1 /* $NetBSD: atw.c,v 1.160 2016/06/10 13:27:13 ozaki-r Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by David Young, by Jason R. Thorpe, and by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Device driver for the ADMtek ADM8211 802.11 MAC/BBP. 34 */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.160 2016/06/10 13:27:13 ozaki-r Exp $"); 38 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/callout.h> 43 #include <sys/mbuf.h> 44 #include <sys/malloc.h> 45 #include <sys/kernel.h> 46 #include <sys/socket.h> 47 #include <sys/ioctl.h> 48 #include <sys/errno.h> 49 #include <sys/device.h> 50 #include <sys/kauth.h> 51 #include <sys/time.h> 52 #include <sys/proc.h> 53 #include <lib/libkern/libkern.h> 54 55 #include <machine/endian.h> 56 57 #include <net/if.h> 58 #include <net/if_dl.h> 59 #include <net/if_media.h> 60 #include <net/if_ether.h> 61 62 #include <net80211/ieee80211_netbsd.h> 63 #include <net80211/ieee80211_var.h> 64 #include <net80211/ieee80211_radiotap.h> 65 66 #include <net/bpf.h> 67 68 #include <sys/bus.h> 69 #include <sys/intr.h> 70 71 #include <dev/ic/atwreg.h> 72 #include <dev/ic/rf3000reg.h> 73 #include <dev/ic/si4136reg.h> 74 #include <dev/ic/atwvar.h> 75 #include <dev/ic/smc93cx6var.h> 76 77 /* XXX TBD open questions 78 * 79 * 80 * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps 81 * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC 82 * handle this for me? 83 * 84 */ 85 /* device attachment 86 * 87 * print TOFS[012] 88 * 89 * device initialization 90 * 91 * clear ATW_FRCTL_MAXPSP to disable max power saving 92 * set ATW_TXBR_ALCUPDATE to enable ALC 93 * set TOFS[012]? (hope not) 94 * disable rx/tx 95 * set ATW_PAR_SWR (software reset) 96 * wait for ATW_PAR_SWR clear 97 * disable interrupts 98 * ack status register 99 * enable interrupts 100 * 101 * rx/tx initialization 102 * 103 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST 104 * allocate and init descriptor rings 105 * write ATW_PAR_DSL (descriptor skip length) 106 * write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB 107 * write ATW_NAR_SQ for one/both transmit descriptor rings 108 * write ATW_NAR_SQ for one/both transmit descriptor rings 109 * enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST 110 * 111 * rx/tx end 112 * 113 * stop DMA 114 * disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST 115 * flush tx w/ ATW_NAR_HF 116 * 117 * scan 118 * 119 * initialize rx/tx 120 * 121 * BSS join: (re)association response 122 * 123 * set ATW_FRCTL_AID 124 * 125 * optimizations ??? 126 * 127 */ 128 129 #define ATW_REFSLAVE /* slavishly do what the reference driver does */ 130 131 int atw_pseudo_milli = 1; 132 int atw_magic_delay1 = 100 * 1000; 133 int atw_magic_delay2 = 100 * 1000; 134 /* more magic multi-millisecond delays (units: microseconds) */ 135 int atw_nar_delay = 20 * 1000; 136 int atw_magic_delay4 = 10 * 1000; 137 int atw_rf_delay1 = 10 * 1000; 138 int atw_rf_delay2 = 5 * 1000; 139 int atw_plcphd_delay = 2 * 1000; 140 int atw_bbp_io_enable_delay = 20 * 1000; 141 int atw_bbp_io_disable_delay = 2 * 1000; 142 int atw_writewep_delay = 1000; 143 int atw_beacon_len_adjust = 4; 144 int atw_dwelltime = 200; 145 int atw_xindiv2 = 0; 146 147 #ifdef ATW_DEBUG 148 int atw_debug = 0; 149 150 #define ATW_DPRINTF(x) if (atw_debug > 0) printf x 151 #define ATW_DPRINTF2(x) if (atw_debug > 1) printf x 152 #define ATW_DPRINTF3(x) if (atw_debug > 2) printf x 153 #define DPRINTF(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x 154 #define DPRINTF2(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x) 155 #define DPRINTF3(sc, x) if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x) 156 157 static void atw_dump_pkt(struct ifnet *, struct mbuf *); 158 static void atw_print_regs(struct atw_softc *, const char *); 159 160 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */ 161 # ifdef ATW_BBPDEBUG 162 static void atw_rf3000_print(struct atw_softc *); 163 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *); 164 # endif /* ATW_BBPDEBUG */ 165 166 # ifdef ATW_SYNDEBUG 167 static void atw_si4126_print(struct atw_softc *); 168 static int atw_si4126_read(struct atw_softc *, u_int, u_int *); 169 # endif /* ATW_SYNDEBUG */ 170 #define __atwdebugused /* empty */ 171 #else 172 #define ATW_DPRINTF(x) 173 #define ATW_DPRINTF2(x) 174 #define ATW_DPRINTF3(x) 175 #define DPRINTF(sc, x) /* nothing */ 176 #define DPRINTF2(sc, x) /* nothing */ 177 #define DPRINTF3(sc, x) /* nothing */ 178 #define __atwdebugused __unused 179 #endif 180 181 /* ifnet methods */ 182 int atw_init(struct ifnet *); 183 int atw_ioctl(struct ifnet *, u_long, void *); 184 void atw_start(struct ifnet *); 185 void atw_stop(struct ifnet *, int); 186 void atw_watchdog(struct ifnet *); 187 188 /* Device attachment */ 189 void atw_attach(struct atw_softc *); 190 int atw_detach(struct atw_softc *); 191 static void atw_evcnt_attach(struct atw_softc *); 192 static void atw_evcnt_detach(struct atw_softc *); 193 194 /* Rx/Tx process */ 195 int atw_add_rxbuf(struct atw_softc *, int); 196 void atw_idle(struct atw_softc *, u_int32_t); 197 void atw_rxdrain(struct atw_softc *); 198 void atw_txdrain(struct atw_softc *); 199 200 /* Device (de)activation and power state */ 201 void atw_reset(struct atw_softc *); 202 203 /* Interrupt handlers */ 204 void atw_linkintr(struct atw_softc *, u_int32_t); 205 void atw_rxintr(struct atw_softc *); 206 void atw_txintr(struct atw_softc *, uint32_t); 207 208 /* 802.11 state machine */ 209 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int); 210 static void atw_next_scan(void *); 211 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *, 212 struct ieee80211_node *, int, int, u_int32_t); 213 static int atw_tune(struct atw_softc *); 214 215 /* Device initialization */ 216 static void atw_bbp_io_init(struct atw_softc *); 217 static void atw_cfp_init(struct atw_softc *); 218 static void atw_cmdr_init(struct atw_softc *); 219 static void atw_ifs_init(struct atw_softc *); 220 static void atw_nar_init(struct atw_softc *); 221 static void atw_response_times_init(struct atw_softc *); 222 static void atw_rf_reset(struct atw_softc *); 223 static void atw_test1_init(struct atw_softc *); 224 static void atw_tofs0_init(struct atw_softc *); 225 static void atw_tofs2_init(struct atw_softc *); 226 static void atw_txlmt_init(struct atw_softc *); 227 static void atw_wcsr_init(struct atw_softc *); 228 229 /* Key management */ 230 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *); 231 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *, 232 const u_int8_t[IEEE80211_ADDR_LEN]); 233 static void atw_key_update_begin(struct ieee80211com *); 234 static void atw_key_update_end(struct ieee80211com *); 235 236 /* RAM/ROM utilities */ 237 static void atw_clear_sram(struct atw_softc *); 238 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int); 239 static int atw_read_srom(struct atw_softc *); 240 241 /* BSS setup */ 242 static void atw_predict_beacon(struct atw_softc *); 243 static void atw_start_beacon(struct atw_softc *, int); 244 static void atw_write_bssid(struct atw_softc *); 245 static void atw_write_ssid(struct atw_softc *); 246 static void atw_write_sup_rates(struct atw_softc *); 247 static void atw_write_wep(struct atw_softc *); 248 249 /* Media */ 250 static int atw_media_change(struct ifnet *); 251 252 static void atw_filter_setup(struct atw_softc *); 253 254 /* 802.11 utilities */ 255 static uint64_t atw_get_tsft(struct atw_softc *); 256 static inline uint32_t atw_last_even_tsft(uint32_t, uint32_t, 257 uint32_t); 258 static struct ieee80211_node *atw_node_alloc(struct ieee80211_node_table *); 259 static void atw_node_free(struct ieee80211_node *); 260 261 /* 262 * Tuner/transceiver/modem 263 */ 264 static void atw_bbp_io_enable(struct atw_softc *, int); 265 266 /* RFMD RF3000 Baseband Processor */ 267 static int atw_rf3000_init(struct atw_softc *); 268 static int atw_rf3000_tune(struct atw_softc *, u_int); 269 static int atw_rf3000_write(struct atw_softc *, u_int, u_int); 270 271 /* Silicon Laboratories Si4126 RF/IF Synthesizer */ 272 static void atw_si4126_tune(struct atw_softc *, u_int); 273 static void atw_si4126_write(struct atw_softc *, u_int, u_int); 274 275 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE; 276 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE; 277 278 const char *atw_tx_state[] = { 279 "STOPPED", 280 "RUNNING - read descriptor", 281 "RUNNING - transmitting", 282 "RUNNING - filling fifo", /* XXX */ 283 "SUSPENDED", 284 "RUNNING -- write descriptor", 285 "RUNNING -- write last descriptor", 286 "RUNNING - fifo full" 287 }; 288 289 const char *atw_rx_state[] = { 290 "STOPPED", 291 "RUNNING - read descriptor", 292 "RUNNING - check this packet, pre-fetch next", 293 "RUNNING - wait for reception", 294 "SUSPENDED", 295 "RUNNING - write descriptor", 296 "RUNNING - flush fifo", 297 "RUNNING - fifo drain" 298 }; 299 300 static inline int 301 is_running(struct ifnet *ifp) 302 { 303 return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP); 304 } 305 306 int 307 atw_activate(device_t self, enum devact act) 308 { 309 struct atw_softc *sc = device_private(self); 310 311 switch (act) { 312 case DVACT_DEACTIVATE: 313 if_deactivate(&sc->sc_if); 314 return 0; 315 default: 316 return EOPNOTSUPP; 317 } 318 } 319 320 bool 321 atw_suspend(device_t self, const pmf_qual_t *qual) 322 { 323 struct atw_softc *sc = device_private(self); 324 325 atw_rxdrain(sc); 326 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID; 327 328 return true; 329 } 330 331 /* Returns -1 on failure. */ 332 static int 333 atw_read_srom(struct atw_softc *sc) 334 { 335 struct seeprom_descriptor sd; 336 uint32_t test0, fail_bits; 337 338 (void)memset(&sd, 0, sizeof(sd)); 339 340 test0 = ATW_READ(sc, ATW_TEST0); 341 342 switch (sc->sc_rev) { 343 case ATW_REVISION_BA: 344 case ATW_REVISION_CA: 345 fail_bits = ATW_TEST0_EPNE; 346 break; 347 default: 348 fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM; 349 break; 350 } 351 if ((test0 & fail_bits) != 0) { 352 aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n"); 353 return -1; 354 } 355 356 switch (test0 & ATW_TEST0_EPTYP_MASK) { 357 case ATW_TEST0_EPTYP_93c66: 358 ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev))); 359 sc->sc_sromsz = 512; 360 sd.sd_chip = C56_66; 361 break; 362 case ATW_TEST0_EPTYP_93c46: 363 ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev))); 364 sc->sc_sromsz = 128; 365 sd.sd_chip = C46; 366 break; 367 default: 368 printf("%s: unknown SROM type %" __PRIuBITS "\n", 369 device_xname(sc->sc_dev), 370 __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK)); 371 return -1; 372 } 373 374 sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT); 375 376 if (sc->sc_srom == NULL) { 377 aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n"); 378 return -1; 379 } 380 381 (void)memset(sc->sc_srom, 0, sc->sc_sromsz); 382 383 /* ADM8211 has a single 32-bit register for controlling the 384 * 93cx6 SROM. Bit SRS enables the serial port. There is no 385 * "ready" bit. The ADM8211 input/output sense is the reverse 386 * of read_seeprom's. 387 */ 388 sd.sd_tag = sc->sc_st; 389 sd.sd_bsh = sc->sc_sh; 390 sd.sd_regsize = 4; 391 sd.sd_control_offset = ATW_SPR; 392 sd.sd_status_offset = ATW_SPR; 393 sd.sd_dataout_offset = ATW_SPR; 394 sd.sd_CK = ATW_SPR_SCLK; 395 sd.sd_CS = ATW_SPR_SCS; 396 sd.sd_DI = ATW_SPR_SDO; 397 sd.sd_DO = ATW_SPR_SDI; 398 sd.sd_MS = ATW_SPR_SRS; 399 sd.sd_RDY = 0; 400 401 if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) { 402 aprint_error_dev(sc->sc_dev, "could not read SROM\n"); 403 free(sc->sc_srom, M_DEVBUF); 404 return -1; 405 } 406 #ifdef ATW_DEBUG 407 { 408 int i; 409 ATW_DPRINTF(("\nSerial EEPROM:\n\t")); 410 for (i = 0; i < sc->sc_sromsz/2; i = i + 1) { 411 if (((i % 8) == 0) && (i != 0)) { 412 ATW_DPRINTF(("\n\t")); 413 } 414 ATW_DPRINTF((" 0x%x", sc->sc_srom[i])); 415 } 416 ATW_DPRINTF(("\n")); 417 } 418 #endif /* ATW_DEBUG */ 419 return 0; 420 } 421 422 #ifdef ATW_DEBUG 423 static void 424 atw_print_regs(struct atw_softc *sc, const char *where) 425 { 426 #define PRINTREG(sc, reg) \ 427 ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \ 428 device_xname(sc->sc_dev), reg, ATW_READ(sc, reg))) 429 430 ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where)); 431 432 PRINTREG(sc, ATW_PAR); 433 PRINTREG(sc, ATW_FRCTL); 434 PRINTREG(sc, ATW_TDR); 435 PRINTREG(sc, ATW_WTDP); 436 PRINTREG(sc, ATW_RDR); 437 PRINTREG(sc, ATW_WRDP); 438 PRINTREG(sc, ATW_RDB); 439 PRINTREG(sc, ATW_CSR3A); 440 PRINTREG(sc, ATW_TDBD); 441 PRINTREG(sc, ATW_TDBP); 442 PRINTREG(sc, ATW_STSR); 443 PRINTREG(sc, ATW_CSR5A); 444 PRINTREG(sc, ATW_NAR); 445 PRINTREG(sc, ATW_CSR6A); 446 PRINTREG(sc, ATW_IER); 447 PRINTREG(sc, ATW_CSR7A); 448 PRINTREG(sc, ATW_LPC); 449 PRINTREG(sc, ATW_TEST1); 450 PRINTREG(sc, ATW_SPR); 451 PRINTREG(sc, ATW_TEST0); 452 PRINTREG(sc, ATW_WCSR); 453 PRINTREG(sc, ATW_WPDR); 454 PRINTREG(sc, ATW_GPTMR); 455 PRINTREG(sc, ATW_GPIO); 456 PRINTREG(sc, ATW_BBPCTL); 457 PRINTREG(sc, ATW_SYNCTL); 458 PRINTREG(sc, ATW_PLCPHD); 459 PRINTREG(sc, ATW_MMIWADDR); 460 PRINTREG(sc, ATW_MMIRADDR1); 461 PRINTREG(sc, ATW_MMIRADDR2); 462 PRINTREG(sc, ATW_TXBR); 463 PRINTREG(sc, ATW_CSR15A); 464 PRINTREG(sc, ATW_ALCSTAT); 465 PRINTREG(sc, ATW_TOFS2); 466 PRINTREG(sc, ATW_CMDR); 467 PRINTREG(sc, ATW_PCIC); 468 PRINTREG(sc, ATW_PMCSR); 469 PRINTREG(sc, ATW_PAR0); 470 PRINTREG(sc, ATW_PAR1); 471 PRINTREG(sc, ATW_MAR0); 472 PRINTREG(sc, ATW_MAR1); 473 PRINTREG(sc, ATW_ATIMDA0); 474 PRINTREG(sc, ATW_ABDA1); 475 PRINTREG(sc, ATW_BSSID0); 476 PRINTREG(sc, ATW_TXLMT); 477 PRINTREG(sc, ATW_MIBCNT); 478 PRINTREG(sc, ATW_BCNT); 479 PRINTREG(sc, ATW_TSFTH); 480 PRINTREG(sc, ATW_TSC); 481 PRINTREG(sc, ATW_SYNRF); 482 PRINTREG(sc, ATW_BPLI); 483 PRINTREG(sc, ATW_CAP0); 484 PRINTREG(sc, ATW_CAP1); 485 PRINTREG(sc, ATW_RMD); 486 PRINTREG(sc, ATW_CFPP); 487 PRINTREG(sc, ATW_TOFS0); 488 PRINTREG(sc, ATW_TOFS1); 489 PRINTREG(sc, ATW_IFST); 490 PRINTREG(sc, ATW_RSPT); 491 PRINTREG(sc, ATW_TSFTL); 492 PRINTREG(sc, ATW_WEPCTL); 493 PRINTREG(sc, ATW_WESK); 494 PRINTREG(sc, ATW_WEPCNT); 495 PRINTREG(sc, ATW_MACTEST); 496 PRINTREG(sc, ATW_FER); 497 PRINTREG(sc, ATW_FEMR); 498 PRINTREG(sc, ATW_FPSR); 499 PRINTREG(sc, ATW_FFER); 500 #undef PRINTREG 501 } 502 #endif /* ATW_DEBUG */ 503 504 /* 505 * Finish attaching an ADMtek ADM8211 MAC. Called by bus-specific front-end. 506 */ 507 void 508 atw_attach(struct atw_softc *sc) 509 { 510 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 511 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 512 }; 513 struct ieee80211com *ic = &sc->sc_ic; 514 struct ifnet *ifp = &sc->sc_if; 515 int country_code, error, i, nrate, srom_major; 516 u_int32_t reg; 517 static const char *type_strings[] = {"Intersil (not supported)", 518 "RFMD", "Marvel (not supported)"}; 519 520 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); 521 522 sc->sc_txth = atw_txthresh_tab_lo; 523 524 SIMPLEQ_INIT(&sc->sc_txfreeq); 525 SIMPLEQ_INIT(&sc->sc_txdirtyq); 526 527 #ifdef ATW_DEBUG 528 atw_print_regs(sc, "atw_attach"); 529 #endif /* ATW_DEBUG */ 530 531 /* 532 * Allocate the control data structures, and create and load the 533 * DMA map for it. 534 */ 535 if ((error = bus_dmamem_alloc(sc->sc_dmat, 536 sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg, 537 1, &sc->sc_cdnseg, 0)) != 0) { 538 aprint_error_dev(sc->sc_dev, 539 "unable to allocate control data, error = %d\n", 540 error); 541 goto fail_0; 542 } 543 544 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg, 545 sizeof(struct atw_control_data), (void **)&sc->sc_control_data, 546 BUS_DMA_COHERENT)) != 0) { 547 aprint_error_dev(sc->sc_dev, 548 "unable to map control data, error = %d\n", 549 error); 550 goto fail_1; 551 } 552 553 if ((error = bus_dmamap_create(sc->sc_dmat, 554 sizeof(struct atw_control_data), 1, 555 sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 556 aprint_error_dev(sc->sc_dev, 557 "unable to create control data DMA map, error = %d\n", 558 error); 559 goto fail_2; 560 } 561 562 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 563 sc->sc_control_data, sizeof(struct atw_control_data), NULL, 564 0)) != 0) { 565 aprint_error_dev(sc->sc_dev, 566 "unable to load control data DMA map, error = %d\n", error); 567 goto fail_3; 568 } 569 570 /* 571 * Create the transmit buffer DMA maps. 572 */ 573 sc->sc_ntxsegs = ATW_NTXSEGS; 574 for (i = 0; i < ATW_TXQUEUELEN; i++) { 575 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 576 sc->sc_ntxsegs, MCLBYTES, 0, 0, 577 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 578 aprint_error_dev(sc->sc_dev, 579 "unable to create tx DMA map %d, error = %d\n", i, 580 error); 581 goto fail_4; 582 } 583 } 584 585 /* 586 * Create the receive buffer DMA maps. 587 */ 588 for (i = 0; i < ATW_NRXDESC; i++) { 589 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 590 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 591 aprint_error_dev(sc->sc_dev, 592 "unable to create rx DMA map %d, error = %d\n", i, 593 error); 594 goto fail_5; 595 } 596 } 597 for (i = 0; i < ATW_NRXDESC; i++) { 598 sc->sc_rxsoft[i].rxs_mbuf = NULL; 599 } 600 601 switch (sc->sc_rev) { 602 case ATW_REVISION_AB: 603 case ATW_REVISION_AF: 604 sc->sc_sramlen = ATW_SRAM_A_SIZE; 605 break; 606 case ATW_REVISION_BA: 607 case ATW_REVISION_CA: 608 sc->sc_sramlen = ATW_SRAM_B_SIZE; 609 break; 610 } 611 612 /* Reset the chip to a known state. */ 613 atw_reset(sc); 614 615 if (atw_read_srom(sc) == -1) 616 return; 617 618 sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20], 619 ATW_SR_RFTYPE_MASK); 620 621 sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20], 622 ATW_SR_BBPTYPE_MASK); 623 624 if (sc->sc_rftype >= __arraycount(type_strings)) { 625 aprint_error_dev(sc->sc_dev, "unknown RF\n"); 626 return; 627 } 628 if (sc->sc_bbptype >= __arraycount(type_strings)) { 629 aprint_error_dev(sc->sc_dev, "unknown BBP\n"); 630 return; 631 } 632 633 printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev), 634 type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]); 635 636 /* XXX There exists a Linux driver which seems to use RFType = 0 for 637 * MARVEL. My bug, or theirs? 638 */ 639 640 reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK); 641 642 switch (sc->sc_rftype) { 643 case ATW_RFTYPE_INTERSIL: 644 reg |= ATW_SYNCTL_CS1; 645 break; 646 case ATW_RFTYPE_RFMD: 647 reg |= ATW_SYNCTL_CS0; 648 break; 649 case ATW_RFTYPE_MARVEL: 650 break; 651 } 652 653 sc->sc_synctl_rd = reg | ATW_SYNCTL_RD; 654 sc->sc_synctl_wr = reg | ATW_SYNCTL_WR; 655 656 reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK); 657 658 switch (sc->sc_bbptype) { 659 case ATW_BBPTYPE_INTERSIL: 660 reg |= ATW_BBPCTL_TWI; 661 break; 662 case ATW_BBPTYPE_RFMD: 663 reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO | 664 ATW_BBPCTL_CCA_ACTLO; 665 break; 666 case ATW_BBPTYPE_MARVEL: 667 break; 668 case ATW_C_BBPTYPE_RFMD: 669 printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n", 670 device_xname(sc->sc_dev)); 671 break; 672 } 673 674 sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR; 675 sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD; 676 677 /* 678 * From this point forward, the attachment cannot fail. A failure 679 * before this point releases all resources that may have been 680 * allocated. 681 */ 682 sc->sc_flags |= ATWF_ATTACHED; 683 684 ATW_DPRINTF((" SROM MAC %04x%04x%04x", 685 htole16(sc->sc_srom[ATW_SR_MAC00]), 686 htole16(sc->sc_srom[ATW_SR_MAC01]), 687 htole16(sc->sc_srom[ATW_SR_MAC10]))); 688 689 srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION], 690 ATW_SR_MAJOR_MASK); 691 692 if (srom_major < 2) 693 sc->sc_rf3000_options1 = 0; 694 else if (sc->sc_rev == ATW_REVISION_BA) { 695 sc->sc_rf3000_options1 = 696 __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03], 697 ATW_SR_CR28_MASK); 698 } else 699 sc->sc_rf3000_options1 = 0; 700 701 sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29], 702 ATW_SR_CR29_MASK); 703 704 country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29], 705 ATW_SR_CTRY_MASK); 706 707 #define ADD_CHANNEL(_ic, _chan) do { \ 708 _ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B; \ 709 _ic->ic_channels[_chan].ic_freq = \ 710 ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\ 711 } while (0) 712 713 /* Find available channels */ 714 switch (country_code) { 715 case COUNTRY_MMK2: /* 1-14 */ 716 ADD_CHANNEL(ic, 14); 717 /*FALLTHROUGH*/ 718 case COUNTRY_ETSI: /* 1-13 */ 719 for (i = 1; i <= 13; i++) 720 ADD_CHANNEL(ic, i); 721 break; 722 case COUNTRY_FCC: /* 1-11 */ 723 case COUNTRY_IC: /* 1-11 */ 724 for (i = 1; i <= 11; i++) 725 ADD_CHANNEL(ic, i); 726 break; 727 case COUNTRY_MMK: /* 14 */ 728 ADD_CHANNEL(ic, 14); 729 break; 730 case COUNTRY_FRANCE: /* 10-13 */ 731 for (i = 10; i <= 13; i++) 732 ADD_CHANNEL(ic, i); 733 break; 734 default: /* assume channels 10-11 */ 735 case COUNTRY_SPAIN: /* 10-11 */ 736 for (i = 10; i <= 11; i++) 737 ADD_CHANNEL(ic, i); 738 break; 739 } 740 741 /* Read the MAC address. */ 742 reg = ATW_READ(sc, ATW_PAR0); 743 ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK); 744 ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK); 745 ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK); 746 ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK); 747 reg = ATW_READ(sc, ATW_PAR1); 748 ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK); 749 ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK); 750 751 if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { 752 printf(" could not get mac address, attach failed\n"); 753 return; 754 } 755 756 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); 757 758 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 759 ifp->if_softc = sc; 760 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | 761 IFF_NOTRAILERS; 762 ifp->if_ioctl = atw_ioctl; 763 ifp->if_start = atw_start; 764 ifp->if_watchdog = atw_watchdog; 765 ifp->if_init = atw_init; 766 ifp->if_stop = atw_stop; 767 IFQ_SET_READY(&ifp->if_snd); 768 769 ic->ic_ifp = ifp; 770 ic->ic_phytype = IEEE80211_T_DS; 771 ic->ic_opmode = IEEE80211_M_STA; 772 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS | 773 IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR; 774 775 nrate = 0; 776 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2; 777 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4; 778 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11; 779 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22; 780 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; 781 782 /* 783 * Call MI attach routines. 784 */ 785 786 if_attach(ifp); 787 ieee80211_ifattach(ic); 788 789 atw_evcnt_attach(sc); 790 791 sc->sc_newstate = ic->ic_newstate; 792 ic->ic_newstate = atw_newstate; 793 794 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 795 ic->ic_recv_mgmt = atw_recv_mgmt; 796 797 sc->sc_node_free = ic->ic_node_free; 798 ic->ic_node_free = atw_node_free; 799 800 sc->sc_node_alloc = ic->ic_node_alloc; 801 ic->ic_node_alloc = atw_node_alloc; 802 803 ic->ic_crypto.cs_key_delete = atw_key_delete; 804 ic->ic_crypto.cs_key_set = atw_key_set; 805 ic->ic_crypto.cs_key_update_begin = atw_key_update_begin; 806 ic->ic_crypto.cs_key_update_end = atw_key_update_end; 807 808 /* possibly we should fill in our own sc_send_prresp, since 809 * the ADM8211 is probably sending probe responses in ad hoc 810 * mode. 811 */ 812 813 /* complete initialization */ 814 ieee80211_media_init(ic, atw_media_change, ieee80211_media_status); 815 callout_init(&sc->sc_scan_ch, 0); 816 817 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 818 sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf); 819 820 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 821 sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu)); 822 sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT); 823 824 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 825 sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu)); 826 sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT); 827 828 ieee80211_announce(ic); 829 return; 830 831 /* 832 * Free any resources we've allocated during the failed attach 833 * attempt. Do this in reverse order and fall through. 834 */ 835 fail_5: 836 for (i = 0; i < ATW_NRXDESC; i++) { 837 if (sc->sc_rxsoft[i].rxs_dmamap == NULL) 838 continue; 839 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); 840 } 841 fail_4: 842 for (i = 0; i < ATW_TXQUEUELEN; i++) { 843 if (sc->sc_txsoft[i].txs_dmamap == NULL) 844 continue; 845 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); 846 } 847 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 848 fail_3: 849 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 850 fail_2: 851 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 852 sizeof(struct atw_control_data)); 853 fail_1: 854 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); 855 fail_0: 856 return; 857 } 858 859 static struct ieee80211_node * 860 atw_node_alloc(struct ieee80211_node_table *nt) 861 { 862 struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc; 863 struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt); 864 865 DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni)); 866 return ni; 867 } 868 869 static void 870 atw_node_free(struct ieee80211_node *ni) 871 { 872 struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc; 873 874 DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni, 875 ether_sprintf(ni->ni_bssid))); 876 (*sc->sc_node_free)(ni); 877 } 878 879 880 static void 881 atw_test1_reset(struct atw_softc *sc) 882 { 883 switch (sc->sc_rev) { 884 case ATW_REVISION_BA: 885 if (1 /* XXX condition on transceiver type */) { 886 ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR); 887 } 888 break; 889 case ATW_REVISION_CA: 890 ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK); 891 break; 892 default: 893 break; 894 } 895 } 896 897 /* 898 * atw_reset: 899 * 900 * Perform a soft reset on the ADM8211. 901 */ 902 void 903 atw_reset(struct atw_softc *sc) 904 { 905 int i; 906 uint32_t lpc __atwdebugused; 907 908 ATW_WRITE(sc, ATW_NAR, 0x0); 909 DELAY(atw_nar_delay); 910 911 /* Reference driver has a cryptic remark indicating that this might 912 * power-on the chip. I know that it turns off power-saving.... 913 */ 914 ATW_WRITE(sc, ATW_FRCTL, 0x0); 915 916 ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR); 917 918 for (i = 0; i < 50000 / atw_pseudo_milli; i++) { 919 if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0) 920 break; 921 DELAY(atw_pseudo_milli); 922 } 923 924 /* ... and then pause 100ms longer for good measure. */ 925 DELAY(atw_magic_delay1); 926 927 DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i)); 928 929 if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR)) 930 aprint_error_dev(sc->sc_dev, "reset failed to complete\n"); 931 932 /* 933 * Initialize the PCI Access Register. 934 */ 935 sc->sc_busmode = ATW_PAR_PBL_8DW; 936 937 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode); 938 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev), 939 ATW_READ(sc, ATW_PAR), sc->sc_busmode)); 940 941 atw_test1_reset(sc); 942 943 /* Turn off maximum power saving, etc. */ 944 ATW_WRITE(sc, ATW_FRCTL, 0x0); 945 946 DELAY(atw_magic_delay2); 947 948 /* Recall EEPROM. */ 949 ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD); 950 951 DELAY(atw_magic_delay4); 952 953 lpc = ATW_READ(sc, ATW_LPC); 954 955 DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc)); 956 957 /* A reset seems to affect the SRAM contents, so put them into 958 * a known state. 959 */ 960 atw_clear_sram(sc); 961 962 memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid)); 963 } 964 965 static void 966 atw_clear_sram(struct atw_softc *sc) 967 { 968 memset(sc->sc_sram, 0, sizeof(sc->sc_sram)); 969 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID; 970 /* XXX not for revision 0x20. */ 971 atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen); 972 } 973 974 /* TBD atw_init 975 * 976 * set MAC based on ic->ic_bss->myaddr 977 * write WEP keys 978 * set TX rate 979 */ 980 981 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass 982 * without receiving a beacon with the preferred BSSID & SSID. 983 * atw_write_bssid & atw_write_ssid set the BSSID & SSID. 984 */ 985 static void 986 atw_wcsr_init(struct atw_softc *sc) 987 { 988 uint32_t wcsr; 989 990 wcsr = ATW_READ(sc, ATW_WCSR); 991 wcsr &= ~ATW_WCSR_BLN_MASK; 992 wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK); 993 /* We always want to wake up on link loss or TSFT out of range */ 994 wcsr |= ATW_WCSR_LSOE|ATW_WCSR_TSFTWE; 995 ATW_WRITE(sc, ATW_WCSR, wcsr); 996 997 DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n", 998 device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR))); 999 } 1000 1001 /* Turn off power management. Set Rx store-and-forward mode. */ 1002 static void 1003 atw_cmdr_init(struct atw_softc *sc) 1004 { 1005 uint32_t cmdr; 1006 cmdr = ATW_READ(sc, ATW_CMDR); 1007 cmdr &= ~ATW_CMDR_APM; 1008 cmdr |= ATW_CMDR_RTE; 1009 cmdr &= ~ATW_CMDR_DRT_MASK; 1010 cmdr |= ATW_CMDR_DRT_SF; 1011 1012 ATW_WRITE(sc, ATW_CMDR, cmdr); 1013 } 1014 1015 static void 1016 atw_tofs2_init(struct atw_softc *sc) 1017 { 1018 uint32_t tofs2; 1019 /* XXX this magic can probably be figured out from the RFMD docs */ 1020 #ifndef ATW_REFSLAVE 1021 tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */ 1022 __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */ 1023 __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK) | /* 8 us */ 1024 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */ 1025 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */ 1026 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */ 1027 __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK) | /* 4 us */ 1028 __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK); /* 5 us */ 1029 #else 1030 /* XXX new magic from reference driver source */ 1031 tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK) | /* 8 ms = 4 * 2 ms */ 1032 __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */ 1033 __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK) | /* 1 us */ 1034 __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK) | /* 5 us */ 1035 __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */ 1036 __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK) | /* 13 us */ 1037 __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK) | /* 1 us */ 1038 __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK); /* 8 us */ 1039 #endif 1040 ATW_WRITE(sc, ATW_TOFS2, tofs2); 1041 } 1042 1043 static void 1044 atw_nar_init(struct atw_softc *sc) 1045 { 1046 ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB); 1047 } 1048 1049 static void 1050 atw_txlmt_init(struct atw_softc *sc) 1051 { 1052 ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) | 1053 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK)); 1054 } 1055 1056 static void 1057 atw_test1_init(struct atw_softc *sc) 1058 { 1059 uint32_t test1; 1060 1061 test1 = ATW_READ(sc, ATW_TEST1); 1062 test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL); 1063 /* XXX magic 0x1 */ 1064 test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL; 1065 ATW_WRITE(sc, ATW_TEST1, test1); 1066 } 1067 1068 static void 1069 atw_rf_reset(struct atw_softc *sc) 1070 { 1071 /* XXX this resets an Intersil RF front-end? */ 1072 /* TBD condition on Intersil RFType? */ 1073 ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN); 1074 DELAY(atw_rf_delay1); 1075 ATW_WRITE(sc, ATW_SYNRF, 0); 1076 DELAY(atw_rf_delay2); 1077 } 1078 1079 /* Set 16 TU max duration for the contention-free period (CFP). */ 1080 static void 1081 atw_cfp_init(struct atw_softc *sc) 1082 { 1083 uint32_t cfpp; 1084 1085 cfpp = ATW_READ(sc, ATW_CFPP); 1086 cfpp &= ~ATW_CFPP_CFPMD; 1087 cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD); 1088 ATW_WRITE(sc, ATW_CFPP, cfpp); 1089 } 1090 1091 static void 1092 atw_tofs0_init(struct atw_softc *sc) 1093 { 1094 /* XXX I guess that the Cardbus clock is 22 MHz? 1095 * I am assuming that the role of ATW_TOFS0_USCNT is 1096 * to divide the bus clock to get a 1 MHz clock---the datasheet is not 1097 * very clear on this point. It says in the datasheet that it is 1098 * possible for the ADM8211 to accommodate bus speeds between 22 MHz 1099 * and 33 MHz; maybe this is the way? I see a binary-only driver write 1100 * these values. These values are also the power-on default. 1101 */ 1102 ATW_WRITE(sc, ATW_TOFS0, 1103 __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) | 1104 ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */); 1105 } 1106 1107 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */ 1108 static void 1109 atw_ifs_init(struct atw_softc *sc) 1110 { 1111 uint32_t ifst; 1112 /* XXX EIFS=0x64, SIFS=110 are used by the reference driver. 1113 * Go figure. 1114 */ 1115 ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) | 1116 __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */, 1117 ATW_IFST_SIFS_MASK) | 1118 __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) | 1119 __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK); 1120 1121 ATW_WRITE(sc, ATW_IFST, ifst); 1122 } 1123 1124 static void 1125 atw_response_times_init(struct atw_softc *sc) 1126 { 1127 /* XXX More magic. Relates to ACK timing? The datasheet seems to 1128 * indicate that the MAC expects at least SIFS + MIRT microseconds 1129 * to pass after it transmits a frame that requires a response; 1130 * it waits at most SIFS + MART microseconds for the response. 1131 * Surely this is not the ACK timeout? 1132 */ 1133 ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) | 1134 __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK)); 1135 } 1136 1137 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx 1138 * engines read and write baseband registers after Rx and before 1139 * Tx, respectively. 1140 */ 1141 static void 1142 atw_bbp_io_init(struct atw_softc *sc) 1143 { 1144 uint32_t mmiraddr2; 1145 1146 /* XXX The reference driver does this, but is it *really* 1147 * necessary? 1148 */ 1149 switch (sc->sc_rev) { 1150 case ATW_REVISION_AB: 1151 case ATW_REVISION_AF: 1152 mmiraddr2 = 0x0; 1153 break; 1154 default: 1155 mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2); 1156 mmiraddr2 &= 1157 ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK); 1158 break; 1159 } 1160 1161 switch (sc->sc_bbptype) { 1162 case ATW_BBPTYPE_INTERSIL: 1163 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL); 1164 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL); 1165 mmiraddr2 |= ATW_MMIRADDR2_INTERSIL; 1166 break; 1167 case ATW_BBPTYPE_MARVEL: 1168 /* TBD find out the Marvel settings. */ 1169 break; 1170 case ATW_BBPTYPE_RFMD: 1171 default: 1172 ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD); 1173 ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD); 1174 mmiraddr2 |= ATW_MMIRADDR2_RFMD; 1175 break; 1176 } 1177 ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2); 1178 ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK); 1179 } 1180 1181 /* 1182 * atw_init: [ ifnet interface function ] 1183 * 1184 * Initialize the interface. Must be called at splnet(). 1185 */ 1186 int 1187 atw_init(struct ifnet *ifp) 1188 { 1189 struct atw_softc *sc = ifp->if_softc; 1190 struct ieee80211com *ic = &sc->sc_ic; 1191 struct atw_txsoft *txs; 1192 struct atw_rxsoft *rxs; 1193 int i, error = 0; 1194 1195 if (device_is_active(sc->sc_dev)) { 1196 /* 1197 * Cancel any pending I/O. 1198 */ 1199 atw_stop(ifp, 0); 1200 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 1201 !device_is_active(sc->sc_dev)) 1202 return 0; 1203 1204 /* 1205 * Reset the chip to a known state. 1206 */ 1207 atw_reset(sc); 1208 1209 DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n", 1210 __func__, ieee80211_chan2ieee(ic, ic->ic_curchan), 1211 ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags)); 1212 1213 atw_wcsr_init(sc); 1214 1215 atw_cmdr_init(sc); 1216 1217 /* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s. 1218 * 1219 * XXX Set transmit power for ATIM, RTS, Beacon. 1220 */ 1221 ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) | 1222 __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK)); 1223 1224 atw_tofs2_init(sc); 1225 1226 atw_nar_init(sc); 1227 1228 atw_txlmt_init(sc); 1229 1230 atw_test1_init(sc); 1231 1232 atw_rf_reset(sc); 1233 1234 atw_cfp_init(sc); 1235 1236 atw_tofs0_init(sc); 1237 1238 atw_ifs_init(sc); 1239 1240 /* XXX Fall asleep after one second of inactivity. 1241 * XXX A frame may only dribble in for 65536us. 1242 */ 1243 ATW_WRITE(sc, ATW_RMD, 1244 __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK)); 1245 1246 atw_response_times_init(sc); 1247 1248 atw_bbp_io_init(sc); 1249 1250 ATW_WRITE(sc, ATW_STSR, 0xffffffff); 1251 1252 if ((error = atw_rf3000_init(sc)) != 0) 1253 goto out; 1254 1255 ATW_WRITE(sc, ATW_PAR, sc->sc_busmode); 1256 DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev), 1257 ATW_READ(sc, ATW_PAR), sc->sc_busmode)); 1258 1259 /* 1260 * Initialize the transmit descriptor ring. 1261 */ 1262 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1263 for (i = 0; i < ATW_NTXDESC; i++) { 1264 sc->sc_txdescs[i].at_ctl = 0; 1265 /* no transmit chaining */ 1266 sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */; 1267 sc->sc_txdescs[i].at_buf2 = 1268 htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i))); 1269 } 1270 /* use ring mode */ 1271 sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER); 1272 ATW_CDTXSYNC(sc, 0, ATW_NTXDESC, 1273 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1274 sc->sc_txfree = ATW_NTXDESC; 1275 sc->sc_txnext = 0; 1276 1277 /* 1278 * Initialize the transmit job descriptors. 1279 */ 1280 SIMPLEQ_INIT(&sc->sc_txfreeq); 1281 SIMPLEQ_INIT(&sc->sc_txdirtyq); 1282 for (i = 0; i < ATW_TXQUEUELEN; i++) { 1283 txs = &sc->sc_txsoft[i]; 1284 txs->txs_mbuf = NULL; 1285 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1286 } 1287 1288 /* 1289 * Initialize the receive descriptor and receive job 1290 * descriptor rings. 1291 */ 1292 for (i = 0; i < ATW_NRXDESC; i++) { 1293 rxs = &sc->sc_rxsoft[i]; 1294 if (rxs->rxs_mbuf == NULL) { 1295 if ((error = atw_add_rxbuf(sc, i)) != 0) { 1296 aprint_error_dev(sc->sc_dev, 1297 "unable to allocate or map rx buffer %d, " 1298 "error = %d\n", i, error); 1299 /* 1300 * XXX Should attempt to run with fewer receive 1301 * XXX buffers instead of just failing. 1302 */ 1303 atw_rxdrain(sc); 1304 goto out; 1305 } 1306 } else 1307 atw_init_rxdesc(sc, i); 1308 } 1309 sc->sc_rxptr = 0; 1310 1311 /* 1312 * Initialize the interrupt mask and enable interrupts. 1313 */ 1314 /* normal interrupts */ 1315 sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI | 1316 ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC; 1317 1318 /* abnormal interrupts */ 1319 sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT | 1320 ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS | 1321 ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ; 1322 1323 sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF | 1324 ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ; 1325 sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU; 1326 sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT | 1327 ATW_INTR_TRT; 1328 1329 sc->sc_linkint_mask &= sc->sc_inten; 1330 sc->sc_rxint_mask &= sc->sc_inten; 1331 sc->sc_txint_mask &= sc->sc_inten; 1332 1333 ATW_WRITE(sc, ATW_IER, sc->sc_inten); 1334 ATW_WRITE(sc, ATW_STSR, 0xffffffff); 1335 1336 DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n", 1337 device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten)); 1338 1339 /* 1340 * Give the transmit and receive rings to the ADM8211. 1341 */ 1342 ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr)); 1343 ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext)); 1344 1345 sc->sc_txthresh = 0; 1346 sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST | 1347 sc->sc_txth[sc->sc_txthresh].txth_opmode; 1348 1349 /* common 802.11 configuration */ 1350 ic->ic_flags &= ~IEEE80211_F_IBSSON; 1351 switch (ic->ic_opmode) { 1352 case IEEE80211_M_STA: 1353 break; 1354 case IEEE80211_M_AHDEMO: /* XXX */ 1355 case IEEE80211_M_IBSS: 1356 ic->ic_flags |= IEEE80211_F_IBSSON; 1357 /*FALLTHROUGH*/ 1358 case IEEE80211_M_HOSTAP: /* XXX */ 1359 break; 1360 case IEEE80211_M_MONITOR: /* XXX */ 1361 break; 1362 } 1363 1364 switch (ic->ic_opmode) { 1365 case IEEE80211_M_AHDEMO: 1366 case IEEE80211_M_HOSTAP: 1367 #ifndef IEEE80211_NO_HOSTAP 1368 ic->ic_bss->ni_intval = ic->ic_lintval; 1369 ic->ic_bss->ni_rssi = 0; 1370 ic->ic_bss->ni_rstamp = 0; 1371 #endif /* !IEEE80211_NO_HOSTAP */ 1372 break; 1373 default: /* XXX */ 1374 break; 1375 } 1376 1377 sc->sc_wepctl = 0; 1378 1379 atw_write_ssid(sc); 1380 atw_write_sup_rates(sc); 1381 atw_write_wep(sc); 1382 1383 ic->ic_state = IEEE80211_S_INIT; 1384 1385 /* 1386 * Set the receive filter. This will start the transmit and 1387 * receive processes. 1388 */ 1389 atw_filter_setup(sc); 1390 1391 /* 1392 * Start the receive process. 1393 */ 1394 ATW_WRITE(sc, ATW_RDR, 0x1); 1395 1396 /* 1397 * Note that the interface is now running. 1398 */ 1399 ifp->if_flags |= IFF_RUNNING; 1400 1401 /* send no beacons, yet. */ 1402 atw_start_beacon(sc, 0); 1403 1404 if (ic->ic_opmode == IEEE80211_M_MONITOR) 1405 error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1406 else 1407 error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1408 out: 1409 if (error) { 1410 ifp->if_flags &= ~IFF_RUNNING; 1411 sc->sc_tx_timer = 0; 1412 ifp->if_timer = 0; 1413 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 1414 } 1415 #ifdef ATW_DEBUG 1416 atw_print_regs(sc, "end of init"); 1417 #endif /* ATW_DEBUG */ 1418 1419 return (error); 1420 } 1421 1422 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL. 1423 * 0: MAC control of RF3000/Si4126. 1424 * 1425 * Applies power, or selects RF front-end? Sets reset condition. 1426 * 1427 * TBD support non-RFMD BBP, non-SiLabs synth. 1428 */ 1429 static void 1430 atw_bbp_io_enable(struct atw_softc *sc, int enable) 1431 { 1432 if (enable) { 1433 ATW_WRITE(sc, ATW_SYNRF, 1434 ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST); 1435 DELAY(atw_bbp_io_enable_delay); 1436 } else { 1437 ATW_WRITE(sc, ATW_SYNRF, 0); 1438 DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */ 1439 } 1440 } 1441 1442 static int 1443 atw_tune(struct atw_softc *sc) 1444 { 1445 int rc; 1446 u_int chan; 1447 struct ieee80211com *ic = &sc->sc_ic; 1448 1449 chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 1450 if (chan == IEEE80211_CHAN_ANY) 1451 panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__); 1452 1453 if (chan == sc->sc_cur_chan) 1454 return 0; 1455 1456 DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev), 1457 sc->sc_cur_chan, chan)); 1458 1459 atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST); 1460 1461 atw_si4126_tune(sc, chan); 1462 if ((rc = atw_rf3000_tune(sc, chan)) != 0) 1463 printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev), 1464 chan); 1465 1466 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode); 1467 DELAY(atw_nar_delay); 1468 ATW_WRITE(sc, ATW_RDR, 0x1); 1469 1470 if (rc == 0) { 1471 sc->sc_cur_chan = chan; 1472 sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq = 1473 htole16(ic->ic_curchan->ic_freq); 1474 sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags = 1475 htole16(ic->ic_curchan->ic_flags); 1476 } 1477 1478 return rc; 1479 } 1480 1481 #ifdef ATW_SYNDEBUG 1482 static void 1483 atw_si4126_print(struct atw_softc *sc) 1484 { 1485 struct ifnet *ifp = &sc->sc_if; 1486 u_int addr, val; 1487 1488 val = 0; 1489 1490 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0) 1491 return; 1492 1493 for (addr = 0; addr <= 8; addr++) { 1494 printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr); 1495 if (atw_si4126_read(sc, addr, &val) == 0) { 1496 printf("<unknown> (quitting print-out)\n"); 1497 break; 1498 } 1499 printf("%05x\n", val); 1500 } 1501 } 1502 #endif /* ATW_SYNDEBUG */ 1503 1504 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer. 1505 * 1506 * The RF/IF synthesizer produces two reference frequencies for 1507 * the RF2948B transceiver. The first frequency the RF2948B requires 1508 * is two times the so-called "intermediate frequency" (IF). Since 1509 * a SAW filter on the radio fixes the IF at 374 MHz, I program the 1510 * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz. The second 1511 * frequency required by the transceiver is the radio frequency 1512 * (RF). This is a superheterodyne transceiver; for f(chan) the 1513 * center frequency of the channel we are tuning, RF = f(chan) - 1514 * IF. 1515 * 1516 * XXX I am told by SiLabs that the Si4126 will accept a broader range 1517 * of XIN than the 2-25 MHz mentioned by the datasheet, even *without* 1518 * XINDIV2 = 1. I've tried this (it is necessary to double R) and it 1519 * works, but I have still programmed for XINDIV2 = 1 to be safe. 1520 */ 1521 static void 1522 atw_si4126_tune(struct atw_softc *sc, u_int chan) 1523 { 1524 u_int mhz; 1525 u_int R; 1526 u_int32_t gpio; 1527 u_int16_t gain; 1528 1529 #ifdef ATW_SYNDEBUG 1530 atw_si4126_print(sc); 1531 #endif /* ATW_SYNDEBUG */ 1532 1533 if (chan == 14) 1534 mhz = 2484; 1535 else 1536 mhz = 2412 + 5 * (chan - 1); 1537 1538 /* Tune IF to 748 MHz to suit the IF LO input of the 1539 * RF2494B, which is 2 x IF. No need to set an IF divider 1540 * because an IF in 526 MHz - 952 MHz is allowed. 1541 * 1542 * XIN is 44.000 MHz, so divide it by two to get allowable 1543 * range of 2-25 MHz. SiLabs tells me that this is not 1544 * strictly necessary. 1545 */ 1546 1547 if (atw_xindiv2) 1548 R = 44; 1549 else 1550 R = 88; 1551 1552 /* Power-up RF, IF synthesizers. */ 1553 atw_si4126_write(sc, SI4126_POWER, 1554 SI4126_POWER_PDIB|SI4126_POWER_PDRB); 1555 1556 /* set LPWR, too? */ 1557 atw_si4126_write(sc, SI4126_MAIN, 1558 (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0); 1559 1560 /* Set the phase-locked loop gain. If RF2 N > 2047, then 1561 * set KP2 to 1. 1562 * 1563 * REFDIF This is different from the reference driver, which 1564 * always sets SI4126_GAIN to 0. 1565 */ 1566 gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK); 1567 1568 atw_si4126_write(sc, SI4126_GAIN, gain); 1569 1570 /* XIN = 44 MHz. 1571 * 1572 * If XINDIV2 = 1, IF = N/(2 * R) * XIN. I choose N = 1496, 1573 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz. 1574 * 1575 * If XINDIV2 = 0, IF = N/R * XIN. I choose N = 1496, R = 88 1576 * so that 1496/88 * 44 MHz = 748 MHz. 1577 */ 1578 atw_si4126_write(sc, SI4126_IFN, 1496); 1579 1580 atw_si4126_write(sc, SI4126_IFR, R); 1581 1582 #ifndef ATW_REFSLAVE 1583 /* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because 1584 * then RF1 becomes the active RF synthesizer, even on the Si4126, 1585 * which has no RF1! 1586 */ 1587 atw_si4126_write(sc, SI4126_RF1R, R); 1588 1589 atw_si4126_write(sc, SI4126_RF1N, mhz - 374); 1590 #endif 1591 1592 /* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF, 1593 * where IF = 374 MHz. Let's divide XIN to 1 MHz. So R = 44. 1594 * Now let's multiply it to mhz. So mhz - IF = N. 1595 */ 1596 atw_si4126_write(sc, SI4126_RF2R, R); 1597 1598 atw_si4126_write(sc, SI4126_RF2N, mhz - 374); 1599 1600 /* wait 100us from power-up for RF, IF to settle */ 1601 DELAY(100); 1602 1603 gpio = ATW_READ(sc, ATW_GPIO); 1604 gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK); 1605 gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK); 1606 1607 if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) { 1608 /* Set a Prism RF front-end to a special mode for channel 14? 1609 * 1610 * Apparently the SMC2635W needs this, although I don't think 1611 * it has a Prism RF. 1612 */ 1613 gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK); 1614 } 1615 ATW_WRITE(sc, ATW_GPIO, gpio); 1616 1617 #ifdef ATW_SYNDEBUG 1618 atw_si4126_print(sc); 1619 #endif /* ATW_SYNDEBUG */ 1620 } 1621 1622 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna 1623 * diversity. 1624 * 1625 * !!! 1626 * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR). 1627 * !!! 1628 */ 1629 static int 1630 atw_rf3000_init(struct atw_softc *sc) 1631 { 1632 int rc = 0; 1633 1634 atw_bbp_io_enable(sc, 1); 1635 1636 /* CCA is acquisition sensitive */ 1637 rc = atw_rf3000_write(sc, RF3000_CCACTL, 1638 __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK)); 1639 1640 if (rc != 0) 1641 goto out; 1642 1643 /* enable diversity */ 1644 rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE); 1645 1646 if (rc != 0) 1647 goto out; 1648 1649 /* sensible setting from a binary-only driver */ 1650 rc = atw_rf3000_write(sc, RF3000_GAINCTL, 1651 __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK)); 1652 1653 if (rc != 0) 1654 goto out; 1655 1656 /* magic from a binary-only driver */ 1657 rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, 1658 __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK)); 1659 1660 if (rc != 0) 1661 goto out; 1662 1663 rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD); 1664 1665 if (rc != 0) 1666 goto out; 1667 1668 /* XXX Reference driver remarks that Abocom sets this to 50. 1669 * Meaning 0x50, I think.... 50 = 0x32, which would set a bit 1670 * in the "reserved" area of register RF3000_OPTIONS1. 1671 */ 1672 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1); 1673 1674 if (rc != 0) 1675 goto out; 1676 1677 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2); 1678 1679 if (rc != 0) 1680 goto out; 1681 1682 out: 1683 atw_bbp_io_enable(sc, 0); 1684 return rc; 1685 } 1686 1687 #ifdef ATW_BBPDEBUG 1688 static void 1689 atw_rf3000_print(struct atw_softc *sc) 1690 { 1691 struct ifnet *ifp = &sc->sc_if; 1692 u_int addr, val; 1693 1694 if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0) 1695 return; 1696 1697 for (addr = 0x01; addr <= 0x15; addr++) { 1698 printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr); 1699 if (atw_rf3000_read(sc, addr, &val) != 0) { 1700 printf("<unknown> (quitting print-out)\n"); 1701 break; 1702 } 1703 printf("%08x\n", val); 1704 } 1705 } 1706 #endif /* ATW_BBPDEBUG */ 1707 1708 /* Set the power settings on the BBP for channel `chan'. */ 1709 static int 1710 atw_rf3000_tune(struct atw_softc *sc, u_int chan) 1711 { 1712 int rc = 0; 1713 u_int32_t reg; 1714 u_int16_t txpower, lpf_cutoff, lna_gs_thresh; 1715 1716 txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)]; 1717 lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)]; 1718 lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)]; 1719 1720 /* odd channels: LSB, even channels: MSB */ 1721 if (chan % 2 == 1) { 1722 txpower &= 0xFF; 1723 lpf_cutoff &= 0xFF; 1724 lna_gs_thresh &= 0xFF; 1725 } else { 1726 txpower >>= 8; 1727 lpf_cutoff >>= 8; 1728 lna_gs_thresh >>= 8; 1729 } 1730 1731 #ifdef ATW_BBPDEBUG 1732 atw_rf3000_print(sc); 1733 #endif /* ATW_BBPDEBUG */ 1734 1735 DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, " 1736 "lna_gs_thresh %02x\n", 1737 device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh)); 1738 1739 atw_bbp_io_enable(sc, 1); 1740 1741 if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL, 1742 __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0) 1743 goto out; 1744 1745 if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0) 1746 goto out; 1747 1748 if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0) 1749 goto out; 1750 1751 rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0); 1752 1753 if (rc != 0) 1754 goto out; 1755 1756 rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY); 1757 1758 if (rc != 0) 1759 goto out; 1760 1761 #ifdef ATW_BBPDEBUG 1762 atw_rf3000_print(sc); 1763 #endif /* ATW_BBPDEBUG */ 1764 1765 out: 1766 atw_bbp_io_enable(sc, 0); 1767 1768 /* set beacon, rts, atim transmit power */ 1769 reg = ATW_READ(sc, ATW_PLCPHD); 1770 reg &= ~ATW_PLCPHD_SERVICE_MASK; 1771 reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK), 1772 ATW_PLCPHD_SERVICE_MASK); 1773 ATW_WRITE(sc, ATW_PLCPHD, reg); 1774 DELAY(atw_plcphd_delay); 1775 1776 return rc; 1777 } 1778 1779 /* Write a register on the RF3000 baseband processor using the 1780 * registers provided by the ADM8211 for this purpose. 1781 * 1782 * Return 0 on success. 1783 */ 1784 static int 1785 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val) 1786 { 1787 u_int32_t reg; 1788 int i; 1789 1790 reg = sc->sc_bbpctl_wr | 1791 __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) | 1792 __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK); 1793 1794 for (i = 20000 / atw_pseudo_milli; --i >= 0; ) { 1795 ATW_WRITE(sc, ATW_BBPCTL, reg); 1796 DELAY(2 * atw_pseudo_milli); 1797 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0) 1798 break; 1799 } 1800 1801 if (i < 0) { 1802 printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev)); 1803 return ETIMEDOUT; 1804 } 1805 return 0; 1806 } 1807 1808 /* Read a register on the RF3000 baseband processor using the registers 1809 * the ADM8211 provides for this purpose. 1810 * 1811 * The 7-bit register address is addr. Record the 8-bit data in the register 1812 * in *val. 1813 * 1814 * Return 0 on success. 1815 * 1816 * XXX This does not seem to work. The ADM8211 must require more or 1817 * different magic to read the chip than to write it. Possibly some 1818 * of the magic I have derived from a binary-only driver concerns 1819 * the "chip address" (see the RF3000 manual). 1820 */ 1821 #ifdef ATW_BBPDEBUG 1822 static int 1823 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val) 1824 { 1825 u_int32_t reg; 1826 int i; 1827 1828 for (i = 1000; --i >= 0; ) { 1829 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0) 1830 break; 1831 DELAY(100); 1832 } 1833 1834 if (i < 0) { 1835 printf("%s: start atw_rf3000_read, BBPCTL busy\n", 1836 device_xname(sc->sc_dev)); 1837 return ETIMEDOUT; 1838 } 1839 1840 reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK); 1841 1842 ATW_WRITE(sc, ATW_BBPCTL, reg); 1843 1844 for (i = 1000; --i >= 0; ) { 1845 DELAY(100); 1846 if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0) 1847 break; 1848 } 1849 1850 ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD); 1851 1852 if (i < 0) { 1853 printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n", 1854 device_xname(sc->sc_dev), reg); 1855 return ETIMEDOUT; 1856 } 1857 if (val != NULL) 1858 *val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK); 1859 return 0; 1860 } 1861 #endif /* ATW_BBPDEBUG */ 1862 1863 /* Write a register on the Si4126 RF/IF synthesizer using the registers 1864 * provided by the ADM8211 for that purpose. 1865 * 1866 * val is 18 bits of data, and val is the 4-bit address of the register. 1867 * 1868 * Return 0 on success. 1869 */ 1870 static void 1871 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val) 1872 { 1873 uint32_t bits, mask, reg; 1874 const int nbits = 22; 1875 1876 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0); 1877 KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0); 1878 1879 bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) | 1880 __SHIFTIN(addr, SI4126_TWI_ADDR_MASK); 1881 1882 reg = ATW_SYNRF_SELSYN; 1883 /* reference driver: reset Si4126 serial bus to initial 1884 * conditions? 1885 */ 1886 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF); 1887 ATW_WRITE(sc, ATW_SYNRF, reg); 1888 1889 for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) { 1890 if ((bits & mask) != 0) 1891 reg |= ATW_SYNRF_SYNDATA; 1892 else 1893 reg &= ~ATW_SYNRF_SYNDATA; 1894 ATW_WRITE(sc, ATW_SYNRF, reg); 1895 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK); 1896 ATW_WRITE(sc, ATW_SYNRF, reg); 1897 } 1898 ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF); 1899 ATW_WRITE(sc, ATW_SYNRF, 0x0); 1900 } 1901 1902 /* Read 18-bit data from the 4-bit address addr in Si4126 1903 * RF synthesizer and write the data to *val. Return 0 on success. 1904 * 1905 * XXX This does not seem to work. The ADM8211 must require more or 1906 * different magic to read the chip than to write it. 1907 */ 1908 #ifdef ATW_SYNDEBUG 1909 static int 1910 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val) 1911 { 1912 u_int32_t reg; 1913 int i; 1914 1915 KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0); 1916 1917 for (i = 1000; --i >= 0; ) { 1918 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0) 1919 break; 1920 DELAY(100); 1921 } 1922 1923 if (i < 0) { 1924 printf("%s: start atw_si4126_read, SYNCTL busy\n", 1925 device_xname(sc->sc_dev)); 1926 return ETIMEDOUT; 1927 } 1928 1929 reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK); 1930 1931 ATW_WRITE(sc, ATW_SYNCTL, reg); 1932 1933 for (i = 1000; --i >= 0; ) { 1934 DELAY(100); 1935 if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0) 1936 break; 1937 } 1938 1939 ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD); 1940 1941 if (i < 0) { 1942 printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n", 1943 device_xname(sc->sc_dev), reg); 1944 return ETIMEDOUT; 1945 } 1946 if (val != NULL) 1947 *val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL), 1948 ATW_SYNCTL_DATA_MASK); 1949 return 0; 1950 } 1951 #endif /* ATW_SYNDEBUG */ 1952 1953 /* XXX is the endianness correct? test. */ 1954 #define atw_calchash(addr) \ 1955 (ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0)) 1956 1957 /* 1958 * atw_filter_setup: 1959 * 1960 * Set the ADM8211's receive filter. 1961 */ 1962 static void 1963 atw_filter_setup(struct atw_softc *sc) 1964 { 1965 struct ieee80211com *ic = &sc->sc_ic; 1966 struct ethercom *ec = &sc->sc_ec; 1967 struct ifnet *ifp = &sc->sc_if; 1968 int hash; 1969 u_int32_t hashes[2]; 1970 struct ether_multi *enm; 1971 struct ether_multistep step; 1972 1973 /* According to comments in tlp_al981_filter_setup 1974 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its 1975 * multicast filter to be set while it is running. Hopefully 1976 * the ADM8211 is not the same! 1977 */ 1978 if ((ifp->if_flags & IFF_RUNNING) != 0) 1979 atw_idle(sc, ATW_NAR_SR); 1980 1981 sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM); 1982 ifp->if_flags &= ~IFF_ALLMULTI; 1983 1984 /* XXX in scan mode, do not filter packets. Maybe this is 1985 * unnecessary. 1986 */ 1987 if (ic->ic_state == IEEE80211_S_SCAN || 1988 (ifp->if_flags & IFF_PROMISC) != 0) { 1989 sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB; 1990 goto allmulti; 1991 } 1992 1993 hashes[0] = hashes[1] = 0x0; 1994 1995 /* 1996 * Program the 64-bit multicast hash filter. 1997 */ 1998 ETHER_FIRST_MULTI(step, ec, enm); 1999 while (enm != NULL) { 2000 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 2001 ETHER_ADDR_LEN) != 0) 2002 goto allmulti; 2003 2004 hash = atw_calchash(enm->enm_addrlo); 2005 hashes[hash >> 5] |= 1 << (hash & 0x1f); 2006 ETHER_NEXT_MULTI(step, enm); 2007 sc->sc_opmode |= ATW_NAR_MM; 2008 } 2009 ifp->if_flags &= ~IFF_ALLMULTI; 2010 goto setit; 2011 2012 allmulti: 2013 sc->sc_opmode |= ATW_NAR_MM; 2014 ifp->if_flags |= IFF_ALLMULTI; 2015 hashes[0] = hashes[1] = 0xffffffff; 2016 2017 setit: 2018 ATW_WRITE(sc, ATW_MAR0, hashes[0]); 2019 ATW_WRITE(sc, ATW_MAR1, hashes[1]); 2020 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode); 2021 DELAY(atw_nar_delay); 2022 ATW_WRITE(sc, ATW_RDR, 0x1); 2023 2024 DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev), 2025 ATW_READ(sc, ATW_NAR), sc->sc_opmode)); 2026 } 2027 2028 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match 2029 * a beacon's BSSID and SSID against the preferred BSSID and SSID 2030 * before it will raise ATW_INTR_LINKON. When the ADM8211 receives 2031 * no beacon with the preferred BSSID and SSID in the number of 2032 * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF. 2033 */ 2034 static void 2035 atw_write_bssid(struct atw_softc *sc) 2036 { 2037 struct ieee80211com *ic = &sc->sc_ic; 2038 u_int8_t *bssid; 2039 2040 bssid = ic->ic_bss->ni_bssid; 2041 2042 ATW_WRITE(sc, ATW_BSSID0, 2043 __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) | 2044 __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) | 2045 __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) | 2046 __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK)); 2047 2048 ATW_WRITE(sc, ATW_ABDA1, 2049 (ATW_READ(sc, ATW_ABDA1) & 2050 ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) | 2051 __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) | 2052 __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK)); 2053 2054 DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev), 2055 ether_sprintf(sc->sc_bssid))); 2056 DPRINTF(sc, ("%s\n", ether_sprintf(bssid))); 2057 2058 memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid)); 2059 } 2060 2061 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th 2062 * 16-bit word. 2063 */ 2064 static void 2065 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen) 2066 { 2067 u_int i; 2068 u_int8_t *ptr; 2069 2070 memcpy(&sc->sc_sram[ofs], buf, buflen); 2071 2072 KASSERT(ofs % 2 == 0 && buflen % 2 == 0); 2073 2074 KASSERT(buflen + ofs <= sc->sc_sramlen); 2075 2076 ptr = &sc->sc_sram[ofs]; 2077 2078 for (i = 0; i < buflen; i += 2) { 2079 ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR | 2080 __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK)); 2081 DELAY(atw_writewep_delay); 2082 2083 ATW_WRITE(sc, ATW_WESK, 2084 __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK)); 2085 DELAY(atw_writewep_delay); 2086 } 2087 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */ 2088 2089 if (sc->sc_if.if_flags & IFF_DEBUG) { 2090 int n_octets = 0; 2091 printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n", 2092 device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl); 2093 for (i = 0; i < buflen; i++) { 2094 printf(" %02x", ptr[i]); 2095 if (++n_octets % 24 == 0) 2096 printf("\n"); 2097 } 2098 if (n_octets % 24 != 0) 2099 printf("\n"); 2100 } 2101 } 2102 2103 static int 2104 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 2105 { 2106 struct atw_softc *sc = ic->ic_ifp->if_softc; 2107 u_int keyix = k->wk_keyix; 2108 2109 DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix)); 2110 2111 if (keyix >= IEEE80211_WEP_NKID) 2112 return 0; 2113 if (k->wk_keylen != 0) 2114 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID; 2115 2116 return 1; 2117 } 2118 2119 static int 2120 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 2121 const u_int8_t mac[IEEE80211_ADDR_LEN]) 2122 { 2123 struct atw_softc *sc = ic->ic_ifp->if_softc; 2124 2125 DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix)); 2126 2127 if (k->wk_keyix >= IEEE80211_WEP_NKID) 2128 return 0; 2129 2130 sc->sc_flags &= ~ATWF_WEP_SRAM_VALID; 2131 2132 return 1; 2133 } 2134 2135 static void 2136 atw_key_update_begin(struct ieee80211com *ic) 2137 { 2138 #ifdef ATW_DEBUG 2139 struct ifnet *ifp = ic->ic_ifp; 2140 struct atw_softc *sc = ifp->if_softc; 2141 #endif 2142 2143 DPRINTF(sc, ("%s:\n", __func__)); 2144 } 2145 2146 static void 2147 atw_key_update_end(struct ieee80211com *ic) 2148 { 2149 struct ifnet *ifp = ic->ic_ifp; 2150 struct atw_softc *sc = ifp->if_softc; 2151 2152 DPRINTF(sc, ("%s:\n", __func__)); 2153 2154 if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0) 2155 return; 2156 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) 2157 return; 2158 atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST); 2159 atw_write_wep(sc); 2160 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode); 2161 DELAY(atw_nar_delay); 2162 ATW_WRITE(sc, ATW_RDR, 0x1); 2163 } 2164 2165 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */ 2166 static void 2167 atw_write_wep(struct atw_softc *sc) 2168 { 2169 #if 0 2170 struct ieee80211com *ic = &sc->sc_ic; 2171 u_int32_t reg; 2172 int i; 2173 #endif 2174 /* SRAM shared-key record format: key0 flags key1 ... key12 */ 2175 u_int8_t buf[IEEE80211_WEP_NKID] 2176 [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */]; 2177 2178 sc->sc_wepctl = 0; 2179 ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); 2180 2181 memset(&buf[0][0], 0, sizeof(buf)); 2182 2183 #if 0 2184 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2185 if (ic->ic_nw_keys[i].wk_keylen > 5) { 2186 buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT; 2187 } else if (ic->ic_nw_keys[i].wk_keylen != 0) { 2188 buf[i][1] = ATW_WEP_ENABLED; 2189 } else { 2190 buf[i][1] = 0; 2191 continue; 2192 } 2193 buf[i][0] = ic->ic_nw_keys[i].wk_key[0]; 2194 memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1], 2195 ic->ic_nw_keys[i].wk_keylen - 1); 2196 } 2197 2198 reg = ATW_READ(sc, ATW_MACTEST); 2199 reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID; 2200 reg &= ~ATW_MACTEST_KEYID_MASK; 2201 reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK); 2202 ATW_WRITE(sc, ATW_MACTEST, reg); 2203 2204 if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0) 2205 sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE; 2206 2207 switch (sc->sc_rev) { 2208 case ATW_REVISION_AB: 2209 case ATW_REVISION_AF: 2210 /* Bypass WEP on Rx. */ 2211 sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP; 2212 break; 2213 default: 2214 break; 2215 } 2216 #endif 2217 2218 atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0], 2219 sizeof(buf)); 2220 2221 sc->sc_flags |= ATWF_WEP_SRAM_VALID; 2222 } 2223 2224 static void 2225 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2226 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp) 2227 { 2228 struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc; 2229 2230 /* The ADM8211A answers probe requests. TBD ADM8211B/C. */ 2231 if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ) 2232 return; 2233 2234 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp); 2235 2236 switch (subtype) { 2237 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2238 case IEEE80211_FC0_SUBTYPE_BEACON: 2239 if (ic->ic_opmode == IEEE80211_M_IBSS && 2240 ic->ic_state == IEEE80211_S_RUN) { 2241 if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc)) 2242 (void)ieee80211_ibss_merge(ni); 2243 } 2244 break; 2245 default: 2246 break; 2247 } 2248 return; 2249 } 2250 2251 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211. 2252 * In ad hoc mode, the SSID is written to the beacons sent by the 2253 * ADM8211. In both ad hoc and infrastructure mode, beacons received 2254 * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF 2255 * indications. 2256 */ 2257 static void 2258 atw_write_ssid(struct atw_softc *sc) 2259 { 2260 struct ieee80211com *ic = &sc->sc_ic; 2261 /* 34 bytes are reserved in ADM8211 SRAM for the SSID, but 2262 * it only expects the element length, not its ID. 2263 */ 2264 u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)]; 2265 2266 memset(buf, 0, sizeof(buf)); 2267 buf[0] = ic->ic_bss->ni_esslen; 2268 memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen); 2269 2270 atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, 2271 roundup(1 + ic->ic_bss->ni_esslen, 2)); 2272 } 2273 2274 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211. 2275 * In ad hoc mode, the supported rates are written to beacons sent by the 2276 * ADM8211. 2277 */ 2278 static void 2279 atw_write_sup_rates(struct atw_softc *sc) 2280 { 2281 struct ieee80211com *ic = &sc->sc_ic; 2282 /* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for 2283 * supported rates 2284 */ 2285 u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)]; 2286 2287 memset(buf, 0, sizeof(buf)); 2288 2289 buf[0] = ic->ic_bss->ni_rates.rs_nrates; 2290 2291 memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates, 2292 ic->ic_bss->ni_rates.rs_nrates); 2293 2294 atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf)); 2295 } 2296 2297 /* Start/stop sending beacons. */ 2298 void 2299 atw_start_beacon(struct atw_softc *sc, int start) 2300 { 2301 struct ieee80211com *ic = &sc->sc_ic; 2302 uint16_t chan; 2303 uint32_t bcnt, bpli, cap0, cap1, capinfo; 2304 size_t len; 2305 2306 if (!device_is_active(sc->sc_dev)) 2307 return; 2308 2309 /* start beacons */ 2310 len = sizeof(struct ieee80211_frame) + 2311 8 /* timestamp */ + 2 /* beacon interval */ + 2312 2 /* capability info */ + 2313 2 + ic->ic_bss->ni_esslen /* SSID element */ + 2314 2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ + 2315 3 /* DS parameters */ + 2316 IEEE80211_CRC_LEN; 2317 2318 bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK; 2319 cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK; 2320 cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK; 2321 2322 ATW_WRITE(sc, ATW_BCNT, bcnt); 2323 ATW_WRITE(sc, ATW_CAP1, cap1); 2324 2325 if (!start) 2326 return; 2327 2328 /* TBD use ni_capinfo */ 2329 2330 capinfo = 0; 2331 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2332 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2333 if (ic->ic_flags & IEEE80211_F_PRIVACY) 2334 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2335 2336 switch (ic->ic_opmode) { 2337 case IEEE80211_M_IBSS: 2338 len += 4; /* IBSS parameters */ 2339 capinfo |= IEEE80211_CAPINFO_IBSS; 2340 break; 2341 case IEEE80211_M_HOSTAP: 2342 /* XXX 6-byte minimum TIM */ 2343 len += atw_beacon_len_adjust; 2344 capinfo |= IEEE80211_CAPINFO_ESS; 2345 break; 2346 default: 2347 return; 2348 } 2349 2350 /* set listen interval 2351 * XXX do software units agree w/ hardware? 2352 */ 2353 bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) | 2354 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK); 2355 2356 chan = ieee80211_chan2ieee(ic, ic->ic_curchan); 2357 2358 bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK); 2359 cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK); 2360 cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK); 2361 2362 ATW_WRITE(sc, ATW_BCNT, bcnt); 2363 ATW_WRITE(sc, ATW_BPLI, bpli); 2364 ATW_WRITE(sc, ATW_CAP0, cap0); 2365 ATW_WRITE(sc, ATW_CAP1, cap1); 2366 2367 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n", 2368 device_xname(sc->sc_dev), bcnt)); 2369 2370 DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n", 2371 device_xname(sc->sc_dev), cap1)); 2372 } 2373 2374 /* Return the 32 lsb of the last TSFT divisible by ival. */ 2375 static inline uint32_t 2376 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival) 2377 { 2378 /* Following the reference driver's lead, I compute 2379 * 2380 * (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival) 2381 * 2382 * without using 64-bit arithmetic, using the following 2383 * relationship: 2384 * 2385 * (0x100000000 * H + L) % m 2386 * = ((0x100000000 % m) * H + L) % m 2387 * = (((0xffffffff + 1) % m) * H + L) % m 2388 * = ((0xffffffff % m + 1 % m) * H + L) % m 2389 * = ((0xffffffff % m + 1) * H + L) % m 2390 */ 2391 return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival; 2392 } 2393 2394 static uint64_t 2395 atw_get_tsft(struct atw_softc *sc) 2396 { 2397 int i; 2398 uint32_t tsfth, tsftl; 2399 for (i = 0; i < 2; i++) { 2400 tsfth = ATW_READ(sc, ATW_TSFTH); 2401 tsftl = ATW_READ(sc, ATW_TSFTL); 2402 if (ATW_READ(sc, ATW_TSFTH) == tsfth) 2403 break; 2404 } 2405 return ((uint64_t)tsfth << 32) | tsftl; 2406 } 2407 2408 /* If we've created an IBSS, write the TSF time in the ADM8211 to 2409 * the ieee80211com. 2410 * 2411 * Predict the next target beacon transmission time (TBTT) and 2412 * write it to the ADM8211. 2413 */ 2414 static void 2415 atw_predict_beacon(struct atw_softc *sc) 2416 { 2417 #define TBTTOFS 20 /* TU */ 2418 2419 struct ieee80211com *ic = &sc->sc_ic; 2420 uint64_t tsft; 2421 uint32_t ival, past_even, tbtt, tsfth, tsftl; 2422 union { 2423 uint64_t word; 2424 uint8_t tstamp[8]; 2425 } u; 2426 2427 if ((ic->ic_opmode == IEEE80211_M_HOSTAP) || 2428 ((ic->ic_opmode == IEEE80211_M_IBSS) && 2429 (ic->ic_flags & IEEE80211_F_SIBSS))) { 2430 tsft = atw_get_tsft(sc); 2431 u.word = htole64(tsft); 2432 (void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0], 2433 sizeof(ic->ic_bss->ni_tstamp)); 2434 } else 2435 tsft = le64toh(ic->ic_bss->ni_tstamp.tsf); 2436 2437 ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU; 2438 2439 tsftl = tsft & 0xFFFFFFFF; 2440 tsfth = tsft >> 32; 2441 2442 /* We sent/received the last beacon `past' microseconds 2443 * after the interval divided the TSF timer. 2444 */ 2445 past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival); 2446 2447 /* Skip ten beacons so that the TBTT cannot pass before 2448 * we've programmed it. Ten is an arbitrary number. 2449 */ 2450 tbtt = past_even + ival * 10; 2451 2452 ATW_WRITE(sc, ATW_TOFS1, 2453 __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) | 2454 __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) | 2455 __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU, 2456 ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK)); 2457 #undef TBTTOFS 2458 } 2459 2460 static void 2461 atw_next_scan(void *arg) 2462 { 2463 struct atw_softc *sc = arg; 2464 struct ieee80211com *ic = &sc->sc_ic; 2465 int s; 2466 2467 /* don't call atw_start w/o network interrupts blocked */ 2468 s = splnet(); 2469 if (ic->ic_state == IEEE80211_S_SCAN) 2470 ieee80211_next_scan(ic); 2471 splx(s); 2472 } 2473 2474 /* Synchronize the hardware state with the software state. */ 2475 static int 2476 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2477 { 2478 struct ifnet *ifp = ic->ic_ifp; 2479 struct atw_softc *sc = ifp->if_softc; 2480 int error = 0; 2481 2482 callout_stop(&sc->sc_scan_ch); 2483 2484 switch (nstate) { 2485 case IEEE80211_S_AUTH: 2486 case IEEE80211_S_ASSOC: 2487 atw_write_bssid(sc); 2488 error = atw_tune(sc); 2489 break; 2490 case IEEE80211_S_INIT: 2491 callout_stop(&sc->sc_scan_ch); 2492 sc->sc_cur_chan = IEEE80211_CHAN_ANY; 2493 atw_start_beacon(sc, 0); 2494 break; 2495 case IEEE80211_S_SCAN: 2496 error = atw_tune(sc); 2497 callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000, 2498 atw_next_scan, sc); 2499 break; 2500 case IEEE80211_S_RUN: 2501 error = atw_tune(sc); 2502 atw_write_bssid(sc); 2503 atw_write_ssid(sc); 2504 atw_write_sup_rates(sc); 2505 2506 if (ic->ic_opmode == IEEE80211_M_AHDEMO || 2507 ic->ic_opmode == IEEE80211_M_MONITOR) 2508 break; 2509 2510 /* set listen interval 2511 * XXX do software units agree w/ hardware? 2512 */ 2513 ATW_WRITE(sc, ATW_BPLI, 2514 __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) | 2515 __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, 2516 ATW_BPLI_LI_MASK)); 2517 2518 DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev), 2519 ATW_READ(sc, ATW_BPLI))); 2520 2521 atw_predict_beacon(sc); 2522 2523 switch (ic->ic_opmode) { 2524 case IEEE80211_M_AHDEMO: 2525 case IEEE80211_M_HOSTAP: 2526 case IEEE80211_M_IBSS: 2527 atw_start_beacon(sc, 1); 2528 break; 2529 case IEEE80211_M_MONITOR: 2530 case IEEE80211_M_STA: 2531 break; 2532 } 2533 2534 break; 2535 } 2536 return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg); 2537 } 2538 2539 /* 2540 * atw_add_rxbuf: 2541 * 2542 * Add a receive buffer to the indicated descriptor. 2543 */ 2544 int 2545 atw_add_rxbuf(struct atw_softc *sc, int idx) 2546 { 2547 struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2548 struct mbuf *m; 2549 int error; 2550 2551 MGETHDR(m, M_DONTWAIT, MT_DATA); 2552 if (m == NULL) 2553 return (ENOBUFS); 2554 2555 MCLGET(m, M_DONTWAIT); 2556 if ((m->m_flags & M_EXT) == 0) { 2557 m_freem(m); 2558 return (ENOBUFS); 2559 } 2560 2561 if (rxs->rxs_mbuf != NULL) 2562 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2563 2564 rxs->rxs_mbuf = m; 2565 2566 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 2567 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2568 BUS_DMA_READ|BUS_DMA_NOWAIT); 2569 if (error) { 2570 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n", 2571 idx, error); 2572 panic("atw_add_rxbuf"); /* XXX */ 2573 } 2574 2575 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2576 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2577 2578 atw_init_rxdesc(sc, idx); 2579 2580 return (0); 2581 } 2582 2583 /* 2584 * Release any queued transmit buffers. 2585 */ 2586 void 2587 atw_txdrain(struct atw_softc *sc) 2588 { 2589 struct atw_txsoft *txs; 2590 2591 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 2592 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 2593 if (txs->txs_mbuf != NULL) { 2594 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2595 m_freem(txs->txs_mbuf); 2596 txs->txs_mbuf = NULL; 2597 } 2598 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 2599 sc->sc_txfree += txs->txs_ndescs; 2600 } 2601 2602 KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 || 2603 !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) || 2604 sc->sc_txfree != ATW_NTXDESC)); 2605 sc->sc_if.if_flags &= ~IFF_OACTIVE; 2606 sc->sc_tx_timer = 0; 2607 } 2608 2609 /* 2610 * atw_stop: [ ifnet interface function ] 2611 * 2612 * Stop transmission on the interface. 2613 */ 2614 void 2615 atw_stop(struct ifnet *ifp, int disable) 2616 { 2617 struct atw_softc *sc = ifp->if_softc; 2618 struct ieee80211com *ic = &sc->sc_ic; 2619 2620 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2621 2622 if (device_is_active(sc->sc_dev)) { 2623 /* Disable interrupts. */ 2624 ATW_WRITE(sc, ATW_IER, 0); 2625 2626 /* Stop the transmit and receive processes. */ 2627 ATW_WRITE(sc, ATW_NAR, 0); 2628 DELAY(atw_nar_delay); 2629 ATW_WRITE(sc, ATW_TDBD, 0); 2630 ATW_WRITE(sc, ATW_TDBP, 0); 2631 ATW_WRITE(sc, ATW_RDB, 0); 2632 } 2633 2634 sc->sc_opmode = 0; 2635 2636 atw_txdrain(sc); 2637 2638 /* 2639 * Mark the interface down and cancel the watchdog timer. 2640 */ 2641 ifp->if_flags &= ~IFF_RUNNING; 2642 ifp->if_timer = 0; 2643 2644 if (disable) 2645 pmf_device_suspend(sc->sc_dev, &sc->sc_qual); 2646 } 2647 2648 /* 2649 * atw_rxdrain: 2650 * 2651 * Drain the receive queue. 2652 */ 2653 void 2654 atw_rxdrain(struct atw_softc *sc) 2655 { 2656 struct atw_rxsoft *rxs; 2657 int i; 2658 2659 for (i = 0; i < ATW_NRXDESC; i++) { 2660 rxs = &sc->sc_rxsoft[i]; 2661 if (rxs->rxs_mbuf == NULL) 2662 continue; 2663 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2664 m_freem(rxs->rxs_mbuf); 2665 rxs->rxs_mbuf = NULL; 2666 } 2667 } 2668 2669 /* 2670 * atw_detach: 2671 * 2672 * Detach an ADM8211 interface. 2673 */ 2674 int 2675 atw_detach(struct atw_softc *sc) 2676 { 2677 struct ifnet *ifp = &sc->sc_if; 2678 struct atw_rxsoft *rxs; 2679 struct atw_txsoft *txs; 2680 int i; 2681 2682 /* 2683 * Succeed now if there isn't any work to do. 2684 */ 2685 if ((sc->sc_flags & ATWF_ATTACHED) == 0) 2686 return (0); 2687 2688 pmf_device_deregister(sc->sc_dev); 2689 2690 callout_stop(&sc->sc_scan_ch); 2691 2692 ieee80211_ifdetach(&sc->sc_ic); 2693 if_detach(ifp); 2694 2695 for (i = 0; i < ATW_NRXDESC; i++) { 2696 rxs = &sc->sc_rxsoft[i]; 2697 if (rxs->rxs_mbuf != NULL) { 2698 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2699 m_freem(rxs->rxs_mbuf); 2700 rxs->rxs_mbuf = NULL; 2701 } 2702 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap); 2703 } 2704 for (i = 0; i < ATW_TXQUEUELEN; i++) { 2705 txs = &sc->sc_txsoft[i]; 2706 if (txs->txs_mbuf != NULL) { 2707 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2708 m_freem(txs->txs_mbuf); 2709 txs->txs_mbuf = NULL; 2710 } 2711 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap); 2712 } 2713 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 2714 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 2715 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 2716 sizeof(struct atw_control_data)); 2717 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg); 2718 2719 if (sc->sc_srom) 2720 free(sc->sc_srom, M_DEVBUF); 2721 2722 atw_evcnt_detach(sc); 2723 2724 return (0); 2725 } 2726 2727 /* atw_shutdown: make sure the interface is stopped at reboot time. */ 2728 bool 2729 atw_shutdown(device_t self, int flags) 2730 { 2731 struct atw_softc *sc = device_private(self); 2732 2733 atw_stop(&sc->sc_if, 1); 2734 return true; 2735 } 2736 2737 #if 0 2738 static void 2739 atw_workaround1(struct atw_softc *sc) 2740 { 2741 uint32_t test1; 2742 2743 test1 = ATW_READ(sc, ATW_TEST1); 2744 2745 sc->sc_misc_ev.ev_count++; 2746 2747 if ((test1 & ATW_TEST1_RXPKT1IN) != 0) { 2748 sc->sc_rxpkt1in_ev.ev_count++; 2749 return; 2750 } 2751 if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) == 2752 __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) { 2753 sc->sc_rxamatch_ev.ev_count++; 2754 return; 2755 } 2756 sc->sc_workaround1_ev.ev_count++; 2757 (void)atw_init(&sc->sc_if); 2758 } 2759 #endif 2760 2761 int 2762 atw_intr(void *arg) 2763 { 2764 struct atw_softc *sc = arg; 2765 struct ifnet *ifp = &sc->sc_if; 2766 u_int32_t status, rxstatus, txstatus, linkstatus; 2767 int handled = 0, txthresh; 2768 2769 #ifdef DEBUG 2770 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) 2771 panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev)); 2772 #endif 2773 2774 /* 2775 * If the interface isn't running, the interrupt couldn't 2776 * possibly have come from us. 2777 */ 2778 if ((ifp->if_flags & IFF_RUNNING) == 0 || 2779 !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) 2780 return (0); 2781 2782 for (;;) { 2783 status = ATW_READ(sc, ATW_STSR); 2784 2785 if (status) 2786 ATW_WRITE(sc, ATW_STSR, status); 2787 2788 #ifdef ATW_DEBUG 2789 #define PRINTINTR(flag) do { \ 2790 if ((status & flag) != 0) { \ 2791 printf("%s" #flag, delim); \ 2792 delim = ","; \ 2793 } \ 2794 } while (0) 2795 2796 if (atw_debug > 1 && status) { 2797 const char *delim = "<"; 2798 2799 printf("%s: reg[STSR] = %x", 2800 device_xname(sc->sc_dev), status); 2801 2802 PRINTINTR(ATW_INTR_FBE); 2803 PRINTINTR(ATW_INTR_LINKOFF); 2804 PRINTINTR(ATW_INTR_LINKON); 2805 PRINTINTR(ATW_INTR_RCI); 2806 PRINTINTR(ATW_INTR_RDU); 2807 PRINTINTR(ATW_INTR_REIS); 2808 PRINTINTR(ATW_INTR_RPS); 2809 PRINTINTR(ATW_INTR_TCI); 2810 PRINTINTR(ATW_INTR_TDU); 2811 PRINTINTR(ATW_INTR_TLT); 2812 PRINTINTR(ATW_INTR_TPS); 2813 PRINTINTR(ATW_INTR_TRT); 2814 PRINTINTR(ATW_INTR_TUF); 2815 PRINTINTR(ATW_INTR_BCNTC); 2816 PRINTINTR(ATW_INTR_ATIME); 2817 PRINTINTR(ATW_INTR_TBTT); 2818 PRINTINTR(ATW_INTR_TSCZ); 2819 PRINTINTR(ATW_INTR_TSFTF); 2820 printf(">\n"); 2821 } 2822 #undef PRINTINTR 2823 #endif /* ATW_DEBUG */ 2824 2825 if ((status & sc->sc_inten) == 0) 2826 break; 2827 2828 handled = 1; 2829 2830 rxstatus = status & sc->sc_rxint_mask; 2831 txstatus = status & sc->sc_txint_mask; 2832 linkstatus = status & sc->sc_linkint_mask; 2833 2834 if (linkstatus) { 2835 atw_linkintr(sc, linkstatus); 2836 } 2837 2838 if (rxstatus) { 2839 /* Grab any new packets. */ 2840 atw_rxintr(sc); 2841 2842 if (rxstatus & ATW_INTR_RDU) { 2843 printf("%s: receive ring overrun\n", 2844 device_xname(sc->sc_dev)); 2845 /* Get the receive process going again. */ 2846 ATW_WRITE(sc, ATW_RDR, 0x1); 2847 } 2848 } 2849 2850 if (txstatus) { 2851 /* Sweep up transmit descriptors. */ 2852 atw_txintr(sc, txstatus); 2853 2854 if (txstatus & ATW_INTR_TLT) { 2855 DPRINTF(sc, ("%s: tx lifetime exceeded\n", 2856 device_xname(sc->sc_dev))); 2857 (void)atw_init(&sc->sc_if); 2858 } 2859 2860 if (txstatus & ATW_INTR_TRT) { 2861 DPRINTF(sc, ("%s: tx retry limit exceeded\n", 2862 device_xname(sc->sc_dev))); 2863 } 2864 2865 /* If Tx under-run, increase our transmit threshold 2866 * if another is available. 2867 */ 2868 txthresh = sc->sc_txthresh + 1; 2869 if ((txstatus & ATW_INTR_TUF) && 2870 sc->sc_txth[txthresh].txth_name != NULL) { 2871 /* Idle the transmit process. */ 2872 atw_idle(sc, ATW_NAR_ST); 2873 2874 sc->sc_txthresh = txthresh; 2875 sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF); 2876 sc->sc_opmode |= 2877 sc->sc_txth[txthresh].txth_opmode; 2878 printf("%s: transmit underrun; new " 2879 "threshold: %s\n", device_xname(sc->sc_dev), 2880 sc->sc_txth[txthresh].txth_name); 2881 2882 /* Set the new threshold and restart 2883 * the transmit process. 2884 */ 2885 ATW_WRITE(sc, ATW_NAR, sc->sc_opmode); 2886 DELAY(atw_nar_delay); 2887 ATW_WRITE(sc, ATW_TDR, 0x1); 2888 /* XXX Log every Nth underrun from 2889 * XXX now on? 2890 */ 2891 } 2892 } 2893 2894 if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) { 2895 if (status & ATW_INTR_TPS) 2896 printf("%s: transmit process stopped\n", 2897 device_xname(sc->sc_dev)); 2898 if (status & ATW_INTR_RPS) 2899 printf("%s: receive process stopped\n", 2900 device_xname(sc->sc_dev)); 2901 (void)atw_init(ifp); 2902 break; 2903 } 2904 2905 if (status & ATW_INTR_FBE) { 2906 aprint_error_dev(sc->sc_dev, "fatal bus error\n"); 2907 (void)atw_init(ifp); 2908 break; 2909 } 2910 2911 /* 2912 * Not handled: 2913 * 2914 * Transmit buffer unavailable -- normal 2915 * condition, nothing to do, really. 2916 * 2917 * Early receive interrupt -- not available on 2918 * all chips, we just use RI. We also only 2919 * use single-segment receive DMA, so this 2920 * is mostly useless. 2921 * 2922 * TBD others 2923 */ 2924 } 2925 2926 /* Try to get more packets going. */ 2927 atw_start(ifp); 2928 2929 return (handled); 2930 } 2931 2932 /* 2933 * atw_idle: 2934 * 2935 * Cause the transmit and/or receive processes to go idle. 2936 * 2937 * XXX It seems that the ADM8211 will not signal the end of the Rx/Tx 2938 * process in STSR if I clear SR or ST after the process has already 2939 * ceased. Fair enough. But the Rx process status bits in ATW_TEST0 2940 * do not seem to be too reliable. Perhaps I have the sense of the 2941 * Rx bits switched with the Tx bits? 2942 */ 2943 void 2944 atw_idle(struct atw_softc *sc, u_int32_t bits) 2945 { 2946 u_int32_t ackmask = 0, opmode, stsr, test0; 2947 int i, s; 2948 2949 s = splnet(); 2950 2951 opmode = sc->sc_opmode & ~bits; 2952 2953 if (bits & ATW_NAR_SR) 2954 ackmask |= ATW_INTR_RPS; 2955 2956 if (bits & ATW_NAR_ST) { 2957 ackmask |= ATW_INTR_TPS; 2958 /* set ATW_NAR_HF to flush TX FIFO. */ 2959 opmode |= ATW_NAR_HF; 2960 } 2961 2962 ATW_WRITE(sc, ATW_NAR, opmode); 2963 DELAY(atw_nar_delay); 2964 2965 for (i = 0; i < 1000; i++) { 2966 stsr = ATW_READ(sc, ATW_STSR); 2967 if ((stsr & ackmask) == ackmask) 2968 break; 2969 DELAY(10); 2970 } 2971 2972 ATW_WRITE(sc, ATW_STSR, stsr & ackmask); 2973 2974 if ((stsr & ackmask) == ackmask) 2975 goto out; 2976 2977 test0 = ATW_READ(sc, ATW_TEST0); 2978 2979 if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 && 2980 (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) { 2981 printf("%s: transmit process not idle [%s]\n", 2982 device_xname(sc->sc_dev), 2983 atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]); 2984 printf("%s: bits %08x test0 %08x stsr %08x\n", 2985 device_xname(sc->sc_dev), bits, test0, stsr); 2986 } 2987 2988 if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 && 2989 (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) { 2990 DPRINTF2(sc, ("%s: receive process not idle [%s]\n", 2991 device_xname(sc->sc_dev), 2992 atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)])); 2993 DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n", 2994 device_xname(sc->sc_dev), bits, test0, stsr)); 2995 } 2996 out: 2997 if ((bits & ATW_NAR_ST) != 0) 2998 atw_txdrain(sc); 2999 splx(s); 3000 return; 3001 } 3002 3003 /* 3004 * atw_linkintr: 3005 * 3006 * Helper; handle link-status interrupts. 3007 */ 3008 void 3009 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus) 3010 { 3011 struct ieee80211com *ic = &sc->sc_ic; 3012 3013 if (ic->ic_state != IEEE80211_S_RUN) 3014 return; 3015 3016 if (linkstatus & ATW_INTR_LINKON) { 3017 DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev))); 3018 sc->sc_rescan_timer = 0; 3019 } else if (linkstatus & ATW_INTR_LINKOFF) { 3020 DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev))); 3021 if (ic->ic_opmode != IEEE80211_M_STA) 3022 return; 3023 sc->sc_rescan_timer = 3; 3024 sc->sc_if.if_timer = 1; 3025 } 3026 } 3027 3028 #if 0 3029 static inline int 3030 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh) 3031 { 3032 if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0) 3033 return 0; 3034 if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0) 3035 return 0; 3036 return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0; 3037 } 3038 #endif 3039 3040 /* 3041 * atw_rxintr: 3042 * 3043 * Helper; handle receive interrupts. 3044 */ 3045 void 3046 atw_rxintr(struct atw_softc *sc) 3047 { 3048 static int rate_tbl[] = {2, 4, 11, 22, 44}; 3049 struct ieee80211com *ic = &sc->sc_ic; 3050 struct ieee80211_node *ni; 3051 struct ieee80211_frame_min *wh; 3052 struct ifnet *ifp = &sc->sc_if; 3053 struct atw_rxsoft *rxs; 3054 struct mbuf *m; 3055 u_int32_t rxstat; 3056 int i, len, rate, rate0; 3057 u_int32_t rssi, ctlrssi; 3058 3059 for (i = sc->sc_rxptr;; i = sc->sc_rxptr) { 3060 rxs = &sc->sc_rxsoft[i]; 3061 3062 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 3063 3064 rxstat = le32toh(sc->sc_rxdescs[i].ar_stat); 3065 ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi); 3066 rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK); 3067 3068 if (rxstat & ATW_RXSTAT_OWN) { 3069 ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); 3070 break; 3071 } 3072 3073 sc->sc_rxptr = ATW_NEXTRX(i); 3074 3075 DPRINTF3(sc, 3076 ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n", 3077 device_xname(sc->sc_dev), 3078 rxstat, ctlrssi, 3079 le32toh(sc->sc_rxdescs[i].ar_buf1), 3080 le32toh(sc->sc_rxdescs[i].ar_buf2))); 3081 3082 /* 3083 * Make sure the packet fits in one buffer. This should 3084 * always be the case. 3085 */ 3086 if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) != 3087 (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) { 3088 printf("%s: incoming packet spilled, resetting\n", 3089 device_xname(sc->sc_dev)); 3090 (void)atw_init(ifp); 3091 return; 3092 } 3093 3094 /* 3095 * If an error occurred, update stats, clear the status 3096 * word, and leave the packet buffer in place. It will 3097 * simply be reused the next time the ring comes around. 3098 */ 3099 if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) { 3100 #define PRINTERR(bit, str) \ 3101 if (rxstat & (bit)) \ 3102 aprint_error_dev(sc->sc_dev, "receive error: %s\n", \ 3103 str) 3104 ifp->if_ierrors++; 3105 PRINTERR(ATW_RXSTAT_DE, "descriptor error"); 3106 PRINTERR(ATW_RXSTAT_RXTOE, "time-out"); 3107 #if 0 3108 PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error"); 3109 PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error"); 3110 PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error"); 3111 PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error"); 3112 #endif 3113 #undef PRINTERR 3114 atw_init_rxdesc(sc, i); 3115 continue; 3116 } 3117 3118 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 3119 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 3120 3121 /* 3122 * No errors; receive the packet. Note the ADM8211 3123 * includes the CRC in promiscuous mode. 3124 */ 3125 len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK); 3126 3127 /* 3128 * Allocate a new mbuf cluster. If that fails, we are 3129 * out of memory, and must drop the packet and recycle 3130 * the buffer that's already attached to this descriptor. 3131 */ 3132 m = rxs->rxs_mbuf; 3133 if (atw_add_rxbuf(sc, i) != 0) { 3134 ifp->if_ierrors++; 3135 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 3136 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3137 atw_init_rxdesc(sc, i); 3138 continue; 3139 } 3140 3141 ifp->if_ipackets++; 3142 m_set_rcvif(m, ifp); 3143 m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len); 3144 3145 rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0; 3146 3147 /* The RSSI comes straight from a register in the 3148 * baseband processor. I know that for the RF3000, 3149 * the RSSI register also contains the antenna-selection 3150 * bits. Mask those off. 3151 * 3152 * TBD Treat other basebands. 3153 * TBD Use short-preamble bit and such in RF3000_RXSTAT. 3154 */ 3155 if (sc->sc_bbptype == ATW_BBPTYPE_RFMD) 3156 rssi = ctlrssi & RF3000_RSSI_MASK; 3157 else 3158 rssi = ctlrssi; 3159 3160 /* Pass this up to any BPF listeners. */ 3161 if (sc->sc_radiobpf != NULL) { 3162 struct atw_rx_radiotap_header *tap = &sc->sc_rxtap; 3163 3164 tap->ar_rate = rate; 3165 3166 /* TBD verify units are dB */ 3167 tap->ar_antsignal = (int)rssi; 3168 if (sc->sc_opmode & ATW_NAR_PR) 3169 tap->ar_flags = IEEE80211_RADIOTAP_F_FCS; 3170 else 3171 tap->ar_flags = 0; 3172 3173 if ((rxstat & ATW_RXSTAT_CRC32E) != 0) 3174 tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS; 3175 3176 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu), 3177 m); 3178 } 3179 3180 sc->sc_recv_ev.ev_count++; 3181 3182 if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) { 3183 if (rxstat & ATW_RXSTAT_CRC16E) 3184 sc->sc_crc16e_ev.ev_count++; 3185 if (rxstat & ATW_RXSTAT_CRC32E) 3186 sc->sc_crc32e_ev.ev_count++; 3187 if (rxstat & ATW_RXSTAT_ICVE) 3188 sc->sc_icve_ev.ev_count++; 3189 if (rxstat & ATW_RXSTAT_SFDE) 3190 sc->sc_sfde_ev.ev_count++; 3191 if (rxstat & ATW_RXSTAT_SIGE) 3192 sc->sc_sige_ev.ev_count++; 3193 ifp->if_ierrors++; 3194 m_freem(m); 3195 continue; 3196 } 3197 3198 if (sc->sc_opmode & ATW_NAR_PR) 3199 m_adj(m, -IEEE80211_CRC_LEN); 3200 3201 wh = mtod(m, struct ieee80211_frame_min *); 3202 ni = ieee80211_find_rxnode(ic, wh); 3203 #if 0 3204 if (atw_hw_decrypted(sc, wh)) { 3205 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 3206 DPRINTF(sc, ("%s: hw decrypted\n", __func__)); 3207 } 3208 #endif 3209 ieee80211_input(ic, m, ni, (int)rssi, 0); 3210 ieee80211_free_node(ni); 3211 } 3212 } 3213 3214 /* 3215 * atw_txintr: 3216 * 3217 * Helper; handle transmit interrupts. 3218 */ 3219 void 3220 atw_txintr(struct atw_softc *sc, uint32_t status) 3221 { 3222 static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)]; 3223 struct ifnet *ifp = &sc->sc_if; 3224 struct atw_txsoft *txs; 3225 u_int32_t txstat; 3226 3227 DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n", 3228 device_xname(sc->sc_dev), sc->sc_flags)); 3229 3230 /* 3231 * Go through our Tx list and free mbufs for those 3232 * frames that have been transmitted. 3233 */ 3234 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 3235 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1, 3236 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 3237 3238 #ifdef ATW_DEBUG 3239 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) { 3240 int i; 3241 printf(" txsoft %p transmit chain:\n", txs); 3242 ATW_CDTXSYNC(sc, txs->txs_firstdesc, 3243 txs->txs_ndescs - 1, 3244 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 3245 for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) { 3246 printf(" descriptor %d:\n", i); 3247 printf(" at_status: 0x%08x\n", 3248 le32toh(sc->sc_txdescs[i].at_stat)); 3249 printf(" at_flags: 0x%08x\n", 3250 le32toh(sc->sc_txdescs[i].at_flags)); 3251 printf(" at_buf1: 0x%08x\n", 3252 le32toh(sc->sc_txdescs[i].at_buf1)); 3253 printf(" at_buf2: 0x%08x\n", 3254 le32toh(sc->sc_txdescs[i].at_buf2)); 3255 if (i == txs->txs_lastdesc) 3256 break; 3257 } 3258 ATW_CDTXSYNC(sc, txs->txs_firstdesc, 3259 txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD); 3260 } 3261 #endif 3262 3263 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat); 3264 if (txstat & ATW_TXSTAT_OWN) { 3265 ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1, 3266 BUS_DMASYNC_PREREAD); 3267 break; 3268 } 3269 3270 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 3271 3272 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 3273 0, txs->txs_dmamap->dm_mapsize, 3274 BUS_DMASYNC_POSTWRITE); 3275 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 3276 m_freem(txs->txs_mbuf); 3277 txs->txs_mbuf = NULL; 3278 3279 sc->sc_txfree += txs->txs_ndescs; 3280 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 3281 3282 KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0); 3283 sc->sc_tx_timer = 0; 3284 ifp->if_flags &= ~IFF_OACTIVE; 3285 3286 if ((ifp->if_flags & IFF_DEBUG) != 0 && 3287 (txstat & ATW_TXSTAT_ERRMASK) != 0) { 3288 snprintb(txstat_buf, sizeof(txstat_buf), 3289 ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK); 3290 printf("%s: txstat %s %" __PRIuBITS "\n", 3291 device_xname(sc->sc_dev), txstat_buf, 3292 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK)); 3293 } 3294 3295 sc->sc_xmit_ev.ev_count++; 3296 3297 /* 3298 * Check for errors and collisions. 3299 */ 3300 if (txstat & ATW_TXSTAT_TUF) 3301 sc->sc_tuf_ev.ev_count++; 3302 if (txstat & ATW_TXSTAT_TLT) 3303 sc->sc_tlt_ev.ev_count++; 3304 if (txstat & ATW_TXSTAT_TRT) 3305 sc->sc_trt_ev.ev_count++; 3306 if (txstat & ATW_TXSTAT_TRO) 3307 sc->sc_tro_ev.ev_count++; 3308 if (txstat & ATW_TXSTAT_SOFBR) 3309 sc->sc_sofbr_ev.ev_count++; 3310 3311 if ((txstat & ATW_TXSTAT_ES) == 0) 3312 ifp->if_collisions += 3313 __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK); 3314 else 3315 ifp->if_oerrors++; 3316 3317 ifp->if_opackets++; 3318 } 3319 3320 KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0); 3321 } 3322 3323 /* 3324 * atw_watchdog: [ifnet interface function] 3325 * 3326 * Watchdog timer handler. 3327 */ 3328 void 3329 atw_watchdog(struct ifnet *ifp) 3330 { 3331 struct atw_softc *sc = ifp->if_softc; 3332 struct ieee80211com *ic = &sc->sc_ic; 3333 3334 ifp->if_timer = 0; 3335 if (!device_is_active(sc->sc_dev)) 3336 return; 3337 3338 if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0) 3339 (void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 3340 if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 && 3341 !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) { 3342 printf("%s: transmit timeout\n", ifp->if_xname); 3343 ifp->if_oerrors++; 3344 (void)atw_init(ifp); 3345 atw_start(ifp); 3346 } 3347 if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0) 3348 ifp->if_timer = 1; 3349 ieee80211_watchdog(ic); 3350 } 3351 3352 static void 3353 atw_evcnt_detach(struct atw_softc *sc) 3354 { 3355 evcnt_detach(&sc->sc_sige_ev); 3356 evcnt_detach(&sc->sc_sfde_ev); 3357 evcnt_detach(&sc->sc_icve_ev); 3358 evcnt_detach(&sc->sc_crc32e_ev); 3359 evcnt_detach(&sc->sc_crc16e_ev); 3360 evcnt_detach(&sc->sc_recv_ev); 3361 3362 evcnt_detach(&sc->sc_tuf_ev); 3363 evcnt_detach(&sc->sc_tro_ev); 3364 evcnt_detach(&sc->sc_trt_ev); 3365 evcnt_detach(&sc->sc_tlt_ev); 3366 evcnt_detach(&sc->sc_sofbr_ev); 3367 evcnt_detach(&sc->sc_xmit_ev); 3368 3369 evcnt_detach(&sc->sc_rxpkt1in_ev); 3370 evcnt_detach(&sc->sc_rxamatch_ev); 3371 evcnt_detach(&sc->sc_workaround1_ev); 3372 evcnt_detach(&sc->sc_misc_ev); 3373 } 3374 3375 static void 3376 atw_evcnt_attach(struct atw_softc *sc) 3377 { 3378 evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC, 3379 NULL, sc->sc_if.if_xname, "recv"); 3380 evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC, 3381 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error"); 3382 evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC, 3383 &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error"); 3384 evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC, 3385 &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error"); 3386 evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC, 3387 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error"); 3388 evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC, 3389 &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error"); 3390 3391 evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC, 3392 NULL, sc->sc_if.if_xname, "xmit"); 3393 evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC, 3394 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow"); 3395 evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC, 3396 &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun"); 3397 evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC, 3398 &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded"); 3399 evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC, 3400 &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded"); 3401 evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC, 3402 &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch"); 3403 3404 evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC, 3405 NULL, sc->sc_if.if_xname, "misc"); 3406 evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC, 3407 &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1"); 3408 evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC, 3409 &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa"); 3410 evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC, 3411 &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set"); 3412 } 3413 3414 #ifdef ATW_DEBUG 3415 static void 3416 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0) 3417 { 3418 struct atw_softc *sc = ifp->if_softc; 3419 struct mbuf *m; 3420 int i, noctets = 0; 3421 3422 printf("%s: %d-byte packet\n", device_xname(sc->sc_dev), 3423 m0->m_pkthdr.len); 3424 3425 for (m = m0; m; m = m->m_next) { 3426 if (m->m_len == 0) 3427 continue; 3428 for (i = 0; i < m->m_len; i++) { 3429 printf(" %02x", ((u_int8_t*)m->m_data)[i]); 3430 if (++noctets % 24 == 0) 3431 printf("\n"); 3432 } 3433 } 3434 printf("%s%s: %d bytes emitted\n", 3435 (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets); 3436 } 3437 #endif /* ATW_DEBUG */ 3438 3439 /* 3440 * atw_start: [ifnet interface function] 3441 * 3442 * Start packet transmission on the interface. 3443 */ 3444 void 3445 atw_start(struct ifnet *ifp) 3446 { 3447 struct atw_softc *sc = ifp->if_softc; 3448 struct ieee80211_key *k; 3449 struct ieee80211com *ic = &sc->sc_ic; 3450 struct ieee80211_node *ni; 3451 struct ieee80211_frame_min *whm; 3452 struct ieee80211_frame *wh; 3453 struct atw_frame *hh; 3454 uint16_t hdrctl; 3455 struct mbuf *m0, *m; 3456 struct atw_txsoft *txs; 3457 struct atw_txdesc *txd; 3458 int npkt, rate; 3459 bus_dmamap_t dmamap; 3460 int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg; 3461 3462 DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n", 3463 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags)); 3464 3465 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 3466 return; 3467 3468 /* 3469 * Remember the previous number of free descriptors and 3470 * the first descriptor we'll use. 3471 */ 3472 ofree = sc->sc_txfree; 3473 firsttx = lasttx = sc->sc_txnext; 3474 3475 DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n", 3476 device_xname(sc->sc_dev), ofree, firsttx)); 3477 3478 /* 3479 * Loop through the send queue, setting up transmit descriptors 3480 * until we drain the queue, or use up all available transmit 3481 * descriptors. 3482 */ 3483 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && 3484 sc->sc_txfree != 0) { 3485 3486 hdrctl = htole16(ATW_HDRCTL_UNKNOWN1); 3487 3488 /* 3489 * Grab a packet off the management queue, if it 3490 * is not empty. Otherwise, from the data queue. 3491 */ 3492 IF_DEQUEUE(&ic->ic_mgtq, m0); 3493 if (m0 != NULL) { 3494 ni = M_GETCTX(m0, struct ieee80211_node *); 3495 M_CLEARCTX(m0); 3496 } else if (ic->ic_state != IEEE80211_S_RUN) 3497 break; /* send no data until associated */ 3498 else { 3499 IFQ_DEQUEUE(&ifp->if_snd, m0); 3500 if (m0 == NULL) 3501 break; 3502 bpf_mtap(ifp, m0); 3503 ni = ieee80211_find_txnode(ic, 3504 mtod(m0, struct ether_header *)->ether_dhost); 3505 if (ni == NULL) { 3506 ifp->if_oerrors++; 3507 break; 3508 } 3509 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 3510 ieee80211_free_node(ni); 3511 ifp->if_oerrors++; 3512 break; 3513 } 3514 } 3515 3516 rate = MAX(ieee80211_get_rate(ni), 2); 3517 3518 whm = mtod(m0, struct ieee80211_frame_min *); 3519 3520 if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0) 3521 k = NULL; 3522 else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) { 3523 m_freem(m0); 3524 ieee80211_free_node(ni); 3525 ifp->if_oerrors++; 3526 break; 3527 } 3528 #if 0 3529 if (IEEE80211_IS_MULTICAST(wh->i_addr1) && 3530 m0->m_pkthdr.len > ic->ic_fragthreshold) 3531 hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG); 3532 #endif 3533 3534 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold) 3535 hdrctl |= htole16(ATW_HDRCTL_RTSCTS); 3536 3537 if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len, 3538 ic->ic_flags, ic->ic_fragthreshold, rate, 3539 &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) { 3540 DPRINTF2(sc, ("%s: fail compute duration\n", __func__)); 3541 m_freem(m0); 3542 break; 3543 } 3544 3545 /* XXX Misleading if fragmentation is enabled. Better 3546 * to fragment in software? 3547 */ 3548 *(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur); 3549 3550 /* 3551 * Pass the packet to any BPF listeners. 3552 */ 3553 bpf_mtap3(ic->ic_rawbpf, m0); 3554 3555 if (sc->sc_radiobpf != NULL) { 3556 struct atw_tx_radiotap_header *tap = &sc->sc_txtap; 3557 3558 tap->at_rate = rate; 3559 3560 bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu), 3561 m0); 3562 } 3563 3564 M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT); 3565 3566 if (ni != NULL) 3567 ieee80211_free_node(ni); 3568 3569 if (m0 == NULL) { 3570 ifp->if_oerrors++; 3571 break; 3572 } 3573 3574 /* just to make sure. */ 3575 m0 = m_pullup(m0, sizeof(struct atw_frame)); 3576 3577 if (m0 == NULL) { 3578 ifp->if_oerrors++; 3579 break; 3580 } 3581 3582 hh = mtod(m0, struct atw_frame *); 3583 wh = &hh->atw_ihdr; 3584 3585 /* Copy everything we need from the 802.11 header: 3586 * Frame Control; address 1, address 3, or addresses 3587 * 3 and 4. NIC fills in BSSID, SA. 3588 */ 3589 if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) { 3590 if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS) 3591 panic("%s: illegal WDS frame", 3592 device_xname(sc->sc_dev)); 3593 memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN); 3594 } else 3595 memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN); 3596 3597 *(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc; 3598 3599 /* initialize remaining Tx parameters */ 3600 memset(&hh->u, 0, sizeof(hh->u)); 3601 3602 hh->atw_rate = rate * 5; 3603 /* XXX this could be incorrect if M_FCS. _encap should 3604 * probably strip FCS just in case it sticks around in 3605 * bridged packets. 3606 */ 3607 hh->atw_service = 0x00; /* XXX guess */ 3608 hh->atw_paylen = htole16(m0->m_pkthdr.len - 3609 sizeof(struct atw_frame)); 3610 3611 /* never fragment multicast frames */ 3612 if (IEEE80211_IS_MULTICAST(hh->atw_dst)) 3613 hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX); 3614 else { 3615 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3616 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) 3617 hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE); 3618 hh->atw_fragthr = htole16(ic->ic_fragthreshold); 3619 } 3620 3621 hh->atw_rtylmt = 3; 3622 #if 0 3623 if (do_encrypt) { 3624 hdrctl |= htole16(ATW_HDRCTL_WEP); 3625 hh->atw_keyid = ic->ic_def_txkey; 3626 } 3627 #endif 3628 3629 hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len); 3630 hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len); 3631 if (txs->txs_d0.d_residue) 3632 hh->atw_head_plcplen |= htole16(0x8000); 3633 if (txs->txs_dn.d_residue) 3634 hh->atw_tail_plcplen |= htole16(0x8000); 3635 hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur); 3636 hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur); 3637 3638 hh->atw_hdrctl = hdrctl; 3639 hh->atw_fragnum = npkt << 4; 3640 #ifdef ATW_DEBUG 3641 3642 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) { 3643 printf("%s: dst = %s, rate = 0x%02x, " 3644 "service = 0x%02x, paylen = 0x%04x\n", 3645 device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst), 3646 hh->atw_rate, hh->atw_service, hh->atw_paylen); 3647 3648 printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, " 3649 "dur1 = 0x%04x, dur2 = 0x%04x, " 3650 "dur3 = 0x%04x, rts_dur = 0x%04x\n", 3651 device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1], 3652 hh->atw_tail_plcplen, hh->atw_head_plcplen, 3653 hh->atw_tail_dur, hh->atw_head_dur); 3654 3655 printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, " 3656 "fragnum = 0x%02x, rtylmt = 0x%04x\n", 3657 device_xname(sc->sc_dev), hh->atw_hdrctl, 3658 hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt); 3659 3660 printf("%s: keyid = %d\n", 3661 device_xname(sc->sc_dev), hh->atw_keyid); 3662 3663 atw_dump_pkt(ifp, m0); 3664 } 3665 #endif /* ATW_DEBUG */ 3666 3667 dmamap = txs->txs_dmamap; 3668 3669 /* 3670 * Load the DMA map. Copy and try (once) again if the packet 3671 * didn't fit in the alloted number of segments. 3672 */ 3673 for (first = 1; 3674 (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 3675 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first; 3676 first = 0) { 3677 MGETHDR(m, M_DONTWAIT, MT_DATA); 3678 if (m == NULL) { 3679 aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n"); 3680 break; 3681 } 3682 if (m0->m_pkthdr.len > MHLEN) { 3683 MCLGET(m, M_DONTWAIT); 3684 if ((m->m_flags & M_EXT) == 0) { 3685 aprint_error_dev(sc->sc_dev, "unable to allocate Tx " 3686 "cluster\n"); 3687 m_freem(m); 3688 break; 3689 } 3690 } 3691 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 3692 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 3693 m_freem(m0); 3694 m0 = m; 3695 m = NULL; 3696 } 3697 if (error != 0) { 3698 aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, " 3699 "error = %d\n", error); 3700 m_freem(m0); 3701 break; 3702 } 3703 3704 /* 3705 * Ensure we have enough descriptors free to describe 3706 * the packet. 3707 */ 3708 if (dmamap->dm_nsegs > sc->sc_txfree) { 3709 /* 3710 * Not enough free descriptors to transmit 3711 * this packet. Unload the DMA map and 3712 * drop the packet. Notify the upper layer 3713 * that there are no more slots left. 3714 * 3715 * XXX We could allocate an mbuf and copy, but 3716 * XXX it is worth it? 3717 */ 3718 bus_dmamap_unload(sc->sc_dmat, dmamap); 3719 m_freem(m0); 3720 break; 3721 } 3722 3723 /* 3724 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 3725 */ 3726 3727 /* Sync the DMA map. */ 3728 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 3729 BUS_DMASYNC_PREWRITE); 3730 3731 /* XXX arbitrary retry limit; 8 because I have seen it in 3732 * use already and maybe 0 means "no tries" ! 3733 */ 3734 ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK)); 3735 3736 DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n", 3737 device_xname(sc->sc_dev), rate * 5)); 3738 ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK)); 3739 3740 /* 3741 * Initialize the transmit descriptors. 3742 */ 3743 for (nexttx = sc->sc_txnext, seg = 0; 3744 seg < dmamap->dm_nsegs; 3745 seg++, nexttx = ATW_NEXTTX(nexttx)) { 3746 /* 3747 * If this is the first descriptor we're 3748 * enqueueing, don't set the OWN bit just 3749 * yet. That could cause a race condition. 3750 * We'll do it below. 3751 */ 3752 txd = &sc->sc_txdescs[nexttx]; 3753 txd->at_ctl = ctl | 3754 ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN)); 3755 3756 txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr); 3757 txd->at_flags = 3758 htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len, 3759 ATW_TXFLAG_TBS1_MASK)) | 3760 ((nexttx == (ATW_NTXDESC - 1)) 3761 ? htole32(ATW_TXFLAG_TER) : 0); 3762 lasttx = nexttx; 3763 } 3764 3765 /* Set `first segment' and `last segment' appropriately. */ 3766 sc->sc_txdescs[sc->sc_txnext].at_flags |= 3767 htole32(ATW_TXFLAG_FS); 3768 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS); 3769 3770 #ifdef ATW_DEBUG 3771 if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) { 3772 printf(" txsoft %p transmit chain:\n", txs); 3773 for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) { 3774 printf(" descriptor %d:\n", seg); 3775 printf(" at_ctl: 0x%08x\n", 3776 le32toh(sc->sc_txdescs[seg].at_ctl)); 3777 printf(" at_flags: 0x%08x\n", 3778 le32toh(sc->sc_txdescs[seg].at_flags)); 3779 printf(" at_buf1: 0x%08x\n", 3780 le32toh(sc->sc_txdescs[seg].at_buf1)); 3781 printf(" at_buf2: 0x%08x\n", 3782 le32toh(sc->sc_txdescs[seg].at_buf2)); 3783 if (seg == lasttx) 3784 break; 3785 } 3786 } 3787 #endif 3788 3789 /* Sync the descriptors we're using. */ 3790 ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 3791 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 3792 3793 /* 3794 * Store a pointer to the packet so we can free it later, 3795 * and remember what txdirty will be once the packet is 3796 * done. 3797 */ 3798 txs->txs_mbuf = m0; 3799 txs->txs_firstdesc = sc->sc_txnext; 3800 txs->txs_lastdesc = lasttx; 3801 txs->txs_ndescs = dmamap->dm_nsegs; 3802 3803 /* Advance the tx pointer. */ 3804 sc->sc_txfree -= dmamap->dm_nsegs; 3805 sc->sc_txnext = nexttx; 3806 3807 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 3808 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 3809 } 3810 3811 if (sc->sc_txfree != ofree) { 3812 DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", 3813 device_xname(sc->sc_dev), lasttx, firsttx)); 3814 /* 3815 * Cause a transmit interrupt to happen on the 3816 * last packet we enqueued. 3817 */ 3818 sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC); 3819 ATW_CDTXSYNC(sc, lasttx, 1, 3820 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 3821 3822 /* 3823 * The entire packet chain is set up. Give the 3824 * first descriptor to the chip now. 3825 */ 3826 sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN); 3827 ATW_CDTXSYNC(sc, firsttx, 1, 3828 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 3829 3830 /* Wake up the transmitter. */ 3831 ATW_WRITE(sc, ATW_TDR, 0x1); 3832 3833 if (txs == NULL || sc->sc_txfree == 0) 3834 ifp->if_flags |= IFF_OACTIVE; 3835 3836 /* Set a watchdog timer in case the chip flakes out. */ 3837 sc->sc_tx_timer = 5; 3838 ifp->if_timer = 1; 3839 } 3840 } 3841 3842 /* 3843 * atw_ioctl: [ifnet interface function] 3844 * 3845 * Handle control requests from the operator. 3846 */ 3847 int 3848 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data) 3849 { 3850 struct atw_softc *sc = ifp->if_softc; 3851 struct ieee80211req *ireq; 3852 int s, error = 0; 3853 3854 s = splnet(); 3855 3856 switch (cmd) { 3857 case SIOCSIFFLAGS: 3858 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 3859 break; 3860 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 3861 case IFF_UP|IFF_RUNNING: 3862 /* 3863 * To avoid rescanning another access point, 3864 * do not call atw_init() here. Instead, 3865 * only reflect media settings. 3866 */ 3867 if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) 3868 atw_filter_setup(sc); 3869 break; 3870 case IFF_UP: 3871 error = atw_init(ifp); 3872 break; 3873 case IFF_RUNNING: 3874 atw_stop(ifp, 1); 3875 break; 3876 case 0: 3877 break; 3878 } 3879 break; 3880 case SIOCADDMULTI: 3881 case SIOCDELMULTI: 3882 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 3883 if (ifp->if_flags & IFF_RUNNING) 3884 atw_filter_setup(sc); /* do not rescan */ 3885 error = 0; 3886 } 3887 break; 3888 case SIOCS80211: 3889 ireq = data; 3890 if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) { 3891 if ((error = kauth_authorize_network(curlwp->l_cred, 3892 KAUTH_NETWORK_INTERFACE, 3893 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, 3894 (void *)cmd, NULL)) != 0) 3895 break; 3896 if (!(IEEE80211_FRAG_MIN <= ireq->i_val && 3897 ireq->i_val <= IEEE80211_FRAG_MAX)) 3898 error = EINVAL; 3899 else 3900 sc->sc_ic.ic_fragthreshold = ireq->i_val; 3901 break; 3902 } 3903 /*FALLTHROUGH*/ 3904 default: 3905 error = ieee80211_ioctl(&sc->sc_ic, cmd, data); 3906 if (error == ENETRESET || error == ERESTART) { 3907 if (is_running(ifp)) 3908 error = atw_init(ifp); 3909 else 3910 error = 0; 3911 } 3912 break; 3913 } 3914 3915 /* Try to get more packets going. */ 3916 if (device_is_active(sc->sc_dev)) 3917 atw_start(ifp); 3918 3919 splx(s); 3920 return (error); 3921 } 3922 3923 static int 3924 atw_media_change(struct ifnet *ifp) 3925 { 3926 int error; 3927 3928 error = ieee80211_media_change(ifp); 3929 if (error == ENETRESET) { 3930 if (is_running(ifp)) 3931 error = atw_init(ifp); 3932 else 3933 error = 0; 3934 } 3935 return error; 3936 } 3937