xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision b5677b36047b601b9addaaa494a58ceae82c2a6c)
1 /*	$NetBSD: cs89x0.c,v 1.23 2008/04/08 12:07:25 cegger Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.23 2008/04/08 12:07:25 cegger Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 
229 #include "rnd.h"
230 #if NRND > 0
231 #include <sys/rnd.h>
232 #endif
233 
234 #include <net/if.h>
235 #include <net/if_ether.h>
236 #include <net/if_media.h>
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241 
242 #include "bpfilter.h"
243 #if NBPFILTER > 0
244 #include <net/bpf.h>
245 #include <net/bpfdesc.h>
246 #endif
247 
248 #include <uvm/uvm_extern.h>
249 
250 #include <sys/bus.h>
251 #include <sys/intr.h>
252 
253 #include <dev/ic/cs89x0reg.h>
254 #include <dev/ic/cs89x0var.h>
255 
256 #ifdef SHARK
257 #include <shark/shark/sequoia.h>
258 #endif
259 
260 /*
261  * MACRO DEFINITIONS
262  */
263 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
264 
265 /*
266  * FUNCTION PROTOTYPES
267  */
268 void	cs_get_default_media(struct cs_softc *);
269 int	cs_get_params(struct cs_softc *);
270 int	cs_get_enaddr(struct cs_softc *);
271 int	cs_reset_chip(struct cs_softc *);
272 void	cs_reset(void *);
273 int	cs_ioctl(struct ifnet *, u_long, void *);
274 void	cs_initChip(struct cs_softc *);
275 void	cs_buffer_event(struct cs_softc *, u_int16_t);
276 void	cs_transmit_event(struct cs_softc *, u_int16_t);
277 void	cs_receive_event(struct cs_softc *, u_int16_t);
278 void	cs_process_receive(struct cs_softc *);
279 void	cs_process_rx_early(struct cs_softc *);
280 void	cs_start_output(struct ifnet *);
281 void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
282 void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
283 u_int16_t cs_hash_index(char *);
284 void	cs_counter_event(struct cs_softc *, u_int16_t);
285 
286 int	cs_mediachange(struct ifnet *);
287 void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
288 
289 static int cs_enable(struct cs_softc *);
290 static void cs_disable(struct cs_softc *);
291 static void cs_stop(struct ifnet *, int);
292 static void cs_power(int, void *);
293 static int cs_scan_eeprom(struct cs_softc *);
294 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
295 
296 
297 /*
298  * GLOBAL DECLARATIONS
299  */
300 
301 /*
302  * Xmit-early table.
303  *
304  * To get better performance, we tell the chip to start packet
305  * transmission before the whole packet is copied to the chip.
306  * However, this can fail under load.  When it fails, we back off
307  * to a safer setting for a little while.
308  *
309  * txcmd is the value of txcmd used to indicate when to start transmission.
310  * better is the next 'better' state in the table.
311  * better_count is the number of output packets before transition to the
312  *   better state.
313  * worse is the next 'worse' state in the table.
314  *
315  * Transition to the next worse state happens automatically when a
316  * transmittion underrun occurs.
317  */
318 struct cs_xmit_early {
319 	u_int16_t       txcmd;
320 	int             better;
321 	int             better_count;
322 	int             worse;
323 } cs_xmit_early_table[3] = {
324 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
325 	{ TX_CMD_START_1021,	0,	50000,		2, },
326 	{ TX_CMD_START_ALL,	1,	5000,		2, },
327 };
328 
329 int cs_default_media[] = {
330 	IFM_ETHER|IFM_10_2,
331 	IFM_ETHER|IFM_10_5,
332 	IFM_ETHER|IFM_10_T,
333 	IFM_ETHER|IFM_10_T|IFM_FDX,
334 };
335 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
336 
337 int
338 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
339 	  int nmedia, int defmedia)
340 {
341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
342 	const char *chipname, *medname;
343 	u_int16_t reg;
344 	int i;
345 
346 	/* Start out in IO mode */
347 	sc->sc_memorymode = FALSE;
348 
349 	/* make sure we're right */
350 	for (i = 0; i < 10000; i++) {
351 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
352 		if (reg == EISA_NUM_CRYSTAL) {
353 			break;
354 		}
355 	}
356 	if (i == 10000) {
357 		aprint_error_dev(&sc->sc_dev, "wrong id(0x%x)\n", reg);
358 		return 1; /* XXX should panic? */
359 	}
360 
361 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
362 	sc->sc_prodid = reg & PROD_ID_MASK;
363 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
364 
365 	switch (sc->sc_prodid) {
366 	case PROD_ID_CS8900:
367 		chipname = "CS8900";
368 		break;
369 	case PROD_ID_CS8920:
370 		chipname = "CS8920";
371 		break;
372 	case PROD_ID_CS8920M:
373 		chipname = "CS8920M";
374 		break;
375 	default:
376 		panic("cs_attach: impossible");
377 	}
378 
379 	/*
380 	 * the first thing to do is check that the mbuf cluster size is
381 	 * greater than the MTU for an ethernet frame. The code depends on
382 	 * this and to port this to a OS where this was not the case would
383 	 * not be straightforward.
384 	 *
385 	 * we need 1 byte spare because our
386 	 * packet read loop can overrun.
387 	 * and we may need pad bytes to align ip header.
388 	 */
389 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
390 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
391 		printf("%s: MCLBYTES too small for Ethernet frame\n",
392 		    device_xname(&sc->sc_dev));
393 		return 1;
394 	}
395 
396 	/* Start out not transmitting */
397 	sc->sc_txbusy = FALSE;
398 
399 	/* Set up early transmit threshhold */
400 	sc->sc_xe_ent = 0;
401 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
402 
403 	/* Initialize ifnet structure. */
404 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
405 	ifp->if_softc = sc;
406 	ifp->if_start = cs_start_output;
407 	ifp->if_init = cs_init;
408 	ifp->if_ioctl = cs_ioctl;
409 	ifp->if_stop = cs_stop;
410 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
411 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
412 	    IFF_BROADCAST | IFF_MULTICAST;
413 	IFQ_SET_READY(&ifp->if_snd);
414 
415 	/* Initialize ifmedia structures. */
416 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
417 
418 	if (media != NULL) {
419 		for (i = 0; i < nmedia; i++)
420 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
421 		ifmedia_set(&sc->sc_media, defmedia);
422 	} else {
423 		for (i = 0; i < cs_default_nmedia; i++)
424 			ifmedia_add(&sc->sc_media, cs_default_media[i],
425 			    0, NULL);
426 		cs_get_default_media(sc);
427 	}
428 
429 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
430 		if (cs_scan_eeprom(sc) == CS_ERROR) {
431 			/* failed to scan the eeprom, pretend there isn't an eeprom */
432 			aprint_error_dev(&sc->sc_dev, "unable to scan EEPROM\n");
433 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
434 		}
435 	}
436 
437 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
438 		/* Get parameters from the EEPROM */
439 		if (cs_get_params(sc) == CS_ERROR) {
440 			aprint_error_dev(&sc->sc_dev, "unable to get settings from EEPROM\n");
441 			return 1;
442 		}
443 	}
444 
445 	if (enaddr != NULL)
446 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
447 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
448 		/* Get and store the Ethernet address */
449 		if (cs_get_enaddr(sc) == CS_ERROR) {
450 			aprint_error_dev(&sc->sc_dev, "unable to read Ethernet address\n");
451 			return 1;
452 		}
453 	} else {
454 #if 1
455 		int j;
456 		uint v;
457 
458 		for (j = 0; j < 6; j += 2) {
459 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
460 			sc->sc_enaddr[j + 0] = v;
461 			sc->sc_enaddr[j + 1] = v >> 8;
462 		}
463 #else
464 		printf("%s: no Ethernet address!\n", device_xname(&sc->sc_dev));
465 		return 1;
466 #endif
467 	}
468 
469 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
470 	case IFM_10_2:
471 		medname = "BNC";
472 		break;
473 	case IFM_10_5:
474 		medname = "AUI";
475 		break;
476 	case IFM_10_T:
477 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
478 			medname = "UTP <full-duplex>";
479 		else
480 			medname = "UTP";
481 		break;
482 	default:
483 		panic("cs_attach: impossible");
484 	}
485 	printf("%s: %s rev. %c, address %s, media %s\n", device_xname(&sc->sc_dev),
486 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
487 	    medname);
488 
489 	if (sc->sc_dma_attach)
490 		(*sc->sc_dma_attach)(sc);
491 
492 	sc->sc_sh = shutdownhook_establish(cs_reset, sc);
493 	if (sc->sc_sh == NULL) {
494 		aprint_error_dev(&sc->sc_dev, "unable to establish shutdownhook\n");
495 		cs_detach(sc);
496 		return 1;
497 	}
498 
499 	/* Attach the interface. */
500 	if_attach(ifp);
501 	ether_ifattach(ifp, sc->sc_enaddr);
502 
503 #if NRND > 0
504 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
505 			  RND_TYPE_NET, 0);
506 #endif
507 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
508 
509 	/* Reset the chip */
510 	if (cs_reset_chip(sc) == CS_ERROR) {
511 		aprint_error_dev(&sc->sc_dev, "reset failed\n");
512 		cs_detach(sc);
513 		return 1;
514 	}
515 
516 	sc->sc_powerhook = powerhook_establish(device_xname(&sc->sc_dev),
517 	    cs_power, sc);
518 	if (sc->sc_powerhook == 0)
519 		aprint_error_dev(&sc->sc_dev, "warning: powerhook_establish failed\n");
520 
521 	return 0;
522 }
523 
524 int
525 cs_detach(struct cs_softc *sc)
526 {
527 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
528 
529 	if (sc->sc_powerhook) {
530 		powerhook_disestablish(sc->sc_powerhook);
531 		sc->sc_powerhook = 0;
532 	}
533 
534 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
535 #if NRND > 0
536 		rnd_detach_source(&sc->rnd_source);
537 #endif
538 		ether_ifdetach(ifp);
539 		if_detach(ifp);
540 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
541 	}
542 
543 	if (sc->sc_sh != NULL)
544 		shutdownhook_disestablish(sc->sc_sh);
545 
546 #if 0
547 	/*
548 	 * XXX not necessary
549 	 */
550 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
551 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
552 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
553 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
554 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
555 	}
556 #endif
557 
558 	return 0;
559 }
560 
561 void
562 cs_get_default_media(struct cs_softc *sc)
563 {
564 	u_int16_t adp_cfg, xmit_ctl;
565 
566 	if (cs_verify_eeprom(sc) == CS_ERROR) {
567 		aprint_error_dev(&sc->sc_dev, "cs_get_default_media: EEPROM missing or bad\n");
568 		goto fakeit;
569 	}
570 
571 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
572 		aprint_error_dev(&sc->sc_dev, "unable to read adapter config from EEPROM\n");
573 		goto fakeit;
574 	}
575 
576 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
577 		aprint_error_dev(&sc->sc_dev, "unable to read transmit control from EEPROM\n");
578 		goto fakeit;
579 	}
580 
581 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
582 	case ADPTR_CFG_AUI:
583 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
584 		break;
585 	case ADPTR_CFG_10BASE2:
586 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
587 		break;
588 	case ADPTR_CFG_10BASET:
589 	default:
590 		if (xmit_ctl & XMIT_CTL_FDX)
591 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
592 		else
593 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
594 		break;
595 	}
596 	return;
597 
598  fakeit:
599 	aprint_error_dev(&sc->sc_dev, "WARNING: default media setting may be inaccurate\n");
600 	/* XXX Arbitrary... */
601 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
602 }
603 
604 /*
605  * cs_scan_eeprom
606  *
607  * Attempt to take a complete copy of the eeprom into main memory.
608  * this will allow faster parsing of the eeprom data.
609  *
610  * Only tested against a 8920M's eeprom, but the data sheet for the
611  * 8920A indicates that is uses the same layout.
612  */
613 int
614 cs_scan_eeprom(struct cs_softc *sc)
615 {
616 	u_int16_t result;
617 	int	i;
618 	int	eeprom_size;
619 	u_int8_t checksum = 0;
620 
621 	if (cs_verify_eeprom(sc) == CS_ERROR) {
622 		aprint_error_dev(&sc->sc_dev, "cs_scan_params: EEPROM missing or bad\n");
623 		return (CS_ERROR);
624 	}
625 
626 	/*
627 	 * read the 0th word from the eeprom, it will tell us the length
628 	 * and if the eeprom is valid
629 	 */
630 	cs_read_eeprom(sc, 0, &result);
631 
632 	/* check the eeprom signature */
633 	if ((result & 0xE000) != 0xA000) {
634 		/* empty eeprom */
635 		return (CS_ERROR);
636 	}
637 
638 	/*
639 	 * take the eeprom size (note the read value doesn't include the header
640 	 * word)
641 	 */
642 	eeprom_size = (result & 0xff) + 2;
643 
644 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
645 	if (sc->eeprom_data == NULL) {
646 		/* no memory, treat this as if there's no eeprom */
647 		return (CS_ERROR);
648 	}
649 
650 	sc->eeprom_size = eeprom_size;
651 
652 	/* read the eeprom into the buffer, also calculate the checksum  */
653 	for (i = 0; i < (eeprom_size >> 1); i++) {
654 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
655 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
656 		checksum += (sc->eeprom_data[i] & 0x00ff);
657 	}
658 
659 	/*
660 	 * validate checksum calculation, the sum of all the bytes should be 0,
661 	 * as the high byte of the last word is the 2's complement of the
662 	 * sum to that point.
663 	 */
664 	if (checksum != 0) {
665 		aprint_error_dev(&sc->sc_dev, "eeprom checksum failure\n");
666 		return (CS_ERROR);
667 	}
668 
669 	return (CS_OK);
670 }
671 
672 static int
673 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
674 {
675 	int x, maxword;
676 
677 	/* Check that we have eeprom data */
678 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
679 		return (CS_ERROR);
680 
681 	/*
682 	 * We only want to read the data words, the last word contains the
683 	 * checksum
684 	 */
685 	maxword = (sc->eeprom_size - 2) >> 1;
686 
687 	/* start 1 word in, as the first word is the length and signature */
688 	x = 1;
689 
690 	while ( x < (maxword)) {
691 		u_int16_t header;
692 		int group_size;
693 		int offset;
694 		int offset_max;
695 
696 		/* read in the group header word */
697 		header = sc->eeprom_data[x];
698 		x++;	/* skip group header */
699 
700 		/*
701 		 * size of group in words is in the top 4 bits, note that it
702 		 * is one less than the number of words
703 		 */
704 		group_size = header & 0xF000;
705 
706 		/*
707 		 * CS8900 Data sheet says this should be 0x01ff,
708 		 * but my cs8920 eeprom has higher offsets,
709 		 * perhaps the 8920 allows higher offsets, otherwise
710 		 * it's writing to places that it shouldn't
711 		 */
712 		/* work out the offsets this group covers */
713 		offset = header & 0x0FFF;
714 		offset_max = offset + (group_size << 1);
715 
716 		/* check if the pkgpg we're after is in this group */
717 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
718 			/* the pkgpg value we want is in here */
719 			int eeprom_location;
720 
721 			eeprom_location = ((pktpg - offset) >> 1) ;
722 
723 			*pValue = sc->eeprom_data[x + eeprom_location];
724 			return (CS_OK);
725 		} else {
726 			/* skip this group (+ 1 for first entry) */
727 			x += group_size + 1;
728 		}
729 	}
730 
731 	/*
732 	 * if we've fallen out here then we don't have a value in the EEPROM
733 	 * for this pktpg so return an error
734 	 */
735 	return (CS_ERROR);
736 }
737 
738 int
739 cs_get_params(struct cs_softc *sc)
740 {
741 	u_int16_t isaConfig;
742 	u_int16_t adapterConfig;
743 
744 	if (cs_verify_eeprom(sc) == CS_ERROR) {
745 		aprint_error_dev(&sc->sc_dev, "cs_get_params: EEPROM missing or bad\n");
746 		return (CS_ERROR);
747 	}
748 
749 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
750 		/* Get ISA configuration from the EEPROM */
751 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
752 			       	== CS_ERROR) {
753 			/* eeprom doesn't have this value, use data sheet default */
754 			isaConfig = 0x0017;
755 		}
756 
757 		/* Get adapter configuration from the EEPROM */
758 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
759 				== CS_ERROR) {
760 			/* eeprom doesn't have this value, use data sheet default */
761 			adapterConfig = 0x0015;
762 		}
763 
764 		/* Copy the USE_SA flag */
765 		if (isaConfig & BUS_CTL_USE_SA)
766 			sc->sc_cfgflags |= CFGFLG_USE_SA;
767 
768 		/* Copy the IO Channel Ready flag */
769 		if (isaConfig & BUS_CTL_IOCHRDY)
770 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
771 
772 		/* Copy the DC/DC Polarity flag */
773 		if (adapterConfig & SELF_CTL_HCB1)
774 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
775 	} else {
776 		/* Get ISA configuration from the EEPROM */
777 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
778 			goto eeprom_bad;
779 
780 		/* Get adapter configuration from the EEPROM */
781 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
782 			goto eeprom_bad;
783 
784 		/* Copy the USE_SA flag */
785 		if (isaConfig & ISA_CFG_USE_SA)
786 			sc->sc_cfgflags |= CFGFLG_USE_SA;
787 
788 		/* Copy the IO Channel Ready flag */
789 		if (isaConfig & ISA_CFG_IOCHRDY)
790 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
791 
792 		/* Copy the DC/DC Polarity flag */
793 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
794 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
795 	}
796 
797 	return (CS_OK);
798 eeprom_bad:
799 	aprint_error_dev(&sc->sc_dev, "cs_get_params: unable to read from EEPROM\n");
800 	return (CS_ERROR);
801 }
802 
803 int
804 cs_get_enaddr(struct cs_softc *sc)
805 {
806 	u_int16_t *myea;
807 
808 	if (cs_verify_eeprom(sc) == CS_ERROR) {
809 		aprint_error_dev(&sc->sc_dev, "cs_get_enaddr: EEPROM missing or bad\n");
810 		return (CS_ERROR);
811 	}
812 
813 	myea = (u_int16_t *)sc->sc_enaddr;
814 
815 	/* Get Ethernet address from the EEPROM */
816 	/* XXX this will likely lose on a big-endian machine. -- cgd */
817 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
818 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
819 				== CS_ERROR)
820 			goto eeprom_bad;
821 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
822 				== CS_ERROR)
823 			goto eeprom_bad;
824 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
825 				== CS_ERROR)
826 			goto eeprom_bad;
827 	} else {
828 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
829 			goto eeprom_bad;
830 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
831 			goto eeprom_bad;
832 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
833 			goto eeprom_bad;
834 	}
835 
836 	return (CS_OK);
837 
838  eeprom_bad:
839 	aprint_error_dev(&sc->sc_dev, "cs_get_enaddr: unable to read from EEPROM\n");
840 	return (CS_ERROR);
841 }
842 
843 int
844 cs_reset_chip(struct cs_softc *sc)
845 {
846 	int intState;
847 	int x;
848 
849 	/* Disable interrupts at the CPU so reset command is atomic */
850 	intState = splnet();
851 
852 	/*
853 	 * We are now resetting the chip
854 	 *
855 	 * A spurious interrupt is generated by the chip when it is reset. This
856 	 * variable informs the interrupt handler to ignore this interrupt.
857 	 */
858 	sc->sc_resetting = TRUE;
859 
860 	/* Issue a reset command to the chip */
861 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
862 
863 	/* Re-enable interrupts at the CPU */
864 	splx(intState);
865 
866 	/* The chip is always in IO mode after a reset */
867 	sc->sc_memorymode = FALSE;
868 
869 	/* If transmission was in progress, it is not now */
870 	sc->sc_txbusy = FALSE;
871 
872 	/*
873 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
874 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
875 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
876 	 * should be sufficient.
877 	 */
878 
879 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
880 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
881 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
882 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
883 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
884 
885 	/* Wait until the EEPROM is not busy */
886 	for (x = 0; x < MAXLOOP; x++) {
887 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
888 			break;
889 	}
890 
891 	if (x == MAXLOOP)
892 		return CS_ERROR;
893 
894 	/* Wait until initialization is done */
895 	for (x = 0; x < MAXLOOP; x++) {
896 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
897 			break;
898 	}
899 
900 	if (x == MAXLOOP)
901 		return CS_ERROR;
902 
903 	/* Reset is no longer in progress */
904 	sc->sc_resetting = FALSE;
905 
906 	return CS_OK;
907 }
908 
909 int
910 cs_verify_eeprom(struct cs_softc *sc)
911 {
912 	u_int16_t self_status;
913 
914 	/* Verify that the EEPROM is present and OK */
915 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
916 	if (((self_status & SELF_ST_EEP_PRES) &&
917 	     (self_status & SELF_ST_EEP_OK)) == 0)
918 		return (CS_ERROR);
919 
920 	return (CS_OK);
921 }
922 
923 int
924 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
925 {
926 	int x;
927 
928 	/* Ensure that the EEPROM is not busy */
929 	for (x = 0; x < MAXLOOP; x++) {
930 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
931 		      SELF_ST_SI_BUSY))
932 			break;
933 	}
934 
935 	if (x == MAXLOOP)
936 		return (CS_ERROR);
937 
938 	/* Issue the command to read the offset within the EEPROM */
939 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
940 	    offset | EEPROM_CMD_READ);
941 
942 	/* Wait until the command is completed */
943 	for (x = 0; x < MAXLOOP; x++) {
944 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
945 		      SELF_ST_SI_BUSY))
946 			break;
947 	}
948 
949 	if (x == MAXLOOP)
950 		return (CS_ERROR);
951 
952 	/* Get the EEPROM data from the EEPROM Data register */
953 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
954 
955 	return (CS_OK);
956 }
957 
958 void
959 cs_initChip(struct cs_softc *sc)
960 {
961 	u_int16_t busCtl;
962 	u_int16_t selfCtl;
963 	u_int16_t v;
964 	u_int16_t isaId;
965 	int i;
966 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
967 
968 	/* Disable reception and transmission of frames */
969 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
970 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
971 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
972 
973 	/* Disable interrupt at the chip */
974 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
975 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
976 
977 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
978 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
979 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
980 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
981 		    busCtl & ~BUS_CTL_IOCHRDY);
982 	} else {
983 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
984 		    busCtl | BUS_CTL_IOCHRDY);
985 	}
986 
987 	/* Set the Line Control register to match the media type */
988 	if (media == IFM_10_T)
989 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
990 	else
991 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
992 
993 	/*
994 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
995 	 * enable the DC/DC converter
996 	 */
997 	selfCtl = SELF_CTL_HC1E;
998 
999 	/* If the media type is 10Base2 */
1000 	if (media == IFM_10_2) {
1001 		/*
1002 		 * Enable the DC/DC converter if it has a low enable.
1003 		 */
1004 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1005 			/*
1006 			 * Set the HCB1 bit, which causes the HC1 pin to go
1007 			 * low.
1008 			 */
1009 			selfCtl |= SELF_CTL_HCB1;
1010 	} else { /* Media type is 10BaseT or AUI */
1011 		/*
1012 		 * Disable the DC/DC converter if it has a high enable.
1013 		 */
1014 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1015 			/*
1016 			 * Set the HCB1 bit, which causes the HC1 pin to go
1017 			 * low.
1018 			 */
1019 			selfCtl |= SELF_CTL_HCB1;
1020 		}
1021 	}
1022 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1023 
1024 	/* enable normal link pulse */
1025 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1026 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1027 
1028 	/* Enable full-duplex, if appropriate */
1029 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1030 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1031 
1032 	/* RX_CTL set in cs_set_ladr_filt(), below */
1033 
1034 	/* enable all transmission interrupts */
1035 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1036 
1037 	/* Accept all receive interrupts */
1038 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1039 
1040 	/*
1041 	 * Configure Operational Modes
1042 	 *
1043 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1044 	 * a better way to do it because the card has a counter which can be
1045 	 * read to update the RX_MISS counter. This saves many interrupts.
1046 	 *
1047 	 * I have turned on the tx and rx overflow interrupts to counter using
1048 	 * the receive miss interrupt. This is a better estimate of errors
1049 	 * and requires lower system overhead.
1050 	 */
1051 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1052 			  BUF_CFG_RX_DMA_IE);
1053 
1054 	if (sc->sc_dma_chipinit)
1055 		(*sc->sc_dma_chipinit)(sc);
1056 
1057 	/* If memory mode is enabled */
1058 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1059 		/* If external logic is present for address decoding */
1060 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1061 			/*
1062 			 * Program the external logic to decode address bits
1063 			 * SA20-SA23
1064 			 */
1065 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1066 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1067 			    EEPROM_CMD_ELSEL);
1068 		}
1069 
1070 		/*
1071 		 * Write the packet page base physical address to the memory
1072 		 * base register.
1073 		 */
1074 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1075 		    sc->sc_pktpgaddr & 0xFFFF);
1076 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1077 		    sc->sc_pktpgaddr >> 16);
1078 		busCtl = BUS_CTL_MEM_MODE;
1079 
1080 		/* tell the chip to read the addresses off the SA pins */
1081 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1082 			busCtl |= BUS_CTL_USE_SA;
1083 		}
1084 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1085 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1086 
1087 		/* We are in memory mode now! */
1088 		sc->sc_memorymode = TRUE;
1089 
1090 		/*
1091 		 * wait here (10ms) for the chip to swap over. this is the
1092 		 * maximum time that this could take.
1093 		 */
1094 		delay(10000);
1095 
1096 		/* Verify that we can read from the chip */
1097 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1098 
1099 		/*
1100 		 * As a last minute sanity check before actually using mapped
1101 		 * memory we verify that we can read the isa number from the
1102 		 * chip in memory mode.
1103 		 */
1104 		if (isaId != EISA_NUM_CRYSTAL) {
1105 			aprint_error_dev(&sc->sc_dev, "failed to enable memory mode\n");
1106 			sc->sc_memorymode = FALSE;
1107 		} else {
1108 			/*
1109 			 * we are in memory mode so if we aren't using DMA,
1110 			 * then program the chip to interrupt early.
1111 			 */
1112 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1113 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1114 				    BUF_CFG_RX_DEST_IE |
1115 				    BUF_CFG_RX_MISS_OVER_IE |
1116 				    BUF_CFG_TX_COL_OVER_IE);
1117 			}
1118 		}
1119 
1120 	}
1121 
1122 	/* Put Ethernet address into the Individual Address register */
1123 	for (i = 0; i < 6; i += 2) {
1124 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1125 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1126 	}
1127 
1128 	if (sc->sc_irq != -1) {
1129 		/* Set the interrupt level in the chip */
1130 		if (sc->sc_prodid == PROD_ID_CS8900) {
1131 			if (sc->sc_irq == 5) {
1132 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1133 			} else {
1134 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1135 			}
1136 		}
1137 		else { /* CS8920 */
1138 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1139 		}
1140 	}
1141 
1142 	/* write the multicast mask to the address filter register */
1143 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1144 
1145 	/* Enable reception and transmission of frames */
1146 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1147 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1148 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1149 
1150 	/* Enable interrupt at the chip */
1151 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1152 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1153 }
1154 
1155 int
1156 cs_init(struct ifnet *ifp)
1157 {
1158 	int intState;
1159 	int error = CS_OK;
1160 	struct cs_softc *sc = ifp->if_softc;
1161 
1162 	if (cs_enable(sc))
1163 		goto out;
1164 
1165 	cs_stop(ifp, 0);
1166 
1167 	intState = splnet();
1168 
1169 #if 0
1170 	/* Mark the interface as down */
1171 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1172 #endif
1173 
1174 #ifdef CS_DEBUG
1175 	/* Enable debugging */
1176 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1177 #endif
1178 
1179 	/* Reset the chip */
1180 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1181 		/* Initialize the chip */
1182 		cs_initChip(sc);
1183 
1184 		/* Mark the interface as running */
1185 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1186 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1187 		sc->sc_ethercom.ec_if.if_timer = 0;
1188 
1189 		/* Assume we have carrier until we are told otherwise. */
1190 		sc->sc_carrier = 1;
1191 	} else {
1192 		aprint_error_dev(&sc->sc_dev, "unable to reset chip\n");
1193 	}
1194 
1195 	splx(intState);
1196 out:
1197 	if (error == CS_OK)
1198 		return 0;
1199 	return EIO;
1200 }
1201 
1202 void
1203 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1204 {
1205 	struct ifnet *ifp = &ec->ec_if;
1206 	struct ether_multi *enm;
1207 	struct ether_multistep step;
1208 	u_int16_t af[4];
1209 	u_int16_t port, mask, index;
1210 
1211 	/*
1212          * Set up multicast address filter by passing all multicast addresses
1213          * through a crc generator, and then using the high order 6 bits as an
1214          * index into the 64 bit logical address filter.  The high order bit
1215          * selects the word, while the rest of the bits select the bit within
1216          * the word.
1217          */
1218 	if (ifp->if_flags & IFF_PROMISC) {
1219 		/* accept all valid frames. */
1220 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1221 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1222 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1223 		ifp->if_flags |= IFF_ALLMULTI;
1224 		return;
1225 	}
1226 
1227 	/*
1228 	 * accept frames if a. crc valid, b. individual address match c.
1229 	 * broadcast address,and d. multicast addresses matched in the hash
1230 	 * filter
1231 	 */
1232 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1233 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1234 
1235 
1236 	/*
1237 	 * start off with all multicast flag clear, set it if we need to
1238 	 * later, otherwise we will leave it.
1239 	 */
1240 	ifp->if_flags &= ~IFF_ALLMULTI;
1241 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1242 
1243 	/*
1244 	 * Loop through all the multicast addresses unless we get a range of
1245 	 * addresses, in which case we will just accept all packets.
1246 	 * Justification for this is given in the next comment.
1247 	 */
1248 	ETHER_FIRST_MULTI(step, ec, enm);
1249 	while (enm != NULL) {
1250 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1251 		    sizeof enm->enm_addrlo)) {
1252 			/*
1253 	                 * We must listen to a range of multicast addresses.
1254 	                 * For now, just accept all multicasts, rather than
1255 	                 * trying to set only those filter bits needed to match
1256 	                 * the range.  (At this time, the only use of address
1257 	                 * ranges is for IP multicast routing, for which the
1258 	                 * range is big enough to require all bits set.)
1259 	                 */
1260 			ifp->if_flags |= IFF_ALLMULTI;
1261 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1262 			break;
1263 		} else {
1264 			/*
1265 	                 * we have got an individual address so just set that
1266 	                 * bit.
1267 	                 */
1268 			index = cs_hash_index(enm->enm_addrlo);
1269 
1270 			/* Set the bit the Logical address filter. */
1271 			port = (u_int16_t) (index >> 4);
1272 			mask = (u_int16_t) (1 << (index & 0xf));
1273 			af[port] |= mask;
1274 
1275 			ETHER_NEXT_MULTI(step, enm);
1276 		}
1277 	}
1278 
1279 	/* now program the chip with the addresses */
1280 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1281 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1282 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1283 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1284 	return;
1285 }
1286 
1287 u_int16_t
1288 cs_hash_index(char *addr)
1289 {
1290 	uint32_t crc;
1291 	uint16_t hash_code;
1292 
1293 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1294 
1295 	hash_code = crc >> 26;
1296 	return (hash_code);
1297 }
1298 
1299 void
1300 cs_reset(void *arg)
1301 {
1302 	struct cs_softc *sc = arg;
1303 
1304 	/* Mark the interface as down */
1305 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1306 
1307 	/* Reset the chip */
1308 	cs_reset_chip(sc);
1309 }
1310 
1311 int
1312 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1313 {
1314 	struct cs_softc *sc = ifp->if_softc;
1315 	struct ifreq *ifr = (struct ifreq *) data;
1316 	int state;
1317 	int result;
1318 
1319 	state = splnet();
1320 
1321 	result = 0;		/* only set if something goes wrong */
1322 
1323 	switch (cmd) {
1324 	case SIOCGIFMEDIA:
1325 	case SIOCSIFMEDIA:
1326 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1327 		break;
1328 
1329 	default:
1330 		result = ether_ioctl(ifp, cmd, data);
1331 		if (result == ENETRESET) {
1332 			if (ifp->if_flags & IFF_RUNNING) {
1333 				/*
1334 				 * Multicast list has changed.  Set the
1335 				 * hardware filter accordingly.
1336 				 */
1337 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1338 			}
1339 			result = 0;
1340 		}
1341 		break;
1342 	}
1343 
1344 	splx(state);
1345 
1346 	return result;
1347 }
1348 
1349 int
1350 cs_mediachange(struct ifnet *ifp)
1351 {
1352 
1353 	/*
1354 	 * Current media is already set up.  Just reset the interface
1355 	 * to let the new value take hold.
1356 	 */
1357 	cs_init(ifp);
1358 	return (0);
1359 }
1360 
1361 void
1362 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1363 {
1364 	struct cs_softc *sc = ifp->if_softc;
1365 
1366 	/*
1367 	 * The currently selected media is always the active media.
1368 	 */
1369 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1370 
1371 	if (ifp->if_flags & IFF_UP) {
1372 		/* Interface up, status is valid. */
1373 		ifmr->ifm_status = IFM_AVALID |
1374 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1375 	}
1376 		else ifmr->ifm_status = 0;
1377 }
1378 
1379 int
1380 cs_intr(void *arg)
1381 {
1382 	struct cs_softc *sc = arg;
1383 	u_int16_t Event;
1384 #if NRND > 0
1385 	u_int16_t rndEvent;
1386 #endif
1387 
1388 /*printf("cs_intr %p\n", sc);*/
1389 	/* Ignore any interrupts that happen while the chip is being reset */
1390 	if (sc->sc_resetting) {
1391 		printf("%s: cs_intr: reset in progress\n",
1392 		    device_xname(&sc->sc_dev));
1393 		return 1;
1394 	}
1395 
1396 	/* Read an event from the Interrupt Status Queue */
1397 	if (sc->sc_memorymode)
1398 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1399 	else
1400 		Event = CS_READ_PORT(sc, PORT_ISQ);
1401 
1402 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1403 		return 0;	/* not ours */
1404 
1405 #if NRND > 0
1406 	rndEvent = Event;
1407 #endif
1408 
1409 	/* Process all the events in the Interrupt Status Queue */
1410 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1411 		/* Dispatch to an event handler based on the register number */
1412 		switch (Event & REG_NUM_MASK) {
1413 		case REG_NUM_RX_EVENT:
1414 			cs_receive_event(sc, Event);
1415 			break;
1416 		case REG_NUM_TX_EVENT:
1417 			cs_transmit_event(sc, Event);
1418 			break;
1419 		case REG_NUM_BUF_EVENT:
1420 			cs_buffer_event(sc, Event);
1421 			break;
1422 		case REG_NUM_TX_COL:
1423 		case REG_NUM_RX_MISS:
1424 			cs_counter_event(sc, Event);
1425 			break;
1426 		default:
1427 			printf("%s: unknown interrupt event 0x%x\n",
1428 			    device_xname(&sc->sc_dev), Event);
1429 			break;
1430 		}
1431 
1432 		/* Read another event from the Interrupt Status Queue */
1433 		if (sc->sc_memorymode)
1434 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1435 		else
1436 			Event = CS_READ_PORT(sc, PORT_ISQ);
1437 	}
1438 
1439 	/* have handled the interrupt */
1440 #if NRND > 0
1441 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1442 #endif
1443 	return 1;
1444 }
1445 
1446 void
1447 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1448 {
1449 	struct ifnet *ifp;
1450 	u_int16_t errorCount;
1451 
1452 	ifp = &sc->sc_ethercom.ec_if;
1453 
1454 	switch (cntEvent & REG_NUM_MASK) {
1455 	case REG_NUM_TX_COL:
1456 		/*
1457 		 * the count should be read before an overflow occurs.
1458 		 */
1459 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1460 		/*
1461 		 * the tramsit event routine always checks the number of
1462 		 * collisions for any packet so we don't increment any
1463 		 * counters here, as they should already have been
1464 		 * considered.
1465 		 */
1466 		break;
1467 	case REG_NUM_RX_MISS:
1468 		/*
1469 		 * the count should be read before an overflow occurs.
1470 		 */
1471 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1472 		/*
1473 		 * Increment the input error count, the first 6bits are the
1474 		 * register id.
1475 		 */
1476 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1477 		break;
1478 	default:
1479 		/* do nothing */
1480 		break;
1481 	}
1482 }
1483 
1484 void
1485 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1486 {
1487 
1488 	/*
1489 	 * multiple events can be in the buffer event register at one time so
1490 	 * a standard switch statement will not suffice, here every event
1491 	 * must be checked.
1492 	 */
1493 
1494 	/*
1495 	 * if 128 bits have been rxed by the time we get here, the dest event
1496 	 * will be cleared and 128 event will be set.
1497 	 */
1498 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1499 		cs_process_rx_early(sc);
1500 	}
1501 
1502 	if (bufEvent & BUF_EVENT_RX_DMA) {
1503 		/* process the receive data */
1504 		if (sc->sc_dma_process_rx)
1505 			(*sc->sc_dma_process_rx)(sc);
1506 		else
1507 			/* should panic? */
1508 			aprint_error_dev(&sc->sc_dev, "unexpected DMA event\n");
1509 	}
1510 
1511 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1512 #if 0
1513 		/*
1514 		 * This can happen occasionally, and it's not worth worrying
1515 		 * about.
1516 		 */
1517 		printf("%s: transmit underrun (%d -> %d)\n",
1518 		    device_xname(&sc->sc_dev), sc->sc_xe_ent,
1519 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1520 #endif
1521 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1522 		sc->sc_xe_togo =
1523 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1524 
1525 		/* had an underrun, transmit is finished */
1526 		sc->sc_txbusy = FALSE;
1527 	}
1528 
1529 	if (bufEvent & BUF_EVENT_SW_INT) {
1530 		printf("%s: software initiated interrupt\n",
1531 		    device_xname(&sc->sc_dev));
1532 	}
1533 }
1534 
1535 void
1536 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1537 {
1538 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1539 
1540 	/* If there were any errors transmitting this frame */
1541 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1542 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1543 		/* Increment the output error count */
1544 		ifp->if_oerrors++;
1545 
1546 		/* Note carrier loss. */
1547 		if (txEvent & TX_EVENT_LOSS_CRS)
1548 			sc->sc_carrier = 0;
1549 
1550 		/* If debugging is enabled then log error messages */
1551 		if (ifp->if_flags & IFF_DEBUG) {
1552 			if (txEvent & TX_EVENT_LOSS_CRS) {
1553 				aprint_error_dev(&sc->sc_dev, "lost carrier\n");
1554 			}
1555 			if (txEvent & TX_EVENT_SQE_ERR) {
1556 				aprint_error_dev(&sc->sc_dev, "SQE error\n");
1557 			}
1558 			if (txEvent & TX_EVENT_OUT_WIN) {
1559 				aprint_error_dev(&sc->sc_dev, "out-of-window collision\n");
1560 			}
1561 			if (txEvent & TX_EVENT_JABBER) {
1562 				aprint_error_dev(&sc->sc_dev, "jabber\n");
1563 			}
1564 			if (txEvent & TX_EVENT_16_COLL) {
1565 				aprint_error_dev(&sc->sc_dev, "16 collisions\n");
1566 			}
1567 		}
1568 	}
1569 	else {
1570 		/* Transmission successful, carrier is up. */
1571 		sc->sc_carrier = 1;
1572 #ifdef SHARK
1573 		ledNetActive();
1574 #endif
1575 	}
1576 
1577 	/* Add the number of collisions for this frame */
1578 	if (txEvent & TX_EVENT_16_COLL) {
1579 		ifp->if_collisions += 16;
1580 	} else {
1581 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1582 	}
1583 
1584 	ifp->if_opackets++;
1585 
1586 	/* Transmission is no longer in progress */
1587 	sc->sc_txbusy = FALSE;
1588 
1589 	/* If there is more to transmit */
1590 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1591 		/* Start the next transmission */
1592 		cs_start_output(ifp);
1593 	}
1594 }
1595 
1596 void
1597 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1598 {
1599 
1600 	if (rxEvent & RX_EVENT_RUNT)
1601 		aprint_error_dev(&sc->sc_dev, "runt\n");
1602 
1603 	if (rxEvent & RX_EVENT_X_DATA)
1604 		aprint_error_dev(&sc->sc_dev, "extra data\n");
1605 
1606 	if (rxEvent & RX_EVENT_CRC_ERR) {
1607 		if (rxEvent & RX_EVENT_DRIBBLE)
1608 			aprint_error_dev(&sc->sc_dev, "alignment error\n");
1609 		else
1610 			aprint_error_dev(&sc->sc_dev, "CRC error\n");
1611 	} else {
1612 		if (rxEvent & RX_EVENT_DRIBBLE)
1613 			aprint_error_dev(&sc->sc_dev, "dribble bits\n");
1614 	}
1615 }
1616 
1617 void
1618 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1619 {
1620 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1621 
1622 	/* If the frame was not received OK */
1623 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1624 		/* Increment the input error count */
1625 		ifp->if_ierrors++;
1626 
1627 		/*
1628 		 * If debugging is enabled then log error messages.
1629 		 */
1630 		if (ifp->if_flags & IFF_DEBUG) {
1631 			if (rxEvent != REG_NUM_RX_EVENT) {
1632 				cs_print_rx_errors(sc, rxEvent);
1633 
1634 				/*
1635 				 * Must read the length of all received
1636 				 * frames
1637 				 */
1638 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1639 
1640 				/* Skip the received frame */
1641 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1642 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1643 						  RX_CFG_SKIP);
1644 			} else {
1645 				aprint_error_dev(&sc->sc_dev, "implied skip\n");
1646 			}
1647 		}
1648 	} else {
1649 		/*
1650 		 * process the received frame and pass it up to the upper
1651 		 * layers.
1652 		 */
1653 		cs_process_receive(sc);
1654 	}
1655 }
1656 
1657 void
1658 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1659 {
1660 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1661 
1662 	ifp->if_ipackets++;
1663 
1664 #if NBPFILTER > 0
1665 	/*
1666 	 * Check if there's a BPF listener on this interface.
1667 	 * If so, hand off the raw packet to BPF.
1668 	 */
1669 	if (ifp->if_bpf)
1670 		bpf_mtap(ifp->if_bpf, m);
1671 #endif
1672 
1673 	/* Pass the packet up. */
1674 	(*ifp->if_input)(ifp, m);
1675 }
1676 
1677 void
1678 cs_process_receive(struct cs_softc *sc)
1679 {
1680 	struct ifnet *ifp;
1681 	struct mbuf *m;
1682 	int totlen;
1683 	u_int16_t *pBuff, *pBuffLimit;
1684 	int pad;
1685 	unsigned int frameOffset = 0;	/* XXX: gcc */
1686 
1687 #ifdef SHARK
1688 	ledNetActive();
1689 #endif
1690 
1691 	ifp = &sc->sc_ethercom.ec_if;
1692 
1693 	/* Received a packet; carrier is up. */
1694 	sc->sc_carrier = 1;
1695 
1696 	if (sc->sc_memorymode) {
1697 		/* Initialize the frame offset */
1698 		frameOffset = PKTPG_RX_LENGTH;
1699 
1700 		/* Get the length of the received frame */
1701 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1702 		frameOffset += 2;
1703 	}
1704 	else {
1705 		/* drop status */
1706 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1707 
1708 		/* Get the length of the received frame */
1709 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1710 	}
1711 
1712 	if (totlen > ETHER_MAX_LEN) {
1713 		aprint_error_dev(&sc->sc_dev, "invalid packet length %d\n",
1714 		    totlen);
1715 
1716 		/* skip the received frame */
1717 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1718 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1719 		return;
1720 	}
1721 
1722 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1723 	if (m == 0) {
1724 		aprint_error_dev(&sc->sc_dev, "cs_process_receive: unable to allocate mbuf\n");
1725 		ifp->if_ierrors++;
1726 		/*
1727 		 * couldn't allocate an mbuf so things are not good, may as
1728 		 * well drop the packet I think.
1729 		 *
1730 		 * have already read the length so we should be right to skip
1731 		 * the packet.
1732 		 */
1733 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1734 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1735 		return;
1736 	}
1737 	m->m_pkthdr.rcvif = ifp;
1738 	m->m_pkthdr.len = totlen;
1739 
1740 	/* number of bytes to align ip header on word boundary for ipintr */
1741 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1742 
1743 	/*
1744 	 * alloc mbuf cluster if we need.
1745 	 * we need 1 byte spare because following
1746 	 * packet read loop can overrun.
1747 	 */
1748 	if (totlen + pad + 1 > MHLEN) {
1749 		MCLGET(m, M_DONTWAIT);
1750 		if ((m->m_flags & M_EXT) == 0) {
1751 			/* couldn't allocate an mbuf cluster */
1752 			aprint_error_dev(&sc->sc_dev, "cs_process_receive: unable to allocate a cluster\n");
1753 			m_freem(m);
1754 
1755 			/* skip the received frame */
1756 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1757 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1758 			return;
1759 		}
1760 	}
1761 
1762 	/* align ip header on word boundary for ipintr */
1763 	m->m_data += pad;
1764 
1765 	m->m_len = totlen;
1766 	pBuff = mtod(m, u_int16_t *);
1767 
1768 	/* now read the data from the chip */
1769 	if (sc->sc_memorymode) {
1770 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1771 		while (pBuff < pBuffLimit) {
1772 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1773 			frameOffset += 2;
1774 		}
1775 	}
1776 	else {
1777 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1778 	}
1779 
1780 	cs_ether_input(sc, m);
1781 }
1782 
1783 void
1784 cs_process_rx_early(struct cs_softc *sc)
1785 {
1786 	struct ifnet *ifp;
1787 	struct mbuf *m;
1788 	u_int16_t frameCount, oldFrameCount;
1789 	u_int16_t rxEvent;
1790 	u_int16_t *pBuff;
1791 	int pad;
1792 	unsigned int frameOffset;
1793 
1794 
1795 	ifp = &sc->sc_ethercom.ec_if;
1796 
1797 	/* Initialize the frame offset */
1798 	frameOffset = PKTPG_RX_FRAME;
1799 	frameCount = 0;
1800 
1801 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1802 	if (m == 0) {
1803 		aprint_error_dev(&sc->sc_dev, "cs_process_rx_early: unable to allocate mbuf\n");
1804 		ifp->if_ierrors++;
1805 		/*
1806 		 * couldn't allocate an mbuf so things are not good, may as
1807 		 * well drop the packet I think.
1808 		 *
1809 		 * have already read the length so we should be right to skip
1810 		 * the packet.
1811 		 */
1812 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1813 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1814 		return;
1815 	}
1816 	m->m_pkthdr.rcvif = ifp;
1817 	/*
1818 	 * save processing by always using a mbuf cluster, guaranteed to fit
1819 	 * packet
1820 	 */
1821 	MCLGET(m, M_DONTWAIT);
1822 	if ((m->m_flags & M_EXT) == 0) {
1823 		/* couldn't allocate an mbuf cluster */
1824 		aprint_error_dev(&sc->sc_dev, "cs_process_rx_early: unable to allocate a cluster\n");
1825 		m_freem(m);
1826 		/* skip the frame */
1827 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1828 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1829 		return;
1830 	}
1831 
1832 	/* align ip header on word boundary for ipintr */
1833 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1834 	m->m_data += pad;
1835 
1836 	/* set up the buffer pointer to point to the data area */
1837 	pBuff = mtod(m, u_int16_t *);
1838 
1839 	/*
1840 	 * now read the frame byte counter until we have finished reading the
1841 	 * frame
1842 	 */
1843 	oldFrameCount = 0;
1844 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1845 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1846 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1847 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1848 			frameOffset += 2;
1849 		}
1850 
1851 		/* read the new count from the chip */
1852 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1853 	}
1854 
1855 	/* update the mbuf counts */
1856 	m->m_len = oldFrameCount;
1857 	m->m_pkthdr.len = oldFrameCount;
1858 
1859 	/* now check the Rx Event register */
1860 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1861 
1862 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1863 		/*
1864 		 * do an implied skip, it seems to be more reliable than a
1865 		 * forced skip.
1866 		 */
1867 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1868 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1869 
1870 		/*
1871 		 * now read the RX_EVENT register to perform an implied skip.
1872 		 */
1873 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1874 
1875 		cs_ether_input(sc, m);
1876 	} else {
1877 		m_freem(m);
1878 		ifp->if_ierrors++;
1879 	}
1880 }
1881 
1882 void
1883 cs_start_output(struct ifnet *ifp)
1884 {
1885 	struct cs_softc *sc;
1886 	struct mbuf *pMbuf;
1887 	struct mbuf *pMbufChain;
1888 	u_int16_t BusStatus;
1889 	u_int16_t Length;
1890 	int txLoop = 0;
1891 	int dropout = 0;
1892 
1893 	sc = ifp->if_softc;
1894 
1895 	/* check that the interface is up and running */
1896 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1897 		return;
1898 	}
1899 
1900 	/* Don't interrupt a transmission in progress */
1901 	if (sc->sc_txbusy) {
1902 		return;
1903 	}
1904 
1905 	/* this loop will only run through once if transmission is successful */
1906 	/*
1907 	 * While there are packets to transmit and a transmit is not in
1908 	 * progress
1909 	 */
1910 	while (sc->sc_txbusy == 0 && dropout == 0) {
1911 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1912 		if (pMbufChain == NULL)
1913 			break;
1914 
1915 #if NBPFILTER > 0
1916 		/*
1917 	         * If BPF is listening on this interface, let it see the packet
1918 	         * before we commit it to the wire.
1919 	         */
1920 		if (ifp->if_bpf)
1921 			bpf_mtap(ifp->if_bpf, pMbufChain);
1922 #endif
1923 
1924 		/* Find the total length of the data to transmit */
1925 		Length = 0;
1926 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1927 			Length += pMbuf->m_len;
1928 
1929 		do {
1930 			/*
1931 			 * Request that the transmit be started after all
1932 			 * data has been copied
1933 			 *
1934 			 * In IO mode must write to the IO port not the packet
1935 			 * page address
1936 			 *
1937 			 * If this is changed to start transmission after a
1938 			 * small amount of data has been copied you tend to
1939 			 * get packet missed errors i think because the ISA
1940 			 * bus is too slow. Or possibly the copy routine is
1941 			 * not streamlined enough.
1942 			 */
1943 			if (sc->sc_memorymode) {
1944 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1945 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1946 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1947 			}
1948 			else {
1949 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1950 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1951 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1952 			}
1953 
1954 			/*
1955 			 * Adjust early-transmit machinery.
1956 			 */
1957 			if (--sc->sc_xe_togo == 0) {
1958 				sc->sc_xe_ent =
1959 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1960 				sc->sc_xe_togo =
1961 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1962 			}
1963 			/*
1964 			 * Read the BusStatus register which indicates
1965 			 * success of the request
1966 			 */
1967 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1968 
1969 			/*
1970 			 * If there was an error in the transmit bid free the
1971 			 * mbuf and go on. This is presuming that mbuf is
1972 			 * corrupt.
1973 			 */
1974 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1975 				aprint_error_dev(&sc->sc_dev, "transmit bid error (too big)");
1976 
1977 				/* Discard the bad mbuf chain */
1978 				m_freem(pMbufChain);
1979 				sc->sc_ethercom.ec_if.if_oerrors++;
1980 
1981 				/* Loop up to transmit the next chain */
1982 				txLoop = 0;
1983 			} else {
1984 				if (BusStatus & BUS_ST_RDY4TXNOW) {
1985 					/*
1986 					 * The chip is ready for transmission
1987 					 * now
1988 					 */
1989 					/*
1990 					 * Copy the frame to the chip to
1991 					 * start transmission
1992 					 */
1993 					cs_copy_tx_frame(sc, pMbufChain);
1994 
1995 					/* Free the mbuf chain */
1996 					m_freem(pMbufChain);
1997 
1998 					/* Transmission is now in progress */
1999 					sc->sc_txbusy = TRUE;
2000 					txLoop = 0;
2001 				} else {
2002 					/*
2003 					 * if we get here we want to try
2004 					 * again with the same mbuf, until
2005 					 * the chip lets us transmit.
2006 					 */
2007 					txLoop++;
2008 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
2009 						/* Free the mbuf chain */
2010 						m_freem(pMbufChain);
2011 						/*
2012 						 * Transmission is not in
2013 						 * progress
2014 						 */
2015 						sc->sc_txbusy = FALSE;
2016 						/*
2017 						 * Increment the output error
2018 						 * count
2019 						 */
2020 						ifp->if_oerrors++;
2021 						/*
2022 						 * exit the routine and drop
2023 						 * the packet.
2024 						 */
2025 						txLoop = 0;
2026 						dropout = 1;
2027 					}
2028 				}
2029 			}
2030 		} while (txLoop);
2031 	}
2032 }
2033 
2034 void
2035 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2036 {
2037 	struct mbuf *m;
2038 	int len, leftover, frameoff;
2039 	u_int16_t dbuf;
2040 	u_int8_t *p;
2041 #ifdef DIAGNOSTIC
2042 	u_int8_t *lim;
2043 #endif
2044 
2045 	/* Initialize frame pointer and data port address */
2046 	frameoff = PKTPG_TX_FRAME;
2047 
2048 	/* start out with no leftover data */
2049 	leftover = 0;
2050 	dbuf = 0;
2051 
2052 	/* Process the chain of mbufs */
2053 	for (m = m0; m != NULL; m = m->m_next) {
2054 		/*
2055 		 * Process all of the data in a single mbuf.
2056 		 */
2057 		p = mtod(m, u_int8_t *);
2058 		len = m->m_len;
2059 #ifdef DIAGNOSTIC
2060 		lim = p + len;
2061 #endif
2062 
2063 		while (len > 0) {
2064 			if (leftover) {
2065 				/*
2066 				 * Data left over (from mbuf or realignment).
2067 				 * Buffer the next byte, and write it and
2068 				 * the leftover data out.
2069 				 */
2070 				dbuf |= *p++ << 8;
2071 				len--;
2072 				if (sc->sc_memorymode) {
2073 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2074 					frameoff += 2;
2075 				}
2076 				else {
2077 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2078 				}
2079 				leftover = 0;
2080 			} else if ((long) p & 1) {
2081 				/*
2082 				 * Misaligned data.  Buffer the next byte.
2083 				 */
2084 				dbuf = *p++;
2085 				len--;
2086 				leftover = 1;
2087 			} else {
2088 				/*
2089 				 * Aligned data.  This is the case we like.
2090 				 *
2091 				 * Write-region out as much as we can, then
2092 				 * buffer the remaining byte (if any).
2093 				 */
2094 				leftover = len & 1;
2095 				len &= ~1;
2096 				if (sc->sc_memorymode) {
2097 					MEM_WRITE_REGION_2(sc, frameoff,
2098 						(u_int16_t *) p, len >> 1);
2099 					frameoff += len;
2100 				}
2101 				else {
2102 					IO_WRITE_MULTI_2(sc,
2103 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2104 				}
2105 				p += len;
2106 
2107 				if (leftover)
2108 					dbuf = *p++;
2109 				len = 0;
2110 			}
2111 		}
2112 		if (len < 0)
2113 			panic("cs_copy_tx_frame: negative len");
2114 #ifdef DIAGNOSTIC
2115 		if (p != lim)
2116 			panic("cs_copy_tx_frame: p != lim");
2117 #endif
2118 	}
2119 	if (leftover) {
2120 		if (sc->sc_memorymode) {
2121 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2122 		}
2123 		else {
2124 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2125 		}
2126 	}
2127 }
2128 
2129 static int
2130 cs_enable(struct cs_softc *sc)
2131 {
2132 
2133 	if (CS_IS_ENABLED(sc) == 0) {
2134 		if (sc->sc_enable != NULL) {
2135 			int error;
2136 
2137 			error = (*sc->sc_enable)(sc);
2138 			if (error)
2139 				return (error);
2140 		}
2141 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2142 	}
2143 
2144 	return (0);
2145 }
2146 
2147 static void
2148 cs_disable(struct cs_softc *sc)
2149 {
2150 
2151 	if (CS_IS_ENABLED(sc)) {
2152 		if (sc->sc_disable != NULL)
2153 			(*sc->sc_disable)(sc);
2154 
2155 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2156 	}
2157 }
2158 
2159 static void
2160 cs_stop(struct ifnet *ifp, int disable)
2161 {
2162 	struct cs_softc *sc = ifp->if_softc;
2163 
2164 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2165 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2166 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2167 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2168 
2169 	if (disable) {
2170 		cs_disable(sc);
2171 	}
2172 
2173 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2174 }
2175 
2176 int
2177 cs_activate(struct device *self, enum devact act)
2178 {
2179 	struct cs_softc *sc = (void *)self;
2180 	int s, error = 0;
2181 
2182 	s = splnet();
2183 	switch (act) {
2184 	case DVACT_ACTIVATE:
2185 		error = EOPNOTSUPP;
2186 		break;
2187 
2188 	case DVACT_DEACTIVATE:
2189 		if_deactivate(&sc->sc_ethercom.ec_if);
2190 		break;
2191 	}
2192 	splx(s);
2193 
2194 	return error;
2195 }
2196 
2197 static void
2198 cs_power(int why, void *arg)
2199 {
2200 	struct cs_softc *sc = arg;
2201 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2202 	int s;
2203 
2204 	s = splnet();
2205 	switch (why) {
2206 	case PWR_STANDBY:
2207 	case PWR_SUSPEND:
2208 		cs_stop(ifp, 0);
2209 		break;
2210 	case PWR_RESUME:
2211 		if (ifp->if_flags & IFF_UP) {
2212 			cs_init(ifp);
2213 		}
2214 		break;
2215 	case PWR_SOFTSUSPEND:
2216 	case PWR_SOFTSTANDBY:
2217 	case PWR_SOFTRESUME:
2218 		break;
2219 	}
2220 	splx(s);
2221 }
2222