xref: /netbsd-src/sys/dev/ic/atw.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: atw.c,v 1.117 2006/04/06 06:08:26 dyoung Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.117 2006/04/06 06:08:26 dyoung Exp $");
45 
46 #include "bpfilter.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60 
61 #include <machine/endian.h>
62 
63 #include <uvm/uvm_extern.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69 
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73 
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77 
78 #include <machine/bus.h>
79 #include <machine/intr.h>
80 
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86 
87 /* XXX TBD open questions
88  *
89  *
90  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92  * handle this for me?
93  *
94  */
95 /* device attachment
96  *
97  *    print TOFS[012]
98  *
99  * device initialization
100  *
101  *    clear ATW_FRCTL_MAXPSP to disable max power saving
102  *    set ATW_TXBR_ALCUPDATE to enable ALC
103  *    set TOFS[012]? (hope not)
104  *    disable rx/tx
105  *    set ATW_PAR_SWR (software reset)
106  *    wait for ATW_PAR_SWR clear
107  *    disable interrupts
108  *    ack status register
109  *    enable interrupts
110  *
111  * rx/tx initialization
112  *
113  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114  *    allocate and init descriptor rings
115  *    write ATW_PAR_DSL (descriptor skip length)
116  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
118  *    write ATW_NAR_SQ for one/both transmit descriptor rings
119  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120  *
121  * rx/tx end
122  *
123  *    stop DMA
124  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125  *    flush tx w/ ATW_NAR_HF
126  *
127  * scan
128  *
129  *    initialize rx/tx
130  *
131  * BSS join: (re)association response
132  *
133  *    set ATW_FRCTL_AID
134  *
135  * optimizations ???
136  *
137  */
138 
139 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
140 
141 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
142 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144 
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160 
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163 
164 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
167 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170 
171 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void	atw_print_regs(struct atw_softc *, const char *);
173 
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 #	ifdef ATW_BBPDEBUG
176 static void	atw_rf3000_print(struct atw_softc *);
177 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 #	endif /* ATW_BBPDEBUG */
179 
180 #	ifdef ATW_SYNDEBUG
181 static void	atw_si4126_print(struct atw_softc *);
182 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 #	endif /* ATW_SYNDEBUG */
184 
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define	DPRINTF(sc, x)	/* nothing */
190 #define	DPRINTF2(sc, x)	/* nothing */
191 #define	DPRINTF3(sc, x)	/* nothing */
192 #endif
193 
194 /* ifnet methods */
195 int	atw_init(struct ifnet *);
196 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
197 void	atw_start(struct ifnet *);
198 void	atw_stop(struct ifnet *, int);
199 void	atw_watchdog(struct ifnet *);
200 
201 /* Device attachment */
202 void	atw_attach(struct atw_softc *);
203 int	atw_detach(struct atw_softc *);
204 
205 /* Rx/Tx process */
206 int	atw_add_rxbuf(struct atw_softc *, int);
207 void	atw_idle(struct atw_softc *, u_int32_t);
208 void	atw_rxdrain(struct atw_softc *);
209 void	atw_txdrain(struct atw_softc *);
210 
211 /* Device (de)activation and power state */
212 void	atw_disable(struct atw_softc *);
213 int	atw_enable(struct atw_softc *);
214 void	atw_power(int, void *);
215 void	atw_reset(struct atw_softc *);
216 void	atw_shutdown(void *);
217 
218 /* Interrupt handlers */
219 void	atw_linkintr(struct atw_softc *, u_int32_t);
220 void	atw_rxintr(struct atw_softc *);
221 void	atw_txintr(struct atw_softc *);
222 
223 /* 802.11 state machine */
224 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225 static void	atw_next_scan(void *);
226 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227 		              struct ieee80211_node *, int, int, u_int32_t);
228 static int	atw_tune(struct atw_softc *);
229 
230 /* Device initialization */
231 static void	atw_bbp_io_init(struct atw_softc *);
232 static void	atw_cfp_init(struct atw_softc *);
233 static void	atw_cmdr_init(struct atw_softc *);
234 static void	atw_ifs_init(struct atw_softc *);
235 static void	atw_nar_init(struct atw_softc *);
236 static void	atw_response_times_init(struct atw_softc *);
237 static void	atw_rf_reset(struct atw_softc *);
238 static void	atw_test1_init(struct atw_softc *);
239 static void	atw_tofs0_init(struct atw_softc *);
240 static void	atw_tofs2_init(struct atw_softc *);
241 static void	atw_txlmt_init(struct atw_softc *);
242 static void	atw_wcsr_init(struct atw_softc *);
243 
244 /* Key management */
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 	const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250 
251 /* RAM/ROM utilities */
252 static void	atw_clear_sram(struct atw_softc *);
253 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int	atw_read_srom(struct atw_softc *);
255 
256 /* BSS setup */
257 static void	atw_predict_beacon(struct atw_softc *);
258 static void	atw_start_beacon(struct atw_softc *, int);
259 static void	atw_write_bssid(struct atw_softc *);
260 static void	atw_write_ssid(struct atw_softc *);
261 static void	atw_write_sup_rates(struct atw_softc *);
262 static void	atw_write_wep(struct atw_softc *);
263 
264 /* Media */
265 static int	atw_media_change(struct ifnet *);
266 
267 static void	atw_filter_setup(struct atw_softc *);
268 
269 /* 802.11 utilities */
270 static uint64_t			atw_get_tsft(struct atw_softc *);
271 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
272 				                   uint32_t);
273 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
274 static void			atw_node_free(struct ieee80211_node *);
275 
276 /*
277  * Tuner/transceiver/modem
278  */
279 static void	atw_bbp_io_enable(struct atw_softc *, int);
280 
281 /* RFMD RF3000 Baseband Processor */
282 static int	atw_rf3000_init(struct atw_softc *);
283 static int	atw_rf3000_tune(struct atw_softc *, u_int);
284 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
285 
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void	atw_si4126_tune(struct atw_softc *, u_int);
288 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
289 
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292 
293 const char *atw_tx_state[] = {
294 	"STOPPED",
295 	"RUNNING - read descriptor",
296 	"RUNNING - transmitting",
297 	"RUNNING - filling fifo",	/* XXX */
298 	"SUSPENDED",
299 	"RUNNING -- write descriptor",
300 	"RUNNING -- write last descriptor",
301 	"RUNNING - fifo full"
302 };
303 
304 const char *atw_rx_state[] = {
305 	"STOPPED",
306 	"RUNNING - read descriptor",
307 	"RUNNING - check this packet, pre-fetch next",
308 	"RUNNING - wait for reception",
309 	"SUSPENDED",
310 	"RUNNING - write descriptor",
311 	"RUNNING - flush fifo",
312 	"RUNNING - fifo drain"
313 };
314 
315 static inline int
316 is_running(struct ifnet *ifp)
317 {
318 	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319 }
320 
321 int
322 atw_activate(struct device *self, enum devact act)
323 {
324 	struct atw_softc *sc = (struct atw_softc *)self;
325 	int rv = 0, s;
326 
327 	s = splnet();
328 	switch (act) {
329 	case DVACT_ACTIVATE:
330 		rv = EOPNOTSUPP;
331 		break;
332 
333 	case DVACT_DEACTIVATE:
334 		if_deactivate(&sc->sc_if);
335 		break;
336 	}
337 	splx(s);
338 	return rv;
339 }
340 
341 /*
342  * atw_enable:
343  *
344  *	Enable the ADM8211 chip.
345  */
346 int
347 atw_enable(struct atw_softc *sc)
348 {
349 
350 	if (ATW_IS_ENABLED(sc) == 0) {
351 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352 			printf("%s: device enable failed\n",
353 			    sc->sc_dev.dv_xname);
354 			return (EIO);
355 		}
356 		sc->sc_flags |= ATWF_ENABLED;
357                 /* Power may have been removed, and WEP keys thus
358                  * reset.
359 		 */
360 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
361 	}
362 	return (0);
363 }
364 
365 /*
366  * atw_disable:
367  *
368  *	Disable the ADM8211 chip.
369  */
370 void
371 atw_disable(struct atw_softc *sc)
372 {
373 	if (!ATW_IS_ENABLED(sc))
374 		return;
375 	if (sc->sc_disable != NULL)
376 		(*sc->sc_disable)(sc);
377 	sc->sc_flags &= ~ATWF_ENABLED;
378 }
379 
380 /* Returns -1 on failure. */
381 static int
382 atw_read_srom(struct atw_softc *sc)
383 {
384 	struct seeprom_descriptor sd;
385 	uint32_t test0, fail_bits;
386 
387 	(void)memset(&sd, 0, sizeof(sd));
388 
389 	test0 = ATW_READ(sc, ATW_TEST0);
390 
391 	switch (sc->sc_rev) {
392 	case ATW_REVISION_BA:
393 	case ATW_REVISION_CA:
394 		fail_bits = ATW_TEST0_EPNE;
395 		break;
396 	default:
397 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
398 		break;
399 	}
400 	if ((test0 & fail_bits) != 0) {
401 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
402 		return -1;
403 	}
404 
405 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
406 	case ATW_TEST0_EPTYP_93c66:
407 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
408 		sc->sc_sromsz = 512;
409 		sd.sd_chip = C56_66;
410 		break;
411 	case ATW_TEST0_EPTYP_93c46:
412 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
413 		sc->sc_sromsz = 128;
414 		sd.sd_chip = C46;
415 		break;
416 	default:
417 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
418 		    SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
419 		return -1;
420 	}
421 
422 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
423 
424 	if (sc->sc_srom == NULL) {
425 		printf("%s: unable to allocate SROM buffer\n",
426 		    sc->sc_dev.dv_xname);
427 		return -1;
428 	}
429 
430 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
431 
432 	/* ADM8211 has a single 32-bit register for controlling the
433 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
434 	 * "ready" bit. The ADM8211 input/output sense is the reverse
435 	 * of read_seeprom's.
436 	 */
437 	sd.sd_tag = sc->sc_st;
438 	sd.sd_bsh = sc->sc_sh;
439 	sd.sd_regsize = 4;
440 	sd.sd_control_offset = ATW_SPR;
441 	sd.sd_status_offset = ATW_SPR;
442 	sd.sd_dataout_offset = ATW_SPR;
443 	sd.sd_CK = ATW_SPR_SCLK;
444 	sd.sd_CS = ATW_SPR_SCS;
445 	sd.sd_DI = ATW_SPR_SDO;
446 	sd.sd_DO = ATW_SPR_SDI;
447 	sd.sd_MS = ATW_SPR_SRS;
448 	sd.sd_RDY = 0;
449 
450 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
451 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
452 		free(sc->sc_srom, M_DEVBUF);
453 		return -1;
454 	}
455 #ifdef ATW_DEBUG
456 	{
457 		int i;
458 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
459 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
460 			if (((i % 8) == 0) && (i != 0)) {
461 				ATW_DPRINTF(("\n\t"));
462 			}
463 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
464 		}
465 		ATW_DPRINTF(("\n"));
466 	}
467 #endif /* ATW_DEBUG */
468 	return 0;
469 }
470 
471 #ifdef ATW_DEBUG
472 static void
473 atw_print_regs(struct atw_softc *sc, const char *where)
474 {
475 #define PRINTREG(sc, reg) \
476 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
477 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
478 
479 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
480 
481 	PRINTREG(sc, ATW_PAR);
482 	PRINTREG(sc, ATW_FRCTL);
483 	PRINTREG(sc, ATW_TDR);
484 	PRINTREG(sc, ATW_WTDP);
485 	PRINTREG(sc, ATW_RDR);
486 	PRINTREG(sc, ATW_WRDP);
487 	PRINTREG(sc, ATW_RDB);
488 	PRINTREG(sc, ATW_CSR3A);
489 	PRINTREG(sc, ATW_TDBD);
490 	PRINTREG(sc, ATW_TDBP);
491 	PRINTREG(sc, ATW_STSR);
492 	PRINTREG(sc, ATW_CSR5A);
493 	PRINTREG(sc, ATW_NAR);
494 	PRINTREG(sc, ATW_CSR6A);
495 	PRINTREG(sc, ATW_IER);
496 	PRINTREG(sc, ATW_CSR7A);
497 	PRINTREG(sc, ATW_LPC);
498 	PRINTREG(sc, ATW_TEST1);
499 	PRINTREG(sc, ATW_SPR);
500 	PRINTREG(sc, ATW_TEST0);
501 	PRINTREG(sc, ATW_WCSR);
502 	PRINTREG(sc, ATW_WPDR);
503 	PRINTREG(sc, ATW_GPTMR);
504 	PRINTREG(sc, ATW_GPIO);
505 	PRINTREG(sc, ATW_BBPCTL);
506 	PRINTREG(sc, ATW_SYNCTL);
507 	PRINTREG(sc, ATW_PLCPHD);
508 	PRINTREG(sc, ATW_MMIWADDR);
509 	PRINTREG(sc, ATW_MMIRADDR1);
510 	PRINTREG(sc, ATW_MMIRADDR2);
511 	PRINTREG(sc, ATW_TXBR);
512 	PRINTREG(sc, ATW_CSR15A);
513 	PRINTREG(sc, ATW_ALCSTAT);
514 	PRINTREG(sc, ATW_TOFS2);
515 	PRINTREG(sc, ATW_CMDR);
516 	PRINTREG(sc, ATW_PCIC);
517 	PRINTREG(sc, ATW_PMCSR);
518 	PRINTREG(sc, ATW_PAR0);
519 	PRINTREG(sc, ATW_PAR1);
520 	PRINTREG(sc, ATW_MAR0);
521 	PRINTREG(sc, ATW_MAR1);
522 	PRINTREG(sc, ATW_ATIMDA0);
523 	PRINTREG(sc, ATW_ABDA1);
524 	PRINTREG(sc, ATW_BSSID0);
525 	PRINTREG(sc, ATW_TXLMT);
526 	PRINTREG(sc, ATW_MIBCNT);
527 	PRINTREG(sc, ATW_BCNT);
528 	PRINTREG(sc, ATW_TSFTH);
529 	PRINTREG(sc, ATW_TSC);
530 	PRINTREG(sc, ATW_SYNRF);
531 	PRINTREG(sc, ATW_BPLI);
532 	PRINTREG(sc, ATW_CAP0);
533 	PRINTREG(sc, ATW_CAP1);
534 	PRINTREG(sc, ATW_RMD);
535 	PRINTREG(sc, ATW_CFPP);
536 	PRINTREG(sc, ATW_TOFS0);
537 	PRINTREG(sc, ATW_TOFS1);
538 	PRINTREG(sc, ATW_IFST);
539 	PRINTREG(sc, ATW_RSPT);
540 	PRINTREG(sc, ATW_TSFTL);
541 	PRINTREG(sc, ATW_WEPCTL);
542 	PRINTREG(sc, ATW_WESK);
543 	PRINTREG(sc, ATW_WEPCNT);
544 	PRINTREG(sc, ATW_MACTEST);
545 	PRINTREG(sc, ATW_FER);
546 	PRINTREG(sc, ATW_FEMR);
547 	PRINTREG(sc, ATW_FPSR);
548 	PRINTREG(sc, ATW_FFER);
549 #undef PRINTREG
550 }
551 #endif /* ATW_DEBUG */
552 
553 /*
554  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
555  */
556 void
557 atw_attach(struct atw_softc *sc)
558 {
559 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
560 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
561 	};
562 	struct ieee80211com *ic = &sc->sc_ic;
563 	struct ifnet *ifp = &sc->sc_if;
564 	int country_code, error, i, nrate, srom_major;
565 	u_int32_t reg;
566 	static const char *type_strings[] = {"Intersil (not supported)",
567 	    "RFMD", "Marvel (not supported)"};
568 
569 	sc->sc_txth = atw_txthresh_tab_lo;
570 
571 	SIMPLEQ_INIT(&sc->sc_txfreeq);
572 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
573 
574 #ifdef ATW_DEBUG
575 	atw_print_regs(sc, "atw_attach");
576 #endif /* ATW_DEBUG */
577 
578 	/*
579 	 * Allocate the control data structures, and create and load the
580 	 * DMA map for it.
581 	 */
582 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
583 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
584 	    1, &sc->sc_cdnseg, 0)) != 0) {
585 		printf("%s: unable to allocate control data, error = %d\n",
586 		    sc->sc_dev.dv_xname, error);
587 		goto fail_0;
588 	}
589 
590 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
591 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
592 	    BUS_DMA_COHERENT)) != 0) {
593 		printf("%s: unable to map control data, error = %d\n",
594 		    sc->sc_dev.dv_xname, error);
595 		goto fail_1;
596 	}
597 
598 	if ((error = bus_dmamap_create(sc->sc_dmat,
599 	    sizeof(struct atw_control_data), 1,
600 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
601 		printf("%s: unable to create control data DMA map, "
602 		    "error = %d\n", sc->sc_dev.dv_xname, error);
603 		goto fail_2;
604 	}
605 
606 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
607 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
608 	    0)) != 0) {
609 		printf("%s: unable to load control data DMA map, error = %d\n",
610 		    sc->sc_dev.dv_xname, error);
611 		goto fail_3;
612 	}
613 
614 	/*
615 	 * Create the transmit buffer DMA maps.
616 	 */
617 	sc->sc_ntxsegs = ATW_NTXSEGS;
618 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
619 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
620 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
621 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
622 			printf("%s: unable to create tx DMA map %d, "
623 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
624 			goto fail_4;
625 		}
626 	}
627 
628 	/*
629 	 * Create the receive buffer DMA maps.
630 	 */
631 	for (i = 0; i < ATW_NRXDESC; i++) {
632 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
633 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
634 			printf("%s: unable to create rx DMA map %d, "
635 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
636 			goto fail_5;
637 		}
638 	}
639 	for (i = 0; i < ATW_NRXDESC; i++) {
640 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
641 	}
642 
643 	switch (sc->sc_rev) {
644 	case ATW_REVISION_AB:
645 	case ATW_REVISION_AF:
646 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
647 		break;
648 	case ATW_REVISION_BA:
649 	case ATW_REVISION_CA:
650 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
651 		break;
652 	}
653 
654 	/* Reset the chip to a known state. */
655 	atw_reset(sc);
656 
657 	if (atw_read_srom(sc) == -1)
658 		return;
659 
660 	sc->sc_rftype = SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
661 	    ATW_SR_RFTYPE_MASK);
662 
663 	sc->sc_bbptype = SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
664 	    ATW_SR_BBPTYPE_MASK);
665 
666 	if (sc->sc_rftype >= __arraycount(type_strings)) {
667 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
668 		return;
669 	}
670 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
671 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
672 		return;
673 	}
674 
675 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
676 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
677 
678 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
679 	 * MARVEL. My bug, or theirs?
680 	 */
681 
682 	reg = SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
683 
684 	switch (sc->sc_rftype) {
685 	case ATW_RFTYPE_INTERSIL:
686 		reg |= ATW_SYNCTL_CS1;
687 		break;
688 	case ATW_RFTYPE_RFMD:
689 		reg |= ATW_SYNCTL_CS0;
690 		break;
691 	case ATW_RFTYPE_MARVEL:
692 		break;
693 	}
694 
695 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
696 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
697 
698 	reg = SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
699 
700 	switch (sc->sc_bbptype) {
701 	case ATW_BBPTYPE_INTERSIL:
702 		reg |= ATW_BBPCTL_TWI;
703 		break;
704 	case ATW_BBPTYPE_RFMD:
705 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
706 		    ATW_BBPCTL_CCA_ACTLO;
707 		break;
708 	case ATW_BBPTYPE_MARVEL:
709 		break;
710 	case ATW_C_BBPTYPE_RFMD:
711 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
712 		    sc->sc_dev.dv_xname);
713 		break;
714 	}
715 
716 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
717 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
718 
719 	/*
720 	 * From this point forward, the attachment cannot fail.  A failure
721 	 * before this point releases all resources that may have been
722 	 * allocated.
723 	 */
724 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
725 
726 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
727 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
728 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
729 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
730 
731 	srom_major = SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
732 	    ATW_SR_MAJOR_MASK);
733 
734 	if (srom_major < 2)
735 		sc->sc_rf3000_options1 = 0;
736 	else if (sc->sc_rev == ATW_REVISION_BA) {
737 		sc->sc_rf3000_options1 =
738 		    SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
739 		    ATW_SR_CR28_MASK);
740 	} else
741 		sc->sc_rf3000_options1 = 0;
742 
743 	sc->sc_rf3000_options2 = SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
744 	    ATW_SR_CR29_MASK);
745 
746 	country_code = SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
747 	    ATW_SR_CTRY_MASK);
748 
749 #define ADD_CHANNEL(_ic, _chan) do {					\
750 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
751 	_ic->ic_channels[_chan].ic_freq =				\
752 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
753 } while (0)
754 
755 	/* Find available channels */
756 	switch (country_code) {
757 	case COUNTRY_MMK2:	/* 1-14 */
758 		ADD_CHANNEL(ic, 14);
759 		/*FALLTHROUGH*/
760 	case COUNTRY_ETSI:	/* 1-13 */
761 		for (i = 1; i <= 13; i++)
762 			ADD_CHANNEL(ic, i);
763 		break;
764 	case COUNTRY_FCC:	/* 1-11 */
765 	case COUNTRY_IC:	/* 1-11 */
766 		for (i = 1; i <= 11; i++)
767 			ADD_CHANNEL(ic, i);
768 		break;
769 	case COUNTRY_MMK:	/* 14 */
770 		ADD_CHANNEL(ic, 14);
771 		break;
772 	case COUNTRY_FRANCE:	/* 10-13 */
773 		for (i = 10; i <= 13; i++)
774 			ADD_CHANNEL(ic, i);
775 		break;
776 	default:	/* assume channels 10-11 */
777 	case COUNTRY_SPAIN:	/* 10-11 */
778 		for (i = 10; i <= 11; i++)
779 			ADD_CHANNEL(ic, i);
780 		break;
781 	}
782 
783 	/* Read the MAC address. */
784 	reg = ATW_READ(sc, ATW_PAR0);
785 	ic->ic_myaddr[0] = SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
786 	ic->ic_myaddr[1] = SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
787 	ic->ic_myaddr[2] = SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
788 	ic->ic_myaddr[3] = SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
789 	reg = ATW_READ(sc, ATW_PAR1);
790 	ic->ic_myaddr[4] = SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
791 	ic->ic_myaddr[5] = SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
792 
793 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
794 		printf(" could not get mac address, attach failed\n");
795 		return;
796 	}
797 
798 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
799 
800 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
801 	ifp->if_softc = sc;
802 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
803 	    IFF_NOTRAILERS;
804 	ifp->if_ioctl = atw_ioctl;
805 	ifp->if_start = atw_start;
806 	ifp->if_watchdog = atw_watchdog;
807 	ifp->if_init = atw_init;
808 	ifp->if_stop = atw_stop;
809 	IFQ_SET_READY(&ifp->if_snd);
810 
811 	ic->ic_ifp = ifp;
812 	ic->ic_phytype = IEEE80211_T_DS;
813 	ic->ic_opmode = IEEE80211_M_STA;
814 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
815 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
816 
817 	nrate = 0;
818 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
819 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
820 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
821 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
822 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
823 
824 	/*
825 	 * Call MI attach routines.
826 	 */
827 
828 	if_attach(ifp);
829 	ieee80211_ifattach(ic);
830 
831 	sc->sc_newstate = ic->ic_newstate;
832 	ic->ic_newstate = atw_newstate;
833 
834 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
835 	ic->ic_recv_mgmt = atw_recv_mgmt;
836 
837 	sc->sc_node_free = ic->ic_node_free;
838 	ic->ic_node_free = atw_node_free;
839 
840 	sc->sc_node_alloc = ic->ic_node_alloc;
841 	ic->ic_node_alloc = atw_node_alloc;
842 
843 	ic->ic_crypto.cs_key_delete = atw_key_delete;
844 	ic->ic_crypto.cs_key_set = atw_key_set;
845 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
846 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
847 
848 	/* possibly we should fill in our own sc_send_prresp, since
849 	 * the ADM8211 is probably sending probe responses in ad hoc
850 	 * mode.
851 	 */
852 
853 	/* complete initialization */
854 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
855 	callout_init(&sc->sc_scan_ch);
856 
857 #if NBPFILTER > 0
858 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
859 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
860 #endif
861 
862 	/*
863 	 * Make sure the interface is shutdown during reboot.
864 	 */
865 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
866 	if (sc->sc_sdhook == NULL)
867 		printf("%s: WARNING: unable to establish shutdown hook\n",
868 		    sc->sc_dev.dv_xname);
869 
870 	/*
871 	 * Add a suspend hook to make sure we come back up after a
872 	 * resume.
873 	 */
874 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
875 	if (sc->sc_powerhook == NULL)
876 		printf("%s: WARNING: unable to establish power hook\n",
877 		    sc->sc_dev.dv_xname);
878 
879 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
880 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
881 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
882 
883 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
884 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
885 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
886 
887 	ieee80211_announce(ic);
888 	return;
889 
890 	/*
891 	 * Free any resources we've allocated during the failed attach
892 	 * attempt.  Do this in reverse order and fall through.
893 	 */
894  fail_5:
895 	for (i = 0; i < ATW_NRXDESC; i++) {
896 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
897 			continue;
898 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
899 	}
900  fail_4:
901 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
902 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
903 			continue;
904 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
905 	}
906 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
907  fail_3:
908 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
909  fail_2:
910 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
911 	    sizeof(struct atw_control_data));
912  fail_1:
913 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
914  fail_0:
915 	return;
916 }
917 
918 static struct ieee80211_node *
919 atw_node_alloc(struct ieee80211_node_table *nt)
920 {
921 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
922 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
923 
924 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
925 	return ni;
926 }
927 
928 static void
929 atw_node_free(struct ieee80211_node *ni)
930 {
931 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
932 
933 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
934 	    ether_sprintf(ni->ni_bssid)));
935 	(*sc->sc_node_free)(ni);
936 }
937 
938 
939 static void
940 atw_test1_reset(struct atw_softc *sc)
941 {
942 	switch (sc->sc_rev) {
943 	case ATW_REVISION_BA:
944 		if (1 /* XXX condition on transceiver type */) {
945 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
946 		}
947 		break;
948 	case ATW_REVISION_CA:
949 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
950 		break;
951 	default:
952 		break;
953 	}
954 }
955 
956 /*
957  * atw_reset:
958  *
959  *	Perform a soft reset on the ADM8211.
960  */
961 void
962 atw_reset(struct atw_softc *sc)
963 {
964 	int i;
965 	uint32_t lpc;
966 
967 	ATW_WRITE(sc, ATW_NAR, 0x0);
968 	DELAY(atw_nar_delay);
969 
970 	/* Reference driver has a cryptic remark indicating that this might
971 	 * power-on the chip.  I know that it turns off power-saving....
972 	 */
973 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
974 
975 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
976 
977 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
978 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
979 			break;
980 		DELAY(atw_pseudo_milli);
981 	}
982 
983 	/* ... and then pause 100ms longer for good measure. */
984 	DELAY(atw_magic_delay1);
985 
986 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
987 
988 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
989 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
990 
991 	/*
992 	 * Initialize the PCI Access Register.
993 	 */
994 	sc->sc_busmode = ATW_PAR_PBL_8DW;
995 
996 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
997 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
998 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
999 
1000 	atw_test1_reset(sc);
1001 
1002 	/* Turn off maximum power saving, etc. */
1003 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1004 
1005 	DELAY(atw_magic_delay2);
1006 
1007 	/* Recall EEPROM. */
1008 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1009 
1010 	DELAY(atw_magic_delay4);
1011 
1012 	lpc = ATW_READ(sc, ATW_LPC);
1013 
1014 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1015 
1016 	/* A reset seems to affect the SRAM contents, so put them into
1017 	 * a known state.
1018 	 */
1019 	atw_clear_sram(sc);
1020 
1021 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1022 }
1023 
1024 static void
1025 atw_clear_sram(struct atw_softc *sc)
1026 {
1027 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1028 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1029 	/* XXX not for revision 0x20. */
1030 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1031 }
1032 
1033 /* TBD atw_init
1034  *
1035  * set MAC based on ic->ic_bss->myaddr
1036  * write WEP keys
1037  * set TX rate
1038  */
1039 
1040 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1041  * without receiving a beacon with the preferred BSSID & SSID.
1042  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1043  */
1044 static void
1045 atw_wcsr_init(struct atw_softc *sc)
1046 {
1047 	uint32_t wcsr;
1048 
1049 	wcsr = ATW_READ(sc, ATW_WCSR);
1050 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1051 	wcsr |= SHIFTIN(7, ATW_WCSR_BLN_MASK);
1052 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1053 
1054 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1055 	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1056 }
1057 
1058 /* Turn off power management.  Set Rx store-and-forward mode. */
1059 static void
1060 atw_cmdr_init(struct atw_softc *sc)
1061 {
1062 	uint32_t cmdr;
1063 	cmdr = ATW_READ(sc, ATW_CMDR);
1064 	cmdr &= ~ATW_CMDR_APM;
1065 	cmdr |= ATW_CMDR_RTE;
1066 	cmdr &= ~ATW_CMDR_DRT_MASK;
1067 	cmdr |= ATW_CMDR_DRT_SF;
1068 
1069 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1070 }
1071 
1072 static void
1073 atw_tofs2_init(struct atw_softc *sc)
1074 {
1075 	uint32_t tofs2;
1076 	/* XXX this magic can probably be figured out from the RFMD docs */
1077 #ifndef ATW_REFSLAVE
1078 	tofs2 = SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1079 	      SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1080 	      SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1081 	      SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1082 	      SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1083 	      SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1084 	      SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1085 	      SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1086 #else
1087 	/* XXX new magic from reference driver source */
1088 	tofs2 = SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1089 	      SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1090 	      SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1091 	      SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1092 	      SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1093 	      SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1094 	      SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1095 	      SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1096 #endif
1097 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1098 }
1099 
1100 static void
1101 atw_nar_init(struct atw_softc *sc)
1102 {
1103 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1104 }
1105 
1106 static void
1107 atw_txlmt_init(struct atw_softc *sc)
1108 {
1109 	ATW_WRITE(sc, ATW_TXLMT, SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1110 	                         SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1111 }
1112 
1113 static void
1114 atw_test1_init(struct atw_softc *sc)
1115 {
1116 	uint32_t test1;
1117 
1118 	test1 = ATW_READ(sc, ATW_TEST1);
1119 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1120 	/* XXX magic 0x1 */
1121 	test1 |= SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1122 	ATW_WRITE(sc, ATW_TEST1, test1);
1123 }
1124 
1125 static void
1126 atw_rf_reset(struct atw_softc *sc)
1127 {
1128 	/* XXX this resets an Intersil RF front-end? */
1129 	/* TBD condition on Intersil RFType? */
1130 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1131 	DELAY(atw_rf_delay1);
1132 	ATW_WRITE(sc, ATW_SYNRF, 0);
1133 	DELAY(atw_rf_delay2);
1134 }
1135 
1136 /* Set 16 TU max duration for the contention-free period (CFP). */
1137 static void
1138 atw_cfp_init(struct atw_softc *sc)
1139 {
1140 	uint32_t cfpp;
1141 
1142 	cfpp = ATW_READ(sc, ATW_CFPP);
1143 	cfpp &= ~ATW_CFPP_CFPMD;
1144 	cfpp |= SHIFTIN(16, ATW_CFPP_CFPMD);
1145 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1146 }
1147 
1148 static void
1149 atw_tofs0_init(struct atw_softc *sc)
1150 {
1151 	/* XXX I guess that the Cardbus clock is 22 MHz?
1152 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1153 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1154 	 * very clear on this point. It says in the datasheet that it is
1155 	 * possible for the ADM8211 to accomodate bus speeds between 22 MHz
1156 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1157 	 * these values. These values are also the power-on default.
1158 	 */
1159 	ATW_WRITE(sc, ATW_TOFS0,
1160 	    SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1161 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1162 }
1163 
1164 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1165 static void
1166 atw_ifs_init(struct atw_softc *sc)
1167 {
1168 	uint32_t ifst;
1169 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1170 	 * Go figure.
1171 	 */
1172 	ifst = SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1173 	      SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1174 	             ATW_IFST_SIFS_MASK) |
1175 	      SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1176 	      SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1177 
1178 	ATW_WRITE(sc, ATW_IFST, ifst);
1179 }
1180 
1181 static void
1182 atw_response_times_init(struct atw_softc *sc)
1183 {
1184 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1185 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1186 	 * to pass after it transmits a frame that requires a response;
1187 	 * it waits at most SIFS + MART microseconds for the response.
1188 	 * Surely this is not the ACK timeout?
1189 	 */
1190 	ATW_WRITE(sc, ATW_RSPT, SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1191 	    SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1192 }
1193 
1194 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1195  * engines read and write baseband registers after Rx and before
1196  * Tx, respectively.
1197  */
1198 static void
1199 atw_bbp_io_init(struct atw_softc *sc)
1200 {
1201 	uint32_t mmiraddr2;
1202 
1203 	/* XXX The reference driver does this, but is it *really*
1204 	 * necessary?
1205 	 */
1206 	switch (sc->sc_rev) {
1207 	case ATW_REVISION_AB:
1208 	case ATW_REVISION_AF:
1209 		mmiraddr2 = 0x0;
1210 		break;
1211 	default:
1212 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1213 		mmiraddr2 &=
1214 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1215 		break;
1216 	}
1217 
1218 	switch (sc->sc_bbptype) {
1219 	case ATW_BBPTYPE_INTERSIL:
1220 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1221 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1222 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1223 		break;
1224 	case ATW_BBPTYPE_MARVEL:
1225 		/* TBD find out the Marvel settings. */
1226 		break;
1227 	case ATW_BBPTYPE_RFMD:
1228 	default:
1229 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1230 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1231 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1232 		break;
1233 	}
1234 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1235 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1236 }
1237 
1238 /*
1239  * atw_init:		[ ifnet interface function ]
1240  *
1241  *	Initialize the interface.  Must be called at splnet().
1242  */
1243 int
1244 atw_init(struct ifnet *ifp)
1245 {
1246 	struct atw_softc *sc = ifp->if_softc;
1247 	struct ieee80211com *ic = &sc->sc_ic;
1248 	struct atw_txsoft *txs;
1249 	struct atw_rxsoft *rxs;
1250 	int i, error = 0;
1251 
1252 	if ((error = atw_enable(sc)) != 0)
1253 		goto out;
1254 
1255 	/*
1256 	 * Cancel any pending I/O. This also resets.
1257 	 */
1258 	atw_stop(ifp, 0);
1259 
1260 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1261 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1262 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1263 
1264 	atw_wcsr_init(sc);
1265 
1266 	atw_cmdr_init(sc);
1267 
1268 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1269 	 *
1270 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1271 	 */
1272 	ATW_WRITE(sc, ATW_PLCPHD, SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1273 	    SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1274 
1275 	atw_tofs2_init(sc);
1276 
1277 	atw_nar_init(sc);
1278 
1279 	atw_txlmt_init(sc);
1280 
1281 	atw_test1_init(sc);
1282 
1283 	atw_rf_reset(sc);
1284 
1285 	atw_cfp_init(sc);
1286 
1287 	atw_tofs0_init(sc);
1288 
1289 	atw_ifs_init(sc);
1290 
1291 	/* XXX Fall asleep after one second of inactivity.
1292 	 * XXX A frame may only dribble in for 65536us.
1293 	 */
1294 	ATW_WRITE(sc, ATW_RMD,
1295 	    SHIFTIN(1, ATW_RMD_PCNT) | SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1296 
1297 	atw_response_times_init(sc);
1298 
1299 	atw_bbp_io_init(sc);
1300 
1301 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1302 
1303 	if ((error = atw_rf3000_init(sc)) != 0)
1304 		goto out;
1305 
1306 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1307 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1308 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1309 
1310 	/*
1311 	 * Initialize the transmit descriptor ring.
1312 	 */
1313 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1314 	for (i = 0; i < ATW_NTXDESC; i++) {
1315 		sc->sc_txdescs[i].at_ctl = 0;
1316 		/* no transmit chaining */
1317 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1318 		sc->sc_txdescs[i].at_buf2 =
1319 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1320 	}
1321 	/* use ring mode */
1322 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1323 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1324 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1325 	sc->sc_txfree = ATW_NTXDESC;
1326 	sc->sc_txnext = 0;
1327 
1328 	/*
1329 	 * Initialize the transmit job descriptors.
1330 	 */
1331 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1332 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1333 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1334 		txs = &sc->sc_txsoft[i];
1335 		txs->txs_mbuf = NULL;
1336 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1337 	}
1338 
1339 	/*
1340 	 * Initialize the receive descriptor and receive job
1341 	 * descriptor rings.
1342 	 */
1343 	for (i = 0; i < ATW_NRXDESC; i++) {
1344 		rxs = &sc->sc_rxsoft[i];
1345 		if (rxs->rxs_mbuf == NULL) {
1346 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1347 				printf("%s: unable to allocate or map rx "
1348 				    "buffer %d, error = %d\n",
1349 				    sc->sc_dev.dv_xname, i, error);
1350 				/*
1351 				 * XXX Should attempt to run with fewer receive
1352 				 * XXX buffers instead of just failing.
1353 				 */
1354 				atw_rxdrain(sc);
1355 				goto out;
1356 			}
1357 		} else
1358 			ATW_INIT_RXDESC(sc, i);
1359 	}
1360 	sc->sc_rxptr = 0;
1361 
1362 	/*
1363 	 * Initialize the interrupt mask and enable interrupts.
1364 	 */
1365 	/* normal interrupts */
1366 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1367 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1368 
1369 	/* abnormal interrupts */
1370 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1371 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1372 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1373 
1374 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1375 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1376 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1377 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1378 	    ATW_INTR_TRT;
1379 
1380 	sc->sc_linkint_mask &= sc->sc_inten;
1381 	sc->sc_rxint_mask &= sc->sc_inten;
1382 	sc->sc_txint_mask &= sc->sc_inten;
1383 
1384 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1385 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1386 
1387 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1388 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1389 
1390 	/*
1391 	 * Give the transmit and receive rings to the ADM8211.
1392 	 */
1393 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1394 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1395 
1396 	sc->sc_txthresh = 0;
1397 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1398 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1399 
1400 	/* common 802.11 configuration */
1401 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1402 	switch (ic->ic_opmode) {
1403 	case IEEE80211_M_STA:
1404 		break;
1405 	case IEEE80211_M_AHDEMO: /* XXX */
1406 	case IEEE80211_M_IBSS:
1407 		ic->ic_flags |= IEEE80211_F_IBSSON;
1408 		/*FALLTHROUGH*/
1409 	case IEEE80211_M_HOSTAP: /* XXX */
1410 		break;
1411 	case IEEE80211_M_MONITOR: /* XXX */
1412 		break;
1413 	}
1414 
1415 	switch (ic->ic_opmode) {
1416 	case IEEE80211_M_AHDEMO:
1417 	case IEEE80211_M_HOSTAP:
1418 #ifndef IEEE80211_NO_HOSTAP
1419 		ic->ic_bss->ni_intval = ic->ic_lintval;
1420 		ic->ic_bss->ni_rssi = 0;
1421 		ic->ic_bss->ni_rstamp = 0;
1422 #endif /* !IEEE80211_NO_HOSTAP */
1423 		break;
1424 	default:					/* XXX */
1425 		break;
1426 	}
1427 
1428 	sc->sc_wepctl = 0;
1429 
1430 	atw_write_ssid(sc);
1431 	atw_write_sup_rates(sc);
1432 	atw_write_wep(sc);
1433 
1434 	ic->ic_state = IEEE80211_S_INIT;
1435 
1436 	/*
1437 	 * Set the receive filter.  This will start the transmit and
1438 	 * receive processes.
1439 	 */
1440 	atw_filter_setup(sc);
1441 
1442 	/*
1443 	 * Start the receive process.
1444 	 */
1445 	ATW_WRITE(sc, ATW_RDR, 0x1);
1446 
1447 	/*
1448 	 * Note that the interface is now running.
1449 	 */
1450 	ifp->if_flags |= IFF_RUNNING;
1451 	ifp->if_flags &= ~IFF_OACTIVE;
1452 
1453 	/* send no beacons, yet. */
1454 	atw_start_beacon(sc, 0);
1455 
1456 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1457 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1458 	else
1459 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1460  out:
1461 	if (error) {
1462 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1463 		sc->sc_tx_timer = 0;
1464 		ifp->if_timer = 0;
1465 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1466 	}
1467 #ifdef ATW_DEBUG
1468 	atw_print_regs(sc, "end of init");
1469 #endif /* ATW_DEBUG */
1470 
1471 	return (error);
1472 }
1473 
1474 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1475  *           0: MAC control of RF3000/Si4126.
1476  *
1477  * Applies power, or selects RF front-end? Sets reset condition.
1478  *
1479  * TBD support non-RFMD BBP, non-SiLabs synth.
1480  */
1481 static void
1482 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1483 {
1484 	if (enable) {
1485 		ATW_WRITE(sc, ATW_SYNRF,
1486 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1487 		DELAY(atw_bbp_io_enable_delay);
1488 	} else {
1489 		ATW_WRITE(sc, ATW_SYNRF, 0);
1490 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1491 	}
1492 }
1493 
1494 static int
1495 atw_tune(struct atw_softc *sc)
1496 {
1497 	int rc;
1498 	u_int chan;
1499 	struct ieee80211com *ic = &sc->sc_ic;
1500 
1501 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1502 	if (chan == IEEE80211_CHAN_ANY)
1503 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1504 
1505 	if (chan == sc->sc_cur_chan)
1506 		return 0;
1507 
1508 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1509 	    sc->sc_cur_chan, chan));
1510 
1511 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1512 
1513 	atw_si4126_tune(sc, chan);
1514 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1515 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1516 		    chan);
1517 
1518 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1519 	DELAY(atw_nar_delay);
1520 	ATW_WRITE(sc, ATW_RDR, 0x1);
1521 
1522 	if (rc == 0)
1523 		sc->sc_cur_chan = chan;
1524 
1525 	return rc;
1526 }
1527 
1528 #ifdef ATW_SYNDEBUG
1529 static void
1530 atw_si4126_print(struct atw_softc *sc)
1531 {
1532 	struct ifnet *ifp = &sc->sc_if;
1533 	u_int addr, val;
1534 
1535 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1536 		return;
1537 
1538 	for (addr = 0; addr <= 8; addr++) {
1539 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1540 		if (atw_si4126_read(sc, addr, &val) == 0) {
1541 			printf("<unknown> (quitting print-out)\n");
1542 			break;
1543 		}
1544 		printf("%05x\n", val);
1545 	}
1546 }
1547 #endif /* ATW_SYNDEBUG */
1548 
1549 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1550  *
1551  * The RF/IF synthesizer produces two reference frequencies for
1552  * the RF2948B transceiver.  The first frequency the RF2948B requires
1553  * is two times the so-called "intermediate frequency" (IF). Since
1554  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1555  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1556  * frequency required by the transceiver is the radio frequency
1557  * (RF). This is a superheterodyne transceiver; for f(chan) the
1558  * center frequency of the channel we are tuning, RF = f(chan) -
1559  * IF.
1560  *
1561  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1562  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1563  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1564  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1565  */
1566 static void
1567 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1568 {
1569 	u_int mhz;
1570 	u_int R;
1571 	u_int32_t gpio;
1572 	u_int16_t gain;
1573 
1574 #ifdef ATW_SYNDEBUG
1575 	atw_si4126_print(sc);
1576 #endif /* ATW_SYNDEBUG */
1577 
1578 	if (chan == 14)
1579 		mhz = 2484;
1580 	else
1581 		mhz = 2412 + 5 * (chan - 1);
1582 
1583 	/* Tune IF to 748 MHz to suit the IF LO input of the
1584 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1585          * because an IF in 526 MHz - 952 MHz is allowed.
1586 	 *
1587 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1588 	 * range of 2-25 MHz. SiLabs tells me that this is not
1589 	 * strictly necessary.
1590 	 */
1591 
1592 	if (atw_xindiv2)
1593 		R = 44;
1594 	else
1595 		R = 88;
1596 
1597 	/* Power-up RF, IF synthesizers. */
1598 	atw_si4126_write(sc, SI4126_POWER,
1599 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1600 
1601 	/* set LPWR, too? */
1602 	atw_si4126_write(sc, SI4126_MAIN,
1603 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1604 
1605 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1606 	 * set KP2 to 1.
1607 	 *
1608 	 * REFDIF This is different from the reference driver, which
1609 	 * always sets SI4126_GAIN to 0.
1610 	 */
1611 	gain = SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1612 
1613 	atw_si4126_write(sc, SI4126_GAIN, gain);
1614 
1615 	/* XIN = 44 MHz.
1616 	 *
1617 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1618 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1619 	 *
1620 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1621 	 * so that 1496/88 * 44 MHz = 748 MHz.
1622 	 */
1623 	atw_si4126_write(sc, SI4126_IFN, 1496);
1624 
1625 	atw_si4126_write(sc, SI4126_IFR, R);
1626 
1627 #ifndef ATW_REFSLAVE
1628 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1629 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1630 	 * which has no RF1!
1631 	 */
1632 	atw_si4126_write(sc, SI4126_RF1R, R);
1633 
1634 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1635 #endif
1636 
1637 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1638 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1639 	 * Now let's multiply it to mhz. So mhz - IF = N.
1640 	 */
1641 	atw_si4126_write(sc, SI4126_RF2R, R);
1642 
1643 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1644 
1645 	/* wait 100us from power-up for RF, IF to settle */
1646 	DELAY(100);
1647 
1648 	gpio = ATW_READ(sc, ATW_GPIO);
1649 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1650 	gpio |= SHIFTIN(1, ATW_GPIO_EN_MASK);
1651 
1652 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1653 		/* Set a Prism RF front-end to a special mode for channel 14?
1654 		 *
1655 		 * Apparently the SMC2635W needs this, although I don't think
1656 		 * it has a Prism RF.
1657 		 */
1658 		gpio |= SHIFTIN(1, ATW_GPIO_O_MASK);
1659 	}
1660 	ATW_WRITE(sc, ATW_GPIO, gpio);
1661 
1662 #ifdef ATW_SYNDEBUG
1663 	atw_si4126_print(sc);
1664 #endif /* ATW_SYNDEBUG */
1665 }
1666 
1667 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1668  * diversity.
1669  *
1670  * !!!
1671  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1672  * !!!
1673  */
1674 static int
1675 atw_rf3000_init(struct atw_softc *sc)
1676 {
1677 	int rc = 0;
1678 
1679 	atw_bbp_io_enable(sc, 1);
1680 
1681 	/* CCA is acquisition sensitive */
1682 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1683 	    SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1684 
1685 	if (rc != 0)
1686 		goto out;
1687 
1688 	/* enable diversity */
1689 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1690 
1691 	if (rc != 0)
1692 		goto out;
1693 
1694 	/* sensible setting from a binary-only driver */
1695 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1696 	    SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1697 
1698 	if (rc != 0)
1699 		goto out;
1700 
1701 	/* magic from a binary-only driver */
1702 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1703 	    SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1704 
1705 	if (rc != 0)
1706 		goto out;
1707 
1708 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1709 
1710 	if (rc != 0)
1711 		goto out;
1712 
1713 	/* XXX Reference driver remarks that Abocom sets this to 50.
1714 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1715 	 * in the "reserved" area of register RF3000_OPTIONS1.
1716 	 */
1717 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1718 
1719 	if (rc != 0)
1720 		goto out;
1721 
1722 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1723 
1724 	if (rc != 0)
1725 		goto out;
1726 
1727 out:
1728 	atw_bbp_io_enable(sc, 0);
1729 	return rc;
1730 }
1731 
1732 #ifdef ATW_BBPDEBUG
1733 static void
1734 atw_rf3000_print(struct atw_softc *sc)
1735 {
1736 	struct ifnet *ifp = &sc->sc_if;
1737 	u_int addr, val;
1738 
1739 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1740 		return;
1741 
1742 	for (addr = 0x01; addr <= 0x15; addr++) {
1743 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1744 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1745 			printf("<unknown> (quitting print-out)\n");
1746 			break;
1747 		}
1748 		printf("%08x\n", val);
1749 	}
1750 }
1751 #endif /* ATW_BBPDEBUG */
1752 
1753 /* Set the power settings on the BBP for channel `chan'. */
1754 static int
1755 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1756 {
1757 	int rc = 0;
1758 	u_int32_t reg;
1759 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1760 
1761 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1762 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1763 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1764 
1765 	/* odd channels: LSB, even channels: MSB */
1766 	if (chan % 2 == 1) {
1767 		txpower &= 0xFF;
1768 		lpf_cutoff &= 0xFF;
1769 		lna_gs_thresh &= 0xFF;
1770 	} else {
1771 		txpower >>= 8;
1772 		lpf_cutoff >>= 8;
1773 		lna_gs_thresh >>= 8;
1774 	}
1775 
1776 #ifdef ATW_BBPDEBUG
1777 	atw_rf3000_print(sc);
1778 #endif /* ATW_BBPDEBUG */
1779 
1780 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1781 	    "lna_gs_thresh %02x\n",
1782 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1783 
1784 	atw_bbp_io_enable(sc, 1);
1785 
1786 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1787 	    SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1788 		goto out;
1789 
1790 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1791 		goto out;
1792 
1793 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1794 		goto out;
1795 
1796 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1797 
1798 	if (rc != 0)
1799 		goto out;
1800 
1801 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1802 
1803 	if (rc != 0)
1804 		goto out;
1805 
1806 #ifdef ATW_BBPDEBUG
1807 	atw_rf3000_print(sc);
1808 #endif /* ATW_BBPDEBUG */
1809 
1810 out:
1811 	atw_bbp_io_enable(sc, 0);
1812 
1813 	/* set beacon, rts, atim transmit power */
1814 	reg = ATW_READ(sc, ATW_PLCPHD);
1815 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1816 	reg |= SHIFTIN(SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1817 	    ATW_PLCPHD_SERVICE_MASK);
1818 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1819 	DELAY(atw_plcphd_delay);
1820 
1821 	return rc;
1822 }
1823 
1824 /* Write a register on the RF3000 baseband processor using the
1825  * registers provided by the ADM8211 for this purpose.
1826  *
1827  * Return 0 on success.
1828  */
1829 static int
1830 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1831 {
1832 	u_int32_t reg;
1833 	int i;
1834 
1835 	reg = sc->sc_bbpctl_wr |
1836 	     SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1837 	     SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1838 
1839 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1840 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1841 		DELAY(2 * atw_pseudo_milli);
1842 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1843 			break;
1844 	}
1845 
1846 	if (i < 0) {
1847 		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1848 		return ETIMEDOUT;
1849 	}
1850 	return 0;
1851 }
1852 
1853 /* Read a register on the RF3000 baseband processor using the registers
1854  * the ADM8211 provides for this purpose.
1855  *
1856  * The 7-bit register address is addr.  Record the 8-bit data in the register
1857  * in *val.
1858  *
1859  * Return 0 on success.
1860  *
1861  * XXX This does not seem to work. The ADM8211 must require more or
1862  * different magic to read the chip than to write it. Possibly some
1863  * of the magic I have derived from a binary-only driver concerns
1864  * the "chip address" (see the RF3000 manual).
1865  */
1866 #ifdef ATW_BBPDEBUG
1867 static int
1868 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1869 {
1870 	u_int32_t reg;
1871 	int i;
1872 
1873 	for (i = 1000; --i >= 0; ) {
1874 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1875 			break;
1876 		DELAY(100);
1877 	}
1878 
1879 	if (i < 0) {
1880 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1881 		    sc->sc_dev.dv_xname);
1882 		return ETIMEDOUT;
1883 	}
1884 
1885 	reg = sc->sc_bbpctl_rd | SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1886 
1887 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1888 
1889 	for (i = 1000; --i >= 0; ) {
1890 		DELAY(100);
1891 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1892 			break;
1893 	}
1894 
1895 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1896 
1897 	if (i < 0) {
1898 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1899 		    sc->sc_dev.dv_xname, reg);
1900 		return ETIMEDOUT;
1901 	}
1902 	if (val != NULL)
1903 		*val = SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1904 	return 0;
1905 }
1906 #endif /* ATW_BBPDEBUG */
1907 
1908 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1909  * provided by the ADM8211 for that purpose.
1910  *
1911  * val is 18 bits of data, and val is the 4-bit address of the register.
1912  *
1913  * Return 0 on success.
1914  */
1915 static void
1916 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1917 {
1918 	uint32_t bits, mask, reg;
1919 	const int nbits = 22;
1920 
1921 	KASSERT((addr & ~SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1922 	KASSERT((val & ~SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1923 
1924 	bits = SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1925 	       SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1926 
1927 	reg = ATW_SYNRF_SELSYN;
1928 	/* reference driver: reset Si4126 serial bus to initial
1929 	 * conditions?
1930 	 */
1931 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1932 	ATW_WRITE(sc, ATW_SYNRF, reg);
1933 
1934 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1935 		if ((bits & mask) != 0)
1936 			reg |= ATW_SYNRF_SYNDATA;
1937 		else
1938 			reg &= ~ATW_SYNRF_SYNDATA;
1939 		ATW_WRITE(sc, ATW_SYNRF, reg);
1940 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1941 		ATW_WRITE(sc, ATW_SYNRF, reg);
1942 	}
1943 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1944 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1945 }
1946 
1947 /* Read 18-bit data from the 4-bit address addr in Si4126
1948  * RF synthesizer and write the data to *val. Return 0 on success.
1949  *
1950  * XXX This does not seem to work. The ADM8211 must require more or
1951  * different magic to read the chip than to write it.
1952  */
1953 #ifdef ATW_SYNDEBUG
1954 static int
1955 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1956 {
1957 	u_int32_t reg;
1958 	int i;
1959 
1960 	KASSERT((addr & ~SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1961 
1962 	for (i = 1000; --i >= 0; ) {
1963 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1964 			break;
1965 		DELAY(100);
1966 	}
1967 
1968 	if (i < 0) {
1969 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1970 		    sc->sc_dev.dv_xname);
1971 		return ETIMEDOUT;
1972 	}
1973 
1974 	reg = sc->sc_synctl_rd | SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1975 
1976 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1977 
1978 	for (i = 1000; --i >= 0; ) {
1979 		DELAY(100);
1980 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1981 			break;
1982 	}
1983 
1984 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1985 
1986 	if (i < 0) {
1987 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1988 		    sc->sc_dev.dv_xname, reg);
1989 		return ETIMEDOUT;
1990 	}
1991 	if (val != NULL)
1992 		*val = SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1993 		                       ATW_SYNCTL_DATA_MASK);
1994 	return 0;
1995 }
1996 #endif /* ATW_SYNDEBUG */
1997 
1998 /* XXX is the endianness correct? test. */
1999 #define	atw_calchash(addr) \
2000 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2001 
2002 /*
2003  * atw_filter_setup:
2004  *
2005  *	Set the ADM8211's receive filter.
2006  */
2007 static void
2008 atw_filter_setup(struct atw_softc *sc)
2009 {
2010 	struct ieee80211com *ic = &sc->sc_ic;
2011 	struct ethercom *ec = &sc->sc_ec;
2012 	struct ifnet *ifp = &sc->sc_if;
2013 	int hash;
2014 	u_int32_t hashes[2];
2015 	struct ether_multi *enm;
2016 	struct ether_multistep step;
2017 
2018 	/* According to comments in tlp_al981_filter_setup
2019 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2020 	 * multicast filter to be set while it is running.  Hopefully
2021 	 * the ADM8211 is not the same!
2022 	 */
2023 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2024 		atw_idle(sc, ATW_NAR_SR);
2025 
2026 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2027 	ifp->if_flags &= ~IFF_ALLMULTI;
2028 
2029 	/* XXX in scan mode, do not filter packets.  Maybe this is
2030 	 * unnecessary.
2031 	 */
2032 	if (ic->ic_state == IEEE80211_S_SCAN ||
2033 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2034 		sc->sc_opmode |= ATW_NAR_PR;
2035 		goto allmulti;
2036 	}
2037 
2038 	hashes[0] = hashes[1] = 0x0;
2039 
2040 	/*
2041 	 * Program the 64-bit multicast hash filter.
2042 	 */
2043 	ETHER_FIRST_MULTI(step, ec, enm);
2044 	while (enm != NULL) {
2045 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2046 		    ETHER_ADDR_LEN) != 0)
2047 			goto allmulti;
2048 
2049 		hash = atw_calchash(enm->enm_addrlo);
2050 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2051 		ETHER_NEXT_MULTI(step, enm);
2052 		sc->sc_opmode |= ATW_NAR_MM;
2053 	}
2054 	ifp->if_flags &= ~IFF_ALLMULTI;
2055 	goto setit;
2056 
2057 allmulti:
2058 	sc->sc_opmode |= ATW_NAR_MM;
2059 	ifp->if_flags |= IFF_ALLMULTI;
2060 	hashes[0] = hashes[1] = 0xffffffff;
2061 
2062 setit:
2063 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2064 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2065 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2066 	DELAY(atw_nar_delay);
2067 	ATW_WRITE(sc, ATW_RDR, 0x1);
2068 
2069 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2070 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2071 }
2072 
2073 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2074  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2075  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2076  * no beacon with the preferred BSSID and SSID in the number of
2077  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2078  */
2079 static void
2080 atw_write_bssid(struct atw_softc *sc)
2081 {
2082 	struct ieee80211com *ic = &sc->sc_ic;
2083 	u_int8_t *bssid;
2084 
2085 	bssid = ic->ic_bss->ni_bssid;
2086 
2087 	ATW_WRITE(sc, ATW_BSSID0,
2088 	    SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2089 	    SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2090 	    SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2091 	    SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2092 
2093 	ATW_WRITE(sc, ATW_ABDA1,
2094 	    (ATW_READ(sc, ATW_ABDA1) &
2095 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2096 	    SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2097 	    SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2098 
2099 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2100 	    ether_sprintf(sc->sc_bssid)));
2101 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2102 
2103 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2104 }
2105 
2106 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2107  * 16-bit word.
2108  */
2109 static void
2110 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2111 {
2112 	u_int i;
2113 	u_int8_t *ptr;
2114 
2115 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2116 
2117 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2118 
2119 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2120 
2121 	ptr = &sc->sc_sram[ofs];
2122 
2123 	for (i = 0; i < buflen; i += 2) {
2124 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2125 		    SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2126 		DELAY(atw_writewep_delay);
2127 
2128 		ATW_WRITE(sc, ATW_WESK,
2129 		    SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2130 		DELAY(atw_writewep_delay);
2131 	}
2132 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2133 
2134 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2135 		int n_octets = 0;
2136 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2137 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2138 		for (i = 0; i < buflen; i++) {
2139 			printf(" %02x", ptr[i]);
2140 			if (++n_octets % 24 == 0)
2141 				printf("\n");
2142 		}
2143 		if (n_octets % 24 != 0)
2144 			printf("\n");
2145 	}
2146 }
2147 
2148 static int
2149 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2150 {
2151 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2152 	u_int keyix = k->wk_keyix;
2153 
2154 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2155 
2156 	if (keyix >= IEEE80211_WEP_NKID)
2157 		return 0;
2158 	if (k->wk_keylen != 0)
2159 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2160 
2161 	return 1;
2162 }
2163 
2164 static int
2165 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2166 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2167 {
2168 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2169 
2170 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2171 
2172 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2173 		return 0;
2174 
2175 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2176 
2177 	return 1;
2178 }
2179 
2180 static void
2181 atw_key_update_begin(struct ieee80211com *ic)
2182 {
2183 #ifdef ATW_DEBUG
2184 	struct ifnet *ifp = ic->ic_ifp;
2185 	struct atw_softc *sc = ifp->if_softc;
2186 #endif
2187 
2188 	DPRINTF(sc, ("%s:\n", __func__));
2189 }
2190 
2191 static void
2192 atw_key_update_end(struct ieee80211com *ic)
2193 {
2194 	struct ifnet *ifp = ic->ic_ifp;
2195 	struct atw_softc *sc = ifp->if_softc;
2196 
2197 	DPRINTF(sc, ("%s:\n", __func__));
2198 
2199 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2200 		return;
2201 	if (ATW_IS_ENABLED(sc) == 0)
2202 		return;
2203 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2204 	atw_write_wep(sc);
2205 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2206 	DELAY(atw_nar_delay);
2207 	ATW_WRITE(sc, ATW_RDR, 0x1);
2208 }
2209 
2210 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2211 static void
2212 atw_write_wep(struct atw_softc *sc)
2213 {
2214 #if 0
2215 	struct ieee80211com *ic = &sc->sc_ic;
2216 	u_int32_t reg;
2217 	int i;
2218 #endif
2219 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2220 	u_int8_t buf[IEEE80211_WEP_NKID]
2221 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2222 
2223 	sc->sc_wepctl = 0;
2224 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2225 
2226 	memset(&buf[0][0], 0, sizeof(buf));
2227 
2228 #if 0
2229 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2230 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2231 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2232 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2233 			buf[i][1] = ATW_WEP_ENABLED;
2234 		} else {
2235 			buf[i][1] = 0;
2236 			continue;
2237 		}
2238 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2239 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2240 		    ic->ic_nw_keys[i].wk_keylen - 1);
2241 	}
2242 
2243 	reg = ATW_READ(sc, ATW_MACTEST);
2244 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2245 	reg &= ~ATW_MACTEST_KEYID_MASK;
2246 	reg |= SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2247 	ATW_WRITE(sc, ATW_MACTEST, reg);
2248 
2249 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2250 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2251 
2252 	switch (sc->sc_rev) {
2253 	case ATW_REVISION_AB:
2254 	case ATW_REVISION_AF:
2255 		/* Bypass WEP on Rx. */
2256 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2257 		break;
2258 	default:
2259 		break;
2260 	}
2261 #endif
2262 
2263 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2264 	    sizeof(buf));
2265 
2266 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2267 }
2268 
2269 static void
2270 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2271     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2272 {
2273 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2274 
2275 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2276 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2277 		return;
2278 
2279 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2280 
2281 	switch (subtype) {
2282 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2283 	case IEEE80211_FC0_SUBTYPE_BEACON:
2284 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2285 		    ic->ic_state == IEEE80211_S_RUN) {
2286 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2287 				(void)ieee80211_ibss_merge(ni);
2288 		}
2289 		break;
2290 	default:
2291 		break;
2292 	}
2293 	return;
2294 }
2295 
2296 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2297  * In ad hoc mode, the SSID is written to the beacons sent by the
2298  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2299  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2300  * indications.
2301  */
2302 static void
2303 atw_write_ssid(struct atw_softc *sc)
2304 {
2305 	struct ieee80211com *ic = &sc->sc_ic;
2306 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2307 	 * it only expects the element length, not its ID.
2308 	 */
2309 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2310 
2311 	memset(buf, 0, sizeof(buf));
2312 	buf[0] = ic->ic_bss->ni_esslen;
2313 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2314 
2315 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2316 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2317 }
2318 
2319 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2320  * In ad hoc mode, the supported rates are written to beacons sent by the
2321  * ADM8211.
2322  */
2323 static void
2324 atw_write_sup_rates(struct atw_softc *sc)
2325 {
2326 	struct ieee80211com *ic = &sc->sc_ic;
2327 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2328 	 * supported rates
2329 	 */
2330 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2331 
2332 	memset(buf, 0, sizeof(buf));
2333 
2334 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2335 
2336 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2337 	    ic->ic_bss->ni_rates.rs_nrates);
2338 
2339 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2340 }
2341 
2342 /* Start/stop sending beacons. */
2343 void
2344 atw_start_beacon(struct atw_softc *sc, int start)
2345 {
2346 	struct ieee80211com *ic = &sc->sc_ic;
2347 	uint16_t chan;
2348 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2349 	size_t len;
2350 
2351 	if (ATW_IS_ENABLED(sc) == 0)
2352 		return;
2353 
2354 	/* start beacons */
2355 	len = sizeof(struct ieee80211_frame) +
2356 	    8 /* timestamp */ + 2 /* beacon interval */ +
2357 	    2 /* capability info */ +
2358 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2359 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2360 	    3 /* DS parameters */ +
2361 	    IEEE80211_CRC_LEN;
2362 
2363 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2364 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2365 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2366 
2367 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2368 	ATW_WRITE(sc, ATW_CAP1, cap1);
2369 
2370 	if (!start)
2371 		return;
2372 
2373 	/* TBD use ni_capinfo */
2374 
2375 	capinfo = 0;
2376 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2377 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2378 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2379 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2380 
2381 	switch (ic->ic_opmode) {
2382 	case IEEE80211_M_IBSS:
2383 		len += 4; /* IBSS parameters */
2384 		capinfo |= IEEE80211_CAPINFO_IBSS;
2385 		break;
2386 	case IEEE80211_M_HOSTAP:
2387 		/* XXX 6-byte minimum TIM */
2388 		len += atw_beacon_len_adjust;
2389 		capinfo |= IEEE80211_CAPINFO_ESS;
2390 		break;
2391 	default:
2392 		return;
2393 	}
2394 
2395 	/* set listen interval
2396 	 * XXX do software units agree w/ hardware?
2397 	 */
2398 	bpli = SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2399 	    SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2400 
2401 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2402 
2403 	bcnt |= SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2404 	cap0 |= SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2405 	cap1 |= SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2406 
2407 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2408 	ATW_WRITE(sc, ATW_BPLI, bpli);
2409 	ATW_WRITE(sc, ATW_CAP0, cap0);
2410 	ATW_WRITE(sc, ATW_CAP1, cap1);
2411 
2412 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2413 	    sc->sc_dev.dv_xname, bcnt));
2414 
2415 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2416 	    sc->sc_dev.dv_xname, cap1));
2417 }
2418 
2419 /* Return the 32 lsb of the last TSFT divisible by ival. */
2420 static inline uint32_t
2421 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2422 {
2423 	/* Following the reference driver's lead, I compute
2424 	 *
2425 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2426 	 *
2427 	 * without using 64-bit arithmetic, using the following
2428 	 * relationship:
2429 	 *
2430 	 *     (0x100000000 * H + L) % m
2431 	 *   = ((0x100000000 % m) * H + L) % m
2432 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2433 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2434 	 *   = ((0xffffffff % m + 1) * H + L) % m
2435 	 */
2436 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2437 }
2438 
2439 static uint64_t
2440 atw_get_tsft(struct atw_softc *sc)
2441 {
2442 	int i;
2443 	uint32_t tsfth, tsftl;
2444 	for (i = 0; i < 2; i++) {
2445 		tsfth = ATW_READ(sc, ATW_TSFTH);
2446 		tsftl = ATW_READ(sc, ATW_TSFTL);
2447 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2448 			break;
2449 	}
2450 	return ((uint64_t)tsfth << 32) | tsftl;
2451 }
2452 
2453 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2454  * the ieee80211com.
2455  *
2456  * Predict the next target beacon transmission time (TBTT) and
2457  * write it to the ADM8211.
2458  */
2459 static void
2460 atw_predict_beacon(struct atw_softc *sc)
2461 {
2462 #define TBTTOFS 20 /* TU */
2463 
2464 	struct ieee80211com *ic = &sc->sc_ic;
2465 	uint64_t tsft;
2466 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2467 	union {
2468 		uint64_t	word;
2469 		uint8_t		tstamp[8];
2470 	} u;
2471 
2472 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2473 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2474 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2475 		tsft = atw_get_tsft(sc);
2476 		u.word = htole64(tsft);
2477 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2478 		    sizeof(ic->ic_bss->ni_tstamp));
2479 	} else
2480 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2481 
2482 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2483 
2484 	tsftl = tsft & 0xFFFFFFFF;
2485 	tsfth = tsft >> 32;
2486 
2487 	/* We sent/received the last beacon `past' microseconds
2488 	 * after the interval divided the TSF timer.
2489 	 */
2490 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2491 
2492 	/* Skip ten beacons so that the TBTT cannot pass before
2493 	 * we've programmed it.  Ten is an arbitrary number.
2494 	 */
2495 	tbtt = past_even + ival * 10;
2496 
2497 	ATW_WRITE(sc, ATW_TOFS1,
2498 	    SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2499 	    SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2500 	    SHIFTIN(SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2501 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2502 #undef TBTTOFS
2503 }
2504 
2505 static void
2506 atw_next_scan(void *arg)
2507 {
2508 	struct atw_softc *sc = arg;
2509 	struct ieee80211com *ic = &sc->sc_ic;
2510 	int s;
2511 
2512 	/* don't call atw_start w/o network interrupts blocked */
2513 	s = splnet();
2514 	if (ic->ic_state == IEEE80211_S_SCAN)
2515 		ieee80211_next_scan(ic);
2516 	splx(s);
2517 }
2518 
2519 /* Synchronize the hardware state with the software state. */
2520 static int
2521 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2522 {
2523 	struct ifnet *ifp = ic->ic_ifp;
2524 	struct atw_softc *sc = ifp->if_softc;
2525 	enum ieee80211_state ostate;
2526 	int error = 0;
2527 
2528 	ostate = ic->ic_state;
2529 	callout_stop(&sc->sc_scan_ch);
2530 
2531 	switch (nstate) {
2532 	case IEEE80211_S_AUTH:
2533 	case IEEE80211_S_ASSOC:
2534 		atw_write_bssid(sc);
2535 		error = atw_tune(sc);
2536 		break;
2537 	case IEEE80211_S_INIT:
2538 		callout_stop(&sc->sc_scan_ch);
2539 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2540 		atw_start_beacon(sc, 0);
2541 		break;
2542 	case IEEE80211_S_SCAN:
2543 		error = atw_tune(sc);
2544 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2545 		    atw_next_scan, sc);
2546 		break;
2547 	case IEEE80211_S_RUN:
2548 		error = atw_tune(sc);
2549 		atw_write_bssid(sc);
2550 		atw_write_ssid(sc);
2551 		atw_write_sup_rates(sc);
2552 
2553 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2554 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2555 			break;
2556 
2557 		/* set listen interval
2558 		 * XXX do software units agree w/ hardware?
2559 		 */
2560 		ATW_WRITE(sc, ATW_BPLI,
2561 		    SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2562 		    SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2563 			   ATW_BPLI_LI_MASK));
2564 
2565 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2566 		    ATW_READ(sc, ATW_BPLI)));
2567 
2568 		atw_predict_beacon(sc);
2569 
2570 		switch (ic->ic_opmode) {
2571 		case IEEE80211_M_AHDEMO:
2572 		case IEEE80211_M_HOSTAP:
2573 		case IEEE80211_M_IBSS:
2574 			atw_start_beacon(sc, 1);
2575 			break;
2576 		case IEEE80211_M_MONITOR:
2577 		case IEEE80211_M_STA:
2578 			break;
2579 		}
2580 
2581 		break;
2582 	}
2583 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2584 }
2585 
2586 /*
2587  * atw_add_rxbuf:
2588  *
2589  *	Add a receive buffer to the indicated descriptor.
2590  */
2591 int
2592 atw_add_rxbuf(struct atw_softc *sc, int idx)
2593 {
2594 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2595 	struct mbuf *m;
2596 	int error;
2597 
2598 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2599 	if (m == NULL)
2600 		return (ENOBUFS);
2601 
2602 	MCLGET(m, M_DONTWAIT);
2603 	if ((m->m_flags & M_EXT) == 0) {
2604 		m_freem(m);
2605 		return (ENOBUFS);
2606 	}
2607 
2608 	if (rxs->rxs_mbuf != NULL)
2609 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2610 
2611 	rxs->rxs_mbuf = m;
2612 
2613 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2614 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2615 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2616 	if (error) {
2617 		printf("%s: can't load rx DMA map %d, error = %d\n",
2618 		    sc->sc_dev.dv_xname, idx, error);
2619 		panic("atw_add_rxbuf");	/* XXX */
2620 	}
2621 
2622 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2623 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2624 
2625 	ATW_INIT_RXDESC(sc, idx);
2626 
2627 	return (0);
2628 }
2629 
2630 /*
2631  * Release any queued transmit buffers.
2632  */
2633 void
2634 atw_txdrain(struct atw_softc *sc)
2635 {
2636 	struct atw_txsoft *txs;
2637 
2638 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2639 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2640 		if (txs->txs_mbuf != NULL) {
2641 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2642 			m_freem(txs->txs_mbuf);
2643 			txs->txs_mbuf = NULL;
2644 		}
2645 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2646 		sc->sc_txfree += txs->txs_ndescs;
2647 	}
2648 
2649 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2650 	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2651 		  sc->sc_txfree != ATW_NTXDESC));
2652 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2653 	sc->sc_tx_timer = 0;
2654 }
2655 
2656 /*
2657  * atw_stop:		[ ifnet interface function ]
2658  *
2659  *	Stop transmission on the interface.
2660  */
2661 void
2662 atw_stop(struct ifnet *ifp, int disable)
2663 {
2664 	struct atw_softc *sc = ifp->if_softc;
2665 	struct ieee80211com *ic = &sc->sc_ic;
2666 
2667 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2668 
2669 	/* Disable interrupts. */
2670 	ATW_WRITE(sc, ATW_IER, 0);
2671 
2672 	/* Stop the transmit and receive processes. */
2673 	sc->sc_opmode = 0;
2674 	ATW_WRITE(sc, ATW_NAR, 0);
2675 	DELAY(atw_nar_delay);
2676 	ATW_WRITE(sc, ATW_TDBD, 0);
2677 	ATW_WRITE(sc, ATW_TDBP, 0);
2678 	ATW_WRITE(sc, ATW_RDB, 0);
2679 
2680 	atw_txdrain(sc);
2681 
2682 	if (disable) {
2683 		atw_rxdrain(sc);
2684 		atw_disable(sc);
2685 	}
2686 
2687 	/*
2688 	 * Mark the interface down and cancel the watchdog timer.
2689 	 */
2690 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2691 	sc->sc_tx_timer = 0;
2692 	ifp->if_timer = 0;
2693 
2694 	if (!disable)
2695 		atw_reset(sc);
2696 }
2697 
2698 /*
2699  * atw_rxdrain:
2700  *
2701  *	Drain the receive queue.
2702  */
2703 void
2704 atw_rxdrain(struct atw_softc *sc)
2705 {
2706 	struct atw_rxsoft *rxs;
2707 	int i;
2708 
2709 	for (i = 0; i < ATW_NRXDESC; i++) {
2710 		rxs = &sc->sc_rxsoft[i];
2711 		if (rxs->rxs_mbuf == NULL)
2712 			continue;
2713 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2714 		m_freem(rxs->rxs_mbuf);
2715 		rxs->rxs_mbuf = NULL;
2716 	}
2717 }
2718 
2719 /*
2720  * atw_detach:
2721  *
2722  *	Detach an ADM8211 interface.
2723  */
2724 int
2725 atw_detach(struct atw_softc *sc)
2726 {
2727 	struct ifnet *ifp = &sc->sc_if;
2728 	struct atw_rxsoft *rxs;
2729 	struct atw_txsoft *txs;
2730 	int i;
2731 
2732 	/*
2733 	 * Succeed now if there isn't any work to do.
2734 	 */
2735 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2736 		return (0);
2737 
2738 	callout_stop(&sc->sc_scan_ch);
2739 
2740 	ieee80211_ifdetach(&sc->sc_ic);
2741 	if_detach(ifp);
2742 
2743 	for (i = 0; i < ATW_NRXDESC; i++) {
2744 		rxs = &sc->sc_rxsoft[i];
2745 		if (rxs->rxs_mbuf != NULL) {
2746 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2747 			m_freem(rxs->rxs_mbuf);
2748 			rxs->rxs_mbuf = NULL;
2749 		}
2750 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2751 	}
2752 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2753 		txs = &sc->sc_txsoft[i];
2754 		if (txs->txs_mbuf != NULL) {
2755 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2756 			m_freem(txs->txs_mbuf);
2757 			txs->txs_mbuf = NULL;
2758 		}
2759 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2760 	}
2761 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2762 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2763 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2764 	    sizeof(struct atw_control_data));
2765 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2766 
2767 	shutdownhook_disestablish(sc->sc_sdhook);
2768 	powerhook_disestablish(sc->sc_powerhook);
2769 
2770 	if (sc->sc_srom)
2771 		free(sc->sc_srom, M_DEVBUF);
2772 
2773 	return (0);
2774 }
2775 
2776 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2777 void
2778 atw_shutdown(void *arg)
2779 {
2780 	struct atw_softc *sc = arg;
2781 
2782 	atw_stop(&sc->sc_if, 1);
2783 }
2784 
2785 int
2786 atw_intr(void *arg)
2787 {
2788 	struct atw_softc *sc = arg;
2789 	struct ifnet *ifp = &sc->sc_if;
2790 	u_int32_t status, rxstatus, txstatus, linkstatus;
2791 	int handled = 0, txthresh;
2792 
2793 #ifdef DEBUG
2794 	if (ATW_IS_ENABLED(sc) == 0)
2795 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2796 #endif
2797 
2798 	/*
2799 	 * If the interface isn't running, the interrupt couldn't
2800 	 * possibly have come from us.
2801 	 */
2802 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2803 	    !device_is_active(&sc->sc_dev))
2804 		return (0);
2805 
2806 	for (;;) {
2807 		status = ATW_READ(sc, ATW_STSR);
2808 
2809 		if (status)
2810 			ATW_WRITE(sc, ATW_STSR, status);
2811 
2812 #ifdef ATW_DEBUG
2813 #define PRINTINTR(flag) do { \
2814 	if ((status & flag) != 0) { \
2815 		printf("%s" #flag, delim); \
2816 		delim = ","; \
2817 	} \
2818 } while (0)
2819 
2820 		if (atw_debug > 1 && status) {
2821 			const char *delim = "<";
2822 
2823 			printf("%s: reg[STSR] = %x",
2824 			    sc->sc_dev.dv_xname, status);
2825 
2826 			PRINTINTR(ATW_INTR_FBE);
2827 			PRINTINTR(ATW_INTR_LINKOFF);
2828 			PRINTINTR(ATW_INTR_LINKON);
2829 			PRINTINTR(ATW_INTR_RCI);
2830 			PRINTINTR(ATW_INTR_RDU);
2831 			PRINTINTR(ATW_INTR_REIS);
2832 			PRINTINTR(ATW_INTR_RPS);
2833 			PRINTINTR(ATW_INTR_TCI);
2834 			PRINTINTR(ATW_INTR_TDU);
2835 			PRINTINTR(ATW_INTR_TLT);
2836 			PRINTINTR(ATW_INTR_TPS);
2837 			PRINTINTR(ATW_INTR_TRT);
2838 			PRINTINTR(ATW_INTR_TUF);
2839 			PRINTINTR(ATW_INTR_BCNTC);
2840 			PRINTINTR(ATW_INTR_ATIME);
2841 			PRINTINTR(ATW_INTR_TBTT);
2842 			PRINTINTR(ATW_INTR_TSCZ);
2843 			PRINTINTR(ATW_INTR_TSFTF);
2844 			printf(">\n");
2845 		}
2846 #undef PRINTINTR
2847 #endif /* ATW_DEBUG */
2848 
2849 		if ((status & sc->sc_inten) == 0)
2850 			break;
2851 
2852 		handled = 1;
2853 
2854 		rxstatus = status & sc->sc_rxint_mask;
2855 		txstatus = status & sc->sc_txint_mask;
2856 		linkstatus = status & sc->sc_linkint_mask;
2857 
2858 		if (linkstatus) {
2859 			atw_linkintr(sc, linkstatus);
2860 		}
2861 
2862 		if (rxstatus) {
2863 			/* Grab any new packets. */
2864 			atw_rxintr(sc);
2865 
2866 			if (rxstatus & ATW_INTR_RDU) {
2867 				printf("%s: receive ring overrun\n",
2868 				    sc->sc_dev.dv_xname);
2869 				/* Get the receive process going again. */
2870 				ATW_WRITE(sc, ATW_RDR, 0x1);
2871 				break;
2872 			}
2873 		}
2874 
2875 		if (txstatus) {
2876 			/* Sweep up transmit descriptors. */
2877 			atw_txintr(sc);
2878 
2879 			if (txstatus & ATW_INTR_TLT)
2880 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2881 				    sc->sc_dev.dv_xname));
2882 
2883 			if (txstatus & ATW_INTR_TRT)
2884 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2885 				    sc->sc_dev.dv_xname));
2886 
2887 			/* If Tx under-run, increase our transmit threshold
2888 			 * if another is available.
2889 			 */
2890 			txthresh = sc->sc_txthresh + 1;
2891 			if ((txstatus & ATW_INTR_TUF) &&
2892 			    sc->sc_txth[txthresh].txth_name != NULL) {
2893 				/* Idle the transmit process. */
2894 				atw_idle(sc, ATW_NAR_ST);
2895 
2896 				sc->sc_txthresh = txthresh;
2897 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2898 				sc->sc_opmode |=
2899 				    sc->sc_txth[txthresh].txth_opmode;
2900 				printf("%s: transmit underrun; new "
2901 				    "threshold: %s\n", sc->sc_dev.dv_xname,
2902 				    sc->sc_txth[txthresh].txth_name);
2903 
2904 				/* Set the new threshold and restart
2905 				 * the transmit process.
2906 				 */
2907 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2908 				DELAY(atw_nar_delay);
2909 				ATW_WRITE(sc, ATW_RDR, 0x1);
2910 				/* XXX Log every Nth underrun from
2911 				 * XXX now on?
2912 				 */
2913 			}
2914 		}
2915 
2916 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2917 			if (status & ATW_INTR_TPS)
2918 				printf("%s: transmit process stopped\n",
2919 				    sc->sc_dev.dv_xname);
2920 			if (status & ATW_INTR_RPS)
2921 				printf("%s: receive process stopped\n",
2922 				    sc->sc_dev.dv_xname);
2923 			(void)atw_init(ifp);
2924 			break;
2925 		}
2926 
2927 		if (status & ATW_INTR_FBE) {
2928 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2929 			(void)atw_init(ifp);
2930 			break;
2931 		}
2932 
2933 		/*
2934 		 * Not handled:
2935 		 *
2936 		 *	Transmit buffer unavailable -- normal
2937 		 *	condition, nothing to do, really.
2938 		 *
2939 		 *	Early receive interrupt -- not available on
2940 		 *	all chips, we just use RI.  We also only
2941 		 *	use single-segment receive DMA, so this
2942 		 *	is mostly useless.
2943 		 *
2944 		 *      TBD others
2945 		 */
2946 	}
2947 
2948 	/* Try to get more packets going. */
2949 	atw_start(ifp);
2950 
2951 	return (handled);
2952 }
2953 
2954 /*
2955  * atw_idle:
2956  *
2957  *	Cause the transmit and/or receive processes to go idle.
2958  *
2959  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2960  *	process in STSR if I clear SR or ST after the process has already
2961  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2962  *      do not seem to be too reliable. Perhaps I have the sense of the
2963  *	Rx bits switched with the Tx bits?
2964  */
2965 void
2966 atw_idle(struct atw_softc *sc, u_int32_t bits)
2967 {
2968 	u_int32_t ackmask = 0, opmode, stsr, test0;
2969 	int i, s;
2970 
2971 	s = splnet();
2972 
2973 	opmode = sc->sc_opmode & ~bits;
2974 
2975 	if (bits & ATW_NAR_SR)
2976 		ackmask |= ATW_INTR_RPS;
2977 
2978 	if (bits & ATW_NAR_ST) {
2979 		ackmask |= ATW_INTR_TPS;
2980 		/* set ATW_NAR_HF to flush TX FIFO. */
2981 		opmode |= ATW_NAR_HF;
2982 	}
2983 
2984 	ATW_WRITE(sc, ATW_NAR, opmode);
2985 	DELAY(atw_nar_delay);
2986 
2987 	for (i = 0; i < 1000; i++) {
2988 		stsr = ATW_READ(sc, ATW_STSR);
2989 		if ((stsr & ackmask) == ackmask)
2990 			break;
2991 		DELAY(10);
2992 	}
2993 
2994 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2995 
2996 	if ((stsr & ackmask) == ackmask)
2997 		goto out;
2998 
2999 	test0 = ATW_READ(sc, ATW_TEST0);
3000 
3001 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3002 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3003 		printf("%s: transmit process not idle [%s]\n",
3004 		    sc->sc_dev.dv_xname,
3005 		    atw_tx_state[SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3006 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3007 		    sc->sc_dev.dv_xname, bits, test0, stsr);
3008 	}
3009 
3010 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3011 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3012 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3013 		    sc->sc_dev.dv_xname,
3014 		    atw_rx_state[SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3015 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3016 		    sc->sc_dev.dv_xname, bits, test0, stsr));
3017 	}
3018 out:
3019 	if ((bits & ATW_NAR_ST) != 0)
3020 		atw_txdrain(sc);
3021 	splx(s);
3022 	return;
3023 }
3024 
3025 /*
3026  * atw_linkintr:
3027  *
3028  *	Helper; handle link-status interrupts.
3029  */
3030 void
3031 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3032 {
3033 	struct ieee80211com *ic = &sc->sc_ic;
3034 
3035 	if (ic->ic_state != IEEE80211_S_RUN)
3036 		return;
3037 
3038 	if (linkstatus & ATW_INTR_LINKON) {
3039 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3040 		sc->sc_rescan_timer = 0;
3041 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3042 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3043 		if (ic->ic_opmode != IEEE80211_M_STA)
3044 			return;
3045 		sc->sc_rescan_timer = 3;
3046 		sc->sc_if.if_timer = 1;
3047 	}
3048 }
3049 
3050 static inline int
3051 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3052 {
3053 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3054 		return 0;
3055 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3056 		return 0;
3057 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3058 }
3059 
3060 /*
3061  * atw_rxintr:
3062  *
3063  *	Helper; handle receive interrupts.
3064  */
3065 void
3066 atw_rxintr(struct atw_softc *sc)
3067 {
3068 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3069 	struct ieee80211com *ic = &sc->sc_ic;
3070 	struct ieee80211_node *ni;
3071 	struct ieee80211_frame_min *wh;
3072 	struct ifnet *ifp = &sc->sc_if;
3073 	struct atw_rxsoft *rxs;
3074 	struct mbuf *m;
3075 	u_int32_t rxstat;
3076 	int i, len, rate, rate0;
3077 	u_int32_t rssi, rssi0;
3078 
3079 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3080 		rxs = &sc->sc_rxsoft[i];
3081 
3082 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3083 
3084 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3085 		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3086 		rate0 = SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3087 
3088 		if (rxstat & ATW_RXSTAT_OWN)
3089 			break; /* We have processed all receive buffers. */
3090 
3091 		DPRINTF3(sc,
3092 		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3093 		    sc->sc_dev.dv_xname,
3094 		    rxstat, rssi0,
3095 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3096 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3097 
3098 		/*
3099 		 * Make sure the packet fits in one buffer.  This should
3100 		 * always be the case.
3101 		 */
3102 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3103 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3104 			printf("%s: incoming packet spilled, resetting\n",
3105 			    sc->sc_dev.dv_xname);
3106 			(void)atw_init(ifp);
3107 			return;
3108 		}
3109 
3110 		/*
3111 		 * If an error occurred, update stats, clear the status
3112 		 * word, and leave the packet buffer in place.  It will
3113 		 * simply be reused the next time the ring comes around.
3114 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3115 		 * error.
3116 		 */
3117 
3118 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3119 		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3120 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3121 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3122 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3123 				ATW_RXSTAT_ICVE)) != 0)) {
3124 #define	PRINTERR(bit, str)						\
3125 			if (rxstat & (bit))				\
3126 				printf("%s: receive error: %s\n",	\
3127 				    sc->sc_dev.dv_xname, str)
3128 			ifp->if_ierrors++;
3129 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3130 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3131 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3132 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3133 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3134 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3135 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3136 #undef PRINTERR
3137 			ATW_INIT_RXDESC(sc, i);
3138 			continue;
3139 		}
3140 
3141 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3142 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3143 
3144 		/*
3145 		 * No errors; receive the packet.  Note the ADM8211
3146 		 * includes the CRC in promiscuous mode.
3147 		 */
3148 		len = SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3149 
3150 		/*
3151 		 * Allocate a new mbuf cluster.  If that fails, we are
3152 		 * out of memory, and must drop the packet and recycle
3153 		 * the buffer that's already attached to this descriptor.
3154 		 */
3155 		m = rxs->rxs_mbuf;
3156 		if (atw_add_rxbuf(sc, i) != 0) {
3157 			ifp->if_ierrors++;
3158 			ATW_INIT_RXDESC(sc, i);
3159 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3160 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3161 			continue;
3162 		}
3163 
3164 		ifp->if_ipackets++;
3165 		if (sc->sc_opmode & ATW_NAR_PR)
3166 			len -= IEEE80211_CRC_LEN;
3167 		m->m_pkthdr.rcvif = ifp;
3168 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3169 
3170 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3171 			rate = 0;
3172 		else
3173 			rate = rate_tbl[rate0];
3174 
3175 		/* The RSSI comes straight from a register in the
3176 		 * baseband processor.  I know that for the RF3000,
3177 		 * the RSSI register also contains the antenna-selection
3178 		 * bits.  Mask those off.
3179 		 *
3180 		 * TBD Treat other basebands.
3181 		 */
3182 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3183 			rssi = rssi0 & RF3000_RSSI_MASK;
3184 		else
3185 			rssi = rssi0;
3186 
3187  #if NBPFILTER > 0
3188 		/* Pass this up to any BPF listeners. */
3189 		if (sc->sc_radiobpf != NULL) {
3190 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3191 
3192 			tap->ar_rate = rate;
3193 			tap->ar_chan_freq = htole16(ic->ic_curchan->ic_freq);
3194 			tap->ar_chan_flags = htole16(ic->ic_curchan->ic_flags);
3195 
3196 			/* TBD verify units are dB */
3197 			tap->ar_antsignal = (int)rssi;
3198 			/* TBD tap->ar_flags */
3199 
3200 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3201 			    tap->ar_ihdr.it_len, m);
3202  		}
3203  #endif /* NPBFILTER > 0 */
3204 
3205 		wh = mtod(m, struct ieee80211_frame_min *);
3206 		ni = ieee80211_find_rxnode(ic, wh);
3207 #if 0
3208 		if (atw_hw_decrypted(sc, wh)) {
3209 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3210 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3211 		}
3212 #endif
3213 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3214 		ieee80211_free_node(ni);
3215 	}
3216 
3217 	/* Update the receive pointer. */
3218 	sc->sc_rxptr = i;
3219 }
3220 
3221 /*
3222  * atw_txintr:
3223  *
3224  *	Helper; handle transmit interrupts.
3225  */
3226 void
3227 atw_txintr(struct atw_softc *sc)
3228 {
3229 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3230     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3231 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3232     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3233 
3234 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3235 	struct ifnet *ifp = &sc->sc_if;
3236 	struct atw_txsoft *txs;
3237 	u_int32_t txstat;
3238 
3239 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3240 	    sc->sc_dev.dv_xname, sc->sc_flags));
3241 
3242 	/*
3243 	 * Go through our Tx list and free mbufs for those
3244 	 * frames that have been transmitted.
3245 	 */
3246 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3247 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3248 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3249 
3250 #ifdef ATW_DEBUG
3251 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3252 			int i;
3253 			printf("    txsoft %p transmit chain:\n", txs);
3254 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3255 			    txs->txs_ndescs - 1,
3256 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3257 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3258 				printf("     descriptor %d:\n", i);
3259 				printf("       at_status:   0x%08x\n",
3260 				    le32toh(sc->sc_txdescs[i].at_stat));
3261 				printf("       at_flags:      0x%08x\n",
3262 				    le32toh(sc->sc_txdescs[i].at_flags));
3263 				printf("       at_buf1: 0x%08x\n",
3264 				    le32toh(sc->sc_txdescs[i].at_buf1));
3265 				printf("       at_buf2: 0x%08x\n",
3266 				    le32toh(sc->sc_txdescs[i].at_buf2));
3267 				if (i == txs->txs_lastdesc)
3268 					break;
3269 			}
3270 		}
3271 #endif
3272 
3273 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3274 		if (txstat & ATW_TXSTAT_OWN)
3275 			break;
3276 
3277 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3278 
3279 		sc->sc_txfree += txs->txs_ndescs;
3280 
3281 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3282 		    0, txs->txs_dmamap->dm_mapsize,
3283 		    BUS_DMASYNC_POSTWRITE);
3284 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3285 		m_freem(txs->txs_mbuf);
3286 		txs->txs_mbuf = NULL;
3287 
3288 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3289 
3290 		KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3291 		        sc->sc_txfree == 0));
3292 		ifp->if_flags &= ~IFF_OACTIVE;
3293 
3294 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3295 		    (txstat & TXSTAT_ERRMASK) != 0) {
3296 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3297 			    txstat_buf, sizeof(txstat_buf));
3298 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3299 			    txstat_buf,
3300 			    SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3301 		}
3302 
3303 		/*
3304 		 * Check for errors and collisions.
3305 		 */
3306 		if (txstat & ATW_TXSTAT_TUF)
3307 			sc->sc_stats.ts_tx_tuf++;
3308 		if (txstat & ATW_TXSTAT_TLT)
3309 			sc->sc_stats.ts_tx_tlt++;
3310 		if (txstat & ATW_TXSTAT_TRT)
3311 			sc->sc_stats.ts_tx_trt++;
3312 		if (txstat & ATW_TXSTAT_TRO)
3313 			sc->sc_stats.ts_tx_tro++;
3314 		if (txstat & ATW_TXSTAT_SOFBR) {
3315 			sc->sc_stats.ts_tx_sofbr++;
3316 		}
3317 
3318 		if ((txstat & ATW_TXSTAT_ES) == 0)
3319 			ifp->if_collisions +=
3320 			    SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3321 		else
3322 			ifp->if_oerrors++;
3323 
3324 		ifp->if_opackets++;
3325 	}
3326 
3327 	/*
3328 	 * If there are no more pending transmissions, cancel the watchdog
3329 	 * timer.
3330 	 */
3331 	if (txs == NULL) {
3332 		KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3333 		sc->sc_tx_timer = 0;
3334 	}
3335 #undef TXSTAT_ERRMASK
3336 #undef TXSTAT_FMT
3337 }
3338 
3339 /*
3340  * atw_watchdog:	[ifnet interface function]
3341  *
3342  *	Watchdog timer handler.
3343  */
3344 void
3345 atw_watchdog(struct ifnet *ifp)
3346 {
3347 	struct atw_softc *sc = ifp->if_softc;
3348 	struct ieee80211com *ic = &sc->sc_ic;
3349 
3350 	ifp->if_timer = 0;
3351 	if (ATW_IS_ENABLED(sc) == 0)
3352 		return;
3353 
3354 	if (sc->sc_rescan_timer) {
3355 		if (--sc->sc_rescan_timer == 0)
3356 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3357 	}
3358 	if (sc->sc_tx_timer) {
3359 		if (--sc->sc_tx_timer == 0 &&
3360 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3361 			printf("%s: transmit timeout\n", ifp->if_xname);
3362 			ifp->if_oerrors++;
3363 			(void)atw_init(ifp);
3364 			atw_start(ifp);
3365 		}
3366 	}
3367 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3368 		ifp->if_timer = 1;
3369 	ieee80211_watchdog(ic);
3370 }
3371 
3372 #ifdef ATW_DEBUG
3373 static void
3374 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3375 {
3376 	struct atw_softc *sc = ifp->if_softc;
3377 	struct mbuf *m;
3378 	int i, noctets = 0;
3379 
3380 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3381 	    m0->m_pkthdr.len);
3382 
3383 	for (m = m0; m; m = m->m_next) {
3384 		if (m->m_len == 0)
3385 			continue;
3386 		for (i = 0; i < m->m_len; i++) {
3387 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3388 			if (++noctets % 24 == 0)
3389 				printf("\n");
3390 		}
3391 	}
3392 	printf("%s%s: %d bytes emitted\n",
3393 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3394 }
3395 #endif /* ATW_DEBUG */
3396 
3397 /*
3398  * atw_start:		[ifnet interface function]
3399  *
3400  *	Start packet transmission on the interface.
3401  */
3402 void
3403 atw_start(struct ifnet *ifp)
3404 {
3405 	struct atw_softc *sc = ifp->if_softc;
3406 	struct ieee80211_key *k;
3407 	struct ieee80211com *ic = &sc->sc_ic;
3408 	struct ieee80211_node *ni;
3409 	struct ieee80211_frame_min *whm;
3410 	struct ieee80211_frame *wh;
3411 	struct atw_frame *hh;
3412 	struct mbuf *m0, *m;
3413 	struct atw_txsoft *txs, *last_txs;
3414 	struct atw_txdesc *txd;
3415 	int npkt, rate;
3416 	bus_dmamap_t dmamap;
3417 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3418 
3419 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3420 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3421 
3422 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3423 		return;
3424 
3425 	/*
3426 	 * Remember the previous number of free descriptors and
3427 	 * the first descriptor we'll use.
3428 	 */
3429 	ofree = sc->sc_txfree;
3430 	firsttx = lasttx = sc->sc_txnext;
3431 
3432 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3433 	    sc->sc_dev.dv_xname, ofree, firsttx));
3434 
3435 	/*
3436 	 * Loop through the send queue, setting up transmit descriptors
3437 	 * until we drain the queue, or use up all available transmit
3438 	 * descriptors.
3439 	 */
3440 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3441 	       sc->sc_txfree != 0) {
3442 
3443 		/*
3444 		 * Grab a packet off the management queue, if it
3445 		 * is not empty. Otherwise, from the data queue.
3446 		 */
3447 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3448 		if (m0 != NULL) {
3449 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3450 			m0->m_pkthdr.rcvif = NULL;
3451 		} else if (ic->ic_state != IEEE80211_S_RUN)
3452 			break; /* send no data until associated */
3453 		else {
3454 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3455 			if (m0 == NULL)
3456 				break;
3457 #if NBPFILTER > 0
3458 			if (ifp->if_bpf != NULL)
3459 				bpf_mtap(ifp->if_bpf, m0);
3460 #endif /* NBPFILTER > 0 */
3461 			ni = ieee80211_find_txnode(ic,
3462 			    mtod(m0, struct ether_header *)->ether_dhost);
3463 			if (ni == NULL) {
3464 				ifp->if_oerrors++;
3465 				break;
3466 			}
3467 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3468 				ieee80211_free_node(ni);
3469 				ifp->if_oerrors++;
3470 				break;
3471 			}
3472 		}
3473 
3474 		rate = MAX(ieee80211_get_rate(ni), 2);
3475 
3476 		whm = mtod(m0, struct ieee80211_frame_min *);
3477 
3478 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3479 			k = NULL;
3480 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3481 			m_freem(m0);
3482 			ieee80211_free_node(ni);
3483 			ifp->if_oerrors++;
3484 			break;
3485 		}
3486 
3487 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3488 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3489 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3490 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3491 			m_freem(m0);
3492 			break;
3493 		}
3494 
3495 		/* XXX Misleading if fragmentation is enabled.  Better
3496 		 * to fragment in software?
3497 		 */
3498 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3499 
3500 #if NBPFILTER > 0
3501 		/*
3502 		 * Pass the packet to any BPF listeners.
3503 		 */
3504 		if (ic->ic_rawbpf != NULL)
3505 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3506 
3507 		if (sc->sc_radiobpf != NULL) {
3508 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3509 
3510 			tap->at_rate = rate;
3511 			tap->at_chan_freq = htole16(ic->ic_curchan->ic_freq);
3512 			tap->at_chan_flags = htole16(ic->ic_curchan->ic_flags);
3513 
3514 			/* TBD tap->at_flags */
3515 
3516 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3517 			    tap->at_ihdr.it_len, m0);
3518 		}
3519 #endif /* NBPFILTER > 0 */
3520 
3521 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3522 
3523 		if (ni != NULL)
3524 			ieee80211_free_node(ni);
3525 
3526 		if (m0 == NULL) {
3527 			ifp->if_oerrors++;
3528 			break;
3529 		}
3530 
3531 		/* just to make sure. */
3532 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3533 
3534 		if (m0 == NULL) {
3535 			ifp->if_oerrors++;
3536 			break;
3537 		}
3538 
3539 		hh = mtod(m0, struct atw_frame *);
3540 		wh = &hh->atw_ihdr;
3541 
3542 		/* Copy everything we need from the 802.11 header:
3543 		 * Frame Control; address 1, address 3, or addresses
3544 		 * 3 and 4. NIC fills in BSSID, SA.
3545 		 */
3546 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3547 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3548 				panic("%s: illegal WDS frame",
3549 				    sc->sc_dev.dv_xname);
3550 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3551 		} else
3552 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3553 
3554 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3555 
3556 		/* initialize remaining Tx parameters */
3557 		memset(&hh->u, 0, sizeof(hh->u));
3558 
3559 		hh->atw_rate = rate * 5;
3560 		/* XXX this could be incorrect if M_FCS. _encap should
3561 		 * probably strip FCS just in case it sticks around in
3562 		 * bridged packets.
3563 		 */
3564 		hh->atw_service = 0x00; /* XXX guess */
3565 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3566 		    sizeof(struct atw_frame));
3567 
3568 		hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3569 		hh->atw_rtylmt = 3;
3570 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3571 #if 0
3572 		if (do_encrypt) {
3573 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3574 			hh->atw_keyid = ic->ic_def_txkey;
3575 		}
3576 #endif
3577 
3578 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3579 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3580 		if (txs->txs_d0.d_residue)
3581 			hh->atw_head_plcplen |= htole16(0x8000);
3582 		if (txs->txs_dn.d_residue)
3583 			hh->atw_tail_plcplen |= htole16(0x8000);
3584 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3585 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3586 
3587 		/* never fragment multicast frames */
3588 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3589 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3590 		} else if (sc->sc_flags & ATWF_RTSCTS) {
3591 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3592 		}
3593 
3594 #ifdef ATW_DEBUG
3595 		hh->atw_fragnum = 0;
3596 
3597 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3598 			printf("%s: dst = %s, rate = 0x%02x, "
3599 			    "service = 0x%02x, paylen = 0x%04x\n",
3600 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3601 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3602 
3603 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3604 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3605 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3606 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3607 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3608 			    hh->atw_tail_dur, hh->atw_head_dur);
3609 
3610 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3611 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3612 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3613 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3614 
3615 			printf("%s: keyid = %d\n",
3616 			    sc->sc_dev.dv_xname, hh->atw_keyid);
3617 
3618 			atw_dump_pkt(ifp, m0);
3619 		}
3620 #endif /* ATW_DEBUG */
3621 
3622 		dmamap = txs->txs_dmamap;
3623 
3624 		/*
3625 		 * Load the DMA map.  Copy and try (once) again if the packet
3626 		 * didn't fit in the alloted number of segments.
3627 		 */
3628 		for (first = 1;
3629 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3630 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3631 		     first = 0) {
3632 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3633 			if (m == NULL) {
3634 				printf("%s: unable to allocate Tx mbuf\n",
3635 				    sc->sc_dev.dv_xname);
3636 				break;
3637 			}
3638 			if (m0->m_pkthdr.len > MHLEN) {
3639 				MCLGET(m, M_DONTWAIT);
3640 				if ((m->m_flags & M_EXT) == 0) {
3641 					printf("%s: unable to allocate Tx "
3642 					    "cluster\n", sc->sc_dev.dv_xname);
3643 					m_freem(m);
3644 					break;
3645 				}
3646 			}
3647 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3648 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3649 			m_freem(m0);
3650 			m0 = m;
3651 			m = NULL;
3652 		}
3653 		if (error != 0) {
3654 			printf("%s: unable to load Tx buffer, "
3655 			    "error = %d\n", sc->sc_dev.dv_xname, error);
3656 			m_freem(m0);
3657 			break;
3658 		}
3659 
3660 		/*
3661 		 * Ensure we have enough descriptors free to describe
3662 		 * the packet.
3663 		 */
3664 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3665 			/*
3666 			 * Not enough free descriptors to transmit
3667 			 * this packet.  Unload the DMA map and
3668 			 * drop the packet.  Notify the upper layer
3669 			 * that there are no more slots left.
3670 			 *
3671 			 * XXX We could allocate an mbuf and copy, but
3672 			 * XXX it is worth it?
3673 			 */
3674 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3675 			m_freem(m0);
3676 			break;
3677 		}
3678 
3679 		/*
3680 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3681 		 */
3682 
3683 		/* Sync the DMA map. */
3684 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3685 		    BUS_DMASYNC_PREWRITE);
3686 
3687 		/* XXX arbitrary retry limit; 8 because I have seen it in
3688 		 * use already and maybe 0 means "no tries" !
3689 		 */
3690 		ctl = htole32(SHIFTIN(8, ATW_TXCTL_TL_MASK));
3691 
3692 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3693 		    sc->sc_dev.dv_xname, rate * 5));
3694 		ctl |= htole32(SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3695 
3696 		/*
3697 		 * Initialize the transmit descriptors.
3698 		 */
3699 		for (nexttx = sc->sc_txnext, seg = 0;
3700 		     seg < dmamap->dm_nsegs;
3701 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3702 			/*
3703 			 * If this is the first descriptor we're
3704 			 * enqueueing, don't set the OWN bit just
3705 			 * yet.  That could cause a race condition.
3706 			 * We'll do it below.
3707 			 */
3708 			txd = &sc->sc_txdescs[nexttx];
3709 			txd->at_ctl = ctl |
3710 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3711 
3712 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3713 			txd->at_flags =
3714 			    htole32(SHIFTIN(dmamap->dm_segs[seg].ds_len,
3715 			                   ATW_TXFLAG_TBS1_MASK)) |
3716 			    ((nexttx == (ATW_NTXDESC - 1))
3717 			        ? htole32(ATW_TXFLAG_TER) : 0);
3718 			lasttx = nexttx;
3719 		}
3720 
3721 		/* Set `first segment' and `last segment' appropriately. */
3722 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3723 		    htole32(ATW_TXFLAG_FS);
3724 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3725 
3726 #ifdef ATW_DEBUG
3727 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3728 			printf("     txsoft %p transmit chain:\n", txs);
3729 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3730 				printf("     descriptor %d:\n", seg);
3731 				printf("       at_ctl:   0x%08x\n",
3732 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3733 				printf("       at_flags:      0x%08x\n",
3734 				    le32toh(sc->sc_txdescs[seg].at_flags));
3735 				printf("       at_buf1: 0x%08x\n",
3736 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3737 				printf("       at_buf2: 0x%08x\n",
3738 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3739 				if (seg == lasttx)
3740 					break;
3741 			}
3742 		}
3743 #endif
3744 
3745 		/* Sync the descriptors we're using. */
3746 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3747 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3748 
3749 		/*
3750 		 * Store a pointer to the packet so we can free it later,
3751 		 * and remember what txdirty will be once the packet is
3752 		 * done.
3753 		 */
3754 		txs->txs_mbuf = m0;
3755 		txs->txs_firstdesc = sc->sc_txnext;
3756 		txs->txs_lastdesc = lasttx;
3757 		txs->txs_ndescs = dmamap->dm_nsegs;
3758 
3759 		/* Advance the tx pointer. */
3760 		sc->sc_txfree -= dmamap->dm_nsegs;
3761 		sc->sc_txnext = nexttx;
3762 
3763 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3764 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3765 
3766 		last_txs = txs;
3767 	}
3768 
3769 	if (sc->sc_txfree != ofree) {
3770 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3771 		    sc->sc_dev.dv_xname, lasttx, firsttx));
3772 		/*
3773 		 * Cause a transmit interrupt to happen on the
3774 		 * last packet we enqueued.
3775 		 */
3776 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3777 		ATW_CDTXSYNC(sc, lasttx, 1,
3778 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3779 
3780 		/*
3781 		 * The entire packet chain is set up.  Give the
3782 		 * first descriptor to the chip now.
3783 		 */
3784 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3785 		ATW_CDTXSYNC(sc, firsttx, 1,
3786 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3787 
3788 		/* Wake up the transmitter. */
3789 		ATW_WRITE(sc, ATW_TDR, 0x1);
3790 
3791 		if (txs == NULL || sc->sc_txfree == 0)
3792 			ifp->if_flags |= IFF_OACTIVE;
3793 
3794 		/* Set a watchdog timer in case the chip flakes out. */
3795 		sc->sc_tx_timer = 5;
3796 		ifp->if_timer = 1;
3797 	}
3798 }
3799 
3800 /*
3801  * atw_power:
3802  *
3803  *	Power management (suspend/resume) hook.
3804  */
3805 void
3806 atw_power(int why, void *arg)
3807 {
3808 	struct atw_softc *sc = arg;
3809 	struct ifnet *ifp = &sc->sc_if;
3810 	int s;
3811 
3812 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3813 
3814 	s = splnet();
3815 	switch (why) {
3816 	case PWR_STANDBY:
3817 		/* XXX do nothing. */
3818 		break;
3819 	case PWR_SUSPEND:
3820 		atw_stop(ifp, 0);
3821 		if (sc->sc_power != NULL)
3822 			(*sc->sc_power)(sc, why);
3823 		break;
3824 	case PWR_RESUME:
3825 		if (ifp->if_flags & IFF_UP) {
3826 			if (sc->sc_power != NULL)
3827 				(*sc->sc_power)(sc, why);
3828 			atw_init(ifp);
3829 		}
3830 		break;
3831 	case PWR_SOFTSUSPEND:
3832 	case PWR_SOFTSTANDBY:
3833 	case PWR_SOFTRESUME:
3834 		break;
3835 	}
3836 	splx(s);
3837 }
3838 
3839 /*
3840  * atw_ioctl:		[ifnet interface function]
3841  *
3842  *	Handle control requests from the operator.
3843  */
3844 int
3845 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3846 {
3847 	struct atw_softc *sc = ifp->if_softc;
3848 	struct ifreq *ifr = (struct ifreq *)data;
3849 	int s, error = 0;
3850 
3851 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3852 	if (!device_is_active(&sc->sc_dev))
3853 		return ENXIO;
3854 
3855 	s = splnet();
3856 
3857 	switch (cmd) {
3858 	case SIOCSIFFLAGS:
3859 		if (ifp->if_flags & IFF_UP) {
3860 			if (ATW_IS_ENABLED(sc)) {
3861 				/*
3862 				 * To avoid rescanning another access point,
3863 				 * do not call atw_init() here.  Instead,
3864 				 * only reflect media settings.
3865 				 */
3866 				atw_filter_setup(sc);
3867 			} else
3868 				error = atw_init(ifp);
3869 		} else if (ATW_IS_ENABLED(sc))
3870 			atw_stop(ifp, 1);
3871 		break;
3872 	case SIOCADDMULTI:
3873 	case SIOCDELMULTI:
3874 		error = (cmd == SIOCADDMULTI) ?
3875 		    ether_addmulti(ifr, &sc->sc_ec) :
3876 		    ether_delmulti(ifr, &sc->sc_ec);
3877 		if (error == ENETRESET) {
3878 			if (ifp->if_flags & IFF_RUNNING)
3879 				atw_filter_setup(sc); /* do not rescan */
3880 			error = 0;
3881 		}
3882 		break;
3883 	default:
3884 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3885 		if (error == ENETRESET || error == ERESTART) {
3886 			if (is_running(ifp))
3887 				error = atw_init(ifp);
3888 			else
3889 				error = 0;
3890 		}
3891 		break;
3892 	}
3893 
3894 	/* Try to get more packets going. */
3895 	if (ATW_IS_ENABLED(sc))
3896 		atw_start(ifp);
3897 
3898 	splx(s);
3899 	return (error);
3900 }
3901 
3902 static int
3903 atw_media_change(struct ifnet *ifp)
3904 {
3905 	int error;
3906 
3907 	error = ieee80211_media_change(ifp);
3908 	if (error == ENETRESET) {
3909 		if (is_running(ifp))
3910 			error = atw_init(ifp);
3911 		else
3912 			error = 0;
3913 	}
3914 	return error;
3915 }
3916