xref: /netbsd-src/sys/dev/ic/dm9000.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: dm9000.c,v 1.4 2012/01/28 08:29:55 nisimura Exp $	*/
2 
3 /*
4  * Copyright (c) 2009 Paul Fleischer
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31  * Copyright (c) 2004 Christopher Gilbert
32  * All rights reserved.
33  *
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice, this list of conditions and the following disclaimer.
36  * 2. Redistributions in binary form must reproduce the above copyright
37  *    notice, this list of conditions and the following disclaimer in the
38  *    documentation and/or other materials provided with the distribution.
39  * 3. The name of the company nor the name of the author may be used to
40  *    endorse or promote products derived from this software without specific
41  *    prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53  * SUCH DAMAGE.
54  */
55 
56 /*
57  * Copyright 1997
58  * Digital Equipment Corporation. All rights reserved.
59  *
60  * This software is furnished under license and may be used and
61  * copied only in accordance with the following terms and conditions.
62  * Subject to these conditions, you may download, copy, install,
63  * use, modify and distribute this software in source and/or binary
64  * form. No title or ownership is transferred hereby.
65  *
66  * 1) Any source code used, modified or distributed must reproduce
67  *    and retain this copyright notice and list of conditions as
68  *    they appear in the source file.
69  *
70  * 2) No right is granted to use any trade name, trademark, or logo of
71  *    Digital Equipment Corporation. Neither the "Digital Equipment
72  *    Corporation" name nor any trademark or logo of Digital Equipment
73  *    Corporation may be used to endorse or promote products derived
74  *    from this software without the prior written permission of
75  *    Digital Equipment Corporation.
76  *
77  * 3) This software is provided "AS-IS" and any express or implied
78  *    warranties, including but not limited to, any implied warranties
79  *    of merchantability, fitness for a particular purpose, or
80  *    non-infringement are disclaimed. In no event shall DIGITAL be
81  *    liable for any damages whatsoever, and in particular, DIGITAL
82  *    shall not be liable for special, indirect, consequential, or
83  *    incidental damages or damages for lost profits, loss of
84  *    revenue or loss of use, whether such damages arise in contract,
85  *    negligence, tort, under statute, in equity, at law or otherwise,
86  *    even if advised of the possibility of such damage.
87  */
88 
89 #include <sys/cdefs.h>
90 
91 #include <sys/param.h>
92 #include <sys/kernel.h>
93 #include <sys/systm.h>
94 #include <sys/mbuf.h>
95 #include <sys/syslog.h>
96 #include <sys/socket.h>
97 #include <sys/device.h>
98 #include <sys/malloc.h>
99 #include <sys/ioctl.h>
100 #include <sys/errno.h>
101 
102 #include <net/if.h>
103 #include <net/if_ether.h>
104 #include <net/if_media.h>
105 #ifdef INET
106 #include <netinet/in.h>
107 #include <netinet/if_inarp.h>
108 #endif
109 
110 #include <net/bpf.h>
111 #include <net/bpfdesc.h>
112 
113 #include <sys/bus.h>
114 #include <sys/intr.h>
115 
116 #include <dev/ic/dm9000var.h>
117 #include <dev/ic/dm9000reg.h>
118 
119 #if 1
120 #undef DM9000_DEBUG
121 #undef DM9000_TX_DEBUG
122 #undef DM9000_TX_DATA_DEBUG
123 #undef DM9000_RX_DEBUG
124 #undef  DM9000_RX_DATA_DEBUG
125 #else
126 #define DM9000_DEBUG
127 #define  DM9000_TX_DEBUG
128 #define DM9000_TX_DATA_DEBUG
129 #define DM9000_RX_DEBUG
130 #define  DM9000_RX_DATA_DEBUG
131 #endif
132 
133 #ifdef DM9000_DEBUG
134 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
135 #else
136 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
137 #endif
138 
139 #ifdef DM9000_TX_DEBUG
140 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
141 #else
142 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
143 #endif
144 
145 #ifdef DM9000_RX_DEBUG
146 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
147 #else
148 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
149 #endif
150 
151 #ifdef DM9000_RX_DATA_DEBUG
152 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
153 #else
154 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
155 #endif
156 
157 #ifdef DM9000_TX_DATA_DEBUG
158 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
159 #else
160 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
161 #endif
162 
163 /*** Internal PHY functions ***/
164 uint16_t dme_phy_read(struct dme_softc *sc, int reg);
165 void	dme_phy_write(struct dme_softc *sc, int reg, uint16_t value);
166 void	dme_phy_init(struct dme_softc *sc);
167 void	dme_phy_reset(struct dme_softc *sc);
168 void	dme_phy_update_media(struct dme_softc *sc);
169 void	dme_phy_check_link(void *arg);
170 
171 /*** Methods registered in struct ifnet ***/
172 void	dme_start_output(struct ifnet *ifp);
173 int	dme_init(struct ifnet *ifp);
174 int	dme_ioctl(struct ifnet *ifp, u_long cmd, void *data);
175 void	dme_stop(struct ifnet *ifp, int disable);
176 
177 int	dme_mediachange(struct ifnet *ifp);
178 void	dme_mediastatus(struct ifnet *ufp, struct ifmediareq *ifmr);
179 
180 /*** Internal methods ***/
181 
182 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
183 void    dme_prepare(struct dme_softc *sc, struct ifnet *ifp);
184 
185 /* Transmit prepared data */
186 void    dme_transmit(struct dme_softc *sc);
187 
188 /* Receive data */
189 void    dme_receive(struct dme_softc *sc, struct ifnet *ifp);
190 
191 /* Software Initialize/Reset of the DM9000 */
192 void    dme_reset(struct dme_softc *sc);
193 
194 /* Configure multicast filter */
195 void	dme_set_addr_filter(struct dme_softc *sc);
196 
197 /* Set media */
198 int	dme_set_media(struct dme_softc *sc, int media);
199 
200 /* Read/write packet data from/to DM9000 IC in various transfer sizes */
201 int	dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf);
202 int	dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain);
203 /* TODO: Implement 8 and 32 bit read/write functions */
204 
205 uint16_t
206 dme_phy_read(struct dme_softc *sc, int reg)
207 {
208 	uint16_t val;
209 	/* Select Register to read*/
210 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
211 	    (reg & DM9000_EPAR_EROA_MASK));
212 	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
213 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
214 
215 	/* Wait until access to PHY has completed */
216 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
217 
218 	/* Reset ERPRR-bit */
219 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
220 
221 	val = dme_read(sc, DM9000_EPDRL);
222 	val += dme_read(sc, DM9000_EPDRH) << 8;
223 
224 	return val;
225 }
226 
227 void
228 dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
229 {
230 	/* Select Register to write*/
231 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
232 	    (reg & DM9000_EPAR_EROA_MASK));
233 
234 	/* Write data to the two data registers */
235 	dme_write(sc, DM9000_EPDRL, value & 0xFF);
236 	dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
237 
238 	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
239 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
240 
241 	/* Wait until access to PHY has completed */
242 	while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
243 
244 	/* Reset ERPRR-bit */
245 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
246 }
247 
248 void
249 dme_phy_init(struct dme_softc *sc)
250 {
251 	u_int ifm_media = sc->sc_media.ifm_media;
252 	uint32_t bmcr, anar;
253 
254 	bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
255 	anar = dme_phy_read(sc, DM9000_PHY_ANAR);
256 
257 	anar = anar & ~DM9000_PHY_ANAR_10_HDX
258 		& ~DM9000_PHY_ANAR_10_FDX
259 		& ~DM9000_PHY_ANAR_TX_HDX
260 		& ~DM9000_PHY_ANAR_TX_FDX;
261 
262 	switch (IFM_SUBTYPE(ifm_media)) {
263 	case IFM_AUTO:
264 		bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
265 		anar |= DM9000_PHY_ANAR_10_HDX |
266 			DM9000_PHY_ANAR_10_FDX |
267 			DM9000_PHY_ANAR_TX_HDX |
268 			DM9000_PHY_ANAR_TX_FDX;
269 		break;
270 	case IFM_10_T:
271 		//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
272 		bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
273 		if (ifm_media & IFM_FDX)
274 			anar |= DM9000_PHY_ANAR_10_FDX;
275 		else
276 			anar |= DM9000_PHY_ANAR_10_HDX;
277 		break;
278 	case IFM_100_TX:
279 		//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
280 		bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
281 		if (ifm_media & IFM_FDX)
282 			anar |= DM9000_PHY_ANAR_TX_FDX;
283 		else
284 			anar |= DM9000_PHY_ANAR_TX_HDX;
285 
286 		break;
287 	}
288 
289 	if(ifm_media & IFM_FDX) {
290 		bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
291 	} else {
292 		bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
293 	}
294 
295 	dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
296 	dme_phy_write(sc, DM9000_PHY_ANAR, anar);
297 }
298 
299 void
300 dme_phy_reset(struct dme_softc *sc)
301 {
302 	uint32_t reg;
303 
304 	/* PHY Reset */
305 	dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
306 
307 	reg = dme_read(sc, DM9000_GPCR);
308 	dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
309 	reg = dme_read(sc, DM9000_GPR);
310 	dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
311 
312 	dme_phy_init(sc);
313 
314 	reg = dme_read(sc, DM9000_GPR);
315 	dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
316 	reg = dme_read(sc, DM9000_GPCR);
317 	dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
318 
319 	dme_phy_update_media(sc);
320 }
321 
322 void
323 dme_phy_update_media(struct dme_softc *sc)
324 {
325 	u_int ifm_media = sc->sc_media.ifm_media;
326 	uint32_t reg;
327 
328 	if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
329 		/* If auto-negotiation is used, ensures that it is completed
330 		 before trying to extract any media information. */
331 		reg = dme_phy_read(sc, DM9000_PHY_BMSR);
332 		if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
333 			/* Auto-negotation not possible, therefore there is no
334 			   reason to try obtain any media information. */
335 			return;
336 		}
337 
338 		/* Then loop until the negotiation is completed. */
339 		while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
340 			/* TODO: Bail out after a finite number of attempts
341 			 in case something goes wrong. */
342 			preempt();
343 			reg = dme_phy_read(sc, DM9000_PHY_BMSR);
344 		}
345 	}
346 
347 
348 	sc->sc_media_active = IFM_ETHER;
349 	reg = dme_phy_read(sc, DM9000_PHY_BMCR);
350 
351 	if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
352 		sc->sc_media_active |= IFM_100_TX;
353 	} else {
354 		sc->sc_media_active |= IFM_10_T;
355 	}
356 
357 	if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
358 		sc->sc_media_active |= IFM_FDX;
359 	}
360 }
361 
362 void
363 dme_phy_check_link(void *arg)
364 {
365 	struct dme_softc *sc = arg;
366 	uint32_t reg;
367 	int s;
368 
369 	s = splnet();
370 
371 	reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
372 
373 	if( reg )
374 		reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
375 	else {
376 		reg = IFM_ETHER | IFM_AVALID;
377 		sc->sc_media_active = IFM_NONE;
378 	}
379 
380 	if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
381 		dme_phy_reset(sc);
382 	}
383 
384 	sc->sc_media_status = reg;
385 
386 	callout_schedule(&sc->sc_link_callout, mstohz(2000));
387 	splx(s);
388 }
389 
390 int
391 dme_set_media(struct dme_softc *sc, int media)
392 {
393 	int s;
394 
395 	s = splnet();
396 	sc->sc_media.ifm_media = media;
397 	dme_phy_reset(sc);
398 
399 	splx(s);
400 
401 	return 0;
402 }
403 
404 int
405 dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
406 {
407 	struct ifnet	*ifp = &sc->sc_ethercom.ec_if;
408 	uint8_t		b[2];
409 	uint16_t	io_mode;
410 
411 	dme_read_c(sc, DM9000_VID0, b, 2);
412 #if BYTE_ORDER == BIG_ENDIAN
413 	sc->sc_vendor_id = (b[0] << 8) | b[1];
414 #else
415 	sc->sc_vendor_id = b[0] | (b[1] << 8);
416 #endif
417 	dme_read_c(sc, DM9000_PID0, b, 2);
418 #if BYTE_ORDER == BIG_ENDIAN
419 	sc->sc_product_id = (b[0] << 8) | b[1];
420 #else
421 	sc->sc_product_id = b[0] | (b[1] << 8);
422 #endif
423 	/* TODO: Check the vendor ID as well */
424 	if (sc->sc_product_id != 0x9000) {
425 		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
426 		    sc->sc_product_id);
427 	}
428 
429 	/* Initialize ifnet structure. */
430 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
431 	ifp->if_softc = sc;
432 	ifp->if_start = dme_start_output;
433 	ifp->if_init = dme_init;
434 	ifp->if_ioctl = dme_ioctl;
435 	ifp->if_stop = dme_stop;
436 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
437 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
438 			IFF_MULTICAST;
439 	IFQ_SET_READY(&ifp->if_snd);
440 
441 	/* Initialize ifmedia structures. */
442 	ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
443 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
444 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
445 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
446 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
447 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
448 
449 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
450 
451 	if (enaddr != NULL)
452 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
453 	/* TODO: Support an EEPROM attached to the DM9000 chip */
454 
455 	callout_init(&sc->sc_link_callout, 0);
456 	callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
457 
458 	sc->sc_media_status = 0;
459 
460 	/* Configure DM9000 with the MAC address */
461 	dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
462 
463 #ifdef DM9000_DEBUG
464 	{
465 		uint8_t macAddr[6];
466 		dme_read_c(sc, DM9000_PAB0, macAddr, 6);
467 		printf("DM9000 configured with MAC address: ");
468 		for (int i = 0; i < 6; i++) {
469 			printf("%02X:", macAddr[i]);
470 		}
471 		printf("\n");
472 	}
473 #endif
474 
475 	if_attach(ifp);
476 	ether_ifattach(ifp, sc->sc_enaddr);
477 
478 #ifdef DM9000_DEBUG
479 	{
480 		uint8_t network_state;
481 		network_state = dme_read(sc, DM9000_NSR);
482 		printf("DM9000 Link status: ");
483 		if (network_state & DM9000_NSR_LINKST) {
484 			if (network_state & DM9000_NSR_SPEED)
485 				printf("10Mbps");
486 			else
487 				printf("100Mbps");
488 		} else {
489 			printf("Down");
490 		}
491 		printf("\n");
492 	}
493 #endif
494 
495 	io_mode = (dme_read(sc, DM9000_ISR) &
496 	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
497 	if (io_mode != DM9000_MODE_16BIT )
498 		panic("DM9000: Only 16-bit mode is supported!\n");
499 
500 	DPRINTF(("DM9000 Operation Mode: "));
501 	switch( io_mode) {
502 	case DM9000_MODE_16BIT:
503 		DPRINTF(("16-bit mode"));
504 		sc->sc_data_width = 2;
505 		sc->sc_pkt_write = dme_pkt_write_2;
506 		sc->sc_pkt_read = dme_pkt_read_2;
507 		break;
508 	case DM9000_MODE_32BIT:
509 		DPRINTF(("32-bit mode"));
510 		sc->sc_data_width = 4;
511 		break;
512 	case DM9000_MODE_8BIT:
513 		DPRINTF(("8-bit mode"));
514 		sc->sc_data_width = 1;
515 		break;
516 	default:
517 		DPRINTF(("Invalid mode"));
518 		break;
519 	}
520 	DPRINTF(("\n"));
521 
522 	callout_schedule(&sc->sc_link_callout, mstohz(2000));
523 
524 	return 0;
525 }
526 
527 int dme_intr(void *arg)
528 {
529 	struct dme_softc *sc = arg;
530 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
531 	uint8_t status;
532 
533 
534 	DPRINTF(("dme_intr: Begin\n"));
535 
536 	/* Disable interrupts */
537 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
538 
539 	status = dme_read(sc, DM9000_ISR);
540 	dme_write(sc, DM9000_ISR, status);
541 
542 	if (status & DM9000_ISR_PRS) {
543 		if (ifp->if_flags & IFF_RUNNING )
544 			dme_receive(sc, ifp);
545 	}
546 	if (status & DM9000_ISR_PTS) {
547 		uint8_t nsr;
548 		uint8_t tx_status = 0x01; /* Initialize to an error value */
549 
550 		/* A packet has been transmitted */
551 		sc->txbusy = 0;
552 
553 		nsr = dme_read(sc, DM9000_NSR);
554 
555 		if (nsr & DM9000_NSR_TX1END) {
556 			tx_status = dme_read(sc, DM9000_TSR1);
557 			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
558 		} else if (nsr & DM9000_NSR_TX2END) {
559 			tx_status = dme_read(sc, DM9000_TSR2);
560 			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
561 		}
562 
563 		if (tx_status == 0x0) {
564 			/* Frame successfully sent */
565 			ifp->if_opackets++;
566 		} else {
567 			ifp->if_oerrors++;
568 		}
569 
570 		/* If we have nothing ready to transmit, prepare something */
571 		if (!sc->txready) {
572 			dme_prepare(sc, ifp);
573 		}
574 
575 		if (sc->txready)
576 			dme_transmit(sc);
577 
578 		/* Prepare the next frame */
579 		dme_prepare(sc, ifp);
580 
581 	}
582 #ifdef notyet
583 	if (status & DM9000_ISR_LNKCHNG) {
584 	}
585 #endif
586 
587 	/* Enable interrupts again */
588 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
589 		 DM9000_IMR_PTM);
590 
591 	DPRINTF(("dme_intr: End\n"));
592 
593 	return 1;
594 }
595 
596 void
597 dme_start_output(struct ifnet *ifp)
598 {
599 	struct dme_softc *sc;
600 
601 	sc = ifp->if_softc;
602 
603 	DPRINTF(("dme_start_output: Begin\n"));
604 
605 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
606 		printf("No output\n");
607 		return;
608 	}
609 
610 	if (sc->txbusy && sc->txready) {
611 		panic("DM9000: Internal error, trying to send without"
612 		    " any empty queue\n");
613 	}
614 
615 	dme_prepare(sc, ifp);
616 
617 	if (sc->txbusy == 0) {
618 		/* We are ready to transmit right away */
619 		dme_transmit(sc);
620 		dme_prepare(sc, ifp); /* Prepare next one */
621 	} else {
622 		/* We need to wait until the current packet has
623 		 * been transmitted.
624 		 */
625 		ifp->if_flags |= IFF_OACTIVE;
626 	}
627 
628 	DPRINTF(("dme_start_output: End\n"));
629 }
630 
631 void
632 dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
633 {
634 	struct mbuf *bufChain;
635 	uint16_t length;
636 
637 	TX_DPRINTF(("dme_prepare: Entering\n"));
638 
639 	if (sc->txready)
640 		panic("dme_prepare: Someone called us with txready set\n");
641 
642 	IFQ_DEQUEUE(&ifp->if_snd, bufChain);
643 	if (bufChain == NULL) {
644 		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
645 		ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
646 		return; /* Nothing to transmit */
647 	}
648 
649 	/* Element has now been removed from the queue, so we better send it */
650 
651 	if (ifp->if_bpf)
652 		bpf_mtap(ifp, bufChain);
653 
654 	/* Setup the DM9000 to accept the writes, and then write each buf in
655 	   the chain. */
656 
657 	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
658 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
659 	length = sc->sc_pkt_write(sc, bufChain);
660 	TX_DATA_DPRINTF(("\n"));
661 
662 	if (length % sc->sc_data_width != 0) {
663 		panic("dme_prepare: length is not compatible with IO_MODE");
664 	}
665 
666 	sc->txready_length = length;
667 	sc->txready = 1;
668 
669 	TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
670 		"txready: %d, txready_length: %d\n",
671 		sc->txbusy, sc->txready, sc->txready_length));
672 
673 	m_freem(bufChain);
674 
675 	TX_DPRINTF(("dme_prepare: Leaving\n"));
676 }
677 
678 int
679 dme_init(struct ifnet *ifp)
680 {
681 	int s;
682 	struct dme_softc *sc = ifp->if_softc;
683 
684 	dme_stop(ifp, 0);
685 
686 	s = splnet();
687 
688 	dme_reset(sc);
689 
690 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
691 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
692 	sc->sc_ethercom.ec_if.if_timer = 0;
693 
694 	splx(s);
695 
696 	return 0;
697 }
698 
699 int
700 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
701 {
702 	struct dme_softc *sc = ifp->if_softc;
703 	struct ifreq *ifr = data;
704 	int s, error = 0;
705 
706 	s = splnet();
707 
708 	switch(cmd) {
709 	case SIOCGIFMEDIA:
710 	case SIOCSIFMEDIA:
711 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
712 		break;
713 	default:
714 		error = ether_ioctl(ifp, cmd, data);
715 		if (error == ENETRESET) {
716 			if (ifp->if_flags && IFF_RUNNING) {
717 				/* Address list has changed, reconfigure
718 				   filter */
719 				dme_set_addr_filter(sc);
720 			}
721 			error = 0;
722 		}
723 		break;
724 	}
725 
726 	splx(s);
727 	return error;
728 }
729 
730 void
731 dme_stop(struct ifnet *ifp, int disable)
732 {
733 	struct dme_softc *sc = ifp->if_softc;
734 
735 	/* Not quite sure what to do when called with disable == 0 */
736 	if (disable) {
737 		/* Disable RX */
738 		dme_write(sc, DM9000_RCR, 0x0);
739 	}
740 
741 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
742 	ifp->if_timer = 0;
743 }
744 
745 int
746 dme_mediachange(struct ifnet *ifp)
747 {
748 	struct dme_softc *sc = ifp->if_softc;
749 
750 	return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
751 }
752 
753 void
754 dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
755 {
756 	struct dme_softc *sc = ifp->if_softc;
757 
758 	ifmr->ifm_active = sc->sc_media_active;
759 	ifmr->ifm_status = sc->sc_media_status;
760 }
761 
762 void
763 dme_transmit(struct dme_softc *sc)
764 {
765 	uint8_t status;
766 
767 	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
768 		sc->txready, sc->txbusy));
769 
770 	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
771 	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
772 
773 	/* Request to send the packet */
774 	status = dme_read(sc, DM9000_ISR);
775 
776 	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
777 
778 	sc->txready = 0;
779 	sc->txbusy = 1;
780 	sc->txready_length = 0;
781 }
782 
783 void
784 dme_receive(struct dme_softc *sc, struct ifnet *ifp)
785 {
786 	uint8_t ready = 0x01;
787 
788 	DPRINTF(("inside dme_receive\n"));
789 
790 	while (ready == 0x01) {
791 		/* Packet received, retrieve it */
792 
793 		/* Read without address increment to get the ready byte without moving past it. */
794 		bus_space_write_1(sc->sc_iot, sc->sc_ioh,
795 		    sc->dme_io, DM9000_MRCMDX);
796 		/* Dummy ready */
797 		ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
798 		ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
799 		ready &= 0x03;	/* we only want bits 1:0 */
800 		if (ready == 0x01) {
801 			uint8_t		rx_status;
802 			struct mbuf	*m;
803 
804 			/* Read with address increment. */
805 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
806 					  sc->dme_io, DM9000_MRCMD);
807 
808 			rx_status = sc->sc_pkt_read(sc, ifp, &m);
809 
810 			if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
811 				/* Error while receiving the packet,
812 				 * discard it and keep track of counters
813 				 */
814 				ifp->if_ierrors++;
815 				RX_DPRINTF(("dme_receive: "
816 					"Error reciving packet\n"));
817 			} else if (rx_status & DM9000_RSR_LCS) {
818 				ifp->if_collisions++;
819 			} else {
820 				if (ifp->if_bpf)
821 					bpf_mtap(ifp, m);
822 				ifp->if_ipackets++;
823 				(*ifp->if_input)(ifp, m);
824 			}
825 
826 		} else if (ready != 0x00) {
827 			/* Should this be logged somehow? */
828 			printf("%s: Resetting chip\n",
829 			       device_xname(sc->sc_dev));
830 			dme_reset(sc);
831 		}
832 	}
833 }
834 
835 void
836 dme_reset(struct dme_softc *sc)
837 {
838 	uint8_t var;
839 
840 	/* We only re-initialized the PHY in this function the first time it is
841 	   called. */
842 	if( !sc->sc_phy_initialized) {
843 		/* PHY Reset */
844 		dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
845 
846 		/* PHY Power Down */
847 		var = dme_read(sc, DM9000_GPR);
848 		dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
849 	}
850 
851 	/* Reset the DM9000 twice, as described in section 2 of the Programming
852 	   Guide.
853 	   The PHY is initialized and enabled between those two resets.
854 	 */
855 
856 	/* Software Reset*/
857 	dme_write(sc, DM9000_NCR,
858 	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
859 	delay(20);
860 	dme_write(sc, DM9000_NCR, 0x0);
861 
862 	if( !sc->sc_phy_initialized) {
863 		/* PHY Initialization */
864 		dme_phy_init(sc);
865 
866 		/* PHY Enable */
867 		var = dme_read(sc, DM9000_GPR);
868 		dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
869 		var = dme_read(sc, DM9000_GPCR);
870 		dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
871 
872 		dme_write(sc, DM9000_NCR,
873 			  DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
874 		delay(20);
875 		dme_write(sc, DM9000_NCR, 0x0);
876 	}
877 
878 	/* Select internal PHY, no wakeup event, no collosion mode,
879 	 * normal loopback mode.
880 	 */
881 	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
882 
883 	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
884 	dme_read(sc, DM9000_NSR);
885 
886 	/* Enable wraparound of read/write pointer, packet received latch,
887 	 * and packet transmitted latch.
888 	 */
889 	dme_write(sc, DM9000_IMR,
890 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
891 
892 	/* Setup multicast address filter, and enable RX. */
893 	dme_set_addr_filter(sc);
894 
895 	/* Obtain media information from PHY */
896 	dme_phy_update_media(sc);
897 
898 	sc->txbusy = 0;
899 	sc->txready = 0;
900 	sc->sc_phy_initialized = 1;
901 }
902 
903 void
904 dme_set_addr_filter(struct dme_softc *sc)
905 {
906 	struct ether_multi	*enm;
907 	struct ether_multistep	step;
908 	struct ethercom		*ec;
909 	struct ifnet		*ifp;
910 	uint16_t		af[4];
911 	int			i;
912 
913 	ec = &sc->sc_ethercom;
914 	ifp = &ec->ec_if;
915 
916 	if (ifp->if_flags & IFF_PROMISC) {
917 		dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN  |
918 					  DM9000_RCR_WTDIS |
919 					  DM9000_RCR_PRMSC);
920 		ifp->if_flags |= IFF_ALLMULTI;
921 		return;
922 	}
923 
924 	af[0] = af[1] = af[2] = af[3] = 0x0000;
925 	ifp->if_flags &= ~IFF_ALLMULTI;
926 
927 	ETHER_FIRST_MULTI(step, ec, enm);
928 	while (enm != NULL) {
929 		uint16_t hash;
930 		if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
931 		    sizeof(enm->enm_addrlo))) {
932 			/*
933 	                 * We must listen to a range of multicast addresses.
934 	                 * For now, just accept all multicasts, rather than
935 	                 * trying to set only those filter bits needed to match
936 	                 * the range.  (At this time, the only use of address
937 	                 * ranges is for IP multicast routing, for which the
938 	                 * range is big enough to require all bits set.)
939 	                 */
940 			ifp->if_flags |= IFF_ALLMULTI;
941 			af[0] = af[1] = af[2] = af[3] = 0xffff;
942 			break;
943 		} else {
944 			hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
945 			af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
946 			ETHER_NEXT_MULTI(step, enm);
947 		}
948 	}
949 
950 	/* Write the multicast address filter */
951 	for(i=0; i<4; i++) {
952 		dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
953 		dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
954 	}
955 
956 	/* Setup RX controls */
957 	dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
958 }
959 
960 int
961 dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
962 {
963 	int left_over_count = 0; /* Number of bytes from previous mbuf, which
964 				    need to be written with the next.*/
965 	uint16_t left_over_buf = 0;
966 	int length = 0;
967 	struct mbuf *buf;
968 	uint8_t *write_ptr;
969 
970 	/* We expect that the DM9000 has been setup to accept writes before
971 	   this function is called. */
972 
973 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
974 		int to_write = buf->m_len;
975 
976 		length += to_write;
977 
978 		write_ptr = buf->m_data;
979 		while (to_write > 0 ||
980 		       (buf->m_next == NULL && left_over_count > 0)
981 		       ) {
982 			if (left_over_count > 0) {
983 				uint8_t b = 0;
984 				DPRINTF(("dme_pkt_write_16: "
985 					 "Writing left over byte\n"));
986 
987 				if (to_write > 0) {
988 					b = *write_ptr;
989 					to_write--;
990 					write_ptr++;
991 
992 					DPRINTF(("Took single byte\n"));
993 				} else {
994 					DPRINTF(("Leftover in last run\n"));
995 					length++;
996 				}
997 
998 				/* Does shift direction depend on endianess? */
999 				left_over_buf = left_over_buf | (b << 8);
1000 
1001 				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
1002 						  sc->dme_data, left_over_buf);
1003 				TX_DATA_DPRINTF(("%02X ", left_over_buf));
1004 				left_over_count = 0;
1005 			} else if ((long)write_ptr % 2 != 0) {
1006 				/* Misaligned data */
1007 				DPRINTF(("dme_pkt_write_16: "
1008 					 "Detected misaligned data\n"));
1009 				left_over_buf = *write_ptr;
1010 				left_over_count = 1;
1011 				write_ptr++;
1012 				to_write--;
1013 			} else {
1014 				int i;
1015 				uint16_t *dptr = (uint16_t*)write_ptr;
1016 
1017 				/* A block of aligned data. */
1018 				for(i = 0; i < to_write/2; i++) {
1019 					/* buf will be half-word aligned
1020 					 * all the time
1021 					 */
1022 					bus_space_write_2(sc->sc_iot,
1023 							  sc->sc_ioh, sc->dme_data, *dptr);
1024 					TX_DATA_DPRINTF(("%02X %02X ",
1025 							 *dptr & 0xFF, (*dptr>>8) & 0xFF));
1026 					dptr++;
1027 				}
1028 
1029 				write_ptr += i*2;
1030 				if (to_write % 2 != 0) {
1031 					DPRINTF(("dme_pkt_write_16: "
1032 						 "to_write %% 2: %d\n",
1033 						 to_write % 2));
1034 					left_over_count = 1;
1035 					/* XXX: Does this depend on
1036 					 * the endianess?
1037 					 */
1038 					left_over_buf = *write_ptr;
1039 
1040 					write_ptr++;
1041 					to_write--;
1042 					DPRINTF(("dme_pkt_write_16: "
1043 						 "to_write (after): %d\n",
1044 						 to_write));
1045 					DPRINTF(("dme_pkt_write_16: i*2: %d\n",
1046 						 i*2));
1047 				}
1048 				to_write -= i*2;
1049 			}
1050 		} /* while(...) */
1051 	} /* for(...) */
1052 
1053 	return length;
1054 }
1055 
1056 int
1057 dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1058 {
1059 	uint8_t rx_status;
1060 	struct mbuf *m;
1061 	uint16_t data;
1062 	uint16_t frame_length;
1063 	uint16_t i;
1064 	uint16_t *buf;
1065 
1066 	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
1067 				sc->dme_data);
1068 
1069 	rx_status = data & 0xFF;
1070 	frame_length = bus_space_read_2(sc->sc_iot,
1071 					sc->sc_ioh, sc->dme_data);
1072 	if (frame_length > ETHER_MAX_LEN) {
1073 		printf("Got frame of length: %d\n", frame_length);
1074 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1075 		panic("Something is rotten");
1076 	}
1077 	RX_DPRINTF(("dme_receive: "
1078 		    "rx_statux: 0x%x, frame_length: %d\n",
1079 		    rx_status, frame_length));
1080 
1081 
1082 	m = dme_alloc_receive_buffer(ifp, frame_length);
1083 
1084 	buf = mtod(m, uint16_t*);
1085 
1086 	RX_DPRINTF(("dme_receive: "));
1087 
1088 	for(i=0; i< frame_length; i+=2 ) {
1089 		data = bus_space_read_2(sc->sc_iot,
1090 					sc->sc_ioh, sc->dme_data);
1091 		if ( (frame_length % 2 != 0) &&
1092 		     (i == frame_length-1) ) {
1093 			data = data & 0xff;
1094 			RX_DPRINTF((" L "));
1095 		}
1096 		*buf = data;
1097 		buf++;
1098 		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1099 				 (data>>8) & 0xff));
1100 	}
1101 
1102 	RX_DATA_DPRINTF(("\n"));
1103 	RX_DPRINTF(("Read %d bytes\n", i));
1104 
1105 	*outBuf = m;
1106 	return rx_status;
1107 }
1108 
1109 struct mbuf*
1110 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
1111 {
1112 	struct dme_softc *sc = ifp->if_softc;
1113 	struct mbuf *m;
1114 	int pad;
1115 
1116 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1117 	m->m_pkthdr.rcvif = ifp;
1118 	/* Ensure that we always allocate an even number of
1119 	 * bytes in order to avoid writing beyond the buffer
1120 	 */
1121 	m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
1122 	pad = ALIGN(sizeof(struct ether_header)) -
1123 		sizeof(struct ether_header);
1124 	/* All our frames have the CRC attached */
1125 	m->m_flags |= M_HASFCS;
1126 	if (m->m_pkthdr.len + pad > MHLEN )
1127 		MCLGET(m, M_DONTWAIT);
1128 
1129 	m->m_data += pad;
1130 	m->m_len = frame_length + (frame_length % sc->sc_data_width);
1131 
1132 	return m;
1133 }
1134