xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: cs89x0.c,v 1.41 2018/06/26 06:48:00 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.41 2018/06/26 06:48:00 msaitoh Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 
229 #include <sys/rndsource.h>
230 
231 #include <net/if.h>
232 #include <net/if_ether.h>
233 #include <net/if_media.h>
234 #include <net/bpf.h>
235 
236 #ifdef INET
237 #include <netinet/in.h>
238 #include <netinet/if_inarp.h>
239 #endif
240 
241 #include <sys/bus.h>
242 #include <sys/intr.h>
243 
244 #include <dev/ic/cs89x0reg.h>
245 #include <dev/ic/cs89x0var.h>
246 
247 #ifdef SHARK
248 #include <shark/shark/sequoia.h>
249 #endif
250 
251 /*
252  * MACRO DEFINITIONS
253  */
254 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
255 
256 /*
257  * FUNCTION PROTOTYPES
258  */
259 static void	cs_get_default_media(struct cs_softc *);
260 static int	cs_get_params(struct cs_softc *);
261 static int	cs_get_enaddr(struct cs_softc *);
262 static int	cs_reset_chip(struct cs_softc *);
263 static void	cs_reset(struct cs_softc *);
264 static int	cs_ioctl(struct ifnet *, u_long, void *);
265 static void	cs_initChip(struct cs_softc *);
266 static void	cs_buffer_event(struct cs_softc *, u_int16_t);
267 static void	cs_transmit_event(struct cs_softc *, u_int16_t);
268 static void	cs_receive_event(struct cs_softc *, u_int16_t);
269 static void	cs_process_receive(struct cs_softc *);
270 static void	cs_process_rx_early(struct cs_softc *);
271 static void	cs_start_output(struct ifnet *);
272 static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
273 static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
274 static u_int16_t cs_hash_index(char *);
275 static void	cs_counter_event(struct cs_softc *, u_int16_t);
276 
277 static int	cs_mediachange(struct ifnet *);
278 static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
279 
280 static bool cs_shutdown(device_t, int);
281 static int cs_enable(struct cs_softc *);
282 static void cs_disable(struct cs_softc *);
283 static void cs_stop(struct ifnet *, int);
284 static int cs_scan_eeprom(struct cs_softc *);
285 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
286 
287 
288 /*
289  * GLOBAL DECLARATIONS
290  */
291 
292 /*
293  * Xmit-early table.
294  *
295  * To get better performance, we tell the chip to start packet
296  * transmission before the whole packet is copied to the chip.
297  * However, this can fail under load.  When it fails, we back off
298  * to a safer setting for a little while.
299  *
300  * txcmd is the value of txcmd used to indicate when to start transmission.
301  * better is the next 'better' state in the table.
302  * better_count is the number of output packets before transition to the
303  *   better state.
304  * worse is the next 'worse' state in the table.
305  *
306  * Transition to the next worse state happens automatically when a
307  * transmittion underrun occurs.
308  */
309 struct cs_xmit_early {
310 	u_int16_t       txcmd;
311 	int             better;
312 	int             better_count;
313 	int             worse;
314 } cs_xmit_early_table[3] = {
315 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
316 	{ TX_CMD_START_1021,	0,	50000,		2, },
317 	{ TX_CMD_START_ALL,	1,	5000,		2, },
318 };
319 
320 int cs_default_media[] = {
321 	IFM_ETHER|IFM_10_2,
322 	IFM_ETHER|IFM_10_5,
323 	IFM_ETHER|IFM_10_T,
324 	IFM_ETHER|IFM_10_T|IFM_FDX,
325 };
326 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
327 
328 int
329 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
330 	  int nmedia, int defmedia)
331 {
332 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
333 	const char *chipname, *medname;
334 	u_int16_t reg;
335 	int i;
336 
337 	/* Start out in IO mode */
338 	sc->sc_memorymode = FALSE;
339 
340 	/* make sure we're right */
341 	for (i = 0; i < 10000; i++) {
342 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
343 		if (reg == EISA_NUM_CRYSTAL) {
344 			break;
345 		}
346 	}
347 	if (i == 10000) {
348 		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
349 		return 1; /* XXX should panic? */
350 	}
351 
352 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
353 	sc->sc_prodid = reg & PROD_ID_MASK;
354 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
355 
356 	switch (sc->sc_prodid) {
357 	case PROD_ID_CS8900:
358 		chipname = "CS8900";
359 		break;
360 	case PROD_ID_CS8920:
361 		chipname = "CS8920";
362 		break;
363 	case PROD_ID_CS8920M:
364 		chipname = "CS8920M";
365 		break;
366 	default:
367 		panic("cs_attach: impossible");
368 	}
369 
370 	/*
371 	 * the first thing to do is check that the mbuf cluster size is
372 	 * greater than the MTU for an ethernet frame. The code depends on
373 	 * this and to port this to a OS where this was not the case would
374 	 * not be straightforward.
375 	 *
376 	 * we need 1 byte spare because our
377 	 * packet read loop can overrun.
378 	 * and we may need pad bytes to align ip header.
379 	 */
380 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
381 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
382 		printf("%s: MCLBYTES too small for Ethernet frame\n",
383 		    device_xname(sc->sc_dev));
384 		return 1;
385 	}
386 
387 	/* Start out not transmitting */
388 	sc->sc_txbusy = FALSE;
389 
390 	/* Set up early transmit threshhold */
391 	sc->sc_xe_ent = 0;
392 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
393 
394 	/* Initialize ifnet structure. */
395 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
396 	ifp->if_softc = sc;
397 	ifp->if_start = cs_start_output;
398 	ifp->if_init = cs_init;
399 	ifp->if_ioctl = cs_ioctl;
400 	ifp->if_stop = cs_stop;
401 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
402 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
403 	    IFF_BROADCAST | IFF_MULTICAST;
404 	IFQ_SET_READY(&ifp->if_snd);
405 
406 	/* Initialize ifmedia structures. */
407 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
408 
409 	if (media != NULL) {
410 		for (i = 0; i < nmedia; i++)
411 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
412 		ifmedia_set(&sc->sc_media, defmedia);
413 	} else {
414 		for (i = 0; i < cs_default_nmedia; i++)
415 			ifmedia_add(&sc->sc_media, cs_default_media[i],
416 			    0, NULL);
417 		cs_get_default_media(sc);
418 	}
419 
420 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
421 		if (cs_scan_eeprom(sc) == CS_ERROR) {
422 			/* failed to scan the eeprom, pretend there isn't an eeprom */
423 			aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
424 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
425 		}
426 	}
427 
428 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
429 		/* Get parameters from the EEPROM */
430 		if (cs_get_params(sc) == CS_ERROR) {
431 			aprint_error_dev(sc->sc_dev,
432 			    "unable to get settings from EEPROM\n");
433 			return 1;
434 		}
435 	}
436 
437 	if (enaddr != NULL)
438 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
439 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
440 		/* Get and store the Ethernet address */
441 		if (cs_get_enaddr(sc) == CS_ERROR) {
442 			aprint_error_dev(sc->sc_dev,
443 			    "unable to read Ethernet address\n");
444 			return 1;
445 		}
446 	} else {
447 #if 1
448 		int j;
449 		uint v;
450 
451 		for (j = 0; j < 6; j += 2) {
452 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
453 			sc->sc_enaddr[j + 0] = v;
454 			sc->sc_enaddr[j + 1] = v >> 8;
455 		}
456 #else
457 		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
458 		return 1;
459 #endif
460 	}
461 
462 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
463 	case IFM_10_2:
464 		medname = "BNC";
465 		break;
466 	case IFM_10_5:
467 		medname = "AUI";
468 		break;
469 	case IFM_10_T:
470 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
471 			medname = "UTP <full-duplex>";
472 		else
473 			medname = "UTP";
474 		break;
475 	default:
476 		panic("cs_attach: impossible");
477 	}
478 	printf("%s: %s rev. %c, address %s, media %s\n",
479 	    device_xname(sc->sc_dev),
480 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
481 	    medname);
482 
483 	if (sc->sc_dma_attach)
484 		(*sc->sc_dma_attach)(sc);
485 
486 	/* Attach the interface. */
487 	if_attach(ifp);
488 	if_deferred_start_init(ifp, NULL);
489 	ether_ifattach(ifp, sc->sc_enaddr);
490 
491 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
492 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
493 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
494 
495 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
496 		pmf_class_network_register(sc->sc_dev, ifp);
497 	else
498 		aprint_error_dev(sc->sc_dev,
499 		    "couldn't establish power handler\n");
500 
501 	/* Reset the chip */
502 	if (cs_reset_chip(sc) == CS_ERROR) {
503 		aprint_error_dev(sc->sc_dev, "reset failed\n");
504 		cs_detach(sc);
505 		return 1;
506 	}
507 
508 	return 0;
509 }
510 
511 int
512 cs_detach(struct cs_softc *sc)
513 {
514 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
515 
516 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
517 		rnd_detach_source(&sc->rnd_source);
518 		ether_ifdetach(ifp);
519 		if_detach(ifp);
520 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
521 	}
522 
523 #if 0
524 	/*
525 	 * XXX not necessary
526 	 */
527 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
528 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
529 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
530 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
531 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
532 	}
533 #endif
534 
535 	pmf_device_deregister(sc->sc_dev);
536 
537 	return 0;
538 }
539 
540 bool
541 cs_shutdown(device_t self, int howto)
542 {
543 	struct cs_softc *sc;
544 
545 	sc = device_private(self);
546 	cs_reset(sc);
547 
548 	return true;
549 }
550 
551 void
552 cs_get_default_media(struct cs_softc *sc)
553 {
554 	u_int16_t adp_cfg, xmit_ctl;
555 
556 	if (cs_verify_eeprom(sc) == CS_ERROR) {
557 		aprint_error_dev(sc->sc_dev,
558 		    "cs_get_default_media: EEPROM missing or bad\n");
559 		goto fakeit;
560 	}
561 
562 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
563 		aprint_error_dev(sc->sc_dev,
564 		    "unable to read adapter config from EEPROM\n");
565 		goto fakeit;
566 	}
567 
568 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
569 		aprint_error_dev(sc->sc_dev,
570 		    "unable to read transmit control from EEPROM\n");
571 		goto fakeit;
572 	}
573 
574 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
575 	case ADPTR_CFG_AUI:
576 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
577 		break;
578 	case ADPTR_CFG_10BASE2:
579 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
580 		break;
581 	case ADPTR_CFG_10BASET:
582 	default:
583 		if (xmit_ctl & XMIT_CTL_FDX)
584 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
585 		else
586 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
587 		break;
588 	}
589 	return;
590 
591  fakeit:
592 	aprint_error_dev(sc->sc_dev,
593 	    "WARNING: default media setting may be inaccurate\n");
594 	/* XXX Arbitrary... */
595 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
596 }
597 
598 /*
599  * cs_scan_eeprom
600  *
601  * Attempt to take a complete copy of the eeprom into main memory.
602  * this will allow faster parsing of the eeprom data.
603  *
604  * Only tested against a 8920M's eeprom, but the data sheet for the
605  * 8920A indicates that is uses the same layout.
606  */
607 int
608 cs_scan_eeprom(struct cs_softc *sc)
609 {
610 	u_int16_t result;
611 	int	i;
612 	int	eeprom_size;
613 	u_int8_t checksum = 0;
614 
615 	if (cs_verify_eeprom(sc) == CS_ERROR) {
616 		aprint_error_dev(sc->sc_dev,
617 		    "cs_scan_params: EEPROM missing or bad\n");
618 		return (CS_ERROR);
619 	}
620 
621 	/*
622 	 * read the 0th word from the eeprom, it will tell us the length
623 	 * and if the eeprom is valid
624 	 */
625 	cs_read_eeprom(sc, 0, &result);
626 
627 	/* check the eeprom signature */
628 	if ((result & 0xE000) != 0xA000) {
629 		/* empty eeprom */
630 		return (CS_ERROR);
631 	}
632 
633 	/*
634 	 * take the eeprom size (note the read value doesn't include the header
635 	 * word)
636 	 */
637 	eeprom_size = (result & 0xff) + 2;
638 
639 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
640 	if (sc->eeprom_data == NULL) {
641 		/* no memory, treat this as if there's no eeprom */
642 		return (CS_ERROR);
643 	}
644 
645 	sc->eeprom_size = eeprom_size;
646 
647 	/* read the eeprom into the buffer, also calculate the checksum  */
648 	for (i = 0; i < (eeprom_size >> 1); i++) {
649 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
650 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
651 		checksum += (sc->eeprom_data[i] & 0x00ff);
652 	}
653 
654 	/*
655 	 * validate checksum calculation, the sum of all the bytes should be 0,
656 	 * as the high byte of the last word is the 2's complement of the
657 	 * sum to that point.
658 	 */
659 	if (checksum != 0) {
660 		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
661 		return (CS_ERROR);
662 	}
663 
664 	return (CS_OK);
665 }
666 
667 static int
668 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
669 {
670 	int x, maxword;
671 
672 	/* Check that we have eeprom data */
673 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
674 		return (CS_ERROR);
675 
676 	/*
677 	 * We only want to read the data words, the last word contains the
678 	 * checksum
679 	 */
680 	maxword = (sc->eeprom_size - 2) >> 1;
681 
682 	/* start 1 word in, as the first word is the length and signature */
683 	x = 1;
684 
685 	while ( x < (maxword)) {
686 		u_int16_t header;
687 		int group_size;
688 		int offset;
689 		int offset_max;
690 
691 		/* read in the group header word */
692 		header = sc->eeprom_data[x];
693 		x++;	/* skip group header */
694 
695 		/*
696 		 * size of group in words is in the top 4 bits, note that it
697 		 * is one less than the number of words
698 		 */
699 		group_size = header & 0xF000;
700 
701 		/*
702 		 * CS8900 Data sheet says this should be 0x01ff,
703 		 * but my cs8920 eeprom has higher offsets,
704 		 * perhaps the 8920 allows higher offsets, otherwise
705 		 * it's writing to places that it shouldn't
706 		 */
707 		/* work out the offsets this group covers */
708 		offset = header & 0x0FFF;
709 		offset_max = offset + (group_size << 1);
710 
711 		/* check if the pkgpg we're after is in this group */
712 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
713 			/* the pkgpg value we want is in here */
714 			int eeprom_location;
715 
716 			eeprom_location = ((pktpg - offset) >> 1) ;
717 
718 			*pValue = sc->eeprom_data[x + eeprom_location];
719 			return (CS_OK);
720 		} else {
721 			/* skip this group (+ 1 for first entry) */
722 			x += group_size + 1;
723 		}
724 	}
725 
726 	/*
727 	 * if we've fallen out here then we don't have a value in the EEPROM
728 	 * for this pktpg so return an error
729 	 */
730 	return (CS_ERROR);
731 }
732 
733 int
734 cs_get_params(struct cs_softc *sc)
735 {
736 	u_int16_t isaConfig;
737 	u_int16_t adapterConfig;
738 
739 	if (cs_verify_eeprom(sc) == CS_ERROR) {
740 		aprint_error_dev(sc->sc_dev,
741 		    "cs_get_params: EEPROM missing or bad\n");
742 		return (CS_ERROR);
743 	}
744 
745 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
746 		/* Get ISA configuration from the EEPROM */
747 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
748 			       	== CS_ERROR) {
749 			/* eeprom doesn't have this value, use data sheet default */
750 			isaConfig = 0x0017;
751 		}
752 
753 		/* Get adapter configuration from the EEPROM */
754 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
755 				== CS_ERROR) {
756 			/* eeprom doesn't have this value, use data sheet default */
757 			adapterConfig = 0x0015;
758 		}
759 
760 		/* Copy the USE_SA flag */
761 		if (isaConfig & BUS_CTL_USE_SA)
762 			sc->sc_cfgflags |= CFGFLG_USE_SA;
763 
764 		/* Copy the IO Channel Ready flag */
765 		if (isaConfig & BUS_CTL_IOCHRDY)
766 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
767 
768 		/* Copy the DC/DC Polarity flag */
769 		if (adapterConfig & SELF_CTL_HCB1)
770 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
771 	} else {
772 		/* Get ISA configuration from the EEPROM */
773 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
774 			goto eeprom_bad;
775 
776 		/* Get adapter configuration from the EEPROM */
777 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
778 			goto eeprom_bad;
779 
780 		/* Copy the USE_SA flag */
781 		if (isaConfig & ISA_CFG_USE_SA)
782 			sc->sc_cfgflags |= CFGFLG_USE_SA;
783 
784 		/* Copy the IO Channel Ready flag */
785 		if (isaConfig & ISA_CFG_IOCHRDY)
786 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
787 
788 		/* Copy the DC/DC Polarity flag */
789 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
790 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
791 	}
792 
793 	return (CS_OK);
794 eeprom_bad:
795 	aprint_error_dev(sc->sc_dev,
796 	    "cs_get_params: unable to read from EEPROM\n");
797 	return (CS_ERROR);
798 }
799 
800 int
801 cs_get_enaddr(struct cs_softc *sc)
802 {
803 	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
804 	int i;
805 
806 	if (cs_verify_eeprom(sc) == CS_ERROR) {
807 		aprint_error_dev(sc->sc_dev,
808 		    "cs_get_enaddr: EEPROM missing or bad\n");
809 		return (CS_ERROR);
810 	}
811 
812 	/* Get Ethernet address from the EEPROM */
813 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
814 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
815 				== CS_ERROR)
816 			goto eeprom_bad;
817 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
818 				== CS_ERROR)
819 			goto eeprom_bad;
820 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
821 				== CS_ERROR)
822 			goto eeprom_bad;
823 	} else {
824 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
825 			goto eeprom_bad;
826 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
827 			goto eeprom_bad;
828 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
829 			goto eeprom_bad;
830 	}
831 
832 	for (i = 0; i < __arraycount(myea); i++) {
833 		sc->sc_enaddr[i * 2 + 0] = myea[i];
834 		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
835 	}
836 
837 	return (CS_OK);
838 
839  eeprom_bad:
840 	aprint_error_dev(sc->sc_dev,
841 	    "cs_get_enaddr: unable to read from EEPROM\n");
842 	return (CS_ERROR);
843 }
844 
845 int
846 cs_reset_chip(struct cs_softc *sc)
847 {
848 	int intState;
849 	int x;
850 
851 	/* Disable interrupts at the CPU so reset command is atomic */
852 	intState = splnet();
853 
854 	/*
855 	 * We are now resetting the chip
856 	 *
857 	 * A spurious interrupt is generated by the chip when it is reset. This
858 	 * variable informs the interrupt handler to ignore this interrupt.
859 	 */
860 	sc->sc_resetting = TRUE;
861 
862 	/* Issue a reset command to the chip */
863 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
864 
865 	/* Re-enable interrupts at the CPU */
866 	splx(intState);
867 
868 	/* The chip is always in IO mode after a reset */
869 	sc->sc_memorymode = FALSE;
870 
871 	/* If transmission was in progress, it is not now */
872 	sc->sc_txbusy = FALSE;
873 
874 	/*
875 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
876 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
877 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
878 	 * should be sufficient.
879 	 */
880 
881 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
882 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
883 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
884 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
885 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
886 
887 	/* Wait until the EEPROM is not busy */
888 	for (x = 0; x < MAXLOOP; x++) {
889 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
890 			break;
891 	}
892 
893 	if (x == MAXLOOP)
894 		return CS_ERROR;
895 
896 	/* Wait until initialization is done */
897 	for (x = 0; x < MAXLOOP; x++) {
898 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
899 			break;
900 	}
901 
902 	if (x == MAXLOOP)
903 		return CS_ERROR;
904 
905 	/* Reset is no longer in progress */
906 	sc->sc_resetting = FALSE;
907 
908 	return CS_OK;
909 }
910 
911 int
912 cs_verify_eeprom(struct cs_softc *sc)
913 {
914 	u_int16_t self_status;
915 
916 	/* Verify that the EEPROM is present and OK */
917 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
918 	if (((self_status & SELF_ST_EEP_PRES) &&
919 	     (self_status & SELF_ST_EEP_OK)) == 0)
920 		return (CS_ERROR);
921 
922 	return (CS_OK);
923 }
924 
925 int
926 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
927 {
928 	int x;
929 
930 	/* Ensure that the EEPROM is not busy */
931 	for (x = 0; x < MAXLOOP; x++) {
932 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
933 		      SELF_ST_SI_BUSY))
934 			break;
935 	}
936 
937 	if (x == MAXLOOP)
938 		return (CS_ERROR);
939 
940 	/* Issue the command to read the offset within the EEPROM */
941 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
942 	    offset | EEPROM_CMD_READ);
943 
944 	/* Wait until the command is completed */
945 	for (x = 0; x < MAXLOOP; x++) {
946 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
947 		      SELF_ST_SI_BUSY))
948 			break;
949 	}
950 
951 	if (x == MAXLOOP)
952 		return (CS_ERROR);
953 
954 	/* Get the EEPROM data from the EEPROM Data register */
955 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
956 
957 	return (CS_OK);
958 }
959 
960 void
961 cs_initChip(struct cs_softc *sc)
962 {
963 	u_int16_t busCtl;
964 	u_int16_t selfCtl;
965 	u_int16_t v;
966 	u_int16_t isaId;
967 	int i;
968 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
969 
970 	/* Disable reception and transmission of frames */
971 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
972 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
973 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
974 
975 	/* Disable interrupt at the chip */
976 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
977 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
978 
979 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
980 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
981 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
982 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
983 		    busCtl & ~BUS_CTL_IOCHRDY);
984 	} else {
985 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
986 		    busCtl | BUS_CTL_IOCHRDY);
987 	}
988 
989 	/* Set the Line Control register to match the media type */
990 	if (media == IFM_10_T)
991 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
992 	else
993 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
994 
995 	/*
996 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
997 	 * enable the DC/DC converter
998 	 */
999 	selfCtl = SELF_CTL_HC1E;
1000 
1001 	/* If the media type is 10Base2 */
1002 	if (media == IFM_10_2) {
1003 		/*
1004 		 * Enable the DC/DC converter if it has a low enable.
1005 		 */
1006 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1007 			/*
1008 			 * Set the HCB1 bit, which causes the HC1 pin to go
1009 			 * low.
1010 			 */
1011 			selfCtl |= SELF_CTL_HCB1;
1012 	} else { /* Media type is 10BaseT or AUI */
1013 		/*
1014 		 * Disable the DC/DC converter if it has a high enable.
1015 		 */
1016 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1017 			/*
1018 			 * Set the HCB1 bit, which causes the HC1 pin to go
1019 			 * low.
1020 			 */
1021 			selfCtl |= SELF_CTL_HCB1;
1022 		}
1023 	}
1024 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1025 
1026 	/* enable normal link pulse */
1027 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1028 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1029 
1030 	/* Enable full-duplex, if appropriate */
1031 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1032 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1033 
1034 	/* RX_CTL set in cs_set_ladr_filt(), below */
1035 
1036 	/* enable all transmission interrupts */
1037 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1038 
1039 	/* Accept all receive interrupts */
1040 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1041 
1042 	/*
1043 	 * Configure Operational Modes
1044 	 *
1045 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1046 	 * a better way to do it because the card has a counter which can be
1047 	 * read to update the RX_MISS counter. This saves many interrupts.
1048 	 *
1049 	 * I have turned on the tx and rx overflow interrupts to counter using
1050 	 * the receive miss interrupt. This is a better estimate of errors
1051 	 * and requires lower system overhead.
1052 	 */
1053 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1054 			  BUF_CFG_RX_DMA_IE);
1055 
1056 	if (sc->sc_dma_chipinit)
1057 		(*sc->sc_dma_chipinit)(sc);
1058 
1059 	/* If memory mode is enabled */
1060 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1061 		/* If external logic is present for address decoding */
1062 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1063 			/*
1064 			 * Program the external logic to decode address bits
1065 			 * SA20-SA23
1066 			 */
1067 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1068 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1069 			    EEPROM_CMD_ELSEL);
1070 		}
1071 
1072 		/*
1073 		 * Write the packet page base physical address to the memory
1074 		 * base register.
1075 		 */
1076 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1077 		    sc->sc_pktpgaddr & 0xFFFF);
1078 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1079 		    sc->sc_pktpgaddr >> 16);
1080 		busCtl = BUS_CTL_MEM_MODE;
1081 
1082 		/* tell the chip to read the addresses off the SA pins */
1083 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1084 			busCtl |= BUS_CTL_USE_SA;
1085 		}
1086 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1087 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1088 
1089 		/* We are in memory mode now! */
1090 		sc->sc_memorymode = TRUE;
1091 
1092 		/*
1093 		 * wait here (10ms) for the chip to swap over. this is the
1094 		 * maximum time that this could take.
1095 		 */
1096 		delay(10000);
1097 
1098 		/* Verify that we can read from the chip */
1099 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1100 
1101 		/*
1102 		 * As a last minute sanity check before actually using mapped
1103 		 * memory we verify that we can read the isa number from the
1104 		 * chip in memory mode.
1105 		 */
1106 		if (isaId != EISA_NUM_CRYSTAL) {
1107 			aprint_error_dev(sc->sc_dev,
1108 			    "failed to enable memory mode\n");
1109 			sc->sc_memorymode = FALSE;
1110 		} else {
1111 			/*
1112 			 * we are in memory mode so if we aren't using DMA,
1113 			 * then program the chip to interrupt early.
1114 			 */
1115 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1116 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1117 				    BUF_CFG_RX_DEST_IE |
1118 				    BUF_CFG_RX_MISS_OVER_IE |
1119 				    BUF_CFG_TX_COL_OVER_IE);
1120 			}
1121 		}
1122 
1123 	}
1124 
1125 	/* Put Ethernet address into the Individual Address register */
1126 	for (i = 0; i < 6; i += 2) {
1127 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1128 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1129 	}
1130 
1131 	if (sc->sc_irq != -1) {
1132 		/* Set the interrupt level in the chip */
1133 		if (sc->sc_prodid == PROD_ID_CS8900) {
1134 			if (sc->sc_irq == 5) {
1135 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1136 			} else {
1137 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1138 			}
1139 		}
1140 		else { /* CS8920 */
1141 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1142 		}
1143 	}
1144 
1145 	/* write the multicast mask to the address filter register */
1146 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1147 
1148 	/* Enable reception and transmission of frames */
1149 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1150 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1151 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1152 
1153 	/* Enable interrupt at the chip */
1154 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1155 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1156 }
1157 
1158 int
1159 cs_init(struct ifnet *ifp)
1160 {
1161 	int intState;
1162 	int error = CS_OK;
1163 	struct cs_softc *sc = ifp->if_softc;
1164 
1165 	if (cs_enable(sc))
1166 		goto out;
1167 
1168 	cs_stop(ifp, 0);
1169 
1170 	intState = splnet();
1171 
1172 #if 0
1173 	/* Mark the interface as down */
1174 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1175 #endif
1176 
1177 #ifdef CS_DEBUG
1178 	/* Enable debugging */
1179 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1180 #endif
1181 
1182 	/* Reset the chip */
1183 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1184 		/* Initialize the chip */
1185 		cs_initChip(sc);
1186 
1187 		/* Mark the interface as running */
1188 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1189 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1190 		sc->sc_ethercom.ec_if.if_timer = 0;
1191 
1192 		/* Assume we have carrier until we are told otherwise. */
1193 		sc->sc_carrier = 1;
1194 	} else {
1195 		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1196 	}
1197 
1198 	splx(intState);
1199 out:
1200 	if (error == CS_OK)
1201 		return 0;
1202 	return EIO;
1203 }
1204 
1205 void
1206 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1207 {
1208 	struct ifnet *ifp = &ec->ec_if;
1209 	struct ether_multi *enm;
1210 	struct ether_multistep step;
1211 	u_int16_t af[4];
1212 	u_int16_t port, mask, index;
1213 
1214 	/*
1215          * Set up multicast address filter by passing all multicast addresses
1216          * through a crc generator, and then using the high order 6 bits as an
1217          * index into the 64 bit logical address filter.  The high order bit
1218          * selects the word, while the rest of the bits select the bit within
1219          * the word.
1220          */
1221 	if (ifp->if_flags & IFF_PROMISC) {
1222 		/* accept all valid frames. */
1223 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1224 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1225 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1226 		ifp->if_flags |= IFF_ALLMULTI;
1227 		return;
1228 	}
1229 
1230 	/*
1231 	 * accept frames if a. crc valid, b. individual address match c.
1232 	 * broadcast address,and d. multicast addresses matched in the hash
1233 	 * filter
1234 	 */
1235 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1236 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1237 
1238 
1239 	/*
1240 	 * start off with all multicast flag clear, set it if we need to
1241 	 * later, otherwise we will leave it.
1242 	 */
1243 	ifp->if_flags &= ~IFF_ALLMULTI;
1244 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1245 
1246 	/*
1247 	 * Loop through all the multicast addresses unless we get a range of
1248 	 * addresses, in which case we will just accept all packets.
1249 	 * Justification for this is given in the next comment.
1250 	 */
1251 	ETHER_FIRST_MULTI(step, ec, enm);
1252 	while (enm != NULL) {
1253 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1254 		    sizeof enm->enm_addrlo)) {
1255 			/*
1256 	                 * We must listen to a range of multicast addresses.
1257 	                 * For now, just accept all multicasts, rather than
1258 	                 * trying to set only those filter bits needed to match
1259 	                 * the range.  (At this time, the only use of address
1260 	                 * ranges is for IP multicast routing, for which the
1261 	                 * range is big enough to require all bits set.)
1262 	                 */
1263 			ifp->if_flags |= IFF_ALLMULTI;
1264 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1265 			break;
1266 		} else {
1267 			/*
1268 	                 * we have got an individual address so just set that
1269 	                 * bit.
1270 	                 */
1271 			index = cs_hash_index(enm->enm_addrlo);
1272 
1273 			/* Set the bit the Logical address filter. */
1274 			port = (u_int16_t) (index >> 4);
1275 			mask = (u_int16_t) (1 << (index & 0xf));
1276 			af[port] |= mask;
1277 
1278 			ETHER_NEXT_MULTI(step, enm);
1279 		}
1280 	}
1281 
1282 	/* now program the chip with the addresses */
1283 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1284 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1285 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1286 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1287 	return;
1288 }
1289 
1290 u_int16_t
1291 cs_hash_index(char *addr)
1292 {
1293 	uint32_t crc;
1294 	uint16_t hash_code;
1295 
1296 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1297 
1298 	hash_code = crc >> 26;
1299 	return (hash_code);
1300 }
1301 
1302 void
1303 cs_reset(struct cs_softc *sc)
1304 {
1305 
1306 	/* Mark the interface as down */
1307 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1308 
1309 	/* Reset the chip */
1310 	cs_reset_chip(sc);
1311 }
1312 
1313 int
1314 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1315 {
1316 	struct cs_softc *sc = ifp->if_softc;
1317 	struct ifreq *ifr = data;
1318 	int state;
1319 	int result;
1320 
1321 	state = splnet();
1322 
1323 	result = 0;		/* only set if something goes wrong */
1324 
1325 	switch (cmd) {
1326 	case SIOCGIFMEDIA:
1327 	case SIOCSIFMEDIA:
1328 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1329 		break;
1330 
1331 	default:
1332 		result = ether_ioctl(ifp, cmd, data);
1333 		if (result == ENETRESET) {
1334 			if (ifp->if_flags & IFF_RUNNING) {
1335 				/*
1336 				 * Multicast list has changed.  Set the
1337 				 * hardware filter accordingly.
1338 				 */
1339 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1340 			}
1341 			result = 0;
1342 		}
1343 		break;
1344 	}
1345 
1346 	splx(state);
1347 
1348 	return result;
1349 }
1350 
1351 int
1352 cs_mediachange(struct ifnet *ifp)
1353 {
1354 
1355 	/*
1356 	 * Current media is already set up.  Just reset the interface
1357 	 * to let the new value take hold.
1358 	 */
1359 	cs_init(ifp);
1360 	return (0);
1361 }
1362 
1363 void
1364 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1365 {
1366 	struct cs_softc *sc = ifp->if_softc;
1367 
1368 	/*
1369 	 * The currently selected media is always the active media.
1370 	 */
1371 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1372 
1373 	if (ifp->if_flags & IFF_UP) {
1374 		/* Interface up, status is valid. */
1375 		ifmr->ifm_status = IFM_AVALID |
1376 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1377 	}
1378 		else ifmr->ifm_status = 0;
1379 }
1380 
1381 int
1382 cs_intr(void *arg)
1383 {
1384 	struct cs_softc *sc = arg;
1385 	u_int16_t Event;
1386 	u_int16_t rndEvent;
1387 
1388 /*printf("cs_intr %p\n", sc);*/
1389 	/* Ignore any interrupts that happen while the chip is being reset */
1390 	if (sc->sc_resetting) {
1391 		printf("%s: cs_intr: reset in progress\n",
1392 		    device_xname(sc->sc_dev));
1393 		return 1;
1394 	}
1395 
1396 	/* Read an event from the Interrupt Status Queue */
1397 	if (sc->sc_memorymode)
1398 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1399 	else
1400 		Event = CS_READ_PORT(sc, PORT_ISQ);
1401 
1402 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1403 		return 0;	/* not ours */
1404 
1405 	rndEvent = Event;
1406 
1407 	/* Process all the events in the Interrupt Status Queue */
1408 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1409 		/* Dispatch to an event handler based on the register number */
1410 		switch (Event & REG_NUM_MASK) {
1411 		case REG_NUM_RX_EVENT:
1412 			cs_receive_event(sc, Event);
1413 			break;
1414 		case REG_NUM_TX_EVENT:
1415 			cs_transmit_event(sc, Event);
1416 			break;
1417 		case REG_NUM_BUF_EVENT:
1418 			cs_buffer_event(sc, Event);
1419 			break;
1420 		case REG_NUM_TX_COL:
1421 		case REG_NUM_RX_MISS:
1422 			cs_counter_event(sc, Event);
1423 			break;
1424 		default:
1425 			printf("%s: unknown interrupt event 0x%x\n",
1426 			    device_xname(sc->sc_dev), Event);
1427 			break;
1428 		}
1429 
1430 		/* Read another event from the Interrupt Status Queue */
1431 		if (sc->sc_memorymode)
1432 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1433 		else
1434 			Event = CS_READ_PORT(sc, PORT_ISQ);
1435 	}
1436 
1437 	/* have handled the interrupt */
1438 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1439 	return 1;
1440 }
1441 
1442 void
1443 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1444 {
1445 	struct ifnet *ifp;
1446 	u_int16_t errorCount;
1447 
1448 	ifp = &sc->sc_ethercom.ec_if;
1449 
1450 	switch (cntEvent & REG_NUM_MASK) {
1451 	case REG_NUM_TX_COL:
1452 		/*
1453 		 * the count should be read before an overflow occurs.
1454 		 */
1455 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1456 		/*
1457 		 * the tramsit event routine always checks the number of
1458 		 * collisions for any packet so we don't increment any
1459 		 * counters here, as they should already have been
1460 		 * considered.
1461 		 */
1462 		break;
1463 	case REG_NUM_RX_MISS:
1464 		/*
1465 		 * the count should be read before an overflow occurs.
1466 		 */
1467 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1468 		/*
1469 		 * Increment the input error count, the first 6bits are the
1470 		 * register id.
1471 		 */
1472 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1473 		break;
1474 	default:
1475 		/* do nothing */
1476 		break;
1477 	}
1478 }
1479 
1480 void
1481 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1482 {
1483 
1484 	/*
1485 	 * multiple events can be in the buffer event register at one time so
1486 	 * a standard switch statement will not suffice, here every event
1487 	 * must be checked.
1488 	 */
1489 
1490 	/*
1491 	 * if 128 bits have been rxed by the time we get here, the dest event
1492 	 * will be cleared and 128 event will be set.
1493 	 */
1494 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1495 		cs_process_rx_early(sc);
1496 	}
1497 
1498 	if (bufEvent & BUF_EVENT_RX_DMA) {
1499 		/* process the receive data */
1500 		if (sc->sc_dma_process_rx)
1501 			(*sc->sc_dma_process_rx)(sc);
1502 		else
1503 			/* should panic? */
1504 			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1505 	}
1506 
1507 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1508 #if 0
1509 		/*
1510 		 * This can happen occasionally, and it's not worth worrying
1511 		 * about.
1512 		 */
1513 		printf("%s: transmit underrun (%d -> %d)\n",
1514 		    device_xname(sc->sc_dev), sc->sc_xe_ent,
1515 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1516 #endif
1517 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1518 		sc->sc_xe_togo =
1519 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1520 
1521 		/* had an underrun, transmit is finished */
1522 		sc->sc_txbusy = FALSE;
1523 	}
1524 
1525 	if (bufEvent & BUF_EVENT_SW_INT) {
1526 		printf("%s: software initiated interrupt\n",
1527 		    device_xname(sc->sc_dev));
1528 	}
1529 }
1530 
1531 void
1532 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1533 {
1534 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1535 
1536 	/* If there were any errors transmitting this frame */
1537 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1538 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1539 		/* Increment the output error count */
1540 		ifp->if_oerrors++;
1541 
1542 		/* Note carrier loss. */
1543 		if (txEvent & TX_EVENT_LOSS_CRS)
1544 			sc->sc_carrier = 0;
1545 
1546 		/* If debugging is enabled then log error messages */
1547 		if (ifp->if_flags & IFF_DEBUG) {
1548 			if (txEvent & TX_EVENT_LOSS_CRS) {
1549 				aprint_error_dev(sc->sc_dev, "lost carrier\n");
1550 			}
1551 			if (txEvent & TX_EVENT_SQE_ERR) {
1552 				aprint_error_dev(sc->sc_dev, "SQE error\n");
1553 			}
1554 			if (txEvent & TX_EVENT_OUT_WIN) {
1555 				aprint_error_dev(sc->sc_dev,
1556 				    "out-of-window collision\n");
1557 			}
1558 			if (txEvent & TX_EVENT_JABBER) {
1559 				aprint_error_dev(sc->sc_dev, "jabber\n");
1560 			}
1561 			if (txEvent & TX_EVENT_16_COLL) {
1562 				aprint_error_dev(sc->sc_dev, "16 collisions\n");
1563 			}
1564 		}
1565 	}
1566 	else {
1567 		/* Transmission successful, carrier is up. */
1568 		sc->sc_carrier = 1;
1569 #ifdef SHARK
1570 		ledNetActive();
1571 #endif
1572 	}
1573 
1574 	/* Add the number of collisions for this frame */
1575 	if (txEvent & TX_EVENT_16_COLL) {
1576 		ifp->if_collisions += 16;
1577 	} else {
1578 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1579 	}
1580 
1581 	ifp->if_opackets++;
1582 
1583 	/* Transmission is no longer in progress */
1584 	sc->sc_txbusy = FALSE;
1585 
1586 	/* If there is more to transmit, start the next transmission */
1587 	if_schedule_deferred_start(ifp);
1588 }
1589 
1590 void
1591 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1592 {
1593 
1594 	if (rxEvent & RX_EVENT_RUNT)
1595 		aprint_error_dev(sc->sc_dev, "runt\n");
1596 
1597 	if (rxEvent & RX_EVENT_X_DATA)
1598 		aprint_error_dev(sc->sc_dev, "extra data\n");
1599 
1600 	if (rxEvent & RX_EVENT_CRC_ERR) {
1601 		if (rxEvent & RX_EVENT_DRIBBLE)
1602 			aprint_error_dev(sc->sc_dev, "alignment error\n");
1603 		else
1604 			aprint_error_dev(sc->sc_dev, "CRC error\n");
1605 	} else {
1606 		if (rxEvent & RX_EVENT_DRIBBLE)
1607 			aprint_error_dev(sc->sc_dev, "dribble bits\n");
1608 	}
1609 }
1610 
1611 void
1612 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1613 {
1614 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1615 
1616 	/* If the frame was not received OK */
1617 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1618 		/* Increment the input error count */
1619 		ifp->if_ierrors++;
1620 
1621 		/*
1622 		 * If debugging is enabled then log error messages.
1623 		 */
1624 		if (ifp->if_flags & IFF_DEBUG) {
1625 			if (rxEvent != REG_NUM_RX_EVENT) {
1626 				cs_print_rx_errors(sc, rxEvent);
1627 
1628 				/*
1629 				 * Must read the length of all received
1630 				 * frames
1631 				 */
1632 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1633 
1634 				/* Skip the received frame */
1635 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1636 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1637 						  RX_CFG_SKIP);
1638 			} else {
1639 				aprint_error_dev(sc->sc_dev, "implied skip\n");
1640 			}
1641 		}
1642 	} else {
1643 		/*
1644 		 * process the received frame and pass it up to the upper
1645 		 * layers.
1646 		 */
1647 		cs_process_receive(sc);
1648 	}
1649 }
1650 
1651 void
1652 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1653 {
1654 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1655 
1656 	/* Pass the packet up. */
1657 	if_percpuq_enqueue(ifp->if_percpuq, m);
1658 }
1659 
1660 void
1661 cs_process_receive(struct cs_softc *sc)
1662 {
1663 	struct ifnet *ifp;
1664 	struct mbuf *m;
1665 	int totlen;
1666 	u_int16_t *pBuff, *pBuffLimit;
1667 	int pad;
1668 	unsigned int frameOffset = 0;	/* XXX: gcc */
1669 
1670 #ifdef SHARK
1671 	ledNetActive();
1672 #endif
1673 
1674 	ifp = &sc->sc_ethercom.ec_if;
1675 
1676 	/* Received a packet; carrier is up. */
1677 	sc->sc_carrier = 1;
1678 
1679 	if (sc->sc_memorymode) {
1680 		/* Initialize the frame offset */
1681 		frameOffset = PKTPG_RX_LENGTH;
1682 
1683 		/* Get the length of the received frame */
1684 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1685 		frameOffset += 2;
1686 	}
1687 	else {
1688 		/* drop status */
1689 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1690 
1691 		/* Get the length of the received frame */
1692 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1693 	}
1694 
1695 	if (totlen > ETHER_MAX_LEN) {
1696 		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1697 		    totlen);
1698 
1699 		/* skip the received frame */
1700 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1701 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1702 		return;
1703 	}
1704 
1705 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1706 	if (m == 0) {
1707 		aprint_error_dev(sc->sc_dev,
1708 		    "cs_process_receive: unable to allocate mbuf\n");
1709 		ifp->if_ierrors++;
1710 		/*
1711 		 * couldn't allocate an mbuf so things are not good, may as
1712 		 * well drop the packet I think.
1713 		 *
1714 		 * have already read the length so we should be right to skip
1715 		 * the packet.
1716 		 */
1717 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1718 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1719 		return;
1720 	}
1721 	m_set_rcvif(m, ifp);
1722 	m->m_pkthdr.len = totlen;
1723 
1724 	/* number of bytes to align ip header on word boundary for ipintr */
1725 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1726 
1727 	/*
1728 	 * alloc mbuf cluster if we need.
1729 	 * we need 1 byte spare because following
1730 	 * packet read loop can overrun.
1731 	 */
1732 	if (totlen + pad + 1 > MHLEN) {
1733 		MCLGET(m, M_DONTWAIT);
1734 		if ((m->m_flags & M_EXT) == 0) {
1735 			/* couldn't allocate an mbuf cluster */
1736 			aprint_error_dev(sc->sc_dev,
1737 			    "cs_process_receive: "
1738 			    "unable to allocate a cluster\n");
1739 			m_freem(m);
1740 
1741 			/* skip the received frame */
1742 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1743 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1744 			return;
1745 		}
1746 	}
1747 
1748 	/* align ip header on word boundary for ipintr */
1749 	m->m_data += pad;
1750 
1751 	m->m_len = totlen;
1752 	pBuff = mtod(m, u_int16_t *);
1753 
1754 	/* now read the data from the chip */
1755 	if (sc->sc_memorymode) {
1756 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1757 		while (pBuff < pBuffLimit) {
1758 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1759 			frameOffset += 2;
1760 		}
1761 	}
1762 	else {
1763 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1764 	}
1765 
1766 	cs_ether_input(sc, m);
1767 }
1768 
1769 void
1770 cs_process_rx_early(struct cs_softc *sc)
1771 {
1772 	struct ifnet *ifp;
1773 	struct mbuf *m;
1774 	u_int16_t frameCount, oldFrameCount;
1775 	u_int16_t rxEvent;
1776 	u_int16_t *pBuff;
1777 	int pad;
1778 	unsigned int frameOffset;
1779 
1780 
1781 	ifp = &sc->sc_ethercom.ec_if;
1782 
1783 	/* Initialize the frame offset */
1784 	frameOffset = PKTPG_RX_FRAME;
1785 	frameCount = 0;
1786 
1787 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1788 	if (m == 0) {
1789 		aprint_error_dev(sc->sc_dev,
1790 		    "cs_process_rx_early: unable to allocate mbuf\n");
1791 		ifp->if_ierrors++;
1792 		/*
1793 		 * couldn't allocate an mbuf so things are not good, may as
1794 		 * well drop the packet I think.
1795 		 *
1796 		 * have already read the length so we should be right to skip
1797 		 * the packet.
1798 		 */
1799 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1800 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1801 		return;
1802 	}
1803 	m_set_rcvif(m, ifp);
1804 	/*
1805 	 * save processing by always using a mbuf cluster, guaranteed to fit
1806 	 * packet
1807 	 */
1808 	MCLGET(m, M_DONTWAIT);
1809 	if ((m->m_flags & M_EXT) == 0) {
1810 		/* couldn't allocate an mbuf cluster */
1811 		aprint_error_dev(sc->sc_dev,
1812 		    "cs_process_rx_early: unable to allocate a cluster\n");
1813 		m_freem(m);
1814 		/* skip the frame */
1815 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1816 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1817 		return;
1818 	}
1819 
1820 	/* align ip header on word boundary for ipintr */
1821 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1822 	m->m_data += pad;
1823 
1824 	/* set up the buffer pointer to point to the data area */
1825 	pBuff = mtod(m, u_int16_t *);
1826 
1827 	/*
1828 	 * now read the frame byte counter until we have finished reading the
1829 	 * frame
1830 	 */
1831 	oldFrameCount = 0;
1832 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1833 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1834 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1835 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1836 			frameOffset += 2;
1837 		}
1838 
1839 		/* read the new count from the chip */
1840 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1841 	}
1842 
1843 	/* update the mbuf counts */
1844 	m->m_len = oldFrameCount;
1845 	m->m_pkthdr.len = oldFrameCount;
1846 
1847 	/* now check the Rx Event register */
1848 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1849 
1850 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1851 		/*
1852 		 * do an implied skip, it seems to be more reliable than a
1853 		 * forced skip.
1854 		 */
1855 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1856 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1857 
1858 		/*
1859 		 * now read the RX_EVENT register to perform an implied skip.
1860 		 */
1861 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1862 
1863 		cs_ether_input(sc, m);
1864 	} else {
1865 		m_freem(m);
1866 		ifp->if_ierrors++;
1867 	}
1868 }
1869 
1870 void
1871 cs_start_output(struct ifnet *ifp)
1872 {
1873 	struct cs_softc *sc;
1874 	struct mbuf *pMbuf;
1875 	struct mbuf *pMbufChain;
1876 	u_int16_t BusStatus;
1877 	u_int16_t Length;
1878 	int txLoop = 0;
1879 	int dropout = 0;
1880 
1881 	sc = ifp->if_softc;
1882 
1883 	/* check that the interface is up and running */
1884 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1885 		return;
1886 	}
1887 
1888 	/* Don't interrupt a transmission in progress */
1889 	if (sc->sc_txbusy) {
1890 		return;
1891 	}
1892 
1893 	/* this loop will only run through once if transmission is successful */
1894 	/*
1895 	 * While there are packets to transmit and a transmit is not in
1896 	 * progress
1897 	 */
1898 	while (sc->sc_txbusy == 0 && dropout == 0) {
1899 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1900 		if (pMbufChain == NULL)
1901 			break;
1902 
1903 		/*
1904 	         * If BPF is listening on this interface, let it see the packet
1905 	         * before we commit it to the wire.
1906 	         */
1907 		bpf_mtap(ifp, pMbufChain, BPF_D_OUT);
1908 
1909 		/* Find the total length of the data to transmit */
1910 		Length = 0;
1911 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1912 			Length += pMbuf->m_len;
1913 
1914 		do {
1915 			/*
1916 			 * Request that the transmit be started after all
1917 			 * data has been copied
1918 			 *
1919 			 * In IO mode must write to the IO port not the packet
1920 			 * page address
1921 			 *
1922 			 * If this is changed to start transmission after a
1923 			 * small amount of data has been copied you tend to
1924 			 * get packet missed errors i think because the ISA
1925 			 * bus is too slow. Or possibly the copy routine is
1926 			 * not streamlined enough.
1927 			 */
1928 			if (sc->sc_memorymode) {
1929 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1930 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1931 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1932 			}
1933 			else {
1934 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1935 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1936 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1937 			}
1938 
1939 			/*
1940 			 * Adjust early-transmit machinery.
1941 			 */
1942 			if (--sc->sc_xe_togo == 0) {
1943 				sc->sc_xe_ent =
1944 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1945 				sc->sc_xe_togo =
1946 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1947 			}
1948 			/*
1949 			 * Read the BusStatus register which indicates
1950 			 * success of the request
1951 			 */
1952 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1953 
1954 			/*
1955 			 * If there was an error in the transmit bid free the
1956 			 * mbuf and go on. This is presuming that mbuf is
1957 			 * corrupt.
1958 			 */
1959 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1960 				aprint_error_dev(sc->sc_dev,
1961 				    "transmit bid error (too big)");
1962 
1963 				/* Discard the bad mbuf chain */
1964 				m_freem(pMbufChain);
1965 				sc->sc_ethercom.ec_if.if_oerrors++;
1966 
1967 				/* Loop up to transmit the next chain */
1968 				txLoop = 0;
1969 			} else {
1970 				if (BusStatus & BUS_ST_RDY4TXNOW) {
1971 					/*
1972 					 * The chip is ready for transmission
1973 					 * now
1974 					 */
1975 					/*
1976 					 * Copy the frame to the chip to
1977 					 * start transmission
1978 					 */
1979 					cs_copy_tx_frame(sc, pMbufChain);
1980 
1981 					/* Free the mbuf chain */
1982 					m_freem(pMbufChain);
1983 
1984 					/* Transmission is now in progress */
1985 					sc->sc_txbusy = TRUE;
1986 					txLoop = 0;
1987 				} else {
1988 					/*
1989 					 * if we get here we want to try
1990 					 * again with the same mbuf, until
1991 					 * the chip lets us transmit.
1992 					 */
1993 					txLoop++;
1994 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
1995 						/* Free the mbuf chain */
1996 						m_freem(pMbufChain);
1997 						/*
1998 						 * Transmission is not in
1999 						 * progress
2000 						 */
2001 						sc->sc_txbusy = FALSE;
2002 						/*
2003 						 * Increment the output error
2004 						 * count
2005 						 */
2006 						ifp->if_oerrors++;
2007 						/*
2008 						 * exit the routine and drop
2009 						 * the packet.
2010 						 */
2011 						txLoop = 0;
2012 						dropout = 1;
2013 					}
2014 				}
2015 			}
2016 		} while (txLoop);
2017 	}
2018 }
2019 
2020 void
2021 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2022 {
2023 	struct mbuf *m;
2024 	int len, leftover, frameoff;
2025 	u_int16_t dbuf;
2026 	u_int8_t *p;
2027 #ifdef DIAGNOSTIC
2028 	u_int8_t *lim;
2029 #endif
2030 
2031 	/* Initialize frame pointer and data port address */
2032 	frameoff = PKTPG_TX_FRAME;
2033 
2034 	/* start out with no leftover data */
2035 	leftover = 0;
2036 	dbuf = 0;
2037 
2038 	/* Process the chain of mbufs */
2039 	for (m = m0; m != NULL; m = m->m_next) {
2040 		/*
2041 		 * Process all of the data in a single mbuf.
2042 		 */
2043 		p = mtod(m, u_int8_t *);
2044 		len = m->m_len;
2045 #ifdef DIAGNOSTIC
2046 		lim = p + len;
2047 #endif
2048 
2049 		while (len > 0) {
2050 			if (leftover) {
2051 				/*
2052 				 * Data left over (from mbuf or realignment).
2053 				 * Buffer the next byte, and write it and
2054 				 * the leftover data out.
2055 				 */
2056 				dbuf |= *p++ << 8;
2057 				len--;
2058 				if (sc->sc_memorymode) {
2059 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2060 					frameoff += 2;
2061 				}
2062 				else {
2063 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2064 				}
2065 				leftover = 0;
2066 			} else if ((long) p & 1) {
2067 				/*
2068 				 * Misaligned data.  Buffer the next byte.
2069 				 */
2070 				dbuf = *p++;
2071 				len--;
2072 				leftover = 1;
2073 			} else {
2074 				/*
2075 				 * Aligned data.  This is the case we like.
2076 				 *
2077 				 * Write-region out as much as we can, then
2078 				 * buffer the remaining byte (if any).
2079 				 */
2080 				leftover = len & 1;
2081 				len &= ~1;
2082 				if (sc->sc_memorymode) {
2083 					MEM_WRITE_REGION_2(sc, frameoff,
2084 						(u_int16_t *) p, len >> 1);
2085 					frameoff += len;
2086 				}
2087 				else {
2088 					IO_WRITE_MULTI_2(sc,
2089 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2090 				}
2091 				p += len;
2092 
2093 				if (leftover)
2094 					dbuf = *p++;
2095 				len = 0;
2096 			}
2097 		}
2098 		if (len < 0)
2099 			panic("cs_copy_tx_frame: negative len");
2100 #ifdef DIAGNOSTIC
2101 		if (p != lim)
2102 			panic("cs_copy_tx_frame: p != lim");
2103 #endif
2104 	}
2105 	if (leftover) {
2106 		if (sc->sc_memorymode) {
2107 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2108 		}
2109 		else {
2110 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2111 		}
2112 	}
2113 }
2114 
2115 static int
2116 cs_enable(struct cs_softc *sc)
2117 {
2118 
2119 	if (CS_IS_ENABLED(sc) == 0) {
2120 		if (sc->sc_enable != NULL) {
2121 			int error;
2122 
2123 			error = (*sc->sc_enable)(sc);
2124 			if (error)
2125 				return (error);
2126 		}
2127 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2128 	}
2129 
2130 	return (0);
2131 }
2132 
2133 static void
2134 cs_disable(struct cs_softc *sc)
2135 {
2136 
2137 	if (CS_IS_ENABLED(sc)) {
2138 		if (sc->sc_disable != NULL)
2139 			(*sc->sc_disable)(sc);
2140 
2141 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2142 	}
2143 }
2144 
2145 static void
2146 cs_stop(struct ifnet *ifp, int disable)
2147 {
2148 	struct cs_softc *sc = ifp->if_softc;
2149 
2150 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2151 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2152 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2153 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2154 
2155 	if (disable) {
2156 		cs_disable(sc);
2157 	}
2158 
2159 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2160 }
2161 
2162 int
2163 cs_activate(device_t self, enum devact act)
2164 {
2165 	struct cs_softc *sc = device_private(self);
2166 
2167 	switch (act) {
2168 	case DVACT_DEACTIVATE:
2169 		if_deactivate(&sc->sc_ethercom.ec_if);
2170 		return 0;
2171 	default:
2172 		return EOPNOTSUPP;
2173 	}
2174 }
2175