xref: /netbsd-src/sys/dev/ic/elink3.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: elink3.c,v 1.127 2008/08/27 05:33:47 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan@NetBSD.org>
35  * Copyright (c) 1994 Herb Peyerl <hpeyerl@beer.org>
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *      This product includes software developed by Herb Peyerl.
49  * 4. The name of Herb Peyerl may not be used to endorse or promote products
50  *    derived from this software without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.127 2008/08/27 05:33:47 christos Exp $");
66 
67 #include "opt_inet.h"
68 #include "bpfilter.h"
69 #include "rnd.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/kernel.h>
75 #include <sys/mbuf.h>
76 #include <sys/socket.h>
77 #include <sys/ioctl.h>
78 #include <sys/errno.h>
79 #include <sys/syslog.h>
80 #include <sys/select.h>
81 #include <sys/device.h>
82 #if NRND > 0
83 #include <sys/rnd.h>
84 #endif
85 
86 #include <net/if.h>
87 #include <net/if_dl.h>
88 #include <net/if_ether.h>
89 #include <net/if_media.h>
90 
91 #if NBPFILTER > 0
92 #include <net/bpf.h>
93 #include <net/bpfdesc.h>
94 #endif
95 
96 #include <sys/cpu.h>
97 #include <sys/bus.h>
98 #include <sys/intr.h>
99 
100 #include <dev/mii/mii.h>
101 #include <dev/mii/miivar.h>
102 #include <dev/mii/mii_bitbang.h>
103 
104 #include <dev/ic/elink3var.h>
105 #include <dev/ic/elink3reg.h>
106 
107 #ifdef DEBUG
108 int epdebug = 0;
109 #endif
110 
111 /*
112  * XXX endian workaround for big-endian CPUs  with pcmcia:
113  * if stream methods for bus_space_multi are not provided, define them
114  * using non-stream bus_space_{read,write}_multi_.
115  * Assumes host CPU is same endian-ness as bus.
116  */
117 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
118 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
119 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
120 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
121 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
122 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
123 
124 /*
125  * Structure to map media-present bits in boards to ifmedia codes and
126  * printable media names. Used for table-driven ifmedia initialization.
127  */
128 struct ep_media {
129 	int	epm_mpbit;		/* media present bit */
130 	const char *epm_name;		/* name of medium */
131 	int	epm_ifmedia;		/* ifmedia word for medium */
132 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
133 };
134 
135 /*
136  * Media table for the Demon/Vortex/Boomerang chipsets.
137  *
138  * Note that MII on the Demon and Vortex (3c59x) indicates an external
139  * MII connector (for connecting an external PHY) ... I think.  Treat
140  * it as `manual' on these chips.
141  *
142  * Any Boomerang (3c90x) chips with MII really do have an internal
143  * MII and real PHYs attached; no `native' media.
144  */
145 const struct ep_media ep_vortex_media[] = {
146 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
147 	  ELINKMEDIA_10BASE_T },
148 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
149 	  ELINKMEDIA_10BASE_T },
150 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
151 	  ELINKMEDIA_AUI },
152 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
153 	  ELINKMEDIA_10BASE_2 },
154 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
155 	  ELINKMEDIA_100BASE_TX },
156 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
157 	  ELINKMEDIA_100BASE_TX },
158 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
159 	  ELINKMEDIA_100BASE_FX },
160 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
161 	  ELINKMEDIA_MII },
162 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
163 	  ELINKMEDIA_100BASE_T4 },
164 	{ 0,			NULL,		0,
165 	  0 },
166 };
167 
168 /*
169  * Media table for the older 3Com Etherlink III chipset, used
170  * in the 3c509, 3c579, and 3c589.
171  */
172 const struct ep_media ep_509_media[] = {
173 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
174 	  ELINKMEDIA_10BASE_T },
175 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
176 	  ELINKMEDIA_AUI },
177 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
178 	  ELINKMEDIA_10BASE_2 },
179 	{ 0,			NULL,		0,
180 	  0 },
181 };
182 
183 void	ep_internalconfig(struct ep_softc *sc);
184 void	ep_vortex_probemedia(struct ep_softc *sc);
185 void	ep_509_probemedia(struct ep_softc *sc);
186 
187 static void eptxstat(struct ep_softc *);
188 static int epstatus(struct ep_softc *);
189 int	epinit(struct ifnet *);
190 void	epstop(struct ifnet *, int);
191 int	epioctl(struct ifnet *, u_long, void *);
192 void	epstart(struct ifnet *);
193 void	epwatchdog(struct ifnet *);
194 void	epreset(struct ep_softc *);
195 static void epshutdown(void *);
196 void	epread(struct ep_softc *);
197 struct mbuf *epget(struct ep_softc *, int);
198 void	epmbuffill(void *);
199 void	epmbufempty(struct ep_softc *);
200 void	epsetfilter(struct ep_softc *);
201 void	ep_roadrunner_mii_enable(struct ep_softc *);
202 void	epsetmedia(struct ep_softc *);
203 
204 /* ifmedia callbacks */
205 int	ep_media_change(struct ifnet *ifp);
206 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
207 
208 /* MII callbacks */
209 int	ep_mii_readreg(device_t, int, int);
210 void	ep_mii_writereg(device_t, int, int, int);
211 void	ep_statchg(device_t);
212 
213 void	ep_tick(void *);
214 
215 static int epbusyeeprom(struct ep_softc *);
216 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
217 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
218 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
219 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
220 static inline int ep_w1_reg(struct ep_softc *, int);
221 
222 /*
223  * MII bit-bang glue.
224  */
225 u_int32_t ep_mii_bitbang_read(device_t);
226 void ep_mii_bitbang_write(device_t, u_int32_t);
227 
228 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
229 	ep_mii_bitbang_read,
230 	ep_mii_bitbang_write,
231 	{
232 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
233 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
234 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
235 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
236 		0,			/* MII_BIT_DIR_PHY_HOST */
237 	}
238 };
239 
240 /*
241  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
242  * Window 1 registers offset!
243  */
244 static inline int
245 ep_w1_reg(struct ep_softc *sc, int reg)
246 {
247 
248 	switch (sc->ep_chipset) {
249 	case ELINK_CHIPSET_CORKSCREW:
250 		return (reg + 0x10);
251 
252 	case ELINK_CHIPSET_ROADRUNNER:
253 		switch (reg) {
254 		case ELINK_W1_FREE_TX:
255 		case ELINK_W1_RUNNER_RDCTL:
256 		case ELINK_W1_RUNNER_WRCTL:
257 			return (reg);
258 		}
259 		return (reg + 0x10);
260 	}
261 
262 	return (reg);
263 }
264 
265 /*
266  * Wait for any pending reset to complete.
267  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
268  * but older hardware doesn't implement it and we must delay.
269  */
270 static inline void
271 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
272 {
273 	int i;
274 
275 	for (i = 0; i < 10000; i++) {
276 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
277 		    COMMAND_IN_PROGRESS) == 0)
278 			break;
279 		DELAY(10);
280 	}
281 }
282 
283 /*
284  * Issue a (reset) command, and be sure it has completed.
285  * Used for global reset, TX_RESET, RX_RESET.
286  */
287 static inline void
288 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
289 {
290 	bus_space_tag_t iot = sc->sc_iot;
291 	bus_space_handle_t ioh = sc->sc_ioh;
292 
293 	bus_space_write_2(iot, ioh, cmd, arg);
294 	ep_finish_reset(iot, ioh);
295 }
296 
297 
298 static inline void
299 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
300 {
301 	int i;
302 
303 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
304 
305         /*
306 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
307 	 * every received packet (adding latency and  limiting pkt-recv rate).
308 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
309 	 * is about right.
310 	 */
311 	for (i = 0; i < 8000; i++) {
312 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
313 		    COMMAND_IN_PROGRESS) == 0)
314 		    return;
315 	}
316 
317 	/*  Didn't complete in a hurry. Do DELAY()s. */
318 	ep_finish_reset(iot, ioh);
319 }
320 
321 /*
322  * Back-end attach and configure.
323  */
324 int
325 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
326 {
327 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
328 	bus_space_tag_t iot = sc->sc_iot;
329 	bus_space_handle_t ioh = sc->sc_ioh;
330 	u_int16_t i;
331 	u_int8_t myla[ETHER_ADDR_LEN];
332 
333 	callout_init(&sc->sc_mii_callout, 0);
334 	callout_init(&sc->sc_mbuf_callout, 0);
335 
336 	sc->ep_chipset = chipset;
337 
338 	/*
339 	 * We could have been groveling around in other register
340 	 * windows in the front-end; make sure we're in window 0
341 	 * to read the EEPROM.
342 	 */
343 	GO_WINDOW(0);
344 
345 	if (enaddr == NULL) {
346 		/*
347 		 * Read the station address from the eeprom.
348 		 */
349 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
350 			u_int16_t x = ep_read_eeprom(sc, i);
351 			myla[(i << 1)] = x >> 8;
352 			myla[(i << 1) + 1] = x;
353 		}
354 		enaddr = myla;
355 	}
356 
357 	/*
358 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
359 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
360 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
361 	 * packet length.
362 	 * Commands to these cards implicitly upshift a packet size
363 	 * or threshold by 2 bits.
364 	 * To detect  cards with large-packet support, we probe by setting
365 	 * the transmit threshold register, then change windows and
366 	 * read back the threshold register directly, and see if the
367 	 * threshold value was shifted or not.
368 	 */
369 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
370 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
371 	GO_WINDOW(5);
372 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
373 	GO_WINDOW(1);
374 	switch (i)  {
375 	case ELINK_LARGEWIN_PROBE:
376 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
377 		sc->ep_pktlenshift = 0;
378 		break;
379 
380 	case (ELINK_LARGEWIN_PROBE << 2):
381 		sc->ep_pktlenshift = 2;
382 		break;
383 
384 	default:
385 		aprint_error_dev(sc->sc_dev,
386 		    "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
387 		    "Interface disabled\n",
388 		    ELINK_LARGEWIN_PROBE, (int) i);
389 		return (1);
390 	}
391 
392 	/*
393 	 * Ensure Tx-available interrupts are enabled for
394 	 * start the interface.
395 	 * XXX should be in epinit()?
396 	 */
397 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
398 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
399 
400 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
401 	ifp->if_softc = sc;
402 	ifp->if_start = epstart;
403 	ifp->if_ioctl = epioctl;
404 	ifp->if_watchdog = epwatchdog;
405 	ifp->if_init = epinit;
406 	ifp->if_stop = epstop;
407 	ifp->if_flags =
408 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
409 	IFQ_SET_READY(&ifp->if_snd);
410 
411 	if_attach(ifp);
412 	ether_ifattach(ifp, enaddr);
413 
414 	/*
415 	 * Finish configuration:
416 	 * determine chipset if the front-end couldn't do so,
417 	 * show board details, set media.
418 	 */
419 
420 	/*
421 	 * Print RAM size.  We also print the Ethernet address in here.
422 	 * It's extracted from the ifp, so we have to make sure it's
423 	 * been attached first.
424 	 */
425 	ep_internalconfig(sc);
426 	GO_WINDOW(0);
427 
428 	/*
429 	 * Display some additional information, if pertinent.
430 	 */
431 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
432 		aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
433 
434 	/*
435 	 * Initialize our media structures and MII info.  We'll
436 	 * probe the MII if we discover that we have one.
437 	 */
438 	sc->sc_mii.mii_ifp = ifp;
439 	sc->sc_mii.mii_readreg = ep_mii_readreg;
440 	sc->sc_mii.mii_writereg = ep_mii_writereg;
441 	sc->sc_mii.mii_statchg = ep_statchg;
442 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
443 	    ep_media_status);
444 
445 	/*
446 	 * All CORKSCREW chips have MII.
447 	 */
448 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
449 		sc->ep_flags |= ELINK_FLAGS_MII;
450 
451 	/*
452 	 * Now, determine which media we have.
453 	 */
454 	switch (sc->ep_chipset) {
455 	case ELINK_CHIPSET_ROADRUNNER:
456 		if (sc->ep_flags & ELINK_FLAGS_MII) {
457 			ep_roadrunner_mii_enable(sc);
458 			GO_WINDOW(0);
459 		}
460 		/* FALLTHROUGH */
461 
462 	case ELINK_CHIPSET_CORKSCREW:
463 	case ELINK_CHIPSET_BOOMERANG:
464 		/*
465 		 * If the device has MII, probe it.  We won't be using
466 		 * any `native' media in this case, only PHYs.  If
467 		 * we don't, just treat the Boomerang like the Vortex.
468 		 */
469 		if (sc->ep_flags & ELINK_FLAGS_MII) {
470 			mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
471 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
472 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
473 				ifmedia_add(&sc->sc_mii.mii_media,
474 				    IFM_ETHER|IFM_NONE, 0, NULL);
475 				ifmedia_set(&sc->sc_mii.mii_media,
476 				    IFM_ETHER|IFM_NONE);
477 			} else {
478 				ifmedia_set(&sc->sc_mii.mii_media,
479 				    IFM_ETHER|IFM_AUTO);
480 			}
481 			break;
482 		}
483 		/* FALLTHROUGH */
484 
485 	case ELINK_CHIPSET_VORTEX:
486 		ep_vortex_probemedia(sc);
487 		break;
488 
489 	default:
490 		ep_509_probemedia(sc);
491 		break;
492 	}
493 
494 	GO_WINDOW(1);		/* Window 1 is operating window */
495 
496 #if NRND > 0
497 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
498 	    RND_TYPE_NET, 0);
499 #endif
500 
501 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
502 
503 	/*  Establish callback to reset card when we reboot. */
504 	sc->sd_hook = shutdownhook_establish(epshutdown, sc);
505 
506 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
507 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
508 
509 	/* The attach is successful. */
510 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
511 	return (0);
512 }
513 
514 
515 /*
516  * Show interface-model-independent info from window 3
517  * internal-configuration register.
518  */
519 void
520 ep_internalconfig(struct ep_softc *sc)
521 {
522 	bus_space_tag_t iot = sc->sc_iot;
523 	bus_space_handle_t ioh = sc->sc_ioh;
524 
525 	u_int config0;
526 	u_int config1;
527 
528 	int  ram_size, ram_width, ram_split;
529 	/*
530 	 * NVRAM buffer Rx:Tx config names for busmastering cards
531 	 * (Demon, Vortex, and later).
532 	 */
533 	const char *const onboard_ram_config[] = {
534 		"5:3", "3:1", "1:1", "3:5" };
535 
536 	GO_WINDOW(3);
537 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
538 	config1 = (u_int)bus_space_read_2(iot, ioh,
539 	    ELINK_W3_INTERNAL_CONFIG + 2);
540 	GO_WINDOW(0);
541 
542 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
543 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
544 
545 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
546 
547 	aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
548 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
549 	       8 << ram_size,
550 	       (ram_width) ? "word" : "byte",
551 	       onboard_ram_config[ram_split]);
552 }
553 
554 
555 /*
556  * Find supported media on 3c509-generation hardware that doesn't have
557  * a "reset_options" register in window 3.
558  * Use the config_cntrl register  in window 0 instead.
559  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
560  * that implement  CONFIG_CTRL.  We don't have a good way to set the
561  * default active medium; punt to ifconfig  instead.
562  */
563 void
564 ep_509_probemedia(struct ep_softc *sc)
565 {
566 	bus_space_tag_t iot = sc->sc_iot;
567 	bus_space_handle_t ioh = sc->sc_ioh;
568 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
569 	u_int16_t ep_w0_config, port;
570 	const struct ep_media *epm;
571 	const char *sep = "", *defmedianame = NULL;
572 	int defmedia = 0;
573 
574 	GO_WINDOW(0);
575 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
576 
577 	aprint_normal_dev(sc->sc_dev, "");
578 
579 	/* Sanity check that there are any media! */
580 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
581 		aprint_error("no media present!\n");
582 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
583 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
584 		return;
585 	}
586 
587 	/*
588 	 * Get the default media from the EEPROM.
589 	 */
590 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
591 
592 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
593 
594 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
595 		if (ep_w0_config & epm->epm_mpbit) {
596 			/*
597 			 * This simple test works because 509 chipsets
598 			 * don't do full-duplex.
599 			 */
600 			if (epm->epm_epmedia == port || defmedia == 0) {
601 				defmedia = epm->epm_ifmedia;
602 				defmedianame = epm->epm_name;
603 			}
604 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
605 			    NULL);
606 			PRINT(epm->epm_name);
607 		}
608 	}
609 
610 #undef PRINT
611 
612 #ifdef DIAGNOSTIC
613 	if (defmedia == 0)
614 		panic("ep_509_probemedia: impossible");
615 #endif
616 
617 	aprint_normal(" (default %s)\n", defmedianame);
618 	ifmedia_set(ifm, defmedia);
619 }
620 
621 /*
622  * Find media present on large-packet-capable elink3 devices.
623  * Show onboard configuration of large-packet-capable elink3 devices
624  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
625  * Use media and card-version info in window 3 instead.
626  */
627 void
628 ep_vortex_probemedia(struct ep_softc *sc)
629 {
630 	bus_space_tag_t iot = sc->sc_iot;
631 	bus_space_handle_t ioh = sc->sc_ioh;
632 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
633 	const struct ep_media *epm;
634 	u_int config1;
635 	int reset_options;
636 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
637 	int defmedia = 0;
638 	const char *sep = "", *defmedianame = NULL;
639 
640 	GO_WINDOW(3);
641 	config1 = (u_int)bus_space_read_2(iot, ioh,
642 	    ELINK_W3_INTERNAL_CONFIG + 2);
643 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
644 	GO_WINDOW(0);
645 
646 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
647 
648 	aprint_normal_dev(sc->sc_dev, "");
649 
650 	/* Sanity check that there are any media! */
651 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
652 		aprint_error("no media present!\n");
653 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
654 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
655 		return;
656 	}
657 
658 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
659 
660 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
661 		if (reset_options & epm->epm_mpbit) {
662 			/*
663 			 * Default media is a little more complicated
664 			 * on the Vortex.  We support full-duplex which
665 			 * uses the same reset options bit.
666 			 *
667 			 * XXX Check EEPROM for default to FDX?
668 			 */
669 			if (epm->epm_epmedia == default_media) {
670 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
671 					defmedia = epm->epm_ifmedia;
672 					defmedianame = epm->epm_name;
673 				}
674 			} else if (defmedia == 0) {
675 				defmedia = epm->epm_ifmedia;
676 				defmedianame = epm->epm_name;
677 			}
678 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
679 			    NULL);
680 			PRINT(epm->epm_name);
681 		}
682 	}
683 
684 #undef PRINT
685 
686 #ifdef DIAGNOSTIC
687 	if (defmedia == 0)
688 		panic("ep_vortex_probemedia: impossible");
689 #endif
690 
691 	aprint_normal(" (default %s)\n", defmedianame);
692 	ifmedia_set(ifm, defmedia);
693 }
694 
695 /*
696  * One second timer, used to tick the MII.
697  */
698 void
699 ep_tick(void *arg)
700 {
701 	struct ep_softc *sc = arg;
702 	int s;
703 
704 #ifdef DIAGNOSTIC
705 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
706 		panic("ep_tick");
707 #endif
708 
709 	if (!device_is_active(sc->sc_dev))
710 		return;
711 
712 	s = splnet();
713 	mii_tick(&sc->sc_mii);
714 	splx(s);
715 
716 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
717 }
718 
719 /*
720  * Bring device up.
721  *
722  * The order in here seems important. Otherwise we may not receive
723  * interrupts. ?!
724  */
725 int
726 epinit(struct ifnet *ifp)
727 {
728 	struct ep_softc *sc = ifp->if_softc;
729 	bus_space_tag_t iot = sc->sc_iot;
730 	bus_space_handle_t ioh = sc->sc_ioh;
731 	int i, error;
732 	const u_int8_t *addr;
733 
734 	if (!sc->enabled && (error = epenable(sc)) != 0)
735 		return (error);
736 
737 	/* Make sure any pending reset has completed before touching board */
738 	ep_finish_reset(iot, ioh);
739 
740 	/*
741 	 * Cancel any pending I/O.
742 	 */
743 	epstop(ifp, 0);
744 
745 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
746 	    && sc->bustype != ELINK_BUS_MCA) {
747 		GO_WINDOW(0);
748 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
749 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
750 		    ENABLE_DRQ_IRQ);
751 	}
752 
753 	if (sc->bustype == ELINK_BUS_PCMCIA) {
754 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
755 	}
756 
757 	GO_WINDOW(2);
758 	/* Reload the ether_addr. */
759 	addr = CLLADDR(ifp->if_sadl);
760 	for (i = 0; i < 6; i += 2)
761 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
762 		    (addr[i] << 0) | (addr[i + 1] << 8));
763 
764 	/*
765 	 * Reset the station-address receive filter.
766 	 * A bug workaround for busmastering (Vortex, Demon) cards.
767 	 */
768 	for (i = 0; i < 6; i += 2)
769 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
770 
771 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
772 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
773 
774 	GO_WINDOW(1);		/* Window 1 is operating window */
775 	for (i = 0; i < 31; i++)
776 		(void)bus_space_read_2(iot, ioh,
777 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
778 
779 	/* Set threshold for Tx-space available interrupt. */
780 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
781 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
782 
783 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
784 		/*
785 		 * Enable options in the PCMCIA LAN COR register, via
786 		 * RoadRunner Window 1.
787 		 *
788 		 * XXX MAGIC CONSTANTS!
789 		 */
790 		u_int16_t cor;
791 
792 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
793 
794 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
795 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
796 			cor |= 0x10;
797 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
798 			cor |= 0x20;
799 		bus_space_write_2(iot, ioh, 0, cor);
800 
801 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
802 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
803 
804 		if (sc->ep_flags & ELINK_FLAGS_MII) {
805 			ep_roadrunner_mii_enable(sc);
806 			GO_WINDOW(1);
807 		}
808 	}
809 
810 	/* Enable interrupts. */
811 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
812 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
813 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
814 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
815 
816 	/*
817 	 * Attempt to get rid of any stray interrupts that occurred during
818 	 * configuration.  On the i386 this isn't possible because one may
819 	 * already be queued.  However, a single stray interrupt is
820 	 * unimportant.
821 	 */
822 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
823 
824 	epsetfilter(sc);
825 	epsetmedia(sc);
826 
827 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
828 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
829 
830 	epmbuffill(sc);
831 
832 	/* Interface is now `running', with no output active. */
833 	ifp->if_flags |= IFF_RUNNING;
834 	ifp->if_flags &= ~IFF_OACTIVE;
835 
836 	if (sc->ep_flags & ELINK_FLAGS_MII) {
837 		/* Start the one second clock. */
838 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
839 	}
840 
841 	/* Attempt to start output, if any. */
842 	epstart(ifp);
843 
844 	return (0);
845 }
846 
847 
848 /*
849  * Set multicast receive filter.
850  * elink3 hardware has no selective multicast filter in hardware.
851  * Enable reception of all multicasts and filter in software.
852  */
853 void
854 epsetfilter(struct ep_softc *sc)
855 {
856 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
857 
858 	GO_WINDOW(1);		/* Window 1 is operating window */
859 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
860 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
861 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
862 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
863 }
864 
865 int
866 ep_media_change(struct ifnet *ifp)
867 {
868 	struct ep_softc *sc = ifp->if_softc;
869 
870 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
871 		epreset(sc);
872 
873 	return (0);
874 }
875 
876 /*
877  * Reset and enable the MII on the RoadRunner.
878  */
879 void
880 ep_roadrunner_mii_enable(struct ep_softc *sc)
881 {
882 	bus_space_tag_t iot = sc->sc_iot;
883 	bus_space_handle_t ioh = sc->sc_ioh;
884 
885 	GO_WINDOW(3);
886 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
887 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
888 	delay(1000);
889 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
890 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
891 	    ELINK_RUNNER_ENABLE_MII);
892 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
893 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
894 	delay(1000);
895 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
896 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
897 }
898 
899 /*
900  * Set the card to use the specified media.
901  */
902 void
903 epsetmedia(struct ep_softc *sc)
904 {
905 	bus_space_tag_t iot = sc->sc_iot;
906 	bus_space_handle_t ioh = sc->sc_ioh;
907 
908 	/* Turn everything off.  First turn off linkbeat and UTP. */
909 	GO_WINDOW(4);
910 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
911 
912 	/* Turn off coax */
913 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
914 	delay(1000);
915 
916 	/*
917 	 * If the device has MII, select it, and then tell the
918 	 * PHY which media to use.
919 	 */
920 	if (sc->ep_flags & ELINK_FLAGS_MII) {
921 		int config0, config1;
922 
923 		GO_WINDOW(3);
924 
925 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
926 			int resopt;
927 
928 			resopt = bus_space_read_2(iot, ioh,
929 			    ELINK_W3_RESET_OPTIONS);
930 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
931 			    resopt | ELINK_RUNNER_ENABLE_MII);
932 		}
933 
934 		config0 = (u_int)bus_space_read_2(iot, ioh,
935 		    ELINK_W3_INTERNAL_CONFIG);
936 		config1 = (u_int)bus_space_read_2(iot, ioh,
937 		    ELINK_W3_INTERNAL_CONFIG + 2);
938 
939 		config1 = config1 & ~CONFIG_MEDIAMASK;
940 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
941 
942 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
943 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
944 		    config1);
945 		GO_WINDOW(1);	/* back to operating window */
946 
947 		mii_mediachg(&sc->sc_mii);
948 		return;
949 	}
950 
951 	/*
952 	 * Now turn on the selected media/transceiver.
953 	 */
954 	GO_WINDOW(4);
955 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
956 	case IFM_10_T:
957 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
958 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
959 		break;
960 
961 	case IFM_10_2:
962 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
963 		DELAY(1000);	/* 50ms not enmough? */
964 		break;
965 
966 	case IFM_100_TX:
967 	case IFM_100_FX:
968 	case IFM_100_T4:		/* XXX check documentation */
969 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
970 		    LINKBEAT_ENABLE);
971 		DELAY(1000);	/* not strictly necessary? */
972 		break;
973 
974 	case IFM_10_5:
975 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
976 		    SQE_ENABLE);
977 		DELAY(1000);	/* not strictly necessary? */
978 		break;
979 
980 	case IFM_MANUAL:
981 		/*
982 		 * Nothing to do here; we are actually enabling the
983 		 * external PHY on the MII port.
984 		 */
985 		break;
986 
987 	case IFM_NONE:
988 		printf("%s: interface disabled\n", device_xname(sc->sc_dev));
989 		return;
990 
991 	default:
992 		panic("epsetmedia: impossible");
993 	}
994 
995 	/*
996 	 * Tell the chip which port to use.
997 	 */
998 	switch (sc->ep_chipset) {
999 	case ELINK_CHIPSET_VORTEX:
1000 	case ELINK_CHIPSET_BOOMERANG:
1001 	    {
1002 		int mctl, config0, config1;
1003 
1004 		GO_WINDOW(3);
1005 		config0 = (u_int)bus_space_read_2(iot, ioh,
1006 		    ELINK_W3_INTERNAL_CONFIG);
1007 		config1 = (u_int)bus_space_read_2(iot, ioh,
1008 		    ELINK_W3_INTERNAL_CONFIG + 2);
1009 
1010 		config1 = config1 & ~CONFIG_MEDIAMASK;
1011 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1012 		    CONFIG_MEDIAMASK_SHIFT);
1013 
1014 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1015 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1016 		    config1);
1017 
1018 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1019 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1020 			mctl |= MAC_CONTROL_FDX;
1021 		else
1022 			mctl &= ~MAC_CONTROL_FDX;
1023 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1024 		break;
1025 	    }
1026 	default:
1027 	    {
1028 		int w0_addr_cfg;
1029 
1030 		GO_WINDOW(0);
1031 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1032 		w0_addr_cfg &= 0x3fff;
1033 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1034 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1035 		DELAY(1000);
1036 		break;
1037 	    }
1038 	}
1039 
1040 	GO_WINDOW(1);		/* Window 1 is operating window */
1041 }
1042 
1043 /*
1044  * Get currently-selected media from card.
1045  * (if_media callback, may be called before interface is brought up).
1046  */
1047 void
1048 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
1049 {
1050 	struct ep_softc *sc = ifp->if_softc;
1051 	bus_space_tag_t iot = sc->sc_iot;
1052 	bus_space_handle_t ioh = sc->sc_ioh;
1053 
1054 	if (sc->enabled == 0) {
1055 		req->ifm_active = IFM_ETHER|IFM_NONE;
1056 		req->ifm_status = 0;
1057 		return;
1058 	}
1059 
1060 	/*
1061 	 * If we have MII, go ask the PHY what's going on.
1062 	 */
1063 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1064 		mii_pollstat(&sc->sc_mii);
1065 		req->ifm_active = sc->sc_mii.mii_media_active;
1066 		req->ifm_status = sc->sc_mii.mii_media_status;
1067 		return;
1068 	}
1069 
1070 	/*
1071 	 * Ok, at this point we claim that our active media is
1072 	 * the currently selected media.  We'll update our status
1073 	 * if our chipset allows us to detect link.
1074 	 */
1075 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1076 	req->ifm_status = 0;
1077 
1078 	switch (sc->ep_chipset) {
1079 	case ELINK_CHIPSET_VORTEX:
1080 	case ELINK_CHIPSET_BOOMERANG:
1081 		GO_WINDOW(4);
1082 		req->ifm_status = IFM_AVALID;
1083 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1084 		    LINKBEAT_DETECT)
1085 			req->ifm_status |= IFM_ACTIVE;
1086 		GO_WINDOW(1);	/* back to operating window */
1087 		break;
1088 	}
1089 }
1090 
1091 
1092 
1093 /*
1094  * Start outputting on the interface.
1095  * Always called as splnet().
1096  */
1097 void
1098 epstart(struct ifnet *ifp)
1099 {
1100 	struct ep_softc *sc = ifp->if_softc;
1101 	bus_space_tag_t iot = sc->sc_iot;
1102 	bus_space_handle_t ioh = sc->sc_ioh;
1103 	struct mbuf *m, *m0;
1104 	int sh, len, pad;
1105 	bus_size_t txreg;
1106 
1107 	/* Don't transmit if interface is busy or not running */
1108 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1109 		return;
1110 
1111 startagain:
1112 	/* Sneak a peek at the next packet */
1113 	IFQ_POLL(&ifp->if_snd, m0);
1114 	if (m0 == 0)
1115 		return;
1116 
1117 	/* We need to use m->m_pkthdr.len, so require the header */
1118 	if ((m0->m_flags & M_PKTHDR) == 0)
1119 		panic("epstart: no header mbuf");
1120 	len = m0->m_pkthdr.len;
1121 
1122 	pad = (4 - len) & 3;
1123 
1124 	/*
1125 	 * The 3c509 automatically pads short packets to minimum ethernet
1126 	 * length, but we drop packets that are too large. Perhaps we should
1127 	 * truncate them instead?
1128 	 */
1129 	if (len + pad > ETHER_MAX_LEN) {
1130 		/* packet is obviously too large: toss it */
1131 		++ifp->if_oerrors;
1132 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1133 		m_freem(m0);
1134 		goto readcheck;
1135 	}
1136 
1137 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1138 	    len + pad + 4) {
1139 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1140 		    SET_TX_AVAIL_THRESH |
1141 		    ((len + pad + 4) >> sc->ep_pktlenshift));
1142 		/* not enough room in FIFO */
1143 		ifp->if_flags |= IFF_OACTIVE;
1144 		return;
1145 	} else {
1146 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
1147 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1148 	}
1149 
1150 	IFQ_DEQUEUE(&ifp->if_snd, m0);
1151 	if (m0 == 0)		/* not really needed */
1152 		return;
1153 
1154 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1155 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1156 
1157 #if NBPFILTER > 0
1158 	if (ifp->if_bpf)
1159 		bpf_mtap(ifp->if_bpf, m0);
1160 #endif
1161 
1162 	/*
1163 	 * Do the output at a high interrupt priority level so that an
1164 	 * interrupt from another device won't cause a FIFO underrun.
1165 	 * We choose splsched() since that blocks essentially everything
1166 	 * except for interrupts from serial devices (which typically
1167 	 * lose data if their interrupt isn't serviced fast enough).
1168 	 *
1169 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1170 	 */
1171 	sh = splsched();
1172 
1173 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1174 
1175 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1176 		/*
1177 		 * Prime the FIFO buffer counter (number of 16-bit
1178 		 * words about to be written to the FIFO).
1179 		 *
1180 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1181 		 * COUNTER IS NON-ZERO!
1182 		 */
1183 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1184 		    (len + pad) >> 1);
1185 	}
1186 
1187 	bus_space_write_2(iot, ioh, txreg, len);
1188 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1189 	if (ELINK_IS_BUS_32(sc->bustype)) {
1190 		for (m = m0; m;) {
1191 			if (m->m_len > 3)  {
1192 				/* align our reads from core */
1193 				if (mtod(m, u_long) & 3)  {
1194 					u_long count =
1195 					    4 - (mtod(m, u_long) & 3);
1196 					bus_space_write_multi_1(iot, ioh,
1197 					    txreg, mtod(m, u_int8_t *), count);
1198 					m->m_data =
1199 					    (void *)(mtod(m, u_long) + count);
1200 					m->m_len -= count;
1201 				}
1202 				bus_space_write_multi_stream_4(iot, ioh,
1203 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1204 				m->m_data = (void *)(mtod(m, u_long) +
1205 					(u_long)(m->m_len & ~3));
1206 				m->m_len -= m->m_len & ~3;
1207 			}
1208 			if (m->m_len)  {
1209 				bus_space_write_multi_1(iot, ioh,
1210 				    txreg, mtod(m, u_int8_t *), m->m_len);
1211 			}
1212 			MFREE(m, m0);
1213 			m = m0;
1214 		}
1215 	} else {
1216 		for (m = m0; m;) {
1217 			if (m->m_len > 1)  {
1218 				if (mtod(m, u_long) & 1)  {
1219 					bus_space_write_1(iot, ioh,
1220 					    txreg, *(mtod(m, u_int8_t *)));
1221 					m->m_data =
1222 					    (void *)(mtod(m, u_long) + 1);
1223 					m->m_len -= 1;
1224 				}
1225 				bus_space_write_multi_stream_2(iot, ioh,
1226 				    txreg, mtod(m, u_int16_t *),
1227 				    m->m_len >> 1);
1228 			}
1229 			if (m->m_len & 1)  {
1230 				bus_space_write_1(iot, ioh, txreg,
1231 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
1232 			}
1233 			MFREE(m, m0);
1234 			m = m0;
1235 		}
1236 	}
1237 	while (pad--)
1238 		bus_space_write_1(iot, ioh, txreg, 0);
1239 
1240 	splx(sh);
1241 
1242 	++ifp->if_opackets;
1243 
1244 readcheck:
1245 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1246 	    ERR_INCOMPLETE) == 0) {
1247 		/* We received a complete packet. */
1248 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1249 
1250 		if ((status & INTR_LATCH) == 0) {
1251 			/*
1252 			 * No interrupt, read the packet and continue
1253 			 * Is  this supposed to happen? Is my motherboard
1254 			 * completely busted?
1255 			 */
1256 			epread(sc);
1257 		} else {
1258 			/* Got an interrupt, return so that it gets serviced. */
1259 			return;
1260 		}
1261 	} else {
1262 		/* Check if we are stuck and reset [see XXX comment] */
1263 		if (epstatus(sc)) {
1264 			if (ifp->if_flags & IFF_DEBUG)
1265 				printf("%s: adapter reset\n",
1266 				    device_xname(sc->sc_dev));
1267 			epreset(sc);
1268 		}
1269 	}
1270 
1271 	goto startagain;
1272 }
1273 
1274 
1275 /*
1276  * XXX: The 3c509 card can get in a mode where both the fifo status bit
1277  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1278  *	We detect this situation and we reset the adapter.
1279  *	It happens at times when there is a lot of broadcast traffic
1280  *	on the cable (once in a blue moon).
1281  */
1282 static int
1283 epstatus(struct ep_softc *sc)
1284 {
1285 	bus_space_tag_t iot = sc->sc_iot;
1286 	bus_space_handle_t ioh = sc->sc_ioh;
1287 	u_int16_t fifost;
1288 
1289 	/*
1290 	 * Check the FIFO status and act accordingly
1291 	 */
1292 	GO_WINDOW(4);
1293 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1294 	GO_WINDOW(1);
1295 
1296 	if (fifost & FIFOS_RX_UNDERRUN) {
1297 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1298 			printf("%s: RX underrun\n", device_xname(sc->sc_dev));
1299 		epreset(sc);
1300 		return 0;
1301 	}
1302 
1303 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1304 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1305 			printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
1306 		return 1;
1307 	}
1308 
1309 	if (fifost & FIFOS_RX_OVERRUN) {
1310 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1311 			printf("%s: RX overrun\n", device_xname(sc->sc_dev));
1312 		return 1;
1313 	}
1314 
1315 	if (fifost & FIFOS_TX_OVERRUN) {
1316 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1317 			printf("%s: TX overrun\n", device_xname(sc->sc_dev));
1318 		epreset(sc);
1319 		return 0;
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 
1326 static void
1327 eptxstat(struct ep_softc *sc)
1328 {
1329 	bus_space_tag_t iot = sc->sc_iot;
1330 	bus_space_handle_t ioh = sc->sc_ioh;
1331 	int i;
1332 
1333 	/*
1334 	 * We need to read+write TX_STATUS until we get a 0 status
1335 	 * in order to turn off the interrupt flag.
1336 	 */
1337 	while ((i = bus_space_read_2(iot, ioh,
1338 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1339 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1340 		    0x0);
1341 
1342 		if (i & TXS_JABBER) {
1343 			++sc->sc_ethercom.ec_if.if_oerrors;
1344 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1345 				printf("%s: jabber (%x)\n",
1346 				       device_xname(sc->sc_dev), i);
1347 			epreset(sc);
1348 		} else if (i & TXS_UNDERRUN) {
1349 			++sc->sc_ethercom.ec_if.if_oerrors;
1350 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1351 				printf("%s: fifo underrun (%x) @%d\n",
1352 				       device_xname(sc->sc_dev), i,
1353 				       sc->tx_start_thresh);
1354 			if (sc->tx_succ_ok < 100)
1355 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
1356 					    sc->tx_start_thresh + 20);
1357 			sc->tx_succ_ok = 0;
1358 			epreset(sc);
1359 		} else if (i & TXS_MAX_COLLISION) {
1360 			++sc->sc_ethercom.ec_if.if_collisions;
1361 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1362 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1363 		} else
1364 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1365 	}
1366 }
1367 
1368 int
1369 epintr(void *arg)
1370 {
1371 	struct ep_softc *sc = arg;
1372 	bus_space_tag_t iot = sc->sc_iot;
1373 	bus_space_handle_t ioh = sc->sc_ioh;
1374 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1375 	u_int16_t status;
1376 	int ret = 0;
1377 
1378 	if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
1379 		return (0);
1380 
1381 
1382 	for (;;) {
1383 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1384 
1385 		if ((status & WATCHED_INTERRUPTS) == 0) {
1386 			if ((status & INTR_LATCH) == 0) {
1387 #if 0
1388 				printf("%s: intr latch cleared\n",
1389 				       device_xname(&sc->sc_dev));
1390 #endif
1391 				break;
1392 			}
1393 		}
1394 
1395 		ret = 1;
1396 
1397 		/*
1398 		 * Acknowledge any interrupts.  It's important that we do this
1399 		 * first, since there would otherwise be a race condition.
1400 		 * Due to the i386 interrupt queueing, we may get spurious
1401 		 * interrupts occasionally.
1402 		 */
1403 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1404 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
1405 
1406 #if 0
1407 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1408 
1409 		printf("%s: intr%s%s%s%s\n", device_xname(&sc->sc_dev),
1410 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
1411 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
1412 		       (status & TX_AVAIL)?" TX_AVAIL":"",
1413 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
1414 #endif
1415 
1416 		if (status & RX_COMPLETE) {
1417 			epread(sc);
1418 		}
1419 		if (status & TX_AVAIL) {
1420 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1421 			epstart(&sc->sc_ethercom.ec_if);
1422 		}
1423 		if (status & CARD_FAILURE) {
1424 			printf("%s: adapter failure (%x)\n",
1425 			    device_xname(sc->sc_dev), status);
1426 #if 1
1427 			epinit(ifp);
1428 #else
1429 			epreset(sc);
1430 #endif
1431 			return (1);
1432 		}
1433 		if (status & TX_COMPLETE) {
1434 			eptxstat(sc);
1435 			epstart(ifp);
1436 		}
1437 
1438 #if NRND > 0
1439 		if (status)
1440 			rnd_add_uint32(&sc->rnd_source, status);
1441 #endif
1442 	}
1443 
1444 	/* no more interrupts */
1445 	return (ret);
1446 }
1447 
1448 void
1449 epread(struct ep_softc *sc)
1450 {
1451 	bus_space_tag_t iot = sc->sc_iot;
1452 	bus_space_handle_t ioh = sc->sc_ioh;
1453 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1454 	struct mbuf *m;
1455 	int len;
1456 
1457 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1458 
1459 again:
1460 	if (ifp->if_flags & IFF_DEBUG) {
1461 		int err = len & ERR_MASK;
1462 		const char *s = NULL;
1463 
1464 		if (len & ERR_INCOMPLETE)
1465 			s = "incomplete packet";
1466 		else if (err == ERR_OVERRUN)
1467 			s = "packet overrun";
1468 		else if (err == ERR_RUNT)
1469 			s = "runt packet";
1470 		else if (err == ERR_ALIGNMENT)
1471 			s = "bad alignment";
1472 		else if (err == ERR_CRC)
1473 			s = "bad crc";
1474 		else if (err == ERR_OVERSIZE)
1475 			s = "oversized packet";
1476 		else if (err == ERR_DRIBBLE)
1477 			s = "dribble bits";
1478 
1479 		if (s)
1480 			printf("%s: %s\n", device_xname(sc->sc_dev), s);
1481 	}
1482 
1483 	if (len & ERR_INCOMPLETE)
1484 		return;
1485 
1486 	if (len & ERR_RX) {
1487 		++ifp->if_ierrors;
1488 		goto abort;
1489 	}
1490 
1491 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
1492 
1493 	/* Pull packet off interface. */
1494 	m = epget(sc, len);
1495 	if (m == 0) {
1496 		ifp->if_ierrors++;
1497 		goto abort;
1498 	}
1499 
1500 	++ifp->if_ipackets;
1501 
1502 #if NBPFILTER > 0
1503 	/*
1504 	 * Check if there's a BPF listener on this interface.
1505 	 * If so, hand off the raw packet to BPF.
1506 	 */
1507 	if (ifp->if_bpf)
1508 		bpf_mtap(ifp->if_bpf, m);
1509 #endif
1510 
1511 	(*ifp->if_input)(ifp, m);
1512 
1513 	/*
1514 	 * In periods of high traffic we can actually receive enough
1515 	 * packets so that the fifo overrun bit will be set at this point,
1516 	 * even though we just read a packet. In this case we
1517 	 * are not going to receive any more interrupts. We check for
1518 	 * this condition and read again until the fifo is not full.
1519 	 * We could simplify this test by not using epstatus(), but
1520 	 * rechecking the RX_STATUS register directly. This test could
1521 	 * result in unnecessary looping in cases where there is a new
1522 	 * packet but the fifo is not full, but it will not fix the
1523 	 * stuck behavior.
1524 	 *
1525 	 * Even with this improvement, we still get packet overrun errors
1526 	 * which are hurting performance. Maybe when I get some more time
1527 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1528 	 */
1529 	if (epstatus(sc)) {
1530 		len = bus_space_read_2(iot, ioh,
1531 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1532 		/* Check if we are stuck and reset [see XXX comment] */
1533 		if (len & ERR_INCOMPLETE) {
1534 			if (ifp->if_flags & IFF_DEBUG)
1535 				printf("%s: adapter reset\n",
1536 				    device_xname(sc->sc_dev));
1537 			epreset(sc);
1538 			return;
1539 		}
1540 		goto again;
1541 	}
1542 
1543 	return;
1544 
1545 abort:
1546 	ep_discard_rxtop(iot, ioh);
1547 
1548 }
1549 
1550 struct mbuf *
1551 epget(struct ep_softc *sc, int totlen)
1552 {
1553 	bus_space_tag_t iot = sc->sc_iot;
1554 	bus_space_handle_t ioh = sc->sc_ioh;
1555 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1556 	struct mbuf *m;
1557 	bus_size_t rxreg;
1558 	int len, remaining;
1559 	int s;
1560 	void *newdata;
1561 	u_long offset;
1562 
1563 	m = sc->mb[sc->next_mb];
1564 	sc->mb[sc->next_mb] = 0;
1565 	if (m == 0) {
1566 		MGETHDR(m, M_DONTWAIT, MT_DATA);
1567 		if (m == 0)
1568 			return 0;
1569 	} else {
1570 		/* If the queue is no longer full, refill. */
1571 		if (sc->last_mb == sc->next_mb)
1572 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1573 
1574 		/* Convert one of our saved mbuf's. */
1575 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1576 		m->m_data = m->m_pktdat;
1577 		m->m_flags = M_PKTHDR;
1578 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1579 	}
1580 	m->m_pkthdr.rcvif = ifp;
1581 	m->m_pkthdr.len = totlen;
1582 	len = MHLEN;
1583 
1584 	/*
1585 	 * Allocate big enough space to hold whole packet, to avoid
1586 	 * allocating new mbufs on splsched().
1587 	 */
1588 	if (totlen + ALIGNBYTES > len) {
1589 		if (totlen + ALIGNBYTES > MCLBYTES) {
1590 			len = ALIGN(totlen + ALIGNBYTES);
1591 			MEXTMALLOC(m, len, M_DONTWAIT);
1592 		} else {
1593 			len = MCLBYTES;
1594 			MCLGET(m, M_DONTWAIT);
1595 		}
1596 		if ((m->m_flags & M_EXT) == 0) {
1597 			m_free(m);
1598 			return 0;
1599 		}
1600 	}
1601 
1602 	/* align the struct ip header */
1603 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
1604 	    - sizeof(struct ether_header);
1605 	m->m_data = newdata;
1606 	m->m_len = totlen;
1607 
1608 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1609 	remaining = totlen;
1610 	offset = mtod(m, u_long);
1611 
1612 	/*
1613 	 * We read the packet at a high interrupt priority level so that
1614 	 * an interrupt from another device won't cause the card's packet
1615 	 * buffer to overflow.  We choose splsched() since that blocks
1616 	 * essentially everything except for interrupts from serial
1617 	 * devices (which typically lose data if their interrupt isn't
1618 	 * serviced fast enough).
1619 	 *
1620 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
1621 	 */
1622 	s = splsched();
1623 
1624 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1625 		/*
1626 		 * Prime the FIFO buffer counter (number of 16-bit
1627 		 * words about to be read from the FIFO).
1628 		 *
1629 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1630 		 * COUNTER IS NON-ZERO!
1631 		 */
1632 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1633 	}
1634 
1635 	if (ELINK_IS_BUS_32(sc->bustype)) {
1636 		/*
1637 		 * Read bytes up to the point where we are aligned.
1638 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
1639 		 * here because we're later reading 4-byte chunks.)
1640 		 */
1641 		if ((remaining > 3) && (offset & 3))  {
1642 			int count = (4 - (offset & 3));
1643 			bus_space_read_multi_1(iot, ioh,
1644 			    rxreg, (u_int8_t *) offset, count);
1645 			offset += count;
1646 			remaining -= count;
1647 		}
1648 		if (remaining > 3) {
1649 			bus_space_read_multi_stream_4(iot, ioh,
1650 			    rxreg, (u_int32_t *) offset,
1651 				    remaining >> 2);
1652 			offset += remaining & ~3;
1653 			remaining &= 3;
1654 		}
1655 		if (remaining)  {
1656 			bus_space_read_multi_1(iot, ioh,
1657 			    rxreg, (u_int8_t *) offset, remaining);
1658 		}
1659 	} else {
1660 		if ((remaining > 1) && (offset & 1))  {
1661 			bus_space_read_multi_1(iot, ioh,
1662 			    rxreg, (u_int8_t *) offset, 1);
1663 			remaining -= 1;
1664 			offset += 1;
1665 		}
1666 		if (remaining > 1) {
1667 			bus_space_read_multi_stream_2(iot, ioh,
1668 			    rxreg, (u_int16_t *) offset,
1669 			    remaining >> 1);
1670 			offset += remaining & ~1;
1671 		}
1672 		if (remaining & 1)  {
1673 				bus_space_read_multi_1(iot, ioh,
1674 			    rxreg, (u_int8_t *) offset, remaining & 1);
1675 		}
1676 	}
1677 
1678 	ep_discard_rxtop(iot, ioh);
1679 
1680 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1681 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1682 	splx(s);
1683 
1684 	return (m);
1685 }
1686 
1687 int
1688 epioctl(struct ifnet *ifp, u_long cmd, void *data)
1689 {
1690 	struct ep_softc *sc = ifp->if_softc;
1691 	struct ifreq *ifr = (struct ifreq *)data;
1692 	int s, error = 0;
1693 
1694 	s = splnet();
1695 
1696 	switch (cmd) {
1697 
1698 	case SIOCSIFMEDIA:
1699 	case SIOCGIFMEDIA:
1700 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1701 		break;
1702 
1703 	case SIOCADDMULTI:
1704 	case SIOCDELMULTI:
1705 		if (sc->enabled == 0) {
1706 			error = EIO;
1707 			break;
1708 		}
1709 
1710 	default:
1711 		error = ether_ioctl(ifp, cmd, data);
1712 
1713 		if (error == ENETRESET) {
1714 			/*
1715 			 * Multicast list has changed; set the hardware filter
1716 			 * accordingly.
1717 			 */
1718 			if (ifp->if_flags & IFF_RUNNING)
1719 				epreset(sc);
1720 			error = 0;
1721 		}
1722 		break;
1723 	}
1724 
1725 	splx(s);
1726 	return (error);
1727 }
1728 
1729 void
1730 epreset(struct ep_softc *sc)
1731 {
1732 	int s;
1733 
1734 	s = splnet();
1735 	epinit(&sc->sc_ethercom.ec_if);
1736 	splx(s);
1737 }
1738 
1739 void
1740 epwatchdog(struct ifnet *ifp)
1741 {
1742 	struct ep_softc *sc = ifp->if_softc;
1743 
1744 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1745 	++sc->sc_ethercom.ec_if.if_oerrors;
1746 
1747 	epreset(sc);
1748 }
1749 
1750 void
1751 epstop(struct ifnet *ifp, int disable)
1752 {
1753 	struct ep_softc *sc = ifp->if_softc;
1754 	bus_space_tag_t iot = sc->sc_iot;
1755 	bus_space_handle_t ioh = sc->sc_ioh;
1756 
1757 	if (sc->ep_flags & ELINK_FLAGS_MII) {
1758 		/* Stop the one second clock. */
1759 		callout_stop(&sc->sc_mbuf_callout);
1760 
1761 		/* Down the MII. */
1762 		mii_down(&sc->sc_mii);
1763 	}
1764 
1765 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1766 		/*
1767 		 * Clear the FIFO buffer count, thus halting
1768 		 * any currently-running transactions.
1769 		 */
1770 		GO_WINDOW(1);		/* sanity */
1771 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1772 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1773 	}
1774 
1775 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1776 	ep_discard_rxtop(iot, ioh);
1777 
1778 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1779 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1780 
1781 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1782 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1783 
1784 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1785 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1786 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1787 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1788 
1789 	epmbufempty(sc);
1790 
1791 	if (disable)
1792 		epdisable(sc);
1793 
1794 	ifp->if_flags &= ~IFF_RUNNING;
1795 }
1796 
1797 
1798 /*
1799  * Before reboots, reset card completely.
1800  */
1801 static void
1802 epshutdown(void *arg)
1803 {
1804 	struct ep_softc *sc = arg;
1805 	int s = splnet();
1806 
1807 	if (sc->enabled) {
1808 		epstop(&sc->sc_ethercom.ec_if, 0);
1809 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1810 		epdisable(sc);
1811 		sc->enabled = 0;
1812 	}
1813 	splx(s);
1814 }
1815 
1816 /*
1817  * We get eeprom data from the id_port given an offset into the
1818  * eeprom.  Basically; after the ID_sequence is sent to all of
1819  * the cards; they enter the ID_CMD state where they will accept
1820  * command requests. 0x80-0xbf loads the eeprom data.  We then
1821  * read the port 16 times and with every read; the cards check
1822  * for contention (ie: if one card writes a 0 bit and another
1823  * writes a 1 bit then the host sees a 0. At the end of the cycle;
1824  * each card compares the data on the bus; if there is a difference
1825  * then that card goes into ID_WAIT state again). In the meantime;
1826  * one bit of data is returned in the AX register which is conveniently
1827  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
1828  * bit of data with each read.
1829  *
1830  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1831  */
1832 u_int16_t
1833 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
1834 {
1835 	u_int16_t data = 0;
1836 	int i;
1837 
1838 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1839 	delay(1000);
1840 	for (i = 0; i < 16; i++)
1841 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1842 	return (data);
1843 }
1844 
1845 static int
1846 epbusyeeprom(struct ep_softc *sc)
1847 {
1848 	bus_space_tag_t iot = sc->sc_iot;
1849 	bus_space_handle_t ioh = sc->sc_ioh;
1850 	bus_size_t eecmd;
1851 	int i = 100, j;
1852 	uint16_t busybit;
1853 
1854 	if (sc->bustype == ELINK_BUS_PCMCIA) {
1855 		delay(1000);
1856 		return 0;
1857 	}
1858 
1859 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1860 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1861 		busybit = CORK_EEPROM_BUSY;
1862 	} else {
1863 		eecmd = ELINK_W0_EEPROM_COMMAND;
1864 		busybit = EEPROM_BUSY;
1865 	}
1866 
1867 	j = 0;		/* bad GCC flow analysis */
1868 	while (i--) {
1869 		j = bus_space_read_2(iot, ioh, eecmd);
1870 		if (j & busybit)
1871 			delay(100);
1872 		else
1873 			break;
1874 	}
1875 	if (i == 0) {
1876 		aprint_normal("\n");
1877 		aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
1878 		return (1);
1879 	}
1880 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1881 	    (j & EEPROM_TST_MODE) != 0) {
1882 		/* XXX PnP mode? */
1883 		printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
1884 		return (1);
1885 	}
1886 	return (0);
1887 }
1888 
1889 u_int16_t
1890 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
1891 {
1892 	bus_size_t eecmd, eedata;
1893 	u_int16_t readcmd;
1894 
1895 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1896 		eecmd = CORK_ASIC_EEPROM_COMMAND;
1897 		eedata = CORK_ASIC_EEPROM_DATA;
1898 	} else {
1899 		eecmd = ELINK_W0_EEPROM_COMMAND;
1900 		eedata = ELINK_W0_EEPROM_DATA;
1901 	}
1902 
1903 	/*
1904 	 * RoadRunner has a larger EEPROM, so a different read command
1905 	 * is required.
1906 	 */
1907 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1908 		readcmd = READ_EEPROM_RR;
1909 	else
1910 		readcmd = READ_EEPROM;
1911 
1912 	if (epbusyeeprom(sc))
1913 		return (0);		/* XXX why is eeprom busy? */
1914 
1915 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1916 
1917 	if (epbusyeeprom(sc))
1918 		return (0);		/* XXX why is eeprom busy? */
1919 
1920 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1921 }
1922 
1923 void
1924 epmbuffill(void *v)
1925 {
1926 	struct ep_softc *sc = v;
1927 	struct mbuf *m;
1928 	int s, i;
1929 
1930 	s = splnet();
1931 	i = sc->last_mb;
1932 	do {
1933 		if (sc->mb[i] == 0) {
1934 			MGET(m, M_DONTWAIT, MT_DATA);
1935 			if (m == 0)
1936 				break;
1937 			sc->mb[i] = m;
1938 		}
1939 		i = (i + 1) % MAX_MBS;
1940 	} while (i != sc->next_mb);
1941 	sc->last_mb = i;
1942 	/* If the queue was not filled, try again. */
1943 	if (sc->last_mb != sc->next_mb)
1944 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1945 	splx(s);
1946 }
1947 
1948 void
1949 epmbufempty(struct ep_softc *sc)
1950 {
1951 	int s, i;
1952 
1953 	s = splnet();
1954 	for (i = 0; i < MAX_MBS; i++) {
1955 		if (sc->mb[i]) {
1956 			m_freem(sc->mb[i]);
1957 			sc->mb[i] = NULL;
1958 		}
1959 	}
1960 	sc->last_mb = sc->next_mb = 0;
1961 	callout_stop(&sc->sc_mbuf_callout);
1962 	splx(s);
1963 }
1964 
1965 int
1966 epenable(struct ep_softc *sc)
1967 {
1968 
1969 	if (sc->enabled == 0 && sc->enable != NULL) {
1970 		if ((*sc->enable)(sc) != 0) {
1971 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
1972 			return (EIO);
1973 		}
1974 	}
1975 
1976 	sc->enabled = 1;
1977 	return (0);
1978 }
1979 
1980 void
1981 epdisable(struct ep_softc *sc)
1982 {
1983 
1984 	if (sc->enabled != 0 && sc->disable != NULL) {
1985 		(*sc->disable)(sc);
1986 		sc->enabled = 0;
1987 	}
1988 }
1989 
1990 /*
1991  * ep_activate:
1992  *
1993  *	Handle device activation/deactivation requests.
1994  */
1995 int
1996 ep_activate(device_t self, enum devact act)
1997 {
1998 	struct ep_softc *sc = device_private(self);
1999 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2000 	int error = 0, s;
2001 
2002 	s = splnet();
2003 	switch (act) {
2004 	case DVACT_ACTIVATE:
2005 		error = EOPNOTSUPP;
2006 		break;
2007 
2008 	case DVACT_DEACTIVATE:
2009 		if (sc->ep_flags & ELINK_FLAGS_MII)
2010 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2011 			    MII_OFFSET_ANY);
2012 		if_deactivate(ifp);
2013 		break;
2014 	}
2015 	splx(s);
2016 	return (error);
2017 }
2018 
2019 /*
2020  * ep_detach:
2021  *
2022  *	Detach a elink3 interface.
2023  */
2024 int
2025 ep_detach(device_t self, int flags)
2026 {
2027 	struct ep_softc *sc = device_private(self);
2028 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2029 
2030 	/* Succeed now if there's no work to do. */
2031 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2032 		return (0);
2033 
2034 	epdisable(sc);
2035 
2036 	callout_stop(&sc->sc_mii_callout);
2037 	callout_stop(&sc->sc_mbuf_callout);
2038 
2039 	if (sc->ep_flags & ELINK_FLAGS_MII) {
2040 		/* Detach all PHYs */
2041 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2042 	}
2043 
2044 	/* Delete all remaining media. */
2045 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2046 
2047 #if NRND > 0
2048 	rnd_detach_source(&sc->rnd_source);
2049 #endif
2050 	ether_ifdetach(ifp);
2051 	if_detach(ifp);
2052 
2053 	shutdownhook_disestablish(sc->sd_hook);
2054 
2055 	return (0);
2056 }
2057 
2058 u_int32_t
2059 ep_mii_bitbang_read(device_t self)
2060 {
2061 	struct ep_softc *sc = device_private(self);
2062 
2063 	/* We're already in Window 4. */
2064 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2065 	    ELINK_W4_BOOM_PHYSMGMT));
2066 }
2067 
2068 void
2069 ep_mii_bitbang_write(device_t self, u_int32_t val)
2070 {
2071 	struct ep_softc *sc = device_private(self);
2072 
2073 	/* We're already in Window 4. */
2074 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2075 	    ELINK_W4_BOOM_PHYSMGMT, val);
2076 }
2077 
2078 int
2079 ep_mii_readreg(device_t self, int phy, int reg)
2080 {
2081 	struct ep_softc *sc = device_private(self);
2082 	int val;
2083 
2084 	GO_WINDOW(4);
2085 
2086 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2087 
2088 	GO_WINDOW(1);
2089 
2090 	return (val);
2091 }
2092 
2093 void
2094 ep_mii_writereg(device_t self, int phy, int reg, int val)
2095 {
2096 	struct ep_softc *sc = device_private(self);
2097 
2098 	GO_WINDOW(4);
2099 
2100 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2101 
2102 	GO_WINDOW(1);
2103 }
2104 
2105 void
2106 ep_statchg(device_t self)
2107 {
2108 	struct ep_softc *sc = device_private(self);
2109 	bus_space_tag_t iot = sc->sc_iot;
2110 	bus_space_handle_t ioh = sc->sc_ioh;
2111 	int mctl;
2112 
2113 	GO_WINDOW(3);
2114 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2115 	if (sc->sc_mii.mii_media_active & IFM_FDX)
2116 		mctl |= MAC_CONTROL_FDX;
2117 	else
2118 		mctl &= ~MAC_CONTROL_FDX;
2119 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2120 	GO_WINDOW(1);	/* back to operating window */
2121 }
2122 
2123 void
2124 ep_power(int why, void *arg)
2125 {
2126 	struct ep_softc *sc = arg;
2127 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2128 	int s;
2129 
2130 	s = splnet();
2131 	switch (why) {
2132 	case PWR_SUSPEND:
2133 	case PWR_STANDBY:
2134 		epstop(ifp, 1);
2135 		break;
2136 	case PWR_RESUME:
2137 		if (ifp->if_flags & IFF_UP) {
2138 			(void)epinit(ifp);
2139 		}
2140 		break;
2141 	case PWR_SOFTSUSPEND:
2142 	case PWR_SOFTSTANDBY:
2143 	case PWR_SOFTRESUME:
2144 		break;
2145 	}
2146 	splx(s);
2147 }
2148