xref: /netbsd-src/sys/dev/ic/atw.c (revision bf1e9b32e27832f0c493206710fb8b58a980838a)
1 /*	$NetBSD: atw.c,v 1.87 2005/06/26 04:37:25 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.87 2005/06/26 04:37:25 dyoung Exp $");
45 
46 #include "bpfilter.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 
60 #include <machine/endian.h>
61 
62 #include <uvm/uvm_extern.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68 
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76 
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79 
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85 
86 /* XXX TBD open questions
87  *
88  *
89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91  * handle this for me?
92  *
93  */
94 /* device attachment
95  *
96  *    print TOFS[012]
97  *
98  * device initialization
99  *
100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
101  *    set ATW_TXBR_ALCUPDATE to enable ALC
102  *    set TOFS[012]? (hope not)
103  *    disable rx/tx
104  *    set ATW_PAR_SWR (software reset)
105  *    wait for ATW_PAR_SWR clear
106  *    disable interrupts
107  *    ack status register
108  *    enable interrupts
109  *
110  * rx/tx initialization
111  *
112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113  *    allocate and init descriptor rings
114  *    write ATW_PAR_DSL (descriptor skip length)
115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119  *
120  * rx/tx end
121  *
122  *    stop DMA
123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124  *    flush tx w/ ATW_NAR_HF
125  *
126  * scan
127  *
128  *    initialize rx/tx
129  *
130  * BSS join: (re)association response
131  *
132  *    set ATW_FRCTL_AID
133  *
134  * optimizations ???
135  *
136  */
137 
138 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
139 
140 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
141 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143 
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159 
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162 
163 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
166 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169 
170 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void	atw_print_regs(struct atw_softc *, const char *);
172 
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 #	ifdef ATW_BBPDEBUG
175 static void	atw_rf3000_print(struct atw_softc *);
176 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 #	endif /* ATW_BBPDEBUG */
178 
179 #	ifdef ATW_SYNDEBUG
180 static void	atw_si4126_print(struct atw_softc *);
181 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 #	endif /* ATW_SYNDEBUG */
183 
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define	DPRINTF(sc, x)	/* nothing */
189 #define	DPRINTF2(sc, x)	/* nothing */
190 #define	DPRINTF3(sc, x)	/* nothing */
191 #endif
192 
193 /* ifnet methods */
194 int	atw_init(struct ifnet *);
195 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void	atw_start(struct ifnet *);
197 void	atw_stop(struct ifnet *, int);
198 void	atw_watchdog(struct ifnet *);
199 
200 /* Device attachment */
201 void	atw_attach(struct atw_softc *);
202 int	atw_detach(struct atw_softc *);
203 
204 /* Rx/Tx process */
205 int	atw_add_rxbuf(struct atw_softc *, int);
206 void	atw_idle(struct atw_softc *, u_int32_t);
207 void	atw_rxdrain(struct atw_softc *);
208 void	atw_txdrain(struct atw_softc *);
209 
210 /* Device (de)activation and power state */
211 void	atw_disable(struct atw_softc *);
212 int	atw_enable(struct atw_softc *);
213 void	atw_power(int, void *);
214 void	atw_reset(struct atw_softc *);
215 void	atw_shutdown(void *);
216 
217 /* Interrupt handlers */
218 void	atw_linkintr(struct atw_softc *, u_int32_t);
219 void	atw_rxintr(struct atw_softc *);
220 void	atw_txintr(struct atw_softc *);
221 
222 /* 802.11 state machine */
223 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void	atw_next_scan(void *);
225 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 		              struct ieee80211_node *, int, int, u_int32_t);
227 static int	atw_tune(struct atw_softc *);
228 
229 /* Device initialization */
230 static void	atw_bbp_io_init(struct atw_softc *);
231 static void	atw_cfp_init(struct atw_softc *);
232 static void	atw_cmdr_init(struct atw_softc *);
233 static void	atw_ifs_init(struct atw_softc *);
234 static void	atw_nar_init(struct atw_softc *);
235 static void	atw_response_times_init(struct atw_softc *);
236 static void	atw_rf_reset(struct atw_softc *);
237 static void	atw_test1_init(struct atw_softc *);
238 static void	atw_tofs0_init(struct atw_softc *);
239 static void	atw_tofs2_init(struct atw_softc *);
240 static void	atw_txlmt_init(struct atw_softc *);
241 static void	atw_wcsr_init(struct atw_softc *);
242 
243 /* Key management */
244 static int atw_key_alloc(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 	const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250 
251 /* RAM/ROM utilities */
252 static void	atw_clear_sram(struct atw_softc *);
253 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int	atw_read_srom(struct atw_softc *);
255 
256 /* BSS setup */
257 static void	atw_predict_beacon(struct atw_softc *);
258 static void	atw_start_beacon(struct atw_softc *, int);
259 static void	atw_write_bssid(struct atw_softc *);
260 static void	atw_write_ssid(struct atw_softc *);
261 static void	atw_write_sup_rates(struct atw_softc *);
262 static void	atw_write_wep(struct atw_softc *);
263 
264 /* Media */
265 static int	atw_media_change(struct ifnet *);
266 static void	atw_media_status(struct ifnet *, struct ifmediareq *);
267 
268 static void	atw_filter_setup(struct atw_softc *);
269 
270 /* 802.11 utilities */
271 static void			atw_frame_setdurs(struct atw_softc *,
272 				                  struct atw_frame *, int, int);
273 static uint64_t			atw_get_tsft(struct atw_softc *);
274 static __inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
275 				                   uint32_t);
276 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
277 static void			atw_node_free(struct ieee80211_node *);
278 static void			atw_change_ibss(struct atw_softc *);
279 
280 /*
281  * Tuner/transceiver/modem
282  */
283 static void	atw_bbp_io_enable(struct atw_softc *, int);
284 
285 /* RFMD RF3000 Baseband Processor */
286 static int	atw_rf3000_init(struct atw_softc *);
287 static int	atw_rf3000_tune(struct atw_softc *, u_int);
288 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
289 
290 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
291 static void	atw_si4126_tune(struct atw_softc *, u_int);
292 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
293 
294 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
295 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
296 
297 const char *atw_tx_state[] = {
298 	"STOPPED",
299 	"RUNNING - read descriptor",
300 	"RUNNING - transmitting",
301 	"RUNNING - filling fifo",	/* XXX */
302 	"SUSPENDED",
303 	"RUNNING -- write descriptor",
304 	"RUNNING -- write last descriptor",
305 	"RUNNING - fifo full"
306 };
307 
308 const char *atw_rx_state[] = {
309 	"STOPPED",
310 	"RUNNING - read descriptor",
311 	"RUNNING - check this packet, pre-fetch next",
312 	"RUNNING - wait for reception",
313 	"SUSPENDED",
314 	"RUNNING - write descriptor",
315 	"RUNNING - flush fifo",
316 	"RUNNING - fifo drain"
317 };
318 
319 int
320 atw_activate(struct device *self, enum devact act)
321 {
322 	struct atw_softc *sc = (struct atw_softc *)self;
323 	int rv = 0, s;
324 
325 	s = splnet();
326 	switch (act) {
327 	case DVACT_ACTIVATE:
328 		rv = EOPNOTSUPP;
329 		break;
330 
331 	case DVACT_DEACTIVATE:
332 		if_deactivate(&sc->sc_if);
333 		break;
334 	}
335 	splx(s);
336 	return rv;
337 }
338 
339 /*
340  * atw_enable:
341  *
342  *	Enable the ADM8211 chip.
343  */
344 int
345 atw_enable(struct atw_softc *sc)
346 {
347 
348 	if (ATW_IS_ENABLED(sc) == 0) {
349 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
350 			printf("%s: device enable failed\n",
351 			    sc->sc_dev.dv_xname);
352 			return (EIO);
353 		}
354 		sc->sc_flags |= ATWF_ENABLED;
355 	}
356 	return (0);
357 }
358 
359 /*
360  * atw_disable:
361  *
362  *	Disable the ADM8211 chip.
363  */
364 void
365 atw_disable(struct atw_softc *sc)
366 {
367 	if (!ATW_IS_ENABLED(sc))
368 		return;
369 	if (sc->sc_disable != NULL)
370 		(*sc->sc_disable)(sc);
371 	sc->sc_flags &= ~ATWF_ENABLED;
372 }
373 
374 /* Returns -1 on failure. */
375 static int
376 atw_read_srom(struct atw_softc *sc)
377 {
378 	struct seeprom_descriptor sd;
379 	uint32_t test0, fail_bits;
380 
381 	(void)memset(&sd, 0, sizeof(sd));
382 
383 	test0 = ATW_READ(sc, ATW_TEST0);
384 
385 	switch (sc->sc_rev) {
386 	case ATW_REVISION_BA:
387 	case ATW_REVISION_CA:
388 		fail_bits = ATW_TEST0_EPNE;
389 		break;
390 	default:
391 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
392 		break;
393 	}
394 	if ((test0 & fail_bits) != 0) {
395 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
396 		return -1;
397 	}
398 
399 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
400 	case ATW_TEST0_EPTYP_93c66:
401 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
402 		sc->sc_sromsz = 512;
403 		sd.sd_chip = C56_66;
404 		break;
405 	case ATW_TEST0_EPTYP_93c46:
406 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
407 		sc->sc_sromsz = 128;
408 		sd.sd_chip = C46;
409 		break;
410 	default:
411 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
412 		    MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
413 		return -1;
414 	}
415 
416 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
417 
418 	if (sc->sc_srom == NULL) {
419 		printf("%s: unable to allocate SROM buffer\n",
420 		    sc->sc_dev.dv_xname);
421 		return -1;
422 	}
423 
424 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
425 
426 	/* ADM8211 has a single 32-bit register for controlling the
427 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
428 	 * "ready" bit. The ADM8211 input/output sense is the reverse
429 	 * of read_seeprom's.
430 	 */
431 	sd.sd_tag = sc->sc_st;
432 	sd.sd_bsh = sc->sc_sh;
433 	sd.sd_regsize = 4;
434 	sd.sd_control_offset = ATW_SPR;
435 	sd.sd_status_offset = ATW_SPR;
436 	sd.sd_dataout_offset = ATW_SPR;
437 	sd.sd_CK = ATW_SPR_SCLK;
438 	sd.sd_CS = ATW_SPR_SCS;
439 	sd.sd_DI = ATW_SPR_SDO;
440 	sd.sd_DO = ATW_SPR_SDI;
441 	sd.sd_MS = ATW_SPR_SRS;
442 	sd.sd_RDY = 0;
443 
444 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
445 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
446 		free(sc->sc_srom, M_DEVBUF);
447 		return -1;
448 	}
449 #ifdef ATW_DEBUG
450 	{
451 		int i;
452 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
453 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
454 			if (((i % 8) == 0) && (i != 0)) {
455 				ATW_DPRINTF(("\n\t"));
456 			}
457 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
458 		}
459 		ATW_DPRINTF(("\n"));
460 	}
461 #endif /* ATW_DEBUG */
462 	return 0;
463 }
464 
465 #ifdef ATW_DEBUG
466 static void
467 atw_print_regs(struct atw_softc *sc, const char *where)
468 {
469 #define PRINTREG(sc, reg) \
470 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
471 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
472 
473 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
474 
475 	PRINTREG(sc, ATW_PAR);
476 	PRINTREG(sc, ATW_FRCTL);
477 	PRINTREG(sc, ATW_TDR);
478 	PRINTREG(sc, ATW_WTDP);
479 	PRINTREG(sc, ATW_RDR);
480 	PRINTREG(sc, ATW_WRDP);
481 	PRINTREG(sc, ATW_RDB);
482 	PRINTREG(sc, ATW_CSR3A);
483 	PRINTREG(sc, ATW_TDBD);
484 	PRINTREG(sc, ATW_TDBP);
485 	PRINTREG(sc, ATW_STSR);
486 	PRINTREG(sc, ATW_CSR5A);
487 	PRINTREG(sc, ATW_NAR);
488 	PRINTREG(sc, ATW_CSR6A);
489 	PRINTREG(sc, ATW_IER);
490 	PRINTREG(sc, ATW_CSR7A);
491 	PRINTREG(sc, ATW_LPC);
492 	PRINTREG(sc, ATW_TEST1);
493 	PRINTREG(sc, ATW_SPR);
494 	PRINTREG(sc, ATW_TEST0);
495 	PRINTREG(sc, ATW_WCSR);
496 	PRINTREG(sc, ATW_WPDR);
497 	PRINTREG(sc, ATW_GPTMR);
498 	PRINTREG(sc, ATW_GPIO);
499 	PRINTREG(sc, ATW_BBPCTL);
500 	PRINTREG(sc, ATW_SYNCTL);
501 	PRINTREG(sc, ATW_PLCPHD);
502 	PRINTREG(sc, ATW_MMIWADDR);
503 	PRINTREG(sc, ATW_MMIRADDR1);
504 	PRINTREG(sc, ATW_MMIRADDR2);
505 	PRINTREG(sc, ATW_TXBR);
506 	PRINTREG(sc, ATW_CSR15A);
507 	PRINTREG(sc, ATW_ALCSTAT);
508 	PRINTREG(sc, ATW_TOFS2);
509 	PRINTREG(sc, ATW_CMDR);
510 	PRINTREG(sc, ATW_PCIC);
511 	PRINTREG(sc, ATW_PMCSR);
512 	PRINTREG(sc, ATW_PAR0);
513 	PRINTREG(sc, ATW_PAR1);
514 	PRINTREG(sc, ATW_MAR0);
515 	PRINTREG(sc, ATW_MAR1);
516 	PRINTREG(sc, ATW_ATIMDA0);
517 	PRINTREG(sc, ATW_ABDA1);
518 	PRINTREG(sc, ATW_BSSID0);
519 	PRINTREG(sc, ATW_TXLMT);
520 	PRINTREG(sc, ATW_MIBCNT);
521 	PRINTREG(sc, ATW_BCNT);
522 	PRINTREG(sc, ATW_TSFTH);
523 	PRINTREG(sc, ATW_TSC);
524 	PRINTREG(sc, ATW_SYNRF);
525 	PRINTREG(sc, ATW_BPLI);
526 	PRINTREG(sc, ATW_CAP0);
527 	PRINTREG(sc, ATW_CAP1);
528 	PRINTREG(sc, ATW_RMD);
529 	PRINTREG(sc, ATW_CFPP);
530 	PRINTREG(sc, ATW_TOFS0);
531 	PRINTREG(sc, ATW_TOFS1);
532 	PRINTREG(sc, ATW_IFST);
533 	PRINTREG(sc, ATW_RSPT);
534 	PRINTREG(sc, ATW_TSFTL);
535 	PRINTREG(sc, ATW_WEPCTL);
536 	PRINTREG(sc, ATW_WESK);
537 	PRINTREG(sc, ATW_WEPCNT);
538 	PRINTREG(sc, ATW_MACTEST);
539 	PRINTREG(sc, ATW_FER);
540 	PRINTREG(sc, ATW_FEMR);
541 	PRINTREG(sc, ATW_FPSR);
542 	PRINTREG(sc, ATW_FFER);
543 #undef PRINTREG
544 }
545 #endif /* ATW_DEBUG */
546 
547 /*
548  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
549  */
550 void
551 atw_attach(struct atw_softc *sc)
552 {
553 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
554 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
555 	};
556 	struct ieee80211com *ic = &sc->sc_ic;
557 	struct ifnet *ifp = &sc->sc_if;
558 	int country_code, error, i, nrate, srom_major;
559 	u_int32_t reg;
560 	static const char *type_strings[] = {"Intersil (not supported)",
561 	    "RFMD", "Marvel (not supported)"};
562 
563 	sc->sc_txth = atw_txthresh_tab_lo;
564 
565 	SIMPLEQ_INIT(&sc->sc_txfreeq);
566 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
567 
568 #ifdef ATW_DEBUG
569 	atw_print_regs(sc, "atw_attach");
570 #endif /* ATW_DEBUG */
571 
572 	/*
573 	 * Allocate the control data structures, and create and load the
574 	 * DMA map for it.
575 	 */
576 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
577 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
578 	    1, &sc->sc_cdnseg, 0)) != 0) {
579 		printf("%s: unable to allocate control data, error = %d\n",
580 		    sc->sc_dev.dv_xname, error);
581 		goto fail_0;
582 	}
583 
584 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
585 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
586 	    BUS_DMA_COHERENT)) != 0) {
587 		printf("%s: unable to map control data, error = %d\n",
588 		    sc->sc_dev.dv_xname, error);
589 		goto fail_1;
590 	}
591 
592 	if ((error = bus_dmamap_create(sc->sc_dmat,
593 	    sizeof(struct atw_control_data), 1,
594 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
595 		printf("%s: unable to create control data DMA map, "
596 		    "error = %d\n", sc->sc_dev.dv_xname, error);
597 		goto fail_2;
598 	}
599 
600 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
601 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
602 	    0)) != 0) {
603 		printf("%s: unable to load control data DMA map, error = %d\n",
604 		    sc->sc_dev.dv_xname, error);
605 		goto fail_3;
606 	}
607 
608 	/*
609 	 * Create the transmit buffer DMA maps.
610 	 */
611 	sc->sc_ntxsegs = ATW_NTXSEGS;
612 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
613 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
614 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
615 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
616 			printf("%s: unable to create tx DMA map %d, "
617 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
618 			goto fail_4;
619 		}
620 	}
621 
622 	/*
623 	 * Create the receive buffer DMA maps.
624 	 */
625 	for (i = 0; i < ATW_NRXDESC; i++) {
626 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
627 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
628 			printf("%s: unable to create rx DMA map %d, "
629 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
630 			goto fail_5;
631 		}
632 	}
633 	for (i = 0; i < ATW_NRXDESC; i++) {
634 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
635 	}
636 
637 	switch (sc->sc_rev) {
638 	case ATW_REVISION_AB:
639 	case ATW_REVISION_AF:
640 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
641 		break;
642 	case ATW_REVISION_BA:
643 	case ATW_REVISION_CA:
644 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
645 		break;
646 	}
647 
648 	/* Reset the chip to a known state. */
649 	atw_reset(sc);
650 
651 	if (atw_read_srom(sc) == -1)
652 		return;
653 
654 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
655 	    ATW_SR_RFTYPE_MASK);
656 
657 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
658 	    ATW_SR_BBPTYPE_MASK);
659 
660 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
661 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
662 		return;
663 	}
664 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
665 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
666 		return;
667 	}
668 
669 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
670 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
671 
672 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
673 	 * MARVEL. My bug, or theirs?
674 	 */
675 
676 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
677 
678 	switch (sc->sc_rftype) {
679 	case ATW_RFTYPE_INTERSIL:
680 		reg |= ATW_SYNCTL_CS1;
681 		break;
682 	case ATW_RFTYPE_RFMD:
683 		reg |= ATW_SYNCTL_CS0;
684 		break;
685 	case ATW_RFTYPE_MARVEL:
686 		break;
687 	}
688 
689 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
690 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
691 
692 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
693 
694 	switch (sc->sc_bbptype) {
695 	case ATW_BBPTYPE_INTERSIL:
696 		reg |= ATW_BBPCTL_TWI;
697 		break;
698 	case ATW_BBPTYPE_RFMD:
699 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
700 		    ATW_BBPCTL_CCA_ACTLO;
701 		break;
702 	case ATW_BBPTYPE_MARVEL:
703 		break;
704 	case ATW_C_BBPTYPE_RFMD:
705 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
706 		    sc->sc_dev.dv_xname);
707 		break;
708 	}
709 
710 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
711 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
712 
713 	/*
714 	 * From this point forward, the attachment cannot fail.  A failure
715 	 * before this point releases all resources that may have been
716 	 * allocated.
717 	 */
718 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
719 
720 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
721 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
722 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
723 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
724 
725 	srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
726 	    ATW_SR_MAJOR_MASK);
727 
728 	if (srom_major < 2)
729 		sc->sc_rf3000_options1 = 0;
730 	else if (sc->sc_rev == ATW_REVISION_BA) {
731 		sc->sc_rf3000_options1 =
732 		    MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
733 		    ATW_SR_CR28_MASK);
734 	} else
735 		sc->sc_rf3000_options1 = 0;
736 
737 	sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
738 	    ATW_SR_CR29_MASK);
739 
740 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
741 	    ATW_SR_CTRY_MASK);
742 
743 #define ADD_CHANNEL(_ic, _chan) do {					\
744 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
745 	_ic->ic_channels[_chan].ic_freq =				\
746 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
747 } while (0)
748 
749 	/* Find available channels */
750 	switch (country_code) {
751 	case COUNTRY_MMK2:	/* 1-14 */
752 		ADD_CHANNEL(ic, 14);
753 		/*FALLTHROUGH*/
754 	case COUNTRY_ETSI:	/* 1-13 */
755 		for (i = 1; i <= 13; i++)
756 			ADD_CHANNEL(ic, i);
757 		break;
758 	case COUNTRY_FCC:	/* 1-11 */
759 	case COUNTRY_IC:	/* 1-11 */
760 		for (i = 1; i <= 11; i++)
761 			ADD_CHANNEL(ic, i);
762 		break;
763 	case COUNTRY_MMK:	/* 14 */
764 		ADD_CHANNEL(ic, 14);
765 		break;
766 	case COUNTRY_FRANCE:	/* 10-13 */
767 		for (i = 10; i <= 13; i++)
768 			ADD_CHANNEL(ic, i);
769 		break;
770 	default:	/* assume channels 10-11 */
771 	case COUNTRY_SPAIN:	/* 10-11 */
772 		for (i = 10; i <= 11; i++)
773 			ADD_CHANNEL(ic, i);
774 		break;
775 	}
776 
777 	/* Read the MAC address. */
778 	reg = ATW_READ(sc, ATW_PAR0);
779 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
780 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
781 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
782 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
783 	reg = ATW_READ(sc, ATW_PAR1);
784 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
785 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
786 
787 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
788 		printf(" could not get mac address, attach failed\n");
789 		return;
790 	}
791 
792 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
793 
794 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
795 	ifp->if_softc = sc;
796 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
797 	    IFF_NOTRAILERS;
798 	ifp->if_ioctl = atw_ioctl;
799 	ifp->if_start = atw_start;
800 	ifp->if_watchdog = atw_watchdog;
801 	ifp->if_init = atw_init;
802 	ifp->if_stop = atw_stop;
803 	IFQ_SET_READY(&ifp->if_snd);
804 
805 	ic->ic_ifp = ifp;
806 	ic->ic_phytype = IEEE80211_T_DS;
807 	ic->ic_opmode = IEEE80211_M_STA;
808 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
809 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
810 
811 	nrate = 0;
812 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
813 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
814 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
815 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
816 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
817 
818 	/*
819 	 * Call MI attach routines.
820 	 */
821 
822 	if_attach(ifp);
823 	ieee80211_ifattach(ic);
824 
825 	sc->sc_newstate = ic->ic_newstate;
826 	ic->ic_newstate = atw_newstate;
827 
828 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
829 	ic->ic_recv_mgmt = atw_recv_mgmt;
830 
831 	sc->sc_node_free = ic->ic_node_free;
832 	ic->ic_node_free = atw_node_free;
833 
834 	sc->sc_node_alloc = ic->ic_node_alloc;
835 	ic->ic_node_alloc = atw_node_alloc;
836 
837 	ic->ic_crypto.cs_key_alloc = atw_key_alloc;
838 	ic->ic_crypto.cs_key_delete = atw_key_delete;
839 	ic->ic_crypto.cs_key_set = atw_key_set;
840 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
841 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
842 
843 	/* possibly we should fill in our own sc_send_prresp, since
844 	 * the ADM8211 is probably sending probe responses in ad hoc
845 	 * mode.
846 	 */
847 
848 	/* complete initialization */
849 	ieee80211_media_init(ic, atw_media_change, atw_media_status);
850 	callout_init(&sc->sc_scan_ch);
851 
852 #if NBPFILTER > 0
853 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
854 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
855 #endif
856 
857 	/*
858 	 * Make sure the interface is shutdown during reboot.
859 	 */
860 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
861 	if (sc->sc_sdhook == NULL)
862 		printf("%s: WARNING: unable to establish shutdown hook\n",
863 		    sc->sc_dev.dv_xname);
864 
865 	/*
866 	 * Add a suspend hook to make sure we come back up after a
867 	 * resume.
868 	 */
869 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
870 	if (sc->sc_powerhook == NULL)
871 		printf("%s: WARNING: unable to establish power hook\n",
872 		    sc->sc_dev.dv_xname);
873 
874 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
875 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
876 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
877 
878 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
879 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
880 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
881 
882 	return;
883 
884 	/*
885 	 * Free any resources we've allocated during the failed attach
886 	 * attempt.  Do this in reverse order and fall through.
887 	 */
888  fail_5:
889 	for (i = 0; i < ATW_NRXDESC; i++) {
890 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
891 			continue;
892 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
893 	}
894  fail_4:
895 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
896 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
897 			continue;
898 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
899 	}
900 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
901  fail_3:
902 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
903  fail_2:
904 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
905 	    sizeof(struct atw_control_data));
906  fail_1:
907 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
908  fail_0:
909 	return;
910 }
911 
912 static struct ieee80211_node *
913 atw_node_alloc(struct ieee80211_node_table *nt)
914 {
915 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
916 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
917 
918 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
919 	return ni;
920 }
921 
922 static void
923 atw_node_free(struct ieee80211_node *ni)
924 {
925 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
926 
927 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
928 	    ether_sprintf(ni->ni_bssid)));
929 	(*sc->sc_node_free)(ni);
930 }
931 
932 
933 static void
934 atw_test1_reset(struct atw_softc *sc)
935 {
936 	switch (sc->sc_rev) {
937 	case ATW_REVISION_BA:
938 		if (1 /* XXX condition on transceiver type */) {
939 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
940 		}
941 		break;
942 	case ATW_REVISION_CA:
943 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
944 		break;
945 	default:
946 		break;
947 	}
948 }
949 
950 /*
951  * atw_reset:
952  *
953  *	Perform a soft reset on the ADM8211.
954  */
955 void
956 atw_reset(struct atw_softc *sc)
957 {
958 	int i;
959 	uint32_t lpc;
960 
961 	ATW_WRITE(sc, ATW_NAR, 0x0);
962 	DELAY(atw_nar_delay);
963 
964 	/* Reference driver has a cryptic remark indicating that this might
965 	 * power-on the chip.  I know that it turns off power-saving....
966 	 */
967 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
968 
969 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
970 
971 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
972 		if (ATW_READ(sc, ATW_PAR) == 0)
973 			break;
974 		DELAY(atw_pseudo_milli);
975 	}
976 
977 	/* ... and then pause 100ms longer for good measure. */
978 	DELAY(atw_magic_delay1);
979 
980 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
981 
982 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
983 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
984 
985 	atw_test1_reset(sc);
986 	/*
987 	 * Initialize the PCI Access Register.
988 	 */
989 	sc->sc_busmode = ATW_PAR_PBL_8DW;
990 
991 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
992 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
993 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
994 
995 	/* Turn off maximum power saving, etc.
996 	 *
997 	 * XXX Following example of reference driver, should I set
998 	 * an AID of 1?  It didn't seem to help....
999 	 */
1000 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1001 
1002 	DELAY(atw_magic_delay2);
1003 
1004 	/* Recall EEPROM. */
1005 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1006 
1007 	DELAY(atw_magic_delay4);
1008 
1009 	lpc = ATW_READ(sc, ATW_LPC);
1010 
1011 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1012 
1013 	/* A reset seems to affect the SRAM contents, so put them into
1014 	 * a known state.
1015 	 */
1016 	atw_clear_sram(sc);
1017 
1018 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1019 }
1020 
1021 static void
1022 atw_clear_sram(struct atw_softc *sc)
1023 {
1024 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1025 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1026 	/* XXX not for revision 0x20. */
1027 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1028 }
1029 
1030 /* TBD atw_init
1031  *
1032  * set MAC based on ic->ic_bss->myaddr
1033  * write WEP keys
1034  * set TX rate
1035  */
1036 
1037 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1038  * without receiving a beacon with the preferred BSSID & SSID.
1039  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1040  */
1041 static void
1042 atw_wcsr_init(struct atw_softc *sc)
1043 {
1044 	uint32_t wcsr;
1045 
1046 	wcsr = ATW_READ(sc, ATW_WCSR);
1047 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1048 	wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1049 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1050 
1051 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1052 	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1053 }
1054 
1055 /* Turn off power management.  Set Rx store-and-forward mode. */
1056 static void
1057 atw_cmdr_init(struct atw_softc *sc)
1058 {
1059 	uint32_t cmdr;
1060 	cmdr = ATW_READ(sc, ATW_CMDR);
1061 	cmdr &= ~ATW_CMDR_APM;
1062 	cmdr |= ATW_CMDR_RTE;
1063 	cmdr &= ~ATW_CMDR_DRT_MASK;
1064 	cmdr |= ATW_CMDR_DRT_SF;
1065 
1066 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1067 }
1068 
1069 static void
1070 atw_tofs2_init(struct atw_softc *sc)
1071 {
1072 	uint32_t tofs2;
1073 	/* XXX this magic can probably be figured out from the RFMD docs */
1074 #ifndef ATW_REFSLAVE
1075 	tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1076 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1077 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1078 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1079 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1080 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1081 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1082 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1083 #else
1084 	/* XXX new magic from reference driver source */
1085 	tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1086 	      LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1087 	      LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1088 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1089 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1090 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1091 	      LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1092 	      LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1093 #endif
1094 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1095 }
1096 
1097 static void
1098 atw_nar_init(struct atw_softc *sc)
1099 {
1100 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1101 }
1102 
1103 static void
1104 atw_txlmt_init(struct atw_softc *sc)
1105 {
1106 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1107 	                         LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1108 }
1109 
1110 static void
1111 atw_test1_init(struct atw_softc *sc)
1112 {
1113 	uint32_t test1;
1114 
1115 	test1 = ATW_READ(sc, ATW_TEST1);
1116 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1117 	/* XXX magic 0x1 */
1118 	test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1119 	ATW_WRITE(sc, ATW_TEST1, test1);
1120 }
1121 
1122 static void
1123 atw_rf_reset(struct atw_softc *sc)
1124 {
1125 	/* XXX this resets an Intersil RF front-end? */
1126 	/* TBD condition on Intersil RFType? */
1127 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1128 	DELAY(atw_rf_delay1);
1129 	ATW_WRITE(sc, ATW_SYNRF, 0);
1130 	DELAY(atw_rf_delay2);
1131 }
1132 
1133 /* Set 16 TU max duration for the contention-free period (CFP). */
1134 static void
1135 atw_cfp_init(struct atw_softc *sc)
1136 {
1137 	uint32_t cfpp;
1138 
1139 	cfpp = ATW_READ(sc, ATW_CFPP);
1140 	cfpp &= ~ATW_CFPP_CFPMD;
1141 	cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1142 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1143 }
1144 
1145 static void
1146 atw_tofs0_init(struct atw_softc *sc)
1147 {
1148 	/* XXX I guess that the Cardbus clock is 22MHz?
1149 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1150 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1151 	 * very clear on this point. It says in the datasheet that it is
1152 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1153 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
1154 	 * these values. These values are also the power-on default.
1155 	 */
1156 	ATW_WRITE(sc, ATW_TOFS0,
1157 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1158 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1159 }
1160 
1161 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1162 static void
1163 atw_ifs_init(struct atw_softc *sc)
1164 {
1165 	uint32_t ifst;
1166 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1167 	 * Go figure.
1168 	 */
1169 	ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1170 	      LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1171 	             ATW_IFST_SIFS_MASK) |
1172 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1173 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1174 
1175 	ATW_WRITE(sc, ATW_IFST, ifst);
1176 }
1177 
1178 static void
1179 atw_response_times_init(struct atw_softc *sc)
1180 {
1181 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1182 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1183 	 * to pass after it transmits a frame that requires a response;
1184 	 * it waits at most SIFS + MART microseconds for the response.
1185 	 * Surely this is not the ACK timeout?
1186 	 */
1187 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1188 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1189 }
1190 
1191 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1192  * engines read and write baseband registers after Rx and before
1193  * Tx, respectively.
1194  */
1195 static void
1196 atw_bbp_io_init(struct atw_softc *sc)
1197 {
1198 	uint32_t mmiraddr2;
1199 
1200 	/* XXX The reference driver does this, but is it *really*
1201 	 * necessary?
1202 	 */
1203 	switch (sc->sc_rev) {
1204 	case ATW_REVISION_AB:
1205 	case ATW_REVISION_AF:
1206 		mmiraddr2 = 0x0;
1207 		break;
1208 	default:
1209 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1210 		mmiraddr2 &=
1211 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1212 		break;
1213 	}
1214 
1215 	switch (sc->sc_bbptype) {
1216 	case ATW_BBPTYPE_INTERSIL:
1217 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1218 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1219 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1220 		break;
1221 	case ATW_BBPTYPE_MARVEL:
1222 		/* TBD find out the Marvel settings. */
1223 		break;
1224 	case ATW_BBPTYPE_RFMD:
1225 	default:
1226 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1227 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1228 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1229 		break;
1230 	}
1231 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1232 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1233 }
1234 
1235 /*
1236  * atw_init:		[ ifnet interface function ]
1237  *
1238  *	Initialize the interface.  Must be called at splnet().
1239  */
1240 int
1241 atw_init(struct ifnet *ifp)
1242 {
1243 	struct atw_softc *sc = ifp->if_softc;
1244 	struct ieee80211com *ic = &sc->sc_ic;
1245 	struct atw_txsoft *txs;
1246 	struct atw_rxsoft *rxs;
1247 	int i, error = 0;
1248 
1249 	if ((error = atw_enable(sc)) != 0)
1250 		goto out;
1251 
1252 	/*
1253 	 * Cancel any pending I/O. This also resets.
1254 	 */
1255 	atw_stop(ifp, 0);
1256 
1257 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
1258 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1259 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
1260 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
1261 
1262 	atw_wcsr_init(sc);
1263 
1264 	atw_cmdr_init(sc);
1265 
1266 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1267 	 *
1268 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1269 	 */
1270 	ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1271 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1272 
1273 	atw_tofs2_init(sc);
1274 
1275 	atw_nar_init(sc);
1276 
1277 	atw_txlmt_init(sc);
1278 
1279 	atw_test1_init(sc);
1280 
1281 	atw_rf_reset(sc);
1282 
1283 	atw_cfp_init(sc);
1284 
1285 	atw_tofs0_init(sc);
1286 
1287 	atw_ifs_init(sc);
1288 
1289 	/* XXX Fall asleep after one second of inactivity.
1290 	 * XXX A frame may only dribble in for 65536us.
1291 	 */
1292 	ATW_WRITE(sc, ATW_RMD,
1293 	    LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1294 
1295 	atw_response_times_init(sc);
1296 
1297 	atw_bbp_io_init(sc);
1298 
1299 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1300 
1301 	if ((error = atw_rf3000_init(sc)) != 0)
1302 		goto out;
1303 
1304 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1305 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1306 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1307 
1308 	/*
1309 	 * Initialize the transmit descriptor ring.
1310 	 */
1311 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1312 	for (i = 0; i < ATW_NTXDESC; i++) {
1313 		sc->sc_txdescs[i].at_ctl = 0;
1314 		/* no transmit chaining */
1315 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1316 		sc->sc_txdescs[i].at_buf2 =
1317 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1318 	}
1319 	/* use ring mode */
1320 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1321 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1322 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1323 	sc->sc_txfree = ATW_NTXDESC;
1324 	sc->sc_txnext = 0;
1325 
1326 	/*
1327 	 * Initialize the transmit job descriptors.
1328 	 */
1329 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1330 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1331 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1332 		txs = &sc->sc_txsoft[i];
1333 		txs->txs_mbuf = NULL;
1334 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1335 	}
1336 
1337 	/*
1338 	 * Initialize the receive descriptor and receive job
1339 	 * descriptor rings.
1340 	 */
1341 	for (i = 0; i < ATW_NRXDESC; i++) {
1342 		rxs = &sc->sc_rxsoft[i];
1343 		if (rxs->rxs_mbuf == NULL) {
1344 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1345 				printf("%s: unable to allocate or map rx "
1346 				    "buffer %d, error = %d\n",
1347 				    sc->sc_dev.dv_xname, i, error);
1348 				/*
1349 				 * XXX Should attempt to run with fewer receive
1350 				 * XXX buffers instead of just failing.
1351 				 */
1352 				atw_rxdrain(sc);
1353 				goto out;
1354 			}
1355 		} else
1356 			ATW_INIT_RXDESC(sc, i);
1357 	}
1358 	sc->sc_rxptr = 0;
1359 
1360 	/*
1361 	 * Initialize the interrupt mask and enable interrupts.
1362 	 */
1363 	/* normal interrupts */
1364 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1365 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1366 
1367 	/* abnormal interrupts */
1368 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1369 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1370 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1371 
1372 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1373 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1374 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1375 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1376 	    ATW_INTR_TRT;
1377 
1378 	sc->sc_linkint_mask &= sc->sc_inten;
1379 	sc->sc_rxint_mask &= sc->sc_inten;
1380 	sc->sc_txint_mask &= sc->sc_inten;
1381 
1382 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1383 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1384 
1385 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1386 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1387 
1388 	/*
1389 	 * Give the transmit and receive rings to the ADM8211.
1390 	 */
1391 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1392 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1393 
1394 	sc->sc_txthresh = 0;
1395 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1396 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1397 
1398 	/* common 802.11 configuration */
1399 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1400 	switch (ic->ic_opmode) {
1401 	case IEEE80211_M_STA:
1402 		break;
1403 	case IEEE80211_M_AHDEMO: /* XXX */
1404 	case IEEE80211_M_IBSS:
1405 		ic->ic_flags |= IEEE80211_F_IBSSON;
1406 		/*FALLTHROUGH*/
1407 	case IEEE80211_M_HOSTAP: /* XXX */
1408 		break;
1409 	case IEEE80211_M_MONITOR: /* XXX */
1410 		break;
1411 	}
1412 
1413 	switch (ic->ic_opmode) {
1414 	case IEEE80211_M_AHDEMO:
1415 	case IEEE80211_M_HOSTAP:
1416 #ifndef IEEE80211_NO_HOSTAP
1417 		ic->ic_bss->ni_intval = ic->ic_lintval;
1418 		ic->ic_bss->ni_rssi = 0;
1419 		ic->ic_bss->ni_rstamp = 0;
1420 #endif /* !IEEE80211_NO_HOSTAP */
1421 		break;
1422 	default:					/* XXX */
1423 		break;
1424 	}
1425 
1426 	sc->sc_wepctl = 0;
1427 
1428 	atw_write_ssid(sc);
1429 	atw_write_sup_rates(sc);
1430 	if (ic->ic_caps & IEEE80211_C_WEP)
1431 		atw_write_wep(sc);
1432 
1433 	ic->ic_state = IEEE80211_S_INIT;
1434 
1435 	/*
1436 	 * Set the receive filter.  This will start the transmit and
1437 	 * receive processes.
1438 	 */
1439 	atw_filter_setup(sc);
1440 
1441 	/*
1442 	 * Start the receive process.
1443 	 */
1444 	ATW_WRITE(sc, ATW_RDR, 0x1);
1445 
1446 	/*
1447 	 * Note that the interface is now running.
1448 	 */
1449 	ifp->if_flags |= IFF_RUNNING;
1450 	ifp->if_flags &= ~IFF_OACTIVE;
1451 
1452 	/* send no beacons, yet. */
1453 	atw_start_beacon(sc, 0);
1454 
1455 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1456 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1457 	else
1458 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1459  out:
1460 	if (error) {
1461 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1462 		ifp->if_timer = 0;
1463 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1464 	}
1465 #ifdef ATW_DEBUG
1466 	atw_print_regs(sc, "end of init");
1467 #endif /* ATW_DEBUG */
1468 
1469 	return (error);
1470 }
1471 
1472 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1473  *           0: MAC control of RF3000/Si4126.
1474  *
1475  * Applies power, or selects RF front-end? Sets reset condition.
1476  *
1477  * TBD support non-RFMD BBP, non-SiLabs synth.
1478  */
1479 static void
1480 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1481 {
1482 	if (enable) {
1483 		ATW_WRITE(sc, ATW_SYNRF,
1484 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1485 		DELAY(atw_bbp_io_enable_delay);
1486 	} else {
1487 		ATW_WRITE(sc, ATW_SYNRF, 0);
1488 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1489 	}
1490 }
1491 
1492 static int
1493 atw_tune(struct atw_softc *sc)
1494 {
1495 	int rc;
1496 	u_int chan;
1497 	struct ieee80211com *ic = &sc->sc_ic;
1498 
1499 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1500 	if (chan == IEEE80211_CHAN_ANY)
1501 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1502 
1503 	if (chan == sc->sc_cur_chan)
1504 		return 0;
1505 
1506 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1507 	    sc->sc_cur_chan, chan));
1508 
1509 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1510 
1511 	atw_si4126_tune(sc, chan);
1512 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1513 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1514 		    chan);
1515 
1516 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1517 	DELAY(atw_nar_delay);
1518 	ATW_WRITE(sc, ATW_RDR, 0x1);
1519 
1520 	if (rc == 0)
1521 		sc->sc_cur_chan = chan;
1522 
1523 	return rc;
1524 }
1525 
1526 #ifdef ATW_SYNDEBUG
1527 static void
1528 atw_si4126_print(struct atw_softc *sc)
1529 {
1530 	struct ifnet *ifp = &sc->sc_if;
1531 	u_int addr, val;
1532 
1533 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1534 		return;
1535 
1536 	for (addr = 0; addr <= 8; addr++) {
1537 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1538 		if (atw_si4126_read(sc, addr, &val) == 0) {
1539 			printf("<unknown> (quitting print-out)\n");
1540 			break;
1541 		}
1542 		printf("%05x\n", val);
1543 	}
1544 }
1545 #endif /* ATW_SYNDEBUG */
1546 
1547 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1548  *
1549  * The RF/IF synthesizer produces two reference frequencies for
1550  * the RF2948B transceiver.  The first frequency the RF2948B requires
1551  * is two times the so-called "intermediate frequency" (IF). Since
1552  * a SAW filter on the radio fixes the IF at 374MHz, I program the
1553  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1554  * frequency required by the transceiver is the radio frequency
1555  * (RF). This is a superheterodyne transceiver; for f(chan) the
1556  * center frequency of the channel we are tuning, RF = f(chan) -
1557  * IF.
1558  *
1559  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1560  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1561  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1562  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1563  */
1564 static void
1565 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1566 {
1567 	u_int mhz;
1568 	u_int R;
1569 	u_int32_t gpio;
1570 	u_int16_t gain;
1571 
1572 #ifdef ATW_SYNDEBUG
1573 	atw_si4126_print(sc);
1574 #endif /* ATW_SYNDEBUG */
1575 
1576 	if (chan == 14)
1577 		mhz = 2484;
1578 	else
1579 		mhz = 2412 + 5 * (chan - 1);
1580 
1581 	/* Tune IF to 748MHz to suit the IF LO input of the
1582 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1583          * because an IF in 526MHz - 952MHz is allowed.
1584 	 *
1585 	 * XIN is 44.000MHz, so divide it by two to get allowable
1586 	 * range of 2-25MHz. SiLabs tells me that this is not
1587 	 * strictly necessary.
1588 	 */
1589 
1590 	if (atw_xindiv2)
1591 		R = 44;
1592 	else
1593 		R = 88;
1594 
1595 	/* Power-up RF, IF synthesizers. */
1596 	atw_si4126_write(sc, SI4126_POWER,
1597 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1598 
1599 	/* set LPWR, too? */
1600 	atw_si4126_write(sc, SI4126_MAIN,
1601 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1602 
1603 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1604 	 * set KP2 to 1.
1605 	 *
1606 	 * REFDIF This is different from the reference driver, which
1607 	 * always sets SI4126_GAIN to 0.
1608 	 */
1609 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1610 
1611 	atw_si4126_write(sc, SI4126_GAIN, gain);
1612 
1613 	/* XIN = 44MHz.
1614 	 *
1615 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1616 	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1617 	 *
1618 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1619 	 * so that 1496/88 * 44MHz = 748MHz.
1620 	 */
1621 	atw_si4126_write(sc, SI4126_IFN, 1496);
1622 
1623 	atw_si4126_write(sc, SI4126_IFR, R);
1624 
1625 #ifndef ATW_REFSLAVE
1626 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1627 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1628 	 * which has no RF1!
1629 	 */
1630 	atw_si4126_write(sc, SI4126_RF1R, R);
1631 
1632 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1633 #endif
1634 
1635 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1636 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1637 	 * Now let's multiply it to mhz. So mhz - IF = N.
1638 	 */
1639 	atw_si4126_write(sc, SI4126_RF2R, R);
1640 
1641 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1642 
1643 	/* wait 100us from power-up for RF, IF to settle */
1644 	DELAY(100);
1645 
1646 	gpio = ATW_READ(sc, ATW_GPIO);
1647 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1648 	gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1649 
1650 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1651 		/* Set a Prism RF front-end to a special mode for channel 14?
1652 		 *
1653 		 * Apparently the SMC2635W needs this, although I don't think
1654 		 * it has a Prism RF.
1655 		 */
1656 		gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1657 	}
1658 	ATW_WRITE(sc, ATW_GPIO, gpio);
1659 
1660 #ifdef ATW_SYNDEBUG
1661 	atw_si4126_print(sc);
1662 #endif /* ATW_SYNDEBUG */
1663 }
1664 
1665 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1666  * diversity.
1667  *
1668  * !!!
1669  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1670  * !!!
1671  */
1672 static int
1673 atw_rf3000_init(struct atw_softc *sc)
1674 {
1675 	int rc = 0;
1676 
1677 	atw_bbp_io_enable(sc, 1);
1678 
1679 	/* CCA is acquisition sensitive */
1680 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1681 	    LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1682 
1683 	if (rc != 0)
1684 		goto out;
1685 
1686 	/* enable diversity */
1687 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1688 
1689 	if (rc != 0)
1690 		goto out;
1691 
1692 	/* sensible setting from a binary-only driver */
1693 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1694 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1695 
1696 	if (rc != 0)
1697 		goto out;
1698 
1699 	/* magic from a binary-only driver */
1700 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1701 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1702 
1703 	if (rc != 0)
1704 		goto out;
1705 
1706 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1707 
1708 	if (rc != 0)
1709 		goto out;
1710 
1711 	/* XXX Reference driver remarks that Abocom sets this to 50.
1712 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1713 	 * in the "reserved" area of register RF3000_OPTIONS1.
1714 	 */
1715 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1716 
1717 	if (rc != 0)
1718 		goto out;
1719 
1720 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1721 
1722 	if (rc != 0)
1723 		goto out;
1724 
1725 out:
1726 	atw_bbp_io_enable(sc, 0);
1727 	return rc;
1728 }
1729 
1730 #ifdef ATW_BBPDEBUG
1731 static void
1732 atw_rf3000_print(struct atw_softc *sc)
1733 {
1734 	struct ifnet *ifp = &sc->sc_if;
1735 	u_int addr, val;
1736 
1737 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1738 		return;
1739 
1740 	for (addr = 0x01; addr <= 0x15; addr++) {
1741 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1742 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1743 			printf("<unknown> (quitting print-out)\n");
1744 			break;
1745 		}
1746 		printf("%08x\n", val);
1747 	}
1748 }
1749 #endif /* ATW_BBPDEBUG */
1750 
1751 /* Set the power settings on the BBP for channel `chan'. */
1752 static int
1753 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1754 {
1755 	int rc = 0;
1756 	u_int32_t reg;
1757 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1758 
1759 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1760 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1761 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1762 
1763 	/* odd channels: LSB, even channels: MSB */
1764 	if (chan % 2 == 1) {
1765 		txpower &= 0xFF;
1766 		lpf_cutoff &= 0xFF;
1767 		lna_gs_thresh &= 0xFF;
1768 	} else {
1769 		txpower >>= 8;
1770 		lpf_cutoff >>= 8;
1771 		lna_gs_thresh >>= 8;
1772 	}
1773 
1774 #ifdef ATW_BBPDEBUG
1775 	atw_rf3000_print(sc);
1776 #endif /* ATW_BBPDEBUG */
1777 
1778 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1779 	    "lna_gs_thresh %02x\n",
1780 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1781 
1782 	atw_bbp_io_enable(sc, 1);
1783 
1784 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1785 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1786 		goto out;
1787 
1788 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1789 		goto out;
1790 
1791 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1792 		goto out;
1793 
1794 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1795 
1796 	if (rc != 0)
1797 		goto out;
1798 
1799 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1800 
1801 	if (rc != 0)
1802 		goto out;
1803 
1804 #ifdef ATW_BBPDEBUG
1805 	atw_rf3000_print(sc);
1806 #endif /* ATW_BBPDEBUG */
1807 
1808 out:
1809 	atw_bbp_io_enable(sc, 0);
1810 
1811 	/* set beacon, rts, atim transmit power */
1812 	reg = ATW_READ(sc, ATW_PLCPHD);
1813 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1814 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1815 	    ATW_PLCPHD_SERVICE_MASK);
1816 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1817 	DELAY(atw_plcphd_delay);
1818 
1819 	return rc;
1820 }
1821 
1822 /* Write a register on the RF3000 baseband processor using the
1823  * registers provided by the ADM8211 for this purpose.
1824  *
1825  * Return 0 on success.
1826  */
1827 static int
1828 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1829 {
1830 	u_int32_t reg;
1831 	int i;
1832 
1833 	reg = sc->sc_bbpctl_wr |
1834 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1835 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1836 
1837 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1838 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1839 		DELAY(2 * atw_pseudo_milli);
1840 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1841 			break;
1842 	}
1843 
1844 	if (i < 0) {
1845 		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1846 		return ETIMEDOUT;
1847 	}
1848 	return 0;
1849 }
1850 
1851 /* Read a register on the RF3000 baseband processor using the registers
1852  * the ADM8211 provides for this purpose.
1853  *
1854  * The 7-bit register address is addr.  Record the 8-bit data in the register
1855  * in *val.
1856  *
1857  * Return 0 on success.
1858  *
1859  * XXX This does not seem to work. The ADM8211 must require more or
1860  * different magic to read the chip than to write it. Possibly some
1861  * of the magic I have derived from a binary-only driver concerns
1862  * the "chip address" (see the RF3000 manual).
1863  */
1864 #ifdef ATW_BBPDEBUG
1865 static int
1866 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1867 {
1868 	u_int32_t reg;
1869 	int i;
1870 
1871 	for (i = 1000; --i >= 0; ) {
1872 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1873 			break;
1874 		DELAY(100);
1875 	}
1876 
1877 	if (i < 0) {
1878 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1879 		    sc->sc_dev.dv_xname);
1880 		return ETIMEDOUT;
1881 	}
1882 
1883 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1884 
1885 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1886 
1887 	for (i = 1000; --i >= 0; ) {
1888 		DELAY(100);
1889 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1890 			break;
1891 	}
1892 
1893 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1894 
1895 	if (i < 0) {
1896 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1897 		    sc->sc_dev.dv_xname, reg);
1898 		return ETIMEDOUT;
1899 	}
1900 	if (val != NULL)
1901 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1902 	return 0;
1903 }
1904 #endif /* ATW_BBPDEBUG */
1905 
1906 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1907  * provided by the ADM8211 for that purpose.
1908  *
1909  * val is 18 bits of data, and val is the 4-bit address of the register.
1910  *
1911  * Return 0 on success.
1912  */
1913 static void
1914 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1915 {
1916 	uint32_t bits, mask, reg;
1917 	const int nbits = 22;
1918 
1919 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1920 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1921 
1922 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1923 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1924 
1925 	reg = ATW_SYNRF_SELSYN;
1926 	/* reference driver: reset Si4126 serial bus to initial
1927 	 * conditions?
1928 	 */
1929 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1930 	ATW_WRITE(sc, ATW_SYNRF, reg);
1931 
1932 	for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1933 		if ((bits & mask) != 0)
1934 			reg |= ATW_SYNRF_SYNDATA;
1935 		else
1936 			reg &= ~ATW_SYNRF_SYNDATA;
1937 		ATW_WRITE(sc, ATW_SYNRF, reg);
1938 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1939 		ATW_WRITE(sc, ATW_SYNRF, reg);
1940 	}
1941 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1942 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1943 }
1944 
1945 /* Read 18-bit data from the 4-bit address addr in Si4126
1946  * RF synthesizer and write the data to *val. Return 0 on success.
1947  *
1948  * XXX This does not seem to work. The ADM8211 must require more or
1949  * different magic to read the chip than to write it.
1950  */
1951 #ifdef ATW_SYNDEBUG
1952 static int
1953 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1954 {
1955 	u_int32_t reg;
1956 	int i;
1957 
1958 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1959 
1960 	for (i = 1000; --i >= 0; ) {
1961 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1962 			break;
1963 		DELAY(100);
1964 	}
1965 
1966 	if (i < 0) {
1967 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1968 		    sc->sc_dev.dv_xname);
1969 		return ETIMEDOUT;
1970 	}
1971 
1972 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1973 
1974 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1975 
1976 	for (i = 1000; --i >= 0; ) {
1977 		DELAY(100);
1978 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1979 			break;
1980 	}
1981 
1982 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1983 
1984 	if (i < 0) {
1985 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1986 		    sc->sc_dev.dv_xname, reg);
1987 		return ETIMEDOUT;
1988 	}
1989 	if (val != NULL)
1990 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1991 		                       ATW_SYNCTL_DATA_MASK);
1992 	return 0;
1993 }
1994 #endif /* ATW_SYNDEBUG */
1995 
1996 /* XXX is the endianness correct? test. */
1997 #define	atw_calchash(addr) \
1998 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1999 
2000 /*
2001  * atw_filter_setup:
2002  *
2003  *	Set the ADM8211's receive filter.
2004  */
2005 static void
2006 atw_filter_setup(struct atw_softc *sc)
2007 {
2008 	struct ieee80211com *ic = &sc->sc_ic;
2009 	struct ethercom *ec = &sc->sc_ec;
2010 	struct ifnet *ifp = &sc->sc_if;
2011 	int hash;
2012 	u_int32_t hashes[2];
2013 	struct ether_multi *enm;
2014 	struct ether_multistep step;
2015 
2016 	/* According to comments in tlp_al981_filter_setup
2017 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2018 	 * multicast filter to be set while it is running.  Hopefully
2019 	 * the ADM8211 is not the same!
2020 	 */
2021 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2022 		atw_idle(sc, ATW_NAR_SR);
2023 
2024 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2025 
2026 	/* XXX in scan mode, do not filter packets.  Maybe this is
2027 	 * unnecessary.
2028 	 */
2029 	if (ic->ic_state == IEEE80211_S_SCAN ||
2030 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2031 		sc->sc_opmode |= ATW_NAR_PR;
2032 		goto allmulti;
2033 	}
2034 
2035 	hashes[0] = hashes[1] = 0x0;
2036 
2037 	/*
2038 	 * Program the 64-bit multicast hash filter.
2039 	 */
2040 	ETHER_FIRST_MULTI(step, ec, enm);
2041 	while (enm != NULL) {
2042 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2043 		    ETHER_ADDR_LEN) != 0)
2044 			goto allmulti;
2045 
2046 		hash = atw_calchash(enm->enm_addrlo);
2047 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2048 		ETHER_NEXT_MULTI(step, enm);
2049 		sc->sc_opmode |= ATW_NAR_MM;
2050 	}
2051 	ifp->if_flags &= ~IFF_ALLMULTI;
2052 	goto setit;
2053 
2054 allmulti:
2055 	sc->sc_opmode |= ATW_NAR_MM;
2056 	ifp->if_flags |= IFF_ALLMULTI;
2057 	hashes[0] = hashes[1] = 0xffffffff;
2058 
2059 setit:
2060 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2061 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2062 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2063 	DELAY(atw_nar_delay);
2064 
2065 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2066 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2067 }
2068 
2069 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2070  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2071  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2072  * no beacon with the preferred BSSID and SSID in the number of
2073  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2074  */
2075 static void
2076 atw_write_bssid(struct atw_softc *sc)
2077 {
2078 	struct ieee80211com *ic = &sc->sc_ic;
2079 	u_int8_t *bssid;
2080 
2081 	bssid = ic->ic_bss->ni_bssid;
2082 
2083 	ATW_WRITE(sc, ATW_BSSID0,
2084 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2085 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2086 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2087 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2088 
2089 	ATW_WRITE(sc, ATW_ABDA1,
2090 	    (ATW_READ(sc, ATW_ABDA1) &
2091 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2092 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2093 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2094 
2095 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2096 	    ether_sprintf(sc->sc_bssid)));
2097 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2098 
2099 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2100 }
2101 
2102 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2103  * 16-bit word.
2104  */
2105 static void
2106 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2107 {
2108 	u_int i;
2109 	u_int8_t *ptr;
2110 
2111 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2112 
2113 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2114 
2115 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2116 
2117 	ptr = &sc->sc_sram[ofs];
2118 
2119 	for (i = 0; i < buflen; i += 2) {
2120 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2121 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2122 		DELAY(atw_writewep_delay);
2123 
2124 		ATW_WRITE(sc, ATW_WESK,
2125 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2126 		DELAY(atw_writewep_delay);
2127 	}
2128 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2129 
2130 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2131 		int n_octets = 0;
2132 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2133 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2134 		for (i = 0; i < buflen; i++) {
2135 			printf(" %02x", ptr[i]);
2136 			if (++n_octets % 24 == 0)
2137 				printf("\n");
2138 		}
2139 		if (n_octets % 24 != 0)
2140 			printf("\n");
2141 	}
2142 }
2143 
2144 static int
2145 atw_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
2146 {
2147 	int keyix;
2148 #ifdef ATW_DEBUG
2149 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2150 #endif
2151 
2152 	if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])
2153 		keyix = k - ic->ic_nw_keys;
2154 	else
2155 		keyix = IEEE80211_KEYIX_NONE;
2156 
2157 	DPRINTF(sc, ("%s: alloc key %u\n", __func__, keyix));
2158 
2159 	return keyix;
2160 }
2161 
2162 static int
2163 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2164 {
2165 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2166 	u_int keyix = k->wk_keyix;
2167 
2168 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2169 
2170 	if (keyix >= IEEE80211_WEP_NKID)
2171 		return 0;
2172 	if (k->wk_keylen != 0)
2173 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2174 
2175 	return 1;
2176 }
2177 
2178 static int
2179 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2180 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2181 {
2182 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2183 
2184 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2185 
2186 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2187 		return 0;
2188 
2189 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2190 
2191 	return 1;
2192 }
2193 
2194 static void
2195 atw_key_update_begin(struct ieee80211com *ic)
2196 {
2197 #ifdef ATW_DEBUG
2198 	struct ifnet *ifp = ic->ic_ifp;
2199 	struct atw_softc *sc = ifp->if_softc;
2200 #endif
2201 
2202 	DPRINTF(sc, ("%s:\n", __func__));
2203 }
2204 
2205 static void
2206 atw_key_update_end(struct ieee80211com *ic)
2207 {
2208 	struct ifnet *ifp = ic->ic_ifp;
2209 	struct atw_softc *sc = ifp->if_softc;
2210 
2211 	DPRINTF(sc, ("%s:\n", __func__));
2212 
2213 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2214 		return;
2215 	atw_write_wep(sc);
2216 }
2217 
2218 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2219 static void
2220 atw_write_wep(struct atw_softc *sc)
2221 {
2222 	struct ieee80211com *ic = &sc->sc_ic;
2223 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2224 	u_int8_t buf[IEEE80211_WEP_NKID]
2225 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2226 	u_int32_t reg;
2227 	int i;
2228 
2229 	sc->sc_wepctl = 0;
2230 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2231 
2232 	memset(&buf[0][0], 0, sizeof(buf));
2233 
2234 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2235 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2236 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2237 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2238 			buf[i][1] = ATW_WEP_ENABLED;
2239 		} else {
2240 			buf[i][1] = 0;
2241 			continue;
2242 		}
2243 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2244 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2245 		    ic->ic_nw_keys[i].wk_keylen - 1);
2246 	}
2247 
2248 	reg = ATW_READ(sc, ATW_MACTEST);
2249 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2250 	reg &= ~ATW_MACTEST_KEYID_MASK;
2251 	reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2252 	ATW_WRITE(sc, ATW_MACTEST, reg);
2253 
2254 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2255 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2256 
2257 	switch (sc->sc_rev) {
2258 	case ATW_REVISION_AB:
2259 	case ATW_REVISION_AF:
2260 		/* Bypass WEP on Rx. */
2261 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2262 		break;
2263 	default:
2264 		break;
2265 	}
2266 
2267 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2268 	    sizeof(buf));
2269 
2270 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2271 }
2272 
2273 static void
2274 atw_change_ibss(struct atw_softc *sc)
2275 {
2276 	atw_predict_beacon(sc);
2277 	atw_write_bssid(sc);
2278 	atw_start_beacon(sc, 1);
2279 }
2280 
2281 static void
2282 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2283     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2284 {
2285 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2286 
2287 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2288 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2289 		return;
2290 
2291 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2292 
2293 	switch (subtype) {
2294 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2295 	case IEEE80211_FC0_SUBTYPE_BEACON:
2296 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
2297 		    ic->ic_state != IEEE80211_S_RUN)
2298 			break;
2299 		if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2300 		    ieee80211_ibss_merge(ic, ni) == ENETRESET)
2301 			atw_change_ibss(sc);
2302 		break;
2303 	default:
2304 		break;
2305 	}
2306 	return;
2307 }
2308 
2309 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2310  * In ad hoc mode, the SSID is written to the beacons sent by the
2311  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2312  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2313  * indications.
2314  */
2315 static void
2316 atw_write_ssid(struct atw_softc *sc)
2317 {
2318 	struct ieee80211com *ic = &sc->sc_ic;
2319 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2320 	 * it only expects the element length, not its ID.
2321 	 */
2322 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2323 
2324 	memset(buf, 0, sizeof(buf));
2325 	buf[0] = ic->ic_bss->ni_esslen;
2326 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2327 
2328 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2329 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2330 }
2331 
2332 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2333  * In ad hoc mode, the supported rates are written to beacons sent by the
2334  * ADM8211.
2335  */
2336 static void
2337 atw_write_sup_rates(struct atw_softc *sc)
2338 {
2339 	struct ieee80211com *ic = &sc->sc_ic;
2340 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2341 	 * supported rates
2342 	 */
2343 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2344 
2345 	memset(buf, 0, sizeof(buf));
2346 
2347 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2348 
2349 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2350 	    ic->ic_bss->ni_rates.rs_nrates);
2351 
2352 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2353 }
2354 
2355 /* Start/stop sending beacons. */
2356 void
2357 atw_start_beacon(struct atw_softc *sc, int start)
2358 {
2359 	struct ieee80211com *ic = &sc->sc_ic;
2360 	uint16_t chan;
2361 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2362 	size_t len;
2363 
2364 	if (ATW_IS_ENABLED(sc) == 0)
2365 		return;
2366 
2367 	/* start beacons */
2368 	len = sizeof(struct ieee80211_frame) +
2369 	    8 /* timestamp */ + 2 /* beacon interval */ +
2370 	    2 /* capability info */ +
2371 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2372 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2373 	    3 /* DS parameters */ +
2374 	    IEEE80211_CRC_LEN;
2375 
2376 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2377 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2378 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2379 
2380 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2381 	ATW_WRITE(sc, ATW_CAP1, cap1);
2382 
2383 	if (!start)
2384 		return;
2385 
2386 	/* TBD use ni_capinfo */
2387 
2388 	capinfo = 0;
2389 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2390 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2391 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2392 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2393 
2394 	switch (ic->ic_opmode) {
2395 	case IEEE80211_M_IBSS:
2396 		len += 4; /* IBSS parameters */
2397 		capinfo |= IEEE80211_CAPINFO_IBSS;
2398 		break;
2399 	case IEEE80211_M_HOSTAP:
2400 		/* XXX 6-byte minimum TIM */
2401 		len += atw_beacon_len_adjust;
2402 		capinfo |= IEEE80211_CAPINFO_ESS;
2403 		break;
2404 	default:
2405 		return;
2406 	}
2407 
2408 	/* set listen interval
2409 	 * XXX do software units agree w/ hardware?
2410 	 */
2411 	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2412 	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2413 
2414 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
2415 
2416 	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2417 	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2418 	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2419 
2420 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2421 	ATW_WRITE(sc, ATW_BPLI, bpli);
2422 	ATW_WRITE(sc, ATW_CAP0, cap0);
2423 	ATW_WRITE(sc, ATW_CAP1, cap1);
2424 
2425 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2426 	    sc->sc_dev.dv_xname, bcnt));
2427 
2428 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2429 	    sc->sc_dev.dv_xname, cap1));
2430 }
2431 
2432 /* Return the 32 lsb of the last TSFT divisible by ival. */
2433 static __inline uint32_t
2434 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2435 {
2436 	/* Following the reference driver's lead, I compute
2437 	 *
2438 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2439 	 *
2440 	 * without using 64-bit arithmetic, using the following
2441 	 * relationship:
2442 	 *
2443 	 *     (0x100000000 * H + L) % m
2444 	 *   = ((0x100000000 % m) * H + L) % m
2445 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2446 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2447 	 *   = ((0xffffffff % m + 1) * H + L) % m
2448 	 */
2449 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2450 }
2451 
2452 static uint64_t
2453 atw_get_tsft(struct atw_softc *sc)
2454 {
2455 	int i;
2456 	uint32_t tsfth, tsftl;
2457 	for (i = 0; i < 2; i++) {
2458 		tsfth = ATW_READ(sc, ATW_TSFTH);
2459 		tsftl = ATW_READ(sc, ATW_TSFTL);
2460 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2461 			break;
2462 	}
2463 	return ((uint64_t)tsfth << 32) | tsftl;
2464 }
2465 
2466 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2467  * the ieee80211com.
2468  *
2469  * Predict the next target beacon transmission time (TBTT) and
2470  * write it to the ADM8211.
2471  */
2472 static void
2473 atw_predict_beacon(struct atw_softc *sc)
2474 {
2475 #define TBTTOFS 20 /* TU */
2476 
2477 	struct ieee80211com *ic = &sc->sc_ic;
2478 	uint64_t tsft;
2479 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2480 	union {
2481 		uint64_t	word;
2482 		uint8_t		tstamp[8];
2483 	} u;
2484 
2485 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2486 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2487 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2488 		tsft = atw_get_tsft(sc);
2489 		u.word = htole64(tsft);
2490 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2491 		    sizeof(ic->ic_bss->ni_tstamp));
2492 	} else
2493 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2494 
2495 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2496 
2497 	tsftl = tsft & 0xFFFFFFFF;
2498 	tsfth = tsft >> 32;
2499 
2500 	/* We sent/received the last beacon `past' microseconds
2501 	 * after the interval divided the TSF timer.
2502 	 */
2503 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2504 
2505 	/* Skip ten beacons so that the TBTT cannot pass before
2506 	 * we've programmed it.  Ten is an arbitrary number.
2507 	 */
2508 	tbtt = past_even + ival * 10;
2509 
2510 	ATW_WRITE(sc, ATW_TOFS1,
2511 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2512 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2513 	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2514 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2515 #undef TBTTOFS
2516 }
2517 
2518 static void
2519 atw_next_scan(void *arg)
2520 {
2521 	struct atw_softc *sc = arg;
2522 	struct ieee80211com *ic = &sc->sc_ic;
2523 	int s;
2524 
2525 	/* don't call atw_start w/o network interrupts blocked */
2526 	s = splnet();
2527 	if (ic->ic_state == IEEE80211_S_SCAN)
2528 		ieee80211_next_scan(ic);
2529 	splx(s);
2530 }
2531 
2532 /* Synchronize the hardware state with the software state. */
2533 static int
2534 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2535 {
2536 	struct ifnet *ifp = ic->ic_ifp;
2537 	struct atw_softc *sc = ifp->if_softc;
2538 	enum ieee80211_state ostate;
2539 	int error;
2540 
2541 	ostate = ic->ic_state;
2542 
2543 	if (nstate == IEEE80211_S_INIT) {
2544 		callout_stop(&sc->sc_scan_ch);
2545 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2546 		atw_start_beacon(sc, 0);
2547 		return (*sc->sc_newstate)(ic, nstate, arg);
2548 	}
2549 
2550 	if ((error = atw_tune(sc)) != 0)
2551 		return error;
2552 
2553 	switch (nstate) {
2554 	case IEEE80211_S_ASSOC:
2555 		break;
2556 	case IEEE80211_S_INIT:
2557 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2558 		break;
2559 	case IEEE80211_S_SCAN:
2560 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2561 		    atw_next_scan, sc);
2562 
2563 		break;
2564 	case IEEE80211_S_RUN:
2565 		if (ic->ic_opmode == IEEE80211_M_STA)
2566 			break;
2567 		/*FALLTHROUGH*/
2568 	case IEEE80211_S_AUTH:
2569 		atw_write_bssid(sc);
2570 		atw_write_ssid(sc);
2571 		atw_write_sup_rates(sc);
2572 
2573 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2574 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2575 			break;
2576 
2577 		/* set listen interval
2578 		 * XXX do software units agree w/ hardware?
2579 		 */
2580 		ATW_WRITE(sc, ATW_BPLI,
2581 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2582 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2583 			   ATW_BPLI_LI_MASK));
2584 
2585 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2586 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2587 
2588 		atw_predict_beacon(sc);
2589 		break;
2590 	}
2591 
2592 	if (nstate != IEEE80211_S_SCAN)
2593 		callout_stop(&sc->sc_scan_ch);
2594 
2595 	if (nstate == IEEE80211_S_RUN &&
2596 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2597 	     ic->ic_opmode == IEEE80211_M_IBSS))
2598 		atw_start_beacon(sc, 1);
2599 	else
2600 		atw_start_beacon(sc, 0);
2601 
2602 	error = (*sc->sc_newstate)(ic, nstate, arg);
2603 
2604 	if (ostate == IEEE80211_S_INIT && nstate == IEEE80211_S_SCAN)
2605 		atw_write_bssid(sc);
2606 
2607 	return error;
2608 }
2609 
2610 /*
2611  * atw_add_rxbuf:
2612  *
2613  *	Add a receive buffer to the indicated descriptor.
2614  */
2615 int
2616 atw_add_rxbuf(struct atw_softc *sc, int idx)
2617 {
2618 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2619 	struct mbuf *m;
2620 	int error;
2621 
2622 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2623 	if (m == NULL)
2624 		return (ENOBUFS);
2625 
2626 	MCLGET(m, M_DONTWAIT);
2627 	if ((m->m_flags & M_EXT) == 0) {
2628 		m_freem(m);
2629 		return (ENOBUFS);
2630 	}
2631 
2632 	if (rxs->rxs_mbuf != NULL)
2633 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2634 
2635 	rxs->rxs_mbuf = m;
2636 
2637 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2638 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2639 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2640 	if (error) {
2641 		printf("%s: can't load rx DMA map %d, error = %d\n",
2642 		    sc->sc_dev.dv_xname, idx, error);
2643 		panic("atw_add_rxbuf");	/* XXX */
2644 	}
2645 
2646 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2647 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2648 
2649 	ATW_INIT_RXDESC(sc, idx);
2650 
2651 	return (0);
2652 }
2653 
2654 /*
2655  * Release any queued transmit buffers.
2656  */
2657 void
2658 atw_txdrain(struct atw_softc *sc)
2659 {
2660 	struct atw_txsoft *txs;
2661 
2662 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2663 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2664 		if (txs->txs_mbuf != NULL) {
2665 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2666 			m_freem(txs->txs_mbuf);
2667 			txs->txs_mbuf = NULL;
2668 		}
2669 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2670 	}
2671 	sc->sc_tx_timer = 0;
2672 }
2673 
2674 /*
2675  * atw_stop:		[ ifnet interface function ]
2676  *
2677  *	Stop transmission on the interface.
2678  */
2679 void
2680 atw_stop(struct ifnet *ifp, int disable)
2681 {
2682 	struct atw_softc *sc = ifp->if_softc;
2683 	struct ieee80211com *ic = &sc->sc_ic;
2684 
2685 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2686 
2687 	/* Disable interrupts. */
2688 	ATW_WRITE(sc, ATW_IER, 0);
2689 
2690 	/* Stop the transmit and receive processes. */
2691 	sc->sc_opmode = 0;
2692 	ATW_WRITE(sc, ATW_NAR, 0);
2693 	DELAY(atw_nar_delay);
2694 	ATW_WRITE(sc, ATW_TDBD, 0);
2695 	ATW_WRITE(sc, ATW_TDBP, 0);
2696 	ATW_WRITE(sc, ATW_RDB, 0);
2697 
2698 	atw_txdrain(sc);
2699 
2700 	if (disable) {
2701 		atw_rxdrain(sc);
2702 		atw_disable(sc);
2703 	}
2704 
2705 	/*
2706 	 * Mark the interface down and cancel the watchdog timer.
2707 	 */
2708 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2709 	ifp->if_timer = 0;
2710 
2711 	if (!disable)
2712 		atw_reset(sc);
2713 }
2714 
2715 /*
2716  * atw_rxdrain:
2717  *
2718  *	Drain the receive queue.
2719  */
2720 void
2721 atw_rxdrain(struct atw_softc *sc)
2722 {
2723 	struct atw_rxsoft *rxs;
2724 	int i;
2725 
2726 	for (i = 0; i < ATW_NRXDESC; i++) {
2727 		rxs = &sc->sc_rxsoft[i];
2728 		if (rxs->rxs_mbuf == NULL)
2729 			continue;
2730 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2731 		m_freem(rxs->rxs_mbuf);
2732 		rxs->rxs_mbuf = NULL;
2733 	}
2734 }
2735 
2736 /*
2737  * atw_detach:
2738  *
2739  *	Detach an ADM8211 interface.
2740  */
2741 int
2742 atw_detach(struct atw_softc *sc)
2743 {
2744 	struct ifnet *ifp = &sc->sc_if;
2745 	struct atw_rxsoft *rxs;
2746 	struct atw_txsoft *txs;
2747 	int i;
2748 
2749 	/*
2750 	 * Succeed now if there isn't any work to do.
2751 	 */
2752 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2753 		return (0);
2754 
2755 	callout_stop(&sc->sc_scan_ch);
2756 
2757 	ieee80211_ifdetach(&sc->sc_ic);
2758 	if_detach(ifp);
2759 
2760 	for (i = 0; i < ATW_NRXDESC; i++) {
2761 		rxs = &sc->sc_rxsoft[i];
2762 		if (rxs->rxs_mbuf != NULL) {
2763 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2764 			m_freem(rxs->rxs_mbuf);
2765 			rxs->rxs_mbuf = NULL;
2766 		}
2767 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2768 	}
2769 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2770 		txs = &sc->sc_txsoft[i];
2771 		if (txs->txs_mbuf != NULL) {
2772 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2773 			m_freem(txs->txs_mbuf);
2774 			txs->txs_mbuf = NULL;
2775 		}
2776 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2777 	}
2778 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2779 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2780 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2781 	    sizeof(struct atw_control_data));
2782 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2783 
2784 	shutdownhook_disestablish(sc->sc_sdhook);
2785 	powerhook_disestablish(sc->sc_powerhook);
2786 
2787 	if (sc->sc_srom)
2788 		free(sc->sc_srom, M_DEVBUF);
2789 
2790 	return (0);
2791 }
2792 
2793 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2794 void
2795 atw_shutdown(void *arg)
2796 {
2797 	struct atw_softc *sc = arg;
2798 
2799 	atw_stop(&sc->sc_if, 1);
2800 }
2801 
2802 int
2803 atw_intr(void *arg)
2804 {
2805 	struct atw_softc *sc = arg;
2806 	struct ifnet *ifp = &sc->sc_if;
2807 	u_int32_t status, rxstatus, txstatus, linkstatus;
2808 	int handled = 0, txthresh;
2809 
2810 #ifdef DEBUG
2811 	if (ATW_IS_ENABLED(sc) == 0)
2812 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2813 #endif
2814 
2815 	/*
2816 	 * If the interface isn't running, the interrupt couldn't
2817 	 * possibly have come from us.
2818 	 */
2819 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2820 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2821 		return (0);
2822 
2823 	for (;;) {
2824 		status = ATW_READ(sc, ATW_STSR);
2825 
2826 		if (status)
2827 			ATW_WRITE(sc, ATW_STSR, status);
2828 
2829 #ifdef ATW_DEBUG
2830 #define PRINTINTR(flag) do { \
2831 	if ((status & flag) != 0) { \
2832 		printf("%s" #flag, delim); \
2833 		delim = ","; \
2834 	} \
2835 } while (0)
2836 
2837 		if (atw_debug > 1 && status) {
2838 			const char *delim = "<";
2839 
2840 			printf("%s: reg[STSR] = %x",
2841 			    sc->sc_dev.dv_xname, status);
2842 
2843 			PRINTINTR(ATW_INTR_FBE);
2844 			PRINTINTR(ATW_INTR_LINKOFF);
2845 			PRINTINTR(ATW_INTR_LINKON);
2846 			PRINTINTR(ATW_INTR_RCI);
2847 			PRINTINTR(ATW_INTR_RDU);
2848 			PRINTINTR(ATW_INTR_REIS);
2849 			PRINTINTR(ATW_INTR_RPS);
2850 			PRINTINTR(ATW_INTR_TCI);
2851 			PRINTINTR(ATW_INTR_TDU);
2852 			PRINTINTR(ATW_INTR_TLT);
2853 			PRINTINTR(ATW_INTR_TPS);
2854 			PRINTINTR(ATW_INTR_TRT);
2855 			PRINTINTR(ATW_INTR_TUF);
2856 			PRINTINTR(ATW_INTR_BCNTC);
2857 			PRINTINTR(ATW_INTR_ATIME);
2858 			PRINTINTR(ATW_INTR_TBTT);
2859 			PRINTINTR(ATW_INTR_TSCZ);
2860 			PRINTINTR(ATW_INTR_TSFTF);
2861 			printf(">\n");
2862 		}
2863 #undef PRINTINTR
2864 #endif /* ATW_DEBUG */
2865 
2866 		if ((status & sc->sc_inten) == 0)
2867 			break;
2868 
2869 		handled = 1;
2870 
2871 		rxstatus = status & sc->sc_rxint_mask;
2872 		txstatus = status & sc->sc_txint_mask;
2873 		linkstatus = status & sc->sc_linkint_mask;
2874 
2875 		if (linkstatus) {
2876 			atw_linkintr(sc, linkstatus);
2877 		}
2878 
2879 		if (rxstatus) {
2880 			/* Grab any new packets. */
2881 			atw_rxintr(sc);
2882 
2883 			if (rxstatus & ATW_INTR_RDU) {
2884 				printf("%s: receive ring overrun\n",
2885 				    sc->sc_dev.dv_xname);
2886 				/* Get the receive process going again. */
2887 				ATW_WRITE(sc, ATW_RDR, 0x1);
2888 				break;
2889 			}
2890 		}
2891 
2892 		if (txstatus) {
2893 			/* Sweep up transmit descriptors. */
2894 			atw_txintr(sc);
2895 
2896 			if (txstatus & ATW_INTR_TLT)
2897 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2898 				    sc->sc_dev.dv_xname));
2899 
2900 			if (txstatus & ATW_INTR_TRT)
2901 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2902 				    sc->sc_dev.dv_xname));
2903 
2904 			/* If Tx under-run, increase our transmit threshold
2905 			 * if another is available.
2906 			 */
2907 			txthresh = sc->sc_txthresh + 1;
2908 			if ((txstatus & ATW_INTR_TUF) &&
2909 			    sc->sc_txth[txthresh].txth_name != NULL) {
2910 				/* Idle the transmit process. */
2911 				atw_idle(sc, ATW_NAR_ST);
2912 
2913 				sc->sc_txthresh = txthresh;
2914 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2915 				sc->sc_opmode |=
2916 				    sc->sc_txth[txthresh].txth_opmode;
2917 				printf("%s: transmit underrun; new "
2918 				    "threshold: %s\n", sc->sc_dev.dv_xname,
2919 				    sc->sc_txth[txthresh].txth_name);
2920 
2921 				/* Set the new threshold and restart
2922 				 * the transmit process.
2923 				 */
2924 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2925 				DELAY(atw_nar_delay);
2926 				ATW_WRITE(sc, ATW_RDR, 0x1);
2927 				/* XXX Log every Nth underrun from
2928 				 * XXX now on?
2929 				 */
2930 			}
2931 		}
2932 
2933 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2934 			if (status & ATW_INTR_TPS)
2935 				printf("%s: transmit process stopped\n",
2936 				    sc->sc_dev.dv_xname);
2937 			if (status & ATW_INTR_RPS)
2938 				printf("%s: receive process stopped\n",
2939 				    sc->sc_dev.dv_xname);
2940 			(void)atw_init(ifp);
2941 			break;
2942 		}
2943 
2944 		if (status & ATW_INTR_FBE) {
2945 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2946 			(void)atw_init(ifp);
2947 			break;
2948 		}
2949 
2950 		/*
2951 		 * Not handled:
2952 		 *
2953 		 *	Transmit buffer unavailable -- normal
2954 		 *	condition, nothing to do, really.
2955 		 *
2956 		 *	Early receive interrupt -- not available on
2957 		 *	all chips, we just use RI.  We also only
2958 		 *	use single-segment receive DMA, so this
2959 		 *	is mostly useless.
2960 		 *
2961 		 *      TBD others
2962 		 */
2963 	}
2964 
2965 	/* Try to get more packets going. */
2966 	atw_start(ifp);
2967 
2968 	return (handled);
2969 }
2970 
2971 /*
2972  * atw_idle:
2973  *
2974  *	Cause the transmit and/or receive processes to go idle.
2975  *
2976  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2977  *	process in STSR if I clear SR or ST after the process has already
2978  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2979  *      do not seem to be too reliable. Perhaps I have the sense of the
2980  *	Rx bits switched with the Tx bits?
2981  */
2982 void
2983 atw_idle(struct atw_softc *sc, u_int32_t bits)
2984 {
2985 	u_int32_t ackmask = 0, opmode, stsr, test0;
2986 	int i, s;
2987 
2988 	s = splnet();
2989 
2990 	opmode = sc->sc_opmode & ~bits;
2991 
2992 	if (bits & ATW_NAR_SR)
2993 		ackmask |= ATW_INTR_RPS;
2994 
2995 	if (bits & ATW_NAR_ST) {
2996 		ackmask |= ATW_INTR_TPS;
2997 		/* set ATW_NAR_HF to flush TX FIFO. */
2998 		opmode |= ATW_NAR_HF;
2999 	}
3000 
3001 	ATW_WRITE(sc, ATW_NAR, opmode);
3002 	DELAY(atw_nar_delay);
3003 
3004 	for (i = 0; i < 1000; i++) {
3005 		stsr = ATW_READ(sc, ATW_STSR);
3006 		if ((stsr & ackmask) == ackmask)
3007 			break;
3008 		DELAY(10);
3009 	}
3010 
3011 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3012 
3013 	if ((stsr & ackmask) == ackmask)
3014 		goto out;
3015 
3016 	test0 = ATW_READ(sc, ATW_TEST0);
3017 
3018 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3019 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3020 		printf("%s: transmit process not idle [%s]\n",
3021 		    sc->sc_dev.dv_xname,
3022 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
3023 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3024 		    sc->sc_dev.dv_xname, bits, test0, stsr);
3025 	}
3026 
3027 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3028 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3029 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3030 		    sc->sc_dev.dv_xname,
3031 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3032 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3033 		    sc->sc_dev.dv_xname, bits, test0, stsr));
3034 	}
3035 out:
3036 	if ((bits & ATW_NAR_ST) != 0)
3037 		atw_txdrain(sc);
3038 	splx(s);
3039 	return;
3040 }
3041 
3042 /*
3043  * atw_linkintr:
3044  *
3045  *	Helper; handle link-status interrupts.
3046  */
3047 void
3048 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3049 {
3050 	struct ieee80211com *ic = &sc->sc_ic;
3051 
3052 	if (ic->ic_state != IEEE80211_S_RUN)
3053 		return;
3054 
3055 	if (linkstatus & ATW_INTR_LINKON) {
3056 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3057 		sc->sc_rescan_timer = 0;
3058 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3059 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3060 		if (ic->ic_opmode != IEEE80211_M_STA)
3061 			return;
3062 		sc->sc_rescan_timer = 3;
3063 		sc->sc_if.if_timer = 1;
3064 	}
3065 }
3066 
3067 static __inline int
3068 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3069 {
3070 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3071 		return 0;
3072 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3073 		return 0;
3074 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3075 }
3076 
3077 /*
3078  * atw_rxintr:
3079  *
3080  *	Helper; handle receive interrupts.
3081  */
3082 void
3083 atw_rxintr(struct atw_softc *sc)
3084 {
3085 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3086 	struct ieee80211com *ic = &sc->sc_ic;
3087 	struct ieee80211_node *ni;
3088 	struct ieee80211_frame_min *wh;
3089 	struct ifnet *ifp = &sc->sc_if;
3090 	struct atw_rxsoft *rxs;
3091 	struct mbuf *m;
3092 	u_int32_t rxstat;
3093 	int i, len, rate, rate0;
3094 	u_int32_t rssi, rssi0;
3095 
3096 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3097 		rxs = &sc->sc_rxsoft[i];
3098 
3099 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3100 
3101 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3102 		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3103 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3104 
3105 		if (rxstat & ATW_RXSTAT_OWN)
3106 			break; /* We have processed all receive buffers. */
3107 
3108 		DPRINTF3(sc,
3109 		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3110 		    sc->sc_dev.dv_xname,
3111 		    rxstat, rssi0,
3112 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3113 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3114 
3115 		/*
3116 		 * Make sure the packet fits in one buffer.  This should
3117 		 * always be the case.
3118 		 */
3119 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3120 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3121 			printf("%s: incoming packet spilled, resetting\n",
3122 			    sc->sc_dev.dv_xname);
3123 			(void)atw_init(ifp);
3124 			return;
3125 		}
3126 
3127 		/*
3128 		 * If an error occurred, update stats, clear the status
3129 		 * word, and leave the packet buffer in place.  It will
3130 		 * simply be reused the next time the ring comes around.
3131 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3132 		 * error.
3133 		 */
3134 
3135 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3136 		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3137 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3138 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3139 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3140 				ATW_RXSTAT_ICVE)) != 0)) {
3141 #define	PRINTERR(bit, str)						\
3142 			if (rxstat & (bit))				\
3143 				printf("%s: receive error: %s\n",	\
3144 				    sc->sc_dev.dv_xname, str)
3145 			ifp->if_ierrors++;
3146 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3147 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3148 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3149 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3150 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3151 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3152 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3153 #undef PRINTERR
3154 			ATW_INIT_RXDESC(sc, i);
3155 			continue;
3156 		}
3157 
3158 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3159 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3160 
3161 		/*
3162 		 * No errors; receive the packet.  Note the ADM8211
3163 		 * includes the CRC in promiscuous mode.
3164 		 */
3165 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3166 
3167 		/*
3168 		 * Allocate a new mbuf cluster.  If that fails, we are
3169 		 * out of memory, and must drop the packet and recycle
3170 		 * the buffer that's already attached to this descriptor.
3171 		 */
3172 		m = rxs->rxs_mbuf;
3173 		if (atw_add_rxbuf(sc, i) != 0) {
3174 			ifp->if_ierrors++;
3175 			ATW_INIT_RXDESC(sc, i);
3176 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3177 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3178 			continue;
3179 		}
3180 
3181 		ifp->if_ipackets++;
3182 		if (sc->sc_opmode & ATW_NAR_PR)
3183 			len -= IEEE80211_CRC_LEN;
3184 		m->m_pkthdr.rcvif = ifp;
3185 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3186 
3187 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3188 			rate = 0;
3189 		else
3190 			rate = rate_tbl[rate0];
3191 
3192 		/* The RSSI comes straight from a register in the
3193 		 * baseband processor.  I know that for the RF3000,
3194 		 * the RSSI register also contains the antenna-selection
3195 		 * bits.  Mask those off.
3196 		 *
3197 		 * TBD Treat other basebands.
3198 		 */
3199 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3200 			rssi = rssi0 & RF3000_RSSI_MASK;
3201 		else
3202 			rssi = rssi0;
3203 
3204  #if NBPFILTER > 0
3205 		/* Pass this up to any BPF listeners. */
3206 		if (sc->sc_radiobpf != NULL) {
3207 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3208 
3209 			tap->ar_rate = rate;
3210 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3211 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3212 
3213 			/* TBD verify units are dB */
3214 			tap->ar_antsignal = (int)rssi;
3215 			/* TBD tap->ar_flags */
3216 
3217 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3218 			    tap->ar_ihdr.it_len, m);
3219  		}
3220  #endif /* NPBFILTER > 0 */
3221 
3222 		wh = mtod(m, struct ieee80211_frame_min *);
3223 		ni = ieee80211_find_rxnode(ic, wh);
3224 		if (atw_hw_decrypted(sc, wh)) {
3225 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3226 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3227 		}
3228 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3229 		ieee80211_free_node(ni);
3230 	}
3231 
3232 	/* Update the receive pointer. */
3233 	sc->sc_rxptr = i;
3234 }
3235 
3236 /*
3237  * atw_txintr:
3238  *
3239  *	Helper; handle transmit interrupts.
3240  */
3241 void
3242 atw_txintr(struct atw_softc *sc)
3243 {
3244 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3245     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3246 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3247     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3248 
3249 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3250 	struct ifnet *ifp = &sc->sc_if;
3251 	struct atw_txsoft *txs;
3252 	u_int32_t txstat;
3253 
3254 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3255 	    sc->sc_dev.dv_xname, sc->sc_flags));
3256 
3257 	ifp->if_flags &= ~IFF_OACTIVE;
3258 
3259 	/*
3260 	 * Go through our Tx list and free mbufs for those
3261 	 * frames that have been transmitted.
3262 	 */
3263 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3264 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3265 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3266 
3267 #ifdef ATW_DEBUG
3268 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3269 			int i;
3270 			printf("    txsoft %p transmit chain:\n", txs);
3271 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3272 			    txs->txs_ndescs - 1,
3273 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3274 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3275 				printf("     descriptor %d:\n", i);
3276 				printf("       at_status:   0x%08x\n",
3277 				    le32toh(sc->sc_txdescs[i].at_stat));
3278 				printf("       at_flags:      0x%08x\n",
3279 				    le32toh(sc->sc_txdescs[i].at_flags));
3280 				printf("       at_buf1: 0x%08x\n",
3281 				    le32toh(sc->sc_txdescs[i].at_buf1));
3282 				printf("       at_buf2: 0x%08x\n",
3283 				    le32toh(sc->sc_txdescs[i].at_buf2));
3284 				if (i == txs->txs_lastdesc)
3285 					break;
3286 			}
3287 		}
3288 #endif
3289 
3290 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3291 		if (txstat & ATW_TXSTAT_OWN)
3292 			break;
3293 
3294 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3295 
3296 		sc->sc_txfree += txs->txs_ndescs;
3297 
3298 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3299 		    0, txs->txs_dmamap->dm_mapsize,
3300 		    BUS_DMASYNC_POSTWRITE);
3301 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3302 		m_freem(txs->txs_mbuf);
3303 		txs->txs_mbuf = NULL;
3304 
3305 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3306 
3307 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3308 		    (txstat & TXSTAT_ERRMASK) != 0) {
3309 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3310 			    txstat_buf, sizeof(txstat_buf));
3311 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3312 			    txstat_buf,
3313 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3314 		}
3315 
3316 		/*
3317 		 * Check for errors and collisions.
3318 		 */
3319 		if (txstat & ATW_TXSTAT_TUF)
3320 			sc->sc_stats.ts_tx_tuf++;
3321 		if (txstat & ATW_TXSTAT_TLT)
3322 			sc->sc_stats.ts_tx_tlt++;
3323 		if (txstat & ATW_TXSTAT_TRT)
3324 			sc->sc_stats.ts_tx_trt++;
3325 		if (txstat & ATW_TXSTAT_TRO)
3326 			sc->sc_stats.ts_tx_tro++;
3327 		if (txstat & ATW_TXSTAT_SOFBR) {
3328 			sc->sc_stats.ts_tx_sofbr++;
3329 		}
3330 
3331 		if ((txstat & ATW_TXSTAT_ES) == 0)
3332 			ifp->if_collisions +=
3333 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3334 		else
3335 			ifp->if_oerrors++;
3336 
3337 		ifp->if_opackets++;
3338 	}
3339 
3340 	/*
3341 	 * If there are no more pending transmissions, cancel the watchdog
3342 	 * timer.
3343 	 */
3344 	if (txs == NULL)
3345 		sc->sc_tx_timer = 0;
3346 #undef TXSTAT_ERRMASK
3347 #undef TXSTAT_FMT
3348 }
3349 
3350 /*
3351  * atw_watchdog:	[ifnet interface function]
3352  *
3353  *	Watchdog timer handler.
3354  */
3355 void
3356 atw_watchdog(struct ifnet *ifp)
3357 {
3358 	struct atw_softc *sc = ifp->if_softc;
3359 	struct ieee80211com *ic = &sc->sc_ic;
3360 
3361 	ifp->if_timer = 0;
3362 	if (ATW_IS_ENABLED(sc) == 0)
3363 		return;
3364 
3365 	if (sc->sc_rescan_timer) {
3366 		if (--sc->sc_rescan_timer == 0)
3367 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3368 	}
3369 	if (sc->sc_tx_timer) {
3370 		if (--sc->sc_tx_timer == 0 &&
3371 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3372 			printf("%s: transmit timeout\n", ifp->if_xname);
3373 			ifp->if_oerrors++;
3374 			(void)atw_init(ifp);
3375 			atw_start(ifp);
3376 		}
3377 	}
3378 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3379 		ifp->if_timer = 1;
3380 	ieee80211_watchdog(ic);
3381 }
3382 
3383 /* Compute the 802.11 Duration field and the PLCP Length fields for
3384  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3385  * Write the fields to the ADM8211 Tx header, frm.
3386  *
3387  * TBD use the fragmentation threshold to find the right duration for
3388  * the first & last fragments.
3389  *
3390  * TBD make certain of the duration fields applied by the ADM8211 to each
3391  * fragment. I think that the ADM8211 knows how to subtract the CTS
3392  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3393  * I also think that the ADM8211 does *some* arithmetic for us, because
3394  * otherwise I think we would have to set a first duration for CTS/first
3395  * fragment, a second duration for fragments between the first and the
3396  * last, and a third duration for the last fragment.
3397  *
3398  * TBD make certain that duration fields reflect addition of FCS/WEP
3399  * and correct duration arithmetic as necessary.
3400  */
3401 static void
3402 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3403     int len)
3404 {
3405 	int remainder;
3406 
3407 	/* deal also with encrypted fragments */
3408 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3409 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3410 		    sc->sc_dev.dv_xname));
3411 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3412 		       IEEE80211_WEP_CRCLEN;
3413 	}
3414 
3415 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3416 	 * duration (XXX added by MAC?).
3417 	 */
3418 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3419 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3420 
3421 	if (rate <= 4)
3422 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3423 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3424 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3425 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3426 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3427 	else
3428 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3429 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3430 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3431 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3432 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3433 
3434 	/* lengthen duration if long preamble */
3435 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3436 		frm->atw_head_dur +=
3437 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3438 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3439 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3440 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3441 
3442 	if (remainder != 0)
3443 		frm->atw_head_dur++;
3444 
3445 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3446 	    (rate == 2 || rate == 4)) {
3447 		/* derived from Linux: how could this be right? */
3448 		frm->atw_head_plcplen = frm->atw_head_dur;
3449 	} else {
3450 		frm->atw_head_plcplen = (16 * len) / rate;
3451 		remainder = (80 * len) % (rate * 5);
3452 
3453 		if (remainder != 0) {
3454 			frm->atw_head_plcplen++;
3455 
3456 			/* XXX magic */
3457 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3458 			    rate == 22 && remainder <= 30)
3459 				frm->atw_head_plcplen |= 0x8000;
3460 		}
3461 	}
3462 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3463 	    htole16(frm->atw_head_plcplen);
3464 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3465 }
3466 
3467 #ifdef ATW_DEBUG
3468 static void
3469 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3470 {
3471 	struct atw_softc *sc = ifp->if_softc;
3472 	struct mbuf *m;
3473 	int i, noctets = 0;
3474 
3475 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3476 	    m0->m_pkthdr.len);
3477 
3478 	for (m = m0; m; m = m->m_next) {
3479 		if (m->m_len == 0)
3480 			continue;
3481 		for (i = 0; i < m->m_len; i++) {
3482 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3483 			if (++noctets % 24 == 0)
3484 				printf("\n");
3485 		}
3486 	}
3487 	printf("%s%s: %d bytes emitted\n",
3488 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3489 }
3490 #endif /* ATW_DEBUG */
3491 
3492 /*
3493  * atw_start:		[ifnet interface function]
3494  *
3495  *	Start packet transmission on the interface.
3496  */
3497 void
3498 atw_start(struct ifnet *ifp)
3499 {
3500 	struct atw_softc *sc = ifp->if_softc;
3501 	struct ieee80211com *ic = &sc->sc_ic;
3502 	struct ieee80211_node *ni;
3503 	struct ieee80211_frame *wh;
3504 	struct atw_frame *hh;
3505 	struct mbuf *m0, *m;
3506 	struct atw_txsoft *txs, *last_txs;
3507 	struct atw_txdesc *txd;
3508 	int do_encrypt, rate;
3509 	bus_dmamap_t dmamap;
3510 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3511 
3512 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3513 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3514 
3515 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3516 		return;
3517 
3518 	/*
3519 	 * Remember the previous number of free descriptors and
3520 	 * the first descriptor we'll use.
3521 	 */
3522 	ofree = sc->sc_txfree;
3523 	firsttx = sc->sc_txnext;
3524 
3525 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3526 	    sc->sc_dev.dv_xname, ofree, firsttx));
3527 
3528 	/*
3529 	 * Loop through the send queue, setting up transmit descriptors
3530 	 * until we drain the queue, or use up all available transmit
3531 	 * descriptors.
3532 	 */
3533 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3534 	       sc->sc_txfree != 0) {
3535 
3536 		/*
3537 		 * Grab a packet off the management queue, if it
3538 		 * is not empty. Otherwise, from the data queue.
3539 		 */
3540 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3541 		if (m0 != NULL) {
3542 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3543 			m0->m_pkthdr.rcvif = NULL;
3544 		} else {
3545 			/* send no data packets until we are associated */
3546 			if (ic->ic_state != IEEE80211_S_RUN)
3547 				break;
3548 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3549 			if (m0 == NULL)
3550 				break;
3551 #if NBPFILTER > 0
3552 			if (ifp->if_bpf != NULL)
3553 				bpf_mtap(ifp->if_bpf, m0);
3554 #endif /* NBPFILTER > 0 */
3555 			ni = ieee80211_find_txnode(ic,
3556 			    mtod(m0, struct ether_header *)->ether_dhost);
3557 			if (ni == NULL) {
3558 				ifp->if_oerrors++;
3559 				break;
3560 			}
3561 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3562 				ieee80211_free_node(ni);
3563 				ifp->if_oerrors++;
3564 				break;
3565 			}
3566 		}
3567 
3568 		rate = MAX(ieee80211_get_rate(ic), 2);
3569 
3570 #if NBPFILTER > 0
3571 		/*
3572 		 * Pass the packet to any BPF listeners.
3573 		 */
3574 		if (ic->ic_rawbpf != NULL)
3575 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3576 
3577 		if (sc->sc_radiobpf != NULL) {
3578 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3579 
3580 			tap->at_rate = rate;
3581 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3582 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3583 
3584 			/* TBD tap->at_flags */
3585 
3586 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3587 			    tap->at_ihdr.it_len, m0);
3588 		}
3589 #endif /* NBPFILTER > 0 */
3590 
3591 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3592 
3593 		if (ni != NULL)
3594 			ieee80211_free_node(ni);
3595 
3596 		if (m0 == NULL) {
3597 			ifp->if_oerrors++;
3598 			break;
3599 		}
3600 
3601 		/* just to make sure. */
3602 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3603 
3604 		if (m0 == NULL) {
3605 			ifp->if_oerrors++;
3606 			break;
3607 		}
3608 
3609 		hh = mtod(m0, struct atw_frame *);
3610 		wh = &hh->atw_ihdr;
3611 
3612 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3613 
3614 		/* Copy everything we need from the 802.11 header:
3615 		 * Frame Control; address 1, address 3, or addresses
3616 		 * 3 and 4. NIC fills in BSSID, SA.
3617 		 */
3618 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3619 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3620 				panic("%s: illegal WDS frame",
3621 				    sc->sc_dev.dv_xname);
3622 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3623 		} else
3624 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3625 
3626 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3627 
3628 		/* initialize remaining Tx parameters */
3629 		memset(&hh->u, 0, sizeof(hh->u));
3630 
3631 		hh->atw_rate = rate * 5;
3632 		/* XXX this could be incorrect if M_FCS. _encap should
3633 		 * probably strip FCS just in case it sticks around in
3634 		 * bridged packets.
3635 		 */
3636 		hh->atw_service = 0x00; /* XXX guess */
3637 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3638 		    sizeof(struct atw_frame));
3639 
3640 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3641 		hh->atw_rtylmt = 3;
3642 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3643 		if (do_encrypt) {
3644 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3645 			hh->atw_keyid = ic->ic_def_txkey;
3646 		}
3647 
3648 		/* TBD 4-addr frames */
3649 		atw_frame_setdurs(sc, hh, rate,
3650 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3651 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3652 
3653 		/* never fragment multicast frames */
3654 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3655 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3656 		} else if (sc->sc_flags & ATWF_RTSCTS) {
3657 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3658 		}
3659 
3660 #ifdef ATW_DEBUG
3661 		hh->atw_fragnum = 0;
3662 
3663 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3664 			printf("%s: dst = %s, rate = 0x%02x, "
3665 			    "service = 0x%02x, paylen = 0x%04x\n",
3666 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3667 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3668 
3669 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3670 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3671 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3672 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3673 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3674 			    hh->atw_tail_dur, hh->atw_head_dur);
3675 
3676 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3677 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3678 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3679 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3680 
3681 			printf("%s: keyid = %d\n",
3682 			    sc->sc_dev.dv_xname, hh->atw_keyid);
3683 
3684 			atw_dump_pkt(ifp, m0);
3685 		}
3686 #endif /* ATW_DEBUG */
3687 
3688 		dmamap = txs->txs_dmamap;
3689 
3690 		/*
3691 		 * Load the DMA map.  Copy and try (once) again if the packet
3692 		 * didn't fit in the alloted number of segments.
3693 		 */
3694 		for (first = 1;
3695 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3696 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3697 		     first = 0) {
3698 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3699 			if (m == NULL) {
3700 				printf("%s: unable to allocate Tx mbuf\n",
3701 				    sc->sc_dev.dv_xname);
3702 				break;
3703 			}
3704 			if (m0->m_pkthdr.len > MHLEN) {
3705 				MCLGET(m, M_DONTWAIT);
3706 				if ((m->m_flags & M_EXT) == 0) {
3707 					printf("%s: unable to allocate Tx "
3708 					    "cluster\n", sc->sc_dev.dv_xname);
3709 					m_freem(m);
3710 					break;
3711 				}
3712 			}
3713 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3714 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3715 			m_freem(m0);
3716 			m0 = m;
3717 			m = NULL;
3718 		}
3719 		if (error != 0) {
3720 			printf("%s: unable to load Tx buffer, "
3721 			    "error = %d\n", sc->sc_dev.dv_xname, error);
3722 			m_freem(m0);
3723 			break;
3724 		}
3725 
3726 		/*
3727 		 * Ensure we have enough descriptors free to describe
3728 		 * the packet.
3729 		 */
3730 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3731 			/*
3732 			 * Not enough free descriptors to transmit
3733 			 * this packet.  Unload the DMA map and
3734 			 * drop the packet.  Notify the upper layer
3735 			 * that there are no more slots left.
3736 			 *
3737 			 * XXX We could allocate an mbuf and copy, but
3738 			 * XXX it is worth it?
3739 			 */
3740 			ifp->if_flags |= IFF_OACTIVE;
3741 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3742 			m_freem(m0);
3743 			break;
3744 		}
3745 
3746 		/*
3747 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3748 		 */
3749 
3750 		/* Sync the DMA map. */
3751 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3752 		    BUS_DMASYNC_PREWRITE);
3753 
3754 		/* XXX arbitrary retry limit; 8 because I have seen it in
3755 		 * use already and maybe 0 means "no tries" !
3756 		 */
3757 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3758 
3759 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3760 		    sc->sc_dev.dv_xname, rate * 5));
3761 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3762 
3763 		/*
3764 		 * Initialize the transmit descriptors.
3765 		 */
3766 		for (nexttx = sc->sc_txnext, seg = 0;
3767 		     seg < dmamap->dm_nsegs;
3768 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3769 			/*
3770 			 * If this is the first descriptor we're
3771 			 * enqueueing, don't set the OWN bit just
3772 			 * yet.  That could cause a race condition.
3773 			 * We'll do it below.
3774 			 */
3775 			txd = &sc->sc_txdescs[nexttx];
3776 			txd->at_ctl = ctl |
3777 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3778 
3779 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3780 			txd->at_flags =
3781 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3782 			                   ATW_TXFLAG_TBS1_MASK)) |
3783 			    ((nexttx == (ATW_NTXDESC - 1))
3784 			        ? htole32(ATW_TXFLAG_TER) : 0);
3785 			lasttx = nexttx;
3786 		}
3787 
3788 		IASSERT(lasttx != -1, ("bad lastx"));
3789 		/* Set `first segment' and `last segment' appropriately. */
3790 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3791 		    htole32(ATW_TXFLAG_FS);
3792 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3793 
3794 #ifdef ATW_DEBUG
3795 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3796 			printf("     txsoft %p transmit chain:\n", txs);
3797 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3798 				printf("     descriptor %d:\n", seg);
3799 				printf("       at_ctl:   0x%08x\n",
3800 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3801 				printf("       at_flags:      0x%08x\n",
3802 				    le32toh(sc->sc_txdescs[seg].at_flags));
3803 				printf("       at_buf1: 0x%08x\n",
3804 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3805 				printf("       at_buf2: 0x%08x\n",
3806 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3807 				if (seg == lasttx)
3808 					break;
3809 			}
3810 		}
3811 #endif
3812 
3813 		/* Sync the descriptors we're using. */
3814 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3815 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3816 
3817 		/*
3818 		 * Store a pointer to the packet so we can free it later,
3819 		 * and remember what txdirty will be once the packet is
3820 		 * done.
3821 		 */
3822 		txs->txs_mbuf = m0;
3823 		txs->txs_firstdesc = sc->sc_txnext;
3824 		txs->txs_lastdesc = lasttx;
3825 		txs->txs_ndescs = dmamap->dm_nsegs;
3826 
3827 		/* Advance the tx pointer. */
3828 		sc->sc_txfree -= dmamap->dm_nsegs;
3829 		sc->sc_txnext = nexttx;
3830 
3831 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3832 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3833 
3834 		last_txs = txs;
3835 	}
3836 
3837 	if (txs == NULL || sc->sc_txfree == 0) {
3838 		/* No more slots left; notify upper layer. */
3839 		ifp->if_flags |= IFF_OACTIVE;
3840 	}
3841 
3842 	if (sc->sc_txfree != ofree) {
3843 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3844 		    sc->sc_dev.dv_xname, lasttx, firsttx));
3845 		/*
3846 		 * Cause a transmit interrupt to happen on the
3847 		 * last packet we enqueued.
3848 		 */
3849 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3850 		ATW_CDTXSYNC(sc, lasttx, 1,
3851 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3852 
3853 		/*
3854 		 * The entire packet chain is set up.  Give the
3855 		 * first descriptor to the chip now.
3856 		 */
3857 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3858 		ATW_CDTXSYNC(sc, firsttx, 1,
3859 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3860 
3861 		/* Wake up the transmitter. */
3862 		ATW_WRITE(sc, ATW_TDR, 0x1);
3863 
3864 		/* Set a watchdog timer in case the chip flakes out. */
3865 		sc->sc_tx_timer = 5;
3866 		ifp->if_timer = 1;
3867 	}
3868 }
3869 
3870 /*
3871  * atw_power:
3872  *
3873  *	Power management (suspend/resume) hook.
3874  */
3875 void
3876 atw_power(int why, void *arg)
3877 {
3878 	struct atw_softc *sc = arg;
3879 	struct ifnet *ifp = &sc->sc_if;
3880 	int s;
3881 
3882 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3883 
3884 	s = splnet();
3885 	switch (why) {
3886 	case PWR_STANDBY:
3887 		/* XXX do nothing. */
3888 		break;
3889 	case PWR_SUSPEND:
3890 		atw_stop(ifp, 0);
3891 		if (sc->sc_power != NULL)
3892 			(*sc->sc_power)(sc, why);
3893 		break;
3894 	case PWR_RESUME:
3895 		if (ifp->if_flags & IFF_UP) {
3896 			if (sc->sc_power != NULL)
3897 				(*sc->sc_power)(sc, why);
3898 			atw_init(ifp);
3899 		}
3900 		break;
3901 	case PWR_SOFTSUSPEND:
3902 	case PWR_SOFTSTANDBY:
3903 	case PWR_SOFTRESUME:
3904 		break;
3905 	}
3906 	splx(s);
3907 }
3908 
3909 /*
3910  * atw_ioctl:		[ifnet interface function]
3911  *
3912  *	Handle control requests from the operator.
3913  */
3914 int
3915 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3916 {
3917 	struct atw_softc *sc = ifp->if_softc;
3918 	struct ifreq *ifr = (struct ifreq *)data;
3919 	int s, error = 0;
3920 
3921 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3922 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3923 		return ENXIO;
3924 
3925 	s = splnet();
3926 
3927 	switch (cmd) {
3928 	case SIOCSIFFLAGS:
3929 		if (ifp->if_flags & IFF_UP) {
3930 			if (ATW_IS_ENABLED(sc)) {
3931 				/*
3932 				 * To avoid rescanning another access point,
3933 				 * do not call atw_init() here.  Instead,
3934 				 * only reflect media settings.
3935 				 */
3936 				atw_filter_setup(sc);
3937 			} else
3938 				error = atw_init(ifp);
3939 		} else if (ATW_IS_ENABLED(sc))
3940 			atw_stop(ifp, 1);
3941 		break;
3942 	case SIOCADDMULTI:
3943 	case SIOCDELMULTI:
3944 		error = (cmd == SIOCADDMULTI) ?
3945 		    ether_addmulti(ifr, &sc->sc_ec) :
3946 		    ether_delmulti(ifr, &sc->sc_ec);
3947 		if (error == ENETRESET) {
3948 			if (ifp->if_flags & IFF_RUNNING)
3949 				atw_filter_setup(sc); /* do not rescan */
3950 			error = 0;
3951 		}
3952 		break;
3953 	default:
3954 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3955 		if (error == ENETRESET) {
3956 			if (ATW_IS_ENABLED(sc))
3957 				error = atw_init(ifp);
3958 			else
3959 				error = 0;
3960 		}
3961 		break;
3962 	}
3963 
3964 	/* Try to get more packets going. */
3965 	if (ATW_IS_ENABLED(sc))
3966 		atw_start(ifp);
3967 
3968 	splx(s);
3969 	return (error);
3970 }
3971 
3972 static int
3973 atw_media_change(struct ifnet *ifp)
3974 {
3975 	int error;
3976 
3977 	error = ieee80211_media_change(ifp);
3978 	if (error == ENETRESET) {
3979 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3980 		    (IFF_RUNNING|IFF_UP))
3981 			atw_init(ifp);		/* XXX lose error */
3982 		error = 0;
3983 	}
3984 	return error;
3985 }
3986 
3987 static void
3988 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3989 {
3990 	struct atw_softc *sc = ifp->if_softc;
3991 
3992 	if (ATW_IS_ENABLED(sc) == 0) {
3993 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3994 		imr->ifm_status = 0;
3995 		return;
3996 	}
3997 	ieee80211_media_status(ifp, imr);
3998 }
3999