcheck:
1277 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1278 	    ERR_INCOMPLETE) == 0) {
1279 		/* We received a complete packet. */
1280 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1281 
1282 		if ((status & INTR_LATCH) == 0) {
1283 			/*
1284 			 * No interrupt, read the packet and continue
1285 			 * Is  this supposed to happen? Is my motherboard
1286 			 * completely busted?
1287 			 */
1288 			epread(sc);
1289 		} else {
1290 			/* Got an interrupt, return so that it gets serviced. */
1291 			return;
1292 		}
1293 	} else {
1294 		/* Check if we are stuck and reset [see XXX comment] */
1295 		if (epstatus(sc)) {
1296 			if (ifp->if_flags & IFF_DEBUG)
1297 				printf("%s: adapter reset\n",
1298 				    sc->sc_dev.dv_xname);
1299 			epreset(sc);
1300 		}
1301 	}
1302 
1303 	goto startagain;
1304 }
1305 
1306 
1307 /*
1308  * XXX: The 3c509 card can get in a mode where both the fifo status bit
1309  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1310  *	We detect this situation and we reset the adapter.
1311  *	It happens at times when there is a lot of broadcast traffic
1312  *	on the cable (once in a blue moon).
1313  */
1314 static int
1315 epstatus(sc)
1316 	struct ep_softc *sc;
1317 {
1318 	bus_space_tag_t iot = sc->sc_iot;
1319 	bus_space_handle_t ioh = sc->sc_ioh;
1320 	u_int16_t fifost;
1321 
1322 	/*
1323 	 * Check the FIFO status and act accordingly
1324 	 */
1325 	GO_WINDOW(4);
1326 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1327 	GO_WINDOW(1);
1328 
1329 	if (fifost & FIFOS_RX_UNDERRUN) {
1330 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1331 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1332 		epreset(sc);
1333 		return 0;
1334 	}
1335 
1336 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1337 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1338 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1339 		return 1;
1340 	}
1341 
1342 	if (fifost & FIFOS_RX_OVERRUN) {
1343 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1344 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1345 		return 1;
1346 	}
1347 
1348 	if (fifost & FIFOS_TX_OVERRUN) {
1349 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1350 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1351 		epreset(sc);
1352 		return 0;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 
1359 static void
1360 eptxstat(sc)
1361 	struct ep_softc *sc;
1362 {
1363 	bus_space_tag_t iot = sc->sc_iot;
1364 	bus_space_handle_t ioh = sc->sc_ioh;
1365 	int i;
1366 
1367 	/*
1368 	 * We need to read+write TX_STATUS until we get a 0 status
1369 	 * in order to turn off the interrupt flag.
1370 	 */
1371 	while ((i = bus_space_read_2(iot, ioh,
1372 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1373 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1374 		    0x0);
1375 
1376 		if (i & TXS_JABBER) {
1377 			++sc->sc_ethercom.ec_if.if_oerrors;
1378 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1379 				printf("%s: jabber (%x)\n",
1380 				       sc->sc_dev.dv_xname, i);
1381 			epreset(sc);
1382 		} else if (i & TXS_UNDERRUN) {
1383 			++sc->sc_ethercom.ec_if.if_oerrors;
1384 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1385 				printf("%s: fifo underrun (%x) @%d\n",
1386 				       sc->sc_dev.dv_xname, i,
1387 				       sc->tx_start_thresh);
1388 			if (sc->tx_succ_ok < 100)
1389 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
1390 					    sc->tx_start_thresh + 20);
1391 			sc->tx_succ_ok = 0;
1392 			epreset(sc);
1393 		} else if (i & TXS_MAX_COLLISION) {
1394 			++sc->sc_ethercom.ec_if.if_collisions;
1395 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1396 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1397 		} else
1398 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1399 	}
1400 }
1401 
1402 int
1403 epintr(arg)
1404 	void *arg;
1405 {
1406 	struct ep_softc *sc = arg;
1407 	bus_space_tag_t iot = sc->sc_iot;
1408 	bus_space_handle_t ioh = sc->sc_ioh;
1409 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1410 	u_int16_t status;
1411 	int ret = 0;
1412 
1413 	if (sc->enabled == 0 || !device_is_active(&sc->sc_dev))
1414 		return (0);
1415 
1416 
1417 	for (;;) {
1418 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1419 
1420 		if ((status & WATCHED_INTERRUPTS) == 0) {
1421 			if ((status & INTR_LATCH) == 0) {
1422 #if 0
1423 				printf("%s: intr latch cleared\n",
1424 				       sc->sc_dev.dv_xname);
1425 #endif
1426 				break;
1427 			}
1428 		}
1429 
1430 		ret = 1;
1431 
1432 		/*
1433 		 * Acknowledge any interrupts.  It's important that we do this
1434 		 * first, since there would otherwise be a race condition.
1435 		 * Due to the i386 interrupt queueing, we may get spurious
1436 		 * interrupts occasionally.
1437 		 */
1438 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1439 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
1440 
1441 #if 0
1442 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1443 
1444 		printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1445 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
1446 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
1447 		       (status & TX_AVAIL)?" TX_AVAIL":"",
1448 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
1449 #endif
1450 
1451 		if (status & RX_COMPLETE) {
1452 			epread(sc);
1453 		}
1454 		if (status & TX_AVAIL) {
1455 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1456 			epstart(&sc->sc_ethercom.ec_if);
1457 		}
1458 		if (status & CARD_FAILURE) {
1459 			printf("%s: adapter failure (%x)\n",
1460 			    sc->sc_dev.dv_xname, status);
1461 #if 1
1462 			epinit(ifp);
1463 #else
1464 			epreset(sc);
1465 #endif
1466 			return (1);
1467 		}
1468 		if (status & TX_COMPLETE) {
1469 			eptxstat(sc);
1470 			epstart(ifp);
1471 		}
1472 
1473 #if NRND > 0
1474 		if (status)
1475 			rnd_add_uint32(&sc->rnd_source, status);
1476 #endif
1477 	}
1478 
1479 	/* no more interrupts */
1480 	return (ret);
1481 }
1482 
1483 void
1484 epread(sc)
1485 	struct ep_softc *sc;
1486 {
1487 	bus_space_tag_t iot = sc->sc_iot;
1488 	bus_space_handle_t ioh = sc->sc_ioh;
1489 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1490 	struct mbuf *m;
1491 	int len;
1492 
1493 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1494 
1495 again:
1496 	if (ifp->if_flags & IFF_DEBUG) {
1497 		int err = len & ERR_MASK;
1498 		const char *s = NULL;
1499 
1500 		if (len & ERR_INCOMPLETE)
1501 			s = "incomplete packet";
1502 		else if (err == ERR_OVERRUN)
1503 			s = "packet overrun";
1504 		else if (err == ERR_RUNT)
1505 			s = "runt packet";
1506 		else if (err == ERR_ALIGNMENT)
1507 			s = "bad alignment";
1508 		else if (err == ERR_CRC)
1509 			s = "bad crc";
1510 		else if (err == ERR_OVERSIZE)
1511 			s = "oversized packet";
1512 		else if (err == ERR_DRIBBLE)
1513 			s = "dribble bits";
1514 
1515 		if (s)
1516 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1517 	}
1518 
1519 	if (len & ERR_INCOMPLETE)
1520 		return;
1521 
1522 	if (len & ERR_RX) {
1523 		++ifp->if_ierrors;
1524 		goto abort;
1525 	}
1526 
1527 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
1528 
1529 	/* Pull packet off interface. */
1530 	m = epget(sc, len);
1531 	if (m == 0) {
1532 		ifp->if_ierrors++;
1533 		goto abort;
1534 	}
1535 
1536 	++ifp->if_ipackets;
1537 
1538 #if NBPFILTER > 0
1539 	/*
1540 	 * Check if there's a BPF listener on this interface.
1541 	 * If so, hand off the raw packet to BPF.
1542 	 */
1543 	if (ifp->if_bpf)
1544 		bpf_mtap(ifp->if_bpf, m);
1545 #endif
1546 
1547 	(*ifp->if_input)(ifp, m);
1548 
1549 	/*
1550 	 * In periods of high traffic we can actually receive enough
1551 	 * packets so that the fifo overrun bit will be set at this point,
1552 	 * even though we just read a packet. In this case we
1553 	 * are not going to receive any more interrupts. We check for
1554 	 * this condition and read again until the fifo is not full.
1555 	 * We could simplify this test by not using epstatus(), but
1556 	 * rechecking the RX_STATUS register directly. This test could
1557 	 * result in unnecessary looping in cases where there is a new
1558 	 * packet but the fifo is not full, but it will not fix the
1559 	 * stuck behavior.
1560 	 *
1561 	 * Even with this improvement, we still get packet overrun errors
1562 	 * which are hurting performance. Maybe when I get some more time
1563 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1564 	 */
1565 	if (epstatus(sc)) {
1566 		len = bus_space_read_2(iot, ioh,
1567 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1568 		/* Check if we are stuck and reset [see XXX comment] */
1569 		if (len & ERR_INCOMPLETE) {
1570 			if (ifp->if_flags & IFF_DEBUG)
1571 				printf("%s: adapter reset\n",
1572 				    sc->sc_dev.dv_xname);
1573 			epreset(sc);
1574 			return;
1575 		}
1576 		goto again;
1577 	}
1578 
1579 	return;
1580 
1581 abort:
1582 	ep_discard_rxtop(iot, ioh);
1583 
1584 }
1585 
1586 struct mbuf *
1587 epget(sc, totlen)
1588 	struct ep_softc *sc;
1589 	int totlen;
1590 {
1591 	bus_space_tag_t iot = sc->sc_iot;
1592 	bus_space_handle_t ioh = sc->sc_ioh;
1593 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1594 	struct mbuf *m;
1595 	bus_size_t rxreg;
1596 	int len, remaining;
1597 	int s;
1598 	void *newdata;
1599 	u_long offset;
1600 
1601 	m = sc->mb[sc->next_mb];
1602 	sc->mb[sc->next_mb] = 0;
1603 	if (m == 0) {
1604 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1605 		if (m == 0)
1606 			return 0;
1607 	} else {
1608 		/* If the queue is no longer full, refill. */
1609 		if (sc->last_mb == sc->next_mb)
1610 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1611 
1612 		/* Convert one of our saved mbuf's. */
1613 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1614 		m->m_data = m->m_pktdat;
1615 		m->m_flags = M_PKTHDR;
1616 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1617 	}
1618 	m->m_pkthdr.rcvif = ifp;
1619 	m->m_pkthdr.len = totlen;
1620 	len = MHLEN;
1621 
1622 	/*
1623 	 * Allocate big enough space to hold whole packet, to avoid
1624 	 * allocating new mbufs on splsched().
1625 	 */
1626 	if (totlen + ALIGNBYTES > len) {
1627 		if (totlen + ALIGNBYTES > MCLBYTES) {
1628 			len = ALIGN(totlen + ALIGNBYTES);
1629 			MEXTMALLOC(m, len, M_DONTWAIT);
1630 		} else {
1631 			len = MCLBYTES;
1632 			MCLGET(m, M_DONTWAIT);
1633 		}
1634 		if ((m->m_flags & M_EXT) == 0) {
1635 			m_free(m);
1636 			return 0;
1637 		}
1638 	}
1639 
1640 	/* align the struct ip header */
1641 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
1642 	    - sizeof(struct ether_header);
1643 	m->m_data = newdata;
1644 	m->m_len = totlen;
1645 
1646 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1647 	remaining = totlen;
1648 	offset = mtod(m, u_long);
1649 
1650 	/*
1651 	 * We read the packet at a high interrupt priority level so that
1652 	 * an interrupt from another device won't cause the card's packet
1653 	 * buffer to overflow.  We choose splsched() since that blocks
1654 	 * essentially everything except for interrupts from serial
1655 	 * devices (which typically lose data if their interrupt isn't
1656 	 * serviced fast enough).
1657 	 *
1658 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1659 	 */
1660 	s = splsched();
1661 
1662 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1663 		/*
1664 		 * Prime the FIFO buffer counter (number of 16-bit
1665 		 * words about to be read from the FIFO).
1666 		 *
1667 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1668 		 * COUNTER IS NON-ZERO!
1669 		 */
1670 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1671 	}
1672 
1673 	if (ELINK_IS_BUS_32(sc->bustype)) {
1674 		/*
1675 		 * Read bytes up to the point where we are aligned.
1676 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
1677 		 * here because we're later reading 4-byte chunks.)
1678 		 */
1679 		if ((remaining > 3) && (offset & 3))  {
1680 			int count = (4 - (offset & 3));
1681 			bus_space_read_multi_1(iot, ioh,
1682 			    rxreg, (u_int8_t *) offset, count);
1683 			offset += count;
1684 			remaining -= count;
1685 		}
1686 		if (remaining > 3) {
1687 			bus_space_read_multi_stream_4(iot, ioh,
1688 			    rxreg, (u_int32_t *) offset,
1689 				    remaining >> 2);
1690 			offset += remaining & ~3;
1691 			remaining &= 3;
1692 		}
1693 		if (remaining)  {
1694 			bus_space_read_multi_1(iot, ioh,
1695 			    rxreg, (u_int8_t *) offset, remaining);
1696 		}
1697 	} else {
1698 		if ((remaining > 1) && (offset & 1))  {
1699 			bus_space_read_multi_1(iot, ioh,
1700 			    rxreg, (u_int8_t *) offset, 1);
1701 			remaining -= 1;
1702 			offset += 1;
1703 		}
1704 		if (remaining > 1) {
1705 			bus_space_read_multi_stream_2(iot, ioh,
1706 			    rxreg, (u_int16_t *) offset,
1707 			    remaining >> 1);
1708 			offset += remaining & ~1;
1709 		}
1710 		if (remaining & 1)  {
1711 				bus_space_read_multi_1(iot, ioh,
1712 			    rxreg, (u_int8_t *) offset, remaining & 1);
1713 		}
1714 	}
1715 
1716 	ep_discard_rxtop(iot, ioh);
1717 
1718 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1719 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1720 	splx(s);
1721 
1722 	return (m);
1723 }
1724 
1725 int
1726 epioctl(ifp, cmd, data)
1727 	struct ifnet *ifp;
1728 	u_long cmd;
1729 	void *data;
1730 {
1731 	struct ep_softc *sc = ifp->if_softc;
1732 	struct ifreq *ifr = (struct ifreq *)data;
1733 	int s, error = 0;
1734 
1735 	s = splnet();
1736 
1737 	switch (cmd) {
1738 
1739 	case SIOCSIFMEDIA:
1740 	case SIOCGIFMEDIA:
1741 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1742 		break;
1743 
1744 	case SIOCADDMULTI:
1745 	case SIOCDELMULTI:
1746 		if (sc->enabled == 0) {
1747 			error = EIO;
1748 			break;
1749 		}
1750 
1751 	default:
1752 		error = ether_ioctl(ifp, cmd, data);
1753 
1754 		if (error == ENETRESET) {
1755 			/*
1756 			 * Multicast list has changed; set the hardware filter
1757 			 * accordingly.
1758 			 */
1759 			if (ifp->if_flags & IFF_RUNNING)
1760 				epreset(sc);
1761 			error = 0;
1762 		}
1763 		break;
1764 	}
1765 
1766 	splx(s);
1767 	return (error);
1768 }
1769 
1770 void
1771 epreset(sc)
1772 	struct ep_softc *sc;
1773 {
1774 	int s;
1775 
1776 	s = splnet();
1777 	epinit(&sc->sc_ethercom.ec_if);
1778 	splx(s);
1779 }
1780 
1781 void
1782 epwatchdog(ifp)
1783 	struct ifnet *ifp;
1784 {
1785 	struct ep_softc *sc = ifp->if_softc;
1786 
1787 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1788 	++sc->sc_ethercom.ec_if.if_oerrors;
1789 
1790 	epreset(sc);
1791 }
1792 
1793 void
1794 epstop(ifp, disable)
1795 	struct ifnet *ifp;
1796 	int disable;
1797 {
1798 	struct ep_softc *sc = ifp->if_softc;
1799 	bus_space_tag_t iot = sc->sc_iot;
1800 	bus_space_handle_t ioh = sc->sc_ioh;
1801 
1802 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1803 		/* Stop the one second clock. */
1804 		callout_stop(&sc->sc_mbuf_callout);
1805 
1806 		/* Down the MII. */
1807 		mii_down(&sc->sc_mii);
1808 	}
1809 
1810 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1811 		/*
1812 		 * Clear the FIFO buffer count, thus halting
1813 		 * any currently-running transactions.
1814 		 */
1815 		GO_WINDOW(1);		/* sanity */
1816 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1817 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1818 	}
1819 
1820 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1821 	ep_discard_rxtop(iot, ioh);
1822 
1823 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1824 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1825 
1826 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1827 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1828 
1829 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1830 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1831 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1832 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1833 
1834 	epmbufempty(sc);
1835 
1836 	if (disable)
1837 		epdisable(sc);
1838 
1839 	ifp->if_flags &= ~IFF_RUNNING;
1840 }
1841 
1842 
1843 /*
1844  * Before reboots, reset card completely.
1845  */
1846 static void
1847 epshutdown(arg)
1848 	void *arg;
1849 {
1850 	struct ep_softc *sc = arg;
1851 	int s = splnet();
1852 
1853 	if (sc->enabled) {
1854 		epstop(&sc->sc_ethercom.ec_if, 0);
1855 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1856 		epdisable(sc);
1857 		sc->enabled = 0;
1858 	}
1859 	splx(s);
1860 }
1861 
1862 /*
1863  * We get eeprom data from the id_port given an offset into the
1864  * eeprom.  Basically; after the ID_sequence is sent to all of
1865  * the cards; they enter the ID_CMD state where they will accept
1866  * command requests. 0x80-0xbf loads the eeprom data.  We then
1867  * read the port 16 times and with every read; the cards check
1868  * for contention (ie: if one card writes a 0 bit and another
1869  * writes a 1 bit then the host sees a 0. At the end of the cycle;
1870  * each card compares the data on the bus; if there is a difference
1871  * then that card goes into ID_WAIT state again). In the meantime;
1872  * one bit of data is returned in the AX register which is conveniently
1873  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
1874  * bit of data with each read.
1875  *
1876  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1877  */
1878 u_int16_t
1879 epreadeeprom(iot, ioh, offset)
1880 	bus_space_tag_t iot;
1881 	bus_space_handle_t ioh;
1882 	int offset;
1883 {
1884 	u_int16_t data = 0;
1885 	int i;
1886 
1887 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1888 	delay(1000);
1889 	for (i = 0; i < 16; i++)
1890 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1891 	return (data);
1892 }
1893 
1894 static int
1895 epbusyeeprom(sc)
1896 	struct ep_softc *sc;
1897 {
1898 	bus_space_tag_t iot = sc->sc_iot;
1899 	bus_space_handle_t ioh = sc->sc_ioh;
1900 	bus_size_t eecmd;
1901 	int i = 100, j;
1902 	uint16_t busybit;
1903 
1904 	if (sc->bustype == ELINK_BUS_PCMCIA) {
1905 		delay(1000);
1906 		return 0;
1907 	}
1908 
1909 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1910 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1911 		busybit = CORK_EEPROM_BUSY;
1912 	} else {
1913 		eecmd = ELINK_W0_EEPROM_COMMAND;
1914 		busybit = EEPROM_BUSY;
1915 	}
1916 
1917 	j = 0;		/* bad GCC flow analysis */
1918 	while (i--) {
1919 		j = bus_space_read_2(iot, ioh, eecmd);
1920 		if (j & busybit)
1921 			delay(100);
1922 		else
1923 			break;
1924 	}
1925 	if (i == 0) {
1926 		printf("\n%s: eeprom failed to come ready\n",
1927 		    sc->sc_dev.dv_xname);
1928 		return (1);
1929 	}
1930 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1931 	    (j & EEPROM_TST_MODE) != 0) {
1932 		/* XXX PnP mode? */
1933 		printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1934 		return (1);
1935 	}
1936 	return (0);
1937 }
1938 
1939 u_int16_t
1940 ep_read_eeprom(sc, offset)
1941 	struct ep_softc *sc;
1942 	u_int16_t offset;
1943 {
1944 	bus_size_t eecmd, eedata;
1945 	u_int16_t readcmd;
1946 
1947 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1948 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1949 		eedata = CORK_ASIC_EEPROM_DATA;
1950 	} else {
1951 		eecmd = ELINK_W0_EEPROM_COMMAND;
1952 		eedata = ELINK_W0_EEPROM_DATA;
1953 	}
1954 
1955 	/*
1956 	 * RoadRunner has a larger EEPROM, so a different read command
1957 	 * is required.
1958 	 */
1959 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1960 		readcmd = READ_EEPROM_RR;
1961 	else
1962 		readcmd = READ_EEPROM;
1963 
1964 	if (epbusyeeprom(sc))
1965 		return (0);		/* XXX why is eeprom busy? */
1966 
1967 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1968 
1969 	if (epbusyeeprom(sc))
1970 		return (0);		/* XXX why is eeprom busy? */
1971 
1972 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1973 }
1974 
1975 void
1976 epmbuffill(v)
1977 	void *v;
1978 {
1979 	struct ep_softc *sc = v;
1980 	struct mbuf *m;
1981 	int s, i;
1982 
1983 	s = splnet();
1984 	i = sc->last_mb;
1985 	do {
1986 		if (sc->mb[i] == 0) {
1987 			MGET(m, M_DONTWAIT, MT_DATA);
1988 			if (m == 0)
1989 				break;
1990 			sc->mb[i] = m;
1991 		}
1992 		i = (i + 1) % MAX_MBS;
1993 	} while (i != sc->next_mb);
1994 	sc->last_mb = i;
1995 	/* If the queue was not filled, try again. */
1996 	if (sc->last_mb != sc->next_mb)
1997 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1998 	splx(s);
1999 }
2000 
2001 void
2002 epmbufempty(sc)
2003 	struct ep_softc *sc;
2004 {
2005 	int s, i;
2006 
2007 	s = splnet();
2008 	for (i = 0; i<MAX_MBS; i++) {
2009 		if (sc->mb[i]) {
2010 			m_freem(sc->mb[i]);
2011 			sc->mb[i] = NULL;
2012 		}
2013 	}
2014 	sc->last_mb = sc->next_mb = 0;
2015 	callout_stop(&sc->sc_mbuf_callout);
2016 	splx(s);
2017 }
2018 
2019 int
2020 epenable(sc)
2021 	struct ep_softc *sc;
2022 {
2023 
2024 	if (sc->enabled == 0 && sc->enable != NULL) {
2025 		if ((*sc->enable)(sc) != 0) {
2026 			printf("%s: device enable failed\n",
2027 			    sc->sc_dev.dv_xname);
2028 			return (EIO);
2029 		}
2030 	}
2031 
2032 	sc->enabled = 1;
2033 	return (0);
2034 }
2035 
2036 void
2037 epdisable(sc)
2038 	struct ep_softc *sc;
2039 {
2040 
2041 	if (sc->enabled != 0 && sc->disable != NULL) {
2042 		(*sc->disable)(sc);
2043 		sc->enabled = 0;
2044 	}
2045 }
2046 
2047 /*
2048  * ep_activate:
2049  *
2050  *	Handle device activation/deactivation requests.
2051  */
2052 int
2053 ep_activate(self, act)
2054 	struct device *self;
2055 	enum devact act;
2056 {
2057 	struct ep_softc *sc = (struct ep_softc *)self;
2058 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2059 	int error = 0, s;
2060 
2061 	s = splnet();
2062 	switch (act) {
2063 	case DVACT_ACTIVATE:
2064 		error = EOPNOTSUPP;
2065 		break;
2066 
2067 	case DVACT_DEACTIVATE:
2068 		if (sc->ep_flags & ELINK_FLAGS_MII)
2069 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2070 			    MII_OFFSET_ANY);
2071 		if_deactivate(ifp);
2072 		break;
2073 	}
2074 	splx(s);
2075 	return (error);
2076 }
2077 
2078 /*
2079  * ep_detach:
2080  *
2081  *	Detach a elink3 interface.
2082  */
2083 int
2084 ep_detach(struct device *self, int flags)
2085 {
2086 	struct ep_softc *sc = (struct ep_softc *)self;
2087 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2088 
2089 	/* Succeed now if there's no work to do. */
2090 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2091 		return (0);
2092 
2093 	epdisable(sc);
2094 
2095 	callout_stop(&sc->sc_mii_callout);
2096 	callout_stop(&sc->sc_mbuf_callout);
2097 
2098 	if (sc->ep_flags & ELINK_FLAGS_MII) {
2099 		/* Detach all PHYs */
2100 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2101 	}
2102 
2103 	/* Delete all remaining media. */
2104 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2105 
2106 #if NRND > 0
2107 	rnd_detach_source(&sc->rnd_source);
2108 #endif
2109 	ether_ifdetach(ifp);
2110 	if_detach(ifp);
2111 
2112 	shutdownhook_disestablish(sc->sd_hook);
2113 
2114 	return (0);
2115 }
2116 
2117 u_int32_t
2118 ep_mii_bitbang_read(self)
2119 	struct device *self;
2120 {
2121 	struct ep_softc *sc = (void *) self;
2122 
2123 	/* We're already in Window 4. */
2124 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2125 	    ELINK_W4_BOOM_PHYSMGMT));
2126 }
2127 
2128 void
2129 ep_mii_bitbang_write(self, val)
2130 	struct device *self;
2131 	u_int32_t val;
2132 {
2133 	struct ep_softc *sc = (void *) self;
2134 
2135 	/* We're already in Window 4. */
2136 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2137 	    ELINK_W4_BOOM_PHYSMGMT, val);
2138 }
2139 
2140 int
2141 ep_mii_readreg(self, phy, reg)
2142 	struct device *self;
2143 	int phy, reg;
2144 {
2145 	struct ep_softc *sc = (void *) self;
2146 	int val;
2147 
2148 	GO_WINDOW(4);
2149 
2150 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2151 
2152 	GO_WINDOW(1);
2153 
2154 	return (val);
2155 }
2156 
2157 void
2158 ep_mii_writereg(self, phy, reg, val)
2159 	struct device *self;
2160 	int phy, reg, val;
2161 {
2162 	struct ep_softc *sc = (void *) self;
2163 
2164 	GO_WINDOW(4);
2165 
2166 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2167 
2168 	GO_WINDOW(1);
2169 }
2170 
2171 void
2172 ep_statchg(self)
2173 	struct device *self;
2174 {
2175 	struct ep_softc *sc = (struct ep_softc *)self;
2176 	bus_space_tag_t iot = sc->sc_iot;
2177 	bus_space_handle_t ioh = sc->sc_ioh;
2178 	int mctl;
2179 
2180 	GO_WINDOW(3);
2181 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2182 	if (sc->sc_mii.mii_media_active & IFM_FDX)
2183 		mctl |= MAC_CONTROL_FDX;
2184 	else
2185 		mctl &= ~MAC_CONTROL_FDX;
2186 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2187 	GO_WINDOW(1);	/* back to operating window */
2188 }
2189 
2190 void
2191 ep_power(int why, void *arg)
2192 {
2193 	struct ep_softc *sc = arg;
2194 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2195 	int s;
2196 
2197 	s = splnet();
2198 	switch (why) {
2199 	case PWR_SUSPEND:
2200 	case PWR_STANDBY:
2201 		epstop(ifp, 1);
2202 		break;
2203 	case PWR_RESUME:
2204 		if (ifp->if_flags & IFF_UP) {
2205 			(void)epinit(ifp);
2206 		}
2207 		break;
2208 	case PWR_SOFTSUSPEND:
2209 	case PWR_SOFTSTANDBY:
2210 	case PWR_SOFTRESUME:
2211 		break;
2212 	}
2213 	splx(s);
2214 }
2215