xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: cs89x0.c,v 1.22 2007/10/19 11:59:50 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.22 2007/10/19 11:59:50 ad Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 
229 #include "rnd.h"
230 #if NRND > 0
231 #include <sys/rnd.h>
232 #endif
233 
234 #include <net/if.h>
235 #include <net/if_ether.h>
236 #include <net/if_media.h>
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241 
242 #include "bpfilter.h"
243 #if NBPFILTER > 0
244 #include <net/bpf.h>
245 #include <net/bpfdesc.h>
246 #endif
247 
248 #include <uvm/uvm_extern.h>
249 
250 #include <sys/bus.h>
251 #include <sys/intr.h>
252 
253 #include <dev/ic/cs89x0reg.h>
254 #include <dev/ic/cs89x0var.h>
255 
256 #ifdef SHARK
257 #include <shark/shark/sequoia.h>
258 #endif
259 
260 /*
261  * MACRO DEFINITIONS
262  */
263 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
264 
265 /*
266  * FUNCTION PROTOTYPES
267  */
268 void	cs_get_default_media(struct cs_softc *);
269 int	cs_get_params(struct cs_softc *);
270 int	cs_get_enaddr(struct cs_softc *);
271 int	cs_reset_chip(struct cs_softc *);
272 void	cs_reset(void *);
273 int	cs_ioctl(struct ifnet *, u_long, void *);
274 void	cs_initChip(struct cs_softc *);
275 void	cs_buffer_event(struct cs_softc *, u_int16_t);
276 void	cs_transmit_event(struct cs_softc *, u_int16_t);
277 void	cs_receive_event(struct cs_softc *, u_int16_t);
278 void	cs_process_receive(struct cs_softc *);
279 void	cs_process_rx_early(struct cs_softc *);
280 void	cs_start_output(struct ifnet *);
281 void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
282 void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
283 u_int16_t cs_hash_index(char *);
284 void	cs_counter_event(struct cs_softc *, u_int16_t);
285 
286 int	cs_mediachange(struct ifnet *);
287 void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
288 
289 static int cs_enable(struct cs_softc *);
290 static void cs_disable(struct cs_softc *);
291 static void cs_stop(struct ifnet *, int);
292 static void cs_power(int, void *);
293 static int cs_scan_eeprom(struct cs_softc *);
294 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
295 
296 
297 /*
298  * GLOBAL DECLARATIONS
299  */
300 
301 /*
302  * Xmit-early table.
303  *
304  * To get better performance, we tell the chip to start packet
305  * transmission before the whole packet is copied to the chip.
306  * However, this can fail under load.  When it fails, we back off
307  * to a safer setting for a little while.
308  *
309  * txcmd is the value of txcmd used to indicate when to start transmission.
310  * better is the next 'better' state in the table.
311  * better_count is the number of output packets before transition to the
312  *   better state.
313  * worse is the next 'worse' state in the table.
314  *
315  * Transition to the next worse state happens automatically when a
316  * transmittion underrun occurs.
317  */
318 struct cs_xmit_early {
319 	u_int16_t       txcmd;
320 	int             better;
321 	int             better_count;
322 	int             worse;
323 } cs_xmit_early_table[3] = {
324 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
325 	{ TX_CMD_START_1021,	0,	50000,		2, },
326 	{ TX_CMD_START_ALL,	1,	5000,		2, },
327 };
328 
329 int cs_default_media[] = {
330 	IFM_ETHER|IFM_10_2,
331 	IFM_ETHER|IFM_10_5,
332 	IFM_ETHER|IFM_10_T,
333 	IFM_ETHER|IFM_10_T|IFM_FDX,
334 };
335 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
336 
337 int
338 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
339 	  int nmedia, int defmedia)
340 {
341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
342 	const char *chipname, *medname;
343 	u_int16_t reg;
344 	int i;
345 
346 	/* Start out in IO mode */
347 	sc->sc_memorymode = FALSE;
348 
349 	/* make sure we're right */
350 	for (i = 0; i < 10000; i++) {
351 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
352 		if (reg == EISA_NUM_CRYSTAL) {
353 			break;
354 		}
355 	}
356 	if (i == 10000) {
357 		printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
358 		return 1; /* XXX should panic? */
359 	}
360 
361 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
362 	sc->sc_prodid = reg & PROD_ID_MASK;
363 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
364 
365 	switch (sc->sc_prodid) {
366 	case PROD_ID_CS8900:
367 		chipname = "CS8900";
368 		break;
369 	case PROD_ID_CS8920:
370 		chipname = "CS8920";
371 		break;
372 	case PROD_ID_CS8920M:
373 		chipname = "CS8920M";
374 		break;
375 	default:
376 		panic("cs_attach: impossible");
377 	}
378 
379 	/*
380 	 * the first thing to do is check that the mbuf cluster size is
381 	 * greater than the MTU for an ethernet frame. The code depends on
382 	 * this and to port this to a OS where this was not the case would
383 	 * not be straightforward.
384 	 *
385 	 * we need 1 byte spare because our
386 	 * packet read loop can overrun.
387 	 * and we may need pad bytes to align ip header.
388 	 */
389 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
390 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
391 		printf("%s: MCLBYTES too small for Ethernet frame\n",
392 		    sc->sc_dev.dv_xname);
393 		return 1;
394 	}
395 
396 	/* Start out not transmitting */
397 	sc->sc_txbusy = FALSE;
398 
399 	/* Set up early transmit threshhold */
400 	sc->sc_xe_ent = 0;
401 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
402 
403 	/* Initialize ifnet structure. */
404 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
405 	ifp->if_softc = sc;
406 	ifp->if_start = cs_start_output;
407 	ifp->if_init = cs_init;
408 	ifp->if_ioctl = cs_ioctl;
409 	ifp->if_stop = cs_stop;
410 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
411 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
412 	    IFF_BROADCAST | IFF_MULTICAST;
413 	IFQ_SET_READY(&ifp->if_snd);
414 
415 	/* Initialize ifmedia structures. */
416 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
417 
418 	if (media != NULL) {
419 		for (i = 0; i < nmedia; i++)
420 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
421 		ifmedia_set(&sc->sc_media, defmedia);
422 	} else {
423 		for (i = 0; i < cs_default_nmedia; i++)
424 			ifmedia_add(&sc->sc_media, cs_default_media[i],
425 			    0, NULL);
426 		cs_get_default_media(sc);
427 	}
428 
429 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
430 		if (cs_scan_eeprom(sc) == CS_ERROR) {
431 			/* failed to scan the eeprom, pretend there isn't an eeprom */
432 			printf("%s: unable to scan EEPROM\n",
433 				    sc->sc_dev.dv_xname);
434 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
435 		}
436 	}
437 
438 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
439 		/* Get parameters from the EEPROM */
440 		if (cs_get_params(sc) == CS_ERROR) {
441 			printf("%s: unable to get settings from EEPROM\n",
442 			    sc->sc_dev.dv_xname);
443 			return 1;
444 		}
445 	}
446 
447 	if (enaddr != NULL)
448 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
449 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
450 		/* Get and store the Ethernet address */
451 		if (cs_get_enaddr(sc) == CS_ERROR) {
452 			printf("%s: unable to read Ethernet address\n",
453 			    sc->sc_dev.dv_xname);
454 			return 1;
455 		}
456 	} else {
457 #if 1
458 		int j;
459 		uint v;
460 
461 		for (j = 0; j < 6; j += 2) {
462 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
463 			sc->sc_enaddr[j + 0] = v;
464 			sc->sc_enaddr[j + 1] = v >> 8;
465 		}
466 #else
467 		printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
468 		return 1;
469 #endif
470 	}
471 
472 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
473 	case IFM_10_2:
474 		medname = "BNC";
475 		break;
476 	case IFM_10_5:
477 		medname = "AUI";
478 		break;
479 	case IFM_10_T:
480 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
481 			medname = "UTP <full-duplex>";
482 		else
483 			medname = "UTP";
484 		break;
485 	default:
486 		panic("cs_attach: impossible");
487 	}
488 	printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
489 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
490 	    medname);
491 
492 	if (sc->sc_dma_attach)
493 		(*sc->sc_dma_attach)(sc);
494 
495 	sc->sc_sh = shutdownhook_establish(cs_reset, sc);
496 	if (sc->sc_sh == NULL) {
497 		printf("%s: unable to establish shutdownhook\n",
498 		    sc->sc_dev.dv_xname);
499 		cs_detach(sc);
500 		return 1;
501 	}
502 
503 	/* Attach the interface. */
504 	if_attach(ifp);
505 	ether_ifattach(ifp, sc->sc_enaddr);
506 
507 #if NRND > 0
508 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
509 			  RND_TYPE_NET, 0);
510 #endif
511 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
512 
513 	/* Reset the chip */
514 	if (cs_reset_chip(sc) == CS_ERROR) {
515 		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
516 		cs_detach(sc);
517 		return 1;
518 	}
519 
520 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
521 	    cs_power, sc);
522 	if (sc->sc_powerhook == 0)
523 		printf("%s: warning: powerhook_establish failed\n",
524 			sc->sc_dev.dv_xname);
525 
526 	return 0;
527 }
528 
529 int
530 cs_detach(struct cs_softc *sc)
531 {
532 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
533 
534 	if (sc->sc_powerhook) {
535 		powerhook_disestablish(sc->sc_powerhook);
536 		sc->sc_powerhook = 0;
537 	}
538 
539 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
540 #if NRND > 0
541 		rnd_detach_source(&sc->rnd_source);
542 #endif
543 		ether_ifdetach(ifp);
544 		if_detach(ifp);
545 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
546 	}
547 
548 	if (sc->sc_sh != NULL)
549 		shutdownhook_disestablish(sc->sc_sh);
550 
551 #if 0
552 	/*
553 	 * XXX not necessary
554 	 */
555 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
556 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
557 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
558 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
559 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
560 	}
561 #endif
562 
563 	return 0;
564 }
565 
566 void
567 cs_get_default_media(struct cs_softc *sc)
568 {
569 	u_int16_t adp_cfg, xmit_ctl;
570 
571 	if (cs_verify_eeprom(sc) == CS_ERROR) {
572 		printf("%s: cs_get_default_media: EEPROM missing or bad\n",
573 		    sc->sc_dev.dv_xname);
574 		goto fakeit;
575 	}
576 
577 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
578 		printf("%s: unable to read adapter config from EEPROM\n",
579 		    sc->sc_dev.dv_xname);
580 		goto fakeit;
581 	}
582 
583 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
584 		printf("%s: unable to read transmit control from EEPROM\n",
585 		    sc->sc_dev.dv_xname);
586 		goto fakeit;
587 	}
588 
589 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
590 	case ADPTR_CFG_AUI:
591 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
592 		break;
593 	case ADPTR_CFG_10BASE2:
594 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
595 		break;
596 	case ADPTR_CFG_10BASET:
597 	default:
598 		if (xmit_ctl & XMIT_CTL_FDX)
599 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
600 		else
601 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
602 		break;
603 	}
604 	return;
605 
606  fakeit:
607 	printf("%s: WARNING: default media setting may be inaccurate\n",
608 	    sc->sc_dev.dv_xname);
609 	/* XXX Arbitrary... */
610 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
611 }
612 
613 /*
614  * cs_scan_eeprom
615  *
616  * Attempt to take a complete copy of the eeprom into main memory.
617  * this will allow faster parsing of the eeprom data.
618  *
619  * Only tested against a 8920M's eeprom, but the data sheet for the
620  * 8920A indicates that is uses the same layout.
621  */
622 int
623 cs_scan_eeprom(struct cs_softc *sc)
624 {
625 	u_int16_t result;
626 	int	i;
627 	int	eeprom_size;
628 	u_int8_t checksum = 0;
629 
630 	if (cs_verify_eeprom(sc) == CS_ERROR) {
631 		printf("%s: cs_scan_params: EEPROM missing or bad\n",
632 				sc->sc_dev.dv_xname);
633 		return (CS_ERROR);
634 	}
635 
636 	/*
637 	 * read the 0th word from the eeprom, it will tell us the length
638 	 * and if the eeprom is valid
639 	 */
640 	cs_read_eeprom(sc, 0, &result);
641 
642 	/* check the eeprom signature */
643 	if ((result & 0xE000) != 0xA000) {
644 		/* empty eeprom */
645 		return (CS_ERROR);
646 	}
647 
648 	/*
649 	 * take the eeprom size (note the read value doesn't include the header
650 	 * word)
651 	 */
652 	eeprom_size = (result & 0xff) + 2;
653 
654 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
655 	if (sc->eeprom_data == NULL) {
656 		/* no memory, treat this as if there's no eeprom */
657 		return (CS_ERROR);
658 	}
659 
660 	sc->eeprom_size = eeprom_size;
661 
662 	/* read the eeprom into the buffer, also calculate the checksum  */
663 	for (i = 0; i < (eeprom_size >> 1); i++) {
664 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
665 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
666 		checksum += (sc->eeprom_data[i] & 0x00ff);
667 	}
668 
669 	/*
670 	 * validate checksum calculation, the sum of all the bytes should be 0,
671 	 * as the high byte of the last word is the 2's complement of the
672 	 * sum to that point.
673 	 */
674 	if (checksum != 0) {
675 		printf("%s: eeprom checksum failure\n", sc->sc_dev.dv_xname);
676 		return (CS_ERROR);
677 	}
678 
679 	return (CS_OK);
680 }
681 
682 static int
683 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
684 {
685 	int x, maxword;
686 
687 	/* Check that we have eeprom data */
688 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
689 		return (CS_ERROR);
690 
691 	/*
692 	 * We only want to read the data words, the last word contains the
693 	 * checksum
694 	 */
695 	maxword = (sc->eeprom_size - 2) >> 1;
696 
697 	/* start 1 word in, as the first word is the length and signature */
698 	x = 1;
699 
700 	while ( x < (maxword)) {
701 		u_int16_t header;
702 		int group_size;
703 		int offset;
704 		int offset_max;
705 
706 		/* read in the group header word */
707 		header = sc->eeprom_data[x];
708 		x++;	/* skip group header */
709 
710 		/*
711 		 * size of group in words is in the top 4 bits, note that it
712 		 * is one less than the number of words
713 		 */
714 		group_size = header & 0xF000;
715 
716 		/*
717 		 * CS8900 Data sheet says this should be 0x01ff,
718 		 * but my cs8920 eeprom has higher offsets,
719 		 * perhaps the 8920 allows higher offsets, otherwise
720 		 * it's writing to places that it shouldn't
721 		 */
722 		/* work out the offsets this group covers */
723 		offset = header & 0x0FFF;
724 		offset_max = offset + (group_size << 1);
725 
726 		/* check if the pkgpg we're after is in this group */
727 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
728 			/* the pkgpg value we want is in here */
729 			int eeprom_location;
730 
731 			eeprom_location = ((pktpg - offset) >> 1) ;
732 
733 			*pValue = sc->eeprom_data[x + eeprom_location];
734 			return (CS_OK);
735 		} else {
736 			/* skip this group (+ 1 for first entry) */
737 			x += group_size + 1;
738 		}
739 	}
740 
741 	/*
742 	 * if we've fallen out here then we don't have a value in the EEPROM
743 	 * for this pktpg so return an error
744 	 */
745 	return (CS_ERROR);
746 }
747 
748 int
749 cs_get_params(struct cs_softc *sc)
750 {
751 	u_int16_t isaConfig;
752 	u_int16_t adapterConfig;
753 
754 	if (cs_verify_eeprom(sc) == CS_ERROR) {
755 		printf("%s: cs_get_params: EEPROM missing or bad\n",
756 		    sc->sc_dev.dv_xname);
757 		return (CS_ERROR);
758 	}
759 
760 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
761 		/* Get ISA configuration from the EEPROM */
762 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
763 			       	== CS_ERROR) {
764 			/* eeprom doesn't have this value, use data sheet default */
765 			isaConfig = 0x0017;
766 		}
767 
768 		/* Get adapter configuration from the EEPROM */
769 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
770 				== CS_ERROR) {
771 			/* eeprom doesn't have this value, use data sheet default */
772 			adapterConfig = 0x0015;
773 		}
774 
775 		/* Copy the USE_SA flag */
776 		if (isaConfig & BUS_CTL_USE_SA)
777 			sc->sc_cfgflags |= CFGFLG_USE_SA;
778 
779 		/* Copy the IO Channel Ready flag */
780 		if (isaConfig & BUS_CTL_IOCHRDY)
781 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
782 
783 		/* Copy the DC/DC Polarity flag */
784 		if (adapterConfig & SELF_CTL_HCB1)
785 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
786 	} else {
787 		/* Get ISA configuration from the EEPROM */
788 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
789 			goto eeprom_bad;
790 
791 		/* Get adapter configuration from the EEPROM */
792 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
793 			goto eeprom_bad;
794 
795 		/* Copy the USE_SA flag */
796 		if (isaConfig & ISA_CFG_USE_SA)
797 			sc->sc_cfgflags |= CFGFLG_USE_SA;
798 
799 		/* Copy the IO Channel Ready flag */
800 		if (isaConfig & ISA_CFG_IOCHRDY)
801 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
802 
803 		/* Copy the DC/DC Polarity flag */
804 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
805 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
806 	}
807 
808 	return (CS_OK);
809 eeprom_bad:
810 	printf("%s: cs_get_params: unable to read from EEPROM\n",
811 			sc->sc_dev.dv_xname);
812 	return (CS_ERROR);
813 }
814 
815 int
816 cs_get_enaddr(struct cs_softc *sc)
817 {
818 	u_int16_t *myea;
819 
820 	if (cs_verify_eeprom(sc) == CS_ERROR) {
821 		printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
822 		    sc->sc_dev.dv_xname);
823 		return (CS_ERROR);
824 	}
825 
826 	myea = (u_int16_t *)sc->sc_enaddr;
827 
828 	/* Get Ethernet address from the EEPROM */
829 	/* XXX this will likely lose on a big-endian machine. -- cgd */
830 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
831 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
832 				== CS_ERROR)
833 			goto eeprom_bad;
834 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
835 				== CS_ERROR)
836 			goto eeprom_bad;
837 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
838 				== CS_ERROR)
839 			goto eeprom_bad;
840 	} else {
841 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
842 			goto eeprom_bad;
843 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
844 			goto eeprom_bad;
845 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
846 			goto eeprom_bad;
847 	}
848 
849 	return (CS_OK);
850 
851  eeprom_bad:
852 	printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
853 	    sc->sc_dev.dv_xname);
854 	return (CS_ERROR);
855 }
856 
857 int
858 cs_reset_chip(struct cs_softc *sc)
859 {
860 	int intState;
861 	int x;
862 
863 	/* Disable interrupts at the CPU so reset command is atomic */
864 	intState = splnet();
865 
866 	/*
867 	 * We are now resetting the chip
868 	 *
869 	 * A spurious interrupt is generated by the chip when it is reset. This
870 	 * variable informs the interrupt handler to ignore this interrupt.
871 	 */
872 	sc->sc_resetting = TRUE;
873 
874 	/* Issue a reset command to the chip */
875 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
876 
877 	/* Re-enable interrupts at the CPU */
878 	splx(intState);
879 
880 	/* The chip is always in IO mode after a reset */
881 	sc->sc_memorymode = FALSE;
882 
883 	/* If transmission was in progress, it is not now */
884 	sc->sc_txbusy = FALSE;
885 
886 	/*
887 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
888 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
889 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
890 	 * should be sufficient.
891 	 */
892 
893 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
894 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
895 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
896 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
897 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
898 
899 	/* Wait until the EEPROM is not busy */
900 	for (x = 0; x < MAXLOOP; x++) {
901 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
902 			break;
903 	}
904 
905 	if (x == MAXLOOP)
906 		return CS_ERROR;
907 
908 	/* Wait until initialization is done */
909 	for (x = 0; x < MAXLOOP; x++) {
910 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
911 			break;
912 	}
913 
914 	if (x == MAXLOOP)
915 		return CS_ERROR;
916 
917 	/* Reset is no longer in progress */
918 	sc->sc_resetting = FALSE;
919 
920 	return CS_OK;
921 }
922 
923 int
924 cs_verify_eeprom(struct cs_softc *sc)
925 {
926 	u_int16_t self_status;
927 
928 	/* Verify that the EEPROM is present and OK */
929 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
930 	if (((self_status & SELF_ST_EEP_PRES) &&
931 	     (self_status & SELF_ST_EEP_OK)) == 0)
932 		return (CS_ERROR);
933 
934 	return (CS_OK);
935 }
936 
937 int
938 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
939 {
940 	int x;
941 
942 	/* Ensure that the EEPROM is not busy */
943 	for (x = 0; x < MAXLOOP; x++) {
944 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
945 		      SELF_ST_SI_BUSY))
946 			break;
947 	}
948 
949 	if (x == MAXLOOP)
950 		return (CS_ERROR);
951 
952 	/* Issue the command to read the offset within the EEPROM */
953 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
954 	    offset | EEPROM_CMD_READ);
955 
956 	/* Wait until the command is completed */
957 	for (x = 0; x < MAXLOOP; x++) {
958 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
959 		      SELF_ST_SI_BUSY))
960 			break;
961 	}
962 
963 	if (x == MAXLOOP)
964 		return (CS_ERROR);
965 
966 	/* Get the EEPROM data from the EEPROM Data register */
967 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
968 
969 	return (CS_OK);
970 }
971 
972 void
973 cs_initChip(struct cs_softc *sc)
974 {
975 	u_int16_t busCtl;
976 	u_int16_t selfCtl;
977 	u_int16_t v;
978 	u_int16_t isaId;
979 	int i;
980 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
981 
982 	/* Disable reception and transmission of frames */
983 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
984 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
985 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
986 
987 	/* Disable interrupt at the chip */
988 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
989 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
990 
991 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
992 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
993 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
994 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
995 		    busCtl & ~BUS_CTL_IOCHRDY);
996 	} else {
997 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
998 		    busCtl | BUS_CTL_IOCHRDY);
999 	}
1000 
1001 	/* Set the Line Control register to match the media type */
1002 	if (media == IFM_10_T)
1003 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
1004 	else
1005 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1006 
1007 	/*
1008 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
1009 	 * enable the DC/DC converter
1010 	 */
1011 	selfCtl = SELF_CTL_HC1E;
1012 
1013 	/* If the media type is 10Base2 */
1014 	if (media == IFM_10_2) {
1015 		/*
1016 		 * Enable the DC/DC converter if it has a low enable.
1017 		 */
1018 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1019 			/*
1020 			 * Set the HCB1 bit, which causes the HC1 pin to go
1021 			 * low.
1022 			 */
1023 			selfCtl |= SELF_CTL_HCB1;
1024 	} else { /* Media type is 10BaseT or AUI */
1025 		/*
1026 		 * Disable the DC/DC converter if it has a high enable.
1027 		 */
1028 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1029 			/*
1030 			 * Set the HCB1 bit, which causes the HC1 pin to go
1031 			 * low.
1032 			 */
1033 			selfCtl |= SELF_CTL_HCB1;
1034 		}
1035 	}
1036 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1037 
1038 	/* enable normal link pulse */
1039 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1040 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1041 
1042 	/* Enable full-duplex, if appropriate */
1043 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1044 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1045 
1046 	/* RX_CTL set in cs_set_ladr_filt(), below */
1047 
1048 	/* enable all transmission interrupts */
1049 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1050 
1051 	/* Accept all receive interrupts */
1052 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1053 
1054 	/*
1055 	 * Configure Operational Modes
1056 	 *
1057 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1058 	 * a better way to do it because the card has a counter which can be
1059 	 * read to update the RX_MISS counter. This saves many interrupts.
1060 	 *
1061 	 * I have turned on the tx and rx overflow interrupts to counter using
1062 	 * the receive miss interrupt. This is a better estimate of errors
1063 	 * and requires lower system overhead.
1064 	 */
1065 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1066 			  BUF_CFG_RX_DMA_IE);
1067 
1068 	if (sc->sc_dma_chipinit)
1069 		(*sc->sc_dma_chipinit)(sc);
1070 
1071 	/* If memory mode is enabled */
1072 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1073 		/* If external logic is present for address decoding */
1074 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1075 			/*
1076 			 * Program the external logic to decode address bits
1077 			 * SA20-SA23
1078 			 */
1079 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1080 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1081 			    EEPROM_CMD_ELSEL);
1082 		}
1083 
1084 		/*
1085 		 * Write the packet page base physical address to the memory
1086 		 * base register.
1087 		 */
1088 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1089 		    sc->sc_pktpgaddr & 0xFFFF);
1090 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1091 		    sc->sc_pktpgaddr >> 16);
1092 		busCtl = BUS_CTL_MEM_MODE;
1093 
1094 		/* tell the chip to read the addresses off the SA pins */
1095 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1096 			busCtl |= BUS_CTL_USE_SA;
1097 		}
1098 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1099 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1100 
1101 		/* We are in memory mode now! */
1102 		sc->sc_memorymode = TRUE;
1103 
1104 		/*
1105 		 * wait here (10ms) for the chip to swap over. this is the
1106 		 * maximum time that this could take.
1107 		 */
1108 		delay(10000);
1109 
1110 		/* Verify that we can read from the chip */
1111 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1112 
1113 		/*
1114 		 * As a last minute sanity check before actually using mapped
1115 		 * memory we verify that we can read the isa number from the
1116 		 * chip in memory mode.
1117 		 */
1118 		if (isaId != EISA_NUM_CRYSTAL) {
1119 			printf("%s: failed to enable memory mode\n",
1120 			    sc->sc_dev.dv_xname);
1121 			sc->sc_memorymode = FALSE;
1122 		} else {
1123 			/*
1124 			 * we are in memory mode so if we aren't using DMA,
1125 			 * then program the chip to interrupt early.
1126 			 */
1127 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1128 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1129 				    BUF_CFG_RX_DEST_IE |
1130 				    BUF_CFG_RX_MISS_OVER_IE |
1131 				    BUF_CFG_TX_COL_OVER_IE);
1132 			}
1133 		}
1134 
1135 	}
1136 
1137 	/* Put Ethernet address into the Individual Address register */
1138 	for (i = 0; i < 6; i += 2) {
1139 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1140 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1141 	}
1142 
1143 	if (sc->sc_irq != -1) {
1144 		/* Set the interrupt level in the chip */
1145 		if (sc->sc_prodid == PROD_ID_CS8900) {
1146 			if (sc->sc_irq == 5) {
1147 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1148 			} else {
1149 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1150 			}
1151 		}
1152 		else { /* CS8920 */
1153 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1154 		}
1155 	}
1156 
1157 	/* write the multicast mask to the address filter register */
1158 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1159 
1160 	/* Enable reception and transmission of frames */
1161 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1162 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1163 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1164 
1165 	/* Enable interrupt at the chip */
1166 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1167 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1168 }
1169 
1170 int
1171 cs_init(struct ifnet *ifp)
1172 {
1173 	int intState;
1174 	int error = CS_OK;
1175 	struct cs_softc *sc = ifp->if_softc;
1176 
1177 	if (cs_enable(sc))
1178 		goto out;
1179 
1180 	cs_stop(ifp, 0);
1181 
1182 	intState = splnet();
1183 
1184 #if 0
1185 	/* Mark the interface as down */
1186 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1187 #endif
1188 
1189 #ifdef CS_DEBUG
1190 	/* Enable debugging */
1191 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1192 #endif
1193 
1194 	/* Reset the chip */
1195 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1196 		/* Initialize the chip */
1197 		cs_initChip(sc);
1198 
1199 		/* Mark the interface as running */
1200 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1201 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1202 		sc->sc_ethercom.ec_if.if_timer = 0;
1203 
1204 		/* Assume we have carrier until we are told otherwise. */
1205 		sc->sc_carrier = 1;
1206 	} else {
1207 		printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
1208 	}
1209 
1210 	splx(intState);
1211 out:
1212 	if (error == CS_OK)
1213 		return 0;
1214 	return EIO;
1215 }
1216 
1217 void
1218 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1219 {
1220 	struct ifnet *ifp = &ec->ec_if;
1221 	struct ether_multi *enm;
1222 	struct ether_multistep step;
1223 	u_int16_t af[4];
1224 	u_int16_t port, mask, index;
1225 
1226 	/*
1227          * Set up multicast address filter by passing all multicast addresses
1228          * through a crc generator, and then using the high order 6 bits as an
1229          * index into the 64 bit logical address filter.  The high order bit
1230          * selects the word, while the rest of the bits select the bit within
1231          * the word.
1232          */
1233 	if (ifp->if_flags & IFF_PROMISC) {
1234 		/* accept all valid frames. */
1235 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1236 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1237 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1238 		ifp->if_flags |= IFF_ALLMULTI;
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * accept frames if a. crc valid, b. individual address match c.
1244 	 * broadcast address,and d. multicast addresses matched in the hash
1245 	 * filter
1246 	 */
1247 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1248 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1249 
1250 
1251 	/*
1252 	 * start off with all multicast flag clear, set it if we need to
1253 	 * later, otherwise we will leave it.
1254 	 */
1255 	ifp->if_flags &= ~IFF_ALLMULTI;
1256 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1257 
1258 	/*
1259 	 * Loop through all the multicast addresses unless we get a range of
1260 	 * addresses, in which case we will just accept all packets.
1261 	 * Justification for this is given in the next comment.
1262 	 */
1263 	ETHER_FIRST_MULTI(step, ec, enm);
1264 	while (enm != NULL) {
1265 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1266 		    sizeof enm->enm_addrlo)) {
1267 			/*
1268 	                 * We must listen to a range of multicast addresses.
1269 	                 * For now, just accept all multicasts, rather than
1270 	                 * trying to set only those filter bits needed to match
1271 	                 * the range.  (At this time, the only use of address
1272 	                 * ranges is for IP multicast routing, for which the
1273 	                 * range is big enough to require all bits set.)
1274 	                 */
1275 			ifp->if_flags |= IFF_ALLMULTI;
1276 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1277 			break;
1278 		} else {
1279 			/*
1280 	                 * we have got an individual address so just set that
1281 	                 * bit.
1282 	                 */
1283 			index = cs_hash_index(enm->enm_addrlo);
1284 
1285 			/* Set the bit the Logical address filter. */
1286 			port = (u_int16_t) (index >> 4);
1287 			mask = (u_int16_t) (1 << (index & 0xf));
1288 			af[port] |= mask;
1289 
1290 			ETHER_NEXT_MULTI(step, enm);
1291 		}
1292 	}
1293 
1294 	/* now program the chip with the addresses */
1295 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1296 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1297 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1298 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1299 	return;
1300 }
1301 
1302 u_int16_t
1303 cs_hash_index(char *addr)
1304 {
1305 	uint32_t crc;
1306 	uint16_t hash_code;
1307 
1308 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1309 
1310 	hash_code = crc >> 26;
1311 	return (hash_code);
1312 }
1313 
1314 void
1315 cs_reset(void *arg)
1316 {
1317 	struct cs_softc *sc = arg;
1318 
1319 	/* Mark the interface as down */
1320 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1321 
1322 	/* Reset the chip */
1323 	cs_reset_chip(sc);
1324 }
1325 
1326 int
1327 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1328 {
1329 	struct cs_softc *sc = ifp->if_softc;
1330 	struct ifreq *ifr = (struct ifreq *) data;
1331 	int state;
1332 	int result;
1333 
1334 	state = splnet();
1335 
1336 	result = 0;		/* only set if something goes wrong */
1337 
1338 	switch (cmd) {
1339 	case SIOCGIFMEDIA:
1340 	case SIOCSIFMEDIA:
1341 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1342 		break;
1343 
1344 	default:
1345 		result = ether_ioctl(ifp, cmd, data);
1346 		if (result == ENETRESET) {
1347 			if (ifp->if_flags & IFF_RUNNING) {
1348 				/*
1349 				 * Multicast list has changed.  Set the
1350 				 * hardware filter accordingly.
1351 				 */
1352 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1353 			}
1354 			result = 0;
1355 		}
1356 		break;
1357 	}
1358 
1359 	splx(state);
1360 
1361 	return result;
1362 }
1363 
1364 int
1365 cs_mediachange(struct ifnet *ifp)
1366 {
1367 
1368 	/*
1369 	 * Current media is already set up.  Just reset the interface
1370 	 * to let the new value take hold.
1371 	 */
1372 	cs_init(ifp);
1373 	return (0);
1374 }
1375 
1376 void
1377 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1378 {
1379 	struct cs_softc *sc = ifp->if_softc;
1380 
1381 	/*
1382 	 * The currently selected media is always the active media.
1383 	 */
1384 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1385 
1386 	if (ifp->if_flags & IFF_UP) {
1387 		/* Interface up, status is valid. */
1388 		ifmr->ifm_status = IFM_AVALID |
1389 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1390 	}
1391 		else ifmr->ifm_status = 0;
1392 }
1393 
1394 int
1395 cs_intr(void *arg)
1396 {
1397 	struct cs_softc *sc = arg;
1398 	u_int16_t Event;
1399 #if NRND > 0
1400 	u_int16_t rndEvent;
1401 #endif
1402 
1403 /*printf("cs_intr %p\n", sc);*/
1404 	/* Ignore any interrupts that happen while the chip is being reset */
1405 	if (sc->sc_resetting) {
1406 		printf("%s: cs_intr: reset in progress\n",
1407 		    sc->sc_dev.dv_xname);
1408 		return 1;
1409 	}
1410 
1411 	/* Read an event from the Interrupt Status Queue */
1412 	if (sc->sc_memorymode)
1413 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1414 	else
1415 		Event = CS_READ_PORT(sc, PORT_ISQ);
1416 
1417 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1418 		return 0;	/* not ours */
1419 
1420 #if NRND > 0
1421 	rndEvent = Event;
1422 #endif
1423 
1424 	/* Process all the events in the Interrupt Status Queue */
1425 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1426 		/* Dispatch to an event handler based on the register number */
1427 		switch (Event & REG_NUM_MASK) {
1428 		case REG_NUM_RX_EVENT:
1429 			cs_receive_event(sc, Event);
1430 			break;
1431 		case REG_NUM_TX_EVENT:
1432 			cs_transmit_event(sc, Event);
1433 			break;
1434 		case REG_NUM_BUF_EVENT:
1435 			cs_buffer_event(sc, Event);
1436 			break;
1437 		case REG_NUM_TX_COL:
1438 		case REG_NUM_RX_MISS:
1439 			cs_counter_event(sc, Event);
1440 			break;
1441 		default:
1442 			printf("%s: unknown interrupt event 0x%x\n",
1443 			    sc->sc_dev.dv_xname, Event);
1444 			break;
1445 		}
1446 
1447 		/* Read another event from the Interrupt Status Queue */
1448 		if (sc->sc_memorymode)
1449 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1450 		else
1451 			Event = CS_READ_PORT(sc, PORT_ISQ);
1452 	}
1453 
1454 	/* have handled the interrupt */
1455 #if NRND > 0
1456 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1457 #endif
1458 	return 1;
1459 }
1460 
1461 void
1462 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1463 {
1464 	struct ifnet *ifp;
1465 	u_int16_t errorCount;
1466 
1467 	ifp = &sc->sc_ethercom.ec_if;
1468 
1469 	switch (cntEvent & REG_NUM_MASK) {
1470 	case REG_NUM_TX_COL:
1471 		/*
1472 		 * the count should be read before an overflow occurs.
1473 		 */
1474 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1475 		/*
1476 		 * the tramsit event routine always checks the number of
1477 		 * collisions for any packet so we don't increment any
1478 		 * counters here, as they should already have been
1479 		 * considered.
1480 		 */
1481 		break;
1482 	case REG_NUM_RX_MISS:
1483 		/*
1484 		 * the count should be read before an overflow occurs.
1485 		 */
1486 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1487 		/*
1488 		 * Increment the input error count, the first 6bits are the
1489 		 * register id.
1490 		 */
1491 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1492 		break;
1493 	default:
1494 		/* do nothing */
1495 		break;
1496 	}
1497 }
1498 
1499 void
1500 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1501 {
1502 
1503 	/*
1504 	 * multiple events can be in the buffer event register at one time so
1505 	 * a standard switch statement will not suffice, here every event
1506 	 * must be checked.
1507 	 */
1508 
1509 	/*
1510 	 * if 128 bits have been rxed by the time we get here, the dest event
1511 	 * will be cleared and 128 event will be set.
1512 	 */
1513 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1514 		cs_process_rx_early(sc);
1515 	}
1516 
1517 	if (bufEvent & BUF_EVENT_RX_DMA) {
1518 		/* process the receive data */
1519 		if (sc->sc_dma_process_rx)
1520 			(*sc->sc_dma_process_rx)(sc);
1521 		else
1522 			/* should panic? */
1523 			printf("%s: unexpected DMA event\n", sc->sc_dev.dv_xname);
1524 	}
1525 
1526 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1527 #if 0
1528 		/*
1529 		 * This can happen occasionally, and it's not worth worrying
1530 		 * about.
1531 		 */
1532 		printf("%s: transmit underrun (%d -> %d)\n",
1533 		    sc->sc_dev.dv_xname, sc->sc_xe_ent,
1534 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1535 #endif
1536 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1537 		sc->sc_xe_togo =
1538 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1539 
1540 		/* had an underrun, transmit is finished */
1541 		sc->sc_txbusy = FALSE;
1542 	}
1543 
1544 	if (bufEvent & BUF_EVENT_SW_INT) {
1545 		printf("%s: software initiated interrupt\n",
1546 		    sc->sc_dev.dv_xname);
1547 	}
1548 }
1549 
1550 void
1551 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1552 {
1553 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1554 
1555 	/* If there were any errors transmitting this frame */
1556 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1557 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1558 		/* Increment the output error count */
1559 		ifp->if_oerrors++;
1560 
1561 		/* Note carrier loss. */
1562 		if (txEvent & TX_EVENT_LOSS_CRS)
1563 			sc->sc_carrier = 0;
1564 
1565 		/* If debugging is enabled then log error messages */
1566 		if (ifp->if_flags & IFF_DEBUG) {
1567 			if (txEvent & TX_EVENT_LOSS_CRS) {
1568 				printf("%s: lost carrier\n",
1569 				    sc->sc_dev.dv_xname);
1570 			}
1571 			if (txEvent & TX_EVENT_SQE_ERR) {
1572 				printf("%s: SQE error\n",
1573 				    sc->sc_dev.dv_xname);
1574 			}
1575 			if (txEvent & TX_EVENT_OUT_WIN) {
1576 				printf("%s: out-of-window collision\n",
1577 				    sc->sc_dev.dv_xname);
1578 			}
1579 			if (txEvent & TX_EVENT_JABBER) {
1580 				printf("%s: jabber\n", sc->sc_dev.dv_xname);
1581 			}
1582 			if (txEvent & TX_EVENT_16_COLL) {
1583 				printf("%s: 16 collisions\n",
1584 				    sc->sc_dev.dv_xname);
1585 			}
1586 		}
1587 	}
1588 	else {
1589 		/* Transmission successful, carrier is up. */
1590 		sc->sc_carrier = 1;
1591 #ifdef SHARK
1592 		ledNetActive();
1593 #endif
1594 	}
1595 
1596 	/* Add the number of collisions for this frame */
1597 	if (txEvent & TX_EVENT_16_COLL) {
1598 		ifp->if_collisions += 16;
1599 	} else {
1600 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1601 	}
1602 
1603 	ifp->if_opackets++;
1604 
1605 	/* Transmission is no longer in progress */
1606 	sc->sc_txbusy = FALSE;
1607 
1608 	/* If there is more to transmit */
1609 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1610 		/* Start the next transmission */
1611 		cs_start_output(ifp);
1612 	}
1613 }
1614 
1615 void
1616 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1617 {
1618 
1619 	if (rxEvent & RX_EVENT_RUNT)
1620 		printf("%s: runt\n", sc->sc_dev.dv_xname);
1621 
1622 	if (rxEvent & RX_EVENT_X_DATA)
1623 		printf("%s: extra data\n", sc->sc_dev.dv_xname);
1624 
1625 	if (rxEvent & RX_EVENT_CRC_ERR) {
1626 		if (rxEvent & RX_EVENT_DRIBBLE)
1627 			printf("%s: alignment error\n", sc->sc_dev.dv_xname);
1628 		else
1629 			printf("%s: CRC error\n", sc->sc_dev.dv_xname);
1630 	} else {
1631 		if (rxEvent & RX_EVENT_DRIBBLE)
1632 			printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
1633 	}
1634 }
1635 
1636 void
1637 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1638 {
1639 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1640 
1641 	/* If the frame was not received OK */
1642 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1643 		/* Increment the input error count */
1644 		ifp->if_ierrors++;
1645 
1646 		/*
1647 		 * If debugging is enabled then log error messages.
1648 		 */
1649 		if (ifp->if_flags & IFF_DEBUG) {
1650 			if (rxEvent != REG_NUM_RX_EVENT) {
1651 				cs_print_rx_errors(sc, rxEvent);
1652 
1653 				/*
1654 				 * Must read the length of all received
1655 				 * frames
1656 				 */
1657 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1658 
1659 				/* Skip the received frame */
1660 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1661 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1662 						  RX_CFG_SKIP);
1663 			} else {
1664 				printf("%s: implied skip\n",
1665 				    sc->sc_dev.dv_xname);
1666 			}
1667 		}
1668 	} else {
1669 		/*
1670 		 * process the received frame and pass it up to the upper
1671 		 * layers.
1672 		 */
1673 		cs_process_receive(sc);
1674 	}
1675 }
1676 
1677 void
1678 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1679 {
1680 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1681 
1682 	ifp->if_ipackets++;
1683 
1684 #if NBPFILTER > 0
1685 	/*
1686 	 * Check if there's a BPF listener on this interface.
1687 	 * If so, hand off the raw packet to BPF.
1688 	 */
1689 	if (ifp->if_bpf)
1690 		bpf_mtap(ifp->if_bpf, m);
1691 #endif
1692 
1693 	/* Pass the packet up. */
1694 	(*ifp->if_input)(ifp, m);
1695 }
1696 
1697 void
1698 cs_process_receive(struct cs_softc *sc)
1699 {
1700 	struct ifnet *ifp;
1701 	struct mbuf *m;
1702 	int totlen;
1703 	u_int16_t *pBuff, *pBuffLimit;
1704 	int pad;
1705 	unsigned int frameOffset = 0;	/* XXX: gcc */
1706 
1707 #ifdef SHARK
1708 	ledNetActive();
1709 #endif
1710 
1711 	ifp = &sc->sc_ethercom.ec_if;
1712 
1713 	/* Received a packet; carrier is up. */
1714 	sc->sc_carrier = 1;
1715 
1716 	if (sc->sc_memorymode) {
1717 		/* Initialize the frame offset */
1718 		frameOffset = PKTPG_RX_LENGTH;
1719 
1720 		/* Get the length of the received frame */
1721 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1722 		frameOffset += 2;
1723 	}
1724 	else {
1725 		/* drop status */
1726 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1727 
1728 		/* Get the length of the received frame */
1729 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1730 	}
1731 
1732 	if (totlen > ETHER_MAX_LEN) {
1733 		printf("%s: invalid packet length %d\n",
1734 		    sc->sc_dev.dv_xname, totlen);
1735 
1736 		/* skip the received frame */
1737 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1738 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1739 		return;
1740 	}
1741 
1742 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1743 	if (m == 0) {
1744 		printf("%s: cs_process_receive: unable to allocate mbuf\n",
1745 		    sc->sc_dev.dv_xname);
1746 		ifp->if_ierrors++;
1747 		/*
1748 		 * couldn't allocate an mbuf so things are not good, may as
1749 		 * well drop the packet I think.
1750 		 *
1751 		 * have already read the length so we should be right to skip
1752 		 * the packet.
1753 		 */
1754 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1755 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1756 		return;
1757 	}
1758 	m->m_pkthdr.rcvif = ifp;
1759 	m->m_pkthdr.len = totlen;
1760 
1761 	/* number of bytes to align ip header on word boundary for ipintr */
1762 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1763 
1764 	/*
1765 	 * alloc mbuf cluster if we need.
1766 	 * we need 1 byte spare because following
1767 	 * packet read loop can overrun.
1768 	 */
1769 	if (totlen + pad + 1 > MHLEN) {
1770 		MCLGET(m, M_DONTWAIT);
1771 		if ((m->m_flags & M_EXT) == 0) {
1772 			/* couldn't allocate an mbuf cluster */
1773 			printf("%s: cs_process_receive: unable to allocate a cluster\n",
1774 				sc->sc_dev.dv_xname);
1775 			m_freem(m);
1776 
1777 			/* skip the received frame */
1778 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1779 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1780 			return;
1781 		}
1782 	}
1783 
1784 	/* align ip header on word boundary for ipintr */
1785 	m->m_data += pad;
1786 
1787 	m->m_len = totlen;
1788 	pBuff = mtod(m, u_int16_t *);
1789 
1790 	/* now read the data from the chip */
1791 	if (sc->sc_memorymode) {
1792 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1793 		while (pBuff < pBuffLimit) {
1794 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1795 			frameOffset += 2;
1796 		}
1797 	}
1798 	else {
1799 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1800 	}
1801 
1802 	cs_ether_input(sc, m);
1803 }
1804 
1805 void
1806 cs_process_rx_early(struct cs_softc *sc)
1807 {
1808 	struct ifnet *ifp;
1809 	struct mbuf *m;
1810 	u_int16_t frameCount, oldFrameCount;
1811 	u_int16_t rxEvent;
1812 	u_int16_t *pBuff;
1813 	int pad;
1814 	unsigned int frameOffset;
1815 
1816 
1817 	ifp = &sc->sc_ethercom.ec_if;
1818 
1819 	/* Initialize the frame offset */
1820 	frameOffset = PKTPG_RX_FRAME;
1821 	frameCount = 0;
1822 
1823 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1824 	if (m == 0) {
1825 		printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
1826 		    sc->sc_dev.dv_xname);
1827 		ifp->if_ierrors++;
1828 		/*
1829 		 * couldn't allocate an mbuf so things are not good, may as
1830 		 * well drop the packet I think.
1831 		 *
1832 		 * have already read the length so we should be right to skip
1833 		 * the packet.
1834 		 */
1835 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1836 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1837 		return;
1838 	}
1839 	m->m_pkthdr.rcvif = ifp;
1840 	/*
1841 	 * save processing by always using a mbuf cluster, guaranteed to fit
1842 	 * packet
1843 	 */
1844 	MCLGET(m, M_DONTWAIT);
1845 	if ((m->m_flags & M_EXT) == 0) {
1846 		/* couldn't allocate an mbuf cluster */
1847 		printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
1848 		    sc->sc_dev.dv_xname);
1849 		m_freem(m);
1850 		/* skip the frame */
1851 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1852 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1853 		return;
1854 	}
1855 
1856 	/* align ip header on word boundary for ipintr */
1857 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1858 	m->m_data += pad;
1859 
1860 	/* set up the buffer pointer to point to the data area */
1861 	pBuff = mtod(m, u_int16_t *);
1862 
1863 	/*
1864 	 * now read the frame byte counter until we have finished reading the
1865 	 * frame
1866 	 */
1867 	oldFrameCount = 0;
1868 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1869 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1870 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1871 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1872 			frameOffset += 2;
1873 		}
1874 
1875 		/* read the new count from the chip */
1876 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1877 	}
1878 
1879 	/* update the mbuf counts */
1880 	m->m_len = oldFrameCount;
1881 	m->m_pkthdr.len = oldFrameCount;
1882 
1883 	/* now check the Rx Event register */
1884 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1885 
1886 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1887 		/*
1888 		 * do an implied skip, it seems to be more reliable than a
1889 		 * forced skip.
1890 		 */
1891 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1892 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1893 
1894 		/*
1895 		 * now read the RX_EVENT register to perform an implied skip.
1896 		 */
1897 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1898 
1899 		cs_ether_input(sc, m);
1900 	} else {
1901 		m_freem(m);
1902 		ifp->if_ierrors++;
1903 	}
1904 }
1905 
1906 void
1907 cs_start_output(struct ifnet *ifp)
1908 {
1909 	struct cs_softc *sc;
1910 	struct mbuf *pMbuf;
1911 	struct mbuf *pMbufChain;
1912 	u_int16_t BusStatus;
1913 	u_int16_t Length;
1914 	int txLoop = 0;
1915 	int dropout = 0;
1916 
1917 	sc = ifp->if_softc;
1918 
1919 	/* check that the interface is up and running */
1920 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1921 		return;
1922 	}
1923 
1924 	/* Don't interrupt a transmission in progress */
1925 	if (sc->sc_txbusy) {
1926 		return;
1927 	}
1928 
1929 	/* this loop will only run through once if transmission is successful */
1930 	/*
1931 	 * While there are packets to transmit and a transmit is not in
1932 	 * progress
1933 	 */
1934 	while (sc->sc_txbusy == 0 && dropout == 0) {
1935 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1936 		if (pMbufChain == NULL)
1937 			break;
1938 
1939 #if NBPFILTER > 0
1940 		/*
1941 	         * If BPF is listening on this interface, let it see the packet
1942 	         * before we commit it to the wire.
1943 	         */
1944 		if (ifp->if_bpf)
1945 			bpf_mtap(ifp->if_bpf, pMbufChain);
1946 #endif
1947 
1948 		/* Find the total length of the data to transmit */
1949 		Length = 0;
1950 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1951 			Length += pMbuf->m_len;
1952 
1953 		do {
1954 			/*
1955 			 * Request that the transmit be started after all
1956 			 * data has been copied
1957 			 *
1958 			 * In IO mode must write to the IO port not the packet
1959 			 * page address
1960 			 *
1961 			 * If this is changed to start transmission after a
1962 			 * small amount of data has been copied you tend to
1963 			 * get packet missed errors i think because the ISA
1964 			 * bus is too slow. Or possibly the copy routine is
1965 			 * not streamlined enough.
1966 			 */
1967 			if (sc->sc_memorymode) {
1968 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1969 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1970 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1971 			}
1972 			else {
1973 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1974 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1975 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1976 			}
1977 
1978 			/*
1979 			 * Adjust early-transmit machinery.
1980 			 */
1981 			if (--sc->sc_xe_togo == 0) {
1982 				sc->sc_xe_ent =
1983 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1984 				sc->sc_xe_togo =
1985 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1986 			}
1987 			/*
1988 			 * Read the BusStatus register which indicates
1989 			 * success of the request
1990 			 */
1991 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1992 
1993 			/*
1994 			 * If there was an error in the transmit bid free the
1995 			 * mbuf and go on. This is presuming that mbuf is
1996 			 * corrupt.
1997 			 */
1998 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1999 				printf("%s: transmit bid error (too big)",
2000 				    sc->sc_dev.dv_xname);
2001 
2002 				/* Discard the bad mbuf chain */
2003 				m_freem(pMbufChain);
2004 				sc->sc_ethercom.ec_if.if_oerrors++;
2005 
2006 				/* Loop up to transmit the next chain */
2007 				txLoop = 0;
2008 			} else {
2009 				if (BusStatus & BUS_ST_RDY4TXNOW) {
2010 					/*
2011 					 * The chip is ready for transmission
2012 					 * now
2013 					 */
2014 					/*
2015 					 * Copy the frame to the chip to
2016 					 * start transmission
2017 					 */
2018 					cs_copy_tx_frame(sc, pMbufChain);
2019 
2020 					/* Free the mbuf chain */
2021 					m_freem(pMbufChain);
2022 
2023 					/* Transmission is now in progress */
2024 					sc->sc_txbusy = TRUE;
2025 					txLoop = 0;
2026 				} else {
2027 					/*
2028 					 * if we get here we want to try
2029 					 * again with the same mbuf, until
2030 					 * the chip lets us transmit.
2031 					 */
2032 					txLoop++;
2033 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
2034 						/* Free the mbuf chain */
2035 						m_freem(pMbufChain);
2036 						/*
2037 						 * Transmission is not in
2038 						 * progress
2039 						 */
2040 						sc->sc_txbusy = FALSE;
2041 						/*
2042 						 * Increment the output error
2043 						 * count
2044 						 */
2045 						ifp->if_oerrors++;
2046 						/*
2047 						 * exit the routine and drop
2048 						 * the packet.
2049 						 */
2050 						txLoop = 0;
2051 						dropout = 1;
2052 					}
2053 				}
2054 			}
2055 		} while (txLoop);
2056 	}
2057 }
2058 
2059 void
2060 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2061 {
2062 	struct mbuf *m;
2063 	int len, leftover, frameoff;
2064 	u_int16_t dbuf;
2065 	u_int8_t *p;
2066 #ifdef DIAGNOSTIC
2067 	u_int8_t *lim;
2068 #endif
2069 
2070 	/* Initialize frame pointer and data port address */
2071 	frameoff = PKTPG_TX_FRAME;
2072 
2073 	/* start out with no leftover data */
2074 	leftover = 0;
2075 	dbuf = 0;
2076 
2077 	/* Process the chain of mbufs */
2078 	for (m = m0; m != NULL; m = m->m_next) {
2079 		/*
2080 		 * Process all of the data in a single mbuf.
2081 		 */
2082 		p = mtod(m, u_int8_t *);
2083 		len = m->m_len;
2084 #ifdef DIAGNOSTIC
2085 		lim = p + len;
2086 #endif
2087 
2088 		while (len > 0) {
2089 			if (leftover) {
2090 				/*
2091 				 * Data left over (from mbuf or realignment).
2092 				 * Buffer the next byte, and write it and
2093 				 * the leftover data out.
2094 				 */
2095 				dbuf |= *p++ << 8;
2096 				len--;
2097 				if (sc->sc_memorymode) {
2098 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2099 					frameoff += 2;
2100 				}
2101 				else {
2102 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2103 				}
2104 				leftover = 0;
2105 			} else if ((long) p & 1) {
2106 				/*
2107 				 * Misaligned data.  Buffer the next byte.
2108 				 */
2109 				dbuf = *p++;
2110 				len--;
2111 				leftover = 1;
2112 			} else {
2113 				/*
2114 				 * Aligned data.  This is the case we like.
2115 				 *
2116 				 * Write-region out as much as we can, then
2117 				 * buffer the remaining byte (if any).
2118 				 */
2119 				leftover = len & 1;
2120 				len &= ~1;
2121 				if (sc->sc_memorymode) {
2122 					MEM_WRITE_REGION_2(sc, frameoff,
2123 						(u_int16_t *) p, len >> 1);
2124 					frameoff += len;
2125 				}
2126 				else {
2127 					IO_WRITE_MULTI_2(sc,
2128 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2129 				}
2130 				p += len;
2131 
2132 				if (leftover)
2133 					dbuf = *p++;
2134 				len = 0;
2135 			}
2136 		}
2137 		if (len < 0)
2138 			panic("cs_copy_tx_frame: negative len");
2139 #ifdef DIAGNOSTIC
2140 		if (p != lim)
2141 			panic("cs_copy_tx_frame: p != lim");
2142 #endif
2143 	}
2144 	if (leftover) {
2145 		if (sc->sc_memorymode) {
2146 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2147 		}
2148 		else {
2149 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2150 		}
2151 	}
2152 }
2153 
2154 static int
2155 cs_enable(struct cs_softc *sc)
2156 {
2157 
2158 	if (CS_IS_ENABLED(sc) == 0) {
2159 		if (sc->sc_enable != NULL) {
2160 			int error;
2161 
2162 			error = (*sc->sc_enable)(sc);
2163 			if (error)
2164 				return (error);
2165 		}
2166 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2167 	}
2168 
2169 	return (0);
2170 }
2171 
2172 static void
2173 cs_disable(struct cs_softc *sc)
2174 {
2175 
2176 	if (CS_IS_ENABLED(sc)) {
2177 		if (sc->sc_disable != NULL)
2178 			(*sc->sc_disable)(sc);
2179 
2180 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2181 	}
2182 }
2183 
2184 static void
2185 cs_stop(struct ifnet *ifp, int disable)
2186 {
2187 	struct cs_softc *sc = ifp->if_softc;
2188 
2189 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2190 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2191 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2192 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2193 
2194 	if (disable) {
2195 		cs_disable(sc);
2196 	}
2197 
2198 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2199 }
2200 
2201 int
2202 cs_activate(struct device *self, enum devact act)
2203 {
2204 	struct cs_softc *sc = (void *)self;
2205 	int s, error = 0;
2206 
2207 	s = splnet();
2208 	switch (act) {
2209 	case DVACT_ACTIVATE:
2210 		error = EOPNOTSUPP;
2211 		break;
2212 
2213 	case DVACT_DEACTIVATE:
2214 		if_deactivate(&sc->sc_ethercom.ec_if);
2215 		break;
2216 	}
2217 	splx(s);
2218 
2219 	return error;
2220 }
2221 
2222 static void
2223 cs_power(int why, void *arg)
2224 {
2225 	struct cs_softc *sc = arg;
2226 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2227 	int s;
2228 
2229 	s = splnet();
2230 	switch (why) {
2231 	case PWR_STANDBY:
2232 	case PWR_SUSPEND:
2233 		cs_stop(ifp, 0);
2234 		break;
2235 	case PWR_RESUME:
2236 		if (ifp->if_flags & IFF_UP) {
2237 			cs_init(ifp);
2238 		}
2239 		break;
2240 	case PWR_SOFTSUSPEND:
2241 	case PWR_SOFTSTANDBY:
2242 	case PWR_SOFTRESUME:
2243 		break;
2244 	}
2245 	splx(s);
2246 }
2247