xref: /netbsd-src/sys/dev/ic/cs89x0.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: cs89x0.c,v 1.29 2009/12/01 01:05:23 dyoung Exp $	*/
2 
3 /*
4  * Copyright (c) 2004 Christopher Gilbert
5  * All rights reserved.
6  *
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. The name of the company nor the name of the author may be used to
13  *    endorse or promote products derived from this software without specific
14  *    prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright 1997
31  * Digital Equipment Corporation. All rights reserved.
32  *
33  * This software is furnished under license and may be used and
34  * copied only in accordance with the following terms and conditions.
35  * Subject to these conditions, you may download, copy, install,
36  * use, modify and distribute this software in source and/or binary
37  * form. No title or ownership is transferred hereby.
38  *
39  * 1) Any source code used, modified or distributed must reproduce
40  *    and retain this copyright notice and list of conditions as
41  *    they appear in the source file.
42  *
43  * 2) No right is granted to use any trade name, trademark, or logo of
44  *    Digital Equipment Corporation. Neither the "Digital Equipment
45  *    Corporation" name nor any trademark or logo of Digital Equipment
46  *    Corporation may be used to endorse or promote products derived
47  *    from this software without the prior written permission of
48  *    Digital Equipment Corporation.
49  *
50  * 3) This software is provided "AS-IS" and any express or implied
51  *    warranties, including but not limited to, any implied warranties
52  *    of merchantability, fitness for a particular purpose, or
53  *    non-infringement are disclaimed. In no event shall DIGITAL be
54  *    liable for any damages whatsoever, and in particular, DIGITAL
55  *    shall not be liable for special, indirect, consequential, or
56  *    incidental damages or damages for lost profits, loss of
57  *    revenue or loss of use, whether such damages arise in contract,
58  *    negligence, tort, under statute, in equity, at law or otherwise,
59  *    even if advised of the possibility of such damage.
60  */
61 
62 /*
63 **++
64 **  FACILITY
65 **
66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 **  ABSTRACT
69 **
70 **     This module provides standard ethernet access for INET protocols
71 **     only.
72 **
73 **  AUTHORS
74 **
75 **     Peter Dettori     SEA - Software Engineering.
76 **
77 **  CREATION DATE:
78 **
79 **     13-Feb-1997.
80 **
81 **  MODIFICATION HISTORY (Digital):
82 **
83 **     Revision 1.27  1998/01/20  17:59:40  cgd
84 **     update for moved headers
85 **
86 **     Revision 1.26  1998/01/12  19:29:36  cgd
87 **     use arm32/isa versions of isadma code.
88 **
89 **     Revision 1.25  1997/12/12  01:35:27  cgd
90 **     convert to use new arp code (from Brini)
91 **
92 **     Revision 1.24  1997/12/10  22:31:56  cgd
93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
94 **     it was never used and added a bunch of code which really doesn't belong in
95 **     an enet driver), and clean up slightly.
96 **
97 **     Revision 1.23  1997/10/06  16:42:12  cgd
98 **     copyright notices
99 **
100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
101 **     fixes some smartcard problems
102 **
103 **     Revision 1.21  1997/06/10 02:56:20  grohn
104 **     Added call to ledNetActive
105 **
106 **     Revision 1.20  1997/06/05 00:47:06  dettori
107 **     Changed cs_process_rx_dma to reset and re-initialise the
108 **     ethernet chip when DMA gets out of sync, or mbufs
109 **     can't be allocated.
110 **
111 **     Revision 1.19  1997/06/03 03:09:58  dettori
112 **     Turn off sc_txbusy flag when a transmit underrun
113 **     occurs.
114 **
115 **     Revision 1.18  1997/06/02 00:04:35  dettori
116 **     redefined the transmit table to get around the nfs_timer bug while we are
117 **     looking into it further.
118 **
119 **     Also changed interrupts from EDGE to LEVEL.
120 **
121 **     Revision 1.17  1997/05/27 23:31:01  dettori
122 **     Pulled out changes to DMAMODE defines.
123 **
124 **     Revision 1.16  1997/05/23 04:25:16  cgd
125 **     reformat log so it fits in 80cols
126 **
127 **     Revision 1.15  1997/05/23  04:22:18  cgd
128 **     remove the existing copyright notice (which Peter Dettori indicated
129 **     was incorrect, copied from an existing NetBSD file only so that the
130 **     file would have a copyright notice on it, and which he'd intended to
131 **     replace).  Replace it with a Digital copyright notice, cloned from
132 **     ess.c.  It's not really correct either (it indicates that the source
133 **     is Digital confidential!), but is better than nothing and more
134 **     correct than what was there before.
135 **
136 **     Revision 1.14  1997/05/23  04:12:50  cgd
137 **     use an adaptive transmit start algorithm: start by telling the chip
138 **     to start transmitting after 381 bytes have been fed to it.  if that
139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
140 **     packet."  If successful at a given level for a while, try the next
141 **     more agressive level.  This code doesn't ever try to start
142 **     transmitting after 5 bytes have been sent to the NIC, because
143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
144 **     could probably be tuned a little bit, but this works well enough to
145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
146 **     20-25% better than the driver had previously been getting).
147 **
148 **     Revision 1.13  1997/05/22  21:06:54  cgd
149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
151 **     issues.  This would cause bogus data to be spit out for mbufs with
152 **     misaligned data.  For instance, it caused the following bits to appear
153 **     on the wire:
154 **     	... etBND 1S2C .SHA(K) R ...
155 **     	    11112222333344445555
156 **     which should have appeared as:
157 **     	... NetBSD 1.2C (SHARK) ...
158 **     	    11112222333344445555
159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
160 **     incorrect unaligned accesses.  This data corruption was the cause of
161 **     incoming telnet/rlogin hangs.
162 **
163 **     Revision 1.12  1997/05/22  01:55:32  cgd
164 **     reformat log so it fits in 80cols
165 **
166 **     Revision 1.11  1997/05/22  01:50:27  cgd
167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 **       so packets aimed at other hosts don't get sent to ether_input().
169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 **       you can easily tell (`strings`) what version of the driver is in your
171 **       kernel binary.
172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
173 **       safe, and not really a performance win anyway.  (It was only used when
174 **       setting up the multicast logical address filter, which is an
175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
176 **       address check above, but the benefit of it vs. memcmp would be
177 **       inconsequential, there.)  Use memcmp() instead.
178 **     * restructure csStartOuput to avoid the following bugs in the case where
179 **       txWait was being set:
180 **         * it would accidentally drop the outgoing packet if told to wait
181 **           but the outgoing packet queue was empty.
182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
183 **           each time it was told to wait), and would also recalculate
184 **           the length of the outgoing packet each time it was told to
185 **           wait.
186 **       While there, rename txWait to txLoop, since with the new structure of
187 **       the code, the latter name makes more sense.
188 **
189 **     Revision 1.10  1997/05/19  02:03:20  cgd
190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 **     as before.
195 **
196 **     Revision 1.9  1997/05/19  01:45:37  cgd
197 **     create a new function, cs_ether_input(), which does received-packet
198 **     BPF and ether_input processing.  This code used to be in three places,
199 **     and centralizing it will make adding IFF_PROMISC support much easier.
200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 **     do copies with bus_space_write_region_2().  It's more correct, and
202 **     potentially more efficient.  That function needs to be gutted (to
203 **     deal properly with alignment issues, which it currently does wrong),
204 **     however, and the change doesn't gain much, so there's no point in
205 **     enabling it now.
206 **
207 **     Revision 1.8  1997/05/19  01:17:10  cgd
208 **     fix a comment re: the setting of the TxConfig register.  Clean up
209 **     interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213 
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.29 2009/12/01 01:05:23 dyoung Exp $");
216 
217 #include "opt_inet.h"
218 
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 
229 #include "rnd.h"
230 #if NRND > 0
231 #include <sys/rnd.h>
232 #endif
233 
234 #include <net/if.h>
235 #include <net/if_ether.h>
236 #include <net/if_media.h>
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241 
242 #include "bpfilter.h"
243 #if NBPFILTER > 0
244 #include <net/bpf.h>
245 #include <net/bpfdesc.h>
246 #endif
247 
248 #include <uvm/uvm_extern.h>
249 
250 #include <sys/bus.h>
251 #include <sys/intr.h>
252 
253 #include <dev/ic/cs89x0reg.h>
254 #include <dev/ic/cs89x0var.h>
255 
256 #ifdef SHARK
257 #include <shark/shark/sequoia.h>
258 #endif
259 
260 /*
261  * MACRO DEFINITIONS
262  */
263 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
264 
265 /*
266  * FUNCTION PROTOTYPES
267  */
268 static void	cs_get_default_media(struct cs_softc *);
269 static int	cs_get_params(struct cs_softc *);
270 static int	cs_get_enaddr(struct cs_softc *);
271 static int	cs_reset_chip(struct cs_softc *);
272 static void	cs_reset(struct cs_softc *);
273 static int	cs_ioctl(struct ifnet *, u_long, void *);
274 static void	cs_initChip(struct cs_softc *);
275 static void	cs_buffer_event(struct cs_softc *, u_int16_t);
276 static void	cs_transmit_event(struct cs_softc *, u_int16_t);
277 static void	cs_receive_event(struct cs_softc *, u_int16_t);
278 static void	cs_process_receive(struct cs_softc *);
279 static void	cs_process_rx_early(struct cs_softc *);
280 static void	cs_start_output(struct ifnet *);
281 static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
282 static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
283 static u_int16_t cs_hash_index(char *);
284 static void	cs_counter_event(struct cs_softc *, u_int16_t);
285 
286 static int	cs_mediachange(struct ifnet *);
287 static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
288 
289 static bool cs_shutdown(device_t, int);
290 static int cs_enable(struct cs_softc *);
291 static void cs_disable(struct cs_softc *);
292 static void cs_stop(struct ifnet *, int);
293 static int cs_scan_eeprom(struct cs_softc *);
294 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
295 
296 
297 /*
298  * GLOBAL DECLARATIONS
299  */
300 
301 /*
302  * Xmit-early table.
303  *
304  * To get better performance, we tell the chip to start packet
305  * transmission before the whole packet is copied to the chip.
306  * However, this can fail under load.  When it fails, we back off
307  * to a safer setting for a little while.
308  *
309  * txcmd is the value of txcmd used to indicate when to start transmission.
310  * better is the next 'better' state in the table.
311  * better_count is the number of output packets before transition to the
312  *   better state.
313  * worse is the next 'worse' state in the table.
314  *
315  * Transition to the next worse state happens automatically when a
316  * transmittion underrun occurs.
317  */
318 struct cs_xmit_early {
319 	u_int16_t       txcmd;
320 	int             better;
321 	int             better_count;
322 	int             worse;
323 } cs_xmit_early_table[3] = {
324 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
325 	{ TX_CMD_START_1021,	0,	50000,		2, },
326 	{ TX_CMD_START_ALL,	1,	5000,		2, },
327 };
328 
329 int cs_default_media[] = {
330 	IFM_ETHER|IFM_10_2,
331 	IFM_ETHER|IFM_10_5,
332 	IFM_ETHER|IFM_10_T,
333 	IFM_ETHER|IFM_10_T|IFM_FDX,
334 };
335 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
336 
337 int
338 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
339 	  int nmedia, int defmedia)
340 {
341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
342 	const char *chipname, *medname;
343 	u_int16_t reg;
344 	int i;
345 
346 	/* Start out in IO mode */
347 	sc->sc_memorymode = FALSE;
348 
349 	/* make sure we're right */
350 	for (i = 0; i < 10000; i++) {
351 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
352 		if (reg == EISA_NUM_CRYSTAL) {
353 			break;
354 		}
355 	}
356 	if (i == 10000) {
357 		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
358 		return 1; /* XXX should panic? */
359 	}
360 
361 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
362 	sc->sc_prodid = reg & PROD_ID_MASK;
363 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
364 
365 	switch (sc->sc_prodid) {
366 	case PROD_ID_CS8900:
367 		chipname = "CS8900";
368 		break;
369 	case PROD_ID_CS8920:
370 		chipname = "CS8920";
371 		break;
372 	case PROD_ID_CS8920M:
373 		chipname = "CS8920M";
374 		break;
375 	default:
376 		panic("cs_attach: impossible");
377 	}
378 
379 	/*
380 	 * the first thing to do is check that the mbuf cluster size is
381 	 * greater than the MTU for an ethernet frame. The code depends on
382 	 * this and to port this to a OS where this was not the case would
383 	 * not be straightforward.
384 	 *
385 	 * we need 1 byte spare because our
386 	 * packet read loop can overrun.
387 	 * and we may need pad bytes to align ip header.
388 	 */
389 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
390 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
391 		printf("%s: MCLBYTES too small for Ethernet frame\n",
392 		    device_xname(sc->sc_dev));
393 		return 1;
394 	}
395 
396 	/* Start out not transmitting */
397 	sc->sc_txbusy = FALSE;
398 
399 	/* Set up early transmit threshhold */
400 	sc->sc_xe_ent = 0;
401 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
402 
403 	/* Initialize ifnet structure. */
404 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
405 	ifp->if_softc = sc;
406 	ifp->if_start = cs_start_output;
407 	ifp->if_init = cs_init;
408 	ifp->if_ioctl = cs_ioctl;
409 	ifp->if_stop = cs_stop;
410 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
411 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
412 	    IFF_BROADCAST | IFF_MULTICAST;
413 	IFQ_SET_READY(&ifp->if_snd);
414 
415 	/* Initialize ifmedia structures. */
416 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
417 
418 	if (media != NULL) {
419 		for (i = 0; i < nmedia; i++)
420 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
421 		ifmedia_set(&sc->sc_media, defmedia);
422 	} else {
423 		for (i = 0; i < cs_default_nmedia; i++)
424 			ifmedia_add(&sc->sc_media, cs_default_media[i],
425 			    0, NULL);
426 		cs_get_default_media(sc);
427 	}
428 
429 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
430 		if (cs_scan_eeprom(sc) == CS_ERROR) {
431 			/* failed to scan the eeprom, pretend there isn't an eeprom */
432 			aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
433 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
434 		}
435 	}
436 
437 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
438 		/* Get parameters from the EEPROM */
439 		if (cs_get_params(sc) == CS_ERROR) {
440 			aprint_error_dev(sc->sc_dev,
441 			    "unable to get settings from EEPROM\n");
442 			return 1;
443 		}
444 	}
445 
446 	if (enaddr != NULL)
447 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
448 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
449 		/* Get and store the Ethernet address */
450 		if (cs_get_enaddr(sc) == CS_ERROR) {
451 			aprint_error_dev(sc->sc_dev,
452 			    "unable to read Ethernet address\n");
453 			return 1;
454 		}
455 	} else {
456 #if 1
457 		int j;
458 		uint v;
459 
460 		for (j = 0; j < 6; j += 2) {
461 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
462 			sc->sc_enaddr[j + 0] = v;
463 			sc->sc_enaddr[j + 1] = v >> 8;
464 		}
465 #else
466 		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
467 		return 1;
468 #endif
469 	}
470 
471 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
472 	case IFM_10_2:
473 		medname = "BNC";
474 		break;
475 	case IFM_10_5:
476 		medname = "AUI";
477 		break;
478 	case IFM_10_T:
479 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
480 			medname = "UTP <full-duplex>";
481 		else
482 			medname = "UTP";
483 		break;
484 	default:
485 		panic("cs_attach: impossible");
486 	}
487 	printf("%s: %s rev. %c, address %s, media %s\n",
488 	    device_xname(sc->sc_dev),
489 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
490 	    medname);
491 
492 	if (sc->sc_dma_attach)
493 		(*sc->sc_dma_attach)(sc);
494 
495 	/* Attach the interface. */
496 	if_attach(ifp);
497 	ether_ifattach(ifp, sc->sc_enaddr);
498 
499 #if NRND > 0
500 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
501 			  RND_TYPE_NET, 0);
502 #endif
503 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
504 
505 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
506 		pmf_class_network_register(sc->sc_dev, ifp);
507 	else
508 		aprint_error_dev(sc->sc_dev,
509 		    "couldn't establish power handler\n");
510 
511 	/* Reset the chip */
512 	if (cs_reset_chip(sc) == CS_ERROR) {
513 		aprint_error_dev(sc->sc_dev, "reset failed\n");
514 		cs_detach(sc);
515 		return 1;
516 	}
517 
518 	return 0;
519 }
520 
521 int
522 cs_detach(struct cs_softc *sc)
523 {
524 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
525 
526 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
527 #if NRND > 0
528 		rnd_detach_source(&sc->rnd_source);
529 #endif
530 		ether_ifdetach(ifp);
531 		if_detach(ifp);
532 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
533 	}
534 
535 #if 0
536 	/*
537 	 * XXX not necessary
538 	 */
539 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
540 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
541 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
542 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
543 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
544 	}
545 #endif
546 
547 	pmf_device_deregister(sc->sc_dev);
548 
549 	return 0;
550 }
551 
552 bool
553 cs_shutdown(device_t self, int howto)
554 {
555 	struct cs_softc *sc;
556 
557 	sc = device_private(self);
558 	cs_reset(sc);
559 
560 	return true;
561 }
562 
563 void
564 cs_get_default_media(struct cs_softc *sc)
565 {
566 	u_int16_t adp_cfg, xmit_ctl;
567 
568 	if (cs_verify_eeprom(sc) == CS_ERROR) {
569 		aprint_error_dev(sc->sc_dev,
570 		    "cs_get_default_media: EEPROM missing or bad\n");
571 		goto fakeit;
572 	}
573 
574 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
575 		aprint_error_dev(sc->sc_dev,
576 		    "unable to read adapter config from EEPROM\n");
577 		goto fakeit;
578 	}
579 
580 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
581 		aprint_error_dev(sc->sc_dev,
582 		    "unable to read transmit control from EEPROM\n");
583 		goto fakeit;
584 	}
585 
586 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
587 	case ADPTR_CFG_AUI:
588 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
589 		break;
590 	case ADPTR_CFG_10BASE2:
591 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
592 		break;
593 	case ADPTR_CFG_10BASET:
594 	default:
595 		if (xmit_ctl & XMIT_CTL_FDX)
596 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
597 		else
598 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
599 		break;
600 	}
601 	return;
602 
603  fakeit:
604 	aprint_error_dev(sc->sc_dev,
605 	    "WARNING: default media setting may be inaccurate\n");
606 	/* XXX Arbitrary... */
607 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
608 }
609 
610 /*
611  * cs_scan_eeprom
612  *
613  * Attempt to take a complete copy of the eeprom into main memory.
614  * this will allow faster parsing of the eeprom data.
615  *
616  * Only tested against a 8920M's eeprom, but the data sheet for the
617  * 8920A indicates that is uses the same layout.
618  */
619 int
620 cs_scan_eeprom(struct cs_softc *sc)
621 {
622 	u_int16_t result;
623 	int	i;
624 	int	eeprom_size;
625 	u_int8_t checksum = 0;
626 
627 	if (cs_verify_eeprom(sc) == CS_ERROR) {
628 		aprint_error_dev(sc->sc_dev,
629 		    "cs_scan_params: EEPROM missing or bad\n");
630 		return (CS_ERROR);
631 	}
632 
633 	/*
634 	 * read the 0th word from the eeprom, it will tell us the length
635 	 * and if the eeprom is valid
636 	 */
637 	cs_read_eeprom(sc, 0, &result);
638 
639 	/* check the eeprom signature */
640 	if ((result & 0xE000) != 0xA000) {
641 		/* empty eeprom */
642 		return (CS_ERROR);
643 	}
644 
645 	/*
646 	 * take the eeprom size (note the read value doesn't include the header
647 	 * word)
648 	 */
649 	eeprom_size = (result & 0xff) + 2;
650 
651 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
652 	if (sc->eeprom_data == NULL) {
653 		/* no memory, treat this as if there's no eeprom */
654 		return (CS_ERROR);
655 	}
656 
657 	sc->eeprom_size = eeprom_size;
658 
659 	/* read the eeprom into the buffer, also calculate the checksum  */
660 	for (i = 0; i < (eeprom_size >> 1); i++) {
661 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
662 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
663 		checksum += (sc->eeprom_data[i] & 0x00ff);
664 	}
665 
666 	/*
667 	 * validate checksum calculation, the sum of all the bytes should be 0,
668 	 * as the high byte of the last word is the 2's complement of the
669 	 * sum to that point.
670 	 */
671 	if (checksum != 0) {
672 		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
673 		return (CS_ERROR);
674 	}
675 
676 	return (CS_OK);
677 }
678 
679 static int
680 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
681 {
682 	int x, maxword;
683 
684 	/* Check that we have eeprom data */
685 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
686 		return (CS_ERROR);
687 
688 	/*
689 	 * We only want to read the data words, the last word contains the
690 	 * checksum
691 	 */
692 	maxword = (sc->eeprom_size - 2) >> 1;
693 
694 	/* start 1 word in, as the first word is the length and signature */
695 	x = 1;
696 
697 	while ( x < (maxword)) {
698 		u_int16_t header;
699 		int group_size;
700 		int offset;
701 		int offset_max;
702 
703 		/* read in the group header word */
704 		header = sc->eeprom_data[x];
705 		x++;	/* skip group header */
706 
707 		/*
708 		 * size of group in words is in the top 4 bits, note that it
709 		 * is one less than the number of words
710 		 */
711 		group_size = header & 0xF000;
712 
713 		/*
714 		 * CS8900 Data sheet says this should be 0x01ff,
715 		 * but my cs8920 eeprom has higher offsets,
716 		 * perhaps the 8920 allows higher offsets, otherwise
717 		 * it's writing to places that it shouldn't
718 		 */
719 		/* work out the offsets this group covers */
720 		offset = header & 0x0FFF;
721 		offset_max = offset + (group_size << 1);
722 
723 		/* check if the pkgpg we're after is in this group */
724 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
725 			/* the pkgpg value we want is in here */
726 			int eeprom_location;
727 
728 			eeprom_location = ((pktpg - offset) >> 1) ;
729 
730 			*pValue = sc->eeprom_data[x + eeprom_location];
731 			return (CS_OK);
732 		} else {
733 			/* skip this group (+ 1 for first entry) */
734 			x += group_size + 1;
735 		}
736 	}
737 
738 	/*
739 	 * if we've fallen out here then we don't have a value in the EEPROM
740 	 * for this pktpg so return an error
741 	 */
742 	return (CS_ERROR);
743 }
744 
745 int
746 cs_get_params(struct cs_softc *sc)
747 {
748 	u_int16_t isaConfig;
749 	u_int16_t adapterConfig;
750 
751 	if (cs_verify_eeprom(sc) == CS_ERROR) {
752 		aprint_error_dev(sc->sc_dev,
753 		    "cs_get_params: EEPROM missing or bad\n");
754 		return (CS_ERROR);
755 	}
756 
757 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
758 		/* Get ISA configuration from the EEPROM */
759 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
760 			       	== CS_ERROR) {
761 			/* eeprom doesn't have this value, use data sheet default */
762 			isaConfig = 0x0017;
763 		}
764 
765 		/* Get adapter configuration from the EEPROM */
766 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
767 				== CS_ERROR) {
768 			/* eeprom doesn't have this value, use data sheet default */
769 			adapterConfig = 0x0015;
770 		}
771 
772 		/* Copy the USE_SA flag */
773 		if (isaConfig & BUS_CTL_USE_SA)
774 			sc->sc_cfgflags |= CFGFLG_USE_SA;
775 
776 		/* Copy the IO Channel Ready flag */
777 		if (isaConfig & BUS_CTL_IOCHRDY)
778 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
779 
780 		/* Copy the DC/DC Polarity flag */
781 		if (adapterConfig & SELF_CTL_HCB1)
782 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
783 	} else {
784 		/* Get ISA configuration from the EEPROM */
785 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
786 			goto eeprom_bad;
787 
788 		/* Get adapter configuration from the EEPROM */
789 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
790 			goto eeprom_bad;
791 
792 		/* Copy the USE_SA flag */
793 		if (isaConfig & ISA_CFG_USE_SA)
794 			sc->sc_cfgflags |= CFGFLG_USE_SA;
795 
796 		/* Copy the IO Channel Ready flag */
797 		if (isaConfig & ISA_CFG_IOCHRDY)
798 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
799 
800 		/* Copy the DC/DC Polarity flag */
801 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
802 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
803 	}
804 
805 	return (CS_OK);
806 eeprom_bad:
807 	aprint_error_dev(sc->sc_dev,
808 	    "cs_get_params: unable to read from EEPROM\n");
809 	return (CS_ERROR);
810 }
811 
812 int
813 cs_get_enaddr(struct cs_softc *sc)
814 {
815 	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
816 	int i;
817 
818 	if (cs_verify_eeprom(sc) == CS_ERROR) {
819 		aprint_error_dev(sc->sc_dev,
820 		    "cs_get_enaddr: EEPROM missing or bad\n");
821 		return (CS_ERROR);
822 	}
823 
824 	/* Get Ethernet address from the EEPROM */
825 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
826 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
827 				== CS_ERROR)
828 			goto eeprom_bad;
829 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
830 				== CS_ERROR)
831 			goto eeprom_bad;
832 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
833 				== CS_ERROR)
834 			goto eeprom_bad;
835 	} else {
836 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
837 			goto eeprom_bad;
838 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
839 			goto eeprom_bad;
840 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
841 			goto eeprom_bad;
842 	}
843 
844 	for (i = 0; i < __arraycount(myea); i++) {
845 		sc->sc_enaddr[i * 2 + 0] = myea[i];
846 		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
847 	}
848 
849 	return (CS_OK);
850 
851  eeprom_bad:
852 	aprint_error_dev(sc->sc_dev,
853 	    "cs_get_enaddr: unable to read from EEPROM\n");
854 	return (CS_ERROR);
855 }
856 
857 int
858 cs_reset_chip(struct cs_softc *sc)
859 {
860 	int intState;
861 	int x;
862 
863 	/* Disable interrupts at the CPU so reset command is atomic */
864 	intState = splnet();
865 
866 	/*
867 	 * We are now resetting the chip
868 	 *
869 	 * A spurious interrupt is generated by the chip when it is reset. This
870 	 * variable informs the interrupt handler to ignore this interrupt.
871 	 */
872 	sc->sc_resetting = TRUE;
873 
874 	/* Issue a reset command to the chip */
875 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
876 
877 	/* Re-enable interrupts at the CPU */
878 	splx(intState);
879 
880 	/* The chip is always in IO mode after a reset */
881 	sc->sc_memorymode = FALSE;
882 
883 	/* If transmission was in progress, it is not now */
884 	sc->sc_txbusy = FALSE;
885 
886 	/*
887 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
888 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
889 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
890 	 * should be sufficient.
891 	 */
892 
893 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
894 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
895 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
896 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
897 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
898 
899 	/* Wait until the EEPROM is not busy */
900 	for (x = 0; x < MAXLOOP; x++) {
901 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
902 			break;
903 	}
904 
905 	if (x == MAXLOOP)
906 		return CS_ERROR;
907 
908 	/* Wait until initialization is done */
909 	for (x = 0; x < MAXLOOP; x++) {
910 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
911 			break;
912 	}
913 
914 	if (x == MAXLOOP)
915 		return CS_ERROR;
916 
917 	/* Reset is no longer in progress */
918 	sc->sc_resetting = FALSE;
919 
920 	return CS_OK;
921 }
922 
923 int
924 cs_verify_eeprom(struct cs_softc *sc)
925 {
926 	u_int16_t self_status;
927 
928 	/* Verify that the EEPROM is present and OK */
929 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
930 	if (((self_status & SELF_ST_EEP_PRES) &&
931 	     (self_status & SELF_ST_EEP_OK)) == 0)
932 		return (CS_ERROR);
933 
934 	return (CS_OK);
935 }
936 
937 int
938 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
939 {
940 	int x;
941 
942 	/* Ensure that the EEPROM is not busy */
943 	for (x = 0; x < MAXLOOP; x++) {
944 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
945 		      SELF_ST_SI_BUSY))
946 			break;
947 	}
948 
949 	if (x == MAXLOOP)
950 		return (CS_ERROR);
951 
952 	/* Issue the command to read the offset within the EEPROM */
953 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
954 	    offset | EEPROM_CMD_READ);
955 
956 	/* Wait until the command is completed */
957 	for (x = 0; x < MAXLOOP; x++) {
958 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
959 		      SELF_ST_SI_BUSY))
960 			break;
961 	}
962 
963 	if (x == MAXLOOP)
964 		return (CS_ERROR);
965 
966 	/* Get the EEPROM data from the EEPROM Data register */
967 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
968 
969 	return (CS_OK);
970 }
971 
972 void
973 cs_initChip(struct cs_softc *sc)
974 {
975 	u_int16_t busCtl;
976 	u_int16_t selfCtl;
977 	u_int16_t v;
978 	u_int16_t isaId;
979 	int i;
980 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
981 
982 	/* Disable reception and transmission of frames */
983 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
984 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
985 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
986 
987 	/* Disable interrupt at the chip */
988 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
989 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
990 
991 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
992 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
993 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
994 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
995 		    busCtl & ~BUS_CTL_IOCHRDY);
996 	} else {
997 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
998 		    busCtl | BUS_CTL_IOCHRDY);
999 	}
1000 
1001 	/* Set the Line Control register to match the media type */
1002 	if (media == IFM_10_T)
1003 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
1004 	else
1005 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1006 
1007 	/*
1008 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
1009 	 * enable the DC/DC converter
1010 	 */
1011 	selfCtl = SELF_CTL_HC1E;
1012 
1013 	/* If the media type is 10Base2 */
1014 	if (media == IFM_10_2) {
1015 		/*
1016 		 * Enable the DC/DC converter if it has a low enable.
1017 		 */
1018 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1019 			/*
1020 			 * Set the HCB1 bit, which causes the HC1 pin to go
1021 			 * low.
1022 			 */
1023 			selfCtl |= SELF_CTL_HCB1;
1024 	} else { /* Media type is 10BaseT or AUI */
1025 		/*
1026 		 * Disable the DC/DC converter if it has a high enable.
1027 		 */
1028 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1029 			/*
1030 			 * Set the HCB1 bit, which causes the HC1 pin to go
1031 			 * low.
1032 			 */
1033 			selfCtl |= SELF_CTL_HCB1;
1034 		}
1035 	}
1036 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1037 
1038 	/* enable normal link pulse */
1039 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1040 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1041 
1042 	/* Enable full-duplex, if appropriate */
1043 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1044 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1045 
1046 	/* RX_CTL set in cs_set_ladr_filt(), below */
1047 
1048 	/* enable all transmission interrupts */
1049 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1050 
1051 	/* Accept all receive interrupts */
1052 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1053 
1054 	/*
1055 	 * Configure Operational Modes
1056 	 *
1057 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1058 	 * a better way to do it because the card has a counter which can be
1059 	 * read to update the RX_MISS counter. This saves many interrupts.
1060 	 *
1061 	 * I have turned on the tx and rx overflow interrupts to counter using
1062 	 * the receive miss interrupt. This is a better estimate of errors
1063 	 * and requires lower system overhead.
1064 	 */
1065 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1066 			  BUF_CFG_RX_DMA_IE);
1067 
1068 	if (sc->sc_dma_chipinit)
1069 		(*sc->sc_dma_chipinit)(sc);
1070 
1071 	/* If memory mode is enabled */
1072 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1073 		/* If external logic is present for address decoding */
1074 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1075 			/*
1076 			 * Program the external logic to decode address bits
1077 			 * SA20-SA23
1078 			 */
1079 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1080 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1081 			    EEPROM_CMD_ELSEL);
1082 		}
1083 
1084 		/*
1085 		 * Write the packet page base physical address to the memory
1086 		 * base register.
1087 		 */
1088 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1089 		    sc->sc_pktpgaddr & 0xFFFF);
1090 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1091 		    sc->sc_pktpgaddr >> 16);
1092 		busCtl = BUS_CTL_MEM_MODE;
1093 
1094 		/* tell the chip to read the addresses off the SA pins */
1095 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1096 			busCtl |= BUS_CTL_USE_SA;
1097 		}
1098 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1099 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1100 
1101 		/* We are in memory mode now! */
1102 		sc->sc_memorymode = TRUE;
1103 
1104 		/*
1105 		 * wait here (10ms) for the chip to swap over. this is the
1106 		 * maximum time that this could take.
1107 		 */
1108 		delay(10000);
1109 
1110 		/* Verify that we can read from the chip */
1111 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1112 
1113 		/*
1114 		 * As a last minute sanity check before actually using mapped
1115 		 * memory we verify that we can read the isa number from the
1116 		 * chip in memory mode.
1117 		 */
1118 		if (isaId != EISA_NUM_CRYSTAL) {
1119 			aprint_error_dev(sc->sc_dev,
1120 			    "failed to enable memory mode\n");
1121 			sc->sc_memorymode = FALSE;
1122 		} else {
1123 			/*
1124 			 * we are in memory mode so if we aren't using DMA,
1125 			 * then program the chip to interrupt early.
1126 			 */
1127 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1128 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1129 				    BUF_CFG_RX_DEST_IE |
1130 				    BUF_CFG_RX_MISS_OVER_IE |
1131 				    BUF_CFG_TX_COL_OVER_IE);
1132 			}
1133 		}
1134 
1135 	}
1136 
1137 	/* Put Ethernet address into the Individual Address register */
1138 	for (i = 0; i < 6; i += 2) {
1139 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1140 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1141 	}
1142 
1143 	if (sc->sc_irq != -1) {
1144 		/* Set the interrupt level in the chip */
1145 		if (sc->sc_prodid == PROD_ID_CS8900) {
1146 			if (sc->sc_irq == 5) {
1147 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1148 			} else {
1149 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1150 			}
1151 		}
1152 		else { /* CS8920 */
1153 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1154 		}
1155 	}
1156 
1157 	/* write the multicast mask to the address filter register */
1158 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
1159 
1160 	/* Enable reception and transmission of frames */
1161 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1162 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1163 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1164 
1165 	/* Enable interrupt at the chip */
1166 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1167 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1168 }
1169 
1170 int
1171 cs_init(struct ifnet *ifp)
1172 {
1173 	int intState;
1174 	int error = CS_OK;
1175 	struct cs_softc *sc = ifp->if_softc;
1176 
1177 	if (cs_enable(sc))
1178 		goto out;
1179 
1180 	cs_stop(ifp, 0);
1181 
1182 	intState = splnet();
1183 
1184 #if 0
1185 	/* Mark the interface as down */
1186 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1187 #endif
1188 
1189 #ifdef CS_DEBUG
1190 	/* Enable debugging */
1191 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1192 #endif
1193 
1194 	/* Reset the chip */
1195 	if ((error = cs_reset_chip(sc)) == CS_OK) {
1196 		/* Initialize the chip */
1197 		cs_initChip(sc);
1198 
1199 		/* Mark the interface as running */
1200 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1201 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1202 		sc->sc_ethercom.ec_if.if_timer = 0;
1203 
1204 		/* Assume we have carrier until we are told otherwise. */
1205 		sc->sc_carrier = 1;
1206 	} else {
1207 		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1208 	}
1209 
1210 	splx(intState);
1211 out:
1212 	if (error == CS_OK)
1213 		return 0;
1214 	return EIO;
1215 }
1216 
1217 void
1218 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1219 {
1220 	struct ifnet *ifp = &ec->ec_if;
1221 	struct ether_multi *enm;
1222 	struct ether_multistep step;
1223 	u_int16_t af[4];
1224 	u_int16_t port, mask, index;
1225 
1226 	/*
1227          * Set up multicast address filter by passing all multicast addresses
1228          * through a crc generator, and then using the high order 6 bits as an
1229          * index into the 64 bit logical address filter.  The high order bit
1230          * selects the word, while the rest of the bits select the bit within
1231          * the word.
1232          */
1233 	if (ifp->if_flags & IFF_PROMISC) {
1234 		/* accept all valid frames. */
1235 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1236 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1237 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1238 		ifp->if_flags |= IFF_ALLMULTI;
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * accept frames if a. crc valid, b. individual address match c.
1244 	 * broadcast address,and d. multicast addresses matched in the hash
1245 	 * filter
1246 	 */
1247 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1248 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1249 
1250 
1251 	/*
1252 	 * start off with all multicast flag clear, set it if we need to
1253 	 * later, otherwise we will leave it.
1254 	 */
1255 	ifp->if_flags &= ~IFF_ALLMULTI;
1256 	af[0] = af[1] = af[2] = af[3] = 0x0000;
1257 
1258 	/*
1259 	 * Loop through all the multicast addresses unless we get a range of
1260 	 * addresses, in which case we will just accept all packets.
1261 	 * Justification for this is given in the next comment.
1262 	 */
1263 	ETHER_FIRST_MULTI(step, ec, enm);
1264 	while (enm != NULL) {
1265 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1266 		    sizeof enm->enm_addrlo)) {
1267 			/*
1268 	                 * We must listen to a range of multicast addresses.
1269 	                 * For now, just accept all multicasts, rather than
1270 	                 * trying to set only those filter bits needed to match
1271 	                 * the range.  (At this time, the only use of address
1272 	                 * ranges is for IP multicast routing, for which the
1273 	                 * range is big enough to require all bits set.)
1274 	                 */
1275 			ifp->if_flags |= IFF_ALLMULTI;
1276 			af[0] = af[1] = af[2] = af[3] = 0xffff;
1277 			break;
1278 		} else {
1279 			/*
1280 	                 * we have got an individual address so just set that
1281 	                 * bit.
1282 	                 */
1283 			index = cs_hash_index(enm->enm_addrlo);
1284 
1285 			/* Set the bit the Logical address filter. */
1286 			port = (u_int16_t) (index >> 4);
1287 			mask = (u_int16_t) (1 << (index & 0xf));
1288 			af[port] |= mask;
1289 
1290 			ETHER_NEXT_MULTI(step, enm);
1291 		}
1292 	}
1293 
1294 	/* now program the chip with the addresses */
1295 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1296 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1297 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1298 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1299 	return;
1300 }
1301 
1302 u_int16_t
1303 cs_hash_index(char *addr)
1304 {
1305 	uint32_t crc;
1306 	uint16_t hash_code;
1307 
1308 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1309 
1310 	hash_code = crc >> 26;
1311 	return (hash_code);
1312 }
1313 
1314 void
1315 cs_reset(struct cs_softc *sc)
1316 {
1317 
1318 	/* Mark the interface as down */
1319 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1320 
1321 	/* Reset the chip */
1322 	cs_reset_chip(sc);
1323 }
1324 
1325 int
1326 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1327 {
1328 	struct cs_softc *sc = ifp->if_softc;
1329 	struct ifreq *ifr = data;
1330 	int state;
1331 	int result;
1332 
1333 	state = splnet();
1334 
1335 	result = 0;		/* only set if something goes wrong */
1336 
1337 	switch (cmd) {
1338 	case SIOCGIFMEDIA:
1339 	case SIOCSIFMEDIA:
1340 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1341 		break;
1342 
1343 	default:
1344 		result = ether_ioctl(ifp, cmd, data);
1345 		if (result == ENETRESET) {
1346 			if (ifp->if_flags & IFF_RUNNING) {
1347 				/*
1348 				 * Multicast list has changed.  Set the
1349 				 * hardware filter accordingly.
1350 				 */
1351 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
1352 			}
1353 			result = 0;
1354 		}
1355 		break;
1356 	}
1357 
1358 	splx(state);
1359 
1360 	return result;
1361 }
1362 
1363 int
1364 cs_mediachange(struct ifnet *ifp)
1365 {
1366 
1367 	/*
1368 	 * Current media is already set up.  Just reset the interface
1369 	 * to let the new value take hold.
1370 	 */
1371 	cs_init(ifp);
1372 	return (0);
1373 }
1374 
1375 void
1376 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1377 {
1378 	struct cs_softc *sc = ifp->if_softc;
1379 
1380 	/*
1381 	 * The currently selected media is always the active media.
1382 	 */
1383 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1384 
1385 	if (ifp->if_flags & IFF_UP) {
1386 		/* Interface up, status is valid. */
1387 		ifmr->ifm_status = IFM_AVALID |
1388 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
1389 	}
1390 		else ifmr->ifm_status = 0;
1391 }
1392 
1393 int
1394 cs_intr(void *arg)
1395 {
1396 	struct cs_softc *sc = arg;
1397 	u_int16_t Event;
1398 #if NRND > 0
1399 	u_int16_t rndEvent;
1400 #endif
1401 
1402 /*printf("cs_intr %p\n", sc);*/
1403 	/* Ignore any interrupts that happen while the chip is being reset */
1404 	if (sc->sc_resetting) {
1405 		printf("%s: cs_intr: reset in progress\n",
1406 		    device_xname(sc->sc_dev));
1407 		return 1;
1408 	}
1409 
1410 	/* Read an event from the Interrupt Status Queue */
1411 	if (sc->sc_memorymode)
1412 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1413 	else
1414 		Event = CS_READ_PORT(sc, PORT_ISQ);
1415 
1416 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1417 		return 0;	/* not ours */
1418 
1419 #if NRND > 0
1420 	rndEvent = Event;
1421 #endif
1422 
1423 	/* Process all the events in the Interrupt Status Queue */
1424 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1425 		/* Dispatch to an event handler based on the register number */
1426 		switch (Event & REG_NUM_MASK) {
1427 		case REG_NUM_RX_EVENT:
1428 			cs_receive_event(sc, Event);
1429 			break;
1430 		case REG_NUM_TX_EVENT:
1431 			cs_transmit_event(sc, Event);
1432 			break;
1433 		case REG_NUM_BUF_EVENT:
1434 			cs_buffer_event(sc, Event);
1435 			break;
1436 		case REG_NUM_TX_COL:
1437 		case REG_NUM_RX_MISS:
1438 			cs_counter_event(sc, Event);
1439 			break;
1440 		default:
1441 			printf("%s: unknown interrupt event 0x%x\n",
1442 			    device_xname(sc->sc_dev), Event);
1443 			break;
1444 		}
1445 
1446 		/* Read another event from the Interrupt Status Queue */
1447 		if (sc->sc_memorymode)
1448 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1449 		else
1450 			Event = CS_READ_PORT(sc, PORT_ISQ);
1451 	}
1452 
1453 	/* have handled the interrupt */
1454 #if NRND > 0
1455 	rnd_add_uint32(&sc->rnd_source, rndEvent);
1456 #endif
1457 	return 1;
1458 }
1459 
1460 void
1461 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1462 {
1463 	struct ifnet *ifp;
1464 	u_int16_t errorCount;
1465 
1466 	ifp = &sc->sc_ethercom.ec_if;
1467 
1468 	switch (cntEvent & REG_NUM_MASK) {
1469 	case REG_NUM_TX_COL:
1470 		/*
1471 		 * the count should be read before an overflow occurs.
1472 		 */
1473 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1474 		/*
1475 		 * the tramsit event routine always checks the number of
1476 		 * collisions for any packet so we don't increment any
1477 		 * counters here, as they should already have been
1478 		 * considered.
1479 		 */
1480 		break;
1481 	case REG_NUM_RX_MISS:
1482 		/*
1483 		 * the count should be read before an overflow occurs.
1484 		 */
1485 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1486 		/*
1487 		 * Increment the input error count, the first 6bits are the
1488 		 * register id.
1489 		 */
1490 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1491 		break;
1492 	default:
1493 		/* do nothing */
1494 		break;
1495 	}
1496 }
1497 
1498 void
1499 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1500 {
1501 
1502 	/*
1503 	 * multiple events can be in the buffer event register at one time so
1504 	 * a standard switch statement will not suffice, here every event
1505 	 * must be checked.
1506 	 */
1507 
1508 	/*
1509 	 * if 128 bits have been rxed by the time we get here, the dest event
1510 	 * will be cleared and 128 event will be set.
1511 	 */
1512 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1513 		cs_process_rx_early(sc);
1514 	}
1515 
1516 	if (bufEvent & BUF_EVENT_RX_DMA) {
1517 		/* process the receive data */
1518 		if (sc->sc_dma_process_rx)
1519 			(*sc->sc_dma_process_rx)(sc);
1520 		else
1521 			/* should panic? */
1522 			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1523 	}
1524 
1525 	if (bufEvent & BUF_EVENT_TX_UNDR) {
1526 #if 0
1527 		/*
1528 		 * This can happen occasionally, and it's not worth worrying
1529 		 * about.
1530 		 */
1531 		printf("%s: transmit underrun (%d -> %d)\n",
1532 		    device_xname(sc->sc_dev), sc->sc_xe_ent,
1533 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
1534 #endif
1535 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1536 		sc->sc_xe_togo =
1537 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1538 
1539 		/* had an underrun, transmit is finished */
1540 		sc->sc_txbusy = FALSE;
1541 	}
1542 
1543 	if (bufEvent & BUF_EVENT_SW_INT) {
1544 		printf("%s: software initiated interrupt\n",
1545 		    device_xname(sc->sc_dev));
1546 	}
1547 }
1548 
1549 void
1550 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1551 {
1552 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1553 
1554 	/* If there were any errors transmitting this frame */
1555 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1556 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1557 		/* Increment the output error count */
1558 		ifp->if_oerrors++;
1559 
1560 		/* Note carrier loss. */
1561 		if (txEvent & TX_EVENT_LOSS_CRS)
1562 			sc->sc_carrier = 0;
1563 
1564 		/* If debugging is enabled then log error messages */
1565 		if (ifp->if_flags & IFF_DEBUG) {
1566 			if (txEvent & TX_EVENT_LOSS_CRS) {
1567 				aprint_error_dev(sc->sc_dev, "lost carrier\n");
1568 			}
1569 			if (txEvent & TX_EVENT_SQE_ERR) {
1570 				aprint_error_dev(sc->sc_dev, "SQE error\n");
1571 			}
1572 			if (txEvent & TX_EVENT_OUT_WIN) {
1573 				aprint_error_dev(sc->sc_dev,
1574 				    "out-of-window collision\n");
1575 			}
1576 			if (txEvent & TX_EVENT_JABBER) {
1577 				aprint_error_dev(sc->sc_dev, "jabber\n");
1578 			}
1579 			if (txEvent & TX_EVENT_16_COLL) {
1580 				aprint_error_dev(sc->sc_dev, "16 collisions\n");
1581 			}
1582 		}
1583 	}
1584 	else {
1585 		/* Transmission successful, carrier is up. */
1586 		sc->sc_carrier = 1;
1587 #ifdef SHARK
1588 		ledNetActive();
1589 #endif
1590 	}
1591 
1592 	/* Add the number of collisions for this frame */
1593 	if (txEvent & TX_EVENT_16_COLL) {
1594 		ifp->if_collisions += 16;
1595 	} else {
1596 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1597 	}
1598 
1599 	ifp->if_opackets++;
1600 
1601 	/* Transmission is no longer in progress */
1602 	sc->sc_txbusy = FALSE;
1603 
1604 	/* If there is more to transmit */
1605 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1606 		/* Start the next transmission */
1607 		cs_start_output(ifp);
1608 	}
1609 }
1610 
1611 void
1612 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1613 {
1614 
1615 	if (rxEvent & RX_EVENT_RUNT)
1616 		aprint_error_dev(sc->sc_dev, "runt\n");
1617 
1618 	if (rxEvent & RX_EVENT_X_DATA)
1619 		aprint_error_dev(sc->sc_dev, "extra data\n");
1620 
1621 	if (rxEvent & RX_EVENT_CRC_ERR) {
1622 		if (rxEvent & RX_EVENT_DRIBBLE)
1623 			aprint_error_dev(sc->sc_dev, "alignment error\n");
1624 		else
1625 			aprint_error_dev(sc->sc_dev, "CRC error\n");
1626 	} else {
1627 		if (rxEvent & RX_EVENT_DRIBBLE)
1628 			aprint_error_dev(sc->sc_dev, "dribble bits\n");
1629 	}
1630 }
1631 
1632 void
1633 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1634 {
1635 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1636 
1637 	/* If the frame was not received OK */
1638 	if (!(rxEvent & RX_EVENT_RX_OK)) {
1639 		/* Increment the input error count */
1640 		ifp->if_ierrors++;
1641 
1642 		/*
1643 		 * If debugging is enabled then log error messages.
1644 		 */
1645 		if (ifp->if_flags & IFF_DEBUG) {
1646 			if (rxEvent != REG_NUM_RX_EVENT) {
1647 				cs_print_rx_errors(sc, rxEvent);
1648 
1649 				/*
1650 				 * Must read the length of all received
1651 				 * frames
1652 				 */
1653 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1654 
1655 				/* Skip the received frame */
1656 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1657 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1658 						  RX_CFG_SKIP);
1659 			} else {
1660 				aprint_error_dev(sc->sc_dev, "implied skip\n");
1661 			}
1662 		}
1663 	} else {
1664 		/*
1665 		 * process the received frame and pass it up to the upper
1666 		 * layers.
1667 		 */
1668 		cs_process_receive(sc);
1669 	}
1670 }
1671 
1672 void
1673 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1674 {
1675 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1676 
1677 	ifp->if_ipackets++;
1678 
1679 #if NBPFILTER > 0
1680 	/*
1681 	 * Check if there's a BPF listener on this interface.
1682 	 * If so, hand off the raw packet to BPF.
1683 	 */
1684 	if (ifp->if_bpf)
1685 		bpf_mtap(ifp->if_bpf, m);
1686 #endif
1687 
1688 	/* Pass the packet up. */
1689 	(*ifp->if_input)(ifp, m);
1690 }
1691 
1692 void
1693 cs_process_receive(struct cs_softc *sc)
1694 {
1695 	struct ifnet *ifp;
1696 	struct mbuf *m;
1697 	int totlen;
1698 	u_int16_t *pBuff, *pBuffLimit;
1699 	int pad;
1700 	unsigned int frameOffset = 0;	/* XXX: gcc */
1701 
1702 #ifdef SHARK
1703 	ledNetActive();
1704 #endif
1705 
1706 	ifp = &sc->sc_ethercom.ec_if;
1707 
1708 	/* Received a packet; carrier is up. */
1709 	sc->sc_carrier = 1;
1710 
1711 	if (sc->sc_memorymode) {
1712 		/* Initialize the frame offset */
1713 		frameOffset = PKTPG_RX_LENGTH;
1714 
1715 		/* Get the length of the received frame */
1716 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1717 		frameOffset += 2;
1718 	}
1719 	else {
1720 		/* drop status */
1721 		CS_READ_PORT(sc, PORT_RXTX_DATA);
1722 
1723 		/* Get the length of the received frame */
1724 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1725 	}
1726 
1727 	if (totlen > ETHER_MAX_LEN) {
1728 		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1729 		    totlen);
1730 
1731 		/* skip the received frame */
1732 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1733 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1734 		return;
1735 	}
1736 
1737 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1738 	if (m == 0) {
1739 		aprint_error_dev(sc->sc_dev,
1740 		    "cs_process_receive: unable to allocate mbuf\n");
1741 		ifp->if_ierrors++;
1742 		/*
1743 		 * couldn't allocate an mbuf so things are not good, may as
1744 		 * well drop the packet I think.
1745 		 *
1746 		 * have already read the length so we should be right to skip
1747 		 * the packet.
1748 		 */
1749 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1750 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1751 		return;
1752 	}
1753 	m->m_pkthdr.rcvif = ifp;
1754 	m->m_pkthdr.len = totlen;
1755 
1756 	/* number of bytes to align ip header on word boundary for ipintr */
1757 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1758 
1759 	/*
1760 	 * alloc mbuf cluster if we need.
1761 	 * we need 1 byte spare because following
1762 	 * packet read loop can overrun.
1763 	 */
1764 	if (totlen + pad + 1 > MHLEN) {
1765 		MCLGET(m, M_DONTWAIT);
1766 		if ((m->m_flags & M_EXT) == 0) {
1767 			/* couldn't allocate an mbuf cluster */
1768 			aprint_error_dev(sc->sc_dev,
1769 			    "cs_process_receive: "
1770 			    "unable to allocate a cluster\n");
1771 			m_freem(m);
1772 
1773 			/* skip the received frame */
1774 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1775 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1776 			return;
1777 		}
1778 	}
1779 
1780 	/* align ip header on word boundary for ipintr */
1781 	m->m_data += pad;
1782 
1783 	m->m_len = totlen;
1784 	pBuff = mtod(m, u_int16_t *);
1785 
1786 	/* now read the data from the chip */
1787 	if (sc->sc_memorymode) {
1788 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
1789 		while (pBuff < pBuffLimit) {
1790 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1791 			frameOffset += 2;
1792 		}
1793 	}
1794 	else {
1795 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1796 	}
1797 
1798 	cs_ether_input(sc, m);
1799 }
1800 
1801 void
1802 cs_process_rx_early(struct cs_softc *sc)
1803 {
1804 	struct ifnet *ifp;
1805 	struct mbuf *m;
1806 	u_int16_t frameCount, oldFrameCount;
1807 	u_int16_t rxEvent;
1808 	u_int16_t *pBuff;
1809 	int pad;
1810 	unsigned int frameOffset;
1811 
1812 
1813 	ifp = &sc->sc_ethercom.ec_if;
1814 
1815 	/* Initialize the frame offset */
1816 	frameOffset = PKTPG_RX_FRAME;
1817 	frameCount = 0;
1818 
1819 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1820 	if (m == 0) {
1821 		aprint_error_dev(sc->sc_dev,
1822 		    "cs_process_rx_early: unable to allocate mbuf\n");
1823 		ifp->if_ierrors++;
1824 		/*
1825 		 * couldn't allocate an mbuf so things are not good, may as
1826 		 * well drop the packet I think.
1827 		 *
1828 		 * have already read the length so we should be right to skip
1829 		 * the packet.
1830 		 */
1831 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1832 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1833 		return;
1834 	}
1835 	m->m_pkthdr.rcvif = ifp;
1836 	/*
1837 	 * save processing by always using a mbuf cluster, guaranteed to fit
1838 	 * packet
1839 	 */
1840 	MCLGET(m, M_DONTWAIT);
1841 	if ((m->m_flags & M_EXT) == 0) {
1842 		/* couldn't allocate an mbuf cluster */
1843 		aprint_error_dev(sc->sc_dev,
1844 		    "cs_process_rx_early: unable to allocate a cluster\n");
1845 		m_freem(m);
1846 		/* skip the frame */
1847 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1848 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1849 		return;
1850 	}
1851 
1852 	/* align ip header on word boundary for ipintr */
1853 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1854 	m->m_data += pad;
1855 
1856 	/* set up the buffer pointer to point to the data area */
1857 	pBuff = mtod(m, u_int16_t *);
1858 
1859 	/*
1860 	 * now read the frame byte counter until we have finished reading the
1861 	 * frame
1862 	 */
1863 	oldFrameCount = 0;
1864 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1865 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1866 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1867 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1868 			frameOffset += 2;
1869 		}
1870 
1871 		/* read the new count from the chip */
1872 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1873 	}
1874 
1875 	/* update the mbuf counts */
1876 	m->m_len = oldFrameCount;
1877 	m->m_pkthdr.len = oldFrameCount;
1878 
1879 	/* now check the Rx Event register */
1880 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1881 
1882 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1883 		/*
1884 		 * do an implied skip, it seems to be more reliable than a
1885 		 * forced skip.
1886 		 */
1887 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1888 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1889 
1890 		/*
1891 		 * now read the RX_EVENT register to perform an implied skip.
1892 		 */
1893 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1894 
1895 		cs_ether_input(sc, m);
1896 	} else {
1897 		m_freem(m);
1898 		ifp->if_ierrors++;
1899 	}
1900 }
1901 
1902 void
1903 cs_start_output(struct ifnet *ifp)
1904 {
1905 	struct cs_softc *sc;
1906 	struct mbuf *pMbuf;
1907 	struct mbuf *pMbufChain;
1908 	u_int16_t BusStatus;
1909 	u_int16_t Length;
1910 	int txLoop = 0;
1911 	int dropout = 0;
1912 
1913 	sc = ifp->if_softc;
1914 
1915 	/* check that the interface is up and running */
1916 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1917 		return;
1918 	}
1919 
1920 	/* Don't interrupt a transmission in progress */
1921 	if (sc->sc_txbusy) {
1922 		return;
1923 	}
1924 
1925 	/* this loop will only run through once if transmission is successful */
1926 	/*
1927 	 * While there are packets to transmit and a transmit is not in
1928 	 * progress
1929 	 */
1930 	while (sc->sc_txbusy == 0 && dropout == 0) {
1931 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1932 		if (pMbufChain == NULL)
1933 			break;
1934 
1935 #if NBPFILTER > 0
1936 		/*
1937 	         * If BPF is listening on this interface, let it see the packet
1938 	         * before we commit it to the wire.
1939 	         */
1940 		if (ifp->if_bpf)
1941 			bpf_mtap(ifp->if_bpf, pMbufChain);
1942 #endif
1943 
1944 		/* Find the total length of the data to transmit */
1945 		Length = 0;
1946 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1947 			Length += pMbuf->m_len;
1948 
1949 		do {
1950 			/*
1951 			 * Request that the transmit be started after all
1952 			 * data has been copied
1953 			 *
1954 			 * In IO mode must write to the IO port not the packet
1955 			 * page address
1956 			 *
1957 			 * If this is changed to start transmission after a
1958 			 * small amount of data has been copied you tend to
1959 			 * get packet missed errors i think because the ISA
1960 			 * bus is too slow. Or possibly the copy routine is
1961 			 * not streamlined enough.
1962 			 */
1963 			if (sc->sc_memorymode) {
1964 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1965 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1966 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1967 			}
1968 			else {
1969 				CS_WRITE_PORT(sc, PORT_TX_CMD,
1970 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1971 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1972 			}
1973 
1974 			/*
1975 			 * Adjust early-transmit machinery.
1976 			 */
1977 			if (--sc->sc_xe_togo == 0) {
1978 				sc->sc_xe_ent =
1979 				    cs_xmit_early_table[sc->sc_xe_ent].better;
1980 				sc->sc_xe_togo =
1981 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
1982 			}
1983 			/*
1984 			 * Read the BusStatus register which indicates
1985 			 * success of the request
1986 			 */
1987 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1988 
1989 			/*
1990 			 * If there was an error in the transmit bid free the
1991 			 * mbuf and go on. This is presuming that mbuf is
1992 			 * corrupt.
1993 			 */
1994 			if (BusStatus & BUS_ST_TX_BID_ERR) {
1995 				aprint_error_dev(sc->sc_dev,
1996 				    "transmit bid error (too big)");
1997 
1998 				/* Discard the bad mbuf chain */
1999 				m_freem(pMbufChain);
2000 				sc->sc_ethercom.ec_if.if_oerrors++;
2001 
2002 				/* Loop up to transmit the next chain */
2003 				txLoop = 0;
2004 			} else {
2005 				if (BusStatus & BUS_ST_RDY4TXNOW) {
2006 					/*
2007 					 * The chip is ready for transmission
2008 					 * now
2009 					 */
2010 					/*
2011 					 * Copy the frame to the chip to
2012 					 * start transmission
2013 					 */
2014 					cs_copy_tx_frame(sc, pMbufChain);
2015 
2016 					/* Free the mbuf chain */
2017 					m_freem(pMbufChain);
2018 
2019 					/* Transmission is now in progress */
2020 					sc->sc_txbusy = TRUE;
2021 					txLoop = 0;
2022 				} else {
2023 					/*
2024 					 * if we get here we want to try
2025 					 * again with the same mbuf, until
2026 					 * the chip lets us transmit.
2027 					 */
2028 					txLoop++;
2029 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
2030 						/* Free the mbuf chain */
2031 						m_freem(pMbufChain);
2032 						/*
2033 						 * Transmission is not in
2034 						 * progress
2035 						 */
2036 						sc->sc_txbusy = FALSE;
2037 						/*
2038 						 * Increment the output error
2039 						 * count
2040 						 */
2041 						ifp->if_oerrors++;
2042 						/*
2043 						 * exit the routine and drop
2044 						 * the packet.
2045 						 */
2046 						txLoop = 0;
2047 						dropout = 1;
2048 					}
2049 				}
2050 			}
2051 		} while (txLoop);
2052 	}
2053 }
2054 
2055 void
2056 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2057 {
2058 	struct mbuf *m;
2059 	int len, leftover, frameoff;
2060 	u_int16_t dbuf;
2061 	u_int8_t *p;
2062 #ifdef DIAGNOSTIC
2063 	u_int8_t *lim;
2064 #endif
2065 
2066 	/* Initialize frame pointer and data port address */
2067 	frameoff = PKTPG_TX_FRAME;
2068 
2069 	/* start out with no leftover data */
2070 	leftover = 0;
2071 	dbuf = 0;
2072 
2073 	/* Process the chain of mbufs */
2074 	for (m = m0; m != NULL; m = m->m_next) {
2075 		/*
2076 		 * Process all of the data in a single mbuf.
2077 		 */
2078 		p = mtod(m, u_int8_t *);
2079 		len = m->m_len;
2080 #ifdef DIAGNOSTIC
2081 		lim = p + len;
2082 #endif
2083 
2084 		while (len > 0) {
2085 			if (leftover) {
2086 				/*
2087 				 * Data left over (from mbuf or realignment).
2088 				 * Buffer the next byte, and write it and
2089 				 * the leftover data out.
2090 				 */
2091 				dbuf |= *p++ << 8;
2092 				len--;
2093 				if (sc->sc_memorymode) {
2094 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2095 					frameoff += 2;
2096 				}
2097 				else {
2098 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2099 				}
2100 				leftover = 0;
2101 			} else if ((long) p & 1) {
2102 				/*
2103 				 * Misaligned data.  Buffer the next byte.
2104 				 */
2105 				dbuf = *p++;
2106 				len--;
2107 				leftover = 1;
2108 			} else {
2109 				/*
2110 				 * Aligned data.  This is the case we like.
2111 				 *
2112 				 * Write-region out as much as we can, then
2113 				 * buffer the remaining byte (if any).
2114 				 */
2115 				leftover = len & 1;
2116 				len &= ~1;
2117 				if (sc->sc_memorymode) {
2118 					MEM_WRITE_REGION_2(sc, frameoff,
2119 						(u_int16_t *) p, len >> 1);
2120 					frameoff += len;
2121 				}
2122 				else {
2123 					IO_WRITE_MULTI_2(sc,
2124 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2125 				}
2126 				p += len;
2127 
2128 				if (leftover)
2129 					dbuf = *p++;
2130 				len = 0;
2131 			}
2132 		}
2133 		if (len < 0)
2134 			panic("cs_copy_tx_frame: negative len");
2135 #ifdef DIAGNOSTIC
2136 		if (p != lim)
2137 			panic("cs_copy_tx_frame: p != lim");
2138 #endif
2139 	}
2140 	if (leftover) {
2141 		if (sc->sc_memorymode) {
2142 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2143 		}
2144 		else {
2145 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2146 		}
2147 	}
2148 }
2149 
2150 static int
2151 cs_enable(struct cs_softc *sc)
2152 {
2153 
2154 	if (CS_IS_ENABLED(sc) == 0) {
2155 		if (sc->sc_enable != NULL) {
2156 			int error;
2157 
2158 			error = (*sc->sc_enable)(sc);
2159 			if (error)
2160 				return (error);
2161 		}
2162 		sc->sc_cfgflags |= CFGFLG_ENABLED;
2163 	}
2164 
2165 	return (0);
2166 }
2167 
2168 static void
2169 cs_disable(struct cs_softc *sc)
2170 {
2171 
2172 	if (CS_IS_ENABLED(sc)) {
2173 		if (sc->sc_disable != NULL)
2174 			(*sc->sc_disable)(sc);
2175 
2176 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2177 	}
2178 }
2179 
2180 static void
2181 cs_stop(struct ifnet *ifp, int disable)
2182 {
2183 	struct cs_softc *sc = ifp->if_softc;
2184 
2185 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2186 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2187 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2188 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2189 
2190 	if (disable) {
2191 		cs_disable(sc);
2192 	}
2193 
2194 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2195 }
2196 
2197 int
2198 cs_activate(device_t self, enum devact act)
2199 {
2200 	struct cs_softc *sc = device_private(self);
2201 
2202 	switch (act) {
2203 	case DVACT_DEACTIVATE:
2204 		if_deactivate(&sc->sc_ethercom.ec_if);
2205 		return 0;
2206 	default:
2207 		return EOPNOTSUPP;
2208 	}
2209 }
2210