xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: cs89x0.c,v 1.39 2017/03/07 01:28:37 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.39 2017/03/07 01:28:37 ozaki-r Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 
229 #include <sys/rndsource.h>
230 
231 #include <net/if.h>
232 #include <net/if_ether.h>
233 #include <net/if_media.h>
234 #ifdef INET
235 #include <netinet/in.h>
236 #include <netinet/if_inarp.h>
237 #endif
238 
239 #include <net/bpf.h>
240 #include <net/bpfdesc.h>
241 
242 #include <sys/bus.h>
243 #include <sys/intr.h>
244 
245 #include <dev/ic/cs89x0reg.h>
246 #include <dev/ic/cs89x0var.h>
247 
248 #ifdef SHARK
249 #include <shark/shark/sequoia.h>
250 #endif
251 
252 /*
253  * MACRO DEFINITIONS
254  */
255 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
256 
257 /*
258  * FUNCTION PROTOTYPES
259  */
260 static void	cs_get_default_media(struct cs_softc *);
261 static int	cs_get_params(struct cs_softc *);
262 static int	cs_get_enaddr(struct cs_softc *);
263 static int	cs_reset_chip(struct cs_softc *);
264 static void	cs_reset(struct cs_softc *);
265 static int	cs_ioctl(struct ifnet *, u_long, void *);
266 static void	cs_initChip(struct cs_softc *);
267 static void	cs_buffer_event(struct cs_softc *, u_int16_t);
268 static void	cs_transmit_event(struct cs_softc *, u_int16_t);
269 static void	cs_receive_event(struct cs_softc *, u_int16_t);
270 static void	cs_process_receive(struct cs_softc *);
271 static void	cs_process_rx_early(struct cs_softc *);
272 static void	cs_start_output(struct ifnet *);
273 static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
274 static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
275 static u_int16_t cs_hash_index(char *);
276 static void	cs_counter_event(struct cs_softc *, u_int16_t);
277 
278 static int	cs_mediachange(struct ifnet *);
279 static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
280 
281 static bool cs_shutdown(device_t, int);
282 static int cs_enable(struct cs_softc *);
283 static void cs_disable(struct cs_softc *);
284 static void cs_stop(struct ifnet *, int);
285 static int cs_scan_eeprom(struct cs_softc *);
286 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
287 
288 
289 /*
290  * GLOBAL DECLARATIONS
291  */
292 
293 /*
294  * Xmit-early table.
295  *
296  * To get better performance, we tell the chip to start packet
297  * transmission before the whole packet is copied to the chip.
298  * However, this can fail under load.  When it fails, we back off
299  * to a safer setting for a little while.
300  *
301  * txcmd is the value of txcmd used to indicate when to start transmission.
302  * better is the next 'better' state in the table.
303  * better_count is the number of output packets before transition to the
304  *   better state.
305  * worse is the next 'worse' state in the table.
306  *
307  * Transition to the next worse state happens automatically when a
308  * transmittion underrun occurs.
309  */
310 struct cs_xmit_early {
311 	u_int16_t       txcmd;
312 	int             better;
313 	int             better_count;
314 	int             worse;
315 } cs_xmit_early_table[3] = {
316 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
317 	{ TX_CMD_START_1021,	0,	50000,		2, },
318 	{ TX_CMD_START_ALL,	1,	5000,		2, },
319 };
320 
321 int cs_default_media[] = {
322 	IFM_ETHER|IFM_10_2,
323 	IFM_ETHER|IFM_10_5,
324 	IFM_ETHER|IFM_10_T,
325 	IFM_ETHER|IFM_10_T|IFM_FDX,
326 };
327 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
328 
329 int
330 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
331 	  int nmedia, int defmedia)
332 {
333 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
334 	const char *chipname, *medname;
335 	u_int16_t reg;
336 	int i;
337 
338 	/* Start out in IO mode */
339 	sc->sc_memorymode = FALSE;
340 
341 	/* make sure we're right */
342 	for (i = 0; i < 10000; i++) {
343 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
344 		if (reg == EISA_NUM_CRYSTAL) {
345 			break;
346 		}
347 	}
348 	if (i == 10000) {
349 		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
350 		return 1; /* XXX should panic? */
351 	}
352 
353 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
354 	sc->sc_prodid = reg & PROD_ID_MASK;
355 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
356 
357 	switch (sc->sc_prodid) {
358 	case PROD_ID_CS8900:
359 		chipname = "CS8900";
360 		break;
361 	case PROD_ID_CS8920:
362 		chipname = "CS8920";
363 		break;
364 	case PROD_ID_CS8920M:
365 		chipname = "CS8920M";
366 		break;
367 	default:
368 		panic("cs_attach: impossible");
369 	}
370 
371 	/*
372 	 * the first thing to do is check that the mbuf cluster size is
373 	 * greater than the MTU for an ethernet frame. The code depends on
374 	 * this and to port this to a OS where this was not the case would
375 	 * not be straightforward.
376 	 *
377 	 * we need 1 byte spare because our
378 	 * packet read loop can overrun.
379 	 * and we may need pad bytes to align ip header.
380 	 */
381 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
382 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
383 		printf("%s: MCLBYTES too small for Ethernet frame\n",
384 		    device_xname(sc->sc_dev));
385 		return 1;
386 	}
387 
388 	/* Start out not transmitting */
389 	sc->sc_txbusy = FALSE;
390 
391 	/* Set up early transmit threshhold */
392 	sc->sc_xe_ent = 0;
393 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
394 
395 	/* Initialize ifnet structure. */
396 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
397 	ifp->if_softc = sc;
398 	ifp->if_start = cs_start_output;
399 	ifp->if_init = cs_init;
400 	ifp->if_ioctl = cs_ioctl;
401 	ifp->if_stop = cs_stop;
402 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
403 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
404 	    IFF_BROADCAST | IFF_MULTICAST;
405 	IFQ_SET_READY(&ifp->if_snd);
406 
407 	/* Initialize ifmedia structures. */
408 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
409 
410 	if (media != NULL) {
411 		for (i = 0; i < nmedia; i++)
412 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
413 		ifmedia_set(&sc->sc_media, defmedia);
414 	} else {
415 		for (i = 0; i < cs_default_nmedia; i++)
416 			ifmedia_add(&sc->sc_media, cs_default_media[i],
417 			    0, NULL);
418 		cs_get_default_media(sc);
419 	}
420 
421 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
422 		if (cs_scan_eeprom(sc) == CS_ERROR) {
423 			/* failed to scan the eeprom, pretend there isn't an eeprom */
424 			aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
425 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
426 		}
427 	}
428 
429 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
430 		/* Get parameters from the EEPROM */
431 		if (cs_get_params(sc) == CS_ERROR) {
432 			aprint_error_dev(sc->sc_dev,
433 			    "unable to get settings from EEPROM\n");
434 			return 1;
435 		}
436 	}
437 
438 	if (enaddr != NULL)
439 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
440 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
441 		/* Get and store the Ethernet address */
442 		if (cs_get_enaddr(sc) == CS_ERROR) {
443 			aprint_error_dev(sc->sc_dev,
444 			    "unable to read Ethernet address\n");
445 			return 1;
446 		}
447 	} else {
448 #if 1
449 		int j;
450 		uint v;
451 
452 		for (j = 0; j < 6; j += 2) {
453 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
454 			sc->sc_enaddr[j + 0] = v;
455 			sc->sc_enaddr[j + 1] = v >> 8;
456 		}
457 #else
458 		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
459 		return 1;
460 #endif
461 	}
462 
463 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
464 	case IFM_10_2:
465 		medname = "BNC";
466 		break;
467 	case IFM_10_5:
468 		medname = "AUI";
469 		break;
470 	case IFM_10_T:
471 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
472 			medname = "UTP <full-duplex>";
473 		else
474 			medname = "UTP";
475 		break;
476 	default:
477 		panic("cs_attach: impossible");
478 	}
479 	printf("%s: %s rev. %c, address %s, media %s\n",
480 	    device_xname(sc->sc_dev),
481 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
482 	    medname);
483 
484 	if (sc->sc_dma_attach)
485 		(*sc->sc_dma_attach)(sc);
486 
487 	/* Attach the interface. */
488 	if_attach(ifp);
489 	if_deferred_start_init(ifp, NULL);
490 	ether_ifattach(ifp, sc->sc_enaddr);
491 
492 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
493 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
494 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
495 
496 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
497 		pmf_class_network_register(sc->sc_dev, ifp);
498 	else
499 		aprint_error_dev(sc->sc_dev,
500 		    "couldn't establish power handler\n");
501 
502 	/* Reset the chip */
503 	if (cs_reset_chip(sc) == CS_ERROR) {
504 		aprint_error_dev(sc->sc_dev, "reset failed\n");
505 		cs_detach(sc);
506 		return 1;
507 	}
508 
509 	return 0;
510 }
511 
512 int
513 cs_detach(struct cs_softc *sc)
514 {
515 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
516 
517 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
518 		rnd_detach_source(&sc->rnd_source);
519 		ether_ifdetach(ifp);
520 		if_detach(ifp);
521 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
522 	}
523 
524 #if 0
525 	/*
526 	 * XXX not necessary
527 	 */
528 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
529 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
530 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
531 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
532 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
533 	}
534 #endif
535 
536 	pmf_device_deregister(sc->sc_dev);
537 
538 	return 0;
539 }
540 
541 bool
542 cs_shutdown(device_t self, int howto)
543 {
544 	struct cs_softc *sc;
545 
546 	sc = device_private(self);
547 	cs_reset(sc);
548 
549 	return true;
550 }
551 
552 void
553 cs_get_default_media(struct cs_softc *sc)
554 {
555 	u_int16_t adp_cfg, xmit_ctl;
556 
557 	if (cs_verify_eeprom(sc) == CS_ERROR) {
558 		aprint_error_dev(sc->sc_dev,
559 		    "cs_get_default_media: EEPROM missing or bad\n");
560 		goto fakeit;
561 	}
562 
563 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
564 		aprint_error_dev(sc->sc_dev,
565 		    "unable to read adapter config from EEPROM\n");
566 		goto fakeit;
567 	}
568 
569 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
570 		aprint_error_dev(sc->sc_dev,
571 		    "unable to read transmit control from EEPROM\n");
572 		goto fakeit;
573 	}
574 
575 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
576 	case ADPTR_CFG_AUI:
577 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
578 		break;
579 	case ADPTR_CFG_10BASE2:
580 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
581 		break;
582 	case ADPTR_CFG_10BASET:
583 	default:
584 		if (xmit_ctl & XMIT_CTL_FDX)
585 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
586 		else
587 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
588 		break;
589 	}
590 	return;
591 
592  fakeit:
593 	aprint_error_dev(sc->sc_dev,
594 	    "WARNING: default media setting may be inaccurate\n");
595 	/* XXX Arbitrary... */
596 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
597 }
598 
599 /*
600  * cs_scan_eeprom
601  *
602  * Attempt to take a complete copy of the eeprom into main memory.
603  * this will allow faster parsing of the eeprom data.
604  *
605  * Only tested against a 8920M's eeprom, but the data sheet for the
606  * 8920A indicates that is uses the same layout.
607  */
608 int
609 cs_scan_eeprom(struct cs_softc *sc)
610 {
611 	u_int16_t result;
612 	int	i;
613 	int	eeprom_size;
614 	u_int8_t checksum = 0;
615 
616 	if (cs_verify_eeprom(sc) == CS_ERROR) {
617 		aprint_error_dev(sc->sc_dev,
618 		    "cs_scan_params: EEPROM missing or bad\n");
619 		return (CS_ERROR);
620 	}
621 
622 	/*
623 	 * read the 0th word from the eeprom, it will tell us the length
624 	 * and if the eeprom is valid
625 	 */
626 	cs_read_eeprom(sc, 0, &result);
627 
628 	/* check the eeprom signature */
629 	if ((result & 0xE000) != 0xA000) {
630 		/* empty eeprom */
631 		return (CS_ERROR);
632 	}
633 
634 	/*
635 	 * take the eeprom size (note the read value doesn't include the header
636 	 * word)
637 	 */
638 	eeprom_size = (result & 0xff) + 2;
639 
640 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
641 	if (sc->eeprom_data == NULL) {
642 		/* no memory, treat this as if there's no eeprom */
643 		return (CS_ERROR);
644 	}
645 
646 	sc->eeprom_size = eeprom_size;
647 
648 	/* read the eeprom into the buffer, also calculate the checksum  */
649 	for (i = 0; i < (eeprom_size >> 1); i++) {
650 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
651 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
652 		checksum += (sc->eeprom_data[i] & 0x00ff);
653 	}
654 
655 	/*
656 	 * validate checksum calculation, the sum of all the bytes should be 0,
657 	 * as the high byte of the last word is the 2's complement of the
658 	 * sum to that point.
659 	 */
660 	if (checksum != 0) {
661 		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
662 		return (CS_ERROR);
663 	}
664 
665 	return (CS_OK);
666 }
667 
668 static int
669 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
670 {
671 	int x, maxword;
672 
673 	/* Check that we have eeprom data */
674 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
675 		return (CS_ERROR);
676 
677 	/*
678 	 * We only want to read the data words, the last word contains the
679 	 * checksum
680 	 */
681 	maxword = (sc->eeprom_size - 2) >> 1;
682 
683 	/* start 1 word in, as the first word is the length and signature */
684 	x = 1;
685 
686 	while ( x < (maxword)) {
687 		u_int16_t header;
688 		int group_size;
689 		int offset;
690 		int offset_max;
691 
692 		/* read in the group header word */
693 		header = sc->eeprom_data[x];
694 		x++;	/* skip group header */
695 
696 		/*
697 		 * size of group in words is in the top 4 bits, note that it
698 		 * is one less than the number of words
699 		 */
700 		group_size = header & 0xF000;
701 
702 		/*
703 		 * CS8900 Data sheet says this should be 0x01ff,
704 		 * but my cs8920 eeprom has higher offsets,
705 		 * perhaps the 8920 allows higher offsets, otherwise
706 		 * it's writing to places that it shouldn't
707 		 */
708 		/* work out the offsets this group covers */
709 		offset = header & 0x0FFF;
710 		offset_max = offset + (group_size << 1);
711 
712 		/* check if the pkgpg we're after is in this group */
713 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
714 			/* the pkgpg value we want is in here */
715 			int eeprom_location;
716 
717 			eeprom_location = ((pktpg - offset) >> 1) ;
718 
719 			*pValue = sc->eeprom_data[x + eeprom_location];
720 			return (CS_OK);
721 		} else {
722 			/* skip this group (+ 1 for first entry) */
723 			x += group_size + 1;
724 		}
725 	}
726 
727 	/*
728 	 * if we've fallen out here then we don't have a value in the EEPROM
729 	 * for this pktpg so return an error
730 	 */
731 	return (CS_ERROR);
732 }
733 
734 int
735 cs_get_params(struct cs_softc *sc)
736 {
737 	u_int16_t isaConfig;
738 	u_int16_t adapterConfig;
739 
740 	if (cs_verify_eeprom(sc) == CS_ERROR) {
741 		aprint_error_dev(sc->sc_dev,
742 		    "cs_get_params: EEPROM missing or bad\n");
743 		return (CS_ERROR);
744 	}
745 
746 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
747 		/* Get ISA configuration from the EEPROM */
748 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
749 			       	== CS_ERROR) {
750 			/* eeprom doesn't have this value, use data sheet default */
751 			isaConfig = 0x0017;
752 		}
753 
754 		/* Get adapter configuration from the EEPROM */
755 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
756 				== CS_ERROR) {
757 			/* eeprom doesn't have this value, use data sheet default */
758 			adapterConfig = 0x0015;
759 		}
760 
761 		/* Copy the USE_SA flag */
762 		if (isaConfig & BUS_CTL_USE_SA)
763 			sc->sc_cfgflags |= CFGFLG_USE_SA;
764 
765 		/* Copy the IO Channel Ready flag */
766 		if (isaConfig & BUS_CTL_IOCHRDY)
767 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
768 
769 		/* Copy the DC/DC Polarity flag */
770 		if (adapterConfig & SELF_CTL_HCB1)
771 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
772 	} else {
773 		/* Get ISA configuration from the EEPROM */
774 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
775 			goto eeprom_bad;
776 
777 		/* Get adapter configuration from the EEPROM */
778 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
779 			goto eeprom_bad;
780 
781 		/* Copy the USE_SA flag */
782 		if (isaConfig & ISA_CFG_USE_SA)
783 			sc->sc_cfgflags |= CFGFLG_USE_SA;
784 
785 		/* Copy the IO Channel Ready flag */
786 		if (isaConfig & ISA_CFG_IOCHRDY)
787 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
788 
789 		/* Copy the DC/DC Polarity flag */
790 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
791 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
792 	}
793 
794 	return (CS_OK);
795 eeprom_bad:
796 	aprint_error_dev(sc->sc_dev,
797 	    "cs_get_params: unable to read from EEPROM\n");
798 	return (CS_ERROR);
799 }
800 
801 int
802 cs_get_enaddr(struct cs_softc *sc)
803 {
804 	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
805 	int i;
806 
807 	if (cs_verify_eeprom(sc) == CS_ERROR) {
808 		aprint_error_dev(sc->sc_dev,
809 		    "cs_get_enaddr: EEPROM missing or bad\n");
810 		return (CS_ERROR);
811 	}
812 
813 	/* Get Ethernet address from the EEPROM */
814 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
815 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
816 				== CS_ERROR)
817 			goto eeprom_bad;
818 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
819 				== CS_ERROR)
820 			goto eeprom_bad;
821 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
822 				== CS_ERROR)
823 			goto eeprom_bad;
824 	} else {
825 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
826 			goto eeprom_bad;
827 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
828 			goto eeprom_bad;
829 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
830 			goto eeprom_bad;
831 	}
832 
833 	for (i = 0; i < __arraycount(myea); i++) {
834 		sc->sc_enaddr[i * 2 + 0] = myea[i];
835 		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
836 	}
837 
838 	return (CS_OK);
839 
840  eeprom_bad:
841 	aprint_error_dev(sc->sc_dev,
842 	    "cs_get_enaddr: unable to read from EEPROM\n");
843 	return (CS_ERROR);
844 }
845 
846 int
847 cs_reset_chip(struct cs_softc *sc)
848 {
849 	int intState;
850 	int x;
851 
852 	/* Disable interrupts at the CPU so reset command is atomic */
853 	intState = splnet();
854 
855 	/*
856 	 * We are now resetting the chip
857 	 *
858 	 * A spurious interrupt is generated by the chip when it is reset. This
859 	 * variable informs the interrupt handler to ignore this interrupt.
860 	 */
861 	sc->sc_resetting = TRUE;
862 
863 	/* Issue a reset command to the chip */
864 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
865 
866 	/* Re-enable interrupts at the CPU */
867 	splx(intState);
868 
869 	/* The chip is always in IO mode after a reset */
870 	sc->sc_memorymode = FALSE;
871 
872 	/* If transmission was in progress, it is not now */
873 	sc->sc_txbusy = FALSE;
874 
875 	/*
876 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
877 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
878 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
879 	 * should be sufficient.
880 	 */
881 
882 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
883 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
884 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
885 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
886 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
887 
888 	/* Wait until the EEPROM is not busy */
889 	for (x = 0; x < MAXLOOP; x++) {
890 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
891 			break;
892 	}
893 
894 	if (x == MAXLOOP)
895 		return CS_ERROR;
896 
897 	/* Wait until initialization is done */
898 	for (x = 0; x < MAXLOOP; x++) {
899 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
900 			break;
901 	}
902 
903 	if (x == MAXLOOP)
904 		return CS_ERROR;
905 
906 	/* Reset is no longer in progress */
907 	sc->sc_resetting = FALSE;
908 
909 	return CS_OK;
910 }
911 
912 int
913 cs_verify_eeprom(struct cs_softc *sc)
914 {
915 	u_int16_t self_status;
916 
917 	/* Verify that the EEPROM is present and OK */
918 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
919 	if (((self_status & SELF_ST_EEP_PRES) &&
920 	     (self_status & SELF_ST_EEP_OK)) == 0)
921 		return (CS_ERROR);
922 
923 	return (CS_OK);
924 }
925 
926 int
927 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
928 {
929 	int x;
930 
931 	/* Ensure that the EEPROM is not busy */
932 	for (x = 0; x < MAXLOOP; x++) {
933 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
934 		      SELF_ST_SI_BUSY))
935 			break;
936 	}
937 
938 	if (x == MAXLOOP)
939 		return (CS_ERROR);
940 
941 	/* Issue the command to read the offset within the EEPROM */
942 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
943 	    offset | EEPROM_CMD_READ);
944 
945 	/* Wait until the command is completed */
946 	for (x = 0; x < MAXLOOP; x++) {
947 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
948 		      SELF_ST_SI_BUSY))
949 			break;
950 	}
951 
952 	if (x == MAXLOOP)
953 		return (CS_ERROR);
954 
955 	/* Get the EEPROM data from the EEPROM Data register */
956 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
957 
958 	return (CS_OK);
959 }
960 
961 void
962 cs_initChip(struct cs_softc *sc)
963 {
964 	u_int16_t busCtl;
965 	u_int16_t selfCtl;
966 	u_int16_t v;
967 	u_int16_t isaId;
968 	int i;
969 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
970 
971 	/* Disable reception and transmission of frames */
972 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
973 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
974 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
975 
976 	/* Disable interrupt at the chip */
977 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
978 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
979 
980 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
981 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
982 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
983 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
984 		    busCtl & ~BUS_CTL_IOCHRDY);
985 	} else {
986 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
987 		    busCtl | BUS_CTL_IOCHRDY);
988 	}
989 
990 	/* Set the Line Control register to match the media type */
991 	if (media == IFM_10_T)
992 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
993 	else
994 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
995 
996 	/*
997 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
998 	 * enable the DC/DC converter
999 	 */
1000 	selfCtl = SELF_CTL_HC1E;
1001 
1002 	/* If the media type is 10Base2 */
1003 	if (media == IFM_10_2) {
1004 		/*
1005 		 * Enable the DC/DC converter if it has a low enable.
1006 		 */
1007 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1008 			/*
1009 			 * Set the HCB1 bit, which causes the HC1 pin to go
1010 			 * low.
1011 			 */
1012 			selfCtl |= SELF_CTL_HCB1;
1013 	} else { /* Media type is 10BaseT or AUI */
1014 		/*
1015 		 * Disable the DC/DC converter if it has a high enable.
1016 		 */
1017 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1018 			/*
1019 			 * Set the HCB1 bit, which causes the HC1 pin to go
1020 			 * low.
1021 			 */
1022 			selfCtl |= SELF_CTL_HCB1;
1023 		}
1024 	}
1025 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1026 
1027 	/* enable normal link pulse */
1028 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1029 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1030 
1031 	/* Enable full-duplex, if appropriate */
1032 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1033 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1034 
1035 	/* RX_CTL set in cs_set_ladr_filt(), below */
1036 
1037 	/* enable all transmission interrupts */
1038 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1039 
1040 	/* Accept all receive interrupts */
1041 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1042 
1043 	/*
1044 	 * Configure Operational Modes
1045 	 *
1046 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1047 	 * a better way to do it because the card has a counter which can be
1048 	 * read to update the RX_MISS counter. This saves many interrupts.
1049 	 *
1050 	 * I have turned on the tx and rx overflow interrupts to counter using
1051 	 * the receive miss interrupt. This is a better estimate of errors
1052 	 * and requires lower system overhead.
1053 	 */
1054 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1055 			  BUF_CFG_RX_DMA_IE);
1056 
1057 	if (sc->sc_dma_chipinit)
1058 		(*sc->sc_dma_chipinit)(sc);
1059 
1060 	/* If memory mode is enabled */
1061 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1062 		/* If external logic is present for address decoding */
1063 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1064 			/*
1065 			 * Program the external logic to decode address bits
1066 			 * SA20-SA23
1067 			 */
1068 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1069 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1070 			    EEPROM_CMD_ELSEL);
1071 		}
1072 
1073 		/*
1074 		 * Write the packet page base physical address to the memory
1075 		 * base register.
1076 		 */
1077 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1078 		    sc->sc_pktpgaddr & 0xFFFF);
1079 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1080 		    sc->sc_pktpgaddr >> 16);
1081 		busCtl = BUS_CTL_MEM_MODE;
1082 
1083 		/* tell the chip to read the addresses off the SA pins */
1084 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1085 			busCtl |= BUS_CTL_USE_SA;
1086 		}
1087 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1088 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1089 
1090 		/* We are in memory mode now! */
1091 		sc->sc_memorymode = TRUE;
1092 
1093 		/*
1094 		 * wait here (10ms) for the chip to swap over. this is the
1095 		 * maximum time that this could take.
1096 		 */
1097 		delay(10000);
1098 
1099 		/* Verify that we can read from the chip */
1100 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1101 
1102 		/*
1103 		 * As a last minute sanity check before actually using mapped
1104 		 * memory we verify that we can read the isa number from the
1105 		 * chip in memory mode.
1106 		 */
1107 		if (isaId != EISA_NUM_CRYSTAL) {
1108 			aprint_error_dev(sc->sc_dev,
1109 			    "failed to enable memory mode\n");
1110 			sc->sc_memorymode = FALSE;
1111 		} else {
1112 			/*
1113 			 * we are in memory mode so if we aren't using DMA,
1114 			 * then program the chip to interrupt early.
1115 			 */
1116 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1117 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1118 				    BUF_CFG_RX_DEST_IE |
1119 				    BUF_CFG_RX_MISS_OVER_IE |
1120 				    BUF_CFG_TX_COL_OVER_IE);
1121 			}
1122 		}
1123 
1124 	}
1125 
1126 	/* Put Ethernet address into the Individual Address register */
1127 	for (i = 0; i < 6; i += 2) {
1128 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1129 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1130 	}
1131 
1132 	if (sc->sc_irq != -1) {
1133 		/* Set the interrupt level in the chip */
1134 		if (sc->sc_prodid == PROD_ID_CS8900) {
1135 			if (sc->sc_irq == 5) {
1136 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1137 			} else {
1138 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1139 			}
1140 		}
1141 		else { /* CS8920 */
1142 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1143 		}
1144 	}
1145 
1146 	/* write the multicast mask to the address filter register */
1147 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1148 
1149 	/* Enable reception and transmission of frames */
1150 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1151 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1152 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1153 
1154 	/* Enable interrupt at the chip */
1155 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1156 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1157 }
1158 
1159 int
1160 cs_init(struct ifnet *ifp)
1161 {
1162 	int intState;
1163 	int error = CS_OK;
1164 	struct cs_softc *sc = ifp->if_softc;
1165 
1166 	if (cs_enable(sc))
1167 		goto out;
1168 
1169 	cs_stop(ifp, 0);
1170 
1171 	intState = splnet();
1172 
1173 #if 0
1174 	/* Mark the interface as down */
1175 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1176 #endif
1177 
1178 #ifdef CS_DEBUG
1179 	/* Enable debugging */
1180 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1181 #endif
1182 
1183 	/* Reset the chip */
1184 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1185 		/* Initialize the chip */
1186 		cs_initChip(sc);
1187 
1188 		/* Mark the interface as running */
1189 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1190 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1191 		sc->sc_ethercom.ec_if.if_timer = 0;
1192 
1193 		/* Assume we have carrier until we are told otherwise. */
1194 		sc->sc_carrier = 1;
1195 	} else {
1196 		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1197 	}
1198 
1199 	splx(intState);
1200 out:
1201 	if (error == CS_OK)
1202 		return 0;
1203 	return EIO;
1204 }
1205 
1206 void
1207 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1208 {
1209 	struct ifnet *ifp = &ec->ec_if;
1210 	struct ether_multi *enm;
1211 	struct ether_multistep step;
1212 	u_int16_t af[4];
1213 	u_int16_t port, mask, index;
1214 
1215 	/*
1216          * Set up multicast address filter by passing all multicast addresses
1217          * through a crc generator, and then using the high order 6 bits as an
1218          * index into the 64 bit logical address filter.  The high order bit
1219          * selects the word, while the rest of the bits select the bit within
1220          * the word.
1221          */
1222 	if (ifp->if_flags & IFF_PROMISC) {
1223 		/* accept all valid frames. */
1224 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1225 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1226 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1227 		ifp->if_flags |= IFF_ALLMULTI;
1228 		return;
1229 	}
1230 
1231 	/*
1232 	 * accept frames if a. crc valid, b. individual address match c.
1233 	 * broadcast address,and d. multicast addresses matched in the hash
1234 	 * filter
1235 	 */
1236 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1237 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1238 
1239 
1240 	/*
1241 	 * start off with all multicast flag clear, set it if we need to
1242 	 * later, otherwise we will leave it.
1243 	 */
1244 	ifp->if_flags &= ~IFF_ALLMULTI;
1245 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1246 
1247 	/*
1248 	 * Loop through all the multicast addresses unless we get a range of
1249 	 * addresses, in which case we will just accept all packets.
1250 	 * Justification for this is given in the next comment.
1251 	 */
1252 	ETHER_FIRST_MULTI(step, ec, enm);
1253 	while (enm != NULL) {
1254 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1255 		    sizeof enm->enm_addrlo)) {
1256 			/*
1257 	                 * We must listen to a range of multicast addresses.
1258 	                 * For now, just accept all multicasts, rather than
1259 	                 * trying to set only those filter bits needed to match
1260 	                 * the range.  (At this time, the only use of address
1261 	                 * ranges is for IP multicast routing, for which the
1262 	                 * range is big enough to require all bits set.)
1263 	                 */
1264 			ifp->if_flags |= IFF_ALLMULTI;
1265 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1266 			break;
1267 		} else {
1268 			/*
1269 	                 * we have got an individual address so just set that
1270 	                 * bit.
1271 	                 */
1272 			index = cs_hash_index(enm->enm_addrlo);
1273 
1274 			/* Set the bit the Logical address filter. */
1275 			port = (u_int16_t) (index >> 4);
1276 			mask = (u_int16_t) (1 << (index & 0xf));
1277 			af[port] |= mask;
1278 
1279 			ETHER_NEXT_MULTI(step, enm);
1280 		}
1281 	}
1282 
1283 	/* now program the chip with the addresses */
1284 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1285 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1286 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1287 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1288 	return;
1289 }
1290 
1291 u_int16_t
1292 cs_hash_index(char *addr)
1293 {
1294 	uint32_t crc;
1295 	uint16_t hash_code;
1296 
1297 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1298 
1299 	hash_code = crc >> 26;
1300 	return (hash_code);
1301 }
1302 
1303 void
1304 cs_reset(struct cs_softc *sc)
1305 {
1306 
1307 	/* Mark the interface as down */
1308 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1309 
1310 	/* Reset the chip */
1311 	cs_reset_chip(sc);
1312 }
1313 
1314 int
1315 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1316 {
1317 	struct cs_softc *sc = ifp->if_softc;
1318 	struct ifreq *ifr = data;
1319 	int state;
1320 	int result;
1321 
1322 	state = splnet();
1323 
1324 	result = 0;		/* only set if something goes wrong */
1325 
1326 	switch (cmd) {
1327 	case SIOCGIFMEDIA:
1328 	case SIOCSIFMEDIA:
1329 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1330 		break;
1331 
1332 	default:
1333 		result = ether_ioctl(ifp, cmd, data);
1334 		if (result == ENETRESET) {
1335 			if (ifp->if_flags & IFF_RUNNING) {
1336 				/*
1337 				 * Multicast list has changed.  Set the
1338 				 * hardware filter accordingly.
1339 				 */
1340 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1341 			}
1342 			result = 0;
1343 		}
1344 		break;
1345 	}
1346 
1347 	splx(state);
1348 
1349 	return result;
1350 }
1351 
1352 int
1353 cs_mediachange(struct ifnet *ifp)
1354 {
1355 
1356 	/*
1357 	 * Current media is already set up.  Just reset the interface
1358 	 * to let the new value take hold.
1359 	 */
1360 	cs_init(ifp);
1361 	return (0);
1362 }
1363 
1364 void
1365 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1366 {
1367 	struct cs_softc *sc = ifp->if_softc;
1368 
1369 	/*
1370 	 * The currently selected media is always the active media.
1371 	 */
1372 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1373 
1374 	if (ifp->if_flags & IFF_UP) {
1375 		/* Interface up, status is valid. */
1376 		ifmr->ifm_status = IFM_AVALID |
1377 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1378 	}
1379 		else ifmr->ifm_status = 0;
1380 }
1381 
1382 int
1383 cs_intr(void *arg)
1384 {
1385 	struct cs_softc *sc = arg;
1386 	u_int16_t Event;
1387 	u_int16_t rndEvent;
1388 
1389 /*printf("cs_intr %p\n", sc);*/
1390 	/* Ignore any interrupts that happen while the chip is being reset */
1391 	if (sc->sc_resetting) {
1392 		printf("%s: cs_intr: reset in progress\n",
1393 		    device_xname(sc->sc_dev));
1394 		return 1;
1395 	}
1396 
1397 	/* Read an event from the Interrupt Status Queue */
1398 	if (sc->sc_memorymode)
1399 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1400 	else
1401 		Event = CS_READ_PORT(sc, PORT_ISQ);
1402 
1403 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1404 		return 0;	/* not ours */
1405 
1406 	rndEvent = Event;
1407 
1408 	/* Process all the events in the Interrupt Status Queue */
1409 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1410 		/* Dispatch to an event handler based on the register number */
1411 		switch (Event & REG_NUM_MASK) {
1412 		case REG_NUM_RX_EVENT:
1413 			cs_receive_event(sc, Event);
1414 			break;
1415 		case REG_NUM_TX_EVENT:
1416 			cs_transmit_event(sc, Event);
1417 			break;
1418 		case REG_NUM_BUF_EVENT:
1419 			cs_buffer_event(sc, Event);
1420 			break;
1421 		case REG_NUM_TX_COL:
1422 		case REG_NUM_RX_MISS:
1423 			cs_counter_event(sc, Event);
1424 			break;
1425 		default:
1426 			printf("%s: unknown interrupt event 0x%x\n",
1427 			    device_xname(sc->sc_dev), Event);
1428 			break;
1429 		}
1430 
1431 		/* Read another event from the Interrupt Status Queue */
1432 		if (sc->sc_memorymode)
1433 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1434 		else
1435 			Event = CS_READ_PORT(sc, PORT_ISQ);
1436 	}
1437 
1438 	/* have handled the interrupt */
1439 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1440 	return 1;
1441 }
1442 
1443 void
1444 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1445 {
1446 	struct ifnet *ifp;
1447 	u_int16_t errorCount;
1448 
1449 	ifp = &sc->sc_ethercom.ec_if;
1450 
1451 	switch (cntEvent & REG_NUM_MASK) {
1452 	case REG_NUM_TX_COL:
1453 		/*
1454 		 * the count should be read before an overflow occurs.
1455 		 */
1456 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1457 		/*
1458 		 * the tramsit event routine always checks the number of
1459 		 * collisions for any packet so we don't increment any
1460 		 * counters here, as they should already have been
1461 		 * considered.
1462 		 */
1463 		break;
1464 	case REG_NUM_RX_MISS:
1465 		/*
1466 		 * the count should be read before an overflow occurs.
1467 		 */
1468 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1469 		/*
1470 		 * Increment the input error count, the first 6bits are the
1471 		 * register id.
1472 		 */
1473 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1474 		break;
1475 	default:
1476 		/* do nothing */
1477 		break;
1478 	}
1479 }
1480 
1481 void
1482 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1483 {
1484 
1485 	/*
1486 	 * multiple events can be in the buffer event register at one time so
1487 	 * a standard switch statement will not suffice, here every event
1488 	 * must be checked.
1489 	 */
1490 
1491 	/*
1492 	 * if 128 bits have been rxed by the time we get here, the dest event
1493 	 * will be cleared and 128 event will be set.
1494 	 */
1495 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1496 		cs_process_rx_early(sc);
1497 	}
1498 
1499 	if (bufEvent & BUF_EVENT_RX_DMA) {
1500 		/* process the receive data */
1501 		if (sc->sc_dma_process_rx)
1502 			(*sc->sc_dma_process_rx)(sc);
1503 		else
1504 			/* should panic? */
1505 			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1506 	}
1507 
1508 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1509 #if 0
1510 		/*
1511 		 * This can happen occasionally, and it's not worth worrying
1512 		 * about.
1513 		 */
1514 		printf("%s: transmit underrun (%d -> %d)\n",
1515 		    device_xname(sc->sc_dev), sc->sc_xe_ent,
1516 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1517 #endif
1518 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1519 		sc->sc_xe_togo =
1520 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1521 
1522 		/* had an underrun, transmit is finished */
1523 		sc->sc_txbusy = FALSE;
1524 	}
1525 
1526 	if (bufEvent & BUF_EVENT_SW_INT) {
1527 		printf("%s: software initiated interrupt\n",
1528 		    device_xname(sc->sc_dev));
1529 	}
1530 }
1531 
1532 void
1533 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1534 {
1535 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1536 
1537 	/* If there were any errors transmitting this frame */
1538 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1539 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1540 		/* Increment the output error count */
1541 		ifp->if_oerrors++;
1542 
1543 		/* Note carrier loss. */
1544 		if (txEvent & TX_EVENT_LOSS_CRS)
1545 			sc->sc_carrier = 0;
1546 
1547 		/* If debugging is enabled then log error messages */
1548 		if (ifp->if_flags & IFF_DEBUG) {
1549 			if (txEvent & TX_EVENT_LOSS_CRS) {
1550 				aprint_error_dev(sc->sc_dev, "lost carrier\n");
1551 			}
1552 			if (txEvent & TX_EVENT_SQE_ERR) {
1553 				aprint_error_dev(sc->sc_dev, "SQE error\n");
1554 			}
1555 			if (txEvent & TX_EVENT_OUT_WIN) {
1556 				aprint_error_dev(sc->sc_dev,
1557 				    "out-of-window collision\n");
1558 			}
1559 			if (txEvent & TX_EVENT_JABBER) {
1560 				aprint_error_dev(sc->sc_dev, "jabber\n");
1561 			}
1562 			if (txEvent & TX_EVENT_16_COLL) {
1563 				aprint_error_dev(sc->sc_dev, "16 collisions\n");
1564 			}
1565 		}
1566 	}
1567 	else {
1568 		/* Transmission successful, carrier is up. */
1569 		sc->sc_carrier = 1;
1570 #ifdef SHARK
1571 		ledNetActive();
1572 #endif
1573 	}
1574 
1575 	/* Add the number of collisions for this frame */
1576 	if (txEvent & TX_EVENT_16_COLL) {
1577 		ifp->if_collisions += 16;
1578 	} else {
1579 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1580 	}
1581 
1582 	ifp->if_opackets++;
1583 
1584 	/* Transmission is no longer in progress */
1585 	sc->sc_txbusy = FALSE;
1586 
1587 	/* If there is more to transmit, start the next transmission */
1588 	if_schedule_deferred_start(ifp);
1589 }
1590 
1591 void
1592 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1593 {
1594 
1595 	if (rxEvent & RX_EVENT_RUNT)
1596 		aprint_error_dev(sc->sc_dev, "runt\n");
1597 
1598 	if (rxEvent & RX_EVENT_X_DATA)
1599 		aprint_error_dev(sc->sc_dev, "extra data\n");
1600 
1601 	if (rxEvent & RX_EVENT_CRC_ERR) {
1602 		if (rxEvent & RX_EVENT_DRIBBLE)
1603 			aprint_error_dev(sc->sc_dev, "alignment error\n");
1604 		else
1605 			aprint_error_dev(sc->sc_dev, "CRC error\n");
1606 	} else {
1607 		if (rxEvent & RX_EVENT_DRIBBLE)
1608 			aprint_error_dev(sc->sc_dev, "dribble bits\n");
1609 	}
1610 }
1611 
1612 void
1613 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1614 {
1615 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1616 
1617 	/* If the frame was not received OK */
1618 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1619 		/* Increment the input error count */
1620 		ifp->if_ierrors++;
1621 
1622 		/*
1623 		 * If debugging is enabled then log error messages.
1624 		 */
1625 		if (ifp->if_flags & IFF_DEBUG) {
1626 			if (rxEvent != REG_NUM_RX_EVENT) {
1627 				cs_print_rx_errors(sc, rxEvent);
1628 
1629 				/*
1630 				 * Must read the length of all received
1631 				 * frames
1632 				 */
1633 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1634 
1635 				/* Skip the received frame */
1636 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1637 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1638 						  RX_CFG_SKIP);
1639 			} else {
1640 				aprint_error_dev(sc->sc_dev, "implied skip\n");
1641 			}
1642 		}
1643 	} else {
1644 		/*
1645 		 * process the received frame and pass it up to the upper
1646 		 * layers.
1647 		 */
1648 		cs_process_receive(sc);
1649 	}
1650 }
1651 
1652 void
1653 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1654 {
1655 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1656 
1657 	/* Pass the packet up. */
1658 	if_percpuq_enqueue(ifp->if_percpuq, m);
1659 }
1660 
1661 void
1662 cs_process_receive(struct cs_softc *sc)
1663 {
1664 	struct ifnet *ifp;
1665 	struct mbuf *m;
1666 	int totlen;
1667 	u_int16_t *pBuff, *pBuffLimit;
1668 	int pad;
1669 	unsigned int frameOffset = 0;	/* XXX: gcc */
1670 
1671 #ifdef SHARK
1672 	ledNetActive();
1673 #endif
1674 
1675 	ifp = &sc->sc_ethercom.ec_if;
1676 
1677 	/* Received a packet; carrier is up. */
1678 	sc->sc_carrier = 1;
1679 
1680 	if (sc->sc_memorymode) {
1681 		/* Initialize the frame offset */
1682 		frameOffset = PKTPG_RX_LENGTH;
1683 
1684 		/* Get the length of the received frame */
1685 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1686 		frameOffset += 2;
1687 	}
1688 	else {
1689 		/* drop status */
1690 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1691 
1692 		/* Get the length of the received frame */
1693 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1694 	}
1695 
1696 	if (totlen > ETHER_MAX_LEN) {
1697 		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1698 		    totlen);
1699 
1700 		/* skip the received frame */
1701 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1702 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1703 		return;
1704 	}
1705 
1706 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1707 	if (m == 0) {
1708 		aprint_error_dev(sc->sc_dev,
1709 		    "cs_process_receive: unable to allocate mbuf\n");
1710 		ifp->if_ierrors++;
1711 		/*
1712 		 * couldn't allocate an mbuf so things are not good, may as
1713 		 * well drop the packet I think.
1714 		 *
1715 		 * have already read the length so we should be right to skip
1716 		 * the packet.
1717 		 */
1718 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1719 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1720 		return;
1721 	}
1722 	m_set_rcvif(m, ifp);
1723 	m->m_pkthdr.len = totlen;
1724 
1725 	/* number of bytes to align ip header on word boundary for ipintr */
1726 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1727 
1728 	/*
1729 	 * alloc mbuf cluster if we need.
1730 	 * we need 1 byte spare because following
1731 	 * packet read loop can overrun.
1732 	 */
1733 	if (totlen + pad + 1 > MHLEN) {
1734 		MCLGET(m, M_DONTWAIT);
1735 		if ((m->m_flags & M_EXT) == 0) {
1736 			/* couldn't allocate an mbuf cluster */
1737 			aprint_error_dev(sc->sc_dev,
1738 			    "cs_process_receive: "
1739 			    "unable to allocate a cluster\n");
1740 			m_freem(m);
1741 
1742 			/* skip the received frame */
1743 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1744 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1745 			return;
1746 		}
1747 	}
1748 
1749 	/* align ip header on word boundary for ipintr */
1750 	m->m_data += pad;
1751 
1752 	m->m_len = totlen;
1753 	pBuff = mtod(m, u_int16_t *);
1754 
1755 	/* now read the data from the chip */
1756 	if (sc->sc_memorymode) {
1757 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1758 		while (pBuff < pBuffLimit) {
1759 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1760 			frameOffset += 2;
1761 		}
1762 	}
1763 	else {
1764 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1765 	}
1766 
1767 	cs_ether_input(sc, m);
1768 }
1769 
1770 void
1771 cs_process_rx_early(struct cs_softc *sc)
1772 {
1773 	struct ifnet *ifp;
1774 	struct mbuf *m;
1775 	u_int16_t frameCount, oldFrameCount;
1776 	u_int16_t rxEvent;
1777 	u_int16_t *pBuff;
1778 	int pad;
1779 	unsigned int frameOffset;
1780 
1781 
1782 	ifp = &sc->sc_ethercom.ec_if;
1783 
1784 	/* Initialize the frame offset */
1785 	frameOffset = PKTPG_RX_FRAME;
1786 	frameCount = 0;
1787 
1788 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1789 	if (m == 0) {
1790 		aprint_error_dev(sc->sc_dev,
1791 		    "cs_process_rx_early: unable to allocate mbuf\n");
1792 		ifp->if_ierrors++;
1793 		/*
1794 		 * couldn't allocate an mbuf so things are not good, may as
1795 		 * well drop the packet I think.
1796 		 *
1797 		 * have already read the length so we should be right to skip
1798 		 * the packet.
1799 		 */
1800 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1801 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1802 		return;
1803 	}
1804 	m_set_rcvif(m, ifp);
1805 	/*
1806 	 * save processing by always using a mbuf cluster, guaranteed to fit
1807 	 * packet
1808 	 */
1809 	MCLGET(m, M_DONTWAIT);
1810 	if ((m->m_flags & M_EXT) == 0) {
1811 		/* couldn't allocate an mbuf cluster */
1812 		aprint_error_dev(sc->sc_dev,
1813 		    "cs_process_rx_early: unable to allocate a cluster\n");
1814 		m_freem(m);
1815 		/* skip the frame */
1816 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1817 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1818 		return;
1819 	}
1820 
1821 	/* align ip header on word boundary for ipintr */
1822 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1823 	m->m_data += pad;
1824 
1825 	/* set up the buffer pointer to point to the data area */
1826 	pBuff = mtod(m, u_int16_t *);
1827 
1828 	/*
1829 	 * now read the frame byte counter until we have finished reading the
1830 	 * frame
1831 	 */
1832 	oldFrameCount = 0;
1833 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1834 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1835 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1836 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1837 			frameOffset += 2;
1838 		}
1839 
1840 		/* read the new count from the chip */
1841 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1842 	}
1843 
1844 	/* update the mbuf counts */
1845 	m->m_len = oldFrameCount;
1846 	m->m_pkthdr.len = oldFrameCount;
1847 
1848 	/* now check the Rx Event register */
1849 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1850 
1851 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1852 		/*
1853 		 * do an implied skip, it seems to be more reliable than a
1854 		 * forced skip.
1855 		 */
1856 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1857 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1858 
1859 		/*
1860 		 * now read the RX_EVENT register to perform an implied skip.
1861 		 */
1862 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1863 
1864 		cs_ether_input(sc, m);
1865 	} else {
1866 		m_freem(m);
1867 		ifp->if_ierrors++;
1868 	}
1869 }
1870 
1871 void
1872 cs_start_output(struct ifnet *ifp)
1873 {
1874 	struct cs_softc *sc;
1875 	struct mbuf *pMbuf;
1876 	struct mbuf *pMbufChain;
1877 	u_int16_t BusStatus;
1878 	u_int16_t Length;
1879 	int txLoop = 0;
1880 	int dropout = 0;
1881 
1882 	sc = ifp->if_softc;
1883 
1884 	/* check that the interface is up and running */
1885 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1886 		return;
1887 	}
1888 
1889 	/* Don't interrupt a transmission in progress */
1890 	if (sc->sc_txbusy) {
1891 		return;
1892 	}
1893 
1894 	/* this loop will only run through once if transmission is successful */
1895 	/*
1896 	 * While there are packets to transmit and a transmit is not in
1897 	 * progress
1898 	 */
1899 	while (sc->sc_txbusy == 0 && dropout == 0) {
1900 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1901 		if (pMbufChain == NULL)
1902 			break;
1903 
1904 		/*
1905 	         * If BPF is listening on this interface, let it see the packet
1906 	         * before we commit it to the wire.
1907 	         */
1908 		bpf_mtap(ifp, pMbufChain);
1909 
1910 		/* Find the total length of the data to transmit */
1911 		Length = 0;
1912 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1913 			Length += pMbuf->m_len;
1914 
1915 		do {
1916 			/*
1917 			 * Request that the transmit be started after all
1918 			 * data has been copied
1919 			 *
1920 			 * In IO mode must write to the IO port not the packet
1921 			 * page address
1922 			 *
1923 			 * If this is changed to start transmission after a
1924 			 * small amount of data has been copied you tend to
1925 			 * get packet missed errors i think because the ISA
1926 			 * bus is too slow. Or possibly the copy routine is
1927 			 * not streamlined enough.
1928 			 */
1929 			if (sc->sc_memorymode) {
1930 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1931 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1932 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1933 			}
1934 			else {
1935 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1936 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1937 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1938 			}
1939 
1940 			/*
1941 			 * Adjust early-transmit machinery.
1942 			 */
1943 			if (--sc->sc_xe_togo == 0) {
1944 				sc->sc_xe_ent =
1945 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1946 				sc->sc_xe_togo =
1947 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1948 			}
1949 			/*
1950 			 * Read the BusStatus register which indicates
1951 			 * success of the request
1952 			 */
1953 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1954 
1955 			/*
1956 			 * If there was an error in the transmit bid free the
1957 			 * mbuf and go on. This is presuming that mbuf is
1958 			 * corrupt.
1959 			 */
1960 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1961 				aprint_error_dev(sc->sc_dev,
1962 				    "transmit bid error (too big)");
1963 
1964 				/* Discard the bad mbuf chain */
1965 				m_freem(pMbufChain);
1966 				sc->sc_ethercom.ec_if.if_oerrors++;
1967 
1968 				/* Loop up to transmit the next chain */
1969 				txLoop = 0;
1970 			} else {
1971 				if (BusStatus & BUS_ST_RDY4TXNOW) {
1972 					/*
1973 					 * The chip is ready for transmission
1974 					 * now
1975 					 */
1976 					/*
1977 					 * Copy the frame to the chip to
1978 					 * start transmission
1979 					 */
1980 					cs_copy_tx_frame(sc, pMbufChain);
1981 
1982 					/* Free the mbuf chain */
1983 					m_freem(pMbufChain);
1984 
1985 					/* Transmission is now in progress */
1986 					sc->sc_txbusy = TRUE;
1987 					txLoop = 0;
1988 				} else {
1989 					/*
1990 					 * if we get here we want to try
1991 					 * again with the same mbuf, until
1992 					 * the chip lets us transmit.
1993 					 */
1994 					txLoop++;
1995 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
1996 						/* Free the mbuf chain */
1997 						m_freem(pMbufChain);
1998 						/*
1999 						 * Transmission is not in
2000 						 * progress
2001 						 */
2002 						sc->sc_txbusy = FALSE;
2003 						/*
2004 						 * Increment the output error
2005 						 * count
2006 						 */
2007 						ifp->if_oerrors++;
2008 						/*
2009 						 * exit the routine and drop
2010 						 * the packet.
2011 						 */
2012 						txLoop = 0;
2013 						dropout = 1;
2014 					}
2015 				}
2016 			}
2017 		} while (txLoop);
2018 	}
2019 }
2020 
2021 void
2022 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2023 {
2024 	struct mbuf *m;
2025 	int len, leftover, frameoff;
2026 	u_int16_t dbuf;
2027 	u_int8_t *p;
2028 #ifdef DIAGNOSTIC
2029 	u_int8_t *lim;
2030 #endif
2031 
2032 	/* Initialize frame pointer and data port address */
2033 	frameoff = PKTPG_TX_FRAME;
2034 
2035 	/* start out with no leftover data */
2036 	leftover = 0;
2037 	dbuf = 0;
2038 
2039 	/* Process the chain of mbufs */
2040 	for (m = m0; m != NULL; m = m->m_next) {
2041 		/*
2042 		 * Process all of the data in a single mbuf.
2043 		 */
2044 		p = mtod(m, u_int8_t *);
2045 		len = m->m_len;
2046 #ifdef DIAGNOSTIC
2047 		lim = p + len;
2048 #endif
2049 
2050 		while (len > 0) {
2051 			if (leftover) {
2052 				/*
2053 				 * Data left over (from mbuf or realignment).
2054 				 * Buffer the next byte, and write it and
2055 				 * the leftover data out.
2056 				 */
2057 				dbuf |= *p++ << 8;
2058 				len--;
2059 				if (sc->sc_memorymode) {
2060 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2061 					frameoff += 2;
2062 				}
2063 				else {
2064 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2065 				}
2066 				leftover = 0;
2067 			} else if ((long) p & 1) {
2068 				/*
2069 				 * Misaligned data.  Buffer the next byte.
2070 				 */
2071 				dbuf = *p++;
2072 				len--;
2073 				leftover = 1;
2074 			} else {
2075 				/*
2076 				 * Aligned data.  This is the case we like.
2077 				 *
2078 				 * Write-region out as much as we can, then
2079 				 * buffer the remaining byte (if any).
2080 				 */
2081 				leftover = len & 1;
2082 				len &= ~1;
2083 				if (sc->sc_memorymode) {
2084 					MEM_WRITE_REGION_2(sc, frameoff,
2085 						(u_int16_t *) p, len >> 1);
2086 					frameoff += len;
2087 				}
2088 				else {
2089 					IO_WRITE_MULTI_2(sc,
2090 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2091 				}
2092 				p += len;
2093 
2094 				if (leftover)
2095 					dbuf = *p++;
2096 				len = 0;
2097 			}
2098 		}
2099 		if (len < 0)
2100 			panic("cs_copy_tx_frame: negative len");
2101 #ifdef DIAGNOSTIC
2102 		if (p != lim)
2103 			panic("cs_copy_tx_frame: p != lim");
2104 #endif
2105 	}
2106 	if (leftover) {
2107 		if (sc->sc_memorymode) {
2108 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2109 		}
2110 		else {
2111 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2112 		}
2113 	}
2114 }
2115 
2116 static int
2117 cs_enable(struct cs_softc *sc)
2118 {
2119 
2120 	if (CS_IS_ENABLED(sc) == 0) {
2121 		if (sc->sc_enable != NULL) {
2122 			int error;
2123 
2124 			error = (*sc->sc_enable)(sc);
2125 			if (error)
2126 				return (error);
2127 		}
2128 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2129 	}
2130 
2131 	return (0);
2132 }
2133 
2134 static void
2135 cs_disable(struct cs_softc *sc)
2136 {
2137 
2138 	if (CS_IS_ENABLED(sc)) {
2139 		if (sc->sc_disable != NULL)
2140 			(*sc->sc_disable)(sc);
2141 
2142 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2143 	}
2144 }
2145 
2146 static void
2147 cs_stop(struct ifnet *ifp, int disable)
2148 {
2149 	struct cs_softc *sc = ifp->if_softc;
2150 
2151 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2152 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2153 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2154 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2155 
2156 	if (disable) {
2157 		cs_disable(sc);
2158 	}
2159 
2160 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2161 }
2162 
2163 int
2164 cs_activate(device_t self, enum devact act)
2165 {
2166 	struct cs_softc *sc = device_private(self);
2167 
2168 	switch (act) {
2169 	case DVACT_DEACTIVATE:
2170 		if_deactivate(&sc->sc_ethercom.ec_if);
2171 		return 0;
2172 	default:
2173 		return EOPNOTSUPP;
2174 	}
2175 }
2176