xref: /netbsd-src/sys/dev/ic/dm9000.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: dm9000.c,v 1.29 2020/06/27 13:34:20 jmcneill Exp $	*/
2 
3 /*
4  * Copyright (c) 2009 Paul Fleischer
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31  * Copyright (c) 2004 Christopher Gilbert
32  * All rights reserved.
33  *
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice, this list of conditions and the following disclaimer.
36  * 2. Redistributions in binary form must reproduce the above copyright
37  *    notice, this list of conditions and the following disclaimer in the
38  *    documentation and/or other materials provided with the distribution.
39  * 3. The name of the company nor the name of the author may be used to
40  *    endorse or promote products derived from this software without specific
41  *    prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53  * SUCH DAMAGE.
54  */
55 
56 /*
57  * Copyright 1997
58  * Digital Equipment Corporation. All rights reserved.
59  *
60  * This software is furnished under license and may be used and
61  * copied only in accordance with the following terms and conditions.
62  * Subject to these conditions, you may download, copy, install,
63  * use, modify and distribute this software in source and/or binary
64  * form. No title or ownership is transferred hereby.
65  *
66  * 1) Any source code used, modified or distributed must reproduce
67  *    and retain this copyright notice and list of conditions as
68  *    they appear in the source file.
69  *
70  * 2) No right is granted to use any trade name, trademark, or logo of
71  *    Digital Equipment Corporation. Neither the "Digital Equipment
72  *    Corporation" name nor any trademark or logo of Digital Equipment
73  *    Corporation may be used to endorse or promote products derived
74  *    from this software without the prior written permission of
75  *    Digital Equipment Corporation.
76  *
77  * 3) This software is provided "AS-IS" and any express or implied
78  *    warranties, including but not limited to, any implied warranties
79  *    of merchantability, fitness for a particular purpose, or
80  *    non-infringement are disclaimed. In no event shall DIGITAL be
81  *    liable for any damages whatsoever, and in particular, DIGITAL
82  *    shall not be liable for special, indirect, consequential, or
83  *    incidental damages or damages for lost profits, loss of
84  *    revenue or loss of use, whether such damages arise in contract,
85  *    negligence, tort, under statute, in equity, at law or otherwise,
86  *    even if advised of the possibility of such damage.
87  */
88 
89 #include <sys/cdefs.h>
90 
91 #include <sys/param.h>
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94 #include <sys/device.h>
95 #include <sys/mbuf.h>
96 #include <sys/sockio.h>
97 #include <sys/malloc.h>
98 #include <sys/errno.h>
99 #include <sys/cprng.h>
100 #include <sys/rndsource.h>
101 #include <sys/kernel.h>
102 #include <sys/systm.h>
103 
104 #include <net/if.h>
105 #include <net/if_dl.h>
106 #include <net/if_ether.h>
107 #include <net/if_media.h>
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 #include <net/bpf.h>
111 
112 #include <dev/ic/dm9000var.h>
113 #include <dev/ic/dm9000reg.h>
114 
115 #if 1
116 #undef DM9000_DEBUG
117 #undef DM9000_TX_DEBUG
118 #undef DM9000_TX_DATA_DEBUG
119 #undef DM9000_RX_DEBUG
120 #undef  DM9000_RX_DATA_DEBUG
121 #else
122 #define DM9000_DEBUG
123 #define  DM9000_TX_DEBUG
124 #define DM9000_TX_DATA_DEBUG
125 #define DM9000_RX_DEBUG
126 #define  DM9000_RX_DATA_DEBUG
127 #endif
128 
129 #ifdef DM9000_DEBUG
130 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
131 #else
132 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
133 #endif
134 
135 #ifdef DM9000_TX_DEBUG
136 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
137 #else
138 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
139 #endif
140 
141 #ifdef DM9000_RX_DEBUG
142 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
143 #else
144 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
145 #endif
146 
147 #ifdef DM9000_RX_DATA_DEBUG
148 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
149 #else
150 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
151 #endif
152 
153 #ifdef DM9000_TX_DATA_DEBUG
154 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
155 #else
156 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
157 #endif
158 
159 static void dme_reset(struct dme_softc *);
160 static int dme_init(struct ifnet *);
161 static void dme_stop(struct ifnet *, int);
162 static void dme_start(struct ifnet *);
163 static int dme_ioctl(struct ifnet *, u_long, void *);
164 
165 static void dme_set_rcvfilt(struct dme_softc *);
166 static void mii_statchg(struct ifnet *);
167 static void lnkchg(struct dme_softc *);
168 static void phy_tick(void *);
169 static int mii_readreg(device_t, int, int, uint16_t *);
170 static int mii_writereg(device_t, int, int, uint16_t);
171 
172 static void dme_prepare(struct ifnet *);
173 static void dme_transmit(struct ifnet *);
174 static void dme_receive(struct ifnet *);
175 
176 static int pkt_read_2(struct dme_softc *, struct mbuf **);
177 static int pkt_write_2(struct dme_softc *, struct mbuf *);
178 static int pkt_read_1(struct dme_softc *, struct mbuf **);
179 static int pkt_write_1(struct dme_softc *, struct mbuf *);
180 #define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
181 #define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
182 
183 #define ETHER_IS_ONE(x) \
184 	   (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
185 #define ETHER_IS_ZERO(x) \
186 	   (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
187 
188 int
189 dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
190 {
191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 	struct mii_data *mii = &sc->sc_mii;
193 	struct ifmedia *ifm = &mii->mii_media;
194 	uint8_t b[2];
195 	uint16_t io_mode;
196 	uint8_t enaddr[ETHER_ADDR_LEN];
197 	prop_dictionary_t dict;
198 	prop_data_t ea;
199 
200 	dme_read_c(sc, DM9000_VID0, b, 2);
201 	sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
202 	dme_read_c(sc, DM9000_PID0, b, 2);
203 	sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
204 
205 	/* TODO: Check the vendor ID as well */
206 	if (sc->sc_product_id != 0x9000) {
207 		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
208 		    sc->sc_product_id);
209 	}
210 #if 1 || DM9000_DEBUG
211 	{
212 		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
213 		aprint_normal_dev(sc->sc_dev,
214 		    "DM9000 was configured with MAC address: %s\n",
215 		    ether_sprintf(enaddr));
216 	}
217 #endif
218 	dict = device_properties(sc->sc_dev);
219 	ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
220 	if (ea != NULL) {
221 	       /*
222 		 * If the MAC address is overriden by a device property,
223 		 * use that.
224 		 */
225 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
226 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
227 		memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
228 		aprint_debug_dev(sc->sc_dev, "got MAC address!\n");
229 	} else {
230 		/*
231 		 * If we did not get an externaly configure address,
232 		 * try to read one from the current setup, before
233 		 * resetting the chip.
234 		 */
235 		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
236 		if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
237 			/* make a random MAC address */
238 			uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
239 			uint32_t machi = cprng_strong32();
240 			enaddr[0] = maclo;
241 			enaddr[1] = maclo >> 8;
242 			enaddr[2] = maclo >> 16;
243 			enaddr[3] = maclo >> 26;
244 			enaddr[4] = machi;
245 			enaddr[5] = machi >> 8;
246 		}
247 	}
248 	/* TODO: perform explicit EEPROM read op if it's availble */
249 
250 	dme_reset(sc);
251 
252 	mii->mii_ifp = ifp;
253 	mii->mii_readreg = mii_readreg;
254 	mii->mii_writereg = mii_writereg;
255 	mii->mii_statchg = mii_statchg;
256 
257 	/* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
258 	sc->sc_ethercom.ec_mii = mii;
259 	ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
260 	mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
261 		MII_OFFSET_ANY, 0);
262 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
263 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
264 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
265 	} else
266 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
267 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
268 
269 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
270 	ifp->if_softc = sc;
271 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
272 	ifp->if_init = dme_init;
273 	ifp->if_start = dme_start;
274 	ifp->if_stop = dme_stop;
275 	ifp->if_ioctl = dme_ioctl;
276 	ifp->if_watchdog = NULL; /* no watchdog used */
277 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
278 	IFQ_SET_READY(&ifp->if_snd);
279 
280 	if_attach(ifp);
281 	ether_ifattach(ifp, enaddr);
282 	if_deferred_start_init(ifp, NULL);
283 
284 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
285             RND_TYPE_NET, RND_FLAG_DEFAULT);
286 
287 	/* might be unnecessary as link change interrupt works well */
288 	callout_init(&sc->sc_link_callout, 0);
289 	callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
290 
291 	io_mode = (dme_read(sc, DM9000_ISR) &
292 	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
293 
294 	/* frame body read/write ops in 2 byte quantity or byte-wise. */
295 	DPRINTF(("DM9000 Operation Mode: "));
296 	switch (io_mode) {
297 	case DM9000_MODE_8BIT:
298 		DPRINTF(("8-bit mode"));
299 		sc->sc_data_width = 1;
300 		sc->sc_pkt_write = pkt_write_1;
301 		sc->sc_pkt_read = pkt_read_1;
302 		break;
303 	case DM9000_MODE_16BIT:
304 		DPRINTF(("16-bit mode"));
305 		sc->sc_data_width = 2;
306 		sc->sc_pkt_write = pkt_write_2;
307 		sc->sc_pkt_read = pkt_read_2;
308 		break;
309 	case DM9000_MODE_32BIT:
310 		DPRINTF(("32-bit mode"));
311 		sc->sc_data_width = 4;
312 		panic("32bit mode is unsupported\n");
313 		break;
314 	default:
315 		DPRINTF(("Invalid mode"));
316 		break;
317 	}
318 	DPRINTF(("\n"));
319 
320 	return 0;
321 }
322 
323 int
324 dme_detach(struct dme_softc *sc)
325 {
326 	return 0;
327 }
328 
329 /* Software Initialize/Reset of the DM9000 */
330 static void
331 dme_reset(struct dme_softc *sc)
332 {
333 	uint8_t misc;
334 
335 	/* We only re-initialized the PHY in this function the first time it is
336 	 * called. */
337 	if (!sc->sc_phy_initialized) {
338 		/* PHY Reset */
339 		mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
340 
341 		/* PHY Power Down */
342 		misc = dme_read(sc, DM9000_GPR);
343 		dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
344 	}
345 
346 	/* Reset the DM9000 twice, as described in section 2 of the Programming
347 	 * Guide.
348 	 * The PHY is initialized and enabled between those two resets.
349 	 */
350 
351 	/* Software Reset */
352 	dme_write(sc, DM9000_NCR,
353 	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
354 	delay(20);
355 	dme_write(sc, DM9000_NCR, 0x0);
356 
357 	if (!sc->sc_phy_initialized) {
358 		/* PHY Enable */
359 		misc = dme_read(sc, DM9000_GPR);
360 		dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
361 		misc = dme_read(sc, DM9000_GPCR);
362 		dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
363 
364 		dme_write(sc, DM9000_NCR,
365 		    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
366 		delay(20);
367 		dme_write(sc, DM9000_NCR, 0x0);
368 	}
369 
370 	/* Select internal PHY, no wakeup event, no collosion mode,
371 	 * normal loopback mode.
372 	 */
373 	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
374 
375 	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
376 	dme_read(sc, DM9000_NSR);
377 
378 	/* Enable wraparound of read/write pointer, frame received latch,
379 	 * and frame transmitted latch.
380 	 */
381 	dme_write(sc, DM9000_IMR,
382 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
383 
384 	dme_write(sc, DM9000_RCR,
385 	    DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
386 
387 	sc->sc_phy_initialized = 1;
388 }
389 
390 static int
391 dme_init(struct ifnet *ifp)
392 {
393 	struct dme_softc *sc = ifp->if_softc;
394 
395 	dme_stop(ifp, 0);
396 	dme_reset(sc);
397 	dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
398 	dme_set_rcvfilt(sc);
399 	(void)ether_mediachange(ifp);
400 
401 	sc->txbusy = sc->txready = 0;
402 
403 	ifp->if_flags |= IFF_RUNNING;
404 	ifp->if_flags &= ~IFF_OACTIVE;
405 	callout_schedule(&sc->sc_link_callout, hz);
406 
407 	return 0;
408 }
409 
410 /* Configure multicast filter */
411 static void
412 dme_set_rcvfilt(struct dme_softc *sc)
413 {
414 	struct ethercom	*ec = &sc->sc_ethercom;
415 	struct ifnet *ifp = &ec->ec_if;
416 	struct ether_multi *enm;
417 	struct ether_multistep step;
418 	uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
419 	uint32_t h = 0;
420 	int rcr;
421 
422 	rcr = dme_read(sc, DM9000_RCR);
423 	rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
424 	dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
425 
426 	ETHER_LOCK(ec);
427 	if (ifp->if_flags & IFF_PROMISC) {
428 		ec->ec_flags |= ETHER_F_ALLMULTI;
429 		ETHER_UNLOCK(ec);
430 		/* run promisc. mode */
431 		rcr |= DM9000_RCR_PRMSC;
432 		goto update;
433 	}
434 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
435 	ETHER_FIRST_MULTI(step, ec, enm);
436 	while (enm != NULL) {
437 		if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
438 			/*
439 			 * We must listen to a range of multicast addresses.
440 			 * For now, just accept all multicasts, rather than
441 			 * trying to set only those filter bits needed to match
442 			 * the range.  (At this time, the only use of address
443 			 * ranges is for IP multicast routing, for which the
444 			 * range is big enough to require all bits set.)
445 			 */
446 			ec->ec_flags |= ETHER_F_ALLMULTI;
447 			ETHER_UNLOCK(ec);
448 			memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
449 			/* accept all mulicast frame */
450 			rcr |= DM9000_RCR_ALL;
451 			break;
452 		}
453 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
454 		/* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
455 		mchash[h / 8] |= 1 << (h % 8);
456 		ETHER_NEXT_MULTI(step, enm);
457 	}
458 	ETHER_UNLOCK(ec);
459 	/* DM9000 receive filter is always on */
460 	mchash[7] |= 0x80; /* to catch bcast frame */
461  update:
462 	dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
463 	dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
464 	return;
465 }
466 
467 void
468 lnkchg(struct dme_softc *sc)
469 {
470 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
471 	struct ifmediareq ifmr;
472 
473 	ether_mediastatus(ifp, &ifmr);
474 }
475 
476 static void
477 mii_statchg(struct ifnet *ifp)
478 {
479 	struct dme_softc *sc = ifp->if_softc;
480 	struct mii_data *mii = &sc->sc_mii;
481 	uint8_t fcr, ncr;
482 
483 #if 0
484 	const uint8_t Mbps[2] = { 10, 100 };
485 	uint8_t nsr = dme_read(sc, DM9000_NSR);
486 	int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
487 	/* speed/duplexity available also in reg 0x11 of internal PHY */
488 	if (nsr & DM9000_NSR_LINKST)
489 		printf("link up,spd%d", spd);
490 	else
491 		printf("link down");
492 
493 	/* show resolved mii(4) parameters */
494 	printf("MII spd%d",
495 	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
496 	if (mii->mii_media_active & IFM_FDX)
497 		printf(",full-duplex");
498 	printf("\n");
499 #endif
500 
501 	/* Adjust duplexity and PAUSE flow control. */
502 	fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
503 	ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
504 	if ((mii->mii_media_active & IFM_FDX)
505 	    && (mii->mii_media_active & IFM_FLOW)) {
506 		fcr |= DM9000_FCR_FLCE;
507 		ncr |= DM9000_NCR_FDX;
508 	}
509 	dme_write(sc, DM9000_FCR, fcr);
510 	dme_write(sc, DM9000_NCR, ncr);
511 }
512 
513 static void
514 phy_tick(void *arg)
515 {
516 	struct dme_softc *sc = arg;
517 	struct mii_data *mii = &sc->sc_mii;
518 	int s;
519 
520 	s = splnet();
521 	mii_tick(mii);
522 	splx(s);
523 
524 	callout_schedule(&sc->sc_link_callout, hz);
525 }
526 
527 static int
528 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
529 {
530 	struct dme_softc *sc = device_private(self);
531 
532 	if (phy != 1)
533 		return EINVAL;
534 
535 	/* Select Register to read*/
536 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
537 	    (reg & DM9000_EPAR_EROA_MASK));
538 	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
539 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
540 
541 	/* Wait until access to PHY has completed */
542 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
543 		;
544 
545 	/* Reset ERPRR-bit */
546 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
547 
548 	*val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
549 	return 0;
550 }
551 
552 static int
553 mii_writereg(device_t self, int phy, int reg, uint16_t val)
554 {
555 	struct dme_softc *sc = device_private(self);
556 
557 	if (phy != 1)
558 		return EINVAL;
559 
560 	/* Select Register to write */
561 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
562 	    (reg & DM9000_EPAR_EROA_MASK));
563 
564 	/* Write data to the two data registers */
565 	dme_write(sc, DM9000_EPDRL, val & 0xFF);
566 	dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
567 
568 	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
569 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
570 
571 	/* Wait until access to PHY has completed */
572 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
573 		;
574 
575 	/* Reset ERPRR-bit */
576 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
577 
578 	return 0;
579 }
580 
581 void
582 dme_stop(struct ifnet *ifp, int disable)
583 {
584 	struct dme_softc *sc = ifp->if_softc;
585 
586 	/* Not quite sure what to do when called with disable == 0 */
587 	if (disable) {
588 		/* Disable RX */
589 		dme_write(sc, DM9000_RCR, 0x0);
590 	}
591 	mii_down(&sc->sc_mii);
592 	callout_stop(&sc->sc_link_callout);
593 
594 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
595 	ifp->if_timer = 0;
596 }
597 
598 static void
599 dme_start(struct ifnet *ifp)
600 {
601 	struct dme_softc *sc = ifp->if_softc;
602 
603 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
604 		printf("No output\n");
605 		return;
606 	}
607 	if (sc->txbusy && sc->txready)
608 		panic("DM9000: Internal error, trying to send without"
609 		    " any empty queue\n");
610 
611 	dme_prepare(ifp);
612 	if (sc->txbusy) {
613 		/* We need to wait until the current frame has
614 		 * been transmitted.
615 		 */
616 		ifp->if_flags |= IFF_OACTIVE;
617 		return;
618 	}
619 	/* We are ready to transmit right away */
620 	dme_transmit(ifp);
621 	dme_prepare(ifp); /* Prepare next one */
622 }
623 
624 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
625 static void
626 dme_prepare(struct ifnet *ifp)
627 {
628 	struct dme_softc *sc = ifp->if_softc;
629 	uint16_t length;
630 	struct mbuf *m;
631 
632 	if (sc->txready)
633 		panic("dme_prepare: Someone called us with txready set\n");
634 
635 	IFQ_DEQUEUE(&ifp->if_snd, m);
636 	if (m == NULL) {
637 		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
638 		ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
639 		return; /* Nothing to transmit */
640 	}
641 
642 	/* Element has now been removed from the queue, so we better send it */
643 
644 	bpf_mtap(ifp, m, BPF_D_OUT);
645 
646 	/* Setup the DM9000 to accept the writes, and then write each buf in
647 	   the chain. */
648 
649 	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
650 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
651 	length = PKT_WRITE(sc, m);
652 	bpf_mtap(ifp, m, BPF_D_OUT);
653 	TX_DATA_DPRINTF(("\n"));
654 
655 	if (length % sc->sc_data_width != 0)
656 		panic("dme_prepare: length is not compatible with IO_MODE");
657 
658 	sc->txready_length = length;
659 	sc->txready = 1;
660 	m_freem(m);
661 }
662 
663 /* Transmit prepared data */
664 static void
665 dme_transmit(struct ifnet *ifp)
666 {
667 	struct dme_softc *sc = ifp->if_softc;
668 
669 	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
670 		sc->txready, sc->txbusy));
671 
672 	/* prime frame length first */
673 	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
674 	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
675 	/* read isr next */
676 	dme_read(sc, DM9000_ISR);
677 	/* finally issue a request to send */
678 	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
679 	sc->txready = 0;
680 	sc->txbusy = 1;
681 	sc->txready_length = 0;
682 }
683 
684 /* Receive data */
685 static void
686 dme_receive(struct ifnet *ifp)
687 {
688 	struct dme_softc *sc = ifp->if_softc;
689 	struct mbuf *m;
690 	uint8_t avail, rsr;
691 
692 	DPRINTF(("inside dme_receive\n"));
693 
694 	/* frame has just arrived, retrieve it */
695 	/* called right after Rx frame available interrupt */
696 	do {
697 		/* "no increment" read to get the avail byte without
698 		   moving past it. */
699 		bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
700 			DM9000_MRCMDX);
701 		/* Read twice */
702 		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
703 		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
704 		avail &= 03;	/* 1:0 we only want these bits */
705 		if (avail == 01) {
706 			/* Read with address increment. */
707 			bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
708 				DM9000_MRCMD);
709 			rsr = PKT_READ(sc, &m);
710 			if (m == NULL) {
711 				/* failed to allocate a receive buffer */
712 				RX_DPRINTF(("dme_receive: "
713 					"Error allocating buffer\n"));
714 				if_statinc(ifp, if_ierrors);
715 				continue;
716 			}
717 			if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
718 				/* Error while receiving the frame,
719 				 * discard it and keep track of counters
720 				 */
721 				RX_DPRINTF(("dme_receive: "
722 					"Error reciving frame\n"));
723 				if_statinc(ifp, if_ierrors);
724 				continue;
725 			}
726 			if (rsr & DM9000_RSR_LCS) {
727 				if_statinc(ifp, if_collisions);
728 				continue;
729 			}
730 			/* pick and forward this frame to ifq */
731 			if_percpuq_enqueue(ifp->if_percpuq, m);
732 		} else if (avail != 00) {
733 			/* Should this be logged somehow? */
734 			printf("%s: Resetting chip\n",
735 			       device_xname(sc->sc_dev));
736 			dme_reset(sc);
737 			break;
738 		}
739 	} while (avail == 01);
740 	/* frame receieved successfully */
741 }
742 
743 int
744 dme_intr(void *arg)
745 {
746 	struct dme_softc *sc = arg;
747 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
748 	uint8_t isr, nsr, tsr;
749 
750 	DPRINTF(("dme_intr: Begin\n"));
751 
752 	/* Disable interrupts */
753 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
754 
755 	isr = dme_read(sc, DM9000_ISR);
756 	dme_write(sc, DM9000_ISR, isr); /* write to clear */
757 
758 	if (isr & DM9000_ISR_PRS) {
759 		KASSERT(ifp->if_flags & IFF_RUNNING);
760 		dme_receive(ifp);
761 	}
762 	if (isr & DM9000_ISR_LNKCHNG)
763 		lnkchg(sc);
764 	if (isr & DM9000_ISR_PTS) {
765 		tsr = 0x01; /* Initialize to an error value */
766 
767 		/* A frame has been transmitted */
768 		sc->txbusy = 0;
769 
770 		nsr = dme_read(sc, DM9000_NSR);
771 		if (nsr & DM9000_NSR_TX1END) {
772 			tsr = dme_read(sc, DM9000_TSR1);
773 			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
774 		} else if (nsr & DM9000_NSR_TX2END) {
775 			tsr = dme_read(sc, DM9000_TSR2);
776 			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
777 		}
778 
779 		if (tsr == 0x0) {
780 			/* Frame successfully sent */
781 			if_statinc(ifp, if_opackets);
782 		} else {
783 			if_statinc(ifp, if_oerrors);
784 		}
785 
786 		/* If we have nothing ready to transmit, prepare something */
787 		if (!sc->txready)
788 			dme_prepare(ifp);
789 
790 		if (sc->txready)
791 			dme_transmit(ifp);
792 
793 		/* Prepare the next frame */
794 		dme_prepare(ifp);
795 
796 		if_schedule_deferred_start(ifp);
797 	}
798 
799 	/* Enable interrupts again */
800 	dme_write(sc, DM9000_IMR,
801 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
802 
803 	DPRINTF(("dme_intr: End\n"));
804 
805 	return (isr != 0);
806 }
807 
808 static int
809 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
810 {
811 	struct dme_softc *sc = ifp->if_softc;
812 	struct ifreq *ifr = (struct ifreq *)data;
813 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
814 	int s, error;
815 
816 	s = splnet();
817 	switch (cmd) {
818 	case SIOCSIFMEDIA:
819 		/* Flow control requires full-duplex mode. */
820 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
821 		    (ifr->ifr_media & IFM_FDX) == 0)
822 			ifr->ifr_media &= ~IFM_ETH_FMASK;
823 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
824 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
825 				ifr->ifr_media |=
826 					IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
827 			}
828 		}
829 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
830 		break;
831 	default:
832 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
833 			break;
834 		error = 0;
835 		if (cmd == SIOCSIFCAP)
836 			error = (*ifp->if_init)(ifp);
837 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
838 			;
839 		else if (ifp->if_flags && IFF_RUNNING) {
840 			/* Address list has changed, reconfigure filter */
841 			dme_set_rcvfilt(sc);
842 		}
843 		break;
844 	}
845 	splx(s);
846 	return error;
847 }
848 
849 static struct mbuf *
850 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
851 {
852 	struct dme_softc *sc = ifp->if_softc;
853 	struct mbuf *m;
854 	int pad, quantum;
855 
856 	quantum = sc->sc_data_width;
857 	MGETHDR(m, M_DONTWAIT, MT_DATA);
858 	if (m == NULL)
859 		return NULL;
860 
861 	m_set_rcvif(m, ifp);
862 	/* Ensure that we always allocate an even number of
863 	 * bytes in order to avoid writing beyond the buffer
864 	 */
865 	m->m_pkthdr.len = frame_length + (frame_length % quantum);
866 	pad = ALIGN(sizeof(struct ether_header)) -
867 		sizeof(struct ether_header);
868 	/* All our frames have the CRC attached */
869 	m->m_flags |= M_HASFCS;
870 	if (m->m_pkthdr.len + pad > MHLEN) {
871 		MCLGET(m, M_DONTWAIT);
872 		if ((m->m_flags & M_EXT) == 0) {
873 			m_freem(m);
874 			return NULL;
875 		}
876 	}
877 
878 	m->m_data += pad;
879 	m->m_len = frame_length + (frame_length % quantum);
880 
881 	return m;
882 }
883 
884 static int
885 pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
886 {
887 	int left_over_count = 0; /* Number of bytes from previous mbuf, which
888 				    need to be written with the next.*/
889 	uint16_t left_over_buf = 0;
890 	int length = 0;
891 	struct mbuf *buf;
892 	uint8_t *write_ptr;
893 
894 	/* We expect that the DM9000 has been setup to accept writes before
895 	   this function is called. */
896 
897 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
898 		int to_write = buf->m_len;
899 
900 		length += to_write;
901 
902 		write_ptr = buf->m_data;
903 		while (to_write > 0 ||
904 		    (buf->m_next == NULL && left_over_count > 0)) {
905 			if (left_over_count > 0) {
906 				uint8_t b = 0;
907 				DPRINTF(("pkt_write_16: "
908 					 "Writing left over byte\n"));
909 
910 				if (to_write > 0) {
911 					b = *write_ptr;
912 					to_write--;
913 					write_ptr++;
914 
915 					DPRINTF(("Took single byte\n"));
916 				} else {
917 					DPRINTF(("Leftover in last run\n"));
918 					length++;
919 				}
920 
921 				/* Does shift direction depend on endianess? */
922 				left_over_buf = left_over_buf | (b << 8);
923 
924 				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
925 						  sc->dme_data, left_over_buf);
926 				TX_DATA_DPRINTF(("%02X ", left_over_buf));
927 				left_over_count = 0;
928 			} else if ((long)write_ptr % 2 != 0) {
929 				/* Misaligned data */
930 				DPRINTF(("pkt_write_16: "
931 					 "Detected misaligned data\n"));
932 				left_over_buf = *write_ptr;
933 				left_over_count = 1;
934 				write_ptr++;
935 				to_write--;
936 			} else {
937 				int i;
938 				uint16_t *dptr = (uint16_t *)write_ptr;
939 
940 				/* A block of aligned data. */
941 				for (i = 0; i < to_write / 2; i++) {
942 					/* buf will be half-word aligned
943 					 * all the time
944 					 */
945 					bus_space_write_2(sc->sc_iot,
946 					    sc->sc_ioh, sc->dme_data, *dptr);
947 					TX_DATA_DPRINTF(("%02X %02X ",
948 					    *dptr & 0xFF, (*dptr >> 8) & 0xFF));
949 					dptr++;
950 				}
951 
952 				write_ptr += i * 2;
953 				if (to_write % 2 != 0) {
954 					DPRINTF(("pkt_write_16: "
955 						 "to_write %% 2: %d\n",
956 						 to_write % 2));
957 					left_over_count = 1;
958 					/* XXX: Does this depend on
959 					 * the endianess?
960 					 */
961 					left_over_buf = *write_ptr;
962 
963 					write_ptr++;
964 					to_write--;
965 					DPRINTF(("pkt_write_16: "
966 						 "to_write (after): %d\n",
967 						 to_write));
968 					DPRINTF(("pkt_write_16: i * 2: %d\n",
969 						 i*2));
970 				}
971 				to_write -= i * 2;
972 			}
973 		} /* while (...) */
974 	} /* for (...) */
975 
976 	return length;
977 }
978 
979 static int
980 pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
981 {
982 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
983 	uint8_t rx_status;
984 	struct mbuf *m;
985 	uint16_t data;
986 	uint16_t frame_length;
987 	uint16_t i;
988 	uint16_t *buf;
989 
990 	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
991 	rx_status = data & 0xFF;
992 
993 	frame_length = bus_space_read_2(sc->sc_iot,
994 					sc->sc_ioh, sc->dme_data);
995 	if (frame_length > ETHER_MAX_LEN) {
996 		printf("Got frame of length: %d\n", frame_length);
997 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
998 		panic("Something is rotten");
999 	}
1000 	RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
1001 		rx_status, frame_length));
1002 
1003 	m = dme_alloc_receive_buffer(ifp, frame_length);
1004 	if (m == NULL) {
1005 		/*
1006 		 * didn't get a receive buffer, so we read the rest of the
1007 		 * frame, throw it away and return an error
1008 		 */
1009 		for (i = 0; i < frame_length; i += 2) {
1010 			data = bus_space_read_2(sc->sc_iot,
1011 					sc->sc_ioh, sc->dme_data);
1012 		}
1013 		*outBuf = NULL;
1014 		return 0;
1015 	}
1016 
1017 	buf = mtod(m, uint16_t*);
1018 
1019 	RX_DPRINTF(("dme_receive: "));
1020 
1021 	for (i = 0; i < frame_length; i += 2) {
1022 		data = bus_space_read_2(sc->sc_iot,
1023 					sc->sc_ioh, sc->dme_data);
1024 		if ( (frame_length % 2 != 0) &&
1025 		     (i == frame_length - 1) ) {
1026 			data = data & 0xff;
1027 			RX_DPRINTF((" L "));
1028 		}
1029 		*buf = data;
1030 		buf++;
1031 		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1032 				 (data >> 8) & 0xff));
1033 	}
1034 
1035 	RX_DATA_DPRINTF(("\n"));
1036 	RX_DPRINTF(("Read %d bytes\n", i));
1037 
1038 	*outBuf = m;
1039 	return rx_status;
1040 }
1041 
1042 static int
1043 pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1044 {
1045 	int length = 0, i;
1046 	struct mbuf *buf;
1047 	uint8_t *write_ptr;
1048 
1049 	/*
1050 	 * We expect that the DM9000 has been setup to accept writes before
1051 	 * this function is called.
1052 	 */
1053 
1054 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1055 		int to_write = buf->m_len;
1056 
1057 		length += to_write;
1058 
1059 		write_ptr = buf->m_data;
1060 		for (i = 0; i < to_write; i++) {
1061 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1062 			    sc->dme_data, *write_ptr);
1063 			write_ptr++;
1064 		}
1065 	} /* for (...) */
1066 
1067 	return length;
1068 }
1069 
1070 static int
1071 pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
1072 {
1073 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1074 	uint8_t rx_status;
1075 	struct mbuf *m;
1076 	uint8_t *buf;
1077 	uint16_t frame_length;
1078 	uint16_t i, reg;
1079 	uint8_t data;
1080 
1081 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1082 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1083 	rx_status = reg & 0xFF;
1084 
1085 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1086 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1087 	frame_length = reg;
1088 
1089 	if (frame_length > ETHER_MAX_LEN) {
1090 		printf("Got frame of length: %d\n", frame_length);
1091 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1092 		panic("Something is rotten");
1093 	}
1094 	RX_DPRINTF(("dme_receive: "
1095 		    "rx_statux: 0x%x, frame_length: %d\n",
1096 		    rx_status, frame_length));
1097 
1098 	m = dme_alloc_receive_buffer(ifp, frame_length);
1099 	if (m == NULL) {
1100 		/*
1101 		 * didn't get a receive buffer, so we read the rest of the
1102 		 * frame, throw it away and return an error
1103 		 */
1104 		for (i = 0; i < frame_length; i++ ) {
1105 			data = bus_space_read_2(sc->sc_iot,
1106 					sc->sc_ioh, sc->dme_data);
1107 		}
1108 		*outBuf = NULL;
1109 		return 0;
1110 	}
1111 
1112 	buf = mtod(m, uint8_t *);
1113 
1114 	RX_DPRINTF(("dme_receive: "));
1115 	for (i = 0; i< frame_length; i += 1) {
1116 		data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1117 		*buf = data;
1118 		buf++;
1119 		RX_DATA_DPRINTF(("%02X ", data));
1120 	}
1121 
1122 	RX_DATA_DPRINTF(("\n"));
1123 	RX_DPRINTF(("Read %d bytes\n", i));
1124 
1125 	*outBuf = m;
1126 	return rx_status;
1127 }
1128