xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: cs89x0.c,v 1.19 2006/03/18 18:44:16 chris Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.19 2006/03/18 18:44:16 chris Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 
229 #include "rnd.h"
230 #if NRND > 0
231 #include <sys/rnd.h>
232 #endif
233 
234 #include <net/if.h>
235 #include <net/if_ether.h>
236 #include <net/if_media.h>
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241 
242 #include "bpfilter.h"
243 #if NBPFILTER > 0
244 #include <net/bpf.h>
245 #include <net/bpfdesc.h>
246 #endif
247 
248 #include <uvm/uvm_extern.h>
249 
250 #include <machine/bus.h>
251 #include <machine/intr.h>
252 
253 #include <dev/ic/cs89x0reg.h>
254 #include <dev/ic/cs89x0var.h>
255 
256 #ifdef SHARK
257 #include <shark/shark/sequoia.h>
258 #endif
259 
260 /*
261  * MACRO DEFINITIONS
262  */
263 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
264 
265 /*
266  * FUNCTION PROTOTYPES
267  */
268 void	cs_get_default_media(struct cs_softc *);
269 int	cs_get_params(struct cs_softc *);
270 int	cs_get_enaddr(struct cs_softc *);
271 int	cs_reset_chip(struct cs_softc *);
272 void	cs_reset(void *);
273 int	cs_ioctl(struct ifnet *, u_long, caddr_t);
274 void	cs_initChip(struct cs_softc *);
275 void	cs_buffer_event(struct cs_softc *, u_int16_t);
276 void	cs_transmit_event(struct cs_softc *, u_int16_t);
277 void	cs_receive_event(struct cs_softc *, u_int16_t);
278 void	cs_process_receive(struct cs_softc *);
279 void	cs_process_rx_early(struct cs_softc *);
280 void	cs_start_output(struct ifnet *);
281 void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
282 void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
283 u_int16_t cs_hash_index(char *);
284 void	cs_counter_event(struct cs_softc *, u_int16_t);
285 
286 int	cs_mediachange(struct ifnet *);
287 void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
288 
289 static int cs_enable(struct cs_softc *);
290 static void cs_disable(struct cs_softc *);
291 static void cs_stop(struct ifnet *, int);
292 static void cs_power(int, void *);
293 static int cs_scan_eeprom(struct cs_softc *);
294 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
295 
296 
297 /*
298  * GLOBAL DECLARATIONS
299  */
300 
301 /*
302  * Xmit-early table.
303  *
304  * To get better performance, we tell the chip to start packet
305  * transmission before the whole packet is copied to the chip.
306  * However, this can fail under load.  When it fails, we back off
307  * to a safer setting for a little while.
308  *
309  * txcmd is the value of txcmd used to indicate when to start transmission.
310  * better is the next 'better' state in the table.
311  * better_count is the number of output packets before transition to the
312  *   better state.
313  * worse is the next 'worse' state in the table.
314  *
315  * Transition to the next worse state happens automatically when a
316  * transmittion underrun occurs.
317  */
318 struct cs_xmit_early {
319 	u_int16_t       txcmd;
320 	int             better;
321 	int             better_count;
322 	int             worse;
323 } cs_xmit_early_table[3] = {
324 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
325 	{ TX_CMD_START_1021,	0,	50000,		2, },
326 	{ TX_CMD_START_ALL,	1,	5000,		2, },
327 };
328 
329 int cs_default_media[] = {
330 	IFM_ETHER|IFM_10_2,
331 	IFM_ETHER|IFM_10_5,
332 	IFM_ETHER|IFM_10_T,
333 	IFM_ETHER|IFM_10_T|IFM_FDX,
334 };
335 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
336 
337 int
338 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
339 	  int nmedia, int defmedia)
340 {
341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
342 	const char *chipname, *medname;
343 	u_int16_t reg;
344 	int i;
345 
346 	/* Start out in IO mode */
347 	sc->sc_memorymode = FALSE;
348 
349 	/* make sure we're right */
350 	for (i = 0; i < 10000; i++) {
351 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
352 		if (reg == EISA_NUM_CRYSTAL) {
353 			break;
354 		}
355 	}
356 	if (i == 10000) {
357 		printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
358 		return 1; /* XXX should panic? */
359 	}
360 
361 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
362 	sc->sc_prodid = reg & PROD_ID_MASK;
363 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
364 
365 	switch (sc->sc_prodid) {
366 	case PROD_ID_CS8900:
367 		chipname = "CS8900";
368 		break;
369 	case PROD_ID_CS8920:
370 		chipname = "CS8920";
371 		break;
372 	case PROD_ID_CS8920M:
373 		chipname = "CS8920M";
374 		break;
375 	default:
376 		panic("cs_attach: impossible");
377 	}
378 
379 	/*
380 	 * the first thing to do is check that the mbuf cluster size is
381 	 * greater than the MTU for an ethernet frame. The code depends on
382 	 * this and to port this to a OS where this was not the case would
383 	 * not be straightforward.
384 	 *
385 	 * we need 1 byte spare because our
386 	 * packet read loop can overrun.
387 	 * and we may need pad bytes to align ip header.
388 	 */
389 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
390 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
391 		printf("%s: MCLBYTES too small for Ethernet frame\n",
392 		    sc->sc_dev.dv_xname);
393 		return 1;
394 	}
395 
396 	/* Start out not transmitting */
397 	sc->sc_txbusy = FALSE;
398 
399 	/* Set up early transmit threshhold */
400 	sc->sc_xe_ent = 0;
401 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
402 
403 	/* Initialize ifnet structure. */
404 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
405 	ifp->if_softc = sc;
406 	ifp->if_start = cs_start_output;
407 	ifp->if_init = cs_init;
408 	ifp->if_ioctl = cs_ioctl;
409 	ifp->if_stop = cs_stop;
410 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
411 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
412 	    IFF_BROADCAST | IFF_MULTICAST;
413 	IFQ_SET_READY(&ifp->if_snd);
414 
415 	/* Initialize ifmedia structures. */
416 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
417 
418 	if (media != NULL) {
419 		for (i = 0; i < nmedia; i++)
420 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
421 		ifmedia_set(&sc->sc_media, defmedia);
422 	} else {
423 		for (i = 0; i < cs_default_nmedia; i++)
424 			ifmedia_add(&sc->sc_media, cs_default_media[i],
425 			    0, NULL);
426 		cs_get_default_media(sc);
427 	}
428 
429 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
430 		if (cs_scan_eeprom(sc) == CS_ERROR) {
431 			/* failed to scan the eeprom, pretend there isn't an eeprom */
432 			printf("%s: unable to scan EEPROM\n",
433 				    sc->sc_dev.dv_xname);
434 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
435 		}
436 	}
437 
438 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
439 		/* Get parameters from the EEPROM */
440 		if (cs_get_params(sc) == CS_ERROR) {
441 			printf("%s: unable to get settings from EEPROM\n",
442 			    sc->sc_dev.dv_xname);
443 			return 1;
444 		}
445 	}
446 
447 	if (enaddr != NULL)
448 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
449 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
450 		/* Get and store the Ethernet address */
451 		if (cs_get_enaddr(sc) == CS_ERROR) {
452 			printf("%s: unable to read Ethernet address\n",
453 			    sc->sc_dev.dv_xname);
454 			return 1;
455 		}
456 	} else {
457 #if 1
458 		int j;
459 		uint v;
460 
461 		for (j = 0; j < 6; j += 2) {
462 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
463 			sc->sc_enaddr[j + 0] = v;
464 			sc->sc_enaddr[j + 1] = v >> 8;
465 		}
466 #else
467 		printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
468 		return 1;
469 #endif
470 	}
471 
472 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
473 	case IFM_10_2:
474 		medname = "BNC";
475 		break;
476 	case IFM_10_5:
477 		medname = "AUI";
478 		break;
479 	case IFM_10_T:
480 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
481 			medname = "UTP <full-duplex>";
482 		else
483 			medname = "UTP";
484 		break;
485 	default:
486 		panic("cs_attach: impossible");
487 	}
488 	printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
489 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
490 	    medname);
491 
492 	if (sc->sc_dma_attach)
493 		(*sc->sc_dma_attach)(sc);
494 
495 	sc->sc_sh = shutdownhook_establish(cs_reset, sc);
496 	if (sc->sc_sh == NULL) {
497 		printf("%s: unable to establish shutdownhook\n",
498 		    sc->sc_dev.dv_xname);
499 		cs_detach(sc);
500 		return 1;
501 	}
502 
503 	/* Attach the interface. */
504 	if_attach(ifp);
505 	ether_ifattach(ifp, sc->sc_enaddr);
506 
507 #if NRND > 0
508 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
509 			  RND_TYPE_NET, 0);
510 #endif
511 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
512 
513 	/* Reset the chip */
514 	if (cs_reset_chip(sc) == CS_ERROR) {
515 		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
516 		cs_detach(sc);
517 		return 1;
518 	}
519 
520 	sc->sc_powerhook = powerhook_establish(cs_power, sc);
521 	if (sc->sc_powerhook == 0)
522 		printf("%s: warning: powerhook_establish failed\n",
523 			sc->sc_dev.dv_xname);
524 
525 	return 0;
526 }
527 
528 int
529 cs_detach(struct cs_softc *sc)
530 {
531 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
532 
533 	if (sc->sc_powerhook) {
534 		powerhook_disestablish(sc->sc_powerhook);
535 		sc->sc_powerhook = 0;
536 	}
537 
538 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
539 #if NRND > 0
540 		rnd_detach_source(&sc->rnd_source);
541 #endif
542 		ether_ifdetach(ifp);
543 		if_detach(ifp);
544 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
545 	}
546 
547 	if (sc->sc_sh != NULL)
548 		shutdownhook_disestablish(sc->sc_sh);
549 
550 #if 0
551 	/*
552 	 * XXX not necessary
553 	 */
554 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
555 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
556 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
557 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
558 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
559 	}
560 #endif
561 
562 	return 0;
563 }
564 
565 void
566 cs_get_default_media(struct cs_softc *sc)
567 {
568 	u_int16_t adp_cfg, xmit_ctl;
569 
570 	if (cs_verify_eeprom(sc) == CS_ERROR) {
571 		printf("%s: cs_get_default_media: EEPROM missing or bad\n",
572 		    sc->sc_dev.dv_xname);
573 		goto fakeit;
574 	}
575 
576 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
577 		printf("%s: unable to read adapter config from EEPROM\n",
578 		    sc->sc_dev.dv_xname);
579 		goto fakeit;
580 	}
581 
582 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
583 		printf("%s: unable to read transmit control from EEPROM\n",
584 		    sc->sc_dev.dv_xname);
585 		goto fakeit;
586 	}
587 
588 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
589 	case ADPTR_CFG_AUI:
590 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
591 		break;
592 	case ADPTR_CFG_10BASE2:
593 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
594 		break;
595 	case ADPTR_CFG_10BASET:
596 	default:
597 		if (xmit_ctl & XMIT_CTL_FDX)
598 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
599 		else
600 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
601 		break;
602 	}
603 	return;
604 
605  fakeit:
606 	printf("%s: WARNING: default media setting may be inaccurate\n",
607 	    sc->sc_dev.dv_xname);
608 	/* XXX Arbitrary... */
609 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
610 }
611 
612 /*
613  * cs_scan_eeprom
614  *
615  * Attempt to take a complete copy of the eeprom into main memory.
616  * this will allow faster parsing of the eeprom data.
617  *
618  * Only tested against a 8920M's eeprom, but the data sheet for the
619  * 8920A indicates that is uses the same layout.
620  */
621 int
622 cs_scan_eeprom(struct cs_softc *sc)
623 {
624 	u_int16_t result;
625 	int	i;
626 	int	eeprom_size;
627 	u_int8_t checksum = 0;
628 
629 	if (cs_verify_eeprom(sc) == CS_ERROR) {
630 		printf("%s: cs_scan_params: EEPROM missing or bad\n",
631 				sc->sc_dev.dv_xname);
632 		return (CS_ERROR);
633 	}
634 
635 	/*
636 	 * read the 0th word from the eeprom, it will tell us the length
637 	 * and if the eeprom is valid
638 	 */
639 	cs_read_eeprom(sc, 0, &result);
640 
641 	/* check the eeprom signature */
642 	if ((result & 0xE000) != 0xA000) {
643 		/* empty eeprom */
644 		return (CS_ERROR);
645 	}
646 
647 	/*
648 	 * take the eeprom size (note the read value doesn't include the header
649 	 * word)
650 	 */
651 	eeprom_size = (result & 0xff) + 2;
652 
653 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
654 	if (sc->eeprom_data == NULL) {
655 		/* no memory, treat this as if there's no eeprom */
656 		return (CS_ERROR);
657 	}
658 
659 	sc->eeprom_size = eeprom_size;
660 
661 	/* read the eeprom into the buffer, also calculate the checksum  */
662 	for (i = 0; i < (eeprom_size >> 1); i++) {
663 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
664 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
665 		checksum += (sc->eeprom_data[i] & 0x00ff);
666 	}
667 
668 	/*
669 	 * validate checksum calculation, the sum of all the bytes should be 0,
670 	 * as the high byte of the last word is the 2's complement of the
671 	 * sum to that point.
672 	 */
673 	if (checksum != 0) {
674 		printf("%s: eeprom checksum failure\n", sc->sc_dev.dv_xname);
675 		return (CS_ERROR);
676 	}
677 
678 	return (CS_OK);
679 }
680 
681 static int
682 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
683 {
684 	int x, maxword;
685 
686 	/* Check that we have eeprom data */
687 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
688 		return (CS_ERROR);
689 
690 	/*
691 	 * We only want to read the data words, the last word contains the
692 	 * checksum
693 	 */
694 	maxword = (sc->eeprom_size - 2) >> 1;
695 
696 	/* start 1 word in, as the first word is the length and signature */
697 	x = 1;
698 
699 	while ( x < (maxword)) {
700 		u_int16_t header;
701 		int group_size;
702 		int offset;
703 		int offset_max;
704 
705 		/* read in the group header word */
706 		header = sc->eeprom_data[x];
707 		x++;	/* skip group header */
708 
709 		/*
710 		 * size of group in words is in the top 4 bits, note that it
711 		 * is one less than the number of words
712 		 */
713 		group_size = header & 0xF000;
714 
715 		/*
716 		 * CS8900 Data sheet says this should be 0x01ff,
717 		 * but my cs8920 eeprom has higher offsets,
718 		 * perhaps the 8920 allows higher offsets, otherwise
719 		 * it's writing to places that it shouldn't
720 		 */
721 		/* work out the offsets this group covers */
722 		offset = header & 0x0FFF;
723 		offset_max = offset + (group_size << 1);
724 
725 		/* check if the pkgpg we're after is in this group */
726 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
727 			/* the pkgpg value we want is in here */
728 			int eeprom_location;
729 
730 			eeprom_location = ((pktpg - offset) >> 1) ;
731 
732 			*pValue = sc->eeprom_data[x + eeprom_location];
733 			return (CS_OK);
734 		} else {
735 			/* skip this group (+ 1 for first entry) */
736 			x += group_size + 1;
737 		}
738 	}
739 
740 	/*
741 	 * if we've fallen out here then we don't have a value in the EEPROM
742 	 * for this pktpg so return an error
743 	 */
744 	return (CS_ERROR);
745 }
746 
747 int
748 cs_get_params(struct cs_softc *sc)
749 {
750 	u_int16_t isaConfig;
751 	u_int16_t adapterConfig;
752 
753 	if (cs_verify_eeprom(sc) == CS_ERROR) {
754 		printf("%s: cs_get_params: EEPROM missing or bad\n",
755 		    sc->sc_dev.dv_xname);
756 		return (CS_ERROR);
757 	}
758 
759 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
760 		/* Get ISA configuration from the EEPROM */
761 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
762 			       	== CS_ERROR) {
763 			/* eeprom doesn't have this value, use data sheet default */
764 			isaConfig = 0x0017;
765 		}
766 
767 		/* Get adapter configuration from the EEPROM */
768 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
769 				== CS_ERROR) {
770 			/* eeprom doesn't have this value, use data sheet default */
771 			adapterConfig = 0x0015;
772 		}
773 
774 		/* Copy the USE_SA flag */
775 		if (isaConfig & BUS_CTL_USE_SA)
776 			sc->sc_cfgflags |= CFGFLG_USE_SA;
777 
778 		/* Copy the IO Channel Ready flag */
779 		if (isaConfig & BUS_CTL_IOCHRDY)
780 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
781 
782 		/* Copy the DC/DC Polarity flag */
783 		if (adapterConfig & SELF_CTL_HCB1)
784 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
785 	} else {
786 		/* Get ISA configuration from the EEPROM */
787 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
788 			goto eeprom_bad;
789 
790 		/* Get adapter configuration from the EEPROM */
791 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
792 			goto eeprom_bad;
793 
794 		/* Copy the USE_SA flag */
795 		if (isaConfig & ISA_CFG_USE_SA)
796 			sc->sc_cfgflags |= CFGFLG_USE_SA;
797 
798 		/* Copy the IO Channel Ready flag */
799 		if (isaConfig & ISA_CFG_IOCHRDY)
800 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
801 
802 		/* Copy the DC/DC Polarity flag */
803 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
804 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
805 	}
806 
807 	return (CS_OK);
808 eeprom_bad:
809 	printf("%s: cs_get_params: unable to read from EEPROM\n",
810 			sc->sc_dev.dv_xname);
811 	return (CS_ERROR);
812 }
813 
814 int
815 cs_get_enaddr(struct cs_softc *sc)
816 {
817 	u_int16_t *myea;
818 
819 	if (cs_verify_eeprom(sc) == CS_ERROR) {
820 		printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
821 		    sc->sc_dev.dv_xname);
822 		return (CS_ERROR);
823 	}
824 
825 	myea = (u_int16_t *)sc->sc_enaddr;
826 
827 	/* Get Ethernet address from the EEPROM */
828 	/* XXX this will likely lose on a big-endian machine. -- cgd */
829 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
830 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
831 				== CS_ERROR)
832 			goto eeprom_bad;
833 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
834 				== CS_ERROR)
835 			goto eeprom_bad;
836 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
837 				== CS_ERROR)
838 			goto eeprom_bad;
839 	} else {
840 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
841 			goto eeprom_bad;
842 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
843 			goto eeprom_bad;
844 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
845 			goto eeprom_bad;
846 	}
847 
848 	return (CS_OK);
849 
850  eeprom_bad:
851 	printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
852 	    sc->sc_dev.dv_xname);
853 	return (CS_ERROR);
854 }
855 
856 int
857 cs_reset_chip(struct cs_softc *sc)
858 {
859 	int intState;
860 	int x;
861 
862 	/* Disable interrupts at the CPU so reset command is atomic */
863 	intState = splnet();
864 
865 	/*
866 	 * We are now resetting the chip
867 	 *
868 	 * A spurious interrupt is generated by the chip when it is reset. This
869 	 * variable informs the interrupt handler to ignore this interrupt.
870 	 */
871 	sc->sc_resetting = TRUE;
872 
873 	/* Issue a reset command to the chip */
874 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
875 
876 	/* Re-enable interrupts at the CPU */
877 	splx(intState);
878 
879 	/* The chip is always in IO mode after a reset */
880 	sc->sc_memorymode = FALSE;
881 
882 	/* If transmission was in progress, it is not now */
883 	sc->sc_txbusy = FALSE;
884 
885 	/*
886 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
887 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
888 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
889 	 * should be sufficient.
890 	 */
891 
892 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
893 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
894 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
895 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
896 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
897 
898 	/* Wait until the EEPROM is not busy */
899 	for (x = 0; x < MAXLOOP; x++) {
900 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
901 			break;
902 	}
903 
904 	if (x == MAXLOOP)
905 		return CS_ERROR;
906 
907 	/* Wait until initialization is done */
908 	for (x = 0; x < MAXLOOP; x++) {
909 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
910 			break;
911 	}
912 
913 	if (x == MAXLOOP)
914 		return CS_ERROR;
915 
916 	/* Reset is no longer in progress */
917 	sc->sc_resetting = FALSE;
918 
919 	return CS_OK;
920 }
921 
922 int
923 cs_verify_eeprom(struct cs_softc *sc)
924 {
925 	u_int16_t self_status;
926 
927 	/* Verify that the EEPROM is present and OK */
928 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
929 	if (((self_status & SELF_ST_EEP_PRES) &&
930 	     (self_status & SELF_ST_EEP_OK)) == 0)
931 		return (CS_ERROR);
932 
933 	return (CS_OK);
934 }
935 
936 int
937 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
938 {
939 	int x;
940 
941 	/* Ensure that the EEPROM is not busy */
942 	for (x = 0; x < MAXLOOP; x++) {
943 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
944 		      SELF_ST_SI_BUSY))
945 			break;
946 	}
947 
948 	if (x == MAXLOOP)
949 		return (CS_ERROR);
950 
951 	/* Issue the command to read the offset within the EEPROM */
952 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
953 	    offset | EEPROM_CMD_READ);
954 
955 	/* Wait until the command is completed */
956 	for (x = 0; x < MAXLOOP; x++) {
957 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
958 		      SELF_ST_SI_BUSY))
959 			break;
960 	}
961 
962 	if (x == MAXLOOP)
963 		return (CS_ERROR);
964 
965 	/* Get the EEPROM data from the EEPROM Data register */
966 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
967 
968 	return (CS_OK);
969 }
970 
971 void
972 cs_initChip(struct cs_softc *sc)
973 {
974 	u_int16_t busCtl;
975 	u_int16_t selfCtl;
976 	u_int16_t v;
977 	u_int16_t isaId;
978 	int i;
979 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
980 
981 	/* Disable reception and transmission of frames */
982 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
983 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
984 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
985 
986 	/* Disable interrupt at the chip */
987 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
988 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
989 
990 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
991 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
992 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
993 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
994 		    busCtl & ~BUS_CTL_IOCHRDY);
995 	} else {
996 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
997 		    busCtl | BUS_CTL_IOCHRDY);
998 	}
999 
1000 	/* Set the Line Control register to match the media type */
1001 	if (media == IFM_10_T)
1002 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
1003 	else
1004 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1005 
1006 	/*
1007 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
1008 	 * enable the DC/DC converter
1009 	 */
1010 	selfCtl = SELF_CTL_HC1E;
1011 
1012 	/* If the media type is 10Base2 */
1013 	if (media == IFM_10_2) {
1014 		/*
1015 		 * Enable the DC/DC converter if it has a low enable.
1016 		 */
1017 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1018 			/*
1019 			 * Set the HCB1 bit, which causes the HC1 pin to go
1020 			 * low.
1021 			 */
1022 			selfCtl |= SELF_CTL_HCB1;
1023 	} else { /* Media type is 10BaseT or AUI */
1024 		/*
1025 		 * Disable the DC/DC converter if it has a high enable.
1026 		 */
1027 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1028 			/*
1029 			 * Set the HCB1 bit, which causes the HC1 pin to go
1030 			 * low.
1031 			 */
1032 			selfCtl |= SELF_CTL_HCB1;
1033 		}
1034 	}
1035 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1036 
1037 	/* enable normal link pulse */
1038 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1039 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1040 
1041 	/* Enable full-duplex, if appropriate */
1042 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1043 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1044 
1045 	/* RX_CTL set in cs_set_ladr_filt(), below */
1046 
1047 	/* enable all transmission interrupts */
1048 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1049 
1050 	/* Accept all receive interrupts */
1051 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1052 
1053 	/*
1054 	 * Configure Operational Modes
1055 	 *
1056 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1057 	 * a better way to do it because the card has a counter which can be
1058 	 * read to update the RX_MISS counter. This saves many interrupts.
1059 	 *
1060 	 * I have turned on the tx and rx overflow interrupts to counter using
1061 	 * the receive miss interrupt. This is a better estimate of errors
1062 	 * and requires lower system overhead.
1063 	 */
1064 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1065 			  BUF_CFG_RX_DMA_IE);
1066 
1067 	if (sc->sc_dma_chipinit)
1068 		(*sc->sc_dma_chipinit)(sc);
1069 
1070 	/* If memory mode is enabled */
1071 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1072 		/* If external logic is present for address decoding */
1073 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1074 			/*
1075 			 * Program the external logic to decode address bits
1076 			 * SA20-SA23
1077 			 */
1078 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1079 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1080 			    EEPROM_CMD_ELSEL);
1081 		}
1082 
1083 		/*
1084 		 * Write the packet page base physical address to the memory
1085 		 * base register.
1086 		 */
1087 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1088 		    sc->sc_pktpgaddr & 0xFFFF);
1089 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1090 		    sc->sc_pktpgaddr >> 16);
1091 		busCtl = BUS_CTL_MEM_MODE;
1092 
1093 		/* tell the chip to read the addresses off the SA pins */
1094 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1095 			busCtl |= BUS_CTL_USE_SA;
1096 		}
1097 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1098 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1099 
1100 		/* We are in memory mode now! */
1101 		sc->sc_memorymode = TRUE;
1102 
1103 		/*
1104 		 * wait here (10ms) for the chip to swap over. this is the
1105 		 * maximum time that this could take.
1106 		 */
1107 		delay(10000);
1108 
1109 		/* Verify that we can read from the chip */
1110 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1111 
1112 		/*
1113 		 * As a last minute sanity check before actually using mapped
1114 		 * memory we verify that we can read the isa number from the
1115 		 * chip in memory mode.
1116 		 */
1117 		if (isaId != EISA_NUM_CRYSTAL) {
1118 			printf("%s: failed to enable memory mode\n",
1119 			    sc->sc_dev.dv_xname);
1120 			sc->sc_memorymode = FALSE;
1121 		} else {
1122 			/*
1123 			 * we are in memory mode so if we aren't using DMA,
1124 			 * then program the chip to interrupt early.
1125 			 */
1126 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1127 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1128 				    BUF_CFG_RX_DEST_IE |
1129 				    BUF_CFG_RX_MISS_OVER_IE |
1130 				    BUF_CFG_TX_COL_OVER_IE);
1131 			}
1132 		}
1133 
1134 	}
1135 
1136 	/* Put Ethernet address into the Individual Address register */
1137 	for (i = 0; i < 6; i += 2) {
1138 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1139 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1140 	}
1141 
1142 	if (sc->sc_irq != -1) {
1143 		/* Set the interrupt level in the chip */
1144 		if (sc->sc_prodid == PROD_ID_CS8900) {
1145 			if (sc->sc_irq == 5) {
1146 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1147 			} else {
1148 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1149 			}
1150 		}
1151 		else { /* CS8920 */
1152 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1153 		}
1154 	}
1155 
1156 	/* write the multicast mask to the address filter register */
1157 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1158 
1159 	/* Enable reception and transmission of frames */
1160 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1161 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1162 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1163 
1164 	/* Enable interrupt at the chip */
1165 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1166 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1167 }
1168 
1169 int
1170 cs_init(struct ifnet *ifp)
1171 {
1172 	int intState;
1173 	int error = CS_OK;
1174 	struct cs_softc *sc = ifp->if_softc;
1175 
1176 	if (cs_enable(sc))
1177 		goto out;
1178 
1179 	cs_stop(ifp, 0);
1180 
1181 	intState = splnet();
1182 
1183 #if 0
1184 	/* Mark the interface as down */
1185 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1186 #endif
1187 
1188 #ifdef CS_DEBUG
1189 	/* Enable debugging */
1190 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1191 #endif
1192 
1193 	/* Reset the chip */
1194 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1195 		/* Initialize the chip */
1196 		cs_initChip(sc);
1197 
1198 		/* Mark the interface as running */
1199 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1200 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1201 		sc->sc_ethercom.ec_if.if_timer = 0;
1202 
1203 		/* Assume we have carrier until we are told otherwise. */
1204 		sc->sc_carrier = 1;
1205 	} else {
1206 		printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
1207 	}
1208 
1209 	splx(intState);
1210 out:
1211 	if (error == CS_OK)
1212 		return 0;
1213 	return EIO;
1214 }
1215 
1216 void
1217 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1218 {
1219 	struct ifnet *ifp = &ec->ec_if;
1220 	struct ether_multi *enm;
1221 	struct ether_multistep step;
1222 	u_int16_t af[4];
1223 	u_int16_t port, mask, index;
1224 
1225 	/*
1226          * Set up multicast address filter by passing all multicast addresses
1227          * through a crc generator, and then using the high order 6 bits as an
1228          * index into the 64 bit logical address filter.  The high order bit
1229          * selects the word, while the rest of the bits select the bit within
1230          * the word.
1231          */
1232 	if (ifp->if_flags & IFF_PROMISC) {
1233 		/* accept all valid frames. */
1234 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1235 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1236 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1237 		ifp->if_flags |= IFF_ALLMULTI;
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * accept frames if a. crc valid, b. individual address match c.
1243 	 * broadcast address,and d. multicast addresses matched in the hash
1244 	 * filter
1245 	 */
1246 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1247 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1248 
1249 
1250 	/*
1251 	 * start off with all multicast flag clear, set it if we need to
1252 	 * later, otherwise we will leave it.
1253 	 */
1254 	ifp->if_flags &= ~IFF_ALLMULTI;
1255 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1256 
1257 	/*
1258 	 * Loop through all the multicast addresses unless we get a range of
1259 	 * addresses, in which case we will just accept all packets.
1260 	 * Justification for this is given in the next comment.
1261 	 */
1262 	ETHER_FIRST_MULTI(step, ec, enm);
1263 	while (enm != NULL) {
1264 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1265 		    sizeof enm->enm_addrlo)) {
1266 			/*
1267 	                 * We must listen to a range of multicast addresses.
1268 	                 * For now, just accept all multicasts, rather than
1269 	                 * trying to set only those filter bits needed to match
1270 	                 * the range.  (At this time, the only use of address
1271 	                 * ranges is for IP multicast routing, for which the
1272 	                 * range is big enough to require all bits set.)
1273 	                 */
1274 			ifp->if_flags |= IFF_ALLMULTI;
1275 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1276 			break;
1277 		} else {
1278 			/*
1279 	                 * we have got an individual address so just set that
1280 	                 * bit.
1281 	                 */
1282 			index = cs_hash_index(enm->enm_addrlo);
1283 
1284 			/* Set the bit the Logical address filter. */
1285 			port = (u_int16_t) (index >> 4);
1286 			mask = (u_int16_t) (1 << (index & 0xf));
1287 			af[port] |= mask;
1288 
1289 			ETHER_NEXT_MULTI(step, enm);
1290 		}
1291 	}
1292 
1293 	/* now program the chip with the addresses */
1294 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1295 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1296 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1297 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1298 	return;
1299 }
1300 
1301 u_int16_t
1302 cs_hash_index(char *addr)
1303 {
1304 	uint32_t crc;
1305 	uint16_t hash_code;
1306 
1307 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1308 
1309 	hash_code = crc >> 26;
1310 	return (hash_code);
1311 }
1312 
1313 void
1314 cs_reset(void *arg)
1315 {
1316 	struct cs_softc *sc = arg;
1317 
1318 	/* Mark the interface as down */
1319 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1320 
1321 	/* Reset the chip */
1322 	cs_reset_chip(sc);
1323 }
1324 
1325 int
1326 cs_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1327 {
1328 	struct cs_softc *sc = ifp->if_softc;
1329 	struct ifreq *ifr = (struct ifreq *) data;
1330 	int state;
1331 	int result;
1332 
1333 	state = splnet();
1334 
1335 	result = 0;		/* only set if something goes wrong */
1336 
1337 	switch (cmd) {
1338 	case SIOCGIFMEDIA:
1339 	case SIOCSIFMEDIA:
1340 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1341 		break;
1342 
1343 	default:
1344 		result = ether_ioctl(ifp, cmd, data);
1345 		if (result == ENETRESET) {
1346 			if (ifp->if_flags & IFF_RUNNING) {
1347 				/*
1348 				 * Multicast list has changed.  Set the
1349 				 * hardware filter accordingly.
1350 				 */
1351 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1352 			}
1353 			result = 0;
1354 		}
1355 		break;
1356 	}
1357 
1358 	splx(state);
1359 
1360 	return result;
1361 }
1362 
1363 int
1364 cs_mediachange(struct ifnet *ifp)
1365 {
1366 
1367 	/*
1368 	 * Current media is already set up.  Just reset the interface
1369 	 * to let the new value take hold.
1370 	 */
1371 	cs_init(ifp);
1372 	return (0);
1373 }
1374 
1375 void
1376 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1377 {
1378 	struct cs_softc *sc = ifp->if_softc;
1379 
1380 	/*
1381 	 * The currently selected media is always the active media.
1382 	 */
1383 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1384 
1385 	if (ifp->if_flags & IFF_UP) {
1386 		/* Interface up, status is valid. */
1387 		ifmr->ifm_status = IFM_AVALID |
1388 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1389 	}
1390 		else ifmr->ifm_status = 0;
1391 }
1392 
1393 int
1394 cs_intr(void *arg)
1395 {
1396 	struct cs_softc *sc = arg;
1397 	u_int16_t Event;
1398 #if NRND > 0
1399 	u_int16_t rndEvent;
1400 #endif
1401 
1402 /*printf("cs_intr %p\n", sc);*/
1403 	/* Ignore any interrupts that happen while the chip is being reset */
1404 	if (sc->sc_resetting) {
1405 		printf("%s: cs_intr: reset in progress\n",
1406 		    sc->sc_dev.dv_xname);
1407 		return 1;
1408 	}
1409 
1410 	/* Read an event from the Interrupt Status Queue */
1411 	if (sc->sc_memorymode)
1412 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1413 	else
1414 		Event = CS_READ_PORT(sc, PORT_ISQ);
1415 
1416 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1417 		return 0;	/* not ours */
1418 
1419 #if NRND > 0
1420 	rndEvent = Event;
1421 #endif
1422 
1423 	/* Process all the events in the Interrupt Status Queue */
1424 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1425 		/* Dispatch to an event handler based on the register number */
1426 		switch (Event & REG_NUM_MASK) {
1427 		case REG_NUM_RX_EVENT:
1428 			cs_receive_event(sc, Event);
1429 			break;
1430 		case REG_NUM_TX_EVENT:
1431 			cs_transmit_event(sc, Event);
1432 			break;
1433 		case REG_NUM_BUF_EVENT:
1434 			cs_buffer_event(sc, Event);
1435 			break;
1436 		case REG_NUM_TX_COL:
1437 		case REG_NUM_RX_MISS:
1438 			cs_counter_event(sc, Event);
1439 			break;
1440 		default:
1441 			printf("%s: unknown interrupt event 0x%x\n",
1442 			    sc->sc_dev.dv_xname, Event);
1443 			break;
1444 		}
1445 
1446 		/* Read another event from the Interrupt Status Queue */
1447 		if (sc->sc_memorymode)
1448 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1449 		else
1450 			Event = CS_READ_PORT(sc, PORT_ISQ);
1451 	}
1452 
1453 	/* have handled the interrupt */
1454 #if NRND > 0
1455 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1456 #endif
1457 	return 1;
1458 }
1459 
1460 void
1461 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1462 {
1463 	struct ifnet *ifp;
1464 	u_int16_t errorCount;
1465 
1466 	ifp = &sc->sc_ethercom.ec_if;
1467 
1468 	switch (cntEvent & REG_NUM_MASK) {
1469 	case REG_NUM_TX_COL:
1470 		/*
1471 		 * the count should be read before an overflow occurs.
1472 		 */
1473 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1474 		/*
1475 		 * the tramsit event routine always checks the number of
1476 		 * collisions for any packet so we don't increment any
1477 		 * counters here, as they should already have been
1478 		 * considered.
1479 		 */
1480 		break;
1481 	case REG_NUM_RX_MISS:
1482 		/*
1483 		 * the count should be read before an overflow occurs.
1484 		 */
1485 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1486 		/*
1487 		 * Increment the input error count, the first 6bits are the
1488 		 * register id.
1489 		 */
1490 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1491 		break;
1492 	default:
1493 		/* do nothing */
1494 		break;
1495 	}
1496 }
1497 
1498 void
1499 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1500 {
1501 
1502 	/*
1503 	 * multiple events can be in the buffer event register at one time so
1504 	 * a standard switch statement will not suffice, here every event
1505 	 * must be checked.
1506 	 */
1507 
1508 	/*
1509 	 * if 128 bits have been rxed by the time we get here, the dest event
1510 	 * will be cleared and 128 event will be set.
1511 	 */
1512 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1513 		cs_process_rx_early(sc);
1514 	}
1515 
1516 	if (bufEvent & BUF_EVENT_RX_DMA) {
1517 		/* process the receive data */
1518 		if (sc->sc_dma_process_rx)
1519 			(*sc->sc_dma_process_rx)(sc);
1520 		else
1521 			/* should panic? */
1522 			printf("%s: unexpected DMA event\n", sc->sc_dev.dv_xname);
1523 	}
1524 
1525 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1526 #if 0
1527 		/*
1528 		 * This can happen occasionally, and it's not worth worrying
1529 		 * about.
1530 		 */
1531 		printf("%s: transmit underrun (%d -> %d)\n",
1532 		    sc->sc_dev.dv_xname, sc->sc_xe_ent,
1533 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1534 #endif
1535 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1536 		sc->sc_xe_togo =
1537 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1538 
1539 		/* had an underrun, transmit is finished */
1540 		sc->sc_txbusy = FALSE;
1541 	}
1542 
1543 	if (bufEvent & BUF_EVENT_SW_INT) {
1544 		printf("%s: software initiated interrupt\n",
1545 		    sc->sc_dev.dv_xname);
1546 	}
1547 }
1548 
1549 void
1550 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1551 {
1552 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1553 
1554 	/* If there were any errors transmitting this frame */
1555 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1556 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1557 		/* Increment the output error count */
1558 		ifp->if_oerrors++;
1559 
1560 		/* Note carrier loss. */
1561 		if (txEvent & TX_EVENT_LOSS_CRS)
1562 			sc->sc_carrier = 0;
1563 
1564 		/* If debugging is enabled then log error messages */
1565 		if (ifp->if_flags & IFF_DEBUG) {
1566 			if (txEvent & TX_EVENT_LOSS_CRS) {
1567 				printf("%s: lost carrier\n",
1568 				    sc->sc_dev.dv_xname);
1569 			}
1570 			if (txEvent & TX_EVENT_SQE_ERR) {
1571 				printf("%s: SQE error\n",
1572 				    sc->sc_dev.dv_xname);
1573 			}
1574 			if (txEvent & TX_EVENT_OUT_WIN) {
1575 				printf("%s: out-of-window collision\n",
1576 				    sc->sc_dev.dv_xname);
1577 			}
1578 			if (txEvent & TX_EVENT_JABBER) {
1579 				printf("%s: jabber\n", sc->sc_dev.dv_xname);
1580 			}
1581 			if (txEvent & TX_EVENT_16_COLL) {
1582 				printf("%s: 16 collisions\n",
1583 				    sc->sc_dev.dv_xname);
1584 			}
1585 		}
1586 	}
1587 	else {
1588 		/* Transmission successful, carrier is up. */
1589 		sc->sc_carrier = 1;
1590 #ifdef SHARK
1591 		ledNetActive();
1592 #endif
1593 	}
1594 
1595 	/* Add the number of collisions for this frame */
1596 	if (txEvent & TX_EVENT_16_COLL) {
1597 		ifp->if_collisions += 16;
1598 	} else {
1599 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1600 	}
1601 
1602 	ifp->if_opackets++;
1603 
1604 	/* Transmission is no longer in progress */
1605 	sc->sc_txbusy = FALSE;
1606 
1607 	/* If there is more to transmit */
1608 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1609 		/* Start the next transmission */
1610 		cs_start_output(ifp);
1611 	}
1612 }
1613 
1614 void
1615 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1616 {
1617 
1618 	if (rxEvent & RX_EVENT_RUNT)
1619 		printf("%s: runt\n", sc->sc_dev.dv_xname);
1620 
1621 	if (rxEvent & RX_EVENT_X_DATA)
1622 		printf("%s: extra data\n", sc->sc_dev.dv_xname);
1623 
1624 	if (rxEvent & RX_EVENT_CRC_ERR) {
1625 		if (rxEvent & RX_EVENT_DRIBBLE)
1626 			printf("%s: alignment error\n", sc->sc_dev.dv_xname);
1627 		else
1628 			printf("%s: CRC error\n", sc->sc_dev.dv_xname);
1629 	} else {
1630 		if (rxEvent & RX_EVENT_DRIBBLE)
1631 			printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
1632 	}
1633 }
1634 
1635 void
1636 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1637 {
1638 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1639 
1640 	/* If the frame was not received OK */
1641 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1642 		/* Increment the input error count */
1643 		ifp->if_ierrors++;
1644 
1645 		/*
1646 		 * If debugging is enabled then log error messages.
1647 		 */
1648 		if (ifp->if_flags & IFF_DEBUG) {
1649 			if (rxEvent != REG_NUM_RX_EVENT) {
1650 				cs_print_rx_errors(sc, rxEvent);
1651 
1652 				/*
1653 				 * Must read the length of all received
1654 				 * frames
1655 				 */
1656 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1657 
1658 				/* Skip the received frame */
1659 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1660 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1661 						  RX_CFG_SKIP);
1662 			} else {
1663 				printf("%s: implied skip\n",
1664 				    sc->sc_dev.dv_xname);
1665 			}
1666 		}
1667 	} else {
1668 		/*
1669 		 * process the received frame and pass it up to the upper
1670 		 * layers.
1671 		 */
1672 		cs_process_receive(sc);
1673 	}
1674 }
1675 
1676 void
1677 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1678 {
1679 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1680 
1681 	ifp->if_ipackets++;
1682 
1683 #if NBPFILTER > 0
1684 	/*
1685 	 * Check if there's a BPF listener on this interface.
1686 	 * If so, hand off the raw packet to BPF.
1687 	 */
1688 	if (ifp->if_bpf)
1689 		bpf_mtap(ifp->if_bpf, m);
1690 #endif
1691 
1692 	/* Pass the packet up. */
1693 	(*ifp->if_input)(ifp, m);
1694 }
1695 
1696 void
1697 cs_process_receive(struct cs_softc *sc)
1698 {
1699 	struct ifnet *ifp;
1700 	struct mbuf *m;
1701 	int totlen;
1702 	u_int16_t *pBuff, *pBuffLimit;
1703 	int pad;
1704 	unsigned int frameOffset = 0;	/* XXX: gcc */
1705 
1706 #ifdef SHARK
1707 	ledNetActive();
1708 #endif
1709 
1710 	ifp = &sc->sc_ethercom.ec_if;
1711 
1712 	/* Received a packet; carrier is up. */
1713 	sc->sc_carrier = 1;
1714 
1715 	if (sc->sc_memorymode) {
1716 		/* Initialize the frame offset */
1717 		frameOffset = PKTPG_RX_LENGTH;
1718 
1719 		/* Get the length of the received frame */
1720 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1721 		frameOffset += 2;
1722 	}
1723 	else {
1724 		/* drop status */
1725 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1726 
1727 		/* Get the length of the received frame */
1728 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1729 	}
1730 
1731 	if (totlen > ETHER_MAX_LEN) {
1732 		printf("%s: invalid packet length %d\n",
1733 		    sc->sc_dev.dv_xname, totlen);
1734 
1735 		/* skip the received frame */
1736 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1737 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1738 		return;
1739 	}
1740 
1741 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1742 	if (m == 0) {
1743 		printf("%s: cs_process_receive: unable to allocate mbuf\n",
1744 		    sc->sc_dev.dv_xname);
1745 		ifp->if_ierrors++;
1746 		/*
1747 		 * couldn't allocate an mbuf so things are not good, may as
1748 		 * well drop the packet I think.
1749 		 *
1750 		 * have already read the length so we should be right to skip
1751 		 * the packet.
1752 		 */
1753 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1754 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1755 		return;
1756 	}
1757 	m->m_pkthdr.rcvif = ifp;
1758 	m->m_pkthdr.len = totlen;
1759 
1760 	/* number of bytes to align ip header on word boundary for ipintr */
1761 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1762 
1763 	/*
1764 	 * alloc mbuf cluster if we need.
1765 	 * we need 1 byte spare because following
1766 	 * packet read loop can overrun.
1767 	 */
1768 	if (totlen + pad + 1 > MHLEN) {
1769 		MCLGET(m, M_DONTWAIT);
1770 		if ((m->m_flags & M_EXT) == 0) {
1771 			/* couldn't allocate an mbuf cluster */
1772 			printf("%s: cs_process_receive: unable to allocate a cluster\n",
1773 				sc->sc_dev.dv_xname);
1774 			m_freem(m);
1775 
1776 			/* skip the received frame */
1777 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1778 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1779 			return;
1780 		}
1781 	}
1782 
1783 	/* align ip header on word boundary for ipintr */
1784 	m->m_data += pad;
1785 
1786 	m->m_len = totlen;
1787 	pBuff = mtod(m, u_int16_t *);
1788 
1789 	/* now read the data from the chip */
1790 	if (sc->sc_memorymode) {
1791 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1792 		while (pBuff < pBuffLimit) {
1793 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1794 			frameOffset += 2;
1795 		}
1796 	}
1797 	else {
1798 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1799 	}
1800 
1801 	cs_ether_input(sc, m);
1802 }
1803 
1804 void
1805 cs_process_rx_early(struct cs_softc *sc)
1806 {
1807 	struct ifnet *ifp;
1808 	struct mbuf *m;
1809 	u_int16_t frameCount, oldFrameCount;
1810 	u_int16_t rxEvent;
1811 	u_int16_t *pBuff;
1812 	int pad;
1813 	unsigned int frameOffset;
1814 
1815 
1816 	ifp = &sc->sc_ethercom.ec_if;
1817 
1818 	/* Initialize the frame offset */
1819 	frameOffset = PKTPG_RX_FRAME;
1820 	frameCount = 0;
1821 
1822 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1823 	if (m == 0) {
1824 		printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
1825 		    sc->sc_dev.dv_xname);
1826 		ifp->if_ierrors++;
1827 		/*
1828 		 * couldn't allocate an mbuf so things are not good, may as
1829 		 * well drop the packet I think.
1830 		 *
1831 		 * have already read the length so we should be right to skip
1832 		 * the packet.
1833 		 */
1834 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1835 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1836 		return;
1837 	}
1838 	m->m_pkthdr.rcvif = ifp;
1839 	/*
1840 	 * save processing by always using a mbuf cluster, guaranteed to fit
1841 	 * packet
1842 	 */
1843 	MCLGET(m, M_DONTWAIT);
1844 	if ((m->m_flags & M_EXT) == 0) {
1845 		/* couldn't allocate an mbuf cluster */
1846 		printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
1847 		    sc->sc_dev.dv_xname);
1848 		m_freem(m);
1849 		/* skip the frame */
1850 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1851 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1852 		return;
1853 	}
1854 
1855 	/* align ip header on word boundary for ipintr */
1856 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1857 	m->m_data += pad;
1858 
1859 	/* set up the buffer pointer to point to the data area */
1860 	pBuff = mtod(m, u_int16_t *);
1861 
1862 	/*
1863 	 * now read the frame byte counter until we have finished reading the
1864 	 * frame
1865 	 */
1866 	oldFrameCount = 0;
1867 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1868 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1869 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1870 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1871 			frameOffset += 2;
1872 		}
1873 
1874 		/* read the new count from the chip */
1875 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1876 	}
1877 
1878 	/* update the mbuf counts */
1879 	m->m_len = oldFrameCount;
1880 	m->m_pkthdr.len = oldFrameCount;
1881 
1882 	/* now check the Rx Event register */
1883 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1884 
1885 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1886 		/*
1887 		 * do an implied skip, it seems to be more reliable than a
1888 		 * forced skip.
1889 		 */
1890 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1891 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1892 
1893 		/*
1894 		 * now read the RX_EVENT register to perform an implied skip.
1895 		 */
1896 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1897 
1898 		cs_ether_input(sc, m);
1899 	} else {
1900 		m_freem(m);
1901 		ifp->if_ierrors++;
1902 	}
1903 }
1904 
1905 void
1906 cs_start_output(struct ifnet *ifp)
1907 {
1908 	struct cs_softc *sc;
1909 	struct mbuf *pMbuf;
1910 	struct mbuf *pMbufChain;
1911 	u_int16_t BusStatus;
1912 	u_int16_t Length;
1913 	int txLoop = 0;
1914 	int dropout = 0;
1915 
1916 	sc = ifp->if_softc;
1917 
1918 	/* check that the interface is up and running */
1919 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1920 		return;
1921 	}
1922 
1923 	/* Don't interrupt a transmission in progress */
1924 	if (sc->sc_txbusy) {
1925 		return;
1926 	}
1927 
1928 	/* this loop will only run through once if transmission is successful */
1929 	/*
1930 	 * While there are packets to transmit and a transmit is not in
1931 	 * progress
1932 	 */
1933 	while (sc->sc_txbusy == 0 && dropout == 0) {
1934 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1935 		if (pMbufChain == NULL)
1936 			break;
1937 
1938 #if NBPFILTER > 0
1939 		/*
1940 	         * If BPF is listening on this interface, let it see the packet
1941 	         * before we commit it to the wire.
1942 	         */
1943 		if (ifp->if_bpf)
1944 			bpf_mtap(ifp->if_bpf, pMbufChain);
1945 #endif
1946 
1947 		/* Find the total length of the data to transmit */
1948 		Length = 0;
1949 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1950 			Length += pMbuf->m_len;
1951 
1952 		do {
1953 			/*
1954 			 * Request that the transmit be started after all
1955 			 * data has been copied
1956 			 *
1957 			 * In IO mode must write to the IO port not the packet
1958 			 * page address
1959 			 *
1960 			 * If this is changed to start transmission after a
1961 			 * small amount of data has been copied you tend to
1962 			 * get packet missed errors i think because the ISA
1963 			 * bus is too slow. Or possibly the copy routine is
1964 			 * not streamlined enough.
1965 			 */
1966 			if (sc->sc_memorymode) {
1967 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1968 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1969 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1970 			}
1971 			else {
1972 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1973 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1974 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1975 			}
1976 
1977 			/*
1978 			 * Adjust early-transmit machinery.
1979 			 */
1980 			if (--sc->sc_xe_togo == 0) {
1981 				sc->sc_xe_ent =
1982 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1983 				sc->sc_xe_togo =
1984 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1985 			}
1986 			/*
1987 			 * Read the BusStatus register which indicates
1988 			 * success of the request
1989 			 */
1990 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1991 
1992 			/*
1993 			 * If there was an error in the transmit bid free the
1994 			 * mbuf and go on. This is presuming that mbuf is
1995 			 * corrupt.
1996 			 */
1997 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1998 				printf("%s: transmit bid error (too big)",
1999 				    sc->sc_dev.dv_xname);
2000 
2001 				/* Discard the bad mbuf chain */
2002 				m_freem(pMbufChain);
2003 				sc->sc_ethercom.ec_if.if_oerrors++;
2004 
2005 				/* Loop up to transmit the next chain */
2006 				txLoop = 0;
2007 			} else {
2008 				if (BusStatus & BUS_ST_RDY4TXNOW) {
2009 					/*
2010 					 * The chip is ready for transmission
2011 					 * now
2012 					 */
2013 					/*
2014 					 * Copy the frame to the chip to
2015 					 * start transmission
2016 					 */
2017 					cs_copy_tx_frame(sc, pMbufChain);
2018 
2019 					/* Free the mbuf chain */
2020 					m_freem(pMbufChain);
2021 
2022 					/* Transmission is now in progress */
2023 					sc->sc_txbusy = TRUE;
2024 					txLoop = 0;
2025 				} else {
2026 					/*
2027 					 * if we get here we want to try
2028 					 * again with the same mbuf, until
2029 					 * the chip lets us transmit.
2030 					 */
2031 					txLoop++;
2032 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
2033 						/* Free the mbuf chain */
2034 						m_freem(pMbufChain);
2035 						/*
2036 						 * Transmission is not in
2037 						 * progress
2038 						 */
2039 						sc->sc_txbusy = FALSE;
2040 						/*
2041 						 * Increment the output error
2042 						 * count
2043 						 */
2044 						ifp->if_oerrors++;
2045 						/*
2046 						 * exit the routine and drop
2047 						 * the packet.
2048 						 */
2049 						txLoop = 0;
2050 						dropout = 1;
2051 					}
2052 				}
2053 			}
2054 		} while (txLoop);
2055 	}
2056 }
2057 
2058 void
2059 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2060 {
2061 	struct mbuf *m;
2062 	int len, leftover, frameoff;
2063 	u_int16_t dbuf;
2064 	u_int8_t *p;
2065 #ifdef DIAGNOSTIC
2066 	u_int8_t *lim;
2067 #endif
2068 
2069 	/* Initialize frame pointer and data port address */
2070 	frameoff = PKTPG_TX_FRAME;
2071 
2072 	/* start out with no leftover data */
2073 	leftover = 0;
2074 	dbuf = 0;
2075 
2076 	/* Process the chain of mbufs */
2077 	for (m = m0; m != NULL; m = m->m_next) {
2078 		/*
2079 		 * Process all of the data in a single mbuf.
2080 		 */
2081 		p = mtod(m, u_int8_t *);
2082 		len = m->m_len;
2083 #ifdef DIAGNOSTIC
2084 		lim = p + len;
2085 #endif
2086 
2087 		while (len > 0) {
2088 			if (leftover) {
2089 				/*
2090 				 * Data left over (from mbuf or realignment).
2091 				 * Buffer the next byte, and write it and
2092 				 * the leftover data out.
2093 				 */
2094 				dbuf |= *p++ << 8;
2095 				len--;
2096 				if (sc->sc_memorymode) {
2097 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2098 					frameoff += 2;
2099 				}
2100 				else {
2101 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2102 				}
2103 				leftover = 0;
2104 			} else if ((long) p & 1) {
2105 				/*
2106 				 * Misaligned data.  Buffer the next byte.
2107 				 */
2108 				dbuf = *p++;
2109 				len--;
2110 				leftover = 1;
2111 			} else {
2112 				/*
2113 				 * Aligned data.  This is the case we like.
2114 				 *
2115 				 * Write-region out as much as we can, then
2116 				 * buffer the remaining byte (if any).
2117 				 */
2118 				leftover = len & 1;
2119 				len &= ~1;
2120 				if (sc->sc_memorymode) {
2121 					MEM_WRITE_REGION_2(sc, frameoff,
2122 						(u_int16_t *) p, len >> 1);
2123 					frameoff += len;
2124 				}
2125 				else {
2126 					IO_WRITE_MULTI_2(sc,
2127 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2128 				}
2129 				p += len;
2130 
2131 				if (leftover)
2132 					dbuf = *p++;
2133 				len = 0;
2134 			}
2135 		}
2136 		if (len < 0)
2137 			panic("cs_copy_tx_frame: negative len");
2138 #ifdef DIAGNOSTIC
2139 		if (p != lim)
2140 			panic("cs_copy_tx_frame: p != lim");
2141 #endif
2142 	}
2143 	if (leftover) {
2144 		if (sc->sc_memorymode) {
2145 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2146 		}
2147 		else {
2148 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2149 		}
2150 	}
2151 }
2152 
2153 static int
2154 cs_enable(struct cs_softc *sc)
2155 {
2156 
2157 	if (CS_IS_ENABLED(sc) == 0) {
2158 		if (sc->sc_enable != NULL) {
2159 			int error;
2160 
2161 			error = (*sc->sc_enable)(sc);
2162 			if (error)
2163 				return (error);
2164 		}
2165 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2166 	}
2167 
2168 	return (0);
2169 }
2170 
2171 static void
2172 cs_disable(struct cs_softc *sc)
2173 {
2174 
2175 	if (CS_IS_ENABLED(sc)) {
2176 		if (sc->sc_disable != NULL)
2177 			(*sc->sc_disable)(sc);
2178 
2179 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2180 	}
2181 }
2182 
2183 static void
2184 cs_stop(struct ifnet *ifp, int disable)
2185 {
2186 	struct cs_softc *sc = ifp->if_softc;
2187 
2188 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2189 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2190 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2191 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2192 
2193 	if (disable) {
2194 		cs_disable(sc);
2195 	}
2196 
2197 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2198 }
2199 
2200 int
2201 cs_activate(struct device *self, enum devact act)
2202 {
2203 	struct cs_softc *sc = (void *)self;
2204 	int s, error = 0;
2205 
2206 	s = splnet();
2207 	switch (act) {
2208 	case DVACT_ACTIVATE:
2209 		error = EOPNOTSUPP;
2210 		break;
2211 
2212 	case DVACT_DEACTIVATE:
2213 		if_deactivate(&sc->sc_ethercom.ec_if);
2214 		break;
2215 	}
2216 	splx(s);
2217 
2218 	return error;
2219 }
2220 
2221 static void
2222 cs_power(int why, void *arg)
2223 {
2224 	struct cs_softc *sc = arg;
2225 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2226 	int s;
2227 
2228 	s = splnet();
2229 	switch (why) {
2230 	case PWR_STANDBY:
2231 	case PWR_SUSPEND:
2232 		cs_stop(ifp, 0);
2233 		break;
2234 	case PWR_RESUME:
2235 		if (ifp->if_flags & IFF_UP) {
2236 			cs_init(ifp);
2237 		}
2238 		break;
2239 	case PWR_SOFTSUSPEND:
2240 	case PWR_SOFTSTANDBY:
2241 	case PWR_SOFTRESUME:
2242 		break;
2243 	}
2244 	splx(s);
2245 }
2246