xref: /netbsd-src/sys/dev/ic/atw.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: atw.c,v 1.122 2006/10/12 01:31:00 christos Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.122 2006/10/12 01:31:00 christos Exp $");
45 
46 #include "bpfilter.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60 
61 #include <machine/endian.h>
62 
63 #include <uvm/uvm_extern.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69 
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73 
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77 
78 #include <machine/bus.h>
79 #include <machine/intr.h>
80 
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86 
87 /* XXX TBD open questions
88  *
89  *
90  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92  * handle this for me?
93  *
94  */
95 /* device attachment
96  *
97  *    print TOFS[012]
98  *
99  * device initialization
100  *
101  *    clear ATW_FRCTL_MAXPSP to disable max power saving
102  *    set ATW_TXBR_ALCUPDATE to enable ALC
103  *    set TOFS[012]? (hope not)
104  *    disable rx/tx
105  *    set ATW_PAR_SWR (software reset)
106  *    wait for ATW_PAR_SWR clear
107  *    disable interrupts
108  *    ack status register
109  *    enable interrupts
110  *
111  * rx/tx initialization
112  *
113  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114  *    allocate and init descriptor rings
115  *    write ATW_PAR_DSL (descriptor skip length)
116  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
118  *    write ATW_NAR_SQ for one/both transmit descriptor rings
119  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120  *
121  * rx/tx end
122  *
123  *    stop DMA
124  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125  *    flush tx w/ ATW_NAR_HF
126  *
127  * scan
128  *
129  *    initialize rx/tx
130  *
131  * BSS join: (re)association response
132  *
133  *    set ATW_FRCTL_AID
134  *
135  * optimizations ???
136  *
137  */
138 
139 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
140 
141 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
142 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144 
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160 
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163 
164 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
167 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170 
171 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void	atw_print_regs(struct atw_softc *, const char *);
173 
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 #	ifdef ATW_BBPDEBUG
176 static void	atw_rf3000_print(struct atw_softc *);
177 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 #	endif /* ATW_BBPDEBUG */
179 
180 #	ifdef ATW_SYNDEBUG
181 static void	atw_si4126_print(struct atw_softc *);
182 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 #	endif /* ATW_SYNDEBUG */
184 
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define	DPRINTF(sc, x)	/* nothing */
190 #define	DPRINTF2(sc, x)	/* nothing */
191 #define	DPRINTF3(sc, x)	/* nothing */
192 #endif
193 
194 /* ifnet methods */
195 int	atw_init(struct ifnet *);
196 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
197 void	atw_start(struct ifnet *);
198 void	atw_stop(struct ifnet *, int);
199 void	atw_watchdog(struct ifnet *);
200 
201 /* Device attachment */
202 void	atw_attach(struct atw_softc *);
203 int	atw_detach(struct atw_softc *);
204 
205 /* Rx/Tx process */
206 int	atw_add_rxbuf(struct atw_softc *, int);
207 void	atw_idle(struct atw_softc *, u_int32_t);
208 void	atw_rxdrain(struct atw_softc *);
209 void	atw_txdrain(struct atw_softc *);
210 
211 /* Device (de)activation and power state */
212 void	atw_disable(struct atw_softc *);
213 int	atw_enable(struct atw_softc *);
214 void	atw_power(int, void *);
215 void	atw_reset(struct atw_softc *);
216 void	atw_shutdown(void *);
217 
218 /* Interrupt handlers */
219 void	atw_linkintr(struct atw_softc *, u_int32_t);
220 void	atw_rxintr(struct atw_softc *);
221 void	atw_txintr(struct atw_softc *);
222 
223 /* 802.11 state machine */
224 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225 static void	atw_next_scan(void *);
226 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227 		              struct ieee80211_node *, int, int, u_int32_t);
228 static int	atw_tune(struct atw_softc *);
229 
230 /* Device initialization */
231 static void	atw_bbp_io_init(struct atw_softc *);
232 static void	atw_cfp_init(struct atw_softc *);
233 static void	atw_cmdr_init(struct atw_softc *);
234 static void	atw_ifs_init(struct atw_softc *);
235 static void	atw_nar_init(struct atw_softc *);
236 static void	atw_response_times_init(struct atw_softc *);
237 static void	atw_rf_reset(struct atw_softc *);
238 static void	atw_test1_init(struct atw_softc *);
239 static void	atw_tofs0_init(struct atw_softc *);
240 static void	atw_tofs2_init(struct atw_softc *);
241 static void	atw_txlmt_init(struct atw_softc *);
242 static void	atw_wcsr_init(struct atw_softc *);
243 
244 /* Key management */
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 	const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250 
251 /* RAM/ROM utilities */
252 static void	atw_clear_sram(struct atw_softc *);
253 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int	atw_read_srom(struct atw_softc *);
255 
256 /* BSS setup */
257 static void	atw_predict_beacon(struct atw_softc *);
258 static void	atw_start_beacon(struct atw_softc *, int);
259 static void	atw_write_bssid(struct atw_softc *);
260 static void	atw_write_ssid(struct atw_softc *);
261 static void	atw_write_sup_rates(struct atw_softc *);
262 static void	atw_write_wep(struct atw_softc *);
263 
264 /* Media */
265 static int	atw_media_change(struct ifnet *);
266 
267 static void	atw_filter_setup(struct atw_softc *);
268 
269 /* 802.11 utilities */
270 static uint64_t			atw_get_tsft(struct atw_softc *);
271 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
272 				                   uint32_t);
273 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
274 static void			atw_node_free(struct ieee80211_node *);
275 
276 /*
277  * Tuner/transceiver/modem
278  */
279 static void	atw_bbp_io_enable(struct atw_softc *, int);
280 
281 /* RFMD RF3000 Baseband Processor */
282 static int	atw_rf3000_init(struct atw_softc *);
283 static int	atw_rf3000_tune(struct atw_softc *, u_int);
284 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
285 
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void	atw_si4126_tune(struct atw_softc *, u_int);
288 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
289 
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292 
293 const char *atw_tx_state[] = {
294 	"STOPPED",
295 	"RUNNING - read descriptor",
296 	"RUNNING - transmitting",
297 	"RUNNING - filling fifo",	/* XXX */
298 	"SUSPENDED",
299 	"RUNNING -- write descriptor",
300 	"RUNNING -- write last descriptor",
301 	"RUNNING - fifo full"
302 };
303 
304 const char *atw_rx_state[] = {
305 	"STOPPED",
306 	"RUNNING - read descriptor",
307 	"RUNNING - check this packet, pre-fetch next",
308 	"RUNNING - wait for reception",
309 	"SUSPENDED",
310 	"RUNNING - write descriptor",
311 	"RUNNING - flush fifo",
312 	"RUNNING - fifo drain"
313 };
314 
315 static inline int
316 is_running(struct ifnet *ifp)
317 {
318 	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319 }
320 
321 int
322 atw_activate(struct device *self, enum devact act)
323 {
324 	struct atw_softc *sc = (struct atw_softc *)self;
325 	int rv = 0, s;
326 
327 	s = splnet();
328 	switch (act) {
329 	case DVACT_ACTIVATE:
330 		rv = EOPNOTSUPP;
331 		break;
332 
333 	case DVACT_DEACTIVATE:
334 		if_deactivate(&sc->sc_if);
335 		break;
336 	}
337 	splx(s);
338 	return rv;
339 }
340 
341 /*
342  * atw_enable:
343  *
344  *	Enable the ADM8211 chip.
345  */
346 int
347 atw_enable(struct atw_softc *sc)
348 {
349 
350 	if (ATW_IS_ENABLED(sc) == 0) {
351 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352 			printf("%s: device enable failed\n",
353 			    sc->sc_dev.dv_xname);
354 			return (EIO);
355 		}
356 		sc->sc_flags |= ATWF_ENABLED;
357                 /* Power may have been removed, and WEP keys thus
358                  * reset.
359 		 */
360 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
361 	}
362 	return (0);
363 }
364 
365 /*
366  * atw_disable:
367  *
368  *	Disable the ADM8211 chip.
369  */
370 void
371 atw_disable(struct atw_softc *sc)
372 {
373 	if (!ATW_IS_ENABLED(sc))
374 		return;
375 	if (sc->sc_disable != NULL)
376 		(*sc->sc_disable)(sc);
377 	sc->sc_flags &= ~ATWF_ENABLED;
378 }
379 
380 /* Returns -1 on failure. */
381 static int
382 atw_read_srom(struct atw_softc *sc)
383 {
384 	struct seeprom_descriptor sd;
385 	uint32_t test0, fail_bits;
386 
387 	(void)memset(&sd, 0, sizeof(sd));
388 
389 	test0 = ATW_READ(sc, ATW_TEST0);
390 
391 	switch (sc->sc_rev) {
392 	case ATW_REVISION_BA:
393 	case ATW_REVISION_CA:
394 		fail_bits = ATW_TEST0_EPNE;
395 		break;
396 	default:
397 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
398 		break;
399 	}
400 	if ((test0 & fail_bits) != 0) {
401 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
402 		return -1;
403 	}
404 
405 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
406 	case ATW_TEST0_EPTYP_93c66:
407 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
408 		sc->sc_sromsz = 512;
409 		sd.sd_chip = C56_66;
410 		break;
411 	case ATW_TEST0_EPTYP_93c46:
412 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
413 		sc->sc_sromsz = 128;
414 		sd.sd_chip = C46;
415 		break;
416 	default:
417 		printf("%s: unknown SROM type %d\n",
418 		    sc->sc_dev.dv_xname,
419 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
420 		return -1;
421 	}
422 
423 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
424 
425 	if (sc->sc_srom == NULL) {
426 		printf("%s: unable to allocate SROM buffer\n",
427 		    sc->sc_dev.dv_xname);
428 		return -1;
429 	}
430 
431 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
432 
433 	/* ADM8211 has a single 32-bit register for controlling the
434 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
435 	 * "ready" bit. The ADM8211 input/output sense is the reverse
436 	 * of read_seeprom's.
437 	 */
438 	sd.sd_tag = sc->sc_st;
439 	sd.sd_bsh = sc->sc_sh;
440 	sd.sd_regsize = 4;
441 	sd.sd_control_offset = ATW_SPR;
442 	sd.sd_status_offset = ATW_SPR;
443 	sd.sd_dataout_offset = ATW_SPR;
444 	sd.sd_CK = ATW_SPR_SCLK;
445 	sd.sd_CS = ATW_SPR_SCS;
446 	sd.sd_DI = ATW_SPR_SDO;
447 	sd.sd_DO = ATW_SPR_SDI;
448 	sd.sd_MS = ATW_SPR_SRS;
449 	sd.sd_RDY = 0;
450 
451 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
452 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
453 		free(sc->sc_srom, M_DEVBUF);
454 		return -1;
455 	}
456 #ifdef ATW_DEBUG
457 	{
458 		int i;
459 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
460 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
461 			if (((i % 8) == 0) && (i != 0)) {
462 				ATW_DPRINTF(("\n\t"));
463 			}
464 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
465 		}
466 		ATW_DPRINTF(("\n"));
467 	}
468 #endif /* ATW_DEBUG */
469 	return 0;
470 }
471 
472 #ifdef ATW_DEBUG
473 static void
474 atw_print_regs(struct atw_softc *sc, const char *where)
475 {
476 #define PRINTREG(sc, reg) \
477 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
478 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
479 
480 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
481 
482 	PRINTREG(sc, ATW_PAR);
483 	PRINTREG(sc, ATW_FRCTL);
484 	PRINTREG(sc, ATW_TDR);
485 	PRINTREG(sc, ATW_WTDP);
486 	PRINTREG(sc, ATW_RDR);
487 	PRINTREG(sc, ATW_WRDP);
488 	PRINTREG(sc, ATW_RDB);
489 	PRINTREG(sc, ATW_CSR3A);
490 	PRINTREG(sc, ATW_TDBD);
491 	PRINTREG(sc, ATW_TDBP);
492 	PRINTREG(sc, ATW_STSR);
493 	PRINTREG(sc, ATW_CSR5A);
494 	PRINTREG(sc, ATW_NAR);
495 	PRINTREG(sc, ATW_CSR6A);
496 	PRINTREG(sc, ATW_IER);
497 	PRINTREG(sc, ATW_CSR7A);
498 	PRINTREG(sc, ATW_LPC);
499 	PRINTREG(sc, ATW_TEST1);
500 	PRINTREG(sc, ATW_SPR);
501 	PRINTREG(sc, ATW_TEST0);
502 	PRINTREG(sc, ATW_WCSR);
503 	PRINTREG(sc, ATW_WPDR);
504 	PRINTREG(sc, ATW_GPTMR);
505 	PRINTREG(sc, ATW_GPIO);
506 	PRINTREG(sc, ATW_BBPCTL);
507 	PRINTREG(sc, ATW_SYNCTL);
508 	PRINTREG(sc, ATW_PLCPHD);
509 	PRINTREG(sc, ATW_MMIWADDR);
510 	PRINTREG(sc, ATW_MMIRADDR1);
511 	PRINTREG(sc, ATW_MMIRADDR2);
512 	PRINTREG(sc, ATW_TXBR);
513 	PRINTREG(sc, ATW_CSR15A);
514 	PRINTREG(sc, ATW_ALCSTAT);
515 	PRINTREG(sc, ATW_TOFS2);
516 	PRINTREG(sc, ATW_CMDR);
517 	PRINTREG(sc, ATW_PCIC);
518 	PRINTREG(sc, ATW_PMCSR);
519 	PRINTREG(sc, ATW_PAR0);
520 	PRINTREG(sc, ATW_PAR1);
521 	PRINTREG(sc, ATW_MAR0);
522 	PRINTREG(sc, ATW_MAR1);
523 	PRINTREG(sc, ATW_ATIMDA0);
524 	PRINTREG(sc, ATW_ABDA1);
525 	PRINTREG(sc, ATW_BSSID0);
526 	PRINTREG(sc, ATW_TXLMT);
527 	PRINTREG(sc, ATW_MIBCNT);
528 	PRINTREG(sc, ATW_BCNT);
529 	PRINTREG(sc, ATW_TSFTH);
530 	PRINTREG(sc, ATW_TSC);
531 	PRINTREG(sc, ATW_SYNRF);
532 	PRINTREG(sc, ATW_BPLI);
533 	PRINTREG(sc, ATW_CAP0);
534 	PRINTREG(sc, ATW_CAP1);
535 	PRINTREG(sc, ATW_RMD);
536 	PRINTREG(sc, ATW_CFPP);
537 	PRINTREG(sc, ATW_TOFS0);
538 	PRINTREG(sc, ATW_TOFS1);
539 	PRINTREG(sc, ATW_IFST);
540 	PRINTREG(sc, ATW_RSPT);
541 	PRINTREG(sc, ATW_TSFTL);
542 	PRINTREG(sc, ATW_WEPCTL);
543 	PRINTREG(sc, ATW_WESK);
544 	PRINTREG(sc, ATW_WEPCNT);
545 	PRINTREG(sc, ATW_MACTEST);
546 	PRINTREG(sc, ATW_FER);
547 	PRINTREG(sc, ATW_FEMR);
548 	PRINTREG(sc, ATW_FPSR);
549 	PRINTREG(sc, ATW_FFER);
550 #undef PRINTREG
551 }
552 #endif /* ATW_DEBUG */
553 
554 /*
555  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
556  */
557 void
558 atw_attach(struct atw_softc *sc)
559 {
560 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
561 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
562 	};
563 	struct ieee80211com *ic = &sc->sc_ic;
564 	struct ifnet *ifp = &sc->sc_if;
565 	int country_code, error, i, nrate, srom_major;
566 	u_int32_t reg;
567 	static const char *type_strings[] = {"Intersil (not supported)",
568 	    "RFMD", "Marvel (not supported)"};
569 
570 	sc->sc_txth = atw_txthresh_tab_lo;
571 
572 	SIMPLEQ_INIT(&sc->sc_txfreeq);
573 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
574 
575 #ifdef ATW_DEBUG
576 	atw_print_regs(sc, "atw_attach");
577 #endif /* ATW_DEBUG */
578 
579 	/*
580 	 * Allocate the control data structures, and create and load the
581 	 * DMA map for it.
582 	 */
583 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
584 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
585 	    1, &sc->sc_cdnseg, 0)) != 0) {
586 		printf("%s: unable to allocate control data, error = %d\n",
587 		    sc->sc_dev.dv_xname, error);
588 		goto fail_0;
589 	}
590 
591 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
592 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
593 	    BUS_DMA_COHERENT)) != 0) {
594 		printf("%s: unable to map control data, error = %d\n",
595 		    sc->sc_dev.dv_xname, error);
596 		goto fail_1;
597 	}
598 
599 	if ((error = bus_dmamap_create(sc->sc_dmat,
600 	    sizeof(struct atw_control_data), 1,
601 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
602 		printf("%s: unable to create control data DMA map, "
603 		    "error = %d\n", sc->sc_dev.dv_xname, error);
604 		goto fail_2;
605 	}
606 
607 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
608 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
609 	    0)) != 0) {
610 		printf("%s: unable to load control data DMA map, error = %d\n",
611 		    sc->sc_dev.dv_xname, error);
612 		goto fail_3;
613 	}
614 
615 	/*
616 	 * Create the transmit buffer DMA maps.
617 	 */
618 	sc->sc_ntxsegs = ATW_NTXSEGS;
619 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
620 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
621 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
622 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
623 			printf("%s: unable to create tx DMA map %d, "
624 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
625 			goto fail_4;
626 		}
627 	}
628 
629 	/*
630 	 * Create the receive buffer DMA maps.
631 	 */
632 	for (i = 0; i < ATW_NRXDESC; i++) {
633 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
634 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
635 			printf("%s: unable to create rx DMA map %d, "
636 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
637 			goto fail_5;
638 		}
639 	}
640 	for (i = 0; i < ATW_NRXDESC; i++) {
641 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
642 	}
643 
644 	switch (sc->sc_rev) {
645 	case ATW_REVISION_AB:
646 	case ATW_REVISION_AF:
647 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
648 		break;
649 	case ATW_REVISION_BA:
650 	case ATW_REVISION_CA:
651 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
652 		break;
653 	}
654 
655 	/* Reset the chip to a known state. */
656 	atw_reset(sc);
657 
658 	if (atw_read_srom(sc) == -1)
659 		return;
660 
661 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
662 	    ATW_SR_RFTYPE_MASK);
663 
664 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
665 	    ATW_SR_BBPTYPE_MASK);
666 
667 	if (sc->sc_rftype >= __arraycount(type_strings)) {
668 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
669 		return;
670 	}
671 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
672 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
673 		return;
674 	}
675 
676 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
677 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
678 
679 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
680 	 * MARVEL. My bug, or theirs?
681 	 */
682 
683 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
684 
685 	switch (sc->sc_rftype) {
686 	case ATW_RFTYPE_INTERSIL:
687 		reg |= ATW_SYNCTL_CS1;
688 		break;
689 	case ATW_RFTYPE_RFMD:
690 		reg |= ATW_SYNCTL_CS0;
691 		break;
692 	case ATW_RFTYPE_MARVEL:
693 		break;
694 	}
695 
696 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
697 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
698 
699 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
700 
701 	switch (sc->sc_bbptype) {
702 	case ATW_BBPTYPE_INTERSIL:
703 		reg |= ATW_BBPCTL_TWI;
704 		break;
705 	case ATW_BBPTYPE_RFMD:
706 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
707 		    ATW_BBPCTL_CCA_ACTLO;
708 		break;
709 	case ATW_BBPTYPE_MARVEL:
710 		break;
711 	case ATW_C_BBPTYPE_RFMD:
712 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
713 		    sc->sc_dev.dv_xname);
714 		break;
715 	}
716 
717 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
718 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
719 
720 	/*
721 	 * From this point forward, the attachment cannot fail.  A failure
722 	 * before this point releases all resources that may have been
723 	 * allocated.
724 	 */
725 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
726 
727 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
728 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
729 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
730 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
731 
732 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
733 	    ATW_SR_MAJOR_MASK);
734 
735 	if (srom_major < 2)
736 		sc->sc_rf3000_options1 = 0;
737 	else if (sc->sc_rev == ATW_REVISION_BA) {
738 		sc->sc_rf3000_options1 =
739 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
740 		    ATW_SR_CR28_MASK);
741 	} else
742 		sc->sc_rf3000_options1 = 0;
743 
744 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
745 	    ATW_SR_CR29_MASK);
746 
747 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
748 	    ATW_SR_CTRY_MASK);
749 
750 #define ADD_CHANNEL(_ic, _chan) do {					\
751 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
752 	_ic->ic_channels[_chan].ic_freq =				\
753 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
754 } while (0)
755 
756 	/* Find available channels */
757 	switch (country_code) {
758 	case COUNTRY_MMK2:	/* 1-14 */
759 		ADD_CHANNEL(ic, 14);
760 		/*FALLTHROUGH*/
761 	case COUNTRY_ETSI:	/* 1-13 */
762 		for (i = 1; i <= 13; i++)
763 			ADD_CHANNEL(ic, i);
764 		break;
765 	case COUNTRY_FCC:	/* 1-11 */
766 	case COUNTRY_IC:	/* 1-11 */
767 		for (i = 1; i <= 11; i++)
768 			ADD_CHANNEL(ic, i);
769 		break;
770 	case COUNTRY_MMK:	/* 14 */
771 		ADD_CHANNEL(ic, 14);
772 		break;
773 	case COUNTRY_FRANCE:	/* 10-13 */
774 		for (i = 10; i <= 13; i++)
775 			ADD_CHANNEL(ic, i);
776 		break;
777 	default:	/* assume channels 10-11 */
778 	case COUNTRY_SPAIN:	/* 10-11 */
779 		for (i = 10; i <= 11; i++)
780 			ADD_CHANNEL(ic, i);
781 		break;
782 	}
783 
784 	/* Read the MAC address. */
785 	reg = ATW_READ(sc, ATW_PAR0);
786 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
787 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
788 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
789 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
790 	reg = ATW_READ(sc, ATW_PAR1);
791 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
792 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
793 
794 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
795 		printf(" could not get mac address, attach failed\n");
796 		return;
797 	}
798 
799 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
800 
801 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
802 	ifp->if_softc = sc;
803 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
804 	    IFF_NOTRAILERS;
805 	ifp->if_ioctl = atw_ioctl;
806 	ifp->if_start = atw_start;
807 	ifp->if_watchdog = atw_watchdog;
808 	ifp->if_init = atw_init;
809 	ifp->if_stop = atw_stop;
810 	IFQ_SET_READY(&ifp->if_snd);
811 
812 	ic->ic_ifp = ifp;
813 	ic->ic_phytype = IEEE80211_T_DS;
814 	ic->ic_opmode = IEEE80211_M_STA;
815 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
816 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
817 
818 	nrate = 0;
819 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
820 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
821 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
822 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
823 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
824 
825 	/*
826 	 * Call MI attach routines.
827 	 */
828 
829 	if_attach(ifp);
830 	ieee80211_ifattach(ic);
831 
832 	sc->sc_newstate = ic->ic_newstate;
833 	ic->ic_newstate = atw_newstate;
834 
835 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
836 	ic->ic_recv_mgmt = atw_recv_mgmt;
837 
838 	sc->sc_node_free = ic->ic_node_free;
839 	ic->ic_node_free = atw_node_free;
840 
841 	sc->sc_node_alloc = ic->ic_node_alloc;
842 	ic->ic_node_alloc = atw_node_alloc;
843 
844 	ic->ic_crypto.cs_key_delete = atw_key_delete;
845 	ic->ic_crypto.cs_key_set = atw_key_set;
846 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
847 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
848 
849 	/* possibly we should fill in our own sc_send_prresp, since
850 	 * the ADM8211 is probably sending probe responses in ad hoc
851 	 * mode.
852 	 */
853 
854 	/* complete initialization */
855 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
856 	callout_init(&sc->sc_scan_ch);
857 
858 #if NBPFILTER > 0
859 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
860 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
861 #endif
862 
863 	/*
864 	 * Make sure the interface is shutdown during reboot.
865 	 */
866 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
867 	if (sc->sc_sdhook == NULL)
868 		printf("%s: WARNING: unable to establish shutdown hook\n",
869 		    sc->sc_dev.dv_xname);
870 
871 	/*
872 	 * Add a suspend hook to make sure we come back up after a
873 	 * resume.
874 	 */
875 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
876 	    atw_power, sc);
877 	if (sc->sc_powerhook == NULL)
878 		printf("%s: WARNING: unable to establish power hook\n",
879 		    sc->sc_dev.dv_xname);
880 
881 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
882 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
883 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
884 
885 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
886 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
887 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
888 
889 	ieee80211_announce(ic);
890 	return;
891 
892 	/*
893 	 * Free any resources we've allocated during the failed attach
894 	 * attempt.  Do this in reverse order and fall through.
895 	 */
896  fail_5:
897 	for (i = 0; i < ATW_NRXDESC; i++) {
898 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
899 			continue;
900 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
901 	}
902  fail_4:
903 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
904 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
905 			continue;
906 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
907 	}
908 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
909  fail_3:
910 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
911  fail_2:
912 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
913 	    sizeof(struct atw_control_data));
914  fail_1:
915 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
916  fail_0:
917 	return;
918 }
919 
920 static struct ieee80211_node *
921 atw_node_alloc(struct ieee80211_node_table *nt)
922 {
923 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
924 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
925 
926 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
927 	return ni;
928 }
929 
930 static void
931 atw_node_free(struct ieee80211_node *ni)
932 {
933 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
934 
935 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
936 	    ether_sprintf(ni->ni_bssid)));
937 	(*sc->sc_node_free)(ni);
938 }
939 
940 
941 static void
942 atw_test1_reset(struct atw_softc *sc)
943 {
944 	switch (sc->sc_rev) {
945 	case ATW_REVISION_BA:
946 		if (1 /* XXX condition on transceiver type */) {
947 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
948 		}
949 		break;
950 	case ATW_REVISION_CA:
951 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
952 		break;
953 	default:
954 		break;
955 	}
956 }
957 
958 /*
959  * atw_reset:
960  *
961  *	Perform a soft reset on the ADM8211.
962  */
963 void
964 atw_reset(struct atw_softc *sc)
965 {
966 	int i;
967 	uint32_t lpc;
968 
969 	ATW_WRITE(sc, ATW_NAR, 0x0);
970 	DELAY(atw_nar_delay);
971 
972 	/* Reference driver has a cryptic remark indicating that this might
973 	 * power-on the chip.  I know that it turns off power-saving....
974 	 */
975 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
976 
977 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
978 
979 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
980 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
981 			break;
982 		DELAY(atw_pseudo_milli);
983 	}
984 
985 	/* ... and then pause 100ms longer for good measure. */
986 	DELAY(atw_magic_delay1);
987 
988 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
989 
990 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
991 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
992 
993 	/*
994 	 * Initialize the PCI Access Register.
995 	 */
996 	sc->sc_busmode = ATW_PAR_PBL_8DW;
997 
998 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
999 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1000 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1001 
1002 	atw_test1_reset(sc);
1003 
1004 	/* Turn off maximum power saving, etc. */
1005 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1006 
1007 	DELAY(atw_magic_delay2);
1008 
1009 	/* Recall EEPROM. */
1010 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1011 
1012 	DELAY(atw_magic_delay4);
1013 
1014 	lpc = ATW_READ(sc, ATW_LPC);
1015 
1016 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1017 
1018 	/* A reset seems to affect the SRAM contents, so put them into
1019 	 * a known state.
1020 	 */
1021 	atw_clear_sram(sc);
1022 
1023 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1024 }
1025 
1026 static void
1027 atw_clear_sram(struct atw_softc *sc)
1028 {
1029 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1030 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1031 	/* XXX not for revision 0x20. */
1032 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1033 }
1034 
1035 /* TBD atw_init
1036  *
1037  * set MAC based on ic->ic_bss->myaddr
1038  * write WEP keys
1039  * set TX rate
1040  */
1041 
1042 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1043  * without receiving a beacon with the preferred BSSID & SSID.
1044  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1045  */
1046 static void
1047 atw_wcsr_init(struct atw_softc *sc)
1048 {
1049 	uint32_t wcsr;
1050 
1051 	wcsr = ATW_READ(sc, ATW_WCSR);
1052 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1053 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1054 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1055 
1056 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1057 	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1058 }
1059 
1060 /* Turn off power management.  Set Rx store-and-forward mode. */
1061 static void
1062 atw_cmdr_init(struct atw_softc *sc)
1063 {
1064 	uint32_t cmdr;
1065 	cmdr = ATW_READ(sc, ATW_CMDR);
1066 	cmdr &= ~ATW_CMDR_APM;
1067 	cmdr |= ATW_CMDR_RTE;
1068 	cmdr &= ~ATW_CMDR_DRT_MASK;
1069 	cmdr |= ATW_CMDR_DRT_SF;
1070 
1071 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1072 }
1073 
1074 static void
1075 atw_tofs2_init(struct atw_softc *sc)
1076 {
1077 	uint32_t tofs2;
1078 	/* XXX this magic can probably be figured out from the RFMD docs */
1079 #ifndef ATW_REFSLAVE
1080 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1081 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1082 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1083 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1084 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1085 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1086 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1087 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1088 #else
1089 	/* XXX new magic from reference driver source */
1090 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1091 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1092 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1093 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1094 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1095 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1096 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1097 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1098 #endif
1099 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1100 }
1101 
1102 static void
1103 atw_nar_init(struct atw_softc *sc)
1104 {
1105 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1106 }
1107 
1108 static void
1109 atw_txlmt_init(struct atw_softc *sc)
1110 {
1111 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1112 	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1113 }
1114 
1115 static void
1116 atw_test1_init(struct atw_softc *sc)
1117 {
1118 	uint32_t test1;
1119 
1120 	test1 = ATW_READ(sc, ATW_TEST1);
1121 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1122 	/* XXX magic 0x1 */
1123 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1124 	ATW_WRITE(sc, ATW_TEST1, test1);
1125 }
1126 
1127 static void
1128 atw_rf_reset(struct atw_softc *sc)
1129 {
1130 	/* XXX this resets an Intersil RF front-end? */
1131 	/* TBD condition on Intersil RFType? */
1132 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1133 	DELAY(atw_rf_delay1);
1134 	ATW_WRITE(sc, ATW_SYNRF, 0);
1135 	DELAY(atw_rf_delay2);
1136 }
1137 
1138 /* Set 16 TU max duration for the contention-free period (CFP). */
1139 static void
1140 atw_cfp_init(struct atw_softc *sc)
1141 {
1142 	uint32_t cfpp;
1143 
1144 	cfpp = ATW_READ(sc, ATW_CFPP);
1145 	cfpp &= ~ATW_CFPP_CFPMD;
1146 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1147 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1148 }
1149 
1150 static void
1151 atw_tofs0_init(struct atw_softc *sc)
1152 {
1153 	/* XXX I guess that the Cardbus clock is 22 MHz?
1154 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1155 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1156 	 * very clear on this point. It says in the datasheet that it is
1157 	 * possible for the ADM8211 to accomodate bus speeds between 22 MHz
1158 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1159 	 * these values. These values are also the power-on default.
1160 	 */
1161 	ATW_WRITE(sc, ATW_TOFS0,
1162 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1163 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1164 }
1165 
1166 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1167 static void
1168 atw_ifs_init(struct atw_softc *sc)
1169 {
1170 	uint32_t ifst;
1171 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1172 	 * Go figure.
1173 	 */
1174 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1175 	      __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1176 	             ATW_IFST_SIFS_MASK) |
1177 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1178 	      __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1179 
1180 	ATW_WRITE(sc, ATW_IFST, ifst);
1181 }
1182 
1183 static void
1184 atw_response_times_init(struct atw_softc *sc)
1185 {
1186 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1187 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1188 	 * to pass after it transmits a frame that requires a response;
1189 	 * it waits at most SIFS + MART microseconds for the response.
1190 	 * Surely this is not the ACK timeout?
1191 	 */
1192 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1193 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1194 }
1195 
1196 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1197  * engines read and write baseband registers after Rx and before
1198  * Tx, respectively.
1199  */
1200 static void
1201 atw_bbp_io_init(struct atw_softc *sc)
1202 {
1203 	uint32_t mmiraddr2;
1204 
1205 	/* XXX The reference driver does this, but is it *really*
1206 	 * necessary?
1207 	 */
1208 	switch (sc->sc_rev) {
1209 	case ATW_REVISION_AB:
1210 	case ATW_REVISION_AF:
1211 		mmiraddr2 = 0x0;
1212 		break;
1213 	default:
1214 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1215 		mmiraddr2 &=
1216 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1217 		break;
1218 	}
1219 
1220 	switch (sc->sc_bbptype) {
1221 	case ATW_BBPTYPE_INTERSIL:
1222 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1223 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1224 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1225 		break;
1226 	case ATW_BBPTYPE_MARVEL:
1227 		/* TBD find out the Marvel settings. */
1228 		break;
1229 	case ATW_BBPTYPE_RFMD:
1230 	default:
1231 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1232 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1233 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1234 		break;
1235 	}
1236 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1237 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1238 }
1239 
1240 /*
1241  * atw_init:		[ ifnet interface function ]
1242  *
1243  *	Initialize the interface.  Must be called at splnet().
1244  */
1245 int
1246 atw_init(struct ifnet *ifp)
1247 {
1248 	struct atw_softc *sc = ifp->if_softc;
1249 	struct ieee80211com *ic = &sc->sc_ic;
1250 	struct atw_txsoft *txs;
1251 	struct atw_rxsoft *rxs;
1252 	int i, error = 0;
1253 
1254 	if ((error = atw_enable(sc)) != 0)
1255 		goto out;
1256 
1257 	/*
1258 	 * Cancel any pending I/O. This also resets.
1259 	 */
1260 	atw_stop(ifp, 0);
1261 
1262 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1263 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1264 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1265 
1266 	atw_wcsr_init(sc);
1267 
1268 	atw_cmdr_init(sc);
1269 
1270 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1271 	 *
1272 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1273 	 */
1274 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1275 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1276 
1277 	atw_tofs2_init(sc);
1278 
1279 	atw_nar_init(sc);
1280 
1281 	atw_txlmt_init(sc);
1282 
1283 	atw_test1_init(sc);
1284 
1285 	atw_rf_reset(sc);
1286 
1287 	atw_cfp_init(sc);
1288 
1289 	atw_tofs0_init(sc);
1290 
1291 	atw_ifs_init(sc);
1292 
1293 	/* XXX Fall asleep after one second of inactivity.
1294 	 * XXX A frame may only dribble in for 65536us.
1295 	 */
1296 	ATW_WRITE(sc, ATW_RMD,
1297 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1298 
1299 	atw_response_times_init(sc);
1300 
1301 	atw_bbp_io_init(sc);
1302 
1303 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1304 
1305 	if ((error = atw_rf3000_init(sc)) != 0)
1306 		goto out;
1307 
1308 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1309 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1310 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1311 
1312 	/*
1313 	 * Initialize the transmit descriptor ring.
1314 	 */
1315 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1316 	for (i = 0; i < ATW_NTXDESC; i++) {
1317 		sc->sc_txdescs[i].at_ctl = 0;
1318 		/* no transmit chaining */
1319 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1320 		sc->sc_txdescs[i].at_buf2 =
1321 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1322 	}
1323 	/* use ring mode */
1324 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1325 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1326 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1327 	sc->sc_txfree = ATW_NTXDESC;
1328 	sc->sc_txnext = 0;
1329 
1330 	/*
1331 	 * Initialize the transmit job descriptors.
1332 	 */
1333 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1334 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1335 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1336 		txs = &sc->sc_txsoft[i];
1337 		txs->txs_mbuf = NULL;
1338 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1339 	}
1340 
1341 	/*
1342 	 * Initialize the receive descriptor and receive job
1343 	 * descriptor rings.
1344 	 */
1345 	for (i = 0; i < ATW_NRXDESC; i++) {
1346 		rxs = &sc->sc_rxsoft[i];
1347 		if (rxs->rxs_mbuf == NULL) {
1348 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1349 				printf("%s: unable to allocate or map rx "
1350 				    "buffer %d, error = %d\n",
1351 				    sc->sc_dev.dv_xname, i, error);
1352 				/*
1353 				 * XXX Should attempt to run with fewer receive
1354 				 * XXX buffers instead of just failing.
1355 				 */
1356 				atw_rxdrain(sc);
1357 				goto out;
1358 			}
1359 		} else
1360 			ATW_INIT_RXDESC(sc, i);
1361 	}
1362 	sc->sc_rxptr = 0;
1363 
1364 	/*
1365 	 * Initialize the interrupt mask and enable interrupts.
1366 	 */
1367 	/* normal interrupts */
1368 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1369 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1370 
1371 	/* abnormal interrupts */
1372 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1373 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1374 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1375 
1376 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1377 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1378 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1379 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1380 	    ATW_INTR_TRT;
1381 
1382 	sc->sc_linkint_mask &= sc->sc_inten;
1383 	sc->sc_rxint_mask &= sc->sc_inten;
1384 	sc->sc_txint_mask &= sc->sc_inten;
1385 
1386 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1387 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1388 
1389 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1390 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1391 
1392 	/*
1393 	 * Give the transmit and receive rings to the ADM8211.
1394 	 */
1395 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1396 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1397 
1398 	sc->sc_txthresh = 0;
1399 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1400 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1401 
1402 	/* common 802.11 configuration */
1403 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1404 	switch (ic->ic_opmode) {
1405 	case IEEE80211_M_STA:
1406 		break;
1407 	case IEEE80211_M_AHDEMO: /* XXX */
1408 	case IEEE80211_M_IBSS:
1409 		ic->ic_flags |= IEEE80211_F_IBSSON;
1410 		/*FALLTHROUGH*/
1411 	case IEEE80211_M_HOSTAP: /* XXX */
1412 		break;
1413 	case IEEE80211_M_MONITOR: /* XXX */
1414 		break;
1415 	}
1416 
1417 	switch (ic->ic_opmode) {
1418 	case IEEE80211_M_AHDEMO:
1419 	case IEEE80211_M_HOSTAP:
1420 #ifndef IEEE80211_NO_HOSTAP
1421 		ic->ic_bss->ni_intval = ic->ic_lintval;
1422 		ic->ic_bss->ni_rssi = 0;
1423 		ic->ic_bss->ni_rstamp = 0;
1424 #endif /* !IEEE80211_NO_HOSTAP */
1425 		break;
1426 	default:					/* XXX */
1427 		break;
1428 	}
1429 
1430 	sc->sc_wepctl = 0;
1431 
1432 	atw_write_ssid(sc);
1433 	atw_write_sup_rates(sc);
1434 	atw_write_wep(sc);
1435 
1436 	ic->ic_state = IEEE80211_S_INIT;
1437 
1438 	/*
1439 	 * Set the receive filter.  This will start the transmit and
1440 	 * receive processes.
1441 	 */
1442 	atw_filter_setup(sc);
1443 
1444 	/*
1445 	 * Start the receive process.
1446 	 */
1447 	ATW_WRITE(sc, ATW_RDR, 0x1);
1448 
1449 	/*
1450 	 * Note that the interface is now running.
1451 	 */
1452 	ifp->if_flags |= IFF_RUNNING;
1453 	ifp->if_flags &= ~IFF_OACTIVE;
1454 
1455 	/* send no beacons, yet. */
1456 	atw_start_beacon(sc, 0);
1457 
1458 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1459 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1460 	else
1461 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1462  out:
1463 	if (error) {
1464 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1465 		sc->sc_tx_timer = 0;
1466 		ifp->if_timer = 0;
1467 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1468 	}
1469 #ifdef ATW_DEBUG
1470 	atw_print_regs(sc, "end of init");
1471 #endif /* ATW_DEBUG */
1472 
1473 	return (error);
1474 }
1475 
1476 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1477  *           0: MAC control of RF3000/Si4126.
1478  *
1479  * Applies power, or selects RF front-end? Sets reset condition.
1480  *
1481  * TBD support non-RFMD BBP, non-SiLabs synth.
1482  */
1483 static void
1484 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1485 {
1486 	if (enable) {
1487 		ATW_WRITE(sc, ATW_SYNRF,
1488 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1489 		DELAY(atw_bbp_io_enable_delay);
1490 	} else {
1491 		ATW_WRITE(sc, ATW_SYNRF, 0);
1492 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1493 	}
1494 }
1495 
1496 static int
1497 atw_tune(struct atw_softc *sc)
1498 {
1499 	int rc;
1500 	u_int chan;
1501 	struct ieee80211com *ic = &sc->sc_ic;
1502 
1503 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1504 	if (chan == IEEE80211_CHAN_ANY)
1505 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1506 
1507 	if (chan == sc->sc_cur_chan)
1508 		return 0;
1509 
1510 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1511 	    sc->sc_cur_chan, chan));
1512 
1513 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1514 
1515 	atw_si4126_tune(sc, chan);
1516 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1517 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1518 		    chan);
1519 
1520 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1521 	DELAY(atw_nar_delay);
1522 	ATW_WRITE(sc, ATW_RDR, 0x1);
1523 
1524 	if (rc == 0)
1525 		sc->sc_cur_chan = chan;
1526 
1527 	return rc;
1528 }
1529 
1530 #ifdef ATW_SYNDEBUG
1531 static void
1532 atw_si4126_print(struct atw_softc *sc)
1533 {
1534 	struct ifnet *ifp = &sc->sc_if;
1535 	u_int addr, val;
1536 
1537 	val = 0;
1538 
1539 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1540 		return;
1541 
1542 	for (addr = 0; addr <= 8; addr++) {
1543 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1544 		if (atw_si4126_read(sc, addr, &val) == 0) {
1545 			printf("<unknown> (quitting print-out)\n");
1546 			break;
1547 		}
1548 		printf("%05x\n", val);
1549 	}
1550 }
1551 #endif /* ATW_SYNDEBUG */
1552 
1553 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1554  *
1555  * The RF/IF synthesizer produces two reference frequencies for
1556  * the RF2948B transceiver.  The first frequency the RF2948B requires
1557  * is two times the so-called "intermediate frequency" (IF). Since
1558  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1559  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1560  * frequency required by the transceiver is the radio frequency
1561  * (RF). This is a superheterodyne transceiver; for f(chan) the
1562  * center frequency of the channel we are tuning, RF = f(chan) -
1563  * IF.
1564  *
1565  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1566  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1567  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1568  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1569  */
1570 static void
1571 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1572 {
1573 	u_int mhz;
1574 	u_int R;
1575 	u_int32_t gpio;
1576 	u_int16_t gain;
1577 
1578 #ifdef ATW_SYNDEBUG
1579 	atw_si4126_print(sc);
1580 #endif /* ATW_SYNDEBUG */
1581 
1582 	if (chan == 14)
1583 		mhz = 2484;
1584 	else
1585 		mhz = 2412 + 5 * (chan - 1);
1586 
1587 	/* Tune IF to 748 MHz to suit the IF LO input of the
1588 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1589          * because an IF in 526 MHz - 952 MHz is allowed.
1590 	 *
1591 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1592 	 * range of 2-25 MHz. SiLabs tells me that this is not
1593 	 * strictly necessary.
1594 	 */
1595 
1596 	if (atw_xindiv2)
1597 		R = 44;
1598 	else
1599 		R = 88;
1600 
1601 	/* Power-up RF, IF synthesizers. */
1602 	atw_si4126_write(sc, SI4126_POWER,
1603 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1604 
1605 	/* set LPWR, too? */
1606 	atw_si4126_write(sc, SI4126_MAIN,
1607 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1608 
1609 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1610 	 * set KP2 to 1.
1611 	 *
1612 	 * REFDIF This is different from the reference driver, which
1613 	 * always sets SI4126_GAIN to 0.
1614 	 */
1615 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1616 
1617 	atw_si4126_write(sc, SI4126_GAIN, gain);
1618 
1619 	/* XIN = 44 MHz.
1620 	 *
1621 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1622 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1623 	 *
1624 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1625 	 * so that 1496/88 * 44 MHz = 748 MHz.
1626 	 */
1627 	atw_si4126_write(sc, SI4126_IFN, 1496);
1628 
1629 	atw_si4126_write(sc, SI4126_IFR, R);
1630 
1631 #ifndef ATW_REFSLAVE
1632 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1633 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1634 	 * which has no RF1!
1635 	 */
1636 	atw_si4126_write(sc, SI4126_RF1R, R);
1637 
1638 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1639 #endif
1640 
1641 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1642 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1643 	 * Now let's multiply it to mhz. So mhz - IF = N.
1644 	 */
1645 	atw_si4126_write(sc, SI4126_RF2R, R);
1646 
1647 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1648 
1649 	/* wait 100us from power-up for RF, IF to settle */
1650 	DELAY(100);
1651 
1652 	gpio = ATW_READ(sc, ATW_GPIO);
1653 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1654 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1655 
1656 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1657 		/* Set a Prism RF front-end to a special mode for channel 14?
1658 		 *
1659 		 * Apparently the SMC2635W needs this, although I don't think
1660 		 * it has a Prism RF.
1661 		 */
1662 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1663 	}
1664 	ATW_WRITE(sc, ATW_GPIO, gpio);
1665 
1666 #ifdef ATW_SYNDEBUG
1667 	atw_si4126_print(sc);
1668 #endif /* ATW_SYNDEBUG */
1669 }
1670 
1671 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1672  * diversity.
1673  *
1674  * !!!
1675  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1676  * !!!
1677  */
1678 static int
1679 atw_rf3000_init(struct atw_softc *sc)
1680 {
1681 	int rc = 0;
1682 
1683 	atw_bbp_io_enable(sc, 1);
1684 
1685 	/* CCA is acquisition sensitive */
1686 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1687 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1688 
1689 	if (rc != 0)
1690 		goto out;
1691 
1692 	/* enable diversity */
1693 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1694 
1695 	if (rc != 0)
1696 		goto out;
1697 
1698 	/* sensible setting from a binary-only driver */
1699 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1700 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1701 
1702 	if (rc != 0)
1703 		goto out;
1704 
1705 	/* magic from a binary-only driver */
1706 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1707 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1708 
1709 	if (rc != 0)
1710 		goto out;
1711 
1712 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1713 
1714 	if (rc != 0)
1715 		goto out;
1716 
1717 	/* XXX Reference driver remarks that Abocom sets this to 50.
1718 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1719 	 * in the "reserved" area of register RF3000_OPTIONS1.
1720 	 */
1721 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1722 
1723 	if (rc != 0)
1724 		goto out;
1725 
1726 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1727 
1728 	if (rc != 0)
1729 		goto out;
1730 
1731 out:
1732 	atw_bbp_io_enable(sc, 0);
1733 	return rc;
1734 }
1735 
1736 #ifdef ATW_BBPDEBUG
1737 static void
1738 atw_rf3000_print(struct atw_softc *sc)
1739 {
1740 	struct ifnet *ifp = &sc->sc_if;
1741 	u_int addr, val;
1742 
1743 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1744 		return;
1745 
1746 	for (addr = 0x01; addr <= 0x15; addr++) {
1747 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1748 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1749 			printf("<unknown> (quitting print-out)\n");
1750 			break;
1751 		}
1752 		printf("%08x\n", val);
1753 	}
1754 }
1755 #endif /* ATW_BBPDEBUG */
1756 
1757 /* Set the power settings on the BBP for channel `chan'. */
1758 static int
1759 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1760 {
1761 	int rc = 0;
1762 	u_int32_t reg;
1763 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1764 
1765 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1766 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1767 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1768 
1769 	/* odd channels: LSB, even channels: MSB */
1770 	if (chan % 2 == 1) {
1771 		txpower &= 0xFF;
1772 		lpf_cutoff &= 0xFF;
1773 		lna_gs_thresh &= 0xFF;
1774 	} else {
1775 		txpower >>= 8;
1776 		lpf_cutoff >>= 8;
1777 		lna_gs_thresh >>= 8;
1778 	}
1779 
1780 #ifdef ATW_BBPDEBUG
1781 	atw_rf3000_print(sc);
1782 #endif /* ATW_BBPDEBUG */
1783 
1784 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1785 	    "lna_gs_thresh %02x\n",
1786 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1787 
1788 	atw_bbp_io_enable(sc, 1);
1789 
1790 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1791 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1792 		goto out;
1793 
1794 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1795 		goto out;
1796 
1797 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1798 		goto out;
1799 
1800 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1801 
1802 	if (rc != 0)
1803 		goto out;
1804 
1805 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1806 
1807 	if (rc != 0)
1808 		goto out;
1809 
1810 #ifdef ATW_BBPDEBUG
1811 	atw_rf3000_print(sc);
1812 #endif /* ATW_BBPDEBUG */
1813 
1814 out:
1815 	atw_bbp_io_enable(sc, 0);
1816 
1817 	/* set beacon, rts, atim transmit power */
1818 	reg = ATW_READ(sc, ATW_PLCPHD);
1819 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1820 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1821 	    ATW_PLCPHD_SERVICE_MASK);
1822 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1823 	DELAY(atw_plcphd_delay);
1824 
1825 	return rc;
1826 }
1827 
1828 /* Write a register on the RF3000 baseband processor using the
1829  * registers provided by the ADM8211 for this purpose.
1830  *
1831  * Return 0 on success.
1832  */
1833 static int
1834 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1835 {
1836 	u_int32_t reg;
1837 	int i;
1838 
1839 	reg = sc->sc_bbpctl_wr |
1840 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1841 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1842 
1843 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1844 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1845 		DELAY(2 * atw_pseudo_milli);
1846 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1847 			break;
1848 	}
1849 
1850 	if (i < 0) {
1851 		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1852 		return ETIMEDOUT;
1853 	}
1854 	return 0;
1855 }
1856 
1857 /* Read a register on the RF3000 baseband processor using the registers
1858  * the ADM8211 provides for this purpose.
1859  *
1860  * The 7-bit register address is addr.  Record the 8-bit data in the register
1861  * in *val.
1862  *
1863  * Return 0 on success.
1864  *
1865  * XXX This does not seem to work. The ADM8211 must require more or
1866  * different magic to read the chip than to write it. Possibly some
1867  * of the magic I have derived from a binary-only driver concerns
1868  * the "chip address" (see the RF3000 manual).
1869  */
1870 #ifdef ATW_BBPDEBUG
1871 static int
1872 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1873 {
1874 	u_int32_t reg;
1875 	int i;
1876 
1877 	for (i = 1000; --i >= 0; ) {
1878 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1879 			break;
1880 		DELAY(100);
1881 	}
1882 
1883 	if (i < 0) {
1884 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1885 		    sc->sc_dev.dv_xname);
1886 		return ETIMEDOUT;
1887 	}
1888 
1889 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1890 
1891 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1892 
1893 	for (i = 1000; --i >= 0; ) {
1894 		DELAY(100);
1895 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1896 			break;
1897 	}
1898 
1899 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1900 
1901 	if (i < 0) {
1902 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1903 		    sc->sc_dev.dv_xname, reg);
1904 		return ETIMEDOUT;
1905 	}
1906 	if (val != NULL)
1907 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1908 	return 0;
1909 }
1910 #endif /* ATW_BBPDEBUG */
1911 
1912 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1913  * provided by the ADM8211 for that purpose.
1914  *
1915  * val is 18 bits of data, and val is the 4-bit address of the register.
1916  *
1917  * Return 0 on success.
1918  */
1919 static void
1920 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1921 {
1922 	uint32_t bits, mask, reg;
1923 	const int nbits = 22;
1924 
1925 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1926 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1927 
1928 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1929 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1930 
1931 	reg = ATW_SYNRF_SELSYN;
1932 	/* reference driver: reset Si4126 serial bus to initial
1933 	 * conditions?
1934 	 */
1935 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1936 	ATW_WRITE(sc, ATW_SYNRF, reg);
1937 
1938 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1939 		if ((bits & mask) != 0)
1940 			reg |= ATW_SYNRF_SYNDATA;
1941 		else
1942 			reg &= ~ATW_SYNRF_SYNDATA;
1943 		ATW_WRITE(sc, ATW_SYNRF, reg);
1944 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1945 		ATW_WRITE(sc, ATW_SYNRF, reg);
1946 	}
1947 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1948 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1949 }
1950 
1951 /* Read 18-bit data from the 4-bit address addr in Si4126
1952  * RF synthesizer and write the data to *val. Return 0 on success.
1953  *
1954  * XXX This does not seem to work. The ADM8211 must require more or
1955  * different magic to read the chip than to write it.
1956  */
1957 #ifdef ATW_SYNDEBUG
1958 static int
1959 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1960 {
1961 	u_int32_t reg;
1962 	int i;
1963 
1964 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1965 
1966 	for (i = 1000; --i >= 0; ) {
1967 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1968 			break;
1969 		DELAY(100);
1970 	}
1971 
1972 	if (i < 0) {
1973 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1974 		    sc->sc_dev.dv_xname);
1975 		return ETIMEDOUT;
1976 	}
1977 
1978 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1979 
1980 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1981 
1982 	for (i = 1000; --i >= 0; ) {
1983 		DELAY(100);
1984 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1985 			break;
1986 	}
1987 
1988 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1989 
1990 	if (i < 0) {
1991 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1992 		    sc->sc_dev.dv_xname, reg);
1993 		return ETIMEDOUT;
1994 	}
1995 	if (val != NULL)
1996 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1997 		                       ATW_SYNCTL_DATA_MASK);
1998 	return 0;
1999 }
2000 #endif /* ATW_SYNDEBUG */
2001 
2002 /* XXX is the endianness correct? test. */
2003 #define	atw_calchash(addr) \
2004 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2005 
2006 /*
2007  * atw_filter_setup:
2008  *
2009  *	Set the ADM8211's receive filter.
2010  */
2011 static void
2012 atw_filter_setup(struct atw_softc *sc)
2013 {
2014 	struct ieee80211com *ic = &sc->sc_ic;
2015 	struct ethercom *ec = &sc->sc_ec;
2016 	struct ifnet *ifp = &sc->sc_if;
2017 	int hash;
2018 	u_int32_t hashes[2];
2019 	struct ether_multi *enm;
2020 	struct ether_multistep step;
2021 
2022 	/* According to comments in tlp_al981_filter_setup
2023 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2024 	 * multicast filter to be set while it is running.  Hopefully
2025 	 * the ADM8211 is not the same!
2026 	 */
2027 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2028 		atw_idle(sc, ATW_NAR_SR);
2029 
2030 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2031 	ifp->if_flags &= ~IFF_ALLMULTI;
2032 
2033 	/* XXX in scan mode, do not filter packets.  Maybe this is
2034 	 * unnecessary.
2035 	 */
2036 	if (ic->ic_state == IEEE80211_S_SCAN ||
2037 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2038 		sc->sc_opmode |= ATW_NAR_PR;
2039 		goto allmulti;
2040 	}
2041 
2042 	hashes[0] = hashes[1] = 0x0;
2043 
2044 	/*
2045 	 * Program the 64-bit multicast hash filter.
2046 	 */
2047 	ETHER_FIRST_MULTI(step, ec, enm);
2048 	while (enm != NULL) {
2049 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2050 		    ETHER_ADDR_LEN) != 0)
2051 			goto allmulti;
2052 
2053 		hash = atw_calchash(enm->enm_addrlo);
2054 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2055 		ETHER_NEXT_MULTI(step, enm);
2056 		sc->sc_opmode |= ATW_NAR_MM;
2057 	}
2058 	ifp->if_flags &= ~IFF_ALLMULTI;
2059 	goto setit;
2060 
2061 allmulti:
2062 	sc->sc_opmode |= ATW_NAR_MM;
2063 	ifp->if_flags |= IFF_ALLMULTI;
2064 	hashes[0] = hashes[1] = 0xffffffff;
2065 
2066 setit:
2067 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2068 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2069 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2070 	DELAY(atw_nar_delay);
2071 	ATW_WRITE(sc, ATW_RDR, 0x1);
2072 
2073 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2074 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2075 }
2076 
2077 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2078  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2079  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2080  * no beacon with the preferred BSSID and SSID in the number of
2081  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2082  */
2083 static void
2084 atw_write_bssid(struct atw_softc *sc)
2085 {
2086 	struct ieee80211com *ic = &sc->sc_ic;
2087 	u_int8_t *bssid;
2088 
2089 	bssid = ic->ic_bss->ni_bssid;
2090 
2091 	ATW_WRITE(sc, ATW_BSSID0,
2092 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2093 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2094 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2095 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2096 
2097 	ATW_WRITE(sc, ATW_ABDA1,
2098 	    (ATW_READ(sc, ATW_ABDA1) &
2099 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2100 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2101 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2102 
2103 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2104 	    ether_sprintf(sc->sc_bssid)));
2105 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2106 
2107 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2108 }
2109 
2110 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2111  * 16-bit word.
2112  */
2113 static void
2114 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2115 {
2116 	u_int i;
2117 	u_int8_t *ptr;
2118 
2119 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2120 
2121 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2122 
2123 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2124 
2125 	ptr = &sc->sc_sram[ofs];
2126 
2127 	for (i = 0; i < buflen; i += 2) {
2128 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2129 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2130 		DELAY(atw_writewep_delay);
2131 
2132 		ATW_WRITE(sc, ATW_WESK,
2133 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2134 		DELAY(atw_writewep_delay);
2135 	}
2136 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2137 
2138 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2139 		int n_octets = 0;
2140 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2141 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2142 		for (i = 0; i < buflen; i++) {
2143 			printf(" %02x", ptr[i]);
2144 			if (++n_octets % 24 == 0)
2145 				printf("\n");
2146 		}
2147 		if (n_octets % 24 != 0)
2148 			printf("\n");
2149 	}
2150 }
2151 
2152 static int
2153 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2154 {
2155 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2156 	u_int keyix = k->wk_keyix;
2157 
2158 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2159 
2160 	if (keyix >= IEEE80211_WEP_NKID)
2161 		return 0;
2162 	if (k->wk_keylen != 0)
2163 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2164 
2165 	return 1;
2166 }
2167 
2168 static int
2169 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2170 	const u_int8_t mac[IEEE80211_ADDR_LEN] __unused)
2171 {
2172 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2173 
2174 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2175 
2176 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2177 		return 0;
2178 
2179 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2180 
2181 	return 1;
2182 }
2183 
2184 static void
2185 atw_key_update_begin(struct ieee80211com *ic __unused)
2186 {
2187 #ifdef ATW_DEBUG
2188 	struct ifnet *ifp = ic->ic_ifp;
2189 	struct atw_softc *sc = ifp->if_softc;
2190 #endif
2191 
2192 	DPRINTF(sc, ("%s:\n", __func__));
2193 }
2194 
2195 static void
2196 atw_key_update_end(struct ieee80211com *ic)
2197 {
2198 	struct ifnet *ifp = ic->ic_ifp;
2199 	struct atw_softc *sc = ifp->if_softc;
2200 
2201 	DPRINTF(sc, ("%s:\n", __func__));
2202 
2203 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2204 		return;
2205 	if (ATW_IS_ENABLED(sc) == 0)
2206 		return;
2207 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2208 	atw_write_wep(sc);
2209 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2210 	DELAY(atw_nar_delay);
2211 	ATW_WRITE(sc, ATW_RDR, 0x1);
2212 }
2213 
2214 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2215 static void
2216 atw_write_wep(struct atw_softc *sc)
2217 {
2218 #if 0
2219 	struct ieee80211com *ic = &sc->sc_ic;
2220 	u_int32_t reg;
2221 	int i;
2222 #endif
2223 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2224 	u_int8_t buf[IEEE80211_WEP_NKID]
2225 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2226 
2227 	sc->sc_wepctl = 0;
2228 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2229 
2230 	memset(&buf[0][0], 0, sizeof(buf));
2231 
2232 #if 0
2233 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2234 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2235 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2236 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2237 			buf[i][1] = ATW_WEP_ENABLED;
2238 		} else {
2239 			buf[i][1] = 0;
2240 			continue;
2241 		}
2242 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2243 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2244 		    ic->ic_nw_keys[i].wk_keylen - 1);
2245 	}
2246 
2247 	reg = ATW_READ(sc, ATW_MACTEST);
2248 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2249 	reg &= ~ATW_MACTEST_KEYID_MASK;
2250 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2251 	ATW_WRITE(sc, ATW_MACTEST, reg);
2252 
2253 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2254 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2255 
2256 	switch (sc->sc_rev) {
2257 	case ATW_REVISION_AB:
2258 	case ATW_REVISION_AF:
2259 		/* Bypass WEP on Rx. */
2260 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2261 		break;
2262 	default:
2263 		break;
2264 	}
2265 #endif
2266 
2267 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2268 	    sizeof(buf));
2269 
2270 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2271 }
2272 
2273 static void
2274 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2275     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2276 {
2277 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2278 
2279 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2280 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2281 		return;
2282 
2283 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2284 
2285 	switch (subtype) {
2286 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2287 	case IEEE80211_FC0_SUBTYPE_BEACON:
2288 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2289 		    ic->ic_state == IEEE80211_S_RUN) {
2290 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2291 				(void)ieee80211_ibss_merge(ni);
2292 		}
2293 		break;
2294 	default:
2295 		break;
2296 	}
2297 	return;
2298 }
2299 
2300 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2301  * In ad hoc mode, the SSID is written to the beacons sent by the
2302  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2303  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2304  * indications.
2305  */
2306 static void
2307 atw_write_ssid(struct atw_softc *sc)
2308 {
2309 	struct ieee80211com *ic = &sc->sc_ic;
2310 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2311 	 * it only expects the element length, not its ID.
2312 	 */
2313 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2314 
2315 	memset(buf, 0, sizeof(buf));
2316 	buf[0] = ic->ic_bss->ni_esslen;
2317 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2318 
2319 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2320 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2321 }
2322 
2323 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2324  * In ad hoc mode, the supported rates are written to beacons sent by the
2325  * ADM8211.
2326  */
2327 static void
2328 atw_write_sup_rates(struct atw_softc *sc)
2329 {
2330 	struct ieee80211com *ic = &sc->sc_ic;
2331 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2332 	 * supported rates
2333 	 */
2334 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2335 
2336 	memset(buf, 0, sizeof(buf));
2337 
2338 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2339 
2340 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2341 	    ic->ic_bss->ni_rates.rs_nrates);
2342 
2343 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2344 }
2345 
2346 /* Start/stop sending beacons. */
2347 void
2348 atw_start_beacon(struct atw_softc *sc, int start)
2349 {
2350 	struct ieee80211com *ic = &sc->sc_ic;
2351 	uint16_t chan;
2352 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2353 	size_t len;
2354 
2355 	if (ATW_IS_ENABLED(sc) == 0)
2356 		return;
2357 
2358 	/* start beacons */
2359 	len = sizeof(struct ieee80211_frame) +
2360 	    8 /* timestamp */ + 2 /* beacon interval */ +
2361 	    2 /* capability info */ +
2362 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2363 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2364 	    3 /* DS parameters */ +
2365 	    IEEE80211_CRC_LEN;
2366 
2367 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2368 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2369 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2370 
2371 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2372 	ATW_WRITE(sc, ATW_CAP1, cap1);
2373 
2374 	if (!start)
2375 		return;
2376 
2377 	/* TBD use ni_capinfo */
2378 
2379 	capinfo = 0;
2380 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2381 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2382 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2383 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2384 
2385 	switch (ic->ic_opmode) {
2386 	case IEEE80211_M_IBSS:
2387 		len += 4; /* IBSS parameters */
2388 		capinfo |= IEEE80211_CAPINFO_IBSS;
2389 		break;
2390 	case IEEE80211_M_HOSTAP:
2391 		/* XXX 6-byte minimum TIM */
2392 		len += atw_beacon_len_adjust;
2393 		capinfo |= IEEE80211_CAPINFO_ESS;
2394 		break;
2395 	default:
2396 		return;
2397 	}
2398 
2399 	/* set listen interval
2400 	 * XXX do software units agree w/ hardware?
2401 	 */
2402 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2403 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2404 
2405 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2406 
2407 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2408 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2409 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2410 
2411 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2412 	ATW_WRITE(sc, ATW_BPLI, bpli);
2413 	ATW_WRITE(sc, ATW_CAP0, cap0);
2414 	ATW_WRITE(sc, ATW_CAP1, cap1);
2415 
2416 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2417 	    sc->sc_dev.dv_xname, bcnt));
2418 
2419 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2420 	    sc->sc_dev.dv_xname, cap1));
2421 }
2422 
2423 /* Return the 32 lsb of the last TSFT divisible by ival. */
2424 static inline uint32_t
2425 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2426 {
2427 	/* Following the reference driver's lead, I compute
2428 	 *
2429 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2430 	 *
2431 	 * without using 64-bit arithmetic, using the following
2432 	 * relationship:
2433 	 *
2434 	 *     (0x100000000 * H + L) % m
2435 	 *   = ((0x100000000 % m) * H + L) % m
2436 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2437 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2438 	 *   = ((0xffffffff % m + 1) * H + L) % m
2439 	 */
2440 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2441 }
2442 
2443 static uint64_t
2444 atw_get_tsft(struct atw_softc *sc)
2445 {
2446 	int i;
2447 	uint32_t tsfth, tsftl;
2448 	for (i = 0; i < 2; i++) {
2449 		tsfth = ATW_READ(sc, ATW_TSFTH);
2450 		tsftl = ATW_READ(sc, ATW_TSFTL);
2451 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2452 			break;
2453 	}
2454 	return ((uint64_t)tsfth << 32) | tsftl;
2455 }
2456 
2457 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2458  * the ieee80211com.
2459  *
2460  * Predict the next target beacon transmission time (TBTT) and
2461  * write it to the ADM8211.
2462  */
2463 static void
2464 atw_predict_beacon(struct atw_softc *sc)
2465 {
2466 #define TBTTOFS 20 /* TU */
2467 
2468 	struct ieee80211com *ic = &sc->sc_ic;
2469 	uint64_t tsft;
2470 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2471 	union {
2472 		uint64_t	word;
2473 		uint8_t		tstamp[8];
2474 	} u;
2475 
2476 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2477 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2478 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2479 		tsft = atw_get_tsft(sc);
2480 		u.word = htole64(tsft);
2481 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2482 		    sizeof(ic->ic_bss->ni_tstamp));
2483 	} else
2484 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2485 
2486 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2487 
2488 	tsftl = tsft & 0xFFFFFFFF;
2489 	tsfth = tsft >> 32;
2490 
2491 	/* We sent/received the last beacon `past' microseconds
2492 	 * after the interval divided the TSF timer.
2493 	 */
2494 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2495 
2496 	/* Skip ten beacons so that the TBTT cannot pass before
2497 	 * we've programmed it.  Ten is an arbitrary number.
2498 	 */
2499 	tbtt = past_even + ival * 10;
2500 
2501 	ATW_WRITE(sc, ATW_TOFS1,
2502 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2503 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2504 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2505 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2506 #undef TBTTOFS
2507 }
2508 
2509 static void
2510 atw_next_scan(void *arg)
2511 {
2512 	struct atw_softc *sc = arg;
2513 	struct ieee80211com *ic = &sc->sc_ic;
2514 	int s;
2515 
2516 	/* don't call atw_start w/o network interrupts blocked */
2517 	s = splnet();
2518 	if (ic->ic_state == IEEE80211_S_SCAN)
2519 		ieee80211_next_scan(ic);
2520 	splx(s);
2521 }
2522 
2523 /* Synchronize the hardware state with the software state. */
2524 static int
2525 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2526 {
2527 	struct ifnet *ifp = ic->ic_ifp;
2528 	struct atw_softc *sc = ifp->if_softc;
2529 	enum ieee80211_state ostate;
2530 	int error = 0;
2531 
2532 	ostate = ic->ic_state;
2533 	callout_stop(&sc->sc_scan_ch);
2534 
2535 	switch (nstate) {
2536 	case IEEE80211_S_AUTH:
2537 	case IEEE80211_S_ASSOC:
2538 		atw_write_bssid(sc);
2539 		error = atw_tune(sc);
2540 		break;
2541 	case IEEE80211_S_INIT:
2542 		callout_stop(&sc->sc_scan_ch);
2543 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2544 		atw_start_beacon(sc, 0);
2545 		break;
2546 	case IEEE80211_S_SCAN:
2547 		error = atw_tune(sc);
2548 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2549 		    atw_next_scan, sc);
2550 		break;
2551 	case IEEE80211_S_RUN:
2552 		error = atw_tune(sc);
2553 		atw_write_bssid(sc);
2554 		atw_write_ssid(sc);
2555 		atw_write_sup_rates(sc);
2556 
2557 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2558 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2559 			break;
2560 
2561 		/* set listen interval
2562 		 * XXX do software units agree w/ hardware?
2563 		 */
2564 		ATW_WRITE(sc, ATW_BPLI,
2565 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2566 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2567 			   ATW_BPLI_LI_MASK));
2568 
2569 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2570 		    ATW_READ(sc, ATW_BPLI)));
2571 
2572 		atw_predict_beacon(sc);
2573 
2574 		switch (ic->ic_opmode) {
2575 		case IEEE80211_M_AHDEMO:
2576 		case IEEE80211_M_HOSTAP:
2577 		case IEEE80211_M_IBSS:
2578 			atw_start_beacon(sc, 1);
2579 			break;
2580 		case IEEE80211_M_MONITOR:
2581 		case IEEE80211_M_STA:
2582 			break;
2583 		}
2584 
2585 		break;
2586 	}
2587 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2588 }
2589 
2590 /*
2591  * atw_add_rxbuf:
2592  *
2593  *	Add a receive buffer to the indicated descriptor.
2594  */
2595 int
2596 atw_add_rxbuf(struct atw_softc *sc, int idx)
2597 {
2598 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2599 	struct mbuf *m;
2600 	int error;
2601 
2602 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2603 	if (m == NULL)
2604 		return (ENOBUFS);
2605 
2606 	MCLGET(m, M_DONTWAIT);
2607 	if ((m->m_flags & M_EXT) == 0) {
2608 		m_freem(m);
2609 		return (ENOBUFS);
2610 	}
2611 
2612 	if (rxs->rxs_mbuf != NULL)
2613 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2614 
2615 	rxs->rxs_mbuf = m;
2616 
2617 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2618 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2619 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2620 	if (error) {
2621 		printf("%s: can't load rx DMA map %d, error = %d\n",
2622 		    sc->sc_dev.dv_xname, idx, error);
2623 		panic("atw_add_rxbuf");	/* XXX */
2624 	}
2625 
2626 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2627 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2628 
2629 	ATW_INIT_RXDESC(sc, idx);
2630 
2631 	return (0);
2632 }
2633 
2634 /*
2635  * Release any queued transmit buffers.
2636  */
2637 void
2638 atw_txdrain(struct atw_softc *sc)
2639 {
2640 	struct atw_txsoft *txs;
2641 
2642 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2643 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2644 		if (txs->txs_mbuf != NULL) {
2645 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2646 			m_freem(txs->txs_mbuf);
2647 			txs->txs_mbuf = NULL;
2648 		}
2649 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2650 		sc->sc_txfree += txs->txs_ndescs;
2651 	}
2652 
2653 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2654 	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2655 		  sc->sc_txfree != ATW_NTXDESC));
2656 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2657 	sc->sc_tx_timer = 0;
2658 }
2659 
2660 /*
2661  * atw_stop:		[ ifnet interface function ]
2662  *
2663  *	Stop transmission on the interface.
2664  */
2665 void
2666 atw_stop(struct ifnet *ifp, int disable)
2667 {
2668 	struct atw_softc *sc = ifp->if_softc;
2669 	struct ieee80211com *ic = &sc->sc_ic;
2670 
2671 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2672 
2673 	/* Disable interrupts. */
2674 	ATW_WRITE(sc, ATW_IER, 0);
2675 
2676 	/* Stop the transmit and receive processes. */
2677 	sc->sc_opmode = 0;
2678 	ATW_WRITE(sc, ATW_NAR, 0);
2679 	DELAY(atw_nar_delay);
2680 	ATW_WRITE(sc, ATW_TDBD, 0);
2681 	ATW_WRITE(sc, ATW_TDBP, 0);
2682 	ATW_WRITE(sc, ATW_RDB, 0);
2683 
2684 	atw_txdrain(sc);
2685 
2686 	if (disable) {
2687 		atw_rxdrain(sc);
2688 		atw_disable(sc);
2689 	}
2690 
2691 	/*
2692 	 * Mark the interface down and cancel the watchdog timer.
2693 	 */
2694 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2695 	sc->sc_tx_timer = 0;
2696 	ifp->if_timer = 0;
2697 
2698 	if (!disable)
2699 		atw_reset(sc);
2700 }
2701 
2702 /*
2703  * atw_rxdrain:
2704  *
2705  *	Drain the receive queue.
2706  */
2707 void
2708 atw_rxdrain(struct atw_softc *sc)
2709 {
2710 	struct atw_rxsoft *rxs;
2711 	int i;
2712 
2713 	for (i = 0; i < ATW_NRXDESC; i++) {
2714 		rxs = &sc->sc_rxsoft[i];
2715 		if (rxs->rxs_mbuf == NULL)
2716 			continue;
2717 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2718 		m_freem(rxs->rxs_mbuf);
2719 		rxs->rxs_mbuf = NULL;
2720 	}
2721 }
2722 
2723 /*
2724  * atw_detach:
2725  *
2726  *	Detach an ADM8211 interface.
2727  */
2728 int
2729 atw_detach(struct atw_softc *sc)
2730 {
2731 	struct ifnet *ifp = &sc->sc_if;
2732 	struct atw_rxsoft *rxs;
2733 	struct atw_txsoft *txs;
2734 	int i;
2735 
2736 	/*
2737 	 * Succeed now if there isn't any work to do.
2738 	 */
2739 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2740 		return (0);
2741 
2742 	callout_stop(&sc->sc_scan_ch);
2743 
2744 	ieee80211_ifdetach(&sc->sc_ic);
2745 	if_detach(ifp);
2746 
2747 	for (i = 0; i < ATW_NRXDESC; i++) {
2748 		rxs = &sc->sc_rxsoft[i];
2749 		if (rxs->rxs_mbuf != NULL) {
2750 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2751 			m_freem(rxs->rxs_mbuf);
2752 			rxs->rxs_mbuf = NULL;
2753 		}
2754 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2755 	}
2756 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2757 		txs = &sc->sc_txsoft[i];
2758 		if (txs->txs_mbuf != NULL) {
2759 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2760 			m_freem(txs->txs_mbuf);
2761 			txs->txs_mbuf = NULL;
2762 		}
2763 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2764 	}
2765 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2766 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2767 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2768 	    sizeof(struct atw_control_data));
2769 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2770 
2771 	shutdownhook_disestablish(sc->sc_sdhook);
2772 	powerhook_disestablish(sc->sc_powerhook);
2773 
2774 	if (sc->sc_srom)
2775 		free(sc->sc_srom, M_DEVBUF);
2776 
2777 	return (0);
2778 }
2779 
2780 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2781 void
2782 atw_shutdown(void *arg)
2783 {
2784 	struct atw_softc *sc = arg;
2785 
2786 	atw_stop(&sc->sc_if, 1);
2787 }
2788 
2789 int
2790 atw_intr(void *arg)
2791 {
2792 	struct atw_softc *sc = arg;
2793 	struct ifnet *ifp = &sc->sc_if;
2794 	u_int32_t status, rxstatus, txstatus, linkstatus;
2795 	int handled = 0, txthresh;
2796 
2797 #ifdef DEBUG
2798 	if (ATW_IS_ENABLED(sc) == 0)
2799 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2800 #endif
2801 
2802 	/*
2803 	 * If the interface isn't running, the interrupt couldn't
2804 	 * possibly have come from us.
2805 	 */
2806 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2807 	    !device_is_active(&sc->sc_dev))
2808 		return (0);
2809 
2810 	for (;;) {
2811 		status = ATW_READ(sc, ATW_STSR);
2812 
2813 		if (status)
2814 			ATW_WRITE(sc, ATW_STSR, status);
2815 
2816 #ifdef ATW_DEBUG
2817 #define PRINTINTR(flag) do { \
2818 	if ((status & flag) != 0) { \
2819 		printf("%s" #flag, delim); \
2820 		delim = ","; \
2821 	} \
2822 } while (0)
2823 
2824 		if (atw_debug > 1 && status) {
2825 			const char *delim = "<";
2826 
2827 			printf("%s: reg[STSR] = %x",
2828 			    sc->sc_dev.dv_xname, status);
2829 
2830 			PRINTINTR(ATW_INTR_FBE);
2831 			PRINTINTR(ATW_INTR_LINKOFF);
2832 			PRINTINTR(ATW_INTR_LINKON);
2833 			PRINTINTR(ATW_INTR_RCI);
2834 			PRINTINTR(ATW_INTR_RDU);
2835 			PRINTINTR(ATW_INTR_REIS);
2836 			PRINTINTR(ATW_INTR_RPS);
2837 			PRINTINTR(ATW_INTR_TCI);
2838 			PRINTINTR(ATW_INTR_TDU);
2839 			PRINTINTR(ATW_INTR_TLT);
2840 			PRINTINTR(ATW_INTR_TPS);
2841 			PRINTINTR(ATW_INTR_TRT);
2842 			PRINTINTR(ATW_INTR_TUF);
2843 			PRINTINTR(ATW_INTR_BCNTC);
2844 			PRINTINTR(ATW_INTR_ATIME);
2845 			PRINTINTR(ATW_INTR_TBTT);
2846 			PRINTINTR(ATW_INTR_TSCZ);
2847 			PRINTINTR(ATW_INTR_TSFTF);
2848 			printf(">\n");
2849 		}
2850 #undef PRINTINTR
2851 #endif /* ATW_DEBUG */
2852 
2853 		if ((status & sc->sc_inten) == 0)
2854 			break;
2855 
2856 		handled = 1;
2857 
2858 		rxstatus = status & sc->sc_rxint_mask;
2859 		txstatus = status & sc->sc_txint_mask;
2860 		linkstatus = status & sc->sc_linkint_mask;
2861 
2862 		if (linkstatus) {
2863 			atw_linkintr(sc, linkstatus);
2864 		}
2865 
2866 		if (rxstatus) {
2867 			/* Grab any new packets. */
2868 			atw_rxintr(sc);
2869 
2870 			if (rxstatus & ATW_INTR_RDU) {
2871 				printf("%s: receive ring overrun\n",
2872 				    sc->sc_dev.dv_xname);
2873 				/* Get the receive process going again. */
2874 				ATW_WRITE(sc, ATW_RDR, 0x1);
2875 				break;
2876 			}
2877 		}
2878 
2879 		if (txstatus) {
2880 			/* Sweep up transmit descriptors. */
2881 			atw_txintr(sc);
2882 
2883 			if (txstatus & ATW_INTR_TLT) {
2884 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2885 				    sc->sc_dev.dv_xname));
2886 			}
2887 
2888 			if (txstatus & ATW_INTR_TRT) {
2889 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2890 				    sc->sc_dev.dv_xname));
2891 			}
2892 
2893 			/* If Tx under-run, increase our transmit threshold
2894 			 * if another is available.
2895 			 */
2896 			txthresh = sc->sc_txthresh + 1;
2897 			if ((txstatus & ATW_INTR_TUF) &&
2898 			    sc->sc_txth[txthresh].txth_name != NULL) {
2899 				/* Idle the transmit process. */
2900 				atw_idle(sc, ATW_NAR_ST);
2901 
2902 				sc->sc_txthresh = txthresh;
2903 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2904 				sc->sc_opmode |=
2905 				    sc->sc_txth[txthresh].txth_opmode;
2906 				printf("%s: transmit underrun; new "
2907 				    "threshold: %s\n", sc->sc_dev.dv_xname,
2908 				    sc->sc_txth[txthresh].txth_name);
2909 
2910 				/* Set the new threshold and restart
2911 				 * the transmit process.
2912 				 */
2913 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2914 				DELAY(atw_nar_delay);
2915 				ATW_WRITE(sc, ATW_RDR, 0x1);
2916 				/* XXX Log every Nth underrun from
2917 				 * XXX now on?
2918 				 */
2919 			}
2920 		}
2921 
2922 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2923 			if (status & ATW_INTR_TPS)
2924 				printf("%s: transmit process stopped\n",
2925 				    sc->sc_dev.dv_xname);
2926 			if (status & ATW_INTR_RPS)
2927 				printf("%s: receive process stopped\n",
2928 				    sc->sc_dev.dv_xname);
2929 			(void)atw_init(ifp);
2930 			break;
2931 		}
2932 
2933 		if (status & ATW_INTR_FBE) {
2934 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2935 			(void)atw_init(ifp);
2936 			break;
2937 		}
2938 
2939 		/*
2940 		 * Not handled:
2941 		 *
2942 		 *	Transmit buffer unavailable -- normal
2943 		 *	condition, nothing to do, really.
2944 		 *
2945 		 *	Early receive interrupt -- not available on
2946 		 *	all chips, we just use RI.  We also only
2947 		 *	use single-segment receive DMA, so this
2948 		 *	is mostly useless.
2949 		 *
2950 		 *      TBD others
2951 		 */
2952 	}
2953 
2954 	/* Try to get more packets going. */
2955 	atw_start(ifp);
2956 
2957 	return (handled);
2958 }
2959 
2960 /*
2961  * atw_idle:
2962  *
2963  *	Cause the transmit and/or receive processes to go idle.
2964  *
2965  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2966  *	process in STSR if I clear SR or ST after the process has already
2967  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2968  *      do not seem to be too reliable. Perhaps I have the sense of the
2969  *	Rx bits switched with the Tx bits?
2970  */
2971 void
2972 atw_idle(struct atw_softc *sc, u_int32_t bits)
2973 {
2974 	u_int32_t ackmask = 0, opmode, stsr, test0;
2975 	int i, s;
2976 
2977 	s = splnet();
2978 
2979 	opmode = sc->sc_opmode & ~bits;
2980 
2981 	if (bits & ATW_NAR_SR)
2982 		ackmask |= ATW_INTR_RPS;
2983 
2984 	if (bits & ATW_NAR_ST) {
2985 		ackmask |= ATW_INTR_TPS;
2986 		/* set ATW_NAR_HF to flush TX FIFO. */
2987 		opmode |= ATW_NAR_HF;
2988 	}
2989 
2990 	ATW_WRITE(sc, ATW_NAR, opmode);
2991 	DELAY(atw_nar_delay);
2992 
2993 	for (i = 0; i < 1000; i++) {
2994 		stsr = ATW_READ(sc, ATW_STSR);
2995 		if ((stsr & ackmask) == ackmask)
2996 			break;
2997 		DELAY(10);
2998 	}
2999 
3000 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3001 
3002 	if ((stsr & ackmask) == ackmask)
3003 		goto out;
3004 
3005 	test0 = ATW_READ(sc, ATW_TEST0);
3006 
3007 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3008 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3009 		printf("%s: transmit process not idle [%s]\n",
3010 		    sc->sc_dev.dv_xname,
3011 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3012 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3013 		    sc->sc_dev.dv_xname, bits, test0, stsr);
3014 	}
3015 
3016 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3017 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3018 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3019 		    sc->sc_dev.dv_xname,
3020 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3021 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3022 		    sc->sc_dev.dv_xname, bits, test0, stsr));
3023 	}
3024 out:
3025 	if ((bits & ATW_NAR_ST) != 0)
3026 		atw_txdrain(sc);
3027 	splx(s);
3028 	return;
3029 }
3030 
3031 /*
3032  * atw_linkintr:
3033  *
3034  *	Helper; handle link-status interrupts.
3035  */
3036 void
3037 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3038 {
3039 	struct ieee80211com *ic = &sc->sc_ic;
3040 
3041 	if (ic->ic_state != IEEE80211_S_RUN)
3042 		return;
3043 
3044 	if (linkstatus & ATW_INTR_LINKON) {
3045 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3046 		sc->sc_rescan_timer = 0;
3047 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3048 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3049 		if (ic->ic_opmode != IEEE80211_M_STA)
3050 			return;
3051 		sc->sc_rescan_timer = 3;
3052 		sc->sc_if.if_timer = 1;
3053 	}
3054 }
3055 
3056 static inline int
3057 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3058 {
3059 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3060 		return 0;
3061 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3062 		return 0;
3063 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3064 }
3065 
3066 /*
3067  * atw_rxintr:
3068  *
3069  *	Helper; handle receive interrupts.
3070  */
3071 void
3072 atw_rxintr(struct atw_softc *sc)
3073 {
3074 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3075 	struct ieee80211com *ic = &sc->sc_ic;
3076 	struct ieee80211_node *ni;
3077 	struct ieee80211_frame_min *wh;
3078 	struct ifnet *ifp = &sc->sc_if;
3079 	struct atw_rxsoft *rxs;
3080 	struct mbuf *m;
3081 	u_int32_t rxstat;
3082 	int i, len, rate, rate0;
3083 	u_int32_t rssi, rssi0;
3084 
3085 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3086 		rxs = &sc->sc_rxsoft[i];
3087 
3088 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3089 
3090 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3091 		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3092 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3093 
3094 		if (rxstat & ATW_RXSTAT_OWN)
3095 			break; /* We have processed all receive buffers. */
3096 
3097 		DPRINTF3(sc,
3098 		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3099 		    sc->sc_dev.dv_xname,
3100 		    rxstat, rssi0,
3101 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3102 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3103 
3104 		/*
3105 		 * Make sure the packet fits in one buffer.  This should
3106 		 * always be the case.
3107 		 */
3108 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3109 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3110 			printf("%s: incoming packet spilled, resetting\n",
3111 			    sc->sc_dev.dv_xname);
3112 			(void)atw_init(ifp);
3113 			return;
3114 		}
3115 
3116 		/*
3117 		 * If an error occurred, update stats, clear the status
3118 		 * word, and leave the packet buffer in place.  It will
3119 		 * simply be reused the next time the ring comes around.
3120 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3121 		 * error.
3122 		 */
3123 
3124 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3125 		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3126 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3127 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3128 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3129 				ATW_RXSTAT_ICVE)) != 0)) {
3130 #define	PRINTERR(bit, str)						\
3131 			if (rxstat & (bit))				\
3132 				printf("%s: receive error: %s\n",	\
3133 				    sc->sc_dev.dv_xname, str)
3134 			ifp->if_ierrors++;
3135 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3136 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3137 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3138 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3139 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3140 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3141 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3142 #undef PRINTERR
3143 			ATW_INIT_RXDESC(sc, i);
3144 			continue;
3145 		}
3146 
3147 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3148 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3149 
3150 		/*
3151 		 * No errors; receive the packet.  Note the ADM8211
3152 		 * includes the CRC in promiscuous mode.
3153 		 */
3154 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3155 
3156 		/*
3157 		 * Allocate a new mbuf cluster.  If that fails, we are
3158 		 * out of memory, and must drop the packet and recycle
3159 		 * the buffer that's already attached to this descriptor.
3160 		 */
3161 		m = rxs->rxs_mbuf;
3162 		if (atw_add_rxbuf(sc, i) != 0) {
3163 			ifp->if_ierrors++;
3164 			ATW_INIT_RXDESC(sc, i);
3165 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3166 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3167 			continue;
3168 		}
3169 
3170 		ifp->if_ipackets++;
3171 		if (sc->sc_opmode & ATW_NAR_PR)
3172 			len -= IEEE80211_CRC_LEN;
3173 		m->m_pkthdr.rcvif = ifp;
3174 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3175 
3176 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3177 			rate = 0;
3178 		else
3179 			rate = rate_tbl[rate0];
3180 
3181 		/* The RSSI comes straight from a register in the
3182 		 * baseband processor.  I know that for the RF3000,
3183 		 * the RSSI register also contains the antenna-selection
3184 		 * bits.  Mask those off.
3185 		 *
3186 		 * TBD Treat other basebands.
3187 		 */
3188 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3189 			rssi = rssi0 & RF3000_RSSI_MASK;
3190 		else
3191 			rssi = rssi0;
3192 
3193  #if NBPFILTER > 0
3194 		/* Pass this up to any BPF listeners. */
3195 		if (sc->sc_radiobpf != NULL) {
3196 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3197 
3198 			tap->ar_rate = rate;
3199 			tap->ar_chan_freq = htole16(ic->ic_curchan->ic_freq);
3200 			tap->ar_chan_flags = htole16(ic->ic_curchan->ic_flags);
3201 
3202 			/* TBD verify units are dB */
3203 			tap->ar_antsignal = (int)rssi;
3204 			/* TBD tap->ar_flags */
3205 
3206 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3207 			    tap->ar_ihdr.it_len, m);
3208  		}
3209  #endif /* NPBFILTER > 0 */
3210 
3211 		wh = mtod(m, struct ieee80211_frame_min *);
3212 		ni = ieee80211_find_rxnode(ic, wh);
3213 #if 0
3214 		if (atw_hw_decrypted(sc, wh)) {
3215 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3216 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3217 		}
3218 #endif
3219 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3220 		ieee80211_free_node(ni);
3221 	}
3222 
3223 	/* Update the receive pointer. */
3224 	sc->sc_rxptr = i;
3225 }
3226 
3227 /*
3228  * atw_txintr:
3229  *
3230  *	Helper; handle transmit interrupts.
3231  */
3232 void
3233 atw_txintr(struct atw_softc *sc)
3234 {
3235 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3236     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3237 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3238     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3239 
3240 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3241 	struct ifnet *ifp = &sc->sc_if;
3242 	struct atw_txsoft *txs;
3243 	u_int32_t txstat;
3244 
3245 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3246 	    sc->sc_dev.dv_xname, sc->sc_flags));
3247 
3248 	/*
3249 	 * Go through our Tx list and free mbufs for those
3250 	 * frames that have been transmitted.
3251 	 */
3252 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3253 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3254 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3255 
3256 #ifdef ATW_DEBUG
3257 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3258 			int i;
3259 			printf("    txsoft %p transmit chain:\n", txs);
3260 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3261 			    txs->txs_ndescs - 1,
3262 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3263 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3264 				printf("     descriptor %d:\n", i);
3265 				printf("       at_status:   0x%08x\n",
3266 				    le32toh(sc->sc_txdescs[i].at_stat));
3267 				printf("       at_flags:      0x%08x\n",
3268 				    le32toh(sc->sc_txdescs[i].at_flags));
3269 				printf("       at_buf1: 0x%08x\n",
3270 				    le32toh(sc->sc_txdescs[i].at_buf1));
3271 				printf("       at_buf2: 0x%08x\n",
3272 				    le32toh(sc->sc_txdescs[i].at_buf2));
3273 				if (i == txs->txs_lastdesc)
3274 					break;
3275 			}
3276 		}
3277 #endif
3278 
3279 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3280 		if (txstat & ATW_TXSTAT_OWN)
3281 			break;
3282 
3283 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3284 
3285 		sc->sc_txfree += txs->txs_ndescs;
3286 
3287 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3288 		    0, txs->txs_dmamap->dm_mapsize,
3289 		    BUS_DMASYNC_POSTWRITE);
3290 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3291 		m_freem(txs->txs_mbuf);
3292 		txs->txs_mbuf = NULL;
3293 
3294 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3295 
3296 		KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3297 		        sc->sc_txfree == 0));
3298 		ifp->if_flags &= ~IFF_OACTIVE;
3299 
3300 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3301 		    (txstat & TXSTAT_ERRMASK) != 0) {
3302 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3303 			    txstat_buf, sizeof(txstat_buf));
3304 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3305 			    txstat_buf,
3306 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3307 		}
3308 
3309 		/*
3310 		 * Check for errors and collisions.
3311 		 */
3312 		if (txstat & ATW_TXSTAT_TUF)
3313 			sc->sc_stats.ts_tx_tuf++;
3314 		if (txstat & ATW_TXSTAT_TLT)
3315 			sc->sc_stats.ts_tx_tlt++;
3316 		if (txstat & ATW_TXSTAT_TRT)
3317 			sc->sc_stats.ts_tx_trt++;
3318 		if (txstat & ATW_TXSTAT_TRO)
3319 			sc->sc_stats.ts_tx_tro++;
3320 		if (txstat & ATW_TXSTAT_SOFBR) {
3321 			sc->sc_stats.ts_tx_sofbr++;
3322 		}
3323 
3324 		if ((txstat & ATW_TXSTAT_ES) == 0)
3325 			ifp->if_collisions +=
3326 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3327 		else
3328 			ifp->if_oerrors++;
3329 
3330 		ifp->if_opackets++;
3331 	}
3332 
3333 	/*
3334 	 * If there are no more pending transmissions, cancel the watchdog
3335 	 * timer.
3336 	 */
3337 	if (txs == NULL) {
3338 		KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3339 		sc->sc_tx_timer = 0;
3340 	}
3341 #undef TXSTAT_ERRMASK
3342 #undef TXSTAT_FMT
3343 }
3344 
3345 /*
3346  * atw_watchdog:	[ifnet interface function]
3347  *
3348  *	Watchdog timer handler.
3349  */
3350 void
3351 atw_watchdog(struct ifnet *ifp)
3352 {
3353 	struct atw_softc *sc = ifp->if_softc;
3354 	struct ieee80211com *ic = &sc->sc_ic;
3355 
3356 	ifp->if_timer = 0;
3357 	if (ATW_IS_ENABLED(sc) == 0)
3358 		return;
3359 
3360 	if (sc->sc_rescan_timer) {
3361 		if (--sc->sc_rescan_timer == 0)
3362 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3363 	}
3364 	if (sc->sc_tx_timer) {
3365 		if (--sc->sc_tx_timer == 0 &&
3366 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3367 			printf("%s: transmit timeout\n", ifp->if_xname);
3368 			ifp->if_oerrors++;
3369 			(void)atw_init(ifp);
3370 			atw_start(ifp);
3371 		}
3372 	}
3373 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3374 		ifp->if_timer = 1;
3375 	ieee80211_watchdog(ic);
3376 }
3377 
3378 #ifdef ATW_DEBUG
3379 static void
3380 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3381 {
3382 	struct atw_softc *sc = ifp->if_softc;
3383 	struct mbuf *m;
3384 	int i, noctets = 0;
3385 
3386 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3387 	    m0->m_pkthdr.len);
3388 
3389 	for (m = m0; m; m = m->m_next) {
3390 		if (m->m_len == 0)
3391 			continue;
3392 		for (i = 0; i < m->m_len; i++) {
3393 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3394 			if (++noctets % 24 == 0)
3395 				printf("\n");
3396 		}
3397 	}
3398 	printf("%s%s: %d bytes emitted\n",
3399 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3400 }
3401 #endif /* ATW_DEBUG */
3402 
3403 /*
3404  * atw_start:		[ifnet interface function]
3405  *
3406  *	Start packet transmission on the interface.
3407  */
3408 void
3409 atw_start(struct ifnet *ifp)
3410 {
3411 	struct atw_softc *sc = ifp->if_softc;
3412 	struct ieee80211_key *k;
3413 	struct ieee80211com *ic = &sc->sc_ic;
3414 	struct ieee80211_node *ni;
3415 	struct ieee80211_frame_min *whm;
3416 	struct ieee80211_frame *wh;
3417 	struct atw_frame *hh;
3418 	struct mbuf *m0, *m;
3419 	struct atw_txsoft *txs, *last_txs;
3420 	struct atw_txdesc *txd;
3421 	int npkt, rate;
3422 	bus_dmamap_t dmamap;
3423 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3424 
3425 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3426 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3427 
3428 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3429 		return;
3430 
3431 	/*
3432 	 * Remember the previous number of free descriptors and
3433 	 * the first descriptor we'll use.
3434 	 */
3435 	ofree = sc->sc_txfree;
3436 	firsttx = lasttx = sc->sc_txnext;
3437 
3438 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3439 	    sc->sc_dev.dv_xname, ofree, firsttx));
3440 
3441 	/*
3442 	 * Loop through the send queue, setting up transmit descriptors
3443 	 * until we drain the queue, or use up all available transmit
3444 	 * descriptors.
3445 	 */
3446 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3447 	       sc->sc_txfree != 0) {
3448 
3449 		/*
3450 		 * Grab a packet off the management queue, if it
3451 		 * is not empty. Otherwise, from the data queue.
3452 		 */
3453 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3454 		if (m0 != NULL) {
3455 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3456 			m0->m_pkthdr.rcvif = NULL;
3457 		} else if (ic->ic_state != IEEE80211_S_RUN)
3458 			break; /* send no data until associated */
3459 		else {
3460 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3461 			if (m0 == NULL)
3462 				break;
3463 #if NBPFILTER > 0
3464 			if (ifp->if_bpf != NULL)
3465 				bpf_mtap(ifp->if_bpf, m0);
3466 #endif /* NBPFILTER > 0 */
3467 			ni = ieee80211_find_txnode(ic,
3468 			    mtod(m0, struct ether_header *)->ether_dhost);
3469 			if (ni == NULL) {
3470 				ifp->if_oerrors++;
3471 				break;
3472 			}
3473 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3474 				ieee80211_free_node(ni);
3475 				ifp->if_oerrors++;
3476 				break;
3477 			}
3478 		}
3479 
3480 		rate = MAX(ieee80211_get_rate(ni), 2);
3481 
3482 		whm = mtod(m0, struct ieee80211_frame_min *);
3483 
3484 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3485 			k = NULL;
3486 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3487 			m_freem(m0);
3488 			ieee80211_free_node(ni);
3489 			ifp->if_oerrors++;
3490 			break;
3491 		}
3492 
3493 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3494 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3495 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3496 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3497 			m_freem(m0);
3498 			break;
3499 		}
3500 
3501 		/* XXX Misleading if fragmentation is enabled.  Better
3502 		 * to fragment in software?
3503 		 */
3504 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3505 
3506 #if NBPFILTER > 0
3507 		/*
3508 		 * Pass the packet to any BPF listeners.
3509 		 */
3510 		if (ic->ic_rawbpf != NULL)
3511 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3512 
3513 		if (sc->sc_radiobpf != NULL) {
3514 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3515 
3516 			tap->at_rate = rate;
3517 			tap->at_chan_freq = htole16(ic->ic_curchan->ic_freq);
3518 			tap->at_chan_flags = htole16(ic->ic_curchan->ic_flags);
3519 
3520 			/* TBD tap->at_flags */
3521 
3522 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3523 			    tap->at_ihdr.it_len, m0);
3524 		}
3525 #endif /* NBPFILTER > 0 */
3526 
3527 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3528 
3529 		if (ni != NULL)
3530 			ieee80211_free_node(ni);
3531 
3532 		if (m0 == NULL) {
3533 			ifp->if_oerrors++;
3534 			break;
3535 		}
3536 
3537 		/* just to make sure. */
3538 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3539 
3540 		if (m0 == NULL) {
3541 			ifp->if_oerrors++;
3542 			break;
3543 		}
3544 
3545 		hh = mtod(m0, struct atw_frame *);
3546 		wh = &hh->atw_ihdr;
3547 
3548 		/* Copy everything we need from the 802.11 header:
3549 		 * Frame Control; address 1, address 3, or addresses
3550 		 * 3 and 4. NIC fills in BSSID, SA.
3551 		 */
3552 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3553 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3554 				panic("%s: illegal WDS frame",
3555 				    sc->sc_dev.dv_xname);
3556 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3557 		} else
3558 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3559 
3560 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3561 
3562 		/* initialize remaining Tx parameters */
3563 		memset(&hh->u, 0, sizeof(hh->u));
3564 
3565 		hh->atw_rate = rate * 5;
3566 		/* XXX this could be incorrect if M_FCS. _encap should
3567 		 * probably strip FCS just in case it sticks around in
3568 		 * bridged packets.
3569 		 */
3570 		hh->atw_service = 0x00; /* XXX guess */
3571 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3572 		    sizeof(struct atw_frame));
3573 
3574 		hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3575 		hh->atw_rtylmt = 3;
3576 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3577 #if 0
3578 		if (do_encrypt) {
3579 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3580 			hh->atw_keyid = ic->ic_def_txkey;
3581 		}
3582 #endif
3583 
3584 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3585 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3586 		if (txs->txs_d0.d_residue)
3587 			hh->atw_head_plcplen |= htole16(0x8000);
3588 		if (txs->txs_dn.d_residue)
3589 			hh->atw_tail_plcplen |= htole16(0x8000);
3590 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3591 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3592 
3593 		/* never fragment multicast frames */
3594 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3595 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3596 		} else if (sc->sc_flags & ATWF_RTSCTS) {
3597 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3598 		}
3599 
3600 #ifdef ATW_DEBUG
3601 		hh->atw_fragnum = 0;
3602 
3603 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3604 			printf("%s: dst = %s, rate = 0x%02x, "
3605 			    "service = 0x%02x, paylen = 0x%04x\n",
3606 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3607 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3608 
3609 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3610 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3611 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3612 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3613 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3614 			    hh->atw_tail_dur, hh->atw_head_dur);
3615 
3616 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3617 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3618 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3619 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3620 
3621 			printf("%s: keyid = %d\n",
3622 			    sc->sc_dev.dv_xname, hh->atw_keyid);
3623 
3624 			atw_dump_pkt(ifp, m0);
3625 		}
3626 #endif /* ATW_DEBUG */
3627 
3628 		dmamap = txs->txs_dmamap;
3629 
3630 		/*
3631 		 * Load the DMA map.  Copy and try (once) again if the packet
3632 		 * didn't fit in the alloted number of segments.
3633 		 */
3634 		for (first = 1;
3635 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3636 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3637 		     first = 0) {
3638 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3639 			if (m == NULL) {
3640 				printf("%s: unable to allocate Tx mbuf\n",
3641 				    sc->sc_dev.dv_xname);
3642 				break;
3643 			}
3644 			if (m0->m_pkthdr.len > MHLEN) {
3645 				MCLGET(m, M_DONTWAIT);
3646 				if ((m->m_flags & M_EXT) == 0) {
3647 					printf("%s: unable to allocate Tx "
3648 					    "cluster\n", sc->sc_dev.dv_xname);
3649 					m_freem(m);
3650 					break;
3651 				}
3652 			}
3653 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3654 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3655 			m_freem(m0);
3656 			m0 = m;
3657 			m = NULL;
3658 		}
3659 		if (error != 0) {
3660 			printf("%s: unable to load Tx buffer, "
3661 			    "error = %d\n", sc->sc_dev.dv_xname, error);
3662 			m_freem(m0);
3663 			break;
3664 		}
3665 
3666 		/*
3667 		 * Ensure we have enough descriptors free to describe
3668 		 * the packet.
3669 		 */
3670 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3671 			/*
3672 			 * Not enough free descriptors to transmit
3673 			 * this packet.  Unload the DMA map and
3674 			 * drop the packet.  Notify the upper layer
3675 			 * that there are no more slots left.
3676 			 *
3677 			 * XXX We could allocate an mbuf and copy, but
3678 			 * XXX it is worth it?
3679 			 */
3680 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3681 			m_freem(m0);
3682 			break;
3683 		}
3684 
3685 		/*
3686 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3687 		 */
3688 
3689 		/* Sync the DMA map. */
3690 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3691 		    BUS_DMASYNC_PREWRITE);
3692 
3693 		/* XXX arbitrary retry limit; 8 because I have seen it in
3694 		 * use already and maybe 0 means "no tries" !
3695 		 */
3696 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3697 
3698 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3699 		    sc->sc_dev.dv_xname, rate * 5));
3700 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3701 
3702 		/*
3703 		 * Initialize the transmit descriptors.
3704 		 */
3705 		for (nexttx = sc->sc_txnext, seg = 0;
3706 		     seg < dmamap->dm_nsegs;
3707 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3708 			/*
3709 			 * If this is the first descriptor we're
3710 			 * enqueueing, don't set the OWN bit just
3711 			 * yet.  That could cause a race condition.
3712 			 * We'll do it below.
3713 			 */
3714 			txd = &sc->sc_txdescs[nexttx];
3715 			txd->at_ctl = ctl |
3716 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3717 
3718 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3719 			txd->at_flags =
3720 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3721 			                   ATW_TXFLAG_TBS1_MASK)) |
3722 			    ((nexttx == (ATW_NTXDESC - 1))
3723 			        ? htole32(ATW_TXFLAG_TER) : 0);
3724 			lasttx = nexttx;
3725 		}
3726 
3727 		/* Set `first segment' and `last segment' appropriately. */
3728 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3729 		    htole32(ATW_TXFLAG_FS);
3730 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3731 
3732 #ifdef ATW_DEBUG
3733 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3734 			printf("     txsoft %p transmit chain:\n", txs);
3735 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3736 				printf("     descriptor %d:\n", seg);
3737 				printf("       at_ctl:   0x%08x\n",
3738 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3739 				printf("       at_flags:      0x%08x\n",
3740 				    le32toh(sc->sc_txdescs[seg].at_flags));
3741 				printf("       at_buf1: 0x%08x\n",
3742 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3743 				printf("       at_buf2: 0x%08x\n",
3744 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3745 				if (seg == lasttx)
3746 					break;
3747 			}
3748 		}
3749 #endif
3750 
3751 		/* Sync the descriptors we're using. */
3752 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3753 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3754 
3755 		/*
3756 		 * Store a pointer to the packet so we can free it later,
3757 		 * and remember what txdirty will be once the packet is
3758 		 * done.
3759 		 */
3760 		txs->txs_mbuf = m0;
3761 		txs->txs_firstdesc = sc->sc_txnext;
3762 		txs->txs_lastdesc = lasttx;
3763 		txs->txs_ndescs = dmamap->dm_nsegs;
3764 
3765 		/* Advance the tx pointer. */
3766 		sc->sc_txfree -= dmamap->dm_nsegs;
3767 		sc->sc_txnext = nexttx;
3768 
3769 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3770 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3771 
3772 		last_txs = txs;
3773 	}
3774 
3775 	if (sc->sc_txfree != ofree) {
3776 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3777 		    sc->sc_dev.dv_xname, lasttx, firsttx));
3778 		/*
3779 		 * Cause a transmit interrupt to happen on the
3780 		 * last packet we enqueued.
3781 		 */
3782 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3783 		ATW_CDTXSYNC(sc, lasttx, 1,
3784 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3785 
3786 		/*
3787 		 * The entire packet chain is set up.  Give the
3788 		 * first descriptor to the chip now.
3789 		 */
3790 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3791 		ATW_CDTXSYNC(sc, firsttx, 1,
3792 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3793 
3794 		/* Wake up the transmitter. */
3795 		ATW_WRITE(sc, ATW_TDR, 0x1);
3796 
3797 		if (txs == NULL || sc->sc_txfree == 0)
3798 			ifp->if_flags |= IFF_OACTIVE;
3799 
3800 		/* Set a watchdog timer in case the chip flakes out. */
3801 		sc->sc_tx_timer = 5;
3802 		ifp->if_timer = 1;
3803 	}
3804 }
3805 
3806 /*
3807  * atw_power:
3808  *
3809  *	Power management (suspend/resume) hook.
3810  */
3811 void
3812 atw_power(int why, void *arg)
3813 {
3814 	struct atw_softc *sc = arg;
3815 	struct ifnet *ifp = &sc->sc_if;
3816 	int s;
3817 
3818 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3819 
3820 	s = splnet();
3821 	switch (why) {
3822 	case PWR_STANDBY:
3823 		/* XXX do nothing. */
3824 		break;
3825 	case PWR_SUSPEND:
3826 		atw_stop(ifp, 0);
3827 		if (sc->sc_power != NULL)
3828 			(*sc->sc_power)(sc, why);
3829 		break;
3830 	case PWR_RESUME:
3831 		if (ifp->if_flags & IFF_UP) {
3832 			if (sc->sc_power != NULL)
3833 				(*sc->sc_power)(sc, why);
3834 			atw_init(ifp);
3835 		}
3836 		break;
3837 	case PWR_SOFTSUSPEND:
3838 	case PWR_SOFTSTANDBY:
3839 	case PWR_SOFTRESUME:
3840 		break;
3841 	}
3842 	splx(s);
3843 }
3844 
3845 /*
3846  * atw_ioctl:		[ifnet interface function]
3847  *
3848  *	Handle control requests from the operator.
3849  */
3850 int
3851 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3852 {
3853 	struct atw_softc *sc = ifp->if_softc;
3854 	struct ifreq *ifr = (struct ifreq *)data;
3855 	int s, error = 0;
3856 
3857 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3858 	if (!device_is_active(&sc->sc_dev))
3859 		return ENXIO;
3860 
3861 	s = splnet();
3862 
3863 	switch (cmd) {
3864 	case SIOCSIFFLAGS:
3865 		if (ifp->if_flags & IFF_UP) {
3866 			if (ATW_IS_ENABLED(sc)) {
3867 				/*
3868 				 * To avoid rescanning another access point,
3869 				 * do not call atw_init() here.  Instead,
3870 				 * only reflect media settings.
3871 				 */
3872 				atw_filter_setup(sc);
3873 			} else
3874 				error = atw_init(ifp);
3875 		} else if (ATW_IS_ENABLED(sc))
3876 			atw_stop(ifp, 1);
3877 		break;
3878 	case SIOCADDMULTI:
3879 	case SIOCDELMULTI:
3880 		error = (cmd == SIOCADDMULTI) ?
3881 		    ether_addmulti(ifr, &sc->sc_ec) :
3882 		    ether_delmulti(ifr, &sc->sc_ec);
3883 		if (error == ENETRESET) {
3884 			if (ifp->if_flags & IFF_RUNNING)
3885 				atw_filter_setup(sc); /* do not rescan */
3886 			error = 0;
3887 		}
3888 		break;
3889 	default:
3890 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3891 		if (error == ENETRESET || error == ERESTART) {
3892 			if (is_running(ifp))
3893 				error = atw_init(ifp);
3894 			else
3895 				error = 0;
3896 		}
3897 		break;
3898 	}
3899 
3900 	/* Try to get more packets going. */
3901 	if (ATW_IS_ENABLED(sc))
3902 		atw_start(ifp);
3903 
3904 	splx(s);
3905 	return (error);
3906 }
3907 
3908 static int
3909 atw_media_change(struct ifnet *ifp)
3910 {
3911 	int error;
3912 
3913 	error = ieee80211_media_change(ifp);
3914 	if (error == ENETRESET) {
3915 		if (is_running(ifp))
3916 			error = atw_init(ifp);
3917 		else
3918 			error = 0;
3919 	}
3920 	return error;
3921 }
3922