1 /* $NetBSD: dm9000.c,v 1.15 2018/06/26 06:48:00 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 2009 Paul Fleischer 5 * All rights reserved. 6 * 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. The name of the company nor the name of the author may be used to 13 * endorse or promote products derived from this software without specific 14 * prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* based on sys/dev/ic/cs89x0.c */ 30 /* 31 * Copyright (c) 2004 Christopher Gilbert 32 * All rights reserved. 33 * 34 * 1. Redistributions of source code must retain the above copyright 35 * notice, this list of conditions and the following disclaimer. 36 * 2. Redistributions in binary form must reproduce the above copyright 37 * notice, this list of conditions and the following disclaimer in the 38 * documentation and/or other materials provided with the distribution. 39 * 3. The name of the company nor the name of the author may be used to 40 * endorse or promote products derived from this software without specific 41 * prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 44 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 46 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 47 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 48 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 49 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 53 * SUCH DAMAGE. 54 */ 55 56 /* 57 * Copyright 1997 58 * Digital Equipment Corporation. All rights reserved. 59 * 60 * This software is furnished under license and may be used and 61 * copied only in accordance with the following terms and conditions. 62 * Subject to these conditions, you may download, copy, install, 63 * use, modify and distribute this software in source and/or binary 64 * form. No title or ownership is transferred hereby. 65 * 66 * 1) Any source code used, modified or distributed must reproduce 67 * and retain this copyright notice and list of conditions as 68 * they appear in the source file. 69 * 70 * 2) No right is granted to use any trade name, trademark, or logo of 71 * Digital Equipment Corporation. Neither the "Digital Equipment 72 * Corporation" name nor any trademark or logo of Digital Equipment 73 * Corporation may be used to endorse or promote products derived 74 * from this software without the prior written permission of 75 * Digital Equipment Corporation. 76 * 77 * 3) This software is provided "AS-IS" and any express or implied 78 * warranties, including but not limited to, any implied warranties 79 * of merchantability, fitness for a particular purpose, or 80 * non-infringement are disclaimed. In no event shall DIGITAL be 81 * liable for any damages whatsoever, and in particular, DIGITAL 82 * shall not be liable for special, indirect, consequential, or 83 * incidental damages or damages for lost profits, loss of 84 * revenue or loss of use, whether such damages arise in contract, 85 * negligence, tort, under statute, in equity, at law or otherwise, 86 * even if advised of the possibility of such damage. 87 */ 88 89 #include <sys/cdefs.h> 90 91 #include <sys/param.h> 92 #include <sys/kernel.h> 93 #include <sys/systm.h> 94 #include <sys/mbuf.h> 95 #include <sys/syslog.h> 96 #include <sys/socket.h> 97 #include <sys/device.h> 98 #include <sys/malloc.h> 99 #include <sys/ioctl.h> 100 #include <sys/errno.h> 101 102 #include <net/if.h> 103 #include <net/if_ether.h> 104 #include <net/if_media.h> 105 #include <net/bpf.h> 106 107 #ifdef INET 108 #include <netinet/in.h> 109 #include <netinet/if_inarp.h> 110 #endif 111 112 #include <sys/bus.h> 113 #include <sys/intr.h> 114 115 #include <dev/ic/dm9000var.h> 116 #include <dev/ic/dm9000reg.h> 117 118 #if 1 119 #undef DM9000_DEBUG 120 #undef DM9000_TX_DEBUG 121 #undef DM9000_TX_DATA_DEBUG 122 #undef DM9000_RX_DEBUG 123 #undef DM9000_RX_DATA_DEBUG 124 #else 125 #define DM9000_DEBUG 126 #define DM9000_TX_DEBUG 127 #define DM9000_TX_DATA_DEBUG 128 #define DM9000_RX_DEBUG 129 #define DM9000_RX_DATA_DEBUG 130 #endif 131 132 #ifdef DM9000_DEBUG 133 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) 134 #else 135 #define DPRINTF(s) do {} while (/*CONSTCOND*/0) 136 #endif 137 138 #ifdef DM9000_TX_DEBUG 139 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) 140 #else 141 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0) 142 #endif 143 144 #ifdef DM9000_RX_DEBUG 145 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) 146 #else 147 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0) 148 #endif 149 150 #ifdef DM9000_RX_DATA_DEBUG 151 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) 152 #else 153 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0) 154 #endif 155 156 #ifdef DM9000_TX_DATA_DEBUG 157 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0) 158 #else 159 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0) 160 #endif 161 162 /*** Internal PHY functions ***/ 163 uint16_t dme_phy_read(struct dme_softc *, int ); 164 void dme_phy_write(struct dme_softc *, int, uint16_t); 165 void dme_phy_init(struct dme_softc *); 166 void dme_phy_reset(struct dme_softc *); 167 void dme_phy_update_media(struct dme_softc *); 168 void dme_phy_check_link(void *); 169 170 /*** Methods registered in struct ifnet ***/ 171 void dme_start_output(struct ifnet *); 172 int dme_init(struct ifnet *); 173 int dme_ioctl(struct ifnet *, u_long, void *); 174 void dme_stop(struct ifnet *, int); 175 176 int dme_mediachange(struct ifnet *); 177 void dme_mediastatus(struct ifnet *, struct ifmediareq *); 178 179 /*** Internal methods ***/ 180 181 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */ 182 void dme_prepare(struct dme_softc *, struct ifnet *); 183 184 /* Transmit prepared data */ 185 void dme_transmit(struct dme_softc *); 186 187 /* Receive data */ 188 void dme_receive(struct dme_softc *, struct ifnet *); 189 190 /* Software Initialize/Reset of the DM9000 */ 191 void dme_reset(struct dme_softc *); 192 193 /* Configure multicast filter */ 194 void dme_set_addr_filter(struct dme_softc *); 195 196 /* Set media */ 197 int dme_set_media(struct dme_softc *, int ); 198 199 /* Read/write packet data from/to DM9000 IC in various transfer sizes */ 200 int dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **); 201 int dme_pkt_write_2(struct dme_softc *, struct mbuf *); 202 int dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **); 203 int dme_pkt_write_1(struct dme_softc *, struct mbuf *); 204 /* TODO: Implement 32 bit read/write functions */ 205 206 uint16_t 207 dme_phy_read(struct dme_softc *sc, int reg) 208 { 209 uint16_t val; 210 /* Select Register to read*/ 211 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY + 212 (reg & DM9000_EPAR_EROA_MASK)); 213 /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */ 214 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY); 215 216 /* Wait until access to PHY has completed */ 217 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE); 218 219 /* Reset ERPRR-bit */ 220 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY); 221 222 val = dme_read(sc, DM9000_EPDRL); 223 val += dme_read(sc, DM9000_EPDRH) << 8; 224 225 return val; 226 } 227 228 void 229 dme_phy_write(struct dme_softc *sc, int reg, uint16_t value) 230 { 231 /* Select Register to write*/ 232 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY + 233 (reg & DM9000_EPAR_EROA_MASK)); 234 235 /* Write data to the two data registers */ 236 dme_write(sc, DM9000_EPDRL, value & 0xFF); 237 dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF); 238 239 /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */ 240 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY); 241 242 /* Wait until access to PHY has completed */ 243 while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE); 244 245 /* Reset ERPRR-bit */ 246 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY); 247 } 248 249 void 250 dme_phy_init(struct dme_softc *sc) 251 { 252 u_int ifm_media = sc->sc_media.ifm_media; 253 uint32_t bmcr, anar; 254 255 bmcr = dme_phy_read(sc, DM9000_PHY_BMCR); 256 anar = dme_phy_read(sc, DM9000_PHY_ANAR); 257 258 anar = anar & ~DM9000_PHY_ANAR_10_HDX 259 & ~DM9000_PHY_ANAR_10_FDX 260 & ~DM9000_PHY_ANAR_TX_HDX 261 & ~DM9000_PHY_ANAR_TX_FDX; 262 263 switch (IFM_SUBTYPE(ifm_media)) { 264 case IFM_AUTO: 265 bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN; 266 anar |= DM9000_PHY_ANAR_10_HDX | 267 DM9000_PHY_ANAR_10_FDX | 268 DM9000_PHY_ANAR_TX_HDX | 269 DM9000_PHY_ANAR_TX_FDX; 270 break; 271 case IFM_10_T: 272 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN; 273 bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT; 274 if (ifm_media & IFM_FDX) 275 anar |= DM9000_PHY_ANAR_10_FDX; 276 else 277 anar |= DM9000_PHY_ANAR_10_HDX; 278 break; 279 case IFM_100_TX: 280 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN; 281 bmcr |= DM9000_PHY_BMCR_SPEED_SELECT; 282 if (ifm_media & IFM_FDX) 283 anar |= DM9000_PHY_ANAR_TX_FDX; 284 else 285 anar |= DM9000_PHY_ANAR_TX_HDX; 286 287 break; 288 } 289 290 if(ifm_media & IFM_FDX) { 291 bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE; 292 } else { 293 bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE; 294 } 295 296 dme_phy_write(sc, DM9000_PHY_BMCR, bmcr); 297 dme_phy_write(sc, DM9000_PHY_ANAR, anar); 298 } 299 300 void 301 dme_phy_reset(struct dme_softc *sc) 302 { 303 uint32_t reg; 304 305 /* PHY Reset */ 306 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET); 307 308 reg = dme_read(sc, DM9000_GPCR); 309 dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT); 310 reg = dme_read(sc, DM9000_GPR); 311 dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF); 312 313 dme_phy_init(sc); 314 315 reg = dme_read(sc, DM9000_GPR); 316 dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF); 317 reg = dme_read(sc, DM9000_GPCR); 318 dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT); 319 320 dme_phy_update_media(sc); 321 } 322 323 void 324 dme_phy_update_media(struct dme_softc *sc) 325 { 326 u_int ifm_media = sc->sc_media.ifm_media; 327 uint32_t reg; 328 329 if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) { 330 /* If auto-negotiation is used, ensures that it is completed 331 before trying to extract any media information. */ 332 reg = dme_phy_read(sc, DM9000_PHY_BMSR); 333 if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) { 334 /* Auto-negotation not possible, therefore there is no 335 reason to try obtain any media information. */ 336 return; 337 } 338 339 /* Then loop until the negotiation is completed. */ 340 while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) { 341 /* TODO: Bail out after a finite number of attempts 342 in case something goes wrong. */ 343 preempt(); 344 reg = dme_phy_read(sc, DM9000_PHY_BMSR); 345 } 346 } 347 348 349 sc->sc_media_active = IFM_ETHER; 350 reg = dme_phy_read(sc, DM9000_PHY_BMCR); 351 352 if (reg & DM9000_PHY_BMCR_SPEED_SELECT) { 353 sc->sc_media_active |= IFM_100_TX; 354 } else { 355 sc->sc_media_active |= IFM_10_T; 356 } 357 358 if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) { 359 sc->sc_media_active |= IFM_FDX; 360 } 361 } 362 363 void 364 dme_phy_check_link(void *arg) 365 { 366 struct dme_softc *sc = arg; 367 uint32_t reg; 368 int s; 369 370 s = splnet(); 371 372 reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST; 373 374 if( reg ) 375 reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE; 376 else { 377 reg = IFM_ETHER | IFM_AVALID; 378 sc->sc_media_active = IFM_NONE; 379 } 380 381 if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) { 382 dme_phy_reset(sc); 383 } 384 385 sc->sc_media_status = reg; 386 387 callout_schedule(&sc->sc_link_callout, mstohz(2000)); 388 splx(s); 389 } 390 391 int 392 dme_set_media(struct dme_softc *sc, int media) 393 { 394 int s; 395 396 s = splnet(); 397 sc->sc_media.ifm_media = media; 398 dme_phy_reset(sc); 399 400 splx(s); 401 402 return 0; 403 } 404 405 int 406 dme_attach(struct dme_softc *sc, const uint8_t *enaddr) 407 { 408 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 409 uint8_t b[2]; 410 uint16_t io_mode; 411 412 dme_read_c(sc, DM9000_VID0, b, 2); 413 #if BYTE_ORDER == BIG_ENDIAN 414 sc->sc_vendor_id = (b[0] << 8) | b[1]; 415 #else 416 sc->sc_vendor_id = b[0] | (b[1] << 8); 417 #endif 418 dme_read_c(sc, DM9000_PID0, b, 2); 419 #if BYTE_ORDER == BIG_ENDIAN 420 sc->sc_product_id = (b[0] << 8) | b[1]; 421 #else 422 sc->sc_product_id = b[0] | (b[1] << 8); 423 #endif 424 /* TODO: Check the vendor ID as well */ 425 if (sc->sc_product_id != 0x9000) { 426 panic("dme_attach: product id mismatch (0x%hx != 0x9000)", 427 sc->sc_product_id); 428 } 429 430 /* Initialize ifnet structure. */ 431 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 432 ifp->if_softc = sc; 433 ifp->if_start = dme_start_output; 434 ifp->if_init = dme_init; 435 ifp->if_ioctl = dme_ioctl; 436 ifp->if_stop = dme_stop; 437 ifp->if_watchdog = NULL; /* no watchdog at this stage */ 438 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST | 439 IFF_MULTICAST; 440 IFQ_SET_READY(&ifp->if_snd); 441 442 /* Initialize ifmedia structures. */ 443 ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus); 444 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL); 445 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); 446 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL); 447 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); 448 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL); 449 450 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO); 451 452 if (enaddr != NULL) 453 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr)); 454 /* TODO: Support an EEPROM attached to the DM9000 chip */ 455 456 callout_init(&sc->sc_link_callout, 0); 457 callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc); 458 459 sc->sc_media_status = 0; 460 461 /* Configure DM9000 with the MAC address */ 462 dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6); 463 464 #ifdef DM9000_DEBUG 465 { 466 uint8_t macAddr[6]; 467 dme_read_c(sc, DM9000_PAB0, macAddr, 6); 468 printf("DM9000 configured with MAC address: "); 469 for (int i = 0; i < 6; i++) { 470 printf("%02X:", macAddr[i]); 471 } 472 printf("\n"); 473 } 474 #endif 475 476 if_attach(ifp); 477 ether_ifattach(ifp, sc->sc_enaddr); 478 479 #ifdef DM9000_DEBUG 480 { 481 uint8_t network_state; 482 network_state = dme_read(sc, DM9000_NSR); 483 printf("DM9000 Link status: "); 484 if (network_state & DM9000_NSR_LINKST) { 485 if (network_state & DM9000_NSR_SPEED) 486 printf("10Mbps"); 487 else 488 printf("100Mbps"); 489 } else { 490 printf("Down"); 491 } 492 printf("\n"); 493 } 494 #endif 495 496 io_mode = (dme_read(sc, DM9000_ISR) & 497 DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT; 498 499 DPRINTF(("DM9000 Operation Mode: ")); 500 switch( io_mode) { 501 case DM9000_MODE_16BIT: 502 DPRINTF(("16-bit mode")); 503 sc->sc_data_width = 2; 504 sc->sc_pkt_write = dme_pkt_write_2; 505 sc->sc_pkt_read = dme_pkt_read_2; 506 break; 507 case DM9000_MODE_32BIT: 508 DPRINTF(("32-bit mode")); 509 sc->sc_data_width = 4; 510 panic("32bit mode is unsupported\n"); 511 break; 512 case DM9000_MODE_8BIT: 513 DPRINTF(("8-bit mode")); 514 sc->sc_data_width = 1; 515 sc->sc_pkt_write = dme_pkt_write_1; 516 sc->sc_pkt_read = dme_pkt_read_1; 517 break; 518 default: 519 DPRINTF(("Invalid mode")); 520 break; 521 } 522 DPRINTF(("\n")); 523 524 callout_schedule(&sc->sc_link_callout, mstohz(2000)); 525 526 return 0; 527 } 528 529 int dme_intr(void *arg) 530 { 531 struct dme_softc *sc = arg; 532 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 533 uint8_t status; 534 535 536 DPRINTF(("dme_intr: Begin\n")); 537 538 /* Disable interrupts */ 539 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR ); 540 541 status = dme_read(sc, DM9000_ISR); 542 dme_write(sc, DM9000_ISR, status); 543 544 if (status & DM9000_ISR_PRS) { 545 if (ifp->if_flags & IFF_RUNNING ) 546 dme_receive(sc, ifp); 547 } 548 if (status & DM9000_ISR_PTS) { 549 uint8_t nsr; 550 uint8_t tx_status = 0x01; /* Initialize to an error value */ 551 552 /* A packet has been transmitted */ 553 sc->txbusy = 0; 554 555 nsr = dme_read(sc, DM9000_NSR); 556 557 if (nsr & DM9000_NSR_TX1END) { 558 tx_status = dme_read(sc, DM9000_TSR1); 559 TX_DPRINTF(("dme_intr: Sent using channel 0\n")); 560 } else if (nsr & DM9000_NSR_TX2END) { 561 tx_status = dme_read(sc, DM9000_TSR2); 562 TX_DPRINTF(("dme_intr: Sent using channel 1\n")); 563 } 564 565 if (tx_status == 0x0) { 566 /* Frame successfully sent */ 567 ifp->if_opackets++; 568 } else { 569 ifp->if_oerrors++; 570 } 571 572 /* If we have nothing ready to transmit, prepare something */ 573 if (!sc->txready) { 574 dme_prepare(sc, ifp); 575 } 576 577 if (sc->txready) 578 dme_transmit(sc); 579 580 /* Prepare the next frame */ 581 dme_prepare(sc, ifp); 582 583 } 584 #ifdef notyet 585 if (status & DM9000_ISR_LNKCHNG) { 586 } 587 #endif 588 589 /* Enable interrupts again */ 590 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM | 591 DM9000_IMR_PTM); 592 593 DPRINTF(("dme_intr: End\n")); 594 595 return 1; 596 } 597 598 void 599 dme_start_output(struct ifnet *ifp) 600 { 601 struct dme_softc *sc; 602 603 sc = ifp->if_softc; 604 605 DPRINTF(("dme_start_output: Begin\n")); 606 607 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) { 608 printf("No output\n"); 609 return; 610 } 611 612 if (sc->txbusy && sc->txready) { 613 panic("DM9000: Internal error, trying to send without" 614 " any empty queue\n"); 615 } 616 617 dme_prepare(sc, ifp); 618 619 if (sc->txbusy == 0) { 620 /* We are ready to transmit right away */ 621 dme_transmit(sc); 622 dme_prepare(sc, ifp); /* Prepare next one */ 623 } else { 624 /* We need to wait until the current packet has 625 * been transmitted. 626 */ 627 ifp->if_flags |= IFF_OACTIVE; 628 } 629 630 DPRINTF(("dme_start_output: End\n")); 631 } 632 633 void 634 dme_prepare(struct dme_softc *sc, struct ifnet *ifp) 635 { 636 struct mbuf *bufChain; 637 uint16_t length; 638 639 TX_DPRINTF(("dme_prepare: Entering\n")); 640 641 if (sc->txready) 642 panic("dme_prepare: Someone called us with txready set\n"); 643 644 IFQ_DEQUEUE(&ifp->if_snd, bufChain); 645 if (bufChain == NULL) { 646 TX_DPRINTF(("dme_prepare: Nothing to transmit\n")); 647 ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */ 648 return; /* Nothing to transmit */ 649 } 650 651 /* Element has now been removed from the queue, so we better send it */ 652 653 bpf_mtap(ifp, bufChain, BPF_D_OUT); 654 655 /* Setup the DM9000 to accept the writes, and then write each buf in 656 the chain. */ 657 658 TX_DATA_DPRINTF(("dme_prepare: Writing data: ")); 659 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD); 660 length = sc->sc_pkt_write(sc, bufChain); 661 TX_DATA_DPRINTF(("\n")); 662 663 if (length % sc->sc_data_width != 0) { 664 panic("dme_prepare: length is not compatible with IO_MODE"); 665 } 666 667 sc->txready_length = length; 668 sc->txready = 1; 669 670 TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: " 671 "txready: %d, txready_length: %d\n", 672 sc->txbusy, sc->txready, sc->txready_length)); 673 674 m_freem(bufChain); 675 676 TX_DPRINTF(("dme_prepare: Leaving\n")); 677 } 678 679 int 680 dme_init(struct ifnet *ifp) 681 { 682 int s; 683 struct dme_softc *sc = ifp->if_softc; 684 685 dme_stop(ifp, 0); 686 687 s = splnet(); 688 689 dme_reset(sc); 690 691 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING; 692 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE; 693 sc->sc_ethercom.ec_if.if_timer = 0; 694 695 splx(s); 696 697 return 0; 698 } 699 700 int 701 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data) 702 { 703 struct dme_softc *sc = ifp->if_softc; 704 struct ifreq *ifr = data; 705 int s, error = 0; 706 707 s = splnet(); 708 709 switch(cmd) { 710 case SIOCGIFMEDIA: 711 case SIOCSIFMEDIA: 712 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); 713 break; 714 default: 715 error = ether_ioctl(ifp, cmd, data); 716 if (error == ENETRESET) { 717 if (ifp->if_flags && IFF_RUNNING) { 718 /* Address list has changed, reconfigure 719 filter */ 720 dme_set_addr_filter(sc); 721 } 722 error = 0; 723 } 724 break; 725 } 726 727 splx(s); 728 return error; 729 } 730 731 void 732 dme_stop(struct ifnet *ifp, int disable) 733 { 734 struct dme_softc *sc = ifp->if_softc; 735 736 /* Not quite sure what to do when called with disable == 0 */ 737 if (disable) { 738 /* Disable RX */ 739 dme_write(sc, DM9000_RCR, 0x0); 740 } 741 742 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 743 ifp->if_timer = 0; 744 } 745 746 int 747 dme_mediachange(struct ifnet *ifp) 748 { 749 struct dme_softc *sc = ifp->if_softc; 750 751 return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media); 752 } 753 754 void 755 dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 756 { 757 struct dme_softc *sc = ifp->if_softc; 758 759 ifmr->ifm_active = sc->sc_media_active; 760 ifmr->ifm_status = sc->sc_media_status; 761 } 762 763 void 764 dme_transmit(struct dme_softc *sc) 765 { 766 767 TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n", 768 sc->txready, sc->txbusy)); 769 770 dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff); 771 dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff ); 772 773 /* Request to send the packet */ 774 dme_read(sc, DM9000_ISR); 775 776 dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ); 777 778 sc->txready = 0; 779 sc->txbusy = 1; 780 sc->txready_length = 0; 781 } 782 783 void 784 dme_receive(struct dme_softc *sc, struct ifnet *ifp) 785 { 786 uint8_t ready = 0x01; 787 788 DPRINTF(("inside dme_receive\n")); 789 790 while (ready == 0x01) { 791 /* Packet received, retrieve it */ 792 793 /* Read without address increment to get the ready byte without 794 moving past it. */ 795 bus_space_write_1(sc->sc_iot, sc->sc_ioh, 796 sc->dme_io, DM9000_MRCMDX); 797 /* Dummy ready */ 798 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); 799 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); 800 ready &= 0x03; /* we only want bits 1:0 */ 801 if (ready == 0x01) { 802 uint8_t rx_status; 803 struct mbuf *m; 804 805 /* Read with address increment. */ 806 bus_space_write_1(sc->sc_iot, sc->sc_ioh, 807 sc->dme_io, DM9000_MRCMD); 808 809 rx_status = sc->sc_pkt_read(sc, ifp, &m); 810 if (m == NULL) { 811 /* failed to allocate a receive buffer */ 812 ifp->if_ierrors++; 813 RX_DPRINTF(("dme_receive: " 814 "Error allocating buffer\n")); 815 } else if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) { 816 /* Error while receiving the packet, 817 * discard it and keep track of counters 818 */ 819 ifp->if_ierrors++; 820 RX_DPRINTF(("dme_receive: " 821 "Error reciving packet\n")); 822 } else if (rx_status & DM9000_RSR_LCS) { 823 ifp->if_collisions++; 824 } else { 825 if_percpuq_enqueue(ifp->if_percpuq, m); 826 } 827 828 } else if (ready != 0x00) { 829 /* Should this be logged somehow? */ 830 printf("%s: Resetting chip\n", 831 device_xname(sc->sc_dev)); 832 dme_reset(sc); 833 } 834 } 835 } 836 837 void 838 dme_reset(struct dme_softc *sc) 839 { 840 uint8_t var; 841 842 /* We only re-initialized the PHY in this function the first time it is 843 called. */ 844 if( !sc->sc_phy_initialized) { 845 /* PHY Reset */ 846 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET); 847 848 /* PHY Power Down */ 849 var = dme_read(sc, DM9000_GPR); 850 dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF); 851 } 852 853 /* Reset the DM9000 twice, as described in section 2 of the Programming 854 Guide. 855 The PHY is initialized and enabled between those two resets. 856 */ 857 858 /* Software Reset*/ 859 dme_write(sc, DM9000_NCR, 860 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL); 861 delay(20); 862 dme_write(sc, DM9000_NCR, 0x0); 863 864 if( !sc->sc_phy_initialized) { 865 /* PHY Initialization */ 866 dme_phy_init(sc); 867 868 /* PHY Enable */ 869 var = dme_read(sc, DM9000_GPR); 870 dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF); 871 var = dme_read(sc, DM9000_GPCR); 872 dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT); 873 874 dme_write(sc, DM9000_NCR, 875 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL); 876 delay(20); 877 dme_write(sc, DM9000_NCR, 0x0); 878 } 879 880 /* Select internal PHY, no wakeup event, no collosion mode, 881 * normal loopback mode. 882 */ 883 dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL ); 884 885 /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/ 886 dme_read(sc, DM9000_NSR); 887 888 /* Enable wraparound of read/write pointer, packet received latch, 889 * and packet transmitted latch. 890 */ 891 dme_write(sc, DM9000_IMR, 892 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM); 893 894 /* Setup multicast address filter, and enable RX. */ 895 dme_set_addr_filter(sc); 896 897 /* Obtain media information from PHY */ 898 dme_phy_update_media(sc); 899 900 sc->txbusy = 0; 901 sc->txready = 0; 902 sc->sc_phy_initialized = 1; 903 } 904 905 void 906 dme_set_addr_filter(struct dme_softc *sc) 907 { 908 struct ether_multi *enm; 909 struct ether_multistep step; 910 struct ethercom *ec; 911 struct ifnet *ifp; 912 uint16_t af[4]; 913 int i; 914 915 ec = &sc->sc_ethercom; 916 ifp = &ec->ec_if; 917 918 if (ifp->if_flags & IFF_PROMISC) { 919 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | 920 DM9000_RCR_WTDIS | 921 DM9000_RCR_PRMSC); 922 ifp->if_flags |= IFF_ALLMULTI; 923 return; 924 } 925 926 af[0] = af[1] = af[2] = af[3] = 0x0000; 927 ifp->if_flags &= ~IFF_ALLMULTI; 928 929 ETHER_FIRST_MULTI(step, ec, enm); 930 while (enm != NULL) { 931 uint16_t hash; 932 if (memcpy(enm->enm_addrlo, enm->enm_addrhi, 933 sizeof(enm->enm_addrlo))) { 934 /* 935 * We must listen to a range of multicast addresses. 936 * For now, just accept all multicasts, rather than 937 * trying to set only those filter bits needed to match 938 * the range. (At this time, the only use of address 939 * ranges is for IP multicast routing, for which the 940 * range is big enough to require all bits set.) 941 */ 942 ifp->if_flags |= IFF_ALLMULTI; 943 af[0] = af[1] = af[2] = af[3] = 0xffff; 944 break; 945 } else { 946 hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F; 947 af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16)); 948 ETHER_NEXT_MULTI(step, enm); 949 } 950 } 951 952 /* Write the multicast address filter */ 953 for(i=0; i<4; i++) { 954 dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF); 955 dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF); 956 } 957 958 /* Setup RX controls */ 959 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS); 960 } 961 962 int 963 dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain) 964 { 965 int left_over_count = 0; /* Number of bytes from previous mbuf, which 966 need to be written with the next.*/ 967 uint16_t left_over_buf = 0; 968 int length = 0; 969 struct mbuf *buf; 970 uint8_t *write_ptr; 971 972 /* We expect that the DM9000 has been setup to accept writes before 973 this function is called. */ 974 975 for (buf = bufChain; buf != NULL; buf = buf->m_next) { 976 int to_write = buf->m_len; 977 978 length += to_write; 979 980 write_ptr = buf->m_data; 981 while (to_write > 0 || 982 (buf->m_next == NULL && left_over_count > 0) 983 ) { 984 if (left_over_count > 0) { 985 uint8_t b = 0; 986 DPRINTF(("dme_pkt_write_16: " 987 "Writing left over byte\n")); 988 989 if (to_write > 0) { 990 b = *write_ptr; 991 to_write--; 992 write_ptr++; 993 994 DPRINTF(("Took single byte\n")); 995 } else { 996 DPRINTF(("Leftover in last run\n")); 997 length++; 998 } 999 1000 /* Does shift direction depend on endianess? */ 1001 left_over_buf = left_over_buf | (b << 8); 1002 1003 bus_space_write_2(sc->sc_iot, sc->sc_ioh, 1004 sc->dme_data, left_over_buf); 1005 TX_DATA_DPRINTF(("%02X ", left_over_buf)); 1006 left_over_count = 0; 1007 } else if ((long)write_ptr % 2 != 0) { 1008 /* Misaligned data */ 1009 DPRINTF(("dme_pkt_write_16: " 1010 "Detected misaligned data\n")); 1011 left_over_buf = *write_ptr; 1012 left_over_count = 1; 1013 write_ptr++; 1014 to_write--; 1015 } else { 1016 int i; 1017 uint16_t *dptr = (uint16_t *)write_ptr; 1018 1019 /* A block of aligned data. */ 1020 for(i = 0; i < to_write / 2; i++) { 1021 /* buf will be half-word aligned 1022 * all the time 1023 */ 1024 bus_space_write_2(sc->sc_iot, 1025 sc->sc_ioh, sc->dme_data, *dptr); 1026 TX_DATA_DPRINTF(("%02X %02X ", 1027 *dptr & 0xFF, (*dptr >> 8) & 0xFF)); 1028 dptr++; 1029 } 1030 1031 write_ptr += i * 2; 1032 if (to_write % 2 != 0) { 1033 DPRINTF(("dme_pkt_write_16: " 1034 "to_write %% 2: %d\n", 1035 to_write % 2)); 1036 left_over_count = 1; 1037 /* XXX: Does this depend on 1038 * the endianess? 1039 */ 1040 left_over_buf = *write_ptr; 1041 1042 write_ptr++; 1043 to_write--; 1044 DPRINTF(("dme_pkt_write_16: " 1045 "to_write (after): %d\n", 1046 to_write)); 1047 DPRINTF(("dme_pkt_write_16: i * 2: %d\n", 1048 i*2)); 1049 } 1050 to_write -= i * 2; 1051 } 1052 } /* while(...) */ 1053 } /* for(...) */ 1054 1055 return length; 1056 } 1057 1058 int 1059 dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf) 1060 { 1061 uint8_t rx_status; 1062 struct mbuf *m; 1063 uint16_t data; 1064 uint16_t frame_length; 1065 uint16_t i; 1066 uint16_t *buf; 1067 1068 data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data); 1069 1070 rx_status = data & 0xFF; 1071 frame_length = bus_space_read_2(sc->sc_iot, 1072 sc->sc_ioh, sc->dme_data); 1073 if (frame_length > ETHER_MAX_LEN) { 1074 printf("Got frame of length: %d\n", frame_length); 1075 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN); 1076 panic("Something is rotten"); 1077 } 1078 RX_DPRINTF(("dme_receive: " 1079 "rx_statux: 0x%x, frame_length: %d\n", 1080 rx_status, frame_length)); 1081 1082 1083 m = dme_alloc_receive_buffer(ifp, frame_length); 1084 if (m == NULL) { 1085 /* 1086 * didn't get a receive buffer, so we read the rest of the 1087 * packet, throw it away and return an error 1088 */ 1089 for (i = 0; i < frame_length; i += 2 ) { 1090 data = bus_space_read_2(sc->sc_iot, 1091 sc->sc_ioh, sc->dme_data); 1092 } 1093 *outBuf = NULL; 1094 return 0; 1095 } 1096 1097 buf = mtod(m, uint16_t*); 1098 1099 RX_DPRINTF(("dme_receive: ")); 1100 1101 for (i = 0; i < frame_length; i += 2 ) { 1102 data = bus_space_read_2(sc->sc_iot, 1103 sc->sc_ioh, sc->dme_data); 1104 if ( (frame_length % 2 != 0) && 1105 (i == frame_length - 1) ) { 1106 data = data & 0xff; 1107 RX_DPRINTF((" L ")); 1108 } 1109 *buf = data; 1110 buf++; 1111 RX_DATA_DPRINTF(("%02X %02X ", data & 0xff, 1112 (data >> 8) & 0xff)); 1113 } 1114 1115 RX_DATA_DPRINTF(("\n")); 1116 RX_DPRINTF(("Read %d bytes\n", i)); 1117 1118 *outBuf = m; 1119 return rx_status; 1120 } 1121 1122 int 1123 dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain) 1124 { 1125 int length = 0, i; 1126 struct mbuf *buf; 1127 uint8_t *write_ptr; 1128 1129 /* We expect that the DM9000 has been setup to accept writes before 1130 this function is called. */ 1131 1132 for (buf = bufChain; buf != NULL; buf = buf->m_next) { 1133 int to_write = buf->m_len; 1134 1135 length += to_write; 1136 1137 write_ptr = buf->m_data; 1138 for (i = 0; i < to_write; i++) { 1139 bus_space_write_1(sc->sc_iot, sc->sc_ioh, 1140 sc->dme_data, *write_ptr); 1141 write_ptr++; 1142 } 1143 } /* for(...) */ 1144 1145 return length; 1146 } 1147 1148 int 1149 dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf) 1150 { 1151 uint8_t rx_status; 1152 struct mbuf *m; 1153 uint8_t *buf; 1154 uint16_t frame_length; 1155 uint16_t i, reg; 1156 uint8_t data; 1157 1158 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); 1159 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8; 1160 rx_status = reg & 0xFF; 1161 1162 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); 1163 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8; 1164 frame_length = reg; 1165 1166 if (frame_length > ETHER_MAX_LEN) { 1167 printf("Got frame of length: %d\n", frame_length); 1168 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN); 1169 panic("Something is rotten"); 1170 } 1171 RX_DPRINTF(("dme_receive: " 1172 "rx_statux: 0x%x, frame_length: %d\n", 1173 rx_status, frame_length)); 1174 1175 1176 m = dme_alloc_receive_buffer(ifp, frame_length); 1177 if (m == NULL) { 1178 /* 1179 * didn't get a receive buffer, so we read the rest of the 1180 * packet, throw it away and return an error 1181 */ 1182 for (i = 0; i < frame_length; i++ ) { 1183 data = bus_space_read_2(sc->sc_iot, 1184 sc->sc_ioh, sc->dme_data); 1185 } 1186 *outBuf = NULL; 1187 return 0; 1188 } 1189 1190 buf = mtod(m, uint8_t *); 1191 1192 RX_DPRINTF(("dme_receive: ")); 1193 1194 for (i = 0; i< frame_length; i += 1 ) { 1195 data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data); 1196 *buf = data; 1197 buf++; 1198 RX_DATA_DPRINTF(("%02X ", data)); 1199 } 1200 1201 RX_DATA_DPRINTF(("\n")); 1202 RX_DPRINTF(("Read %d bytes\n", i)); 1203 1204 *outBuf = m; 1205 return rx_status; 1206 } 1207 1208 struct mbuf* 1209 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length) 1210 { 1211 struct dme_softc *sc = ifp->if_softc; 1212 struct mbuf *m; 1213 int pad; 1214 1215 MGETHDR(m, M_DONTWAIT, MT_DATA); 1216 if (m == NULL) return NULL; 1217 1218 m_set_rcvif(m, ifp); 1219 /* Ensure that we always allocate an even number of 1220 * bytes in order to avoid writing beyond the buffer 1221 */ 1222 m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width); 1223 pad = ALIGN(sizeof(struct ether_header)) - 1224 sizeof(struct ether_header); 1225 /* All our frames have the CRC attached */ 1226 m->m_flags |= M_HASFCS; 1227 if (m->m_pkthdr.len + pad > MHLEN) { 1228 MCLGET(m, M_DONTWAIT); 1229 if ((m->m_flags & M_EXT) == 0) { 1230 m_freem(m); 1231 return NULL; 1232 } 1233 } 1234 1235 m->m_data += pad; 1236 m->m_len = frame_length + (frame_length % sc->sc_data_width); 1237 1238 return m; 1239 } 1240