xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision 9e5598221a2c624e83b603ca49c69b4e980cb723)
1 /*	$NetBSD: cs89x0.c,v 1.4 2002/04/18 21:58:02 thorpej Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37 **++
38 **  FACILITY
39 **
40 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
41 **
42 **  ABSTRACT
43 **
44 **     This module provides standard ethernet access for INET protocols
45 **     only.
46 **
47 **  AUTHORS
48 **
49 **     Peter Dettori     SEA - Software Engineering.
50 **
51 **  CREATION DATE:
52 **
53 **     13-Feb-1997.
54 **
55 **  MODIFICATION HISTORY (Digital):
56 **
57 **     Revision 1.27  1998/01/20  17:59:40  cgd
58 **     update for moved headers
59 **
60 **     Revision 1.26  1998/01/12  19:29:36  cgd
61 **     use arm32/isa versions of isadma code.
62 **
63 **     Revision 1.25  1997/12/12  01:35:27  cgd
64 **     convert to use new arp code (from Brini)
65 **
66 **     Revision 1.24  1997/12/10  22:31:56  cgd
67 **     trim some fat (get rid of ability to explicitly supply enet addr, since
68 **     it was never used and added a bunch of code which really doesn't belong in
69 **     an enet driver), and clean up slightly.
70 **
71 **     Revision 1.23  1997/10/06  16:42:12  cgd
72 **     copyright notices
73 **
74 **     Revision 1.22  1997/06/20  19:38:01  chaiken
75 **     fixes some smartcard problems
76 **
77 **     Revision 1.21  1997/06/10 02:56:20  grohn
78 **     Added call to ledNetActive
79 **
80 **     Revision 1.20  1997/06/05 00:47:06  dettori
81 **     Changed cs_process_rx_dma to reset and re-initialise the
82 **     ethernet chip when DMA gets out of sync, or mbufs
83 **     can't be allocated.
84 **
85 **     Revision 1.19  1997/06/03 03:09:58  dettori
86 **     Turn off sc_txbusy flag when a transmit underrun
87 **     occurs.
88 **
89 **     Revision 1.18  1997/06/02 00:04:35  dettori
90 **     redefined the transmit table to get around the nfs_timer bug while we are
91 **     looking into it further.
92 **
93 **     Also changed interrupts from EDGE to LEVEL.
94 **
95 **     Revision 1.17  1997/05/27 23:31:01  dettori
96 **     Pulled out changes to DMAMODE defines.
97 **
98 **     Revision 1.16  1997/05/23 04:25:16  cgd
99 **     reformat log so it fits in 80cols
100 **
101 **     Revision 1.15  1997/05/23  04:22:18  cgd
102 **     remove the existing copyright notice (which Peter Dettori indicated
103 **     was incorrect, copied from an existing NetBSD file only so that the
104 **     file would have a copyright notice on it, and which he'd intended to
105 **     replace).  Replace it with a Digital copyright notice, cloned from
106 **     ess.c.  It's not really correct either (it indicates that the source
107 **     is Digital confidential!), but is better than nothing and more
108 **     correct than what was there before.
109 **
110 **     Revision 1.14  1997/05/23  04:12:50  cgd
111 **     use an adaptive transmit start algorithm: start by telling the chip
112 **     to start transmitting after 381 bytes have been fed to it.  if that
113 **     gets transmit underruns, ramp down to 1021 bytes then "whole
114 **     packet."  If successful at a given level for a while, try the next
115 **     more agressive level.  This code doesn't ever try to start
116 **     transmitting after 5 bytes have been sent to the NIC, because
117 **     that underruns rather regularly.  The back-off and ramp-up mechanism
118 **     could probably be tuned a little bit, but this works well enough to
119 **     support > 1MB/s transmit rates on a clear ethernet (which is about
120 **     20-25% better than the driver had previously been getting).
121 **
122 **     Revision 1.13  1997/05/22  21:06:54  cgd
123 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
124 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
125 **     issues.  This would cause bogus data to be spit out for mbufs with
126 **     misaligned data.  For instance, it caused the following bits to appear
127 **     on the wire:
128 **     	... etBND 1S2C .SHA(K) R ...
129 **     	    11112222333344445555
130 **     which should have appeared as:
131 **     	... NetBSD 1.2C (SHARK) ...
132 **     	    11112222333344445555
133 **     Note the apparent 'rotate' of the bytes in the word, which was due to
134 **     incorrect unaligned accesses.  This data corruption was the cause of
135 **     incoming telnet/rlogin hangs.
136 **
137 **     Revision 1.12  1997/05/22  01:55:32  cgd
138 **     reformat log so it fits in 80cols
139 **
140 **     Revision 1.11  1997/05/22  01:50:27  cgd
141 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
142 **       so packets aimed at other hosts don't get sent to ether_input().
143 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
144 **       you can easily tell (`strings`) what version of the driver is in your
145 **       kernel binary.
146 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
147 **       safe, and not really a performance win anyway.  (It was only used when
148 **       setting up the multicast logical address filter, which is an
149 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
150 **       address check above, but the benefit of it vs. memcmp would be
151 **       inconsequential, there.)  Use memcmp() instead.
152 **     * restructure csStartOuput to avoid the following bugs in the case where
153 **       txWait was being set:
154 **         * it would accidentally drop the outgoing packet if told to wait
155 **           but the outgoing packet queue was empty.
156 **         * it would bpf_mtap() the outgoing packet multiple times (once for
157 **           each time it was told to wait), and would also recalculate
158 **           the length of the outgoing packet each time it was told to
159 **           wait.
160 **       While there, rename txWait to txLoop, since with the new structure of
161 **       the code, the latter name makes more sense.
162 **
163 **     Revision 1.10  1997/05/19  02:03:20  cgd
164 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
165 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
166 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
167 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
168 **     as before.
169 **
170 **     Revision 1.9  1997/05/19  01:45:37  cgd
171 **     create a new function, cs_ether_input(), which does received-packet
172 **     BPF and ether_input processing.  This code used to be in three places,
173 **     and centralizing it will make adding IFF_PROMISC support much easier.
174 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
175 **     do copies with bus_space_write_region_2().  It's more correct, and
176 **     potentially more efficient.  That function needs to be gutted (to
177 **     deal properly with alignment issues, which it currently does wrong),
178 **     however, and the change doesn't gain much, so there's no point in
179 **     enabling it now.
180 **
181 **     Revision 1.8  1997/05/19  01:17:10  cgd
182 **     fix a comment re: the setting of the TxConfig register.  Clean up
183 **     interface counter maintenance (make it use standard idiom).
184 **
185 **--
186 */
187 
188 #include <sys/cdefs.h>
189 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.4 2002/04/18 21:58:02 thorpej Exp $");
190 
191 #include "opt_inet.h"
192 
193 #include <sys/param.h>
194 #include <sys/systm.h>
195 #include <sys/mbuf.h>
196 #include <sys/syslog.h>
197 #include <sys/socket.h>
198 #include <sys/device.h>
199 #include <sys/malloc.h>
200 #include <sys/ioctl.h>
201 #include <sys/errno.h>
202 
203 #include "rnd.h"
204 #if NRND > 0
205 #include <sys/rnd.h>
206 #endif
207 
208 #include <net/if.h>
209 #include <net/if_ether.h>
210 #include <net/if_media.h>
211 #ifdef INET
212 #include <netinet/in.h>
213 #include <netinet/if_inarp.h>
214 #endif
215 
216 #include "bpfilter.h"
217 #if NBPFILTER > 0
218 #include <net/bpf.h>
219 #include <net/bpfdesc.h>
220 #endif
221 
222 #include <uvm/uvm_extern.h>
223 
224 #include <machine/bus.h>
225 #include <machine/intr.h>
226 
227 #include <dev/ic/cs89x0reg.h>
228 #include <dev/ic/cs89x0var.h>
229 
230 #ifdef SHARK
231 #include <shark/shark/sequoia.h>
232 #endif
233 
234 /*
235  * MACRO DEFINITIONS
236  */
237 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
238 
239 /*
240  * FUNCTION PROTOTYPES
241  */
242 void	cs_get_default_media __P((struct cs_softc *));
243 int	cs_get_params __P((struct cs_softc *));
244 int	cs_get_enaddr __P((struct cs_softc *));
245 int	cs_reset_chip __P((struct cs_softc *));
246 void	cs_reset __P((void *));
247 int	cs_ioctl __P((struct ifnet *, u_long, caddr_t));
248 void	cs_initChip __P((struct cs_softc *));
249 void	cs_buffer_event __P((struct cs_softc *, u_int16_t));
250 void	cs_transmit_event __P((struct cs_softc *, u_int16_t));
251 void	cs_receive_event __P((struct cs_softc *, u_int16_t));
252 void	cs_process_receive __P((struct cs_softc *));
253 void	cs_process_rx_early __P((struct cs_softc *));
254 void	cs_start_output __P((struct ifnet *));
255 void	cs_copy_tx_frame __P((struct cs_softc *, struct mbuf *));
256 void	cs_set_ladr_filt __P((struct cs_softc *, struct ethercom *));
257 u_int16_t cs_hash_index __P((char *));
258 void	cs_counter_event __P((struct cs_softc *, u_int16_t));
259 
260 int	cs_mediachange __P((struct ifnet *));
261 void	cs_mediastatus __P((struct ifnet *, struct ifmediareq *));
262 
263 static int cs_enable __P((struct cs_softc *));
264 static void cs_disable __P((struct cs_softc *));
265 static void cs_stop __P((struct ifnet *, int));
266 static void cs_power __P((int, void *));
267 
268 /*
269  * GLOBAL DECLARATIONS
270  */
271 
272 /*
273  * Xmit-early table.
274  *
275  * To get better performance, we tell the chip to start packet
276  * transmission before the whole packet is copied to the chip.
277  * However, this can fail under load.  When it fails, we back off
278  * to a safer setting for a little while.
279  *
280  * txcmd is the value of txcmd used to indicate when to start transmission.
281  * better is the next 'better' state in the table.
282  * better_count is the number of output packets before transition to the
283  *   better state.
284  * worse is the next 'worse' state in the table.
285  *
286  * Transition to the next worse state happens automatically when a
287  * transmittion underrun occurs.
288  */
289 struct cs_xmit_early {
290 	u_int16_t       txcmd;
291 	int             better;
292 	int             better_count;
293 	int             worse;
294 } cs_xmit_early_table[3] = {
295 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
296 	{ TX_CMD_START_1021,	0,	50000,		2, },
297 	{ TX_CMD_START_ALL,	1,	5000,		2, },
298 };
299 
300 int cs_default_media[] = {
301 	IFM_ETHER|IFM_10_2,
302 	IFM_ETHER|IFM_10_5,
303 	IFM_ETHER|IFM_10_T,
304 	IFM_ETHER|IFM_10_T|IFM_FDX,
305 };
306 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
307 
308 int
309 cs_attach(sc, enaddr, media, nmedia, defmedia)
310 	struct cs_softc *sc;
311 	u_int8_t *enaddr;
312 	int *media, nmedia, defmedia;
313 {
314 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
315 	const char *chipname, *medname;
316 	u_int16_t reg;
317 	int i;
318 
319 	/* Start out in IO mode */
320 	sc->sc_memorymode = FALSE;
321 
322 	/* make sure we're right */
323 	for (i = 0; i < 10000; i++) {
324 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
325 		if (reg == EISA_NUM_CRYSTAL) {
326 			break;
327 		}
328 	}
329 	if (i == 10000) {
330 		printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
331 		return 1; /* XXX should panic? */
332 	}
333 
334 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
335 	sc->sc_prodid = reg & PROD_ID_MASK;
336 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
337 
338 	switch (sc->sc_prodid) {
339 	case PROD_ID_CS8900:
340 		chipname = "CS8900";
341 		break;
342 	case PROD_ID_CS8920:
343 		chipname = "CS8920";
344 		break;
345 	case PROD_ID_CS8920M:
346 		chipname = "CS8920M";
347 		break;
348 	default:
349 		panic("cs_attach: impossible");
350 	}
351 
352 	/*
353 	 * the first thing to do is check that the mbuf cluster size is
354 	 * greater than the MTU for an ethernet frame. The code depends on
355 	 * this and to port this to a OS where this was not the case would
356 	 * not be straightforward.
357 	 *
358 	 * we need 1 byte spare because our
359 	 * packet read loop can overrun.
360 	 * and we may need pad bytes to align ip header.
361 	 */
362 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
363 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
364 		printf("%s: MCLBYTES too small for Ethernet frame\n",
365 		    sc->sc_dev.dv_xname);
366 		return 1;
367 	}
368 
369 	/* Start out not transmitting */
370 	sc->sc_txbusy = FALSE;
371 
372 	/* Set up early transmit threshhold */
373 	sc->sc_xe_ent = 0;
374 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
375 
376 	/* Initialize ifnet structure. */
377 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
378 	ifp->if_softc = sc;
379 	ifp->if_start = cs_start_output;
380 	ifp->if_init = cs_init;
381 	ifp->if_ioctl = cs_ioctl;
382 	ifp->if_stop = cs_stop;
383 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
384 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
385 	    IFF_BROADCAST | IFF_MULTICAST;
386 	IFQ_SET_READY(&ifp->if_snd);
387 
388 	/* Initialize ifmedia structures. */
389 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
390 
391 	if (media != NULL) {
392 		for (i = 0; i < nmedia; i++)
393 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
394 		ifmedia_set(&sc->sc_media, defmedia);
395 	} else {
396 		for (i = 0; i < cs_default_nmedia; i++)
397 			ifmedia_add(&sc->sc_media, cs_default_media[i],
398 			    0, NULL);
399 		cs_get_default_media(sc);
400 	}
401 
402 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
403 		/* Get parameters from the EEPROM */
404 		if (cs_get_params(sc) == CS_ERROR) {
405 			printf("%s: unable to get settings from EEPROM\n",
406 			    sc->sc_dev.dv_xname);
407 			return 1;
408 		}
409 	}
410 
411 	if (enaddr != NULL)
412 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
413 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
414 		/* Get and store the Ethernet address */
415 		if (cs_get_enaddr(sc) == CS_ERROR) {
416 			printf("%s: unable to read Ethernet address\n",
417 			    sc->sc_dev.dv_xname);
418 			return 1;
419 		}
420 	} else {
421 		printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
422 		return 1;
423 	}
424 
425 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
426 	case IFM_10_2:
427 		medname = "BNC";
428 		break;
429 	case IFM_10_5:
430 		medname = "AUI";
431 		break;
432 	case IFM_10_T:
433 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
434 			medname = "UTP <full-duplex>";
435 		else
436 			medname = "UTP";
437 		break;
438 	default:
439 		panic("cs_attach: impossible");
440 	}
441 	printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
442 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
443 	    medname);
444 
445 	if (sc->sc_dma_attach)
446 		(*sc->sc_dma_attach)(sc);
447 
448 	sc->sc_sh = shutdownhook_establish(cs_reset, sc);
449 	if (sc->sc_sh == NULL) {
450 		printf("%s: unable to establish shutdownhook\n",
451 		    sc->sc_dev.dv_xname);
452 		cs_detach(sc);
453 		return 1;
454 	}
455 
456 	/* Attach the interface. */
457 	if_attach(ifp);
458 	ether_ifattach(ifp, sc->sc_enaddr);
459 
460 #if NRND > 0
461 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
462 			  RND_TYPE_NET, 0);
463 #endif
464 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
465 
466 	/* Reset the chip */
467 	if (cs_reset_chip(sc) == CS_ERROR) {
468 		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
469 		cs_detach(sc);
470 		return 1;
471 	}
472 
473 	sc->sc_powerhook = powerhook_establish(cs_power, sc);
474 	if (sc->sc_powerhook == 0)
475 		printf("%s: warning: powerhook_establish failed\n",
476 			sc->sc_dev.dv_xname);
477 
478 	return 0;
479 }
480 
481 int
482 cs_detach(sc)
483 	struct cs_softc *sc;
484 {
485 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
486 
487 	if (sc->sc_powerhook) {
488 		powerhook_disestablish(sc->sc_powerhook);
489 		sc->sc_powerhook = 0;
490 	}
491 
492 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
493 #if NRND > 0
494 		rnd_detach_source(&sc->rnd_source);
495 #endif
496 		ether_ifdetach(ifp);
497 		if_detach(ifp);
498 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
499 	}
500 
501 	if (sc->sc_sh != NULL)
502 		shutdownhook_disestablish(sc->sc_sh);
503 
504 #if 0
505 	/*
506 	 * XXX not necessary
507 	 */
508 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
509 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
510 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
511 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
512 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
513 	}
514 #endif
515 
516 	return 0;
517 }
518 
519 void
520 cs_get_default_media(sc)
521 	struct cs_softc *sc;
522 {
523 	u_int16_t adp_cfg, xmit_ctl;
524 
525 	if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
526 		printf("%s: cs_get_default_media: EEPROM missing or bad\n",
527 		    sc->sc_dev.dv_xname);
528 		goto fakeit;
529 	}
530 
531 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
532 	    &adp_cfg) == CS_ERROR) {
533 		printf("%s: unable to read adapter config from EEPROM\n",
534 		    sc->sc_dev.dv_xname);
535 		goto fakeit;
536 	}
537 
538 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_XMIT_CTL,
539 	    &xmit_ctl) == CS_ERROR) {
540 		printf("%s: unable to read transmit control from EEPROM\n",
541 		    sc->sc_dev.dv_xname);
542 		goto fakeit;
543 	}
544 
545 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
546 	case ADPTR_CFG_AUI:
547 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
548 		break;
549 	case ADPTR_CFG_10BASE2:
550 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
551 		break;
552 	case ADPTR_CFG_10BASET:
553 	default:
554 		if (xmit_ctl & XMIT_CTL_FDX)
555 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
556 		else
557 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
558 		break;
559 	}
560 	return;
561 
562  fakeit:
563 	printf("%s: WARNING: default media setting may be inaccurate\n",
564 	    sc->sc_dev.dv_xname);
565 	/* XXX Arbitrary... */
566 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
567 }
568 
569 int
570 cs_get_params(sc)
571 	struct cs_softc *sc;
572 {
573 	u_int16_t isaConfig;
574 	u_int16_t adapterConfig;
575 
576 	if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
577 		printf("%s: cs_get_params: EEPROM missing or bad\n",
578 		    sc->sc_dev.dv_xname);
579 		return (CS_ERROR);
580 	}
581 
582 	/* Get ISA configuration from the EEPROM */
583 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ISA_CFG,
584 	    &isaConfig) == CS_ERROR)
585 		goto eeprom_bad;
586 
587 	/* Get adapter configuration from the EEPROM */
588 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
589 	    &adapterConfig) == CS_ERROR)
590 		goto eeprom_bad;
591 
592 	/* Copy the USE_SA flag */
593 	if (isaConfig & ISA_CFG_USE_SA)
594 		sc->sc_cfgflags |= CFGFLG_USE_SA;
595 
596 	/* Copy the IO Channel Ready flag */
597 	if (isaConfig & ISA_CFG_IOCHRDY)
598 		sc->sc_cfgflags |= CFGFLG_IOCHRDY;
599 
600 	/* Copy the DC/DC Polarity flag */
601 	if (adapterConfig & ADPTR_CFG_DCDC_POL)
602 		sc->sc_cfgflags |= CFGFLG_DCDC_POL;
603 
604 	return (CS_OK);
605 
606  eeprom_bad:
607 	printf("%s: cs_get_params: unable to read from EEPROM\n",
608 	    sc->sc_dev.dv_xname);
609 	return (CS_ERROR);
610 }
611 
612 int
613 cs_get_enaddr(sc)
614 	struct cs_softc *sc;
615 {
616 	u_int16_t *myea;
617 
618 	if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
619 		printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
620 		    sc->sc_dev.dv_xname);
621 		return (CS_ERROR);
622 	}
623 
624 	myea = (u_int16_t *)sc->sc_enaddr;
625 
626 	/* Get Ethernet address from the EEPROM */
627 	/* XXX this will likely lose on a big-endian machine. -- cgd */
628 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_H,
629 	    &myea[0]) == CS_ERROR)
630 		goto eeprom_bad;
631 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_M,
632 	    &myea[1]) == CS_ERROR)
633 		goto eeprom_bad;
634 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_L,
635 	    &myea[2]) == CS_ERROR)
636 		goto eeprom_bad;
637 
638 	return (CS_OK);
639 
640  eeprom_bad:
641 	printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
642 	    sc->sc_dev.dv_xname);
643 	return (CS_ERROR);
644 }
645 
646 int
647 cs_reset_chip(sc)
648 	struct cs_softc *sc;
649 {
650 	int intState;
651 	int x;
652 
653 	/* Disable interrupts at the CPU so reset command is atomic */
654 	intState = splnet();
655 
656 	/*
657 	 * We are now resetting the chip
658 	 *
659 	 * A spurious interrupt is generated by the chip when it is reset. This
660 	 * variable informs the interrupt handler to ignore this interrupt.
661 	 */
662 	sc->sc_resetting = TRUE;
663 
664 	/* Issue a reset command to the chip */
665 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
666 
667 	/* Re-enable interrupts at the CPU */
668 	splx(intState);
669 
670 	/* The chip is always in IO mode after a reset */
671 	sc->sc_memorymode = FALSE;
672 
673 	/* If transmission was in progress, it is not now */
674 	sc->sc_txbusy = FALSE;
675 
676 	/*
677 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
678 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
679 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
680 	 * should be sufficient.
681 	 */
682 
683 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
684 	bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
685 	bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
686 	bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
687 	bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
688 
689 	/* Wait until the EEPROM is not busy */
690 	for (x = 0; x < MAXLOOP; x++) {
691 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
692 			break;
693 	}
694 
695 	if (x == MAXLOOP)
696 		return CS_ERROR;
697 
698 	/* Wait until initialization is done */
699 	for (x = 0; x < MAXLOOP; x++) {
700 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
701 			break;
702 	}
703 
704 	if (x == MAXLOOP)
705 		return CS_ERROR;
706 
707 	/* Reset is no longer in progress */
708 	sc->sc_resetting = FALSE;
709 
710 	return CS_OK;
711 }
712 
713 int
714 cs_verify_eeprom(iot, ioh)
715 	bus_space_tag_t iot;
716 	bus_space_handle_t ioh;
717 {
718 	u_int16_t self_status;
719 
720 	/* Verify that the EEPROM is present and OK */
721 	self_status = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST);
722 	if (((self_status & SELF_ST_EEP_PRES) &&
723 	     (self_status & SELF_ST_EEP_OK)) == 0)
724 		return (CS_ERROR);
725 
726 	return (CS_OK);
727 }
728 
729 int
730 cs_read_eeprom(iot, ioh, offset, pValue)
731 	bus_space_tag_t iot;
732 	bus_space_handle_t ioh;
733 	int offset;
734 	u_int16_t *pValue;
735 {
736 	int x;
737 
738 	/* Ensure that the EEPROM is not busy */
739 	for (x = 0; x < MAXLOOP; x++) {
740 		if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
741 		      SELF_ST_SI_BUSY))
742 			break;
743 	}
744 
745 	if (x == MAXLOOP)
746 		return (CS_ERROR);
747 
748 	/* Issue the command to read the offset within the EEPROM */
749 	CS_WRITE_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_CMD,
750 	    offset | EEPROM_CMD_READ);
751 
752 	/* Wait until the command is completed */
753 	for (x = 0; x < MAXLOOP; x++) {
754 		if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
755 		      SELF_ST_SI_BUSY))
756 			break;
757 	}
758 
759 	if (x == MAXLOOP)
760 		return (CS_ERROR);
761 
762 	/* Get the EEPROM data from the EEPROM Data register */
763 	*pValue = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_DATA);
764 
765 	return (CS_OK);
766 }
767 
768 void
769 cs_initChip(sc)
770 	struct cs_softc *sc;
771 {
772 	u_int16_t busCtl;
773 	u_int16_t selfCtl;
774 	u_int16_t *myea;
775 	u_int16_t isaId;
776 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
777 
778 	/* Disable reception and transmission of frames */
779 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
780 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
781 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
782 
783 	/* Disable interrupt at the chip */
784 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
785 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
786 
787 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
788 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
789 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
790 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
791 		    busCtl & ~BUS_CTL_IOCHRDY);
792 	} else {
793 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
794 		    busCtl | BUS_CTL_IOCHRDY);
795 	}
796 
797 	/* Set the Line Control register to match the media type */
798 	if (media == IFM_10_T)
799 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
800 	else
801 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
802 
803 	/*
804 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
805 	 * enable the DC/DC converter
806 	 */
807 	selfCtl = SELF_CTL_HC1E;
808 
809 	/* If the media type is 10Base2 */
810 	if (media == IFM_10_2) {
811 		/*
812 		 * Enable the DC/DC converter if it has a low enable.
813 		 */
814 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
815 			/*
816 			 * Set the HCB1 bit, which causes the HC1 pin to go
817 			 * low.
818 			 */
819 			selfCtl |= SELF_CTL_HCB1;
820 	} else { /* Media type is 10BaseT or AUI */
821 		/*
822 		 * Disable the DC/DC converter if it has a high enable.
823 		 */
824 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
825 			/*
826 			 * Set the HCB1 bit, which causes the HC1 pin to go
827 			 * low.
828 			 */
829 			selfCtl |= SELF_CTL_HCB1;
830 		}
831 	}
832 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
833 
834 	/* enable normal link pulse */
835 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
836 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
837 
838 	/* Enable full-duplex, if appropriate */
839 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
840 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
841 
842 	/* RX_CTL set in cs_set_ladr_filt(), below */
843 
844 	/* enable all transmission interrupts */
845 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
846 
847 	/* Accept all receive interrupts */
848 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
849 
850 	/*
851 	 * Configure Operational Modes
852 	 *
853 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
854 	 * a better way to do it because the card has a counter which can be
855 	 * read to update the RX_MISS counter. This saves many interupts.
856 	 *
857 	 * I have turned on the tx and rx overflow interupts to counter using
858 	 * the receive miss interrupt. This is a better estimate of errors
859 	 * and requires lower system overhead.
860 	 */
861 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
862 			  BUF_CFG_RX_DMA_IE);
863 
864 	if (sc->sc_dma_chipinit)
865 		(*sc->sc_dma_chipinit)(sc);
866 
867 	/* If memory mode is enabled */
868 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
869 		/* If external logic is present for address decoding */
870 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
871 			/*
872 			 * Program the external logic to decode address bits
873 			 * SA20-SA23
874 			 */
875 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
876 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
877 			    EEPROM_CMD_ELSEL);
878 		}
879 
880 		/*
881 		 * Write the packet page base physical address to the memory
882 		 * base register.
883 		 */
884 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
885 		    sc->sc_pktpgaddr & 0xFFFF);
886 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
887 		    sc->sc_pktpgaddr >> 16);
888 		busCtl = BUS_CTL_MEM_MODE;
889 
890 		/* tell the chip to read the addresses off the SA pins */
891 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
892 			busCtl |= BUS_CTL_USE_SA;
893 		}
894 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
895 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
896 
897 		/* We are in memory mode now! */
898 		sc->sc_memorymode = TRUE;
899 
900 		/*
901 		 * wait here (10ms) for the chip to swap over. this is the
902 		 * maximum time that this could take.
903 		 */
904 		delay(10000);
905 
906 		/* Verify that we can read from the chip */
907 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
908 
909 		/*
910 		 * As a last minute sanity check before actually using mapped
911 		 * memory we verify that we can read the isa number from the
912 		 * chip in memory mode.
913 		 */
914 		if (isaId != EISA_NUM_CRYSTAL) {
915 			printf("%s: failed to enable memory mode\n",
916 			    sc->sc_dev.dv_xname);
917 			sc->sc_memorymode = FALSE;
918 		} else {
919 			/*
920 			 * we are in memory mode so if we aren't using DMA,
921 			 * then program the chip to interrupt early.
922 			 */
923 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
924 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
925 				    BUF_CFG_RX_DEST_IE |
926 				    BUF_CFG_RX_MISS_OVER_IE |
927 				    BUF_CFG_TX_COL_OVER_IE);
928 			}
929 		}
930 
931 	}
932 
933 	/* Put Ethernet address into the Individual Address register */
934 	myea = (u_int16_t *)sc->sc_enaddr;
935 	CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 0, myea[0]);
936 	CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 2, myea[1]);
937 	CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 4, myea[2]);
938 
939 	if (sc->sc_irq != -1) {
940 		/* Set the interrupt level in the chip */
941 		if (sc->sc_prodid == PROD_ID_CS8900) {
942 			if (sc->sc_irq == 5) {
943 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
944 			} else {
945 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
946 			}
947 		}
948 		else { /* CS8920 */
949 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
950 		}
951 	}
952 
953 	/* write the multicast mask to the address filter register */
954 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
955 
956 	/* Enable reception and transmission of frames */
957 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
958 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
959 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
960 
961 	/* Enable interrupt at the chip */
962 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
963 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
964 }
965 
966 int
967 cs_init(ifp)
968 	struct ifnet *ifp;
969 {
970 	int intState;
971 	int error = CS_OK;
972 	struct cs_softc *sc = ifp->if_softc;
973 
974 	if (cs_enable(sc))
975 		goto out;
976 
977 	cs_stop(ifp, 0);
978 
979 	intState = splnet();
980 
981 #if 0
982 	/* Mark the interface as down */
983 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
984 #endif
985 
986 #ifdef CS_DEBUG
987 	/* Enable debugging */
988 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
989 #endif
990 
991 	/* Reset the chip */
992 	if ((error = cs_reset_chip(sc)) == CS_OK) {
993 		/* Initialize the chip */
994 		cs_initChip(sc);
995 
996 		/* Mark the interface as running */
997 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
998 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
999 		sc->sc_ethercom.ec_if.if_timer = 0;
1000 
1001 		/* Assume we have carrier until we are told otherwise. */
1002 		sc->sc_carrier = 1;
1003 	} else {
1004 		printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
1005 	}
1006 
1007 	splx(intState);
1008 out:
1009 	if (error == CS_OK)
1010 		return 0;
1011 	return EIO;
1012 }
1013 
1014 void
1015 cs_set_ladr_filt(sc, ec)
1016 	struct cs_softc *sc;
1017 	struct ethercom *ec;
1018 {
1019 	struct ifnet *ifp = &ec->ec_if;
1020 	struct ether_multi *enm;
1021 	struct ether_multistep step;
1022 	u_int16_t af[4];
1023 	u_int16_t port, mask, index;
1024 
1025 	/*
1026          * Set up multicast address filter by passing all multicast addresses
1027          * through a crc generator, and then using the high order 6 bits as an
1028          * index into the 64 bit logical address filter.  The high order bit
1029          * selects the word, while the rest of the bits select the bit within
1030          * the word.
1031          */
1032 	if (ifp->if_flags & IFF_PROMISC) {
1033 		/* accept all valid frames. */
1034 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1035 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1036 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1037 		ifp->if_flags |= IFF_ALLMULTI;
1038 		return;
1039 	}
1040 
1041 	/*
1042 	 * accept frames if a. crc valid, b. individual address match c.
1043 	 * broadcast address,and d. multicast addresses matched in the hash
1044 	 * filter
1045 	 */
1046 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1047 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1048 
1049 
1050 	/*
1051 	 * start off with all multicast flag clear, set it if we need to
1052 	 * later, otherwise we will leave it.
1053 	 */
1054 	ifp->if_flags &= ~IFF_ALLMULTI;
1055 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1056 
1057 	/*
1058 	 * Loop through all the multicast addresses unless we get a range of
1059 	 * addresses, in which case we will just accept all packets.
1060 	 * Justification for this is given in the next comment.
1061 	 */
1062 	ETHER_FIRST_MULTI(step, ec, enm);
1063 	while (enm != NULL) {
1064 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1065 		    sizeof enm->enm_addrlo)) {
1066 			/*
1067 	                 * We must listen to a range of multicast addresses.
1068 	                 * For now, just accept all multicasts, rather than
1069 	                 * trying to set only those filter bits needed to match
1070 	                 * the range.  (At this time, the only use of address
1071 	                 * ranges is for IP multicast routing, for which the
1072 	                 * range is big enough to require all bits set.)
1073 	                 */
1074 			ifp->if_flags |= IFF_ALLMULTI;
1075 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1076 			break;
1077 		} else {
1078 			/*
1079 	                 * we have got an individual address so just set that
1080 	                 * bit.
1081 	                 */
1082 			index = cs_hash_index(enm->enm_addrlo);
1083 
1084 			/* Set the bit the Logical address filter. */
1085 			port = (u_int16_t) (index >> 4);
1086 			mask = (u_int16_t) (1 << (index & 0xf));
1087 			af[port] |= mask;
1088 
1089 			ETHER_NEXT_MULTI(step, enm);
1090 		}
1091 	}
1092 
1093 	/* now program the chip with the addresses */
1094 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1095 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1096 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1097 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1098 	return;
1099 }
1100 
1101 u_int16_t
1102 cs_hash_index(addr)
1103 	char *addr;
1104 {
1105 	uint32_t crc;
1106 	uint16_t hash_code;
1107 
1108 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1109 
1110 	hash_code = crc >> 26;
1111 	return (hash_code);
1112 }
1113 
1114 void
1115 cs_reset(arg)
1116 	void *arg;
1117 {
1118 	struct cs_softc *sc = arg;
1119 
1120 	/* Mark the interface as down */
1121 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1122 
1123 	/* Reset the chip */
1124 	cs_reset_chip(sc);
1125 }
1126 
1127 int
1128 cs_ioctl(ifp, cmd, data)
1129 	struct ifnet *ifp;
1130 	u_long cmd;
1131 	caddr_t data;
1132 {
1133 	struct cs_softc *sc = ifp->if_softc;
1134 	struct ifreq *ifr = (struct ifreq *) data;
1135 	int state;
1136 	int result;
1137 
1138 	state = splnet();
1139 
1140 	result = 0;		/* only set if something goes wrong */
1141 
1142 	switch (cmd) {
1143 	case SIOCGIFMEDIA:
1144 	case SIOCSIFMEDIA:
1145 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1146 		break;
1147 
1148 	default:
1149 		result = ether_ioctl(ifp, cmd, data);
1150 		if (result == ENETRESET) {
1151 			if (CS_IS_ENABLED(sc)) {
1152 				/*
1153 				 * Multicast list has changed.  Set the
1154 				 * hardware filter accordingly.
1155 				 */
1156 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1157 			}
1158 			result = 0;
1159 		}
1160 		break;
1161 	}
1162 
1163 	splx(state);
1164 
1165 	return result;
1166 }
1167 
1168 int
1169 cs_mediachange(ifp)
1170 	struct ifnet *ifp;
1171 {
1172 
1173 	/*
1174 	 * Current media is already set up.  Just reset the interface
1175 	 * to let the new value take hold.
1176 	 */
1177 	cs_init(ifp);
1178 	return (0);
1179 }
1180 
1181 void
1182 cs_mediastatus(ifp, ifmr)
1183 	struct ifnet *ifp;
1184 	struct ifmediareq *ifmr;
1185 {
1186 	struct cs_softc *sc = ifp->if_softc;
1187 
1188 	/*
1189 	 * The currently selected media is always the active media.
1190 	 */
1191 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1192 
1193 	if (ifp->if_flags & IFF_UP) {
1194 		/* Interface up, status is valid. */
1195 		ifmr->ifm_status = IFM_AVALID |
1196 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1197 	}
1198 		else ifmr->ifm_status = 0;
1199 }
1200 
1201 int
1202 cs_intr(arg)
1203 	void *arg;
1204 {
1205 	struct cs_softc *sc = arg;
1206 	u_int16_t Event;
1207 #if NRND > 0
1208 	u_int16_t rndEvent;
1209 #endif
1210 
1211 	/* Ignore any interrupts that happen while the chip is being reset */
1212 	if (sc->sc_resetting) {
1213 		printf("%s: cs_intr: reset in progress\n",
1214 		    sc->sc_dev.dv_xname);
1215 		return 1;
1216 	}
1217 
1218 	/* Read an event from the Interrupt Status Queue */
1219 	if (sc->sc_memorymode)
1220 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1221 	else
1222 		Event = CS_READ_PORT(sc, PORT_ISQ);
1223 
1224 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1225 		return 0;	/* not ours */
1226 
1227 #if NRND > 0
1228 	rndEvent = Event;
1229 #endif
1230 
1231 	/* Process all the events in the Interrupt Status Queue */
1232 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1233 		/* Dispatch to an event handler based on the register number */
1234 		switch (Event & REG_NUM_MASK) {
1235 		case REG_NUM_RX_EVENT:
1236 			cs_receive_event(sc, Event);
1237 			break;
1238 		case REG_NUM_TX_EVENT:
1239 			cs_transmit_event(sc, Event);
1240 			break;
1241 		case REG_NUM_BUF_EVENT:
1242 			cs_buffer_event(sc, Event);
1243 			break;
1244 		case REG_NUM_TX_COL:
1245 		case REG_NUM_RX_MISS:
1246 			cs_counter_event(sc, Event);
1247 			break;
1248 		default:
1249 			printf("%s: unknown interrupt event 0x%x\n",
1250 			    sc->sc_dev.dv_xname, Event);
1251 			break;
1252 		}
1253 
1254 		/* Read another event from the Interrupt Status Queue */
1255 		if (sc->sc_memorymode)
1256 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1257 		else
1258 			Event = CS_READ_PORT(sc, PORT_ISQ);
1259 	}
1260 
1261 	/* have handled the interupt */
1262 #if NRND > 0
1263 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1264 #endif
1265 	return 1;
1266 }
1267 
1268 void
1269 cs_counter_event(sc, cntEvent)
1270 	struct cs_softc *sc;
1271 	u_int16_t cntEvent;
1272 {
1273 	struct ifnet *ifp;
1274 	u_int16_t errorCount;
1275 
1276 	ifp = &sc->sc_ethercom.ec_if;
1277 
1278 	switch (cntEvent & REG_NUM_MASK) {
1279 	case REG_NUM_TX_COL:
1280 		/*
1281 		 * the count should be read before an overflow occurs.
1282 		 */
1283 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1284 		/*
1285 		 * the tramsit event routine always checks the number of
1286 		 * collisions for any packet so we don't increment any
1287 		 * counters here, as they should already have been
1288 		 * considered.
1289 		 */
1290 		break;
1291 	case REG_NUM_RX_MISS:
1292 		/*
1293 		 * the count should be read before an overflow occurs.
1294 		 */
1295 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1296 		/*
1297 		 * Increment the input error count, the first 6bits are the
1298 		 * register id.
1299 		 */
1300 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1301 		break;
1302 	default:
1303 		/* do nothing */
1304 		break;
1305 	}
1306 }
1307 
1308 void
1309 cs_buffer_event(sc, bufEvent)
1310 	struct cs_softc *sc;
1311 	u_int16_t bufEvent;
1312 {
1313 	struct ifnet *ifp;
1314 
1315 	ifp = &sc->sc_ethercom.ec_if;
1316 
1317 	/*
1318 	 * multiple events can be in the buffer event register at one time so
1319 	 * a standard switch statement will not suffice, here every event
1320 	 * must be checked.
1321 	 */
1322 
1323 	/*
1324 	 * if 128 bits have been rxed by the time we get here, the dest event
1325 	 * will be cleared and 128 event will be set.
1326 	 */
1327 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1328 		cs_process_rx_early(sc);
1329 	}
1330 
1331 	if (bufEvent & BUF_EVENT_RX_DMA) {
1332 		/* process the receive data */
1333 		if (sc->sc_dma_process_rx)
1334 			(*sc->sc_dma_process_rx)(sc);
1335 		else
1336 			/* should panic? */
1337 			printf("%s: unexpected dma event\n", sc->sc_dev.dv_xname);
1338 	}
1339 
1340 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1341 #if 0
1342 		/*
1343 		 * This can happen occasionally, and it's not worth worrying
1344 		 * about.
1345 		 */
1346 		printf("%s: transmit underrun (%d -> %d)\n",
1347 		    sc->sc_dev.dv_xname, sc->sc_xe_ent,
1348 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1349 #endif
1350 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1351 		sc->sc_xe_togo =
1352 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1353 
1354 		/* had an underrun, transmit is finished */
1355 		sc->sc_txbusy = FALSE;
1356 	}
1357 
1358 	if (bufEvent & BUF_EVENT_SW_INT) {
1359 		printf("%s: software initiated interrupt\n",
1360 		    sc->sc_dev.dv_xname);
1361 	}
1362 }
1363 
1364 void
1365 cs_transmit_event(sc, txEvent)
1366 	struct cs_softc *sc;
1367 	u_int16_t txEvent;
1368 {
1369 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1370 
1371 	/* If there were any errors transmitting this frame */
1372 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1373 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1374 		/* Increment the output error count */
1375 		ifp->if_oerrors++;
1376 
1377 		/* Note carrier loss. */
1378 		if (txEvent & TX_EVENT_LOSS_CRS)
1379 			sc->sc_carrier = 0;
1380 
1381 		/* If debugging is enabled then log error messages */
1382 		if (ifp->if_flags & IFF_DEBUG) {
1383 			if (txEvent & TX_EVENT_LOSS_CRS) {
1384 				printf("%s: lost carrier\n",
1385 				    sc->sc_dev.dv_xname);
1386 			}
1387 			if (txEvent & TX_EVENT_SQE_ERR) {
1388 				printf("%s: SQE error\n",
1389 				    sc->sc_dev.dv_xname);
1390 			}
1391 			if (txEvent & TX_EVENT_OUT_WIN) {
1392 				printf("%s: out-of-window collision\n",
1393 				    sc->sc_dev.dv_xname);
1394 			}
1395 			if (txEvent & TX_EVENT_JABBER) {
1396 				printf("%s: jabber\n", sc->sc_dev.dv_xname);
1397 			}
1398 			if (txEvent & TX_EVENT_16_COLL) {
1399 				printf("%s: 16 collisions\n",
1400 				    sc->sc_dev.dv_xname);
1401 			}
1402 		}
1403 	}
1404 	else {
1405 		/* Transmission successful, carrier is up. */
1406 		sc->sc_carrier = 1;
1407 #ifdef SHARK
1408 		ledNetActive();
1409 #endif
1410 	}
1411 
1412 	/* Add the number of collisions for this frame */
1413 	if (txEvent & TX_EVENT_16_COLL) {
1414 		ifp->if_collisions += 16;
1415 	} else {
1416 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1417 	}
1418 
1419 	ifp->if_opackets++;
1420 
1421 	/* Transmission is no longer in progress */
1422 	sc->sc_txbusy = FALSE;
1423 
1424 	/* If there is more to transmit */
1425 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1426 		/* Start the next transmission */
1427 		cs_start_output(ifp);
1428 	}
1429 }
1430 
1431 void
1432 cs_print_rx_errors(sc, rxEvent)
1433 	struct cs_softc *sc;
1434 	u_int16_t rxEvent;
1435 {
1436 
1437 	if (rxEvent & RX_EVENT_RUNT)
1438 		printf("%s: runt\n", sc->sc_dev.dv_xname);
1439 
1440 	if (rxEvent & RX_EVENT_X_DATA)
1441 		printf("%s: extra data\n", sc->sc_dev.dv_xname);
1442 
1443 	if (rxEvent & RX_EVENT_CRC_ERR) {
1444 		if (rxEvent & RX_EVENT_DRIBBLE)
1445 			printf("%s: alignment error\n", sc->sc_dev.dv_xname);
1446 		else
1447 			printf("%s: CRC error\n", sc->sc_dev.dv_xname);
1448 	} else {
1449 		if (rxEvent & RX_EVENT_DRIBBLE)
1450 			printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
1451 	}
1452 }
1453 
1454 void
1455 cs_receive_event(sc, rxEvent)
1456 	struct cs_softc *sc;
1457 	u_int16_t rxEvent;
1458 {
1459 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1460 
1461 	/* If the frame was not received OK */
1462 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1463 		/* Increment the input error count */
1464 		ifp->if_ierrors++;
1465 
1466 		/*
1467 		 * If debugging is enabled then log error messages.
1468 		 */
1469 		if (ifp->if_flags & IFF_DEBUG) {
1470 			if (rxEvent != REG_NUM_RX_EVENT) {
1471 				cs_print_rx_errors(sc, rxEvent);
1472 
1473 				/*
1474 				 * Must read the length of all received
1475 				 * frames
1476 				 */
1477 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1478 
1479 				/* Skip the received frame */
1480 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1481 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1482 						  RX_CFG_SKIP);
1483 			} else {
1484 				printf("%s: implied skip\n",
1485 				    sc->sc_dev.dv_xname);
1486 			}
1487 		}
1488 	} else {
1489 		/*
1490 		 * process the received frame and pass it up to the upper
1491 		 * layers.
1492 		 */
1493 		cs_process_receive(sc);
1494 	}
1495 }
1496 
1497 void
1498 cs_ether_input(sc, m)
1499 	struct cs_softc *sc;
1500 	struct mbuf *m;
1501 {
1502 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1503 
1504 	ifp->if_ipackets++;
1505 
1506 #if NBPFILTER > 0
1507 	/*
1508 	 * Check if there's a BPF listener on this interface.
1509 	 * If so, hand off the raw packet to BPF.
1510 	 */
1511 	if (ifp->if_bpf)
1512 		bpf_mtap(ifp->if_bpf, m);
1513 #endif
1514 
1515 	/* Pass the packet up. */
1516 	(*ifp->if_input)(ifp, m);
1517 }
1518 
1519 void
1520 cs_process_receive(sc)
1521 	struct cs_softc *sc;
1522 {
1523 	struct ifnet *ifp;
1524 	struct mbuf *m;
1525 	int totlen;
1526 	u_int16_t *pBuff, *pBuffLimit;
1527 	int pad;
1528 	unsigned int frameOffset;
1529 
1530 #ifdef SHARK
1531 	ledNetActive();
1532 #endif
1533 
1534 	ifp = &sc->sc_ethercom.ec_if;
1535 
1536 	/* Received a packet; carrier is up. */
1537 	sc->sc_carrier = 1;
1538 
1539 	if (sc->sc_memorymode) {
1540 		/* Initialize the frame offset */
1541 		frameOffset = PKTPG_RX_LENGTH;
1542 
1543 		/* Get the length of the received frame */
1544 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1545 		frameOffset += 2;
1546 	}
1547 	else {
1548 		/* drop status */
1549 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1550 
1551 		/* Get the length of the received frame */
1552 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1553 	}
1554 
1555 	if (totlen > ETHER_MAX_LEN) {
1556 		printf("%s: invalid packet length\n", sc->sc_dev.dv_xname);
1557 
1558 		/* skip the received frame */
1559 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1560 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1561 		return;
1562 	}
1563 
1564 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1565 	if (m == 0) {
1566 		printf("%s: cs_process_receive: unable to allocate mbuf\n",
1567 		    sc->sc_dev.dv_xname);
1568 		ifp->if_ierrors++;
1569 		/*
1570 		 * couldn't allocate an mbuf so things are not good, may as
1571 		 * well drop the packet I think.
1572 		 *
1573 		 * have already read the length so we should be right to skip
1574 		 * the packet.
1575 		 */
1576 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1577 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1578 		return;
1579 	}
1580 	m->m_pkthdr.rcvif = ifp;
1581 	m->m_pkthdr.len = totlen;
1582 
1583 	/* number of bytes to align ip header on word boundary for ipintr */
1584 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1585 
1586 	/*
1587 	 * alloc mbuf cluster if we need.
1588 	 * we need 1 byte spare because following
1589 	 * packet read loop can overrun.
1590 	 */
1591 	if (totlen + pad + 1 > MHLEN) {
1592 		MCLGET(m, M_DONTWAIT);
1593 		if ((m->m_flags & M_EXT) == 0) {
1594 			/* couldn't allocate an mbuf cluster */
1595 			printf("%s: cs_process_receive: unable to allocate a cluster\n",
1596 				sc->sc_dev.dv_xname);
1597 			m_freem(m);
1598 
1599 			/* skip the received frame */
1600 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1601 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1602 			return;
1603 		}
1604 	}
1605 
1606 	/* align ip header on word boundary for ipintr */
1607 	m->m_data += pad;
1608 
1609 	m->m_len = totlen;
1610 	pBuff = mtod(m, u_int16_t *);
1611 
1612 	/* now read the data from the chip */
1613 	if (sc->sc_memorymode) {
1614 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1615 		while (pBuff < pBuffLimit) {
1616 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1617 			frameOffset += 2;
1618 		}
1619 	}
1620 	else {
1621 		bus_space_read_multi_2(sc->sc_iot, sc->sc_ioh, PORT_RXTX_DATA,
1622 			pBuff, (totlen + 1)>>1);
1623 	}
1624 
1625 	cs_ether_input(sc, m);
1626 }
1627 
1628 void
1629 cs_process_rx_early(sc)
1630 	struct cs_softc *sc;
1631 {
1632 	struct ifnet *ifp;
1633 	struct mbuf *m;
1634 	u_int16_t frameCount, oldFrameCount;
1635 	u_int16_t rxEvent;
1636 	u_int16_t *pBuff;
1637 	int pad;
1638 	unsigned int frameOffset;
1639 
1640 
1641 	ifp = &sc->sc_ethercom.ec_if;
1642 
1643 	/* Initialize the frame offset */
1644 	frameOffset = PKTPG_RX_FRAME;
1645 	frameCount = 0;
1646 
1647 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1648 	if (m == 0) {
1649 		printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
1650 		    sc->sc_dev.dv_xname);
1651 		ifp->if_ierrors++;
1652 		/*
1653 		 * couldn't allocate an mbuf so things are not good, may as
1654 		 * well drop the packet I think.
1655 		 *
1656 		 * have already read the length so we should be right to skip
1657 		 * the packet.
1658 		 */
1659 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1660 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1661 		return;
1662 	}
1663 	m->m_pkthdr.rcvif = ifp;
1664 	/*
1665 	 * save processing by always using a mbuf cluster, guarenteed to fit
1666 	 * packet
1667 	 */
1668 	MCLGET(m, M_DONTWAIT);
1669 	if ((m->m_flags & M_EXT) == 0) {
1670 		/* couldn't allocate an mbuf cluster */
1671 		printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
1672 		    sc->sc_dev.dv_xname);
1673 		m_freem(m);
1674 		/* skip the frame */
1675 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1676 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1677 		return;
1678 	}
1679 
1680 	/* align ip header on word boundary for ipintr */
1681 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1682 	m->m_data += pad;
1683 
1684 	/* set up the buffer pointer to point to the data area */
1685 	pBuff = mtod(m, u_int16_t *);
1686 
1687 	/*
1688 	 * now read the frame byte counter until we have finished reading the
1689 	 * frame
1690 	 */
1691 	oldFrameCount = 0;
1692 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1693 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1694 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1695 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1696 			frameOffset += 2;
1697 		}
1698 
1699 		/* read the new count from the chip */
1700 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1701 	}
1702 
1703 	/* update the mbuf counts */
1704 	m->m_len = oldFrameCount;
1705 	m->m_pkthdr.len = oldFrameCount;
1706 
1707 	/* now check the Rx Event register */
1708 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1709 
1710 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1711 		/*
1712 		 * do an implied skip, it seems to be more reliable than a
1713 		 * forced skip.
1714 		 */
1715 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1716 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1717 
1718 		/*
1719 		 * now read the RX_EVENT register to perform an implied skip.
1720 		 */
1721 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1722 
1723 		cs_ether_input(sc, m);
1724 	} else {
1725 		m_freem(m);
1726 		ifp->if_ierrors++;
1727 	}
1728 }
1729 
1730 void
1731 cs_start_output(ifp)
1732 	struct ifnet *ifp;
1733 {
1734 	struct cs_softc *sc;
1735 	struct mbuf *pMbuf;
1736 	struct mbuf *pMbufChain;
1737 	u_int16_t BusStatus;
1738 	u_int16_t Length;
1739 	int txLoop = 0;
1740 	int dropout = 0;
1741 
1742 	sc = ifp->if_softc;
1743 
1744 	/* check that the interface is up and running */
1745 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1746 		return;
1747 	}
1748 
1749 	/* Don't interrupt a transmission in progress */
1750 	if (sc->sc_txbusy) {
1751 		return;
1752 	}
1753 
1754 	/* this loop will only run through once if transmission is successful */
1755 	/*
1756 	 * While there are packets to transmit and a transmit is not in
1757 	 * progress
1758 	 */
1759 	while (sc->sc_txbusy == 0 && dropout == 0) {
1760 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1761 		if (pMbufChain == NULL)
1762 			break;
1763 
1764 #if NBPFILTER > 0
1765 		/*
1766 	         * If BPF is listening on this interface, let it see the packet
1767 	         * before we commit it to the wire.
1768 	         */
1769 		if (ifp->if_bpf)
1770 			bpf_mtap(ifp->if_bpf, pMbufChain);
1771 #endif
1772 
1773 		/* Find the total length of the data to transmit */
1774 		Length = 0;
1775 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1776 			Length += pMbuf->m_len;
1777 
1778 		do {
1779 			/*
1780 			 * Request that the transmit be started after all
1781 			 * data has been copied
1782 			 *
1783 			 * In IO mode must write to the IO port not the packet
1784 			 * page address
1785 			 *
1786 			 * If this is changed to start transmission after a
1787 			 * small amount of data has been copied you tend to
1788 			 * get packet missed errors i think because the ISA
1789 			 * bus is too slow. Or possibly the copy routine is
1790 			 * not streamlined enough.
1791 			 */
1792 			if (sc->sc_memorymode) {
1793 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1794 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1795 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1796 			}
1797 			else {
1798 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1799 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1800 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1801 			}
1802 
1803 			/*
1804 			 * Adjust early-transmit machinery.
1805 			 */
1806 			if (--sc->sc_xe_togo == 0) {
1807 				sc->sc_xe_ent =
1808 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1809 				sc->sc_xe_togo =
1810 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1811 			}
1812 			/*
1813 			 * Read the BusStatus register which indicates
1814 			 * success of the request
1815 			 */
1816 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1817 
1818 			/*
1819 			 * If there was an error in the transmit bid free the
1820 			 * mbuf and go on. This is presuming that mbuf is
1821 			 * corrupt.
1822 			 */
1823 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1824 				printf("%s: transmit bid error (too big)",
1825 				    sc->sc_dev.dv_xname);
1826 
1827 				/* Discard the bad mbuf chain */
1828 				m_freem(pMbufChain);
1829 				sc->sc_ethercom.ec_if.if_oerrors++;
1830 
1831 				/* Loop up to transmit the next chain */
1832 				txLoop = 0;
1833 			} else {
1834 				if (BusStatus & BUS_ST_RDY4TXNOW) {
1835 					/*
1836 					 * The chip is ready for transmission
1837 					 * now
1838 					 */
1839 					/*
1840 					 * Copy the frame to the chip to
1841 					 * start transmission
1842 					 */
1843 					cs_copy_tx_frame(sc, pMbufChain);
1844 
1845 					/* Free the mbuf chain */
1846 					m_freem(pMbufChain);
1847 
1848 					/* Transmission is now in progress */
1849 					sc->sc_txbusy = TRUE;
1850 					txLoop = 0;
1851 				} else {
1852 					/*
1853 					 * if we get here we want to try
1854 					 * again with the same mbuf, until
1855 					 * the chip lets us transmit.
1856 					 */
1857 					txLoop++;
1858 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
1859 						/* Free the mbuf chain */
1860 						m_freem(pMbufChain);
1861 						/*
1862 						 * Transmission is not in
1863 						 * progress
1864 						 */
1865 						sc->sc_txbusy = FALSE;
1866 						/*
1867 						 * Increment the output error
1868 						 * count
1869 						 */
1870 						ifp->if_oerrors++;
1871 						/*
1872 						 * exit the routine and drop
1873 						 * the packet.
1874 						 */
1875 						txLoop = 0;
1876 						dropout = 1;
1877 					}
1878 				}
1879 			}
1880 		} while (txLoop);
1881 	}
1882 }
1883 
1884 void
1885 cs_copy_tx_frame(sc, m0)
1886 	struct cs_softc *sc;
1887 	struct mbuf *m0;
1888 {
1889 	struct mbuf *m;
1890 	int len, leftover, frameoff;
1891 	u_int16_t dbuf;
1892 	u_int8_t *p;
1893 #ifdef DIAGNOSTIC
1894 	u_int8_t *lim;
1895 #endif
1896 
1897 	/* Initialize frame pointer and data port address */
1898 	frameoff = PKTPG_TX_FRAME;
1899 
1900 	/* start out with no leftover data */
1901 	leftover = 0;
1902 	dbuf = 0;
1903 
1904 	/* Process the chain of mbufs */
1905 	for (m = m0; m != NULL; m = m->m_next) {
1906 		/*
1907 		 * Process all of the data in a single mbuf.
1908 		 */
1909 		p = mtod(m, u_int8_t *);
1910 		len = m->m_len;
1911 #ifdef DIAGNOSTIC
1912 		lim = p + len;
1913 #endif
1914 
1915 		while (len > 0) {
1916 			if (leftover) {
1917 				/*
1918 				 * Data left over (from mbuf or realignment).
1919 				 * Buffer the next byte, and write it and
1920 				 * the leftover data out.
1921 				 */
1922 				dbuf |= *p++ << 8;
1923 				len--;
1924 				if (sc->sc_memorymode) {
1925 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1926 					frameoff += 2;
1927 				}
1928 				else {
1929 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1930 				}
1931 				leftover = 0;
1932 			} else if ((long) p & 1) {
1933 				/*
1934 				 * Misaligned data.  Buffer the next byte.
1935 				 */
1936 				dbuf = *p++;
1937 				len--;
1938 				leftover = 1;
1939 			} else {
1940 				/*
1941 				 * Aligned data.  This is the case we like.
1942 				 *
1943 				 * Write-region out as much as we can, then
1944 				 * buffer the remaining byte (if any).
1945 				 */
1946 				leftover = len & 1;
1947 				len &= ~1;
1948 				if (sc->sc_memorymode) {
1949 					bus_space_write_region_2(sc->sc_memt, sc->sc_memh, frameoff,
1950 						(u_int16_t *) p, len >> 1);
1951 					frameoff += len;
1952 				}
1953 				else {
1954 					bus_space_write_multi_2(sc->sc_iot, sc->sc_ioh,
1955 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
1956 				}
1957 				p += len;
1958 
1959 				if (leftover)
1960 					dbuf = *p++;
1961 				len = 0;
1962 			}
1963 		}
1964 		if (len < 0)
1965 			panic("cs_copy_tx_frame: negative len");
1966 #ifdef DIAGNOSTIC
1967 		if (p != lim)
1968 			panic("cs_copy_tx_frame: p != lim");
1969 #endif
1970 	}
1971 	if (leftover) {
1972 		if (sc->sc_memorymode) {
1973 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1974 		}
1975 		else {
1976 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1977 		}
1978 	}
1979 }
1980 
1981 static int
1982 cs_enable(sc)
1983 	struct cs_softc *sc;
1984 {
1985 
1986 	if (CS_IS_ENABLED(sc) == 0) {
1987 		if (sc->sc_enable != NULL) {
1988 			int error;
1989 
1990 			error = (*sc->sc_enable)(sc);
1991 			if (error)
1992 				return (error);
1993 		}
1994 		sc->sc_cfgflags |= CFGFLG_ENABLED;
1995 	}
1996 
1997 	return (0);
1998 }
1999 
2000 static void
2001 cs_disable(sc)
2002 	struct cs_softc *sc;
2003 {
2004 
2005 	if (CS_IS_ENABLED(sc)) {
2006 		if (sc->sc_disable != NULL)
2007 			(*sc->sc_disable)(sc);
2008 
2009 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2010 	}
2011 }
2012 
2013 static void
2014 cs_stop(ifp, disable)
2015 	struct ifnet *ifp;
2016 	int disable;
2017 {
2018 	struct cs_softc *sc = ifp->if_softc;
2019 
2020 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2021 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2022 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2023 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2024 
2025 	if (disable) {
2026 		cs_disable(sc);
2027 	}
2028 
2029 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2030 }
2031 
2032 int
2033 cs_activate(self, act)
2034 	struct device *self;
2035 	enum devact act;
2036 {
2037 	struct cs_softc *sc = (void *)self;
2038 	int s, error = 0;
2039 
2040 	s = splnet();
2041 	switch (act) {
2042 	case DVACT_ACTIVATE:
2043 		error = EOPNOTSUPP;
2044 		break;
2045 
2046 	case DVACT_DEACTIVATE:
2047 		if_deactivate(&sc->sc_ethercom.ec_if);
2048 		break;
2049 	}
2050 	splx(s);
2051 
2052 	return error;
2053 }
2054 
2055 static void
2056 cs_power(why, arg)
2057 	int why;
2058 	void *arg;
2059 {
2060 	struct cs_softc *sc = arg;
2061 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2062 	int s;
2063 
2064 	s = splnet();
2065 	switch (why) {
2066 	case PWR_STANDBY:
2067 	case PWR_SUSPEND:
2068 		cs_stop(ifp, 0);
2069 		break;
2070 	case PWR_RESUME:
2071 		if (ifp->if_flags & IFF_UP) {
2072 			cs_init(ifp);
2073 		}
2074 		break;
2075 	case PWR_SOFTSUSPEND:
2076 	case PWR_SOFTSTANDBY:
2077 	case PWR_SOFTRESUME:
2078 		break;
2079 	}
2080 	splx(s);
2081 }
2082