xref: /netbsd-src/sys/dev/ic/elink3.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: elink3.c,v 1.134 2012/10/27 17:18:20 chs Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
35  * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *      This product includes software developed by Herb Peyerl.
49  * 4. The name of Herb Peyerl may not be used to endorse or promote products
50  *    derived from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.134 2012/10/27 17:18:20 chs Exp $");
66 
67 #include "opt_inet.h"
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/callout.h>
72 #include <sys/kernel.h>
73 #include <sys/mbuf.h>
74 #include <sys/socket.h>
75 #include <sys/ioctl.h>
76 #include <sys/errno.h>
77 #include <sys/syslog.h>
78 #include <sys/select.h>
79 #include <sys/device.h>
80 #include <sys/rnd.h>
81 
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_ether.h>
85 #include <net/if_media.h>
86 
87 #include <net/bpf.h>
88 #include <net/bpfdesc.h>
89 
90 #include <sys/cpu.h>
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 
94 #include <dev/mii/mii.h>
95 #include <dev/mii/miivar.h>
96 #include <dev/mii/mii_bitbang.h>
97 
98 #include <dev/ic/elink3var.h>
99 #include <dev/ic/elink3reg.h>
100 
101 #ifdef DEBUG
102 int epdebug = 0;
103 #endif
104 
105 /*
106  * XXX endian workaround for big-endian CPUs  with pcmcia:
107  * if stream methods for bus_space_multi are not provided, define them
108  * using non-stream bus_space_{read,write}_multi_.
109  * Assumes host CPU is same endian-ness as bus.
110  */
111 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
112 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
113 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
114 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
115 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
116 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
117 
118 /*
119  * Structure to map media-present bits in boards to ifmedia codes and
120  * printable media names. Used for table-driven ifmedia initialization.
121  */
122 struct ep_media {
123 	int	epm_mpbit;		/* media present bit */
124 	const char *epm_name;		/* name of medium */
125 	int	epm_ifmedia;		/* ifmedia word for medium */
126 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
127 };
128 
129 /*
130  * Media table for the Demon/Vortex/Boomerang chipsets.
131  *
132  * Note that MII on the Demon and Vortex (3c59x) indicates an external
133  * MII connector (for connecting an external PHY) ... I think.  Treat
134  * it as `manual' on these chips.
135  *
136  * Any Boomerang (3c90x) chips with MII really do have an internal
137  * MII and real PHYs attached; no `native' media.
138  */
139 const struct ep_media ep_vortex_media[] = {
140 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
141 	  ELINKMEDIA_10BASE_T },
142 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
143 	  ELINKMEDIA_10BASE_T },
144 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
145 	  ELINKMEDIA_AUI },
146 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
147 	  ELINKMEDIA_10BASE_2 },
148 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
149 	  ELINKMEDIA_100BASE_TX },
150 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
151 	  ELINKMEDIA_100BASE_TX },
152 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
153 	  ELINKMEDIA_100BASE_FX },
154 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
155 	  ELINKMEDIA_MII },
156 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
157 	  ELINKMEDIA_100BASE_T4 },
158 	{ 0,			NULL,		0,
159 	  0 },
160 };
161 
162 /*
163  * Media table for the older 3Com Etherlink III chipset, used
164  * in the 3c509, 3c579, and 3c589.
165  */
166 const struct ep_media ep_509_media[] = {
167 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
168 	  ELINKMEDIA_10BASE_T },
169 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
170 	  ELINKMEDIA_AUI },
171 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
172 	  ELINKMEDIA_10BASE_2 },
173 	{ 0,			NULL,		0,
174 	  0 },
175 };
176 
177 void	ep_internalconfig(struct ep_softc *sc);
178 void	ep_vortex_probemedia(struct ep_softc *sc);
179 void	ep_509_probemedia(struct ep_softc *sc);
180 
181 static void eptxstat(struct ep_softc *);
182 static int epstatus(struct ep_softc *);
183 int	epinit(struct ifnet *);
184 void	epstop(struct ifnet *, int);
185 int	epioctl(struct ifnet *, u_long, void *);
186 void	epstart(struct ifnet *);
187 void	epwatchdog(struct ifnet *);
188 void	epreset(struct ep_softc *);
189 static bool epshutdown(device_t, int);
190 void	epread(struct ep_softc *);
191 struct mbuf *epget(struct ep_softc *, int);
192 void	epmbuffill(void *);
193 void	epmbufempty(struct ep_softc *);
194 void	epsetfilter(struct ep_softc *);
195 void	ep_roadrunner_mii_enable(struct ep_softc *);
196 void	epsetmedia(struct ep_softc *);
197 
198 /* ifmedia callbacks */
199 int	ep_media_change(struct ifnet *ifp);
200 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
201 
202 /* MII callbacks */
203 int	ep_mii_readreg(device_t, int, int);
204 void	ep_mii_writereg(device_t, int, int, int);
205 void	ep_statchg(struct ifnet *);
206 
207 void	ep_tick(void *);
208 
209 static int epbusyeeprom(struct ep_softc *);
210 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
211 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
212 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
213 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
214 static inline int ep_w1_reg(struct ep_softc *, int);
215 
216 /*
217  * MII bit-bang glue.
218  */
219 u_int32_t ep_mii_bitbang_read(device_t);
220 void ep_mii_bitbang_write(device_t, u_int32_t);
221 
222 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
223 	ep_mii_bitbang_read,
224 	ep_mii_bitbang_write,
225 	{
226 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
227 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
228 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
229 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
230 		0,			/* MII_BIT_DIR_PHY_HOST */
231 	}
232 };
233 
234 /*
235  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
236  * Window 1 registers offset!
237  */
238 static inline int
239 ep_w1_reg(struct ep_softc *sc, int reg)
240 {
241 
242 	switch (sc->ep_chipset) {
243 	case ELINK_CHIPSET_CORKSCREW:
244 		return (reg + 0x10);
245 
246 	case ELINK_CHIPSET_ROADRUNNER:
247 		switch (reg) {
248 		case ELINK_W1_FREE_TX:
249 		case ELINK_W1_RUNNER_RDCTL:
250 		case ELINK_W1_RUNNER_WRCTL:
251 			return (reg);
252 		}
253 		return (reg + 0x10);
254 	}
255 
256 	return (reg);
257 }
258 
259 /*
260  * Wait for any pending reset to complete.
261  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
262  * but older hardware doesn't implement it and we must delay.
263  */
264 static inline void
265 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
266 {
267 	int i;
268 
269 	for (i = 0; i < 10000; i++) {
270 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
271 		    COMMAND_IN_PROGRESS) == 0)
272 			break;
273 		DELAY(10);
274 	}
275 }
276 
277 /*
278  * Issue a (reset) command, and be sure it has completed.
279  * Used for global reset, TX_RESET, RX_RESET.
280  */
281 static inline void
282 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
283 {
284 	bus_space_tag_t iot = sc->sc_iot;
285 	bus_space_handle_t ioh = sc->sc_ioh;
286 
287 	bus_space_write_2(iot, ioh, cmd, arg);
288 	ep_finish_reset(iot, ioh);
289 }
290 
291 
292 static inline void
293 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
294 {
295 	int i;
296 
297 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
298 
299         /*
300 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
301 	 * every received packet (adding latency and  limiting pkt-recv rate).
302 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
303 	 * is about right.
304 	 */
305 	for (i = 0; i < 8000; i++) {
306 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
307 		    COMMAND_IN_PROGRESS) == 0)
308 		    return;
309 	}
310 
311 	/*  Didn't complete in a hurry. Do DELAY()s. */
312 	ep_finish_reset(iot, ioh);
313 }
314 
315 /*
316  * Back-end attach and configure.
317  */
318 int
319 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
320 {
321 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
322 	bus_space_tag_t iot = sc->sc_iot;
323 	bus_space_handle_t ioh = sc->sc_ioh;
324 	u_int16_t i;
325 	u_int8_t myla[ETHER_ADDR_LEN];
326 
327 	callout_init(&sc->sc_mii_callout, 0);
328 	callout_init(&sc->sc_mbuf_callout, 0);
329 
330 	sc->ep_chipset = chipset;
331 
332 	/*
333 	 * We could have been groveling around in other register
334 	 * windows in the front-end; make sure we're in window 0
335 	 * to read the EEPROM.
336 	 */
337 	GO_WINDOW(0);
338 
339 	if (enaddr == NULL) {
340 		/*
341 		 * Read the station address from the eeprom.
342 		 */
343 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
344 			u_int16_t x = ep_read_eeprom(sc, i);
345 			myla[(i << 1)] = x >> 8;
346 			myla[(i << 1) + 1] = x;
347 		}
348 		enaddr = myla;
349 	}
350 
351 	/*
352 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
353 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
354 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
355 	 * packet length.
356 	 * Commands to these cards implicitly upshift a packet size
357 	 * or threshold by 2 bits.
358 	 * To detect  cards with large-packet support, we probe by setting
359 	 * the transmit threshold register, then change windows and
360 	 * read back the threshold register directly, and see if the
361 	 * threshold value was shifted or not.
362 	 */
363 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
364 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
365 	GO_WINDOW(5);
366 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
367 	GO_WINDOW(1);
368 	switch (i)  {
369 	case ELINK_LARGEWIN_PROBE:
370 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
371 		sc->ep_pktlenshift = 0;
372 		break;
373 
374 	case (ELINK_LARGEWIN_PROBE << 2):
375 		sc->ep_pktlenshift = 2;
376 		break;
377 
378 	default:
379 		aprint_error_dev(sc->sc_dev,
380 		    "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
381 		    "Interface disabled\n",
382 		    ELINK_LARGEWIN_PROBE, (int) i);
383 		return (1);
384 	}
385 
386 	/*
387 	 * Ensure Tx-available interrupts are enabled for
388 	 * start the interface.
389 	 * XXX should be in epinit()?
390 	 */
391 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
392 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
393 
394 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
395 	ifp->if_softc = sc;
396 	ifp->if_start = epstart;
397 	ifp->if_ioctl = epioctl;
398 	ifp->if_watchdog = epwatchdog;
399 	ifp->if_init = epinit;
400 	ifp->if_stop = epstop;
401 	ifp->if_flags =
402 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
403 	IFQ_SET_READY(&ifp->if_snd);
404 
405 	if_attach(ifp);
406 	ether_ifattach(ifp, enaddr);
407 
408 	/*
409 	 * Finish configuration:
410 	 * determine chipset if the front-end couldn't do so,
411 	 * show board details, set media.
412 	 */
413 
414 	/*
415 	 * Print RAM size.  We also print the Ethernet address in here.
416 	 * It's extracted from the ifp, so we have to make sure it's
417 	 * been attached first.
418 	 */
419 	ep_internalconfig(sc);
420 	GO_WINDOW(0);
421 
422 	/*
423 	 * Display some additional information, if pertinent.
424 	 */
425 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
426 		aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
427 
428 	/*
429 	 * Initialize our media structures and MII info.  We'll
430 	 * probe the MII if we discover that we have one.
431 	 */
432 	sc->sc_mii.mii_ifp = ifp;
433 	sc->sc_mii.mii_readreg = ep_mii_readreg;
434 	sc->sc_mii.mii_writereg = ep_mii_writereg;
435 	sc->sc_mii.mii_statchg = ep_statchg;
436 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
437 	    ep_media_status);
438 
439 	/*
440 	 * All CORKSCREW chips have MII.
441 	 */
442 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
443 		sc->ep_flags |= ELINK_FLAGS_MII;
444 
445 	/*
446 	 * Now, determine which media we have.
447 	 */
448 	switch (sc->ep_chipset) {
449 	case ELINK_CHIPSET_ROADRUNNER:
450 		if (sc->ep_flags & ELINK_FLAGS_MII) {
451 			ep_roadrunner_mii_enable(sc);
452 			GO_WINDOW(0);
453 		}
454 		/* FALLTHROUGH */
455 
456 	case ELINK_CHIPSET_CORKSCREW:
457 	case ELINK_CHIPSET_BOOMERANG:
458 		/*
459 		 * If the device has MII, probe it.  We won't be using
460 		 * any `native' media in this case, only PHYs.  If
461 		 * we don't, just treat the Boomerang like the Vortex.
462 		 */
463 		if (sc->ep_flags & ELINK_FLAGS_MII) {
464 			mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
465 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
466 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
467 				ifmedia_add(&sc->sc_mii.mii_media,
468 				    IFM_ETHER|IFM_NONE, 0, NULL);
469 				ifmedia_set(&sc->sc_mii.mii_media,
470 				    IFM_ETHER|IFM_NONE);
471 			} else {
472 				ifmedia_set(&sc->sc_mii.mii_media,
473 				    IFM_ETHER|IFM_AUTO);
474 			}
475 			break;
476 		}
477 		/* FALLTHROUGH */
478 
479 	case ELINK_CHIPSET_VORTEX:
480 		ep_vortex_probemedia(sc);
481 		break;
482 
483 	default:
484 		ep_509_probemedia(sc);
485 		break;
486 	}
487 
488 	GO_WINDOW(1);		/* Window 1 is operating window */
489 
490 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
491 	    RND_TYPE_NET, 0);
492 
493 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
494 
495 	/*  Establish callback to reset card when we reboot. */
496 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
497 		pmf_class_network_register(sc->sc_dev, ifp);
498 	else
499 		aprint_error_dev(sc->sc_dev,
500 		    "couldn't establish power handler\n");
501 
502 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
503 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
504 
505 	/* The attach is successful. */
506 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
507 	return (0);
508 }
509 
510 
511 /*
512  * Show interface-model-independent info from window 3
513  * internal-configuration register.
514  */
515 void
516 ep_internalconfig(struct ep_softc *sc)
517 {
518 	bus_space_tag_t iot = sc->sc_iot;
519 	bus_space_handle_t ioh = sc->sc_ioh;
520 
521 	u_int config0;
522 	u_int config1;
523 
524 	int  ram_size, ram_width, ram_split;
525 	/*
526 	 * NVRAM buffer Rx:Tx config names for busmastering cards
527 	 * (Demon, Vortex, and later).
528 	 */
529 	const char *const onboard_ram_config[] = {
530 		"5:3", "3:1", "1:1", "3:5" };
531 
532 	GO_WINDOW(3);
533 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
534 	config1 = (u_int)bus_space_read_2(iot, ioh,
535 	    ELINK_W3_INTERNAL_CONFIG + 2);
536 	GO_WINDOW(0);
537 
538 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
539 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
540 
541 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
542 
543 	aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
544 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
545 	       8 << ram_size,
546 	       (ram_width) ? "word" : "byte",
547 	       onboard_ram_config[ram_split]);
548 }
549 
550 
551 /*
552  * Find supported media on 3c509-generation hardware that doesn't have
553  * a "reset_options" register in window 3.
554  * Use the config_cntrl register  in window 0 instead.
555  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
556  * that implement  CONFIG_CTRL.  We don't have a good way to set the
557  * default active medium; punt to ifconfig  instead.
558  */
559 void
560 ep_509_probemedia(struct ep_softc *sc)
561 {
562 	bus_space_tag_t iot = sc->sc_iot;
563 	bus_space_handle_t ioh = sc->sc_ioh;
564 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
565 	u_int16_t ep_w0_config, port;
566 	const struct ep_media *epm;
567 	const char *sep = "", *defmedianame = NULL;
568 	int defmedia = 0;
569 
570 	GO_WINDOW(0);
571 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
572 
573 	aprint_normal_dev(sc->sc_dev, "");
574 
575 	/* Sanity check that there are any media! */
576 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
577 		aprint_error("no media present!\n");
578 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
579 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
580 		return;
581 	}
582 
583 	/*
584 	 * Get the default media from the EEPROM.
585 	 */
586 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
587 
588 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
589 
590 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
591 		if (ep_w0_config & epm->epm_mpbit) {
592 			/*
593 			 * This simple test works because 509 chipsets
594 			 * don't do full-duplex.
595 			 */
596 			if (epm->epm_epmedia == port || defmedia == 0) {
597 				defmedia = epm->epm_ifmedia;
598 				defmedianame = epm->epm_name;
599 			}
600 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
601 			    NULL);
602 			PRINT(epm->epm_name);
603 		}
604 	}
605 
606 #undef PRINT
607 
608 #ifdef DIAGNOSTIC
609 	if (defmedia == 0)
610 		panic("ep_509_probemedia: impossible");
611 #endif
612 
613 	aprint_normal(" (default %s)\n", defmedianame);
614 	ifmedia_set(ifm, defmedia);
615 }
616 
617 /*
618  * Find media present on large-packet-capable elink3 devices.
619  * Show onboard configuration of large-packet-capable elink3 devices
620  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
621  * Use media and card-version info in window 3 instead.
622  */
623 void
624 ep_vortex_probemedia(struct ep_softc *sc)
625 {
626 	bus_space_tag_t iot = sc->sc_iot;
627 	bus_space_handle_t ioh = sc->sc_ioh;
628 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
629 	const struct ep_media *epm;
630 	u_int config1;
631 	int reset_options;
632 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
633 	int defmedia = 0;
634 	const char *sep = "", *defmedianame = NULL;
635 
636 	GO_WINDOW(3);
637 	config1 = (u_int)bus_space_read_2(iot, ioh,
638 	    ELINK_W3_INTERNAL_CONFIG + 2);
639 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
640 	GO_WINDOW(0);
641 
642 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
643 
644 	aprint_normal_dev(sc->sc_dev, "");
645 
646 	/* Sanity check that there are any media! */
647 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
648 		aprint_error("no media present!\n");
649 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
650 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
651 		return;
652 	}
653 
654 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
655 
656 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
657 		if (reset_options & epm->epm_mpbit) {
658 			/*
659 			 * Default media is a little more complicated
660 			 * on the Vortex.  We support full-duplex which
661 			 * uses the same reset options bit.
662 			 *
663 			 * XXX Check EEPROM for default to FDX?
664 			 */
665 			if (epm->epm_epmedia == default_media) {
666 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
667 					defmedia = epm->epm_ifmedia;
668 					defmedianame = epm->epm_name;
669 				}
670 			} else if (defmedia == 0) {
671 				defmedia = epm->epm_ifmedia;
672 				defmedianame = epm->epm_name;
673 			}
674 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
675 			    NULL);
676 			PRINT(epm->epm_name);
677 		}
678 	}
679 
680 #undef PRINT
681 
682 #ifdef DIAGNOSTIC
683 	if (defmedia == 0)
684 		panic("ep_vortex_probemedia: impossible");
685 #endif
686 
687 	aprint_normal(" (default %s)\n", defmedianame);
688 	ifmedia_set(ifm, defmedia);
689 }
690 
691 /*
692  * One second timer, used to tick the MII.
693  */
694 void
695 ep_tick(void *arg)
696 {
697 	struct ep_softc *sc = arg;
698 	int s;
699 
700 #ifdef DIAGNOSTIC
701 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
702 		panic("ep_tick");
703 #endif
704 
705 	if (!device_is_active(sc->sc_dev))
706 		return;
707 
708 	s = splnet();
709 	mii_tick(&sc->sc_mii);
710 	splx(s);
711 
712 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
713 }
714 
715 /*
716  * Bring device up.
717  *
718  * The order in here seems important. Otherwise we may not receive
719  * interrupts. ?!
720  */
721 int
722 epinit(struct ifnet *ifp)
723 {
724 	struct ep_softc *sc = ifp->if_softc;
725 	bus_space_tag_t iot = sc->sc_iot;
726 	bus_space_handle_t ioh = sc->sc_ioh;
727 	int i, error;
728 	const u_int8_t *addr;
729 
730 	if (!sc->enabled && (error = epenable(sc)) != 0)
731 		return (error);
732 
733 	/* Make sure any pending reset has completed before touching board */
734 	ep_finish_reset(iot, ioh);
735 
736 	/*
737 	 * Cancel any pending I/O.
738 	 */
739 	epstop(ifp, 0);
740 
741 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
742 	    && sc->bustype != ELINK_BUS_MCA) {
743 		GO_WINDOW(0);
744 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
745 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
746 		    ENABLE_DRQ_IRQ);
747 	}
748 
749 	if (sc->bustype == ELINK_BUS_PCMCIA) {
750 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
751 	}
752 
753 	GO_WINDOW(2);
754 	/* Reload the ether_addr. */
755 	addr = CLLADDR(ifp->if_sadl);
756 	for (i = 0; i < 6; i += 2)
757 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
758 		    (addr[i] << 0) | (addr[i + 1] << 8));
759 
760 	/*
761 	 * Reset the station-address receive filter.
762 	 * A bug workaround for busmastering (Vortex, Demon) cards.
763 	 */
764 	for (i = 0; i < 6; i += 2)
765 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
766 
767 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
768 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
769 
770 	GO_WINDOW(1);		/* Window 1 is operating window */
771 	for (i = 0; i < 31; i++)
772 		(void)bus_space_read_2(iot, ioh,
773 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
774 
775 	/* Set threshold for Tx-space available interrupt. */
776 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
777 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
778 
779 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
780 		/*
781 		 * Enable options in the PCMCIA LAN COR register, via
782 		 * RoadRunner Window 1.
783 		 *
784 		 * XXX MAGIC CONSTANTS!
785 		 */
786 		u_int16_t cor;
787 
788 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
789 
790 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
791 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
792 			cor |= 0x10;
793 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
794 			cor |= 0x20;
795 		bus_space_write_2(iot, ioh, 0, cor);
796 
797 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
798 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
799 
800 		if (sc->ep_flags & ELINK_FLAGS_MII) {
801 			ep_roadrunner_mii_enable(sc);
802 			GO_WINDOW(1);
803 		}
804 	}
805 
806 	/* Enable interrupts. */
807 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
808 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
809 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
810 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
811 
812 	/*
813 	 * Attempt to get rid of any stray interrupts that occurred during
814 	 * configuration.  On the i386 this isn't possible because one may
815 	 * already be queued.  However, a single stray interrupt is
816 	 * unimportant.
817 	 */
818 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
819 
820 	epsetfilter(sc);
821 	epsetmedia(sc);
822 
823 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
824 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
825 
826 	epmbuffill(sc);
827 
828 	/* Interface is now `running', with no output active. */
829 	ifp->if_flags |= IFF_RUNNING;
830 	ifp->if_flags &= ~IFF_OACTIVE;
831 
832 	if (sc->ep_flags & ELINK_FLAGS_MII) {
833 		/* Start the one second clock. */
834 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
835 	}
836 
837 	/* Attempt to start output, if any. */
838 	epstart(ifp);
839 
840 	return (0);
841 }
842 
843 
844 /*
845  * Set multicast receive filter.
846  * elink3 hardware has no selective multicast filter in hardware.
847  * Enable reception of all multicasts and filter in software.
848  */
849 void
850 epsetfilter(struct ep_softc *sc)
851 {
852 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
853 
854 	GO_WINDOW(1);		/* Window 1 is operating window */
855 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
856 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
857 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
858 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
859 }
860 
861 int
862 ep_media_change(struct ifnet *ifp)
863 {
864 	struct ep_softc *sc = ifp->if_softc;
865 
866 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
867 		epreset(sc);
868 
869 	return (0);
870 }
871 
872 /*
873  * Reset and enable the MII on the RoadRunner.
874  */
875 void
876 ep_roadrunner_mii_enable(struct ep_softc *sc)
877 {
878 	bus_space_tag_t iot = sc->sc_iot;
879 	bus_space_handle_t ioh = sc->sc_ioh;
880 
881 	GO_WINDOW(3);
882 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
883 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
884 	delay(1000);
885 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
886 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
887 	    ELINK_RUNNER_ENABLE_MII);
888 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
889 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
890 	delay(1000);
891 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
892 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
893 }
894 
895 /*
896  * Set the card to use the specified media.
897  */
898 void
899 epsetmedia(struct ep_softc *sc)
900 {
901 	bus_space_tag_t iot = sc->sc_iot;
902 	bus_space_handle_t ioh = sc->sc_ioh;
903 
904 	/* Turn everything off.  First turn off linkbeat and UTP. */
905 	GO_WINDOW(4);
906 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
907 
908 	/* Turn off coax */
909 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
910 	delay(1000);
911 
912 	/*
913 	 * If the device has MII, select it, and then tell the
914 	 * PHY which media to use.
915 	 */
916 	if (sc->ep_flags & ELINK_FLAGS_MII) {
917 		int config0, config1;
918 
919 		GO_WINDOW(3);
920 
921 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
922 			int resopt;
923 
924 			resopt = bus_space_read_2(iot, ioh,
925 			    ELINK_W3_RESET_OPTIONS);
926 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
927 			    resopt | ELINK_RUNNER_ENABLE_MII);
928 		}
929 
930 		config0 = (u_int)bus_space_read_2(iot, ioh,
931 		    ELINK_W3_INTERNAL_CONFIG);
932 		config1 = (u_int)bus_space_read_2(iot, ioh,
933 		    ELINK_W3_INTERNAL_CONFIG + 2);
934 
935 		config1 = config1 & ~CONFIG_MEDIAMASK;
936 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
937 
938 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
939 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
940 		    config1);
941 		GO_WINDOW(1);	/* back to operating window */
942 
943 		mii_mediachg(&sc->sc_mii);
944 		return;
945 	}
946 
947 	/*
948 	 * Now turn on the selected media/transceiver.
949 	 */
950 	GO_WINDOW(4);
951 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
952 	case IFM_10_T:
953 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
954 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
955 		break;
956 
957 	case IFM_10_2:
958 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
959 		DELAY(1000);	/* 50ms not enmough? */
960 		break;
961 
962 	case IFM_100_TX:
963 	case IFM_100_FX:
964 	case IFM_100_T4:		/* XXX check documentation */
965 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
966 		    LINKBEAT_ENABLE);
967 		DELAY(1000);	/* not strictly necessary? */
968 		break;
969 
970 	case IFM_10_5:
971 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
972 		    SQE_ENABLE);
973 		DELAY(1000);	/* not strictly necessary? */
974 		break;
975 
976 	case IFM_MANUAL:
977 		/*
978 		 * Nothing to do here; we are actually enabling the
979 		 * external PHY on the MII port.
980 		 */
981 		break;
982 
983 	case IFM_NONE:
984 		printf("%s: interface disabled\n", device_xname(sc->sc_dev));
985 		return;
986 
987 	default:
988 		panic("epsetmedia: impossible");
989 	}
990 
991 	/*
992 	 * Tell the chip which port to use.
993 	 */
994 	switch (sc->ep_chipset) {
995 	case ELINK_CHIPSET_VORTEX:
996 	case ELINK_CHIPSET_BOOMERANG:
997 	    {
998 		int mctl, config0, config1;
999 
1000 		GO_WINDOW(3);
1001 		config0 = (u_int)bus_space_read_2(iot, ioh,
1002 		    ELINK_W3_INTERNAL_CONFIG);
1003 		config1 = (u_int)bus_space_read_2(iot, ioh,
1004 		    ELINK_W3_INTERNAL_CONFIG + 2);
1005 
1006 		config1 = config1 & ~CONFIG_MEDIAMASK;
1007 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1008 		    CONFIG_MEDIAMASK_SHIFT);
1009 
1010 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1011 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1012 		    config1);
1013 
1014 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1015 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1016 			mctl |= MAC_CONTROL_FDX;
1017 		else
1018 			mctl &= ~MAC_CONTROL_FDX;
1019 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1020 		break;
1021 	    }
1022 	default:
1023 	    {
1024 		int w0_addr_cfg;
1025 
1026 		GO_WINDOW(0);
1027 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1028 		w0_addr_cfg &= 0x3fff;
1029 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1030 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1031 		DELAY(1000);
1032 		break;
1033 	    }
1034 	}
1035 
1036 	GO_WINDOW(1);		/* Window 1 is operating window */
1037 }
1038 
1039 /*
1040  * Get currently-selected media from card.
1041  * (if_media callback, may be called before interface is brought up).
1042  */
1043 void
1044 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
1045 {
1046 	struct ep_softc *sc = ifp->if_softc;
1047 	bus_space_tag_t iot = sc->sc_iot;
1048 	bus_space_handle_t ioh = sc->sc_ioh;
1049 
1050 	if (sc->enabled == 0) {
1051 		req->ifm_active = IFM_ETHER|IFM_NONE;
1052 		req->ifm_status = 0;
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * If we have MII, go ask the PHY what's going on.
1058 	 */
1059 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1060 		mii_pollstat(&sc->sc_mii);
1061 		req->ifm_active = sc->sc_mii.mii_media_active;
1062 		req->ifm_status = sc->sc_mii.mii_media_status;
1063 		return;
1064 	}
1065 
1066 	/*
1067 	 * Ok, at this point we claim that our active media is
1068 	 * the currently selected media.  We'll update our status
1069 	 * if our chipset allows us to detect link.
1070 	 */
1071 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1072 	req->ifm_status = 0;
1073 
1074 	switch (sc->ep_chipset) {
1075 	case ELINK_CHIPSET_VORTEX:
1076 	case ELINK_CHIPSET_BOOMERANG:
1077 		GO_WINDOW(4);
1078 		req->ifm_status = IFM_AVALID;
1079 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1080 		    LINKBEAT_DETECT)
1081 			req->ifm_status |= IFM_ACTIVE;
1082 		GO_WINDOW(1);	/* back to operating window */
1083 		break;
1084 	}
1085 }
1086 
1087 
1088 
1089 /*
1090  * Start outputting on the interface.
1091  * Always called as splnet().
1092  */
1093 void
1094 epstart(struct ifnet *ifp)
1095 {
1096 	struct ep_softc *sc = ifp->if_softc;
1097 	bus_space_tag_t iot = sc->sc_iot;
1098 	bus_space_handle_t ioh = sc->sc_ioh;
1099 	struct mbuf *m, *m0;
1100 	int sh, len, pad;
1101 	bus_size_t txreg;
1102 
1103 	/* Don't transmit if interface is busy or not running */
1104 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1105 		return;
1106 
1107 startagain:
1108 	/* Sneak a peek at the next packet */
1109 	IFQ_POLL(&ifp->if_snd, m0);
1110 	if (m0 == 0)
1111 		return;
1112 
1113 	/* We need to use m->m_pkthdr.len, so require the header */
1114 	if ((m0->m_flags & M_PKTHDR) == 0)
1115 		panic("epstart: no header mbuf");
1116 	len = m0->m_pkthdr.len;
1117 
1118 	pad = (4 - len) & 3;
1119 
1120 	/*
1121 	 * The 3c509 automatically pads short packets to minimum ethernet
1122 	 * length, but we drop packets that are too large. Perhaps we should
1123 	 * truncate them instead?
1124 	 */
1125 	if (len + pad > ETHER_MAX_LEN) {
1126 		/* packet is obviously too large: toss it */
1127 		++ifp->if_oerrors;
1128 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1129 		m_freem(m0);
1130 		goto readcheck;
1131 	}
1132 
1133 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1134 	    len + pad + 4) {
1135 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1136 		    SET_TX_AVAIL_THRESH |
1137 		    ((len + pad + 4) >> sc->ep_pktlenshift));
1138 		/* not enough room in FIFO */
1139 		ifp->if_flags |= IFF_OACTIVE;
1140 		return;
1141 	} else {
1142 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1143 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1144 	}
1145 
1146 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1147 	if (m0 == 0)		/* not really needed */
1148 		return;
1149 
1150 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1151 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1152 
1153 	bpf_mtap(ifp, m0);
1154 
1155 	/*
1156 	 * Do the output at a high interrupt priority level so that an
1157 	 * interrupt from another device won't cause a FIFO underrun.
1158 	 * We choose splsched() since that blocks essentially everything
1159 	 * except for interrupts from serial devices (which typically
1160 	 * lose data if their interrupt isn't serviced fast enough).
1161 	 *
1162 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1163 	 */
1164 	sh = splsched();
1165 
1166 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1167 
1168 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1169 		/*
1170 		 * Prime the FIFO buffer counter (number of 16-bit
1171 		 * words about to be written to the FIFO).
1172 		 *
1173 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1174 		 * COUNTER IS NON-ZERO!
1175 		 */
1176 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1177 		    (len + pad) >> 1);
1178 	}
1179 
1180 	bus_space_write_2(iot, ioh, txreg, len);
1181 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1182 	if (ELINK_IS_BUS_32(sc->bustype)) {
1183 		for (m = m0; m;) {
1184 			if (m->m_len > 3)  {
1185 				/* align our reads from core */
1186 				if (mtod(m, u_long) & 3)  {
1187 					u_long count =
1188 					    4 - (mtod(m, u_long) & 3);
1189 					bus_space_write_multi_1(iot, ioh,
1190 					    txreg, mtod(m, u_int8_t *), count);
1191 					m->m_data =
1192 					    (void *)(mtod(m, u_long) + count);
1193 					m->m_len -= count;
1194 				}
1195 				bus_space_write_multi_stream_4(iot, ioh,
1196 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1197 				m->m_data = (void *)(mtod(m, u_long) +
1198 					(u_long)(m->m_len & ~3));
1199 				m->m_len -= m->m_len & ~3;
1200 			}
1201 			if (m->m_len)  {
1202 				bus_space_write_multi_1(iot, ioh,
1203 				    txreg, mtod(m, u_int8_t *), m->m_len);
1204 			}
1205 			MFREE(m, m0);
1206 			m = m0;
1207 		}
1208 	} else {
1209 		for (m = m0; m;) {
1210 			if (m->m_len > 1)  {
1211 				if (mtod(m, u_long) & 1)  {
1212 					bus_space_write_1(iot, ioh,
1213 					    txreg, *(mtod(m, u_int8_t *)));
1214 					m->m_data =
1215 					    (void *)(mtod(m, u_long) + 1);
1216 					m->m_len -= 1;
1217 				}
1218 				bus_space_write_multi_stream_2(iot, ioh,
1219 				    txreg, mtod(m, u_int16_t *),
1220 				    m->m_len >> 1);
1221 			}
1222 			if (m->m_len & 1)  {
1223 				bus_space_write_1(iot, ioh, txreg,
1224 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
1225 			}
1226 			MFREE(m, m0);
1227 			m = m0;
1228 		}
1229 	}
1230 	while (pad--)
1231 		bus_space_write_1(iot, ioh, txreg, 0);
1232 
1233 	splx(sh);
1234 
1235 	++ifp->if_opackets;
1236 
1237 readcheck:
1238 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1239 	    ERR_INCOMPLETE) == 0) {
1240 		/* We received a complete packet. */
1241 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1242 
1243 		if ((status & INTR_LATCH) == 0) {
1244 			/*
1245 			 * No interrupt, read the packet and continue
1246 			 * Is  this supposed to happen? Is my motherboard
1247 			 * completely busted?
1248 			 */
1249 			epread(sc);
1250 		} else {
1251 			/* Got an interrupt, return so that it gets serviced. */
1252 			return;
1253 		}
1254 	} else {
1255 		/* Check if we are stuck and reset [see XXX comment] */
1256 		if (epstatus(sc)) {
1257 			if (ifp->if_flags & IFF_DEBUG)
1258 				printf("%s: adapter reset\n",
1259 				    device_xname(sc->sc_dev));
1260 			epreset(sc);
1261 		}
1262 	}
1263 
1264 	goto startagain;
1265 }
1266 
1267 
1268 /*
1269  * XXX: The 3c509 card can get in a mode where both the fifo status bit
1270  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1271  *	We detect this situation and we reset the adapter.
1272  *	It happens at times when there is a lot of broadcast traffic
1273  *	on the cable (once in a blue moon).
1274  */
1275 static int
1276 epstatus(struct ep_softc *sc)
1277 {
1278 	bus_space_tag_t iot = sc->sc_iot;
1279 	bus_space_handle_t ioh = sc->sc_ioh;
1280 	u_int16_t fifost;
1281 
1282 	/*
1283 	 * Check the FIFO status and act accordingly
1284 	 */
1285 	GO_WINDOW(4);
1286 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1287 	GO_WINDOW(1);
1288 
1289 	if (fifost & FIFOS_RX_UNDERRUN) {
1290 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1291 			printf("%s: RX underrun\n", device_xname(sc->sc_dev));
1292 		epreset(sc);
1293 		return 0;
1294 	}
1295 
1296 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1297 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1298 			printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
1299 		return 1;
1300 	}
1301 
1302 	if (fifost & FIFOS_RX_OVERRUN) {
1303 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1304 			printf("%s: RX overrun\n", device_xname(sc->sc_dev));
1305 		return 1;
1306 	}
1307 
1308 	if (fifost & FIFOS_TX_OVERRUN) {
1309 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1310 			printf("%s: TX overrun\n", device_xname(sc->sc_dev));
1311 		epreset(sc);
1312 		return 0;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 
1319 static void
1320 eptxstat(struct ep_softc *sc)
1321 {
1322 	bus_space_tag_t iot = sc->sc_iot;
1323 	bus_space_handle_t ioh = sc->sc_ioh;
1324 	int i;
1325 
1326 	/*
1327 	 * We need to read+write TX_STATUS until we get a 0 status
1328 	 * in order to turn off the interrupt flag.
1329 	 */
1330 	while ((i = bus_space_read_2(iot, ioh,
1331 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1332 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1333 		    0x0);
1334 
1335 		if (i & TXS_JABBER) {
1336 			++sc->sc_ethercom.ec_if.if_oerrors;
1337 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1338 				printf("%s: jabber (%x)\n",
1339 				       device_xname(sc->sc_dev), i);
1340 			epreset(sc);
1341 		} else if (i & TXS_UNDERRUN) {
1342 			++sc->sc_ethercom.ec_if.if_oerrors;
1343 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1344 				printf("%s: fifo underrun (%x) @%d\n",
1345 				       device_xname(sc->sc_dev), i,
1346 				       sc->tx_start_thresh);
1347 			if (sc->tx_succ_ok < 100)
1348 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
1349 					    sc->tx_start_thresh + 20);
1350 			sc->tx_succ_ok = 0;
1351 			epreset(sc);
1352 		} else if (i & TXS_MAX_COLLISION) {
1353 			++sc->sc_ethercom.ec_if.if_collisions;
1354 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1355 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1356 		} else
1357 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1358 	}
1359 }
1360 
1361 int
1362 epintr(void *arg)
1363 {
1364 	struct ep_softc *sc = arg;
1365 	bus_space_tag_t iot = sc->sc_iot;
1366 	bus_space_handle_t ioh = sc->sc_ioh;
1367 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1368 	u_int16_t status;
1369 	int ret = 0;
1370 
1371 	if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
1372 		return (0);
1373 
1374 
1375 	for (;;) {
1376 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1377 
1378 		if ((status & WATCHED_INTERRUPTS) == 0) {
1379 			if ((status & INTR_LATCH) == 0) {
1380 #if 0
1381 				printf("%s: intr latch cleared\n",
1382 				       device_xname(sc->sc_dev));
1383 #endif
1384 				break;
1385 			}
1386 		}
1387 
1388 		ret = 1;
1389 
1390 		/*
1391 		 * Acknowledge any interrupts.  It's important that we do this
1392 		 * first, since there would otherwise be a race condition.
1393 		 * Due to the i386 interrupt queueing, we may get spurious
1394 		 * interrupts occasionally.
1395 		 */
1396 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1397 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
1398 
1399 #if 0
1400 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1401 
1402 		printf("%s: intr%s%s%s%s\n", device_xname(sc->sc_dev),
1403 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
1404 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
1405 		       (status & TX_AVAIL)?" TX_AVAIL":"",
1406 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
1407 #endif
1408 
1409 		if (status & RX_COMPLETE) {
1410 			epread(sc);
1411 		}
1412 		if (status & TX_AVAIL) {
1413 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1414 			epstart(&sc->sc_ethercom.ec_if);
1415 		}
1416 		if (status & CARD_FAILURE) {
1417 			printf("%s: adapter failure (%x)\n",
1418 			    device_xname(sc->sc_dev), status);
1419 #if 1
1420 			epinit(ifp);
1421 #else
1422 			epreset(sc);
1423 #endif
1424 			return (1);
1425 		}
1426 		if (status & TX_COMPLETE) {
1427 			eptxstat(sc);
1428 			epstart(ifp);
1429 		}
1430 
1431 		if (status)
1432 			rnd_add_uint32(&sc->rnd_source, status);
1433 	}
1434 
1435 	/* no more interrupts */
1436 	return (ret);
1437 }
1438 
1439 void
1440 epread(struct ep_softc *sc)
1441 {
1442 	bus_space_tag_t iot = sc->sc_iot;
1443 	bus_space_handle_t ioh = sc->sc_ioh;
1444 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1445 	struct mbuf *m;
1446 	int len;
1447 
1448 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1449 
1450 again:
1451 	if (ifp->if_flags & IFF_DEBUG) {
1452 		int err = len & ERR_MASK;
1453 		const char *s = NULL;
1454 
1455 		if (len & ERR_INCOMPLETE)
1456 			s = "incomplete packet";
1457 		else if (err == ERR_OVERRUN)
1458 			s = "packet overrun";
1459 		else if (err == ERR_RUNT)
1460 			s = "runt packet";
1461 		else if (err == ERR_ALIGNMENT)
1462 			s = "bad alignment";
1463 		else if (err == ERR_CRC)
1464 			s = "bad crc";
1465 		else if (err == ERR_OVERSIZE)
1466 			s = "oversized packet";
1467 		else if (err == ERR_DRIBBLE)
1468 			s = "dribble bits";
1469 
1470 		if (s)
1471 			printf("%s: %s\n", device_xname(sc->sc_dev), s);
1472 	}
1473 
1474 	if (len & ERR_INCOMPLETE)
1475 		return;
1476 
1477 	if (len & ERR_RX) {
1478 		++ifp->if_ierrors;
1479 		goto abort;
1480 	}
1481 
1482 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
1483 
1484 	/* Pull packet off interface. */
1485 	m = epget(sc, len);
1486 	if (m == 0) {
1487 		ifp->if_ierrors++;
1488 		goto abort;
1489 	}
1490 
1491 	++ifp->if_ipackets;
1492 
1493 	/*
1494 	 * Check if there's a BPF listener on this interface.
1495 	 * If so, hand off the raw packet to BPF.
1496 	 */
1497 	bpf_mtap(ifp, m);
1498 
1499 	(*ifp->if_input)(ifp, m);
1500 
1501 	/*
1502 	 * In periods of high traffic we can actually receive enough
1503 	 * packets so that the fifo overrun bit will be set at this point,
1504 	 * even though we just read a packet. In this case we
1505 	 * are not going to receive any more interrupts. We check for
1506 	 * this condition and read again until the fifo is not full.
1507 	 * We could simplify this test by not using epstatus(), but
1508 	 * rechecking the RX_STATUS register directly. This test could
1509 	 * result in unnecessary looping in cases where there is a new
1510 	 * packet but the fifo is not full, but it will not fix the
1511 	 * stuck behavior.
1512 	 *
1513 	 * Even with this improvement, we still get packet overrun errors
1514 	 * which are hurting performance. Maybe when I get some more time
1515 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1516 	 */
1517 	if (epstatus(sc)) {
1518 		len = bus_space_read_2(iot, ioh,
1519 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1520 		/* Check if we are stuck and reset [see XXX comment] */
1521 		if (len & ERR_INCOMPLETE) {
1522 			if (ifp->if_flags & IFF_DEBUG)
1523 				printf("%s: adapter reset\n",
1524 				    device_xname(sc->sc_dev));
1525 			epreset(sc);
1526 			return;
1527 		}
1528 		goto again;
1529 	}
1530 
1531 	return;
1532 
1533 abort:
1534 	ep_discard_rxtop(iot, ioh);
1535 
1536 }
1537 
1538 struct mbuf *
1539 epget(struct ep_softc *sc, int totlen)
1540 {
1541 	bus_space_tag_t iot = sc->sc_iot;
1542 	bus_space_handle_t ioh = sc->sc_ioh;
1543 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1544 	struct mbuf *m;
1545 	bus_size_t rxreg;
1546 	int len, remaining;
1547 	int s;
1548 	void *newdata;
1549 	u_long offset;
1550 
1551 	m = sc->mb[sc->next_mb];
1552 	sc->mb[sc->next_mb] = 0;
1553 	if (m == 0) {
1554 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1555 		if (m == 0)
1556 			return 0;
1557 	} else {
1558 		/* If the queue is no longer full, refill. */
1559 		if (sc->last_mb == sc->next_mb)
1560 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1561 
1562 		/* Convert one of our saved mbuf's. */
1563 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1564 		m->m_data = m->m_pktdat;
1565 		m->m_flags = M_PKTHDR;
1566 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1567 	}
1568 	m->m_pkthdr.rcvif = ifp;
1569 	m->m_pkthdr.len = totlen;
1570 	len = MHLEN;
1571 
1572 	/*
1573 	 * Allocate big enough space to hold whole packet, to avoid
1574 	 * allocating new mbufs on splsched().
1575 	 */
1576 	if (totlen + ALIGNBYTES > len) {
1577 		if (totlen + ALIGNBYTES > MCLBYTES) {
1578 			len = ALIGN(totlen + ALIGNBYTES);
1579 			MEXTMALLOC(m, len, M_DONTWAIT);
1580 		} else {
1581 			len = MCLBYTES;
1582 			MCLGET(m, M_DONTWAIT);
1583 		}
1584 		if ((m->m_flags & M_EXT) == 0) {
1585 			m_free(m);
1586 			return 0;
1587 		}
1588 	}
1589 
1590 	/* align the struct ip header */
1591 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
1592 	    - sizeof(struct ether_header);
1593 	m->m_data = newdata;
1594 	m->m_len = totlen;
1595 
1596 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1597 	remaining = totlen;
1598 	offset = mtod(m, u_long);
1599 
1600 	/*
1601 	 * We read the packet at a high interrupt priority level so that
1602 	 * an interrupt from another device won't cause the card's packet
1603 	 * buffer to overflow.  We choose splsched() since that blocks
1604 	 * essentially everything except for interrupts from serial
1605 	 * devices (which typically lose data if their interrupt isn't
1606 	 * serviced fast enough).
1607 	 *
1608 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1609 	 */
1610 	s = splsched();
1611 
1612 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1613 		/*
1614 		 * Prime the FIFO buffer counter (number of 16-bit
1615 		 * words about to be read from the FIFO).
1616 		 *
1617 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1618 		 * COUNTER IS NON-ZERO!
1619 		 */
1620 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1621 	}
1622 
1623 	if (ELINK_IS_BUS_32(sc->bustype)) {
1624 		/*
1625 		 * Read bytes up to the point where we are aligned.
1626 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
1627 		 * here because we're later reading 4-byte chunks.)
1628 		 */
1629 		if ((remaining > 3) && (offset & 3))  {
1630 			int count = (4 - (offset & 3));
1631 			bus_space_read_multi_1(iot, ioh,
1632 			    rxreg, (u_int8_t *) offset, count);
1633 			offset += count;
1634 			remaining -= count;
1635 		}
1636 		if (remaining > 3) {
1637 			bus_space_read_multi_stream_4(iot, ioh,
1638 			    rxreg, (u_int32_t *) offset,
1639 				    remaining >> 2);
1640 			offset += remaining & ~3;
1641 			remaining &= 3;
1642 		}
1643 		if (remaining)  {
1644 			bus_space_read_multi_1(iot, ioh,
1645 			    rxreg, (u_int8_t *) offset, remaining);
1646 		}
1647 	} else {
1648 		if ((remaining > 1) && (offset & 1))  {
1649 			bus_space_read_multi_1(iot, ioh,
1650 			    rxreg, (u_int8_t *) offset, 1);
1651 			remaining -= 1;
1652 			offset += 1;
1653 		}
1654 		if (remaining > 1) {
1655 			bus_space_read_multi_stream_2(iot, ioh,
1656 			    rxreg, (u_int16_t *) offset,
1657 			    remaining >> 1);
1658 			offset += remaining & ~1;
1659 		}
1660 		if (remaining & 1)  {
1661 				bus_space_read_multi_1(iot, ioh,
1662 			    rxreg, (u_int8_t *) offset, remaining & 1);
1663 		}
1664 	}
1665 
1666 	ep_discard_rxtop(iot, ioh);
1667 
1668 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1669 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1670 	splx(s);
1671 
1672 	return (m);
1673 }
1674 
1675 int
1676 epioctl(struct ifnet *ifp, u_long cmd, void *data)
1677 {
1678 	struct ep_softc *sc = ifp->if_softc;
1679 	struct ifreq *ifr = (struct ifreq *)data;
1680 	int s, error = 0;
1681 
1682 	s = splnet();
1683 
1684 	switch (cmd) {
1685 
1686 	case SIOCSIFMEDIA:
1687 	case SIOCGIFMEDIA:
1688 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1689 		break;
1690 
1691 	case SIOCADDMULTI:
1692 	case SIOCDELMULTI:
1693 		if (sc->enabled == 0) {
1694 			error = EIO;
1695 			break;
1696 		}
1697 
1698 	default:
1699 		error = ether_ioctl(ifp, cmd, data);
1700 
1701 		if (error == ENETRESET) {
1702 			/*
1703 			 * Multicast list has changed; set the hardware filter
1704 			 * accordingly.
1705 			 */
1706 			if (ifp->if_flags & IFF_RUNNING)
1707 				epreset(sc);
1708 			error = 0;
1709 		}
1710 		break;
1711 	}
1712 
1713 	splx(s);
1714 	return (error);
1715 }
1716 
1717 void
1718 epreset(struct ep_softc *sc)
1719 {
1720 	int s;
1721 
1722 	s = splnet();
1723 	epinit(&sc->sc_ethercom.ec_if);
1724 	splx(s);
1725 }
1726 
1727 void
1728 epwatchdog(struct ifnet *ifp)
1729 {
1730 	struct ep_softc *sc = ifp->if_softc;
1731 
1732 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1733 	++sc->sc_ethercom.ec_if.if_oerrors;
1734 
1735 	epreset(sc);
1736 }
1737 
1738 void
1739 epstop(struct ifnet *ifp, int disable)
1740 {
1741 	struct ep_softc *sc = ifp->if_softc;
1742 	bus_space_tag_t iot = sc->sc_iot;
1743 	bus_space_handle_t ioh = sc->sc_ioh;
1744 
1745 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1746 		/* Stop the one second clock. */
1747 		callout_stop(&sc->sc_mbuf_callout);
1748 
1749 		/* Down the MII. */
1750 		mii_down(&sc->sc_mii);
1751 	}
1752 
1753 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1754 		/*
1755 		 * Clear the FIFO buffer count, thus halting
1756 		 * any currently-running transactions.
1757 		 */
1758 		GO_WINDOW(1);		/* sanity */
1759 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1760 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1761 	}
1762 
1763 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1764 	ep_discard_rxtop(iot, ioh);
1765 
1766 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1767 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1768 
1769 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1770 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1771 
1772 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1773 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1774 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1775 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1776 
1777 	epmbufempty(sc);
1778 
1779 	if (disable)
1780 		epdisable(sc);
1781 
1782 	ifp->if_flags &= ~IFF_RUNNING;
1783 }
1784 
1785 
1786 /*
1787  * Before reboots, reset card completely.
1788  */
1789 static bool
1790 epshutdown(device_t self, int howto)
1791 {
1792 	struct ep_softc *sc = device_private(self);
1793 	int s = splnet();
1794 
1795 	if (sc->enabled) {
1796 		epstop(&sc->sc_ethercom.ec_if, 0);
1797 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1798 		epdisable(sc);
1799 		sc->enabled = 0;
1800 	}
1801 	splx(s);
1802 
1803 	return true;
1804 }
1805 
1806 /*
1807  * We get eeprom data from the id_port given an offset into the
1808  * eeprom.  Basically; after the ID_sequence is sent to all of
1809  * the cards; they enter the ID_CMD state where they will accept
1810  * command requests. 0x80-0xbf loads the eeprom data.  We then
1811  * read the port 16 times and with every read; the cards check
1812  * for contention (ie: if one card writes a 0 bit and another
1813  * writes a 1 bit then the host sees a 0. At the end of the cycle;
1814  * each card compares the data on the bus; if there is a difference
1815  * then that card goes into ID_WAIT state again). In the meantime;
1816  * one bit of data is returned in the AX register which is conveniently
1817  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
1818  * bit of data with each read.
1819  *
1820  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1821  */
1822 u_int16_t
1823 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
1824 {
1825 	u_int16_t data = 0;
1826 	int i;
1827 
1828 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1829 	delay(1000);
1830 	for (i = 0; i < 16; i++)
1831 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1832 	return (data);
1833 }
1834 
1835 static int
1836 epbusyeeprom(struct ep_softc *sc)
1837 {
1838 	bus_space_tag_t iot = sc->sc_iot;
1839 	bus_space_handle_t ioh = sc->sc_ioh;
1840 	bus_size_t eecmd;
1841 	int i = 100, j;
1842 	uint16_t busybit;
1843 
1844 	if (sc->bustype == ELINK_BUS_PCMCIA) {
1845 		delay(1000);
1846 		return 0;
1847 	}
1848 
1849 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1850 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1851 		busybit = CORK_EEPROM_BUSY;
1852 	} else {
1853 		eecmd = ELINK_W0_EEPROM_COMMAND;
1854 		busybit = EEPROM_BUSY;
1855 	}
1856 
1857 	j = 0;		/* bad GCC flow analysis */
1858 	while (i--) {
1859 		j = bus_space_read_2(iot, ioh, eecmd);
1860 		if (j & busybit)
1861 			delay(100);
1862 		else
1863 			break;
1864 	}
1865 	if (i == 0) {
1866 		aprint_normal("\n");
1867 		aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
1868 		return (1);
1869 	}
1870 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1871 	    (j & EEPROM_TST_MODE) != 0) {
1872 		/* XXX PnP mode? */
1873 		printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
1874 		return (1);
1875 	}
1876 	return (0);
1877 }
1878 
1879 u_int16_t
1880 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
1881 {
1882 	bus_size_t eecmd, eedata;
1883 	u_int16_t readcmd;
1884 
1885 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1886 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1887 		eedata = CORK_ASIC_EEPROM_DATA;
1888 	} else {
1889 		eecmd = ELINK_W0_EEPROM_COMMAND;
1890 		eedata = ELINK_W0_EEPROM_DATA;
1891 	}
1892 
1893 	/*
1894 	 * RoadRunner has a larger EEPROM, so a different read command
1895 	 * is required.
1896 	 */
1897 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1898 		readcmd = READ_EEPROM_RR;
1899 	else
1900 		readcmd = READ_EEPROM;
1901 
1902 	if (epbusyeeprom(sc))
1903 		return (0);		/* XXX why is eeprom busy? */
1904 
1905 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1906 
1907 	if (epbusyeeprom(sc))
1908 		return (0);		/* XXX why is eeprom busy? */
1909 
1910 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1911 }
1912 
1913 void
1914 epmbuffill(void *v)
1915 {
1916 	struct ep_softc *sc = v;
1917 	struct mbuf *m;
1918 	int s, i;
1919 
1920 	s = splnet();
1921 	i = sc->last_mb;
1922 	do {
1923 		if (sc->mb[i] == 0) {
1924 			MGET(m, M_DONTWAIT, MT_DATA);
1925 			if (m == 0)
1926 				break;
1927 			sc->mb[i] = m;
1928 		}
1929 		i = (i + 1) % MAX_MBS;
1930 	} while (i != sc->next_mb);
1931 	sc->last_mb = i;
1932 	/* If the queue was not filled, try again. */
1933 	if (sc->last_mb != sc->next_mb)
1934 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1935 	splx(s);
1936 }
1937 
1938 void
1939 epmbufempty(struct ep_softc *sc)
1940 {
1941 	int s, i;
1942 
1943 	s = splnet();
1944 	for (i = 0; i < MAX_MBS; i++) {
1945 		if (sc->mb[i]) {
1946 			m_freem(sc->mb[i]);
1947 			sc->mb[i] = NULL;
1948 		}
1949 	}
1950 	sc->last_mb = sc->next_mb = 0;
1951 	callout_stop(&sc->sc_mbuf_callout);
1952 	splx(s);
1953 }
1954 
1955 int
1956 epenable(struct ep_softc *sc)
1957 {
1958 
1959 	if (sc->enabled == 0 && sc->enable != NULL) {
1960 		if ((*sc->enable)(sc) != 0) {
1961 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
1962 			return (EIO);
1963 		}
1964 	}
1965 
1966 	sc->enabled = 1;
1967 	return (0);
1968 }
1969 
1970 void
1971 epdisable(struct ep_softc *sc)
1972 {
1973 
1974 	if (sc->enabled != 0 && sc->disable != NULL) {
1975 		(*sc->disable)(sc);
1976 		sc->enabled = 0;
1977 	}
1978 }
1979 
1980 /*
1981  * ep_activate:
1982  *
1983  *	Handle device activation/deactivation requests.
1984  */
1985 int
1986 ep_activate(device_t self, enum devact act)
1987 {
1988 	struct ep_softc *sc = device_private(self);
1989 
1990 	switch (act) {
1991 	case DVACT_DEACTIVATE:
1992 		if_deactivate(&sc->sc_ethercom.ec_if);
1993 		return 0;
1994 	default:
1995 		return EOPNOTSUPP;
1996 	}
1997 }
1998 
1999 /*
2000  * ep_detach:
2001  *
2002  *	Detach a elink3 interface.
2003  */
2004 int
2005 ep_detach(device_t self, int flags)
2006 {
2007 	struct ep_softc *sc = device_private(self);
2008 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2009 
2010 	/* Succeed now if there's no work to do. */
2011 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2012 		return (0);
2013 
2014 	epdisable(sc);
2015 
2016 	callout_stop(&sc->sc_mii_callout);
2017 	callout_stop(&sc->sc_mbuf_callout);
2018 
2019 	if (sc->ep_flags & ELINK_FLAGS_MII) {
2020 		/* Detach all PHYs */
2021 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2022 	}
2023 
2024 	/* Delete all remaining media. */
2025 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2026 
2027 	rnd_detach_source(&sc->rnd_source);
2028 	ether_ifdetach(ifp);
2029 	if_detach(ifp);
2030 
2031 	pmf_device_deregister(sc->sc_dev);
2032 
2033 	return (0);
2034 }
2035 
2036 u_int32_t
2037 ep_mii_bitbang_read(device_t self)
2038 {
2039 	struct ep_softc *sc = device_private(self);
2040 
2041 	/* We're already in Window 4. */
2042 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2043 	    ELINK_W4_BOOM_PHYSMGMT));
2044 }
2045 
2046 void
2047 ep_mii_bitbang_write(device_t self, u_int32_t val)
2048 {
2049 	struct ep_softc *sc = device_private(self);
2050 
2051 	/* We're already in Window 4. */
2052 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2053 	    ELINK_W4_BOOM_PHYSMGMT, val);
2054 }
2055 
2056 int
2057 ep_mii_readreg(device_t self, int phy, int reg)
2058 {
2059 	struct ep_softc *sc = device_private(self);
2060 	int val;
2061 
2062 	GO_WINDOW(4);
2063 
2064 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2065 
2066 	GO_WINDOW(1);
2067 
2068 	return (val);
2069 }
2070 
2071 void
2072 ep_mii_writereg(device_t self, int phy, int reg, int val)
2073 {
2074 	struct ep_softc *sc = device_private(self);
2075 
2076 	GO_WINDOW(4);
2077 
2078 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2079 
2080 	GO_WINDOW(1);
2081 }
2082 
2083 void
2084 ep_statchg(struct ifnet *ifp)
2085 {
2086 	struct ep_softc *sc = ifp->if_softc;
2087 	bus_space_tag_t iot = sc->sc_iot;
2088 	bus_space_handle_t ioh = sc->sc_ioh;
2089 	int mctl;
2090 
2091 	GO_WINDOW(3);
2092 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2093 	if (sc->sc_mii.mii_media_active & IFM_FDX)
2094 		mctl |= MAC_CONTROL_FDX;
2095 	else
2096 		mctl &= ~MAC_CONTROL_FDX;
2097 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2098 	GO_WINDOW(1);	/* back to operating window */
2099 }
2100 
2101 void
2102 ep_power(int why, void *arg)
2103 {
2104 	struct ep_softc *sc = arg;
2105 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2106 	int s;
2107 
2108 	s = splnet();
2109 	switch (why) {
2110 	case PWR_SUSPEND:
2111 	case PWR_STANDBY:
2112 		epstop(ifp, 1);
2113 		break;
2114 	case PWR_RESUME:
2115 		if (ifp->if_flags & IFF_UP) {
2116 			(void)epinit(ifp);
2117 		}
2118 		break;
2119 	case PWR_SOFTSUSPEND:
2120 	case PWR_SOFTSTANDBY:
2121 	case PWR_SOFTRESUME:
2122 		break;
2123 	}
2124 	splx(s);
2125 }
2126