xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: cs89x0.c,v 1.47 2019/05/29 10:07:29 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from uint8_t * to uint16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.47 2019/05/29 10:07:29 msaitoh Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 #include <sys/bus.h>
229 #include <sys/intr.h>
230 #include <sys/rndsource.h>
231 
232 #include <net/if.h>
233 #include <net/if_ether.h>
234 #include <net/if_media.h>
235 #include <net/bpf.h>
236 
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241 
242 #include <dev/ic/cs89x0reg.h>
243 #include <dev/ic/cs89x0var.h>
244 
245 #ifdef SHARK
246 #include <shark/shark/sequoia.h>
247 #endif
248 
249 /*
250  * MACRO DEFINITIONS
251  */
252 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
253 
254 /*
255  * FUNCTION PROTOTYPES
256  */
257 static void	cs_get_default_media(struct cs_softc *);
258 static int	cs_get_params(struct cs_softc *);
259 static int	cs_get_enaddr(struct cs_softc *);
260 static int	cs_reset_chip(struct cs_softc *);
261 static void	cs_reset(struct cs_softc *);
262 static int	cs_ioctl(struct ifnet *, u_long, void *);
263 static void	cs_initChip(struct cs_softc *);
264 static void	cs_buffer_event(struct cs_softc *, uint16_t);
265 static void	cs_transmit_event(struct cs_softc *, uint16_t);
266 static void	cs_receive_event(struct cs_softc *, uint16_t);
267 static void	cs_process_receive(struct cs_softc *);
268 static void	cs_process_rx_early(struct cs_softc *);
269 static void	cs_start_output(struct ifnet *);
270 static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
271 static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
272 static uint16_t cs_hash_index(char *);
273 static void	cs_counter_event(struct cs_softc *, uint16_t);
274 
275 static int	cs_mediachange(struct ifnet *);
276 static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
277 
278 static bool cs_shutdown(device_t, int);
279 static int cs_enable(struct cs_softc *);
280 static void cs_disable(struct cs_softc *);
281 static void cs_stop(struct ifnet *, int);
282 static int cs_scan_eeprom(struct cs_softc *);
283 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, uint16_t *);
284 
285 
286 /*
287  * GLOBAL DECLARATIONS
288  */
289 
290 /*
291  * Xmit-early table.
292  *
293  * To get better performance, we tell the chip to start packet
294  * transmission before the whole packet is copied to the chip.
295  * However, this can fail under load.  When it fails, we back off
296  * to a safer setting for a little while.
297  *
298  * txcmd is the value of txcmd used to indicate when to start transmission.
299  * better is the next 'better' state in the table.
300  * better_count is the number of output packets before transition to the
301  *   better state.
302  * worse is the next 'worse' state in the table.
303  *
304  * Transition to the next worse state happens automatically when a
305  * transmittion underrun occurs.
306  */
307 struct cs_xmit_early {
308 	uint16_t	txcmd;
309 	int		better;
310 	int		better_count;
311 	int		worse;
312 } cs_xmit_early_table[3] = {
313 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
314 	{ TX_CMD_START_1021,	0,	50000,		2, },
315 	{ TX_CMD_START_ALL,	1,	5000,		2, },
316 };
317 
318 int cs_default_media[] = {
319 	IFM_ETHER | IFM_10_2,
320 	IFM_ETHER | IFM_10_5,
321 	IFM_ETHER | IFM_10_T,
322 	IFM_ETHER | IFM_10_T | IFM_FDX,
323 };
324 int cs_default_nmedia = __arraycount(cs_default_media);
325 
326 int
327 cs_attach(struct cs_softc *sc, uint8_t *enaddr, int *media,
328 	  int nmedia, int defmedia)
329 {
330 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
331 	const char *chipname, *medname;
332 	uint16_t reg;
333 	int i;
334 
335 	/* Start out in IO mode */
336 	sc->sc_memorymode = FALSE;
337 
338 	/* Make sure we're right */
339 	for (i = 0; i < 10000; i++) {
340 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
341 		if (reg == EISA_NUM_CRYSTAL)
342 			break;
343 	}
344 	if (i == 10000) {
345 		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
346 		return 1; /* XXX should panic? */
347 	}
348 
349 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
350 	sc->sc_prodid = reg & PROD_ID_MASK;
351 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
352 
353 	switch (sc->sc_prodid) {
354 	case PROD_ID_CS8900:
355 		chipname = "CS8900";
356 		break;
357 	case PROD_ID_CS8920:
358 		chipname = "CS8920";
359 		break;
360 	case PROD_ID_CS8920M:
361 		chipname = "CS8920M";
362 		break;
363 	default:
364 		panic("cs_attach: impossible");
365 	}
366 
367 	/*
368 	 * The first thing to do is check that the mbuf cluster size is
369 	 * greater than the MTU for an ethernet frame. The code depends on
370 	 * this and to port this to a OS where this was not the case would
371 	 * not be straightforward.
372 	 *
373 	 * We need 1 byte spare because our packet read loop can overrun.
374 	 * and we may need pad bytes to align ip header.
375 	 */
376 	if (MCLBYTES < ETHER_MAX_LEN + 1 + ALIGN(sizeof(struct ether_header))
377 	    - sizeof(struct ether_header)) {
378 		printf("%s: MCLBYTES too small for Ethernet frame\n",
379 		    device_xname(sc->sc_dev));
380 		return 1;
381 	}
382 
383 	/* Start out not transmitting */
384 	sc->sc_txbusy = FALSE;
385 
386 	/* Set up early transmit threshhold */
387 	sc->sc_xe_ent = 0;
388 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
389 
390 	/* Initialize ifnet structure. */
391 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
392 	ifp->if_softc = sc;
393 	ifp->if_start = cs_start_output;
394 	ifp->if_init = cs_init;
395 	ifp->if_ioctl = cs_ioctl;
396 	ifp->if_stop = cs_stop;
397 	ifp->if_watchdog = NULL;	/* No watchdog at this stage */
398 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
399 	IFQ_SET_READY(&ifp->if_snd);
400 
401 	/* Initialize ifmedia structures. */
402 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
403 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
404 
405 	if (media != NULL) {
406 		for (i = 0; i < nmedia; i++)
407 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
408 		ifmedia_set(&sc->sc_media, defmedia);
409 	} else {
410 		for (i = 0; i < cs_default_nmedia; i++)
411 			ifmedia_add(&sc->sc_media, cs_default_media[i],
412 			    0, NULL);
413 		cs_get_default_media(sc);
414 	}
415 
416 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
417 		if (cs_scan_eeprom(sc) == CS_ERROR) {
418 			/*
419 			 * Failed to scan the eeprom, pretend there isn't an
420 			 * eeprom
421 			 */
422 			aprint_error_dev(sc->sc_dev,
423 			    "unable to scan EEPROM\n");
424 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
425 		}
426 	}
427 
428 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
429 		/* Get parameters from the EEPROM */
430 		if (cs_get_params(sc) == CS_ERROR) {
431 			aprint_error_dev(sc->sc_dev,
432 			    "unable to get settings from EEPROM\n");
433 			return 1;
434 		}
435 	}
436 
437 	if (enaddr != NULL)
438 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
439 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
440 		/* Get and store the Ethernet address */
441 		if (cs_get_enaddr(sc) == CS_ERROR) {
442 			aprint_error_dev(sc->sc_dev,
443 			    "unable to read Ethernet address\n");
444 			return 1;
445 		}
446 	} else {
447 #if 1
448 		int j;
449 		uint v;
450 
451 		for (j = 0; j < 6; j += 2) {
452 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
453 			sc->sc_enaddr[j + 0] = v;
454 			sc->sc_enaddr[j + 1] = v >> 8;
455 		}
456 #else
457 		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
458 		return 1;
459 #endif
460 	}
461 
462 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
463 	case IFM_10_2:
464 		medname = "BNC";
465 		break;
466 	case IFM_10_5:
467 		medname = "AUI";
468 		break;
469 	case IFM_10_T:
470 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
471 			medname = "UTP <full-duplex>";
472 		else
473 			medname = "UTP";
474 		break;
475 	default:
476 		panic("cs_attach: impossible");
477 	}
478 	printf("%s: %s rev. %c, address %s, media %s\n",
479 	    device_xname(sc->sc_dev),
480 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
481 	    medname);
482 
483 	if (sc->sc_dma_attach)
484 		(*sc->sc_dma_attach)(sc);
485 
486 	/* Attach the interface. */
487 	if_attach(ifp);
488 	if_deferred_start_init(ifp, NULL);
489 	ether_ifattach(ifp, sc->sc_enaddr);
490 
491 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
492 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
493 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
494 
495 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
496 		pmf_class_network_register(sc->sc_dev, ifp);
497 	else
498 		aprint_error_dev(sc->sc_dev,
499 		    "couldn't establish power handler\n");
500 
501 	/* Reset the chip */
502 	if (cs_reset_chip(sc) == CS_ERROR) {
503 		aprint_error_dev(sc->sc_dev, "reset failed\n");
504 		cs_detach(sc);
505 		return 1;
506 	}
507 
508 	return 0;
509 }
510 
511 int
512 cs_detach(struct cs_softc *sc)
513 {
514 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
515 
516 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
517 		rnd_detach_source(&sc->rnd_source);
518 		ether_ifdetach(ifp);
519 		if_detach(ifp);
520 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
521 	}
522 
523 #if 0
524 	/* XXX not necessary */
525 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
526 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase,
527 		    sc->sc_dmasize);
528 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr,
529 		    sc->sc_dmasize);
530 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
531 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
532 	}
533 #endif
534 
535 	pmf_device_deregister(sc->sc_dev);
536 
537 	return 0;
538 }
539 
540 bool
541 cs_shutdown(device_t self, int howto)
542 {
543 	struct cs_softc *sc;
544 
545 	sc = device_private(self);
546 	cs_reset(sc);
547 
548 	return true;
549 }
550 
551 void
552 cs_get_default_media(struct cs_softc *sc)
553 {
554 	uint16_t adp_cfg, xmit_ctl;
555 
556 	if (cs_verify_eeprom(sc) == CS_ERROR) {
557 		aprint_error_dev(sc->sc_dev,
558 		    "cs_get_default_media: EEPROM missing or bad\n");
559 		goto fakeit;
560 	}
561 
562 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
563 		aprint_error_dev(sc->sc_dev,
564 		    "unable to read adapter config from EEPROM\n");
565 		goto fakeit;
566 	}
567 
568 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
569 		aprint_error_dev(sc->sc_dev,
570 		    "unable to read transmit control from EEPROM\n");
571 		goto fakeit;
572 	}
573 
574 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
575 	case ADPTR_CFG_AUI:
576 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_5);
577 		break;
578 	case ADPTR_CFG_10BASE2:
579 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_2);
580 		break;
581 	case ADPTR_CFG_10BASET:
582 	default:
583 		if (xmit_ctl & XMIT_CTL_FDX)
584 			ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T
585 			    | IFM_FDX);
586 		else
587 			ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T);
588 		break;
589 	}
590 	return;
591 
592  fakeit:
593 	aprint_error_dev(sc->sc_dev,
594 	    "WARNING: default media setting may be inaccurate\n");
595 	/* XXX Arbitrary... */
596 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T);
597 }
598 
599 /*
600  * cs_scan_eeprom
601  *
602  * Attempt to take a complete copy of the eeprom into main memory.
603  * this will allow faster parsing of the eeprom data.
604  *
605  * Only tested against a 8920M's eeprom, but the data sheet for the
606  * 8920A indicates that is uses the same layout.
607  */
608 int
609 cs_scan_eeprom(struct cs_softc *sc)
610 {
611 	uint16_t result;
612 	int	i;
613 	int	eeprom_size;
614 	uint8_t checksum = 0;
615 
616 	if (cs_verify_eeprom(sc) == CS_ERROR) {
617 		aprint_error_dev(sc->sc_dev,
618 		    "cs_scan_params: EEPROM missing or bad\n");
619 		return CS_ERROR;
620 	}
621 
622 	/*
623 	 * Read the 0th word from the eeprom, it will tell us the length
624 	 * and if the eeprom is valid
625 	 */
626 	cs_read_eeprom(sc, 0, &result);
627 
628 	/* Check the eeprom signature */
629 	if ((result & 0xE000) != 0xA000) {
630 		/* Empty eeprom */
631 		return CS_ERROR;
632 	}
633 
634 	/*
635 	 * Take the eeprom size (note the read value doesn't include the header
636 	 * word)
637 	 */
638 	eeprom_size = (result & 0xff) + 2;
639 
640 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
641 	if (sc->eeprom_data == NULL) {
642 		/* No memory, treat this as if there's no eeprom */
643 		return CS_ERROR;
644 	}
645 
646 	sc->eeprom_size = eeprom_size;
647 
648 	/* Read the eeprom into the buffer, also calculate the checksum	 */
649 	for (i = 0; i < (eeprom_size >> 1); i++) {
650 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
651 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
652 		checksum += (sc->eeprom_data[i] & 0x00ff);
653 	}
654 
655 	/*
656 	 * Validate checksum calculation, the sum of all the bytes should be 0,
657 	 * as the high byte of the last word is the 2's complement of the
658 	 * sum to that point.
659 	 */
660 	if (checksum != 0) {
661 		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
662 		return CS_ERROR;
663 	}
664 
665 	return CS_OK;
666 }
667 
668 static int
669 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, uint16_t *pValue)
670 {
671 	int x, maxword;
672 
673 	/* Check that we have eeprom data */
674 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
675 		return CS_ERROR;
676 
677 	/*
678 	 * We only want to read the data words, the last word contains the
679 	 * checksum
680 	 */
681 	maxword = (sc->eeprom_size - 2) >> 1;
682 
683 	/* Start 1 word in, as the first word is the length and signature */
684 	x = 1;
685 
686 	while ( x < (maxword)) {
687 		uint16_t header;
688 		int group_size;
689 		int offset;
690 		int offset_max;
691 
692 		/* Read in the group header word */
693 		header = sc->eeprom_data[x];
694 		x++;	/* Skip group header */
695 
696 		/*
697 		 * Size of group in words is in the top 4 bits, note that it
698 		 * is one less than the number of words
699 		 */
700 		group_size = header & 0xF000;
701 
702 		/*
703 		 * CS8900 Data sheet says this should be 0x01ff,
704 		 * but my cs8920 eeprom has higher offsets,
705 		 * perhaps the 8920 allows higher offsets, otherwise
706 		 * it's writing to places that it shouldn't
707 		 */
708 		/* Work out the offsets this group covers */
709 		offset = header & 0x0FFF;
710 		offset_max = offset + (group_size << 1);
711 
712 		/* Check if the pkgpg we're after is in this group */
713 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
714 			/* The pkgpg value we want is in here */
715 			int eeprom_location;
716 
717 			eeprom_location = ((pktpg - offset) >> 1) ;
718 
719 			*pValue = sc->eeprom_data[x + eeprom_location];
720 			return CS_OK;
721 		} else {
722 			/* Skip this group (+ 1 for first entry) */
723 			x += group_size + 1;
724 		}
725 	}
726 
727 	/*
728 	 * If we've fallen out here then we don't have a value in the EEPROM
729 	 * for this pktpg so return an error
730 	 */
731 	return CS_ERROR;
732 }
733 
734 int
735 cs_get_params(struct cs_softc *sc)
736 {
737 	uint16_t isaConfig;
738 	uint16_t adapterConfig;
739 
740 	if (cs_verify_eeprom(sc) == CS_ERROR) {
741 		aprint_error_dev(sc->sc_dev,
742 		    "cs_get_params: EEPROM missing or bad\n");
743 		return CS_ERROR;
744 	}
745 
746 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
747 		/* Get ISA configuration from the EEPROM */
748 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
749 		    == CS_ERROR) {
750 			/*
751 			 * Eeprom doesn't have this value, use data sheet
752 			 * default
753 			 */
754 			isaConfig = 0x0017;
755 		}
756 
757 		/* Get adapter configuration from the EEPROM */
758 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL,
759 		    &adapterConfig) == CS_ERROR) {
760 			/*
761 			 * Eeprom doesn't have this value, use data sheet
762 			 * default
763 			 */
764 			adapterConfig = 0x0015;
765 		}
766 
767 		/* Copy the USE_SA flag */
768 		if (isaConfig & BUS_CTL_USE_SA)
769 			sc->sc_cfgflags |= CFGFLG_USE_SA;
770 
771 		/* Copy the IO Channel Ready flag */
772 		if (isaConfig & BUS_CTL_IOCHRDY)
773 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
774 
775 		/* Copy the DC/DC Polarity flag */
776 		if (adapterConfig & SELF_CTL_HCB1)
777 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
778 	} else {
779 		/* Get ISA configuration from the EEPROM */
780 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
781 			goto eeprom_bad;
782 
783 		/* Get adapter configuration from the EEPROM */
784 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig)
785 		    == CS_ERROR)
786 			goto eeprom_bad;
787 
788 		/* Copy the USE_SA flag */
789 		if (isaConfig & ISA_CFG_USE_SA)
790 			sc->sc_cfgflags |= CFGFLG_USE_SA;
791 
792 		/* Copy the IO Channel Ready flag */
793 		if (isaConfig & ISA_CFG_IOCHRDY)
794 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
795 
796 		/* Copy the DC/DC Polarity flag */
797 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
798 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
799 	}
800 
801 	return CS_OK;
802 eeprom_bad:
803 	aprint_error_dev(sc->sc_dev,
804 	    "cs_get_params: unable to read from EEPROM\n");
805 	return CS_ERROR;
806 }
807 
808 int
809 cs_get_enaddr(struct cs_softc *sc)
810 {
811 	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
812 	int i;
813 
814 	if (cs_verify_eeprom(sc) == CS_ERROR) {
815 		aprint_error_dev(sc->sc_dev,
816 		    "cs_get_enaddr: EEPROM missing or bad\n");
817 		return CS_ERROR;
818 	}
819 
820 	/* Get Ethernet address from the EEPROM */
821 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
822 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
823 				== CS_ERROR)
824 			goto eeprom_bad;
825 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
826 				== CS_ERROR)
827 			goto eeprom_bad;
828 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
829 				== CS_ERROR)
830 			goto eeprom_bad;
831 	} else {
832 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
833 			goto eeprom_bad;
834 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
835 			goto eeprom_bad;
836 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
837 			goto eeprom_bad;
838 	}
839 
840 	for (i = 0; i < __arraycount(myea); i++) {
841 		sc->sc_enaddr[i * 2 + 0] = myea[i];
842 		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
843 	}
844 
845 	return CS_OK;
846 
847  eeprom_bad:
848 	aprint_error_dev(sc->sc_dev,
849 	    "cs_get_enaddr: unable to read from EEPROM\n");
850 	return CS_ERROR;
851 }
852 
853 int
854 cs_reset_chip(struct cs_softc *sc)
855 {
856 	int intState;
857 	int x;
858 
859 	/* Disable interrupts at the CPU so reset command is atomic */
860 	intState = splnet();
861 
862 	/*
863 	 * We are now resetting the chip
864 	 *
865 	 * A spurious interrupt is generated by the chip when it is reset. This
866 	 * variable informs the interrupt handler to ignore this interrupt.
867 	 */
868 	sc->sc_resetting = TRUE;
869 
870 	/* Issue a reset command to the chip */
871 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
872 
873 	/* Re-enable interrupts at the CPU */
874 	splx(intState);
875 
876 	/* The chip is always in IO mode after a reset */
877 	sc->sc_memorymode = FALSE;
878 
879 	/* If transmission was in progress, it is not now */
880 	sc->sc_txbusy = FALSE;
881 
882 	/*
883 	 * There was a delay(125); here, but it seems uneccesary 125 usec is
884 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
885 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
886 	 * should be sufficient.
887 	 */
888 
889 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
890 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
891 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
892 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
893 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
894 
895 	/* Wait until the EEPROM is not busy */
896 	for (x = 0; x < MAXLOOP; x++) {
897 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
898 			break;
899 	}
900 
901 	if (x == MAXLOOP)
902 		return CS_ERROR;
903 
904 	/* Wait until initialization is done */
905 	for (x = 0; x < MAXLOOP; x++) {
906 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
907 			break;
908 	}
909 
910 	if (x == MAXLOOP)
911 		return CS_ERROR;
912 
913 	/* Reset is no longer in progress */
914 	sc->sc_resetting = FALSE;
915 
916 	return CS_OK;
917 }
918 
919 int
920 cs_verify_eeprom(struct cs_softc *sc)
921 {
922 	uint16_t self_status;
923 
924 	/* Verify that the EEPROM is present and OK */
925 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
926 	if (((self_status & SELF_ST_EEP_PRES) &&
927 	     (self_status & SELF_ST_EEP_OK)) == 0)
928 		return CS_ERROR;
929 
930 	return CS_OK;
931 }
932 
933 int
934 cs_read_eeprom(struct cs_softc *sc, int offset, uint16_t *pValue)
935 {
936 	int x;
937 
938 	/* Ensure that the EEPROM is not busy */
939 	for (x = 0; x < MAXLOOP; x++) {
940 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
941 		      SELF_ST_SI_BUSY))
942 			break;
943 	}
944 
945 	if (x == MAXLOOP)
946 		return CS_ERROR;
947 
948 	/* Issue the command to read the offset within the EEPROM */
949 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
950 	    offset | EEPROM_CMD_READ);
951 
952 	/* Wait until the command is completed */
953 	for (x = 0; x < MAXLOOP; x++) {
954 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
955 		      SELF_ST_SI_BUSY))
956 			break;
957 	}
958 
959 	if (x == MAXLOOP)
960 		return CS_ERROR;
961 
962 	/* Get the EEPROM data from the EEPROM Data register */
963 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
964 
965 	return CS_OK;
966 }
967 
968 void
969 cs_initChip(struct cs_softc *sc)
970 {
971 	uint16_t busCtl;
972 	uint16_t selfCtl;
973 	uint16_t v;
974 	uint16_t isaId;
975 	int i;
976 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
977 
978 	/* Disable reception and transmission of frames */
979 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
980 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
981 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
982 
983 	/* Disable interrupt at the chip */
984 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
985 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
986 
987 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
988 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
989 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
990 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
991 		    busCtl & ~BUS_CTL_IOCHRDY);
992 	} else {
993 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
994 		    busCtl | BUS_CTL_IOCHRDY);
995 	}
996 
997 	/* Set the Line Control register to match the media type */
998 	if (media == IFM_10_T)
999 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
1000 	else
1001 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1002 
1003 	/*
1004 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
1005 	 * enable the DC/DC converter
1006 	 */
1007 	selfCtl = SELF_CTL_HC1E;
1008 
1009 	/* If the media type is 10Base2 */
1010 	if (media == IFM_10_2) {
1011 		/* Enable the DC/DC converter if it has a low enable. */
1012 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1013 			/*
1014 			 * Set the HCB1 bit, which causes the HC1 pin to go
1015 			 * low.
1016 			 */
1017 			selfCtl |= SELF_CTL_HCB1;
1018 	} else { /* Media type is 10BaseT or AUI */
1019 		/* Disable the DC/DC converter if it has a high enable. */
1020 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1021 			/*
1022 			 * Set the HCB1 bit, which causes the HC1 pin to go
1023 			 * low.
1024 			 */
1025 			selfCtl |= SELF_CTL_HCB1;
1026 		}
1027 	}
1028 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1029 
1030 	/* Enable normal link pulse */
1031 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1032 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1033 
1034 	/* Enable full-duplex, if appropriate */
1035 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1036 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1037 
1038 	/* RX_CTL set in cs_set_ladr_filt(), below */
1039 
1040 	/* Enable all transmission interrupts */
1041 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1042 
1043 	/* Accept all receive interrupts */
1044 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1045 
1046 	/*
1047 	 * Configure Operational Modes
1048 	 *
1049 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this
1050 	 * is a better way to do it because the card has a counter which can be
1051 	 * read to update the RX_MISS counter. This saves many interrupts.
1052 	 *
1053 	 * I have turned on the tx and rx overflow interrupts to counter using
1054 	 * the receive miss interrupt. This is a better estimate of errors
1055 	 * and requires lower system overhead.
1056 	 */
1057 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1058 			  BUF_CFG_RX_DMA_IE);
1059 
1060 	if (sc->sc_dma_chipinit)
1061 		(*sc->sc_dma_chipinit)(sc);
1062 
1063 	/* If memory mode is enabled */
1064 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1065 		/* If external logic is present for address decoding */
1066 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1067 			/*
1068 			 * Program the external logic to decode address bits
1069 			 * SA20-SA23
1070 			 */
1071 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1072 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1073 			    EEPROM_CMD_ELSEL);
1074 		}
1075 
1076 		/*
1077 		 * Write the packet page base physical address to the memory
1078 		 * base register.
1079 		 */
1080 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1081 		    sc->sc_pktpgaddr & 0xFFFF);
1082 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1083 		    sc->sc_pktpgaddr >> 16);
1084 		busCtl = BUS_CTL_MEM_MODE;
1085 
1086 		/* Tell the chip to read the addresses off the SA pins */
1087 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1088 			busCtl |= BUS_CTL_USE_SA;
1089 		}
1090 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1091 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1092 
1093 		/* We are in memory mode now! */
1094 		sc->sc_memorymode = TRUE;
1095 
1096 		/*
1097 		 * Wait here (10ms) for the chip to swap over. this is the
1098 		 * maximum time that this could take.
1099 		 */
1100 		delay(10000);
1101 
1102 		/* Verify that we can read from the chip */
1103 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1104 
1105 		/*
1106 		 * As a last minute sanity check before actually using mapped
1107 		 * memory we verify that we can read the isa number from the
1108 		 * chip in memory mode.
1109 		 */
1110 		if (isaId != EISA_NUM_CRYSTAL) {
1111 			aprint_error_dev(sc->sc_dev,
1112 			    "failed to enable memory mode\n");
1113 			sc->sc_memorymode = FALSE;
1114 		} else {
1115 			/*
1116 			 * We are in memory mode so if we aren't using DMA,
1117 			 * then program the chip to interrupt early.
1118 			 */
1119 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1120 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1121 				    BUF_CFG_RX_DEST_IE |
1122 				    BUF_CFG_RX_MISS_OVER_IE |
1123 				    BUF_CFG_TX_COL_OVER_IE);
1124 			}
1125 		}
1126 
1127 	}
1128 
1129 	/* Put Ethernet address into the Individual Address register */
1130 	for (i = 0; i < 6; i += 2) {
1131 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1132 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1133 	}
1134 
1135 	if (sc->sc_irq != -1) {
1136 		/* Set the interrupt level in the chip */
1137 		if (sc->sc_prodid == PROD_ID_CS8900) {
1138 			if (sc->sc_irq == 5)
1139 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1140 			else
1141 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM,
1142 				    (sc->sc_irq) - 10);
1143 		} else { /* CS8920 */
1144 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM,
1145 			    sc->sc_irq);
1146 		}
1147 	}
1148 
1149 	/* Write the multicast mask to the address filter register */
1150 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1151 
1152 	/* Enable reception and transmission of frames */
1153 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1154 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1155 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1156 
1157 	/* Enable interrupt at the chip */
1158 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1159 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1160 }
1161 
1162 int
1163 cs_init(struct ifnet *ifp)
1164 {
1165 	int intState;
1166 	int error = CS_OK;
1167 	struct cs_softc *sc = ifp->if_softc;
1168 
1169 	if (cs_enable(sc))
1170 		goto out;
1171 
1172 	cs_stop(ifp, 0);
1173 
1174 	intState = splnet();
1175 
1176 #if 0
1177 	/* Mark the interface as down */
1178 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1179 #endif
1180 
1181 #ifdef CS_DEBUG
1182 	/* Enable debugging */
1183 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1184 #endif
1185 
1186 	/* Reset the chip */
1187 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1188 		/* Initialize the chip */
1189 		cs_initChip(sc);
1190 
1191 		/* Mark the interface as running */
1192 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1193 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1194 		sc->sc_ethercom.ec_if.if_timer = 0;
1195 
1196 		/* Assume we have carrier until we are told otherwise. */
1197 		sc->sc_carrier = 1;
1198 	} else
1199 		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1200 
1201 	splx(intState);
1202 out:
1203 	if (error == CS_OK)
1204 		return 0;
1205 	return EIO;
1206 }
1207 
1208 void
1209 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1210 {
1211 	struct ifnet *ifp = &ec->ec_if;
1212 	struct ether_multi *enm;
1213 	struct ether_multistep step;
1214 	uint16_t af[4];
1215 	uint16_t port, mask, index;
1216 
1217 	/*
1218 	 * Set up multicast address filter by passing all multicast addresses
1219 	 * through a crc generator, and then using the high order 6 bits as an
1220 	 * index into the 64 bit logical address filter.  The high order bit
1221 	 * selects the word, while the rest of the bits select the bit within
1222 	 * the word.
1223 	 */
1224 	if (ifp->if_flags & IFF_PROMISC) {
1225 		/* Accept all valid frames. */
1226 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1227 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1228 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1229 		ifp->if_flags |= IFF_ALLMULTI;
1230 		return;
1231 	}
1232 
1233 	/*
1234 	 * Accept frames if a. crc valid, b. individual address match c.
1235 	 * broadcast address,and d. multicast addresses matched in the hash
1236 	 * filter
1237 	 */
1238 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1239 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1240 
1241 
1242 	/*
1243 	 * Start off with all multicast flag clear, set it if we need to
1244 	 * later, otherwise we will leave it.
1245 	 */
1246 	ifp->if_flags &= ~IFF_ALLMULTI;
1247 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1248 
1249 	/*
1250 	 * Loop through all the multicast addresses unless we get a range of
1251 	 * addresses, in which case we will just accept all packets.
1252 	 * Justification for this is given in the next comment.
1253 	 */
1254 	ETHER_LOCK(ec);
1255 	ETHER_FIRST_MULTI(step, ec, enm);
1256 	while (enm != NULL) {
1257 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1258 		    sizeof enm->enm_addrlo)) {
1259 			/*
1260 			 * We must listen to a range of multicast addresses.
1261 			 * For now, just accept all multicasts, rather than
1262 			 * trying to set only those filter bits needed to match
1263 			 * the range.  (At this time, the only use of address
1264 			 * ranges is for IP multicast routing, for which the
1265 			 * range is big enough to require all bits set.)
1266 			 */
1267 			ifp->if_flags |= IFF_ALLMULTI;
1268 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1269 			break;
1270 		} else {
1271 			/*
1272 			 * We have got an individual address so just set that
1273 			 * bit.
1274 			 */
1275 			index = cs_hash_index(enm->enm_addrlo);
1276 
1277 			/* Set the bit the Logical address filter. */
1278 			port = (uint16_t) (index >> 4);
1279 			mask = (uint16_t) (1 << (index & 0xf));
1280 			af[port] |= mask;
1281 
1282 			ETHER_NEXT_MULTI(step, enm);
1283 		}
1284 	}
1285 	ETHER_UNLOCK(ec);
1286 
1287 	/* Now program the chip with the addresses */
1288 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1289 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1290 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1291 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1292 	return;
1293 }
1294 
1295 uint16_t
1296 cs_hash_index(char *addr)
1297 {
1298 	uint32_t crc;
1299 	uint16_t hash_code;
1300 
1301 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1302 
1303 	hash_code = crc >> 26;
1304 	return hash_code;
1305 }
1306 
1307 void
1308 cs_reset(struct cs_softc *sc)
1309 {
1310 
1311 	/* Mark the interface as down */
1312 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1313 
1314 	/* Reset the chip */
1315 	cs_reset_chip(sc);
1316 }
1317 
1318 int
1319 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1320 {
1321 	struct cs_softc *sc = ifp->if_softc;
1322 	int state;
1323 	int result;
1324 
1325 	state = splnet();
1326 
1327 	result = 0;		/* Only set if something goes wrong */
1328 
1329 	switch (cmd) {
1330 	default:
1331 		result = ether_ioctl(ifp, cmd, data);
1332 		if (result == ENETRESET) {
1333 			if (ifp->if_flags & IFF_RUNNING) {
1334 				/*
1335 				 * Multicast list has changed.  Set the
1336 				 * hardware filter accordingly.
1337 				 */
1338 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1339 			}
1340 			result = 0;
1341 		}
1342 		break;
1343 	}
1344 
1345 	splx(state);
1346 
1347 	return result;
1348 }
1349 
1350 int
1351 cs_mediachange(struct ifnet *ifp)
1352 {
1353 
1354 	/*
1355 	 * Current media is already set up.  Just reset the interface
1356 	 * to let the new value take hold.
1357 	 */
1358 	cs_init(ifp);
1359 	return 0;
1360 }
1361 
1362 void
1363 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1364 {
1365 	struct cs_softc *sc = ifp->if_softc;
1366 
1367 	/* The currently selected media is always the active media. */
1368 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1369 
1370 	if (ifp->if_flags & IFF_UP) {
1371 		/* Interface up, status is valid. */
1372 		ifmr->ifm_status = IFM_AVALID |
1373 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1374 	}
1375 		else ifmr->ifm_status = 0;
1376 }
1377 
1378 int
1379 cs_intr(void *arg)
1380 {
1381 	struct cs_softc *sc = arg;
1382 	uint16_t Event;
1383 	uint16_t rndEvent;
1384 
1385 /*printf("cs_intr %p\n", sc);*/
1386 	/* Ignore any interrupts that happen while the chip is being reset */
1387 	if (sc->sc_resetting) {
1388 		printf("%s: cs_intr: reset in progress\n",
1389 		    device_xname(sc->sc_dev));
1390 		return 1;
1391 	}
1392 
1393 	/* Read an event from the Interrupt Status Queue */
1394 	if (sc->sc_memorymode)
1395 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1396 	else
1397 		Event = CS_READ_PORT(sc, PORT_ISQ);
1398 
1399 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1400 		return 0;	/* Not ours */
1401 
1402 	rndEvent = Event;
1403 
1404 	/* Process all the events in the Interrupt Status Queue */
1405 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1406 		/* Dispatch to an event handler based on the register number */
1407 		switch (Event & REG_NUM_MASK) {
1408 		case REG_NUM_RX_EVENT:
1409 			cs_receive_event(sc, Event);
1410 			break;
1411 		case REG_NUM_TX_EVENT:
1412 			cs_transmit_event(sc, Event);
1413 			break;
1414 		case REG_NUM_BUF_EVENT:
1415 			cs_buffer_event(sc, Event);
1416 			break;
1417 		case REG_NUM_TX_COL:
1418 		case REG_NUM_RX_MISS:
1419 			cs_counter_event(sc, Event);
1420 			break;
1421 		default:
1422 			printf("%s: unknown interrupt event 0x%x\n",
1423 			    device_xname(sc->sc_dev), Event);
1424 			break;
1425 		}
1426 
1427 		/* Read another event from the Interrupt Status Queue */
1428 		if (sc->sc_memorymode)
1429 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1430 		else
1431 			Event = CS_READ_PORT(sc, PORT_ISQ);
1432 	}
1433 
1434 	/* have handled the interrupt */
1435 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1436 	return 1;
1437 }
1438 
1439 void
1440 cs_counter_event(struct cs_softc *sc, uint16_t cntEvent)
1441 {
1442 	struct ifnet *ifp;
1443 	uint16_t errorCount;
1444 
1445 	ifp = &sc->sc_ethercom.ec_if;
1446 
1447 	switch (cntEvent & REG_NUM_MASK) {
1448 	case REG_NUM_TX_COL:
1449 		/* The count should be read before an overflow occurs. */
1450 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1451 		/*
1452 		 * The tramsit event routine always checks the number of
1453 		 * collisions for any packet so we don't increment any
1454 		 * counters here, as they should already have been
1455 		 * considered.
1456 		 */
1457 		break;
1458 	case REG_NUM_RX_MISS:
1459 		/* The count should be read before an overflow occurs. */
1460 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1461 		/*
1462 		 * Increment the input error count, the first 6bits are the
1463 		 * register id.
1464 		 */
1465 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1466 		break;
1467 	default:
1468 		/* Do nothing */
1469 		break;
1470 	}
1471 }
1472 
1473 void
1474 cs_buffer_event(struct cs_softc *sc, uint16_t bufEvent)
1475 {
1476 
1477 	/*
1478 	 * Multiple events can be in the buffer event register at one time so
1479 	 * a standard switch statement will not suffice, here every event
1480 	 * must be checked.
1481 	 */
1482 
1483 	/*
1484 	 * If 128 bits have been rxed by the time we get here, the dest event
1485 	 * will be cleared and 128 event will be set.
1486 	 */
1487 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0)
1488 		cs_process_rx_early(sc);
1489 
1490 	if (bufEvent & BUF_EVENT_RX_DMA) {
1491 		/* Process the receive data */
1492 		if (sc->sc_dma_process_rx)
1493 			(*sc->sc_dma_process_rx)(sc);
1494 		else
1495 			/* Should panic? */
1496 			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1497 	}
1498 
1499 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1500 #if 0
1501 		/*
1502 		 * This can happen occasionally, and it's not worth worrying
1503 		 * about.
1504 		 */
1505 		printf("%s: transmit underrun (%d -> %d)\n",
1506 		    device_xname(sc->sc_dev), sc->sc_xe_ent,
1507 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1508 #endif
1509 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1510 		sc->sc_xe_togo =
1511 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1512 
1513 		/* had an underrun, transmit is finished */
1514 		sc->sc_txbusy = FALSE;
1515 	}
1516 
1517 	if (bufEvent & BUF_EVENT_SW_INT)
1518 		printf("%s: software initiated interrupt\n",
1519 		    device_xname(sc->sc_dev));
1520 }
1521 
1522 void
1523 cs_transmit_event(struct cs_softc *sc, uint16_t txEvent)
1524 {
1525 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1526 
1527 	/* If there were any errors transmitting this frame */
1528 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR |
1529 	    TX_EVENT_OUT_WIN | TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1530 		/* Increment the output error count */
1531 		ifp->if_oerrors++;
1532 
1533 		/* Note carrier loss. */
1534 		if (txEvent & TX_EVENT_LOSS_CRS)
1535 			sc->sc_carrier = 0;
1536 
1537 		/* If debugging is enabled then log error messages */
1538 		if (ifp->if_flags & IFF_DEBUG) {
1539 			if (txEvent & TX_EVENT_LOSS_CRS)
1540 				aprint_error_dev(sc->sc_dev, "lost carrier\n");
1541 
1542 			if (txEvent & TX_EVENT_SQE_ERR)
1543 				aprint_error_dev(sc->sc_dev, "SQE error\n");
1544 
1545 			if (txEvent & TX_EVENT_OUT_WIN)
1546 				aprint_error_dev(sc->sc_dev,
1547 				    "out-of-window collision\n");
1548 
1549 			if (txEvent & TX_EVENT_JABBER)
1550 				aprint_error_dev(sc->sc_dev, "jabber\n");
1551 
1552 			if (txEvent & TX_EVENT_16_COLL)
1553 				aprint_error_dev(sc->sc_dev,
1554 				    "16 collisions\n");
1555 		}
1556 	} else {
1557 		/* Transmission successful, carrier is up. */
1558 		sc->sc_carrier = 1;
1559 #ifdef SHARK
1560 		ledNetActive();
1561 #endif
1562 	}
1563 
1564 	/* Add the number of collisions for this frame */
1565 	if (txEvent & TX_EVENT_16_COLL)
1566 		ifp->if_collisions += 16;
1567 	else
1568 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1569 
1570 	ifp->if_opackets++;
1571 
1572 	/* Transmission is no longer in progress */
1573 	sc->sc_txbusy = FALSE;
1574 
1575 	/* If there is more to transmit, start the next transmission */
1576 	if_schedule_deferred_start(ifp);
1577 }
1578 
1579 void
1580 cs_print_rx_errors(struct cs_softc *sc, uint16_t rxEvent)
1581 {
1582 
1583 	if (rxEvent & RX_EVENT_RUNT)
1584 		aprint_error_dev(sc->sc_dev, "runt\n");
1585 
1586 	if (rxEvent & RX_EVENT_X_DATA)
1587 		aprint_error_dev(sc->sc_dev, "extra data\n");
1588 
1589 	if (rxEvent & RX_EVENT_CRC_ERR) {
1590 		if (rxEvent & RX_EVENT_DRIBBLE)
1591 			aprint_error_dev(sc->sc_dev, "alignment error\n");
1592 		else
1593 			aprint_error_dev(sc->sc_dev, "CRC error\n");
1594 	} else {
1595 		if (rxEvent & RX_EVENT_DRIBBLE)
1596 			aprint_error_dev(sc->sc_dev, "dribble bits\n");
1597 	}
1598 }
1599 
1600 void
1601 cs_receive_event(struct cs_softc *sc, uint16_t rxEvent)
1602 {
1603 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1604 
1605 	/* If the frame was not received OK */
1606 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1607 		/* Increment the input error count */
1608 		ifp->if_ierrors++;
1609 
1610 		/* If debugging is enabled then log error messages. */
1611 		if (ifp->if_flags & IFF_DEBUG) {
1612 			if (rxEvent != REG_NUM_RX_EVENT) {
1613 				cs_print_rx_errors(sc, rxEvent);
1614 
1615 				/*
1616 				 * Must read the length of all received
1617 				 * frames
1618 				 */
1619 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1620 
1621 				/* Skip the received frame */
1622 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1623 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1624 						  RX_CFG_SKIP);
1625 			} else
1626 				aprint_error_dev(sc->sc_dev, "implied skip\n");
1627 		}
1628 	} else {
1629 		/*
1630 		 * Process the received frame and pass it up to the upper
1631 		 * layers.
1632 		 */
1633 		cs_process_receive(sc);
1634 	}
1635 }
1636 
1637 void
1638 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1639 {
1640 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1641 
1642 	/* Pass the packet up. */
1643 	if_percpuq_enqueue(ifp->if_percpuq, m);
1644 }
1645 
1646 void
1647 cs_process_receive(struct cs_softc *sc)
1648 {
1649 	struct ifnet *ifp;
1650 	struct mbuf *m;
1651 	int totlen;
1652 	uint16_t *pBuff, *pBuffLimit;
1653 	int pad;
1654 	unsigned int frameOffset = 0;	/* XXX: gcc */
1655 
1656 #ifdef SHARK
1657 	ledNetActive();
1658 #endif
1659 
1660 	ifp = &sc->sc_ethercom.ec_if;
1661 
1662 	/* Received a packet; carrier is up. */
1663 	sc->sc_carrier = 1;
1664 
1665 	if (sc->sc_memorymode) {
1666 		/* Initialize the frame offset */
1667 		frameOffset = PKTPG_RX_LENGTH;
1668 
1669 		/* Get the length of the received frame */
1670 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1671 		frameOffset += 2;
1672 	} else {
1673 		/* Drop status */
1674 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1675 
1676 		/* Get the length of the received frame */
1677 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1678 	}
1679 
1680 	if (totlen > ETHER_MAX_LEN) {
1681 		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1682 		    totlen);
1683 
1684 		/* Skip the received frame */
1685 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1686 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1687 		return;
1688 	}
1689 
1690 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1691 	if (m == 0) {
1692 		aprint_error_dev(sc->sc_dev,
1693 		    "cs_process_receive: unable to allocate mbuf\n");
1694 		ifp->if_ierrors++;
1695 		/*
1696 		 * Couldn't allocate an mbuf so things are not good, may as
1697 		 * well drop the packet I think.
1698 		 *
1699 		 * have already read the length so we should be right to skip
1700 		 * the packet.
1701 		 */
1702 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1703 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1704 		return;
1705 	}
1706 	m_set_rcvif(m, ifp);
1707 	m->m_pkthdr.len = totlen;
1708 
1709 	/* Number of bytes to align ip header on word boundary for ipintr */
1710 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1711 
1712 	/*
1713 	 * Alloc mbuf cluster if we need.
1714 	 * We need 1 byte spare because following packet read loop can overrun.
1715 	 */
1716 	if (totlen + pad + 1 > MHLEN) {
1717 		MCLGET(m, M_DONTWAIT);
1718 		if ((m->m_flags & M_EXT) == 0) {
1719 			/* Couldn't allocate an mbuf cluster */
1720 			aprint_error_dev(sc->sc_dev,
1721 			    "cs_process_receive: "
1722 			    "unable to allocate a cluster\n");
1723 			m_freem(m);
1724 
1725 			/* Skip the received frame */
1726 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1727 			    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG)
1728 			    | RX_CFG_SKIP);
1729 			return;
1730 		}
1731 	}
1732 
1733 	/* Align ip header on word boundary for ipintr */
1734 	m->m_data += pad;
1735 
1736 	m->m_len = totlen;
1737 	pBuff = mtod(m, uint16_t *);
1738 
1739 	/* Now read the data from the chip */
1740 	if (sc->sc_memorymode) {
1741 		/* Don't want to go over */
1742 		pBuffLimit = pBuff + (totlen + 1) / 2;
1743 
1744 		while (pBuff < pBuffLimit) {
1745 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1746 			frameOffset += 2;
1747 		}
1748 	} else
1749 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1750 
1751 	cs_ether_input(sc, m);
1752 }
1753 
1754 void
1755 cs_process_rx_early(struct cs_softc *sc)
1756 {
1757 	struct ifnet *ifp;
1758 	struct mbuf *m;
1759 	uint16_t frameCount, oldFrameCount;
1760 	uint16_t rxEvent;
1761 	uint16_t *pBuff;
1762 	int pad;
1763 	unsigned int frameOffset;
1764 
1765 
1766 	ifp = &sc->sc_ethercom.ec_if;
1767 
1768 	/* Initialize the frame offset */
1769 	frameOffset = PKTPG_RX_FRAME;
1770 	frameCount = 0;
1771 
1772 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1773 	if (m == 0) {
1774 		aprint_error_dev(sc->sc_dev,
1775 		    "cs_process_rx_early: unable to allocate mbuf\n");
1776 		ifp->if_ierrors++;
1777 		/*
1778 		 * Couldn't allocate an mbuf so things are not good, may as
1779 		 * well drop the packet I think.
1780 		 *
1781 		 * have already read the length so we should be right to skip
1782 		 * the packet.
1783 		 */
1784 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1785 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1786 		return;
1787 	}
1788 	m_set_rcvif(m, ifp);
1789 	/*
1790 	 * Save processing by always using a mbuf cluster, guaranteed to fit
1791 	 * packet
1792 	 */
1793 	MCLGET(m, M_DONTWAIT);
1794 	if ((m->m_flags & M_EXT) == 0) {
1795 		/* Couldn't allocate an mbuf cluster */
1796 		aprint_error_dev(sc->sc_dev,
1797 		    "cs_process_rx_early: unable to allocate a cluster\n");
1798 		m_freem(m);
1799 		/* Skip the frame */
1800 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1801 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1802 		return;
1803 	}
1804 
1805 	/* Align ip header on word boundary for ipintr */
1806 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1807 	m->m_data += pad;
1808 
1809 	/* Set up the buffer pointer to point to the data area */
1810 	pBuff = mtod(m, uint16_t *);
1811 
1812 	/*
1813 	 * Now read the frame byte counter until we have finished reading the
1814 	 * frame
1815 	 */
1816 	oldFrameCount = 0;
1817 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1818 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1819 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1820 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1821 			frameOffset += 2;
1822 		}
1823 
1824 		/* Read the new count from the chip */
1825 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1826 	}
1827 
1828 	/* Update the mbuf counts */
1829 	m->m_len = oldFrameCount;
1830 	m->m_pkthdr.len = oldFrameCount;
1831 
1832 	/* Now check the Rx Event register */
1833 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1834 
1835 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1836 		/*
1837 		 * Do an implied skip, it seems to be more reliable than a
1838 		 * forced skip.
1839 		 */
1840 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1841 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1842 
1843 		/*
1844 		 * Now read the RX_EVENT register to perform an implied skip.
1845 		 */
1846 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1847 
1848 		cs_ether_input(sc, m);
1849 	} else {
1850 		m_freem(m);
1851 		ifp->if_ierrors++;
1852 	}
1853 }
1854 
1855 void
1856 cs_start_output(struct ifnet *ifp)
1857 {
1858 	struct cs_softc *sc;
1859 	struct mbuf *pMbuf;
1860 	struct mbuf *pMbufChain;
1861 	uint16_t BusStatus;
1862 	uint16_t Length;
1863 	int txLoop = 0;
1864 	int dropout = 0;
1865 
1866 	sc = ifp->if_softc;
1867 
1868 	/* Check that the interface is up and running */
1869 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1870 		return;
1871 
1872 	/* Don't interrupt a transmission in progress */
1873 	if (sc->sc_txbusy)
1874 		return;
1875 
1876 	/* This loop will only run through once if transmission is successful */
1877 	/*
1878 	 * While there are packets to transmit and a transmit is not in
1879 	 * progress
1880 	 */
1881 	while (sc->sc_txbusy == 0 && dropout == 0) {
1882 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1883 		if (pMbufChain == NULL)
1884 			break;
1885 
1886 		/*
1887 		 * If BPF is listening on this interface, let it see the packet
1888 		 * before we commit it to the wire.
1889 		 */
1890 		bpf_mtap(ifp, pMbufChain, BPF_D_OUT);
1891 
1892 		/* Find the total length of the data to transmit */
1893 		Length = 0;
1894 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1895 			Length += pMbuf->m_len;
1896 
1897 		do {
1898 			/*
1899 			 * Request that the transmit be started after all
1900 			 * data has been copied
1901 			 *
1902 			 * In IO mode must write to the IO port not the packet
1903 			 * page address
1904 			 *
1905 			 * If this is changed to start transmission after a
1906 			 * small amount of data has been copied you tend to
1907 			 * get packet missed errors i think because the ISA
1908 			 * bus is too slow. Or possibly the copy routine is
1909 			 * not streamlined enough.
1910 			 */
1911 			if (sc->sc_memorymode) {
1912 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1913 				    cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1914 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1915 			} else {
1916 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1917 				    cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1918 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1919 			}
1920 
1921 			/* Adjust early-transmit machinery. */
1922 			if (--sc->sc_xe_togo == 0) {
1923 				sc->sc_xe_ent =
1924 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1925 				sc->sc_xe_togo =
1926 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1927 			}
1928 			/*
1929 			 * Read the BusStatus register which indicates
1930 			 * success of the request
1931 			 */
1932 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1933 
1934 			/*
1935 			 * If there was an error in the transmit bid free the
1936 			 * mbuf and go on. This is presuming that mbuf is
1937 			 * corrupt.
1938 			 */
1939 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1940 				aprint_error_dev(sc->sc_dev,
1941 				    "transmit bid error (too big)");
1942 
1943 				/* Discard the bad mbuf chain */
1944 				m_freem(pMbufChain);
1945 				sc->sc_ethercom.ec_if.if_oerrors++;
1946 
1947 				/* Loop up to transmit the next chain */
1948 				txLoop = 0;
1949 			} else {
1950 				if (BusStatus & BUS_ST_RDY4TXNOW) {
1951 					/*
1952 					 * The chip is ready for transmission
1953 					 * now
1954 					 */
1955 					/*
1956 					 * Copy the frame to the chip to
1957 					 * start transmission
1958 					 */
1959 					cs_copy_tx_frame(sc, pMbufChain);
1960 
1961 					/* Free the mbuf chain */
1962 					m_freem(pMbufChain);
1963 
1964 					/* Transmission is now in progress */
1965 					sc->sc_txbusy = TRUE;
1966 					txLoop = 0;
1967 				} else {
1968 					/*
1969 					 * If we get here we want to try
1970 					 * again with the same mbuf, until
1971 					 * the chip lets us transmit.
1972 					 */
1973 					txLoop++;
1974 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
1975 						/* Free the mbuf chain */
1976 						m_freem(pMbufChain);
1977 						/*
1978 						 * Transmission is not in
1979 						 * progress
1980 						 */
1981 						sc->sc_txbusy = FALSE;
1982 						/*
1983 						 * Increment the output error
1984 						 * count
1985 						 */
1986 						ifp->if_oerrors++;
1987 						/*
1988 						 * exit the routine and drop
1989 						 * the packet.
1990 						 */
1991 						txLoop = 0;
1992 						dropout = 1;
1993 					}
1994 				}
1995 			}
1996 		} while (txLoop);
1997 	}
1998 }
1999 
2000 void
2001 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2002 {
2003 	struct mbuf *m;
2004 	int len, leftover, frameoff;
2005 	uint16_t dbuf;
2006 	uint8_t *p;
2007 #ifdef DIAGNOSTIC
2008 	uint8_t *lim;
2009 #endif
2010 
2011 	/* Initialize frame pointer and data port address */
2012 	frameoff = PKTPG_TX_FRAME;
2013 
2014 	/* Start out with no leftover data */
2015 	leftover = 0;
2016 	dbuf = 0;
2017 
2018 	/* Process the chain of mbufs */
2019 	for (m = m0; m != NULL; m = m->m_next) {
2020 		/* Process all of the data in a single mbuf. */
2021 		p = mtod(m, uint8_t *);
2022 		len = m->m_len;
2023 #ifdef DIAGNOSTIC
2024 		lim = p + len;
2025 #endif
2026 
2027 		while (len > 0) {
2028 			if (leftover) {
2029 				/*
2030 				 * Data left over (from mbuf or realignment).
2031 				 * Buffer the next byte, and write it and
2032 				 * the leftover data out.
2033 				 */
2034 				dbuf |= *p++ << 8;
2035 				len--;
2036 				if (sc->sc_memorymode) {
2037 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2038 					frameoff += 2;
2039 				}
2040 				else {
2041 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2042 				}
2043 				leftover = 0;
2044 			} else if ((long) p & 1) {
2045 				/* Misaligned data.  Buffer the next byte. */
2046 				dbuf = *p++;
2047 				len--;
2048 				leftover = 1;
2049 			} else {
2050 				/*
2051 				 * Aligned data.  This is the case we like.
2052 				 *
2053 				 * Write-region out as much as we can, then
2054 				 * buffer the remaining byte (if any).
2055 				 */
2056 				leftover = len & 1;
2057 				len &= ~1;
2058 				if (sc->sc_memorymode) {
2059 					MEM_WRITE_REGION_2(sc, frameoff,
2060 					    (uint16_t *) p, len >> 1);
2061 					frameoff += len;
2062 				} else
2063 					IO_WRITE_MULTI_2(sc, PORT_RXTX_DATA,
2064 					    (uint16_t *)p, len >> 1);
2065 				p += len;
2066 
2067 				if (leftover)
2068 					dbuf = *p++;
2069 				len = 0;
2070 			}
2071 		}
2072 		if (len < 0)
2073 			panic("cs_copy_tx_frame: negative len");
2074 #ifdef DIAGNOSTIC
2075 		if (p != lim)
2076 			panic("cs_copy_tx_frame: p != lim");
2077 #endif
2078 	}
2079 	if (leftover) {
2080 		if (sc->sc_memorymode)
2081 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2082 		else
2083 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2084 	}
2085 }
2086 
2087 static int
2088 cs_enable(struct cs_softc *sc)
2089 {
2090 
2091 	if (CS_IS_ENABLED(sc) == 0) {
2092 		if (sc->sc_enable != NULL) {
2093 			int error;
2094 
2095 			error = (*sc->sc_enable)(sc);
2096 			if (error)
2097 				return error;
2098 		}
2099 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2100 	}
2101 
2102 	return 0;
2103 }
2104 
2105 static void
2106 cs_disable(struct cs_softc *sc)
2107 {
2108 
2109 	if (CS_IS_ENABLED(sc)) {
2110 		if (sc->sc_disable != NULL)
2111 			(*sc->sc_disable)(sc);
2112 
2113 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2114 	}
2115 }
2116 
2117 static void
2118 cs_stop(struct ifnet *ifp, int disable)
2119 {
2120 	struct cs_softc *sc = ifp->if_softc;
2121 
2122 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2123 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2124 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2125 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2126 
2127 	if (disable)
2128 		cs_disable(sc);
2129 
2130 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2131 }
2132 
2133 int
2134 cs_activate(device_t self, enum devact act)
2135 {
2136 	struct cs_softc *sc = device_private(self);
2137 
2138 	switch (act) {
2139 	case DVACT_DEACTIVATE:
2140 		if_deactivate(&sc->sc_ethercom.ec_if);
2141 		return 0;
2142 	default:
2143 		return EOPNOTSUPP;
2144 	}
2145 }
2146