xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: cs89x0.c,v 1.31 2010/04/05 07:19:33 joerg Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.31 2010/04/05 07:19:33 joerg Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 
229 #include "rnd.h"
230 #if NRND > 0
231 #include <sys/rnd.h>
232 #endif
233 
234 #include <net/if.h>
235 #include <net/if_ether.h>
236 #include <net/if_media.h>
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241 
242 #include <net/bpf.h>
243 #include <net/bpfdesc.h>
244 
245 #include <uvm/uvm_extern.h>
246 
247 #include <sys/bus.h>
248 #include <sys/intr.h>
249 
250 #include <dev/ic/cs89x0reg.h>
251 #include <dev/ic/cs89x0var.h>
252 
253 #ifdef SHARK
254 #include <shark/shark/sequoia.h>
255 #endif
256 
257 /*
258  * MACRO DEFINITIONS
259  */
260 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
261 
262 /*
263  * FUNCTION PROTOTYPES
264  */
265 static void	cs_get_default_media(struct cs_softc *);
266 static int	cs_get_params(struct cs_softc *);
267 static int	cs_get_enaddr(struct cs_softc *);
268 static int	cs_reset_chip(struct cs_softc *);
269 static void	cs_reset(struct cs_softc *);
270 static int	cs_ioctl(struct ifnet *, u_long, void *);
271 static void	cs_initChip(struct cs_softc *);
272 static void	cs_buffer_event(struct cs_softc *, u_int16_t);
273 static void	cs_transmit_event(struct cs_softc *, u_int16_t);
274 static void	cs_receive_event(struct cs_softc *, u_int16_t);
275 static void	cs_process_receive(struct cs_softc *);
276 static void	cs_process_rx_early(struct cs_softc *);
277 static void	cs_start_output(struct ifnet *);
278 static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
279 static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
280 static u_int16_t cs_hash_index(char *);
281 static void	cs_counter_event(struct cs_softc *, u_int16_t);
282 
283 static int	cs_mediachange(struct ifnet *);
284 static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
285 
286 static bool cs_shutdown(device_t, int);
287 static int cs_enable(struct cs_softc *);
288 static void cs_disable(struct cs_softc *);
289 static void cs_stop(struct ifnet *, int);
290 static int cs_scan_eeprom(struct cs_softc *);
291 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
292 
293 
294 /*
295  * GLOBAL DECLARATIONS
296  */
297 
298 /*
299  * Xmit-early table.
300  *
301  * To get better performance, we tell the chip to start packet
302  * transmission before the whole packet is copied to the chip.
303  * However, this can fail under load.  When it fails, we back off
304  * to a safer setting for a little while.
305  *
306  * txcmd is the value of txcmd used to indicate when to start transmission.
307  * better is the next 'better' state in the table.
308  * better_count is the number of output packets before transition to the
309  *   better state.
310  * worse is the next 'worse' state in the table.
311  *
312  * Transition to the next worse state happens automatically when a
313  * transmittion underrun occurs.
314  */
315 struct cs_xmit_early {
316 	u_int16_t       txcmd;
317 	int             better;
318 	int             better_count;
319 	int             worse;
320 } cs_xmit_early_table[3] = {
321 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
322 	{ TX_CMD_START_1021,	0,	50000,		2, },
323 	{ TX_CMD_START_ALL,	1,	5000,		2, },
324 };
325 
326 int cs_default_media[] = {
327 	IFM_ETHER|IFM_10_2,
328 	IFM_ETHER|IFM_10_5,
329 	IFM_ETHER|IFM_10_T,
330 	IFM_ETHER|IFM_10_T|IFM_FDX,
331 };
332 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
333 
334 int
335 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
336 	  int nmedia, int defmedia)
337 {
338 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
339 	const char *chipname, *medname;
340 	u_int16_t reg;
341 	int i;
342 
343 	/* Start out in IO mode */
344 	sc->sc_memorymode = FALSE;
345 
346 	/* make sure we're right */
347 	for (i = 0; i < 10000; i++) {
348 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
349 		if (reg == EISA_NUM_CRYSTAL) {
350 			break;
351 		}
352 	}
353 	if (i == 10000) {
354 		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
355 		return 1; /* XXX should panic? */
356 	}
357 
358 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
359 	sc->sc_prodid = reg & PROD_ID_MASK;
360 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
361 
362 	switch (sc->sc_prodid) {
363 	case PROD_ID_CS8900:
364 		chipname = "CS8900";
365 		break;
366 	case PROD_ID_CS8920:
367 		chipname = "CS8920";
368 		break;
369 	case PROD_ID_CS8920M:
370 		chipname = "CS8920M";
371 		break;
372 	default:
373 		panic("cs_attach: impossible");
374 	}
375 
376 	/*
377 	 * the first thing to do is check that the mbuf cluster size is
378 	 * greater than the MTU for an ethernet frame. The code depends on
379 	 * this and to port this to a OS where this was not the case would
380 	 * not be straightforward.
381 	 *
382 	 * we need 1 byte spare because our
383 	 * packet read loop can overrun.
384 	 * and we may need pad bytes to align ip header.
385 	 */
386 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
387 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
388 		printf("%s: MCLBYTES too small for Ethernet frame\n",
389 		    device_xname(sc->sc_dev));
390 		return 1;
391 	}
392 
393 	/* Start out not transmitting */
394 	sc->sc_txbusy = FALSE;
395 
396 	/* Set up early transmit threshhold */
397 	sc->sc_xe_ent = 0;
398 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
399 
400 	/* Initialize ifnet structure. */
401 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
402 	ifp->if_softc = sc;
403 	ifp->if_start = cs_start_output;
404 	ifp->if_init = cs_init;
405 	ifp->if_ioctl = cs_ioctl;
406 	ifp->if_stop = cs_stop;
407 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
408 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
409 	    IFF_BROADCAST | IFF_MULTICAST;
410 	IFQ_SET_READY(&ifp->if_snd);
411 
412 	/* Initialize ifmedia structures. */
413 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
414 
415 	if (media != NULL) {
416 		for (i = 0; i < nmedia; i++)
417 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
418 		ifmedia_set(&sc->sc_media, defmedia);
419 	} else {
420 		for (i = 0; i < cs_default_nmedia; i++)
421 			ifmedia_add(&sc->sc_media, cs_default_media[i],
422 			    0, NULL);
423 		cs_get_default_media(sc);
424 	}
425 
426 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
427 		if (cs_scan_eeprom(sc) == CS_ERROR) {
428 			/* failed to scan the eeprom, pretend there isn't an eeprom */
429 			aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
430 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
431 		}
432 	}
433 
434 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
435 		/* Get parameters from the EEPROM */
436 		if (cs_get_params(sc) == CS_ERROR) {
437 			aprint_error_dev(sc->sc_dev,
438 			    "unable to get settings from EEPROM\n");
439 			return 1;
440 		}
441 	}
442 
443 	if (enaddr != NULL)
444 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
445 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
446 		/* Get and store the Ethernet address */
447 		if (cs_get_enaddr(sc) == CS_ERROR) {
448 			aprint_error_dev(sc->sc_dev,
449 			    "unable to read Ethernet address\n");
450 			return 1;
451 		}
452 	} else {
453 #if 1
454 		int j;
455 		uint v;
456 
457 		for (j = 0; j < 6; j += 2) {
458 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
459 			sc->sc_enaddr[j + 0] = v;
460 			sc->sc_enaddr[j + 1] = v >> 8;
461 		}
462 #else
463 		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
464 		return 1;
465 #endif
466 	}
467 
468 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
469 	case IFM_10_2:
470 		medname = "BNC";
471 		break;
472 	case IFM_10_5:
473 		medname = "AUI";
474 		break;
475 	case IFM_10_T:
476 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
477 			medname = "UTP <full-duplex>";
478 		else
479 			medname = "UTP";
480 		break;
481 	default:
482 		panic("cs_attach: impossible");
483 	}
484 	printf("%s: %s rev. %c, address %s, media %s\n",
485 	    device_xname(sc->sc_dev),
486 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
487 	    medname);
488 
489 	if (sc->sc_dma_attach)
490 		(*sc->sc_dma_attach)(sc);
491 
492 	/* Attach the interface. */
493 	if_attach(ifp);
494 	ether_ifattach(ifp, sc->sc_enaddr);
495 
496 #if NRND > 0
497 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
498 			  RND_TYPE_NET, 0);
499 #endif
500 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
501 
502 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
503 		pmf_class_network_register(sc->sc_dev, ifp);
504 	else
505 		aprint_error_dev(sc->sc_dev,
506 		    "couldn't establish power handler\n");
507 
508 	/* Reset the chip */
509 	if (cs_reset_chip(sc) == CS_ERROR) {
510 		aprint_error_dev(sc->sc_dev, "reset failed\n");
511 		cs_detach(sc);
512 		return 1;
513 	}
514 
515 	return 0;
516 }
517 
518 int
519 cs_detach(struct cs_softc *sc)
520 {
521 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
522 
523 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
524 #if NRND > 0
525 		rnd_detach_source(&sc->rnd_source);
526 #endif
527 		ether_ifdetach(ifp);
528 		if_detach(ifp);
529 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
530 	}
531 
532 #if 0
533 	/*
534 	 * XXX not necessary
535 	 */
536 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
537 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
538 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
539 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
540 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
541 	}
542 #endif
543 
544 	pmf_device_deregister(sc->sc_dev);
545 
546 	return 0;
547 }
548 
549 bool
550 cs_shutdown(device_t self, int howto)
551 {
552 	struct cs_softc *sc;
553 
554 	sc = device_private(self);
555 	cs_reset(sc);
556 
557 	return true;
558 }
559 
560 void
561 cs_get_default_media(struct cs_softc *sc)
562 {
563 	u_int16_t adp_cfg, xmit_ctl;
564 
565 	if (cs_verify_eeprom(sc) == CS_ERROR) {
566 		aprint_error_dev(sc->sc_dev,
567 		    "cs_get_default_media: EEPROM missing or bad\n");
568 		goto fakeit;
569 	}
570 
571 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
572 		aprint_error_dev(sc->sc_dev,
573 		    "unable to read adapter config from EEPROM\n");
574 		goto fakeit;
575 	}
576 
577 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
578 		aprint_error_dev(sc->sc_dev,
579 		    "unable to read transmit control from EEPROM\n");
580 		goto fakeit;
581 	}
582 
583 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
584 	case ADPTR_CFG_AUI:
585 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
586 		break;
587 	case ADPTR_CFG_10BASE2:
588 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
589 		break;
590 	case ADPTR_CFG_10BASET:
591 	default:
592 		if (xmit_ctl & XMIT_CTL_FDX)
593 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
594 		else
595 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
596 		break;
597 	}
598 	return;
599 
600  fakeit:
601 	aprint_error_dev(sc->sc_dev,
602 	    "WARNING: default media setting may be inaccurate\n");
603 	/* XXX Arbitrary... */
604 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
605 }
606 
607 /*
608  * cs_scan_eeprom
609  *
610  * Attempt to take a complete copy of the eeprom into main memory.
611  * this will allow faster parsing of the eeprom data.
612  *
613  * Only tested against a 8920M's eeprom, but the data sheet for the
614  * 8920A indicates that is uses the same layout.
615  */
616 int
617 cs_scan_eeprom(struct cs_softc *sc)
618 {
619 	u_int16_t result;
620 	int	i;
621 	int	eeprom_size;
622 	u_int8_t checksum = 0;
623 
624 	if (cs_verify_eeprom(sc) == CS_ERROR) {
625 		aprint_error_dev(sc->sc_dev,
626 		    "cs_scan_params: EEPROM missing or bad\n");
627 		return (CS_ERROR);
628 	}
629 
630 	/*
631 	 * read the 0th word from the eeprom, it will tell us the length
632 	 * and if the eeprom is valid
633 	 */
634 	cs_read_eeprom(sc, 0, &result);
635 
636 	/* check the eeprom signature */
637 	if ((result & 0xE000) != 0xA000) {
638 		/* empty eeprom */
639 		return (CS_ERROR);
640 	}
641 
642 	/*
643 	 * take the eeprom size (note the read value doesn't include the header
644 	 * word)
645 	 */
646 	eeprom_size = (result & 0xff) + 2;
647 
648 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
649 	if (sc->eeprom_data == NULL) {
650 		/* no memory, treat this as if there's no eeprom */
651 		return (CS_ERROR);
652 	}
653 
654 	sc->eeprom_size = eeprom_size;
655 
656 	/* read the eeprom into the buffer, also calculate the checksum  */
657 	for (i = 0; i < (eeprom_size >> 1); i++) {
658 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
659 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
660 		checksum += (sc->eeprom_data[i] & 0x00ff);
661 	}
662 
663 	/*
664 	 * validate checksum calculation, the sum of all the bytes should be 0,
665 	 * as the high byte of the last word is the 2's complement of the
666 	 * sum to that point.
667 	 */
668 	if (checksum != 0) {
669 		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
670 		return (CS_ERROR);
671 	}
672 
673 	return (CS_OK);
674 }
675 
676 static int
677 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
678 {
679 	int x, maxword;
680 
681 	/* Check that we have eeprom data */
682 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
683 		return (CS_ERROR);
684 
685 	/*
686 	 * We only want to read the data words, the last word contains the
687 	 * checksum
688 	 */
689 	maxword = (sc->eeprom_size - 2) >> 1;
690 
691 	/* start 1 word in, as the first word is the length and signature */
692 	x = 1;
693 
694 	while ( x < (maxword)) {
695 		u_int16_t header;
696 		int group_size;
697 		int offset;
698 		int offset_max;
699 
700 		/* read in the group header word */
701 		header = sc->eeprom_data[x];
702 		x++;	/* skip group header */
703 
704 		/*
705 		 * size of group in words is in the top 4 bits, note that it
706 		 * is one less than the number of words
707 		 */
708 		group_size = header & 0xF000;
709 
710 		/*
711 		 * CS8900 Data sheet says this should be 0x01ff,
712 		 * but my cs8920 eeprom has higher offsets,
713 		 * perhaps the 8920 allows higher offsets, otherwise
714 		 * it's writing to places that it shouldn't
715 		 */
716 		/* work out the offsets this group covers */
717 		offset = header & 0x0FFF;
718 		offset_max = offset + (group_size << 1);
719 
720 		/* check if the pkgpg we're after is in this group */
721 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
722 			/* the pkgpg value we want is in here */
723 			int eeprom_location;
724 
725 			eeprom_location = ((pktpg - offset) >> 1) ;
726 
727 			*pValue = sc->eeprom_data[x + eeprom_location];
728 			return (CS_OK);
729 		} else {
730 			/* skip this group (+ 1 for first entry) */
731 			x += group_size + 1;
732 		}
733 	}
734 
735 	/*
736 	 * if we've fallen out here then we don't have a value in the EEPROM
737 	 * for this pktpg so return an error
738 	 */
739 	return (CS_ERROR);
740 }
741 
742 int
743 cs_get_params(struct cs_softc *sc)
744 {
745 	u_int16_t isaConfig;
746 	u_int16_t adapterConfig;
747 
748 	if (cs_verify_eeprom(sc) == CS_ERROR) {
749 		aprint_error_dev(sc->sc_dev,
750 		    "cs_get_params: EEPROM missing or bad\n");
751 		return (CS_ERROR);
752 	}
753 
754 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
755 		/* Get ISA configuration from the EEPROM */
756 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
757 			       	== CS_ERROR) {
758 			/* eeprom doesn't have this value, use data sheet default */
759 			isaConfig = 0x0017;
760 		}
761 
762 		/* Get adapter configuration from the EEPROM */
763 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
764 				== CS_ERROR) {
765 			/* eeprom doesn't have this value, use data sheet default */
766 			adapterConfig = 0x0015;
767 		}
768 
769 		/* Copy the USE_SA flag */
770 		if (isaConfig & BUS_CTL_USE_SA)
771 			sc->sc_cfgflags |= CFGFLG_USE_SA;
772 
773 		/* Copy the IO Channel Ready flag */
774 		if (isaConfig & BUS_CTL_IOCHRDY)
775 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
776 
777 		/* Copy the DC/DC Polarity flag */
778 		if (adapterConfig & SELF_CTL_HCB1)
779 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
780 	} else {
781 		/* Get ISA configuration from the EEPROM */
782 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
783 			goto eeprom_bad;
784 
785 		/* Get adapter configuration from the EEPROM */
786 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
787 			goto eeprom_bad;
788 
789 		/* Copy the USE_SA flag */
790 		if (isaConfig & ISA_CFG_USE_SA)
791 			sc->sc_cfgflags |= CFGFLG_USE_SA;
792 
793 		/* Copy the IO Channel Ready flag */
794 		if (isaConfig & ISA_CFG_IOCHRDY)
795 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
796 
797 		/* Copy the DC/DC Polarity flag */
798 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
799 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
800 	}
801 
802 	return (CS_OK);
803 eeprom_bad:
804 	aprint_error_dev(sc->sc_dev,
805 	    "cs_get_params: unable to read from EEPROM\n");
806 	return (CS_ERROR);
807 }
808 
809 int
810 cs_get_enaddr(struct cs_softc *sc)
811 {
812 	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
813 	int i;
814 
815 	if (cs_verify_eeprom(sc) == CS_ERROR) {
816 		aprint_error_dev(sc->sc_dev,
817 		    "cs_get_enaddr: EEPROM missing or bad\n");
818 		return (CS_ERROR);
819 	}
820 
821 	/* Get Ethernet address from the EEPROM */
822 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
823 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
824 				== CS_ERROR)
825 			goto eeprom_bad;
826 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
827 				== CS_ERROR)
828 			goto eeprom_bad;
829 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
830 				== CS_ERROR)
831 			goto eeprom_bad;
832 	} else {
833 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
834 			goto eeprom_bad;
835 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
836 			goto eeprom_bad;
837 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
838 			goto eeprom_bad;
839 	}
840 
841 	for (i = 0; i < __arraycount(myea); i++) {
842 		sc->sc_enaddr[i * 2 + 0] = myea[i];
843 		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
844 	}
845 
846 	return (CS_OK);
847 
848  eeprom_bad:
849 	aprint_error_dev(sc->sc_dev,
850 	    "cs_get_enaddr: unable to read from EEPROM\n");
851 	return (CS_ERROR);
852 }
853 
854 int
855 cs_reset_chip(struct cs_softc *sc)
856 {
857 	int intState;
858 	int x;
859 
860 	/* Disable interrupts at the CPU so reset command is atomic */
861 	intState = splnet();
862 
863 	/*
864 	 * We are now resetting the chip
865 	 *
866 	 * A spurious interrupt is generated by the chip when it is reset. This
867 	 * variable informs the interrupt handler to ignore this interrupt.
868 	 */
869 	sc->sc_resetting = TRUE;
870 
871 	/* Issue a reset command to the chip */
872 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
873 
874 	/* Re-enable interrupts at the CPU */
875 	splx(intState);
876 
877 	/* The chip is always in IO mode after a reset */
878 	sc->sc_memorymode = FALSE;
879 
880 	/* If transmission was in progress, it is not now */
881 	sc->sc_txbusy = FALSE;
882 
883 	/*
884 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
885 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
886 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
887 	 * should be sufficient.
888 	 */
889 
890 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
891 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
892 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
893 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
894 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
895 
896 	/* Wait until the EEPROM is not busy */
897 	for (x = 0; x < MAXLOOP; x++) {
898 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
899 			break;
900 	}
901 
902 	if (x == MAXLOOP)
903 		return CS_ERROR;
904 
905 	/* Wait until initialization is done */
906 	for (x = 0; x < MAXLOOP; x++) {
907 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
908 			break;
909 	}
910 
911 	if (x == MAXLOOP)
912 		return CS_ERROR;
913 
914 	/* Reset is no longer in progress */
915 	sc->sc_resetting = FALSE;
916 
917 	return CS_OK;
918 }
919 
920 int
921 cs_verify_eeprom(struct cs_softc *sc)
922 {
923 	u_int16_t self_status;
924 
925 	/* Verify that the EEPROM is present and OK */
926 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
927 	if (((self_status & SELF_ST_EEP_PRES) &&
928 	     (self_status & SELF_ST_EEP_OK)) == 0)
929 		return (CS_ERROR);
930 
931 	return (CS_OK);
932 }
933 
934 int
935 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
936 {
937 	int x;
938 
939 	/* Ensure that the EEPROM is not busy */
940 	for (x = 0; x < MAXLOOP; x++) {
941 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
942 		      SELF_ST_SI_BUSY))
943 			break;
944 	}
945 
946 	if (x == MAXLOOP)
947 		return (CS_ERROR);
948 
949 	/* Issue the command to read the offset within the EEPROM */
950 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
951 	    offset | EEPROM_CMD_READ);
952 
953 	/* Wait until the command is completed */
954 	for (x = 0; x < MAXLOOP; x++) {
955 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
956 		      SELF_ST_SI_BUSY))
957 			break;
958 	}
959 
960 	if (x == MAXLOOP)
961 		return (CS_ERROR);
962 
963 	/* Get the EEPROM data from the EEPROM Data register */
964 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
965 
966 	return (CS_OK);
967 }
968 
969 void
970 cs_initChip(struct cs_softc *sc)
971 {
972 	u_int16_t busCtl;
973 	u_int16_t selfCtl;
974 	u_int16_t v;
975 	u_int16_t isaId;
976 	int i;
977 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
978 
979 	/* Disable reception and transmission of frames */
980 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
981 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
982 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
983 
984 	/* Disable interrupt at the chip */
985 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
986 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
987 
988 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
989 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
990 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
991 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
992 		    busCtl & ~BUS_CTL_IOCHRDY);
993 	} else {
994 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
995 		    busCtl | BUS_CTL_IOCHRDY);
996 	}
997 
998 	/* Set the Line Control register to match the media type */
999 	if (media == IFM_10_T)
1000 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
1001 	else
1002 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1003 
1004 	/*
1005 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
1006 	 * enable the DC/DC converter
1007 	 */
1008 	selfCtl = SELF_CTL_HC1E;
1009 
1010 	/* If the media type is 10Base2 */
1011 	if (media == IFM_10_2) {
1012 		/*
1013 		 * Enable the DC/DC converter if it has a low enable.
1014 		 */
1015 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1016 			/*
1017 			 * Set the HCB1 bit, which causes the HC1 pin to go
1018 			 * low.
1019 			 */
1020 			selfCtl |= SELF_CTL_HCB1;
1021 	} else { /* Media type is 10BaseT or AUI */
1022 		/*
1023 		 * Disable the DC/DC converter if it has a high enable.
1024 		 */
1025 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1026 			/*
1027 			 * Set the HCB1 bit, which causes the HC1 pin to go
1028 			 * low.
1029 			 */
1030 			selfCtl |= SELF_CTL_HCB1;
1031 		}
1032 	}
1033 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1034 
1035 	/* enable normal link pulse */
1036 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1037 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1038 
1039 	/* Enable full-duplex, if appropriate */
1040 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1041 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1042 
1043 	/* RX_CTL set in cs_set_ladr_filt(), below */
1044 
1045 	/* enable all transmission interrupts */
1046 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1047 
1048 	/* Accept all receive interrupts */
1049 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1050 
1051 	/*
1052 	 * Configure Operational Modes
1053 	 *
1054 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1055 	 * a better way to do it because the card has a counter which can be
1056 	 * read to update the RX_MISS counter. This saves many interrupts.
1057 	 *
1058 	 * I have turned on the tx and rx overflow interrupts to counter using
1059 	 * the receive miss interrupt. This is a better estimate of errors
1060 	 * and requires lower system overhead.
1061 	 */
1062 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1063 			  BUF_CFG_RX_DMA_IE);
1064 
1065 	if (sc->sc_dma_chipinit)
1066 		(*sc->sc_dma_chipinit)(sc);
1067 
1068 	/* If memory mode is enabled */
1069 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1070 		/* If external logic is present for address decoding */
1071 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1072 			/*
1073 			 * Program the external logic to decode address bits
1074 			 * SA20-SA23
1075 			 */
1076 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1077 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1078 			    EEPROM_CMD_ELSEL);
1079 		}
1080 
1081 		/*
1082 		 * Write the packet page base physical address to the memory
1083 		 * base register.
1084 		 */
1085 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1086 		    sc->sc_pktpgaddr & 0xFFFF);
1087 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1088 		    sc->sc_pktpgaddr >> 16);
1089 		busCtl = BUS_CTL_MEM_MODE;
1090 
1091 		/* tell the chip to read the addresses off the SA pins */
1092 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1093 			busCtl |= BUS_CTL_USE_SA;
1094 		}
1095 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1096 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1097 
1098 		/* We are in memory mode now! */
1099 		sc->sc_memorymode = TRUE;
1100 
1101 		/*
1102 		 * wait here (10ms) for the chip to swap over. this is the
1103 		 * maximum time that this could take.
1104 		 */
1105 		delay(10000);
1106 
1107 		/* Verify that we can read from the chip */
1108 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1109 
1110 		/*
1111 		 * As a last minute sanity check before actually using mapped
1112 		 * memory we verify that we can read the isa number from the
1113 		 * chip in memory mode.
1114 		 */
1115 		if (isaId != EISA_NUM_CRYSTAL) {
1116 			aprint_error_dev(sc->sc_dev,
1117 			    "failed to enable memory mode\n");
1118 			sc->sc_memorymode = FALSE;
1119 		} else {
1120 			/*
1121 			 * we are in memory mode so if we aren't using DMA,
1122 			 * then program the chip to interrupt early.
1123 			 */
1124 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1125 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1126 				    BUF_CFG_RX_DEST_IE |
1127 				    BUF_CFG_RX_MISS_OVER_IE |
1128 				    BUF_CFG_TX_COL_OVER_IE);
1129 			}
1130 		}
1131 
1132 	}
1133 
1134 	/* Put Ethernet address into the Individual Address register */
1135 	for (i = 0; i < 6; i += 2) {
1136 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1137 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1138 	}
1139 
1140 	if (sc->sc_irq != -1) {
1141 		/* Set the interrupt level in the chip */
1142 		if (sc->sc_prodid == PROD_ID_CS8900) {
1143 			if (sc->sc_irq == 5) {
1144 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1145 			} else {
1146 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1147 			}
1148 		}
1149 		else { /* CS8920 */
1150 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1151 		}
1152 	}
1153 
1154 	/* write the multicast mask to the address filter register */
1155 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1156 
1157 	/* Enable reception and transmission of frames */
1158 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1159 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1160 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1161 
1162 	/* Enable interrupt at the chip */
1163 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1164 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1165 }
1166 
1167 int
1168 cs_init(struct ifnet *ifp)
1169 {
1170 	int intState;
1171 	int error = CS_OK;
1172 	struct cs_softc *sc = ifp->if_softc;
1173 
1174 	if (cs_enable(sc))
1175 		goto out;
1176 
1177 	cs_stop(ifp, 0);
1178 
1179 	intState = splnet();
1180 
1181 #if 0
1182 	/* Mark the interface as down */
1183 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1184 #endif
1185 
1186 #ifdef CS_DEBUG
1187 	/* Enable debugging */
1188 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1189 #endif
1190 
1191 	/* Reset the chip */
1192 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1193 		/* Initialize the chip */
1194 		cs_initChip(sc);
1195 
1196 		/* Mark the interface as running */
1197 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1198 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1199 		sc->sc_ethercom.ec_if.if_timer = 0;
1200 
1201 		/* Assume we have carrier until we are told otherwise. */
1202 		sc->sc_carrier = 1;
1203 	} else {
1204 		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1205 	}
1206 
1207 	splx(intState);
1208 out:
1209 	if (error == CS_OK)
1210 		return 0;
1211 	return EIO;
1212 }
1213 
1214 void
1215 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1216 {
1217 	struct ifnet *ifp = &ec->ec_if;
1218 	struct ether_multi *enm;
1219 	struct ether_multistep step;
1220 	u_int16_t af[4];
1221 	u_int16_t port, mask, index;
1222 
1223 	/*
1224          * Set up multicast address filter by passing all multicast addresses
1225          * through a crc generator, and then using the high order 6 bits as an
1226          * index into the 64 bit logical address filter.  The high order bit
1227          * selects the word, while the rest of the bits select the bit within
1228          * the word.
1229          */
1230 	if (ifp->if_flags & IFF_PROMISC) {
1231 		/* accept all valid frames. */
1232 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1233 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1234 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1235 		ifp->if_flags |= IFF_ALLMULTI;
1236 		return;
1237 	}
1238 
1239 	/*
1240 	 * accept frames if a. crc valid, b. individual address match c.
1241 	 * broadcast address,and d. multicast addresses matched in the hash
1242 	 * filter
1243 	 */
1244 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1245 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1246 
1247 
1248 	/*
1249 	 * start off with all multicast flag clear, set it if we need to
1250 	 * later, otherwise we will leave it.
1251 	 */
1252 	ifp->if_flags &= ~IFF_ALLMULTI;
1253 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1254 
1255 	/*
1256 	 * Loop through all the multicast addresses unless we get a range of
1257 	 * addresses, in which case we will just accept all packets.
1258 	 * Justification for this is given in the next comment.
1259 	 */
1260 	ETHER_FIRST_MULTI(step, ec, enm);
1261 	while (enm != NULL) {
1262 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1263 		    sizeof enm->enm_addrlo)) {
1264 			/*
1265 	                 * We must listen to a range of multicast addresses.
1266 	                 * For now, just accept all multicasts, rather than
1267 	                 * trying to set only those filter bits needed to match
1268 	                 * the range.  (At this time, the only use of address
1269 	                 * ranges is for IP multicast routing, for which the
1270 	                 * range is big enough to require all bits set.)
1271 	                 */
1272 			ifp->if_flags |= IFF_ALLMULTI;
1273 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1274 			break;
1275 		} else {
1276 			/*
1277 	                 * we have got an individual address so just set that
1278 	                 * bit.
1279 	                 */
1280 			index = cs_hash_index(enm->enm_addrlo);
1281 
1282 			/* Set the bit the Logical address filter. */
1283 			port = (u_int16_t) (index >> 4);
1284 			mask = (u_int16_t) (1 << (index & 0xf));
1285 			af[port] |= mask;
1286 
1287 			ETHER_NEXT_MULTI(step, enm);
1288 		}
1289 	}
1290 
1291 	/* now program the chip with the addresses */
1292 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1293 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1294 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1295 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1296 	return;
1297 }
1298 
1299 u_int16_t
1300 cs_hash_index(char *addr)
1301 {
1302 	uint32_t crc;
1303 	uint16_t hash_code;
1304 
1305 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1306 
1307 	hash_code = crc >> 26;
1308 	return (hash_code);
1309 }
1310 
1311 void
1312 cs_reset(struct cs_softc *sc)
1313 {
1314 
1315 	/* Mark the interface as down */
1316 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1317 
1318 	/* Reset the chip */
1319 	cs_reset_chip(sc);
1320 }
1321 
1322 int
1323 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1324 {
1325 	struct cs_softc *sc = ifp->if_softc;
1326 	struct ifreq *ifr = data;
1327 	int state;
1328 	int result;
1329 
1330 	state = splnet();
1331 
1332 	result = 0;		/* only set if something goes wrong */
1333 
1334 	switch (cmd) {
1335 	case SIOCGIFMEDIA:
1336 	case SIOCSIFMEDIA:
1337 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1338 		break;
1339 
1340 	default:
1341 		result = ether_ioctl(ifp, cmd, data);
1342 		if (result == ENETRESET) {
1343 			if (ifp->if_flags & IFF_RUNNING) {
1344 				/*
1345 				 * Multicast list has changed.  Set the
1346 				 * hardware filter accordingly.
1347 				 */
1348 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1349 			}
1350 			result = 0;
1351 		}
1352 		break;
1353 	}
1354 
1355 	splx(state);
1356 
1357 	return result;
1358 }
1359 
1360 int
1361 cs_mediachange(struct ifnet *ifp)
1362 {
1363 
1364 	/*
1365 	 * Current media is already set up.  Just reset the interface
1366 	 * to let the new value take hold.
1367 	 */
1368 	cs_init(ifp);
1369 	return (0);
1370 }
1371 
1372 void
1373 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1374 {
1375 	struct cs_softc *sc = ifp->if_softc;
1376 
1377 	/*
1378 	 * The currently selected media is always the active media.
1379 	 */
1380 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1381 
1382 	if (ifp->if_flags & IFF_UP) {
1383 		/* Interface up, status is valid. */
1384 		ifmr->ifm_status = IFM_AVALID |
1385 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1386 	}
1387 		else ifmr->ifm_status = 0;
1388 }
1389 
1390 int
1391 cs_intr(void *arg)
1392 {
1393 	struct cs_softc *sc = arg;
1394 	u_int16_t Event;
1395 #if NRND > 0
1396 	u_int16_t rndEvent;
1397 #endif
1398 
1399 /*printf("cs_intr %p\n", sc);*/
1400 	/* Ignore any interrupts that happen while the chip is being reset */
1401 	if (sc->sc_resetting) {
1402 		printf("%s: cs_intr: reset in progress\n",
1403 		    device_xname(sc->sc_dev));
1404 		return 1;
1405 	}
1406 
1407 	/* Read an event from the Interrupt Status Queue */
1408 	if (sc->sc_memorymode)
1409 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1410 	else
1411 		Event = CS_READ_PORT(sc, PORT_ISQ);
1412 
1413 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1414 		return 0;	/* not ours */
1415 
1416 #if NRND > 0
1417 	rndEvent = Event;
1418 #endif
1419 
1420 	/* Process all the events in the Interrupt Status Queue */
1421 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1422 		/* Dispatch to an event handler based on the register number */
1423 		switch (Event & REG_NUM_MASK) {
1424 		case REG_NUM_RX_EVENT:
1425 			cs_receive_event(sc, Event);
1426 			break;
1427 		case REG_NUM_TX_EVENT:
1428 			cs_transmit_event(sc, Event);
1429 			break;
1430 		case REG_NUM_BUF_EVENT:
1431 			cs_buffer_event(sc, Event);
1432 			break;
1433 		case REG_NUM_TX_COL:
1434 		case REG_NUM_RX_MISS:
1435 			cs_counter_event(sc, Event);
1436 			break;
1437 		default:
1438 			printf("%s: unknown interrupt event 0x%x\n",
1439 			    device_xname(sc->sc_dev), Event);
1440 			break;
1441 		}
1442 
1443 		/* Read another event from the Interrupt Status Queue */
1444 		if (sc->sc_memorymode)
1445 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1446 		else
1447 			Event = CS_READ_PORT(sc, PORT_ISQ);
1448 	}
1449 
1450 	/* have handled the interrupt */
1451 #if NRND > 0
1452 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1453 #endif
1454 	return 1;
1455 }
1456 
1457 void
1458 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1459 {
1460 	struct ifnet *ifp;
1461 	u_int16_t errorCount;
1462 
1463 	ifp = &sc->sc_ethercom.ec_if;
1464 
1465 	switch (cntEvent & REG_NUM_MASK) {
1466 	case REG_NUM_TX_COL:
1467 		/*
1468 		 * the count should be read before an overflow occurs.
1469 		 */
1470 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1471 		/*
1472 		 * the tramsit event routine always checks the number of
1473 		 * collisions for any packet so we don't increment any
1474 		 * counters here, as they should already have been
1475 		 * considered.
1476 		 */
1477 		break;
1478 	case REG_NUM_RX_MISS:
1479 		/*
1480 		 * the count should be read before an overflow occurs.
1481 		 */
1482 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1483 		/*
1484 		 * Increment the input error count, the first 6bits are the
1485 		 * register id.
1486 		 */
1487 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1488 		break;
1489 	default:
1490 		/* do nothing */
1491 		break;
1492 	}
1493 }
1494 
1495 void
1496 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1497 {
1498 
1499 	/*
1500 	 * multiple events can be in the buffer event register at one time so
1501 	 * a standard switch statement will not suffice, here every event
1502 	 * must be checked.
1503 	 */
1504 
1505 	/*
1506 	 * if 128 bits have been rxed by the time we get here, the dest event
1507 	 * will be cleared and 128 event will be set.
1508 	 */
1509 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1510 		cs_process_rx_early(sc);
1511 	}
1512 
1513 	if (bufEvent & BUF_EVENT_RX_DMA) {
1514 		/* process the receive data */
1515 		if (sc->sc_dma_process_rx)
1516 			(*sc->sc_dma_process_rx)(sc);
1517 		else
1518 			/* should panic? */
1519 			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1520 	}
1521 
1522 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1523 #if 0
1524 		/*
1525 		 * This can happen occasionally, and it's not worth worrying
1526 		 * about.
1527 		 */
1528 		printf("%s: transmit underrun (%d -> %d)\n",
1529 		    device_xname(sc->sc_dev), sc->sc_xe_ent,
1530 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1531 #endif
1532 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1533 		sc->sc_xe_togo =
1534 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1535 
1536 		/* had an underrun, transmit is finished */
1537 		sc->sc_txbusy = FALSE;
1538 	}
1539 
1540 	if (bufEvent & BUF_EVENT_SW_INT) {
1541 		printf("%s: software initiated interrupt\n",
1542 		    device_xname(sc->sc_dev));
1543 	}
1544 }
1545 
1546 void
1547 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1548 {
1549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1550 
1551 	/* If there were any errors transmitting this frame */
1552 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1553 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1554 		/* Increment the output error count */
1555 		ifp->if_oerrors++;
1556 
1557 		/* Note carrier loss. */
1558 		if (txEvent & TX_EVENT_LOSS_CRS)
1559 			sc->sc_carrier = 0;
1560 
1561 		/* If debugging is enabled then log error messages */
1562 		if (ifp->if_flags & IFF_DEBUG) {
1563 			if (txEvent & TX_EVENT_LOSS_CRS) {
1564 				aprint_error_dev(sc->sc_dev, "lost carrier\n");
1565 			}
1566 			if (txEvent & TX_EVENT_SQE_ERR) {
1567 				aprint_error_dev(sc->sc_dev, "SQE error\n");
1568 			}
1569 			if (txEvent & TX_EVENT_OUT_WIN) {
1570 				aprint_error_dev(sc->sc_dev,
1571 				    "out-of-window collision\n");
1572 			}
1573 			if (txEvent & TX_EVENT_JABBER) {
1574 				aprint_error_dev(sc->sc_dev, "jabber\n");
1575 			}
1576 			if (txEvent & TX_EVENT_16_COLL) {
1577 				aprint_error_dev(sc->sc_dev, "16 collisions\n");
1578 			}
1579 		}
1580 	}
1581 	else {
1582 		/* Transmission successful, carrier is up. */
1583 		sc->sc_carrier = 1;
1584 #ifdef SHARK
1585 		ledNetActive();
1586 #endif
1587 	}
1588 
1589 	/* Add the number of collisions for this frame */
1590 	if (txEvent & TX_EVENT_16_COLL) {
1591 		ifp->if_collisions += 16;
1592 	} else {
1593 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1594 	}
1595 
1596 	ifp->if_opackets++;
1597 
1598 	/* Transmission is no longer in progress */
1599 	sc->sc_txbusy = FALSE;
1600 
1601 	/* If there is more to transmit */
1602 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1603 		/* Start the next transmission */
1604 		cs_start_output(ifp);
1605 	}
1606 }
1607 
1608 void
1609 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1610 {
1611 
1612 	if (rxEvent & RX_EVENT_RUNT)
1613 		aprint_error_dev(sc->sc_dev, "runt\n");
1614 
1615 	if (rxEvent & RX_EVENT_X_DATA)
1616 		aprint_error_dev(sc->sc_dev, "extra data\n");
1617 
1618 	if (rxEvent & RX_EVENT_CRC_ERR) {
1619 		if (rxEvent & RX_EVENT_DRIBBLE)
1620 			aprint_error_dev(sc->sc_dev, "alignment error\n");
1621 		else
1622 			aprint_error_dev(sc->sc_dev, "CRC error\n");
1623 	} else {
1624 		if (rxEvent & RX_EVENT_DRIBBLE)
1625 			aprint_error_dev(sc->sc_dev, "dribble bits\n");
1626 	}
1627 }
1628 
1629 void
1630 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1631 {
1632 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1633 
1634 	/* If the frame was not received OK */
1635 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1636 		/* Increment the input error count */
1637 		ifp->if_ierrors++;
1638 
1639 		/*
1640 		 * If debugging is enabled then log error messages.
1641 		 */
1642 		if (ifp->if_flags & IFF_DEBUG) {
1643 			if (rxEvent != REG_NUM_RX_EVENT) {
1644 				cs_print_rx_errors(sc, rxEvent);
1645 
1646 				/*
1647 				 * Must read the length of all received
1648 				 * frames
1649 				 */
1650 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1651 
1652 				/* Skip the received frame */
1653 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1654 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1655 						  RX_CFG_SKIP);
1656 			} else {
1657 				aprint_error_dev(sc->sc_dev, "implied skip\n");
1658 			}
1659 		}
1660 	} else {
1661 		/*
1662 		 * process the received frame and pass it up to the upper
1663 		 * layers.
1664 		 */
1665 		cs_process_receive(sc);
1666 	}
1667 }
1668 
1669 void
1670 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1671 {
1672 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1673 
1674 	ifp->if_ipackets++;
1675 
1676 	/*
1677 	 * Check if there's a BPF listener on this interface.
1678 	 * If so, hand off the raw packet to BPF.
1679 	 */
1680 	bpf_mtap(ifp, m);
1681 
1682 	/* Pass the packet up. */
1683 	(*ifp->if_input)(ifp, m);
1684 }
1685 
1686 void
1687 cs_process_receive(struct cs_softc *sc)
1688 {
1689 	struct ifnet *ifp;
1690 	struct mbuf *m;
1691 	int totlen;
1692 	u_int16_t *pBuff, *pBuffLimit;
1693 	int pad;
1694 	unsigned int frameOffset = 0;	/* XXX: gcc */
1695 
1696 #ifdef SHARK
1697 	ledNetActive();
1698 #endif
1699 
1700 	ifp = &sc->sc_ethercom.ec_if;
1701 
1702 	/* Received a packet; carrier is up. */
1703 	sc->sc_carrier = 1;
1704 
1705 	if (sc->sc_memorymode) {
1706 		/* Initialize the frame offset */
1707 		frameOffset = PKTPG_RX_LENGTH;
1708 
1709 		/* Get the length of the received frame */
1710 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1711 		frameOffset += 2;
1712 	}
1713 	else {
1714 		/* drop status */
1715 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1716 
1717 		/* Get the length of the received frame */
1718 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1719 	}
1720 
1721 	if (totlen > ETHER_MAX_LEN) {
1722 		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1723 		    totlen);
1724 
1725 		/* skip the received frame */
1726 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1727 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1728 		return;
1729 	}
1730 
1731 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1732 	if (m == 0) {
1733 		aprint_error_dev(sc->sc_dev,
1734 		    "cs_process_receive: unable to allocate mbuf\n");
1735 		ifp->if_ierrors++;
1736 		/*
1737 		 * couldn't allocate an mbuf so things are not good, may as
1738 		 * well drop the packet I think.
1739 		 *
1740 		 * have already read the length so we should be right to skip
1741 		 * the packet.
1742 		 */
1743 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1744 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1745 		return;
1746 	}
1747 	m->m_pkthdr.rcvif = ifp;
1748 	m->m_pkthdr.len = totlen;
1749 
1750 	/* number of bytes to align ip header on word boundary for ipintr */
1751 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1752 
1753 	/*
1754 	 * alloc mbuf cluster if we need.
1755 	 * we need 1 byte spare because following
1756 	 * packet read loop can overrun.
1757 	 */
1758 	if (totlen + pad + 1 > MHLEN) {
1759 		MCLGET(m, M_DONTWAIT);
1760 		if ((m->m_flags & M_EXT) == 0) {
1761 			/* couldn't allocate an mbuf cluster */
1762 			aprint_error_dev(sc->sc_dev,
1763 			    "cs_process_receive: "
1764 			    "unable to allocate a cluster\n");
1765 			m_freem(m);
1766 
1767 			/* skip the received frame */
1768 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1769 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1770 			return;
1771 		}
1772 	}
1773 
1774 	/* align ip header on word boundary for ipintr */
1775 	m->m_data += pad;
1776 
1777 	m->m_len = totlen;
1778 	pBuff = mtod(m, u_int16_t *);
1779 
1780 	/* now read the data from the chip */
1781 	if (sc->sc_memorymode) {
1782 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1783 		while (pBuff < pBuffLimit) {
1784 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1785 			frameOffset += 2;
1786 		}
1787 	}
1788 	else {
1789 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1790 	}
1791 
1792 	cs_ether_input(sc, m);
1793 }
1794 
1795 void
1796 cs_process_rx_early(struct cs_softc *sc)
1797 {
1798 	struct ifnet *ifp;
1799 	struct mbuf *m;
1800 	u_int16_t frameCount, oldFrameCount;
1801 	u_int16_t rxEvent;
1802 	u_int16_t *pBuff;
1803 	int pad;
1804 	unsigned int frameOffset;
1805 
1806 
1807 	ifp = &sc->sc_ethercom.ec_if;
1808 
1809 	/* Initialize the frame offset */
1810 	frameOffset = PKTPG_RX_FRAME;
1811 	frameCount = 0;
1812 
1813 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1814 	if (m == 0) {
1815 		aprint_error_dev(sc->sc_dev,
1816 		    "cs_process_rx_early: unable to allocate mbuf\n");
1817 		ifp->if_ierrors++;
1818 		/*
1819 		 * couldn't allocate an mbuf so things are not good, may as
1820 		 * well drop the packet I think.
1821 		 *
1822 		 * have already read the length so we should be right to skip
1823 		 * the packet.
1824 		 */
1825 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1826 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1827 		return;
1828 	}
1829 	m->m_pkthdr.rcvif = ifp;
1830 	/*
1831 	 * save processing by always using a mbuf cluster, guaranteed to fit
1832 	 * packet
1833 	 */
1834 	MCLGET(m, M_DONTWAIT);
1835 	if ((m->m_flags & M_EXT) == 0) {
1836 		/* couldn't allocate an mbuf cluster */
1837 		aprint_error_dev(sc->sc_dev,
1838 		    "cs_process_rx_early: unable to allocate a cluster\n");
1839 		m_freem(m);
1840 		/* skip the frame */
1841 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1842 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1843 		return;
1844 	}
1845 
1846 	/* align ip header on word boundary for ipintr */
1847 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1848 	m->m_data += pad;
1849 
1850 	/* set up the buffer pointer to point to the data area */
1851 	pBuff = mtod(m, u_int16_t *);
1852 
1853 	/*
1854 	 * now read the frame byte counter until we have finished reading the
1855 	 * frame
1856 	 */
1857 	oldFrameCount = 0;
1858 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1859 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1860 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1861 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1862 			frameOffset += 2;
1863 		}
1864 
1865 		/* read the new count from the chip */
1866 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1867 	}
1868 
1869 	/* update the mbuf counts */
1870 	m->m_len = oldFrameCount;
1871 	m->m_pkthdr.len = oldFrameCount;
1872 
1873 	/* now check the Rx Event register */
1874 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1875 
1876 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1877 		/*
1878 		 * do an implied skip, it seems to be more reliable than a
1879 		 * forced skip.
1880 		 */
1881 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1882 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1883 
1884 		/*
1885 		 * now read the RX_EVENT register to perform an implied skip.
1886 		 */
1887 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1888 
1889 		cs_ether_input(sc, m);
1890 	} else {
1891 		m_freem(m);
1892 		ifp->if_ierrors++;
1893 	}
1894 }
1895 
1896 void
1897 cs_start_output(struct ifnet *ifp)
1898 {
1899 	struct cs_softc *sc;
1900 	struct mbuf *pMbuf;
1901 	struct mbuf *pMbufChain;
1902 	u_int16_t BusStatus;
1903 	u_int16_t Length;
1904 	int txLoop = 0;
1905 	int dropout = 0;
1906 
1907 	sc = ifp->if_softc;
1908 
1909 	/* check that the interface is up and running */
1910 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1911 		return;
1912 	}
1913 
1914 	/* Don't interrupt a transmission in progress */
1915 	if (sc->sc_txbusy) {
1916 		return;
1917 	}
1918 
1919 	/* this loop will only run through once if transmission is successful */
1920 	/*
1921 	 * While there are packets to transmit and a transmit is not in
1922 	 * progress
1923 	 */
1924 	while (sc->sc_txbusy == 0 && dropout == 0) {
1925 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1926 		if (pMbufChain == NULL)
1927 			break;
1928 
1929 		/*
1930 	         * If BPF is listening on this interface, let it see the packet
1931 	         * before we commit it to the wire.
1932 	         */
1933 		bpf_mtap(ifp, pMbufChain);
1934 
1935 		/* Find the total length of the data to transmit */
1936 		Length = 0;
1937 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1938 			Length += pMbuf->m_len;
1939 
1940 		do {
1941 			/*
1942 			 * Request that the transmit be started after all
1943 			 * data has been copied
1944 			 *
1945 			 * In IO mode must write to the IO port not the packet
1946 			 * page address
1947 			 *
1948 			 * If this is changed to start transmission after a
1949 			 * small amount of data has been copied you tend to
1950 			 * get packet missed errors i think because the ISA
1951 			 * bus is too slow. Or possibly the copy routine is
1952 			 * not streamlined enough.
1953 			 */
1954 			if (sc->sc_memorymode) {
1955 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1956 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1957 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1958 			}
1959 			else {
1960 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1961 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1962 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1963 			}
1964 
1965 			/*
1966 			 * Adjust early-transmit machinery.
1967 			 */
1968 			if (--sc->sc_xe_togo == 0) {
1969 				sc->sc_xe_ent =
1970 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1971 				sc->sc_xe_togo =
1972 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1973 			}
1974 			/*
1975 			 * Read the BusStatus register which indicates
1976 			 * success of the request
1977 			 */
1978 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1979 
1980 			/*
1981 			 * If there was an error in the transmit bid free the
1982 			 * mbuf and go on. This is presuming that mbuf is
1983 			 * corrupt.
1984 			 */
1985 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1986 				aprint_error_dev(sc->sc_dev,
1987 				    "transmit bid error (too big)");
1988 
1989 				/* Discard the bad mbuf chain */
1990 				m_freem(pMbufChain);
1991 				sc->sc_ethercom.ec_if.if_oerrors++;
1992 
1993 				/* Loop up to transmit the next chain */
1994 				txLoop = 0;
1995 			} else {
1996 				if (BusStatus & BUS_ST_RDY4TXNOW) {
1997 					/*
1998 					 * The chip is ready for transmission
1999 					 * now
2000 					 */
2001 					/*
2002 					 * Copy the frame to the chip to
2003 					 * start transmission
2004 					 */
2005 					cs_copy_tx_frame(sc, pMbufChain);
2006 
2007 					/* Free the mbuf chain */
2008 					m_freem(pMbufChain);
2009 
2010 					/* Transmission is now in progress */
2011 					sc->sc_txbusy = TRUE;
2012 					txLoop = 0;
2013 				} else {
2014 					/*
2015 					 * if we get here we want to try
2016 					 * again with the same mbuf, until
2017 					 * the chip lets us transmit.
2018 					 */
2019 					txLoop++;
2020 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
2021 						/* Free the mbuf chain */
2022 						m_freem(pMbufChain);
2023 						/*
2024 						 * Transmission is not in
2025 						 * progress
2026 						 */
2027 						sc->sc_txbusy = FALSE;
2028 						/*
2029 						 * Increment the output error
2030 						 * count
2031 						 */
2032 						ifp->if_oerrors++;
2033 						/*
2034 						 * exit the routine and drop
2035 						 * the packet.
2036 						 */
2037 						txLoop = 0;
2038 						dropout = 1;
2039 					}
2040 				}
2041 			}
2042 		} while (txLoop);
2043 	}
2044 }
2045 
2046 void
2047 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2048 {
2049 	struct mbuf *m;
2050 	int len, leftover, frameoff;
2051 	u_int16_t dbuf;
2052 	u_int8_t *p;
2053 #ifdef DIAGNOSTIC
2054 	u_int8_t *lim;
2055 #endif
2056 
2057 	/* Initialize frame pointer and data port address */
2058 	frameoff = PKTPG_TX_FRAME;
2059 
2060 	/* start out with no leftover data */
2061 	leftover = 0;
2062 	dbuf = 0;
2063 
2064 	/* Process the chain of mbufs */
2065 	for (m = m0; m != NULL; m = m->m_next) {
2066 		/*
2067 		 * Process all of the data in a single mbuf.
2068 		 */
2069 		p = mtod(m, u_int8_t *);
2070 		len = m->m_len;
2071 #ifdef DIAGNOSTIC
2072 		lim = p + len;
2073 #endif
2074 
2075 		while (len > 0) {
2076 			if (leftover) {
2077 				/*
2078 				 * Data left over (from mbuf or realignment).
2079 				 * Buffer the next byte, and write it and
2080 				 * the leftover data out.
2081 				 */
2082 				dbuf |= *p++ << 8;
2083 				len--;
2084 				if (sc->sc_memorymode) {
2085 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2086 					frameoff += 2;
2087 				}
2088 				else {
2089 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2090 				}
2091 				leftover = 0;
2092 			} else if ((long) p & 1) {
2093 				/*
2094 				 * Misaligned data.  Buffer the next byte.
2095 				 */
2096 				dbuf = *p++;
2097 				len--;
2098 				leftover = 1;
2099 			} else {
2100 				/*
2101 				 * Aligned data.  This is the case we like.
2102 				 *
2103 				 * Write-region out as much as we can, then
2104 				 * buffer the remaining byte (if any).
2105 				 */
2106 				leftover = len & 1;
2107 				len &= ~1;
2108 				if (sc->sc_memorymode) {
2109 					MEM_WRITE_REGION_2(sc, frameoff,
2110 						(u_int16_t *) p, len >> 1);
2111 					frameoff += len;
2112 				}
2113 				else {
2114 					IO_WRITE_MULTI_2(sc,
2115 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2116 				}
2117 				p += len;
2118 
2119 				if (leftover)
2120 					dbuf = *p++;
2121 				len = 0;
2122 			}
2123 		}
2124 		if (len < 0)
2125 			panic("cs_copy_tx_frame: negative len");
2126 #ifdef DIAGNOSTIC
2127 		if (p != lim)
2128 			panic("cs_copy_tx_frame: p != lim");
2129 #endif
2130 	}
2131 	if (leftover) {
2132 		if (sc->sc_memorymode) {
2133 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2134 		}
2135 		else {
2136 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2137 		}
2138 	}
2139 }
2140 
2141 static int
2142 cs_enable(struct cs_softc *sc)
2143 {
2144 
2145 	if (CS_IS_ENABLED(sc) == 0) {
2146 		if (sc->sc_enable != NULL) {
2147 			int error;
2148 
2149 			error = (*sc->sc_enable)(sc);
2150 			if (error)
2151 				return (error);
2152 		}
2153 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2154 	}
2155 
2156 	return (0);
2157 }
2158 
2159 static void
2160 cs_disable(struct cs_softc *sc)
2161 {
2162 
2163 	if (CS_IS_ENABLED(sc)) {
2164 		if (sc->sc_disable != NULL)
2165 			(*sc->sc_disable)(sc);
2166 
2167 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2168 	}
2169 }
2170 
2171 static void
2172 cs_stop(struct ifnet *ifp, int disable)
2173 {
2174 	struct cs_softc *sc = ifp->if_softc;
2175 
2176 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2177 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2178 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2179 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2180 
2181 	if (disable) {
2182 		cs_disable(sc);
2183 	}
2184 
2185 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2186 }
2187 
2188 int
2189 cs_activate(device_t self, enum devact act)
2190 {
2191 	struct cs_softc *sc = device_private(self);
2192 
2193 	switch (act) {
2194 	case DVACT_DEACTIVATE:
2195 		if_deactivate(&sc->sc_ethercom.ec_if);
2196 		return 0;
2197 	default:
2198 		return EOPNOTSUPP;
2199 	}
2200 }
2201