xref: /netbsd-src/sys/dev/ic/atw.c (revision a30f264f2a5f410ffefcc55600a9238b3a0c935c)
1 /*	$NetBSD: atw.c,v 1.92 2005/12/24 20:27:29 perry Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.92 2005/12/24 20:27:29 perry Exp $");
45 
46 #include "bpfilter.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 
60 #include <machine/endian.h>
61 
62 #include <uvm/uvm_extern.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68 
69 #include <net80211/ieee80211_netbsd.h>
70 #include <net80211/ieee80211_var.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76 
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79 
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85 
86 /* XXX TBD open questions
87  *
88  *
89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91  * handle this for me?
92  *
93  */
94 /* device attachment
95  *
96  *    print TOFS[012]
97  *
98  * device initialization
99  *
100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
101  *    set ATW_TXBR_ALCUPDATE to enable ALC
102  *    set TOFS[012]? (hope not)
103  *    disable rx/tx
104  *    set ATW_PAR_SWR (software reset)
105  *    wait for ATW_PAR_SWR clear
106  *    disable interrupts
107  *    ack status register
108  *    enable interrupts
109  *
110  * rx/tx initialization
111  *
112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113  *    allocate and init descriptor rings
114  *    write ATW_PAR_DSL (descriptor skip length)
115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119  *
120  * rx/tx end
121  *
122  *    stop DMA
123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124  *    flush tx w/ ATW_NAR_HF
125  *
126  * scan
127  *
128  *    initialize rx/tx
129  *
130  * BSS join: (re)association response
131  *
132  *    set ATW_FRCTL_AID
133  *
134  * optimizations ???
135  *
136  */
137 
138 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
139 
140 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
141 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
142 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
143 
144 int atw_pseudo_milli = 1;
145 int atw_magic_delay1 = 100 * 1000;
146 int atw_magic_delay2 = 100 * 1000;
147 /* more magic multi-millisecond delays (units: microseconds) */
148 int atw_nar_delay = 20 * 1000;
149 int atw_magic_delay4 = 10 * 1000;
150 int atw_rf_delay1 = 10 * 1000;
151 int atw_rf_delay2 = 5 * 1000;
152 int atw_plcphd_delay = 2 * 1000;
153 int atw_bbp_io_enable_delay = 20 * 1000;
154 int atw_bbp_io_disable_delay = 2 * 1000;
155 int atw_writewep_delay = 1000;
156 int atw_beacon_len_adjust = 4;
157 int atw_dwelltime = 200;
158 int atw_xindiv2 = 0;
159 
160 #ifdef ATW_DEBUG
161 int atw_debug = 0;
162 
163 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
164 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
165 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
166 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
167 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
168 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
169 
170 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
171 static void	atw_print_regs(struct atw_softc *, const char *);
172 
173 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
174 #	ifdef ATW_BBPDEBUG
175 static void	atw_rf3000_print(struct atw_softc *);
176 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
177 #	endif /* ATW_BBPDEBUG */
178 
179 #	ifdef ATW_SYNDEBUG
180 static void	atw_si4126_print(struct atw_softc *);
181 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
182 #	endif /* ATW_SYNDEBUG */
183 
184 #else
185 #define ATW_DPRINTF(x)
186 #define ATW_DPRINTF2(x)
187 #define ATW_DPRINTF3(x)
188 #define	DPRINTF(sc, x)	/* nothing */
189 #define	DPRINTF2(sc, x)	/* nothing */
190 #define	DPRINTF3(sc, x)	/* nothing */
191 #endif
192 
193 /* ifnet methods */
194 int	atw_init(struct ifnet *);
195 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
196 void	atw_start(struct ifnet *);
197 void	atw_stop(struct ifnet *, int);
198 void	atw_watchdog(struct ifnet *);
199 
200 /* Device attachment */
201 void	atw_attach(struct atw_softc *);
202 int	atw_detach(struct atw_softc *);
203 
204 /* Rx/Tx process */
205 int	atw_add_rxbuf(struct atw_softc *, int);
206 void	atw_idle(struct atw_softc *, u_int32_t);
207 void	atw_rxdrain(struct atw_softc *);
208 void	atw_txdrain(struct atw_softc *);
209 
210 /* Device (de)activation and power state */
211 void	atw_disable(struct atw_softc *);
212 int	atw_enable(struct atw_softc *);
213 void	atw_power(int, void *);
214 void	atw_reset(struct atw_softc *);
215 void	atw_shutdown(void *);
216 
217 /* Interrupt handlers */
218 void	atw_linkintr(struct atw_softc *, u_int32_t);
219 void	atw_rxintr(struct atw_softc *);
220 void	atw_txintr(struct atw_softc *);
221 
222 /* 802.11 state machine */
223 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
224 static void	atw_next_scan(void *);
225 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
226 		              struct ieee80211_node *, int, int, u_int32_t);
227 static int	atw_tune(struct atw_softc *);
228 
229 /* Device initialization */
230 static void	atw_bbp_io_init(struct atw_softc *);
231 static void	atw_cfp_init(struct atw_softc *);
232 static void	atw_cmdr_init(struct atw_softc *);
233 static void	atw_ifs_init(struct atw_softc *);
234 static void	atw_nar_init(struct atw_softc *);
235 static void	atw_response_times_init(struct atw_softc *);
236 static void	atw_rf_reset(struct atw_softc *);
237 static void	atw_test1_init(struct atw_softc *);
238 static void	atw_tofs0_init(struct atw_softc *);
239 static void	atw_tofs2_init(struct atw_softc *);
240 static void	atw_txlmt_init(struct atw_softc *);
241 static void	atw_wcsr_init(struct atw_softc *);
242 
243 /* Key management */
244 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
245 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
246 	const u_int8_t[IEEE80211_ADDR_LEN]);
247 static void atw_key_update_begin(struct ieee80211com *);
248 static void atw_key_update_end(struct ieee80211com *);
249 
250 /* RAM/ROM utilities */
251 static void	atw_clear_sram(struct atw_softc *);
252 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
253 static int	atw_read_srom(struct atw_softc *);
254 
255 /* BSS setup */
256 static void	atw_predict_beacon(struct atw_softc *);
257 static void	atw_start_beacon(struct atw_softc *, int);
258 static void	atw_write_bssid(struct atw_softc *);
259 static void	atw_write_ssid(struct atw_softc *);
260 static void	atw_write_sup_rates(struct atw_softc *);
261 static void	atw_write_wep(struct atw_softc *);
262 
263 /* Media */
264 static int	atw_media_change(struct ifnet *);
265 static void	atw_media_status(struct ifnet *, struct ifmediareq *);
266 
267 static void	atw_filter_setup(struct atw_softc *);
268 
269 /* 802.11 utilities */
270 static void			atw_frame_setdurs(struct atw_softc *,
271 				                  struct atw_frame *, int, int);
272 static uint64_t			atw_get_tsft(struct atw_softc *);
273 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
274 				                   uint32_t);
275 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
276 static void			atw_node_free(struct ieee80211_node *);
277 static void			atw_change_ibss(struct atw_softc *);
278 
279 /*
280  * Tuner/transceiver/modem
281  */
282 static void	atw_bbp_io_enable(struct atw_softc *, int);
283 
284 /* RFMD RF3000 Baseband Processor */
285 static int	atw_rf3000_init(struct atw_softc *);
286 static int	atw_rf3000_tune(struct atw_softc *, u_int);
287 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
288 
289 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
290 static void	atw_si4126_tune(struct atw_softc *, u_int);
291 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
292 
293 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
294 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
295 
296 const char *atw_tx_state[] = {
297 	"STOPPED",
298 	"RUNNING - read descriptor",
299 	"RUNNING - transmitting",
300 	"RUNNING - filling fifo",	/* XXX */
301 	"SUSPENDED",
302 	"RUNNING -- write descriptor",
303 	"RUNNING -- write last descriptor",
304 	"RUNNING - fifo full"
305 };
306 
307 const char *atw_rx_state[] = {
308 	"STOPPED",
309 	"RUNNING - read descriptor",
310 	"RUNNING - check this packet, pre-fetch next",
311 	"RUNNING - wait for reception",
312 	"SUSPENDED",
313 	"RUNNING - write descriptor",
314 	"RUNNING - flush fifo",
315 	"RUNNING - fifo drain"
316 };
317 
318 int
319 atw_activate(struct device *self, enum devact act)
320 {
321 	struct atw_softc *sc = (struct atw_softc *)self;
322 	int rv = 0, s;
323 
324 	s = splnet();
325 	switch (act) {
326 	case DVACT_ACTIVATE:
327 		rv = EOPNOTSUPP;
328 		break;
329 
330 	case DVACT_DEACTIVATE:
331 		if_deactivate(&sc->sc_if);
332 		break;
333 	}
334 	splx(s);
335 	return rv;
336 }
337 
338 /*
339  * atw_enable:
340  *
341  *	Enable the ADM8211 chip.
342  */
343 int
344 atw_enable(struct atw_softc *sc)
345 {
346 
347 	if (ATW_IS_ENABLED(sc) == 0) {
348 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
349 			printf("%s: device enable failed\n",
350 			    sc->sc_dev.dv_xname);
351 			return (EIO);
352 		}
353 		sc->sc_flags |= ATWF_ENABLED;
354 	}
355 	return (0);
356 }
357 
358 /*
359  * atw_disable:
360  *
361  *	Disable the ADM8211 chip.
362  */
363 void
364 atw_disable(struct atw_softc *sc)
365 {
366 	if (!ATW_IS_ENABLED(sc))
367 		return;
368 	if (sc->sc_disable != NULL)
369 		(*sc->sc_disable)(sc);
370 	sc->sc_flags &= ~ATWF_ENABLED;
371 }
372 
373 /* Returns -1 on failure. */
374 static int
375 atw_read_srom(struct atw_softc *sc)
376 {
377 	struct seeprom_descriptor sd;
378 	uint32_t test0, fail_bits;
379 
380 	(void)memset(&sd, 0, sizeof(sd));
381 
382 	test0 = ATW_READ(sc, ATW_TEST0);
383 
384 	switch (sc->sc_rev) {
385 	case ATW_REVISION_BA:
386 	case ATW_REVISION_CA:
387 		fail_bits = ATW_TEST0_EPNE;
388 		break;
389 	default:
390 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
391 		break;
392 	}
393 	if ((test0 & fail_bits) != 0) {
394 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
395 		return -1;
396 	}
397 
398 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
399 	case ATW_TEST0_EPTYP_93c66:
400 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
401 		sc->sc_sromsz = 512;
402 		sd.sd_chip = C56_66;
403 		break;
404 	case ATW_TEST0_EPTYP_93c46:
405 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
406 		sc->sc_sromsz = 128;
407 		sd.sd_chip = C46;
408 		break;
409 	default:
410 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
411 		    MASK_AND_RSHIFT(test0, ATW_TEST0_EPTYP_MASK));
412 		return -1;
413 	}
414 
415 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
416 
417 	if (sc->sc_srom == NULL) {
418 		printf("%s: unable to allocate SROM buffer\n",
419 		    sc->sc_dev.dv_xname);
420 		return -1;
421 	}
422 
423 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
424 
425 	/* ADM8211 has a single 32-bit register for controlling the
426 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
427 	 * "ready" bit. The ADM8211 input/output sense is the reverse
428 	 * of read_seeprom's.
429 	 */
430 	sd.sd_tag = sc->sc_st;
431 	sd.sd_bsh = sc->sc_sh;
432 	sd.sd_regsize = 4;
433 	sd.sd_control_offset = ATW_SPR;
434 	sd.sd_status_offset = ATW_SPR;
435 	sd.sd_dataout_offset = ATW_SPR;
436 	sd.sd_CK = ATW_SPR_SCLK;
437 	sd.sd_CS = ATW_SPR_SCS;
438 	sd.sd_DI = ATW_SPR_SDO;
439 	sd.sd_DO = ATW_SPR_SDI;
440 	sd.sd_MS = ATW_SPR_SRS;
441 	sd.sd_RDY = 0;
442 
443 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
444 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
445 		free(sc->sc_srom, M_DEVBUF);
446 		return -1;
447 	}
448 #ifdef ATW_DEBUG
449 	{
450 		int i;
451 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
452 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
453 			if (((i % 8) == 0) && (i != 0)) {
454 				ATW_DPRINTF(("\n\t"));
455 			}
456 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
457 		}
458 		ATW_DPRINTF(("\n"));
459 	}
460 #endif /* ATW_DEBUG */
461 	return 0;
462 }
463 
464 #ifdef ATW_DEBUG
465 static void
466 atw_print_regs(struct atw_softc *sc, const char *where)
467 {
468 #define PRINTREG(sc, reg) \
469 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
470 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
471 
472 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
473 
474 	PRINTREG(sc, ATW_PAR);
475 	PRINTREG(sc, ATW_FRCTL);
476 	PRINTREG(sc, ATW_TDR);
477 	PRINTREG(sc, ATW_WTDP);
478 	PRINTREG(sc, ATW_RDR);
479 	PRINTREG(sc, ATW_WRDP);
480 	PRINTREG(sc, ATW_RDB);
481 	PRINTREG(sc, ATW_CSR3A);
482 	PRINTREG(sc, ATW_TDBD);
483 	PRINTREG(sc, ATW_TDBP);
484 	PRINTREG(sc, ATW_STSR);
485 	PRINTREG(sc, ATW_CSR5A);
486 	PRINTREG(sc, ATW_NAR);
487 	PRINTREG(sc, ATW_CSR6A);
488 	PRINTREG(sc, ATW_IER);
489 	PRINTREG(sc, ATW_CSR7A);
490 	PRINTREG(sc, ATW_LPC);
491 	PRINTREG(sc, ATW_TEST1);
492 	PRINTREG(sc, ATW_SPR);
493 	PRINTREG(sc, ATW_TEST0);
494 	PRINTREG(sc, ATW_WCSR);
495 	PRINTREG(sc, ATW_WPDR);
496 	PRINTREG(sc, ATW_GPTMR);
497 	PRINTREG(sc, ATW_GPIO);
498 	PRINTREG(sc, ATW_BBPCTL);
499 	PRINTREG(sc, ATW_SYNCTL);
500 	PRINTREG(sc, ATW_PLCPHD);
501 	PRINTREG(sc, ATW_MMIWADDR);
502 	PRINTREG(sc, ATW_MMIRADDR1);
503 	PRINTREG(sc, ATW_MMIRADDR2);
504 	PRINTREG(sc, ATW_TXBR);
505 	PRINTREG(sc, ATW_CSR15A);
506 	PRINTREG(sc, ATW_ALCSTAT);
507 	PRINTREG(sc, ATW_TOFS2);
508 	PRINTREG(sc, ATW_CMDR);
509 	PRINTREG(sc, ATW_PCIC);
510 	PRINTREG(sc, ATW_PMCSR);
511 	PRINTREG(sc, ATW_PAR0);
512 	PRINTREG(sc, ATW_PAR1);
513 	PRINTREG(sc, ATW_MAR0);
514 	PRINTREG(sc, ATW_MAR1);
515 	PRINTREG(sc, ATW_ATIMDA0);
516 	PRINTREG(sc, ATW_ABDA1);
517 	PRINTREG(sc, ATW_BSSID0);
518 	PRINTREG(sc, ATW_TXLMT);
519 	PRINTREG(sc, ATW_MIBCNT);
520 	PRINTREG(sc, ATW_BCNT);
521 	PRINTREG(sc, ATW_TSFTH);
522 	PRINTREG(sc, ATW_TSC);
523 	PRINTREG(sc, ATW_SYNRF);
524 	PRINTREG(sc, ATW_BPLI);
525 	PRINTREG(sc, ATW_CAP0);
526 	PRINTREG(sc, ATW_CAP1);
527 	PRINTREG(sc, ATW_RMD);
528 	PRINTREG(sc, ATW_CFPP);
529 	PRINTREG(sc, ATW_TOFS0);
530 	PRINTREG(sc, ATW_TOFS1);
531 	PRINTREG(sc, ATW_IFST);
532 	PRINTREG(sc, ATW_RSPT);
533 	PRINTREG(sc, ATW_TSFTL);
534 	PRINTREG(sc, ATW_WEPCTL);
535 	PRINTREG(sc, ATW_WESK);
536 	PRINTREG(sc, ATW_WEPCNT);
537 	PRINTREG(sc, ATW_MACTEST);
538 	PRINTREG(sc, ATW_FER);
539 	PRINTREG(sc, ATW_FEMR);
540 	PRINTREG(sc, ATW_FPSR);
541 	PRINTREG(sc, ATW_FFER);
542 #undef PRINTREG
543 }
544 #endif /* ATW_DEBUG */
545 
546 /*
547  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
548  */
549 void
550 atw_attach(struct atw_softc *sc)
551 {
552 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
553 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
554 	};
555 	struct ieee80211com *ic = &sc->sc_ic;
556 	struct ifnet *ifp = &sc->sc_if;
557 	int country_code, error, i, nrate, srom_major;
558 	u_int32_t reg;
559 	static const char *type_strings[] = {"Intersil (not supported)",
560 	    "RFMD", "Marvel (not supported)"};
561 
562 	sc->sc_txth = atw_txthresh_tab_lo;
563 
564 	SIMPLEQ_INIT(&sc->sc_txfreeq);
565 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
566 
567 #ifdef ATW_DEBUG
568 	atw_print_regs(sc, "atw_attach");
569 #endif /* ATW_DEBUG */
570 
571 	/*
572 	 * Allocate the control data structures, and create and load the
573 	 * DMA map for it.
574 	 */
575 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
576 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
577 	    1, &sc->sc_cdnseg, 0)) != 0) {
578 		printf("%s: unable to allocate control data, error = %d\n",
579 		    sc->sc_dev.dv_xname, error);
580 		goto fail_0;
581 	}
582 
583 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
584 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
585 	    BUS_DMA_COHERENT)) != 0) {
586 		printf("%s: unable to map control data, error = %d\n",
587 		    sc->sc_dev.dv_xname, error);
588 		goto fail_1;
589 	}
590 
591 	if ((error = bus_dmamap_create(sc->sc_dmat,
592 	    sizeof(struct atw_control_data), 1,
593 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
594 		printf("%s: unable to create control data DMA map, "
595 		    "error = %d\n", sc->sc_dev.dv_xname, error);
596 		goto fail_2;
597 	}
598 
599 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
600 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
601 	    0)) != 0) {
602 		printf("%s: unable to load control data DMA map, error = %d\n",
603 		    sc->sc_dev.dv_xname, error);
604 		goto fail_3;
605 	}
606 
607 	/*
608 	 * Create the transmit buffer DMA maps.
609 	 */
610 	sc->sc_ntxsegs = ATW_NTXSEGS;
611 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
612 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
613 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
614 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
615 			printf("%s: unable to create tx DMA map %d, "
616 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
617 			goto fail_4;
618 		}
619 	}
620 
621 	/*
622 	 * Create the receive buffer DMA maps.
623 	 */
624 	for (i = 0; i < ATW_NRXDESC; i++) {
625 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
626 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
627 			printf("%s: unable to create rx DMA map %d, "
628 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
629 			goto fail_5;
630 		}
631 	}
632 	for (i = 0; i < ATW_NRXDESC; i++) {
633 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
634 	}
635 
636 	switch (sc->sc_rev) {
637 	case ATW_REVISION_AB:
638 	case ATW_REVISION_AF:
639 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
640 		break;
641 	case ATW_REVISION_BA:
642 	case ATW_REVISION_CA:
643 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
644 		break;
645 	}
646 
647 	/* Reset the chip to a known state. */
648 	atw_reset(sc);
649 
650 	if (atw_read_srom(sc) == -1)
651 		return;
652 
653 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
654 	    ATW_SR_RFTYPE_MASK);
655 
656 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
657 	    ATW_SR_BBPTYPE_MASK);
658 
659 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
660 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
661 		return;
662 	}
663 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
664 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
665 		return;
666 	}
667 
668 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
669 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
670 
671 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
672 	 * MARVEL. My bug, or theirs?
673 	 */
674 
675 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
676 
677 	switch (sc->sc_rftype) {
678 	case ATW_RFTYPE_INTERSIL:
679 		reg |= ATW_SYNCTL_CS1;
680 		break;
681 	case ATW_RFTYPE_RFMD:
682 		reg |= ATW_SYNCTL_CS0;
683 		break;
684 	case ATW_RFTYPE_MARVEL:
685 		break;
686 	}
687 
688 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
689 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
690 
691 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
692 
693 	switch (sc->sc_bbptype) {
694 	case ATW_BBPTYPE_INTERSIL:
695 		reg |= ATW_BBPCTL_TWI;
696 		break;
697 	case ATW_BBPTYPE_RFMD:
698 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
699 		    ATW_BBPCTL_CCA_ACTLO;
700 		break;
701 	case ATW_BBPTYPE_MARVEL:
702 		break;
703 	case ATW_C_BBPTYPE_RFMD:
704 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
705 		    sc->sc_dev.dv_xname);
706 		break;
707 	}
708 
709 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
710 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
711 
712 	/*
713 	 * From this point forward, the attachment cannot fail.  A failure
714 	 * before this point releases all resources that may have been
715 	 * allocated.
716 	 */
717 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
718 
719 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
720 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
721 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
722 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
723 
724 	srom_major = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
725 	    ATW_SR_MAJOR_MASK);
726 
727 	if (srom_major < 2)
728 		sc->sc_rf3000_options1 = 0;
729 	else if (sc->sc_rev == ATW_REVISION_BA) {
730 		sc->sc_rf3000_options1 =
731 		    MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CR28_CR03],
732 		    ATW_SR_CR28_MASK);
733 	} else
734 		sc->sc_rf3000_options1 = 0;
735 
736 	sc->sc_rf3000_options2 = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
737 	    ATW_SR_CR29_MASK);
738 
739 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
740 	    ATW_SR_CTRY_MASK);
741 
742 #define ADD_CHANNEL(_ic, _chan) do {					\
743 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
744 	_ic->ic_channels[_chan].ic_freq =				\
745 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
746 } while (0)
747 
748 	/* Find available channels */
749 	switch (country_code) {
750 	case COUNTRY_MMK2:	/* 1-14 */
751 		ADD_CHANNEL(ic, 14);
752 		/*FALLTHROUGH*/
753 	case COUNTRY_ETSI:	/* 1-13 */
754 		for (i = 1; i <= 13; i++)
755 			ADD_CHANNEL(ic, i);
756 		break;
757 	case COUNTRY_FCC:	/* 1-11 */
758 	case COUNTRY_IC:	/* 1-11 */
759 		for (i = 1; i <= 11; i++)
760 			ADD_CHANNEL(ic, i);
761 		break;
762 	case COUNTRY_MMK:	/* 14 */
763 		ADD_CHANNEL(ic, 14);
764 		break;
765 	case COUNTRY_FRANCE:	/* 10-13 */
766 		for (i = 10; i <= 13; i++)
767 			ADD_CHANNEL(ic, i);
768 		break;
769 	default:	/* assume channels 10-11 */
770 	case COUNTRY_SPAIN:	/* 10-11 */
771 		for (i = 10; i <= 11; i++)
772 			ADD_CHANNEL(ic, i);
773 		break;
774 	}
775 
776 	/* Read the MAC address. */
777 	reg = ATW_READ(sc, ATW_PAR0);
778 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
779 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
780 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
781 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
782 	reg = ATW_READ(sc, ATW_PAR1);
783 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
784 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
785 
786 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
787 		printf(" could not get mac address, attach failed\n");
788 		return;
789 	}
790 
791 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
792 
793 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
794 	ifp->if_softc = sc;
795 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
796 	    IFF_NOTRAILERS;
797 	ifp->if_ioctl = atw_ioctl;
798 	ifp->if_start = atw_start;
799 	ifp->if_watchdog = atw_watchdog;
800 	ifp->if_init = atw_init;
801 	ifp->if_stop = atw_stop;
802 	IFQ_SET_READY(&ifp->if_snd);
803 
804 	ic->ic_ifp = ifp;
805 	ic->ic_phytype = IEEE80211_T_DS;
806 	ic->ic_opmode = IEEE80211_M_STA;
807 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
808 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
809 
810 	nrate = 0;
811 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
812 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
813 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
814 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
815 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
816 
817 	/*
818 	 * Call MI attach routines.
819 	 */
820 
821 	if_attach(ifp);
822 	ieee80211_ifattach(ic);
823 
824 	sc->sc_newstate = ic->ic_newstate;
825 	ic->ic_newstate = atw_newstate;
826 
827 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
828 	ic->ic_recv_mgmt = atw_recv_mgmt;
829 
830 	sc->sc_node_free = ic->ic_node_free;
831 	ic->ic_node_free = atw_node_free;
832 
833 	sc->sc_node_alloc = ic->ic_node_alloc;
834 	ic->ic_node_alloc = atw_node_alloc;
835 
836 	ic->ic_crypto.cs_key_delete = atw_key_delete;
837 	ic->ic_crypto.cs_key_set = atw_key_set;
838 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
839 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
840 
841 	/* possibly we should fill in our own sc_send_prresp, since
842 	 * the ADM8211 is probably sending probe responses in ad hoc
843 	 * mode.
844 	 */
845 
846 	/* complete initialization */
847 	ieee80211_media_init(ic, atw_media_change, atw_media_status);
848 	callout_init(&sc->sc_scan_ch);
849 
850 #if NBPFILTER > 0
851 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
852 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
853 #endif
854 
855 	/*
856 	 * Make sure the interface is shutdown during reboot.
857 	 */
858 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
859 	if (sc->sc_sdhook == NULL)
860 		printf("%s: WARNING: unable to establish shutdown hook\n",
861 		    sc->sc_dev.dv_xname);
862 
863 	/*
864 	 * Add a suspend hook to make sure we come back up after a
865 	 * resume.
866 	 */
867 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
868 	if (sc->sc_powerhook == NULL)
869 		printf("%s: WARNING: unable to establish power hook\n",
870 		    sc->sc_dev.dv_xname);
871 
872 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
873 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
874 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
875 
876 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
877 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
878 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
879 
880 	ieee80211_announce(ic);
881 	return;
882 
883 	/*
884 	 * Free any resources we've allocated during the failed attach
885 	 * attempt.  Do this in reverse order and fall through.
886 	 */
887  fail_5:
888 	for (i = 0; i < ATW_NRXDESC; i++) {
889 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
890 			continue;
891 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
892 	}
893  fail_4:
894 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
895 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
896 			continue;
897 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
898 	}
899 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
900  fail_3:
901 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
902  fail_2:
903 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
904 	    sizeof(struct atw_control_data));
905  fail_1:
906 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
907  fail_0:
908 	return;
909 }
910 
911 static struct ieee80211_node *
912 atw_node_alloc(struct ieee80211_node_table *nt)
913 {
914 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
915 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
916 
917 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
918 	return ni;
919 }
920 
921 static void
922 atw_node_free(struct ieee80211_node *ni)
923 {
924 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
925 
926 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
927 	    ether_sprintf(ni->ni_bssid)));
928 	(*sc->sc_node_free)(ni);
929 }
930 
931 
932 static void
933 atw_test1_reset(struct atw_softc *sc)
934 {
935 	switch (sc->sc_rev) {
936 	case ATW_REVISION_BA:
937 		if (1 /* XXX condition on transceiver type */) {
938 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
939 		}
940 		break;
941 	case ATW_REVISION_CA:
942 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
943 		break;
944 	default:
945 		break;
946 	}
947 }
948 
949 /*
950  * atw_reset:
951  *
952  *	Perform a soft reset on the ADM8211.
953  */
954 void
955 atw_reset(struct atw_softc *sc)
956 {
957 	int i;
958 	uint32_t lpc;
959 
960 	ATW_WRITE(sc, ATW_NAR, 0x0);
961 	DELAY(atw_nar_delay);
962 
963 	/* Reference driver has a cryptic remark indicating that this might
964 	 * power-on the chip.  I know that it turns off power-saving....
965 	 */
966 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
967 
968 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
969 
970 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
971 		if (ATW_READ(sc, ATW_PAR) == 0)
972 			break;
973 		DELAY(atw_pseudo_milli);
974 	}
975 
976 	/* ... and then pause 100ms longer for good measure. */
977 	DELAY(atw_magic_delay1);
978 
979 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
980 
981 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
982 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
983 
984 	atw_test1_reset(sc);
985 	/*
986 	 * Initialize the PCI Access Register.
987 	 */
988 	sc->sc_busmode = ATW_PAR_PBL_8DW;
989 
990 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
991 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
992 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
993 
994 	/* Turn off maximum power saving, etc.
995 	 *
996 	 * XXX Following example of reference driver, should I set
997 	 * an AID of 1?  It didn't seem to help....
998 	 */
999 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1000 
1001 	DELAY(atw_magic_delay2);
1002 
1003 	/* Recall EEPROM. */
1004 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1005 
1006 	DELAY(atw_magic_delay4);
1007 
1008 	lpc = ATW_READ(sc, ATW_LPC);
1009 
1010 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1011 
1012 	/* A reset seems to affect the SRAM contents, so put them into
1013 	 * a known state.
1014 	 */
1015 	atw_clear_sram(sc);
1016 
1017 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1018 }
1019 
1020 static void
1021 atw_clear_sram(struct atw_softc *sc)
1022 {
1023 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1024 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1025 	/* XXX not for revision 0x20. */
1026 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1027 }
1028 
1029 /* TBD atw_init
1030  *
1031  * set MAC based on ic->ic_bss->myaddr
1032  * write WEP keys
1033  * set TX rate
1034  */
1035 
1036 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1037  * without receiving a beacon with the preferred BSSID & SSID.
1038  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1039  */
1040 static void
1041 atw_wcsr_init(struct atw_softc *sc)
1042 {
1043 	uint32_t wcsr;
1044 
1045 	wcsr = ATW_READ(sc, ATW_WCSR);
1046 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1047 	wcsr |= LSHIFT(7, ATW_WCSR_BLN_MASK);
1048 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1049 
1050 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1051 	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1052 }
1053 
1054 /* Turn off power management.  Set Rx store-and-forward mode. */
1055 static void
1056 atw_cmdr_init(struct atw_softc *sc)
1057 {
1058 	uint32_t cmdr;
1059 	cmdr = ATW_READ(sc, ATW_CMDR);
1060 	cmdr &= ~ATW_CMDR_APM;
1061 	cmdr |= ATW_CMDR_RTE;
1062 	cmdr &= ~ATW_CMDR_DRT_MASK;
1063 	cmdr |= ATW_CMDR_DRT_SF;
1064 
1065 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1066 }
1067 
1068 static void
1069 atw_tofs2_init(struct atw_softc *sc)
1070 {
1071 	uint32_t tofs2;
1072 	/* XXX this magic can probably be figured out from the RFMD docs */
1073 #ifndef ATW_REFSLAVE
1074 	tofs2 = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1075 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1076 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1077 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1078 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1079 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1080 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1081 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1082 #else
1083 	/* XXX new magic from reference driver source */
1084 	tofs2 = LSHIFT(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1085 	      LSHIFT(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1086 	      LSHIFT(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1087 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1088 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1089 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1090 	      LSHIFT(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1091 	      LSHIFT(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1092 #endif
1093 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1094 }
1095 
1096 static void
1097 atw_nar_init(struct atw_softc *sc)
1098 {
1099 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1100 }
1101 
1102 static void
1103 atw_txlmt_init(struct atw_softc *sc)
1104 {
1105 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
1106 	                         LSHIFT(1, ATW_TXLMT_SRTYLIM_MASK));
1107 }
1108 
1109 static void
1110 atw_test1_init(struct atw_softc *sc)
1111 {
1112 	uint32_t test1;
1113 
1114 	test1 = ATW_READ(sc, ATW_TEST1);
1115 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1116 	/* XXX magic 0x1 */
1117 	test1 |= LSHIFT(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1118 	ATW_WRITE(sc, ATW_TEST1, test1);
1119 }
1120 
1121 static void
1122 atw_rf_reset(struct atw_softc *sc)
1123 {
1124 	/* XXX this resets an Intersil RF front-end? */
1125 	/* TBD condition on Intersil RFType? */
1126 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1127 	DELAY(atw_rf_delay1);
1128 	ATW_WRITE(sc, ATW_SYNRF, 0);
1129 	DELAY(atw_rf_delay2);
1130 }
1131 
1132 /* Set 16 TU max duration for the contention-free period (CFP). */
1133 static void
1134 atw_cfp_init(struct atw_softc *sc)
1135 {
1136 	uint32_t cfpp;
1137 
1138 	cfpp = ATW_READ(sc, ATW_CFPP);
1139 	cfpp &= ~ATW_CFPP_CFPMD;
1140 	cfpp |= LSHIFT(16, ATW_CFPP_CFPMD);
1141 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1142 }
1143 
1144 static void
1145 atw_tofs0_init(struct atw_softc *sc)
1146 {
1147 	/* XXX I guess that the Cardbus clock is 22MHz?
1148 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1149 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
1150 	 * very clear on this point. It says in the datasheet that it is
1151 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
1152 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
1153 	 * these values. These values are also the power-on default.
1154 	 */
1155 	ATW_WRITE(sc, ATW_TOFS0,
1156 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
1157 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1158 }
1159 
1160 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1161 static void
1162 atw_ifs_init(struct atw_softc *sc)
1163 {
1164 	uint32_t ifst;
1165 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1166 	 * Go figure.
1167 	 */
1168 	ifst = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1169 	      LSHIFT(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22MHz cycles */,
1170 	             ATW_IFST_SIFS_MASK) |
1171 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1172 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1173 
1174 	ATW_WRITE(sc, ATW_IFST, ifst);
1175 }
1176 
1177 static void
1178 atw_response_times_init(struct atw_softc *sc)
1179 {
1180 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1181 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1182 	 * to pass after it transmits a frame that requires a response;
1183 	 * it waits at most SIFS + MART microseconds for the response.
1184 	 * Surely this is not the ACK timeout?
1185 	 */
1186 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1187 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1188 }
1189 
1190 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1191  * engines read and write baseband registers after Rx and before
1192  * Tx, respectively.
1193  */
1194 static void
1195 atw_bbp_io_init(struct atw_softc *sc)
1196 {
1197 	uint32_t mmiraddr2;
1198 
1199 	/* XXX The reference driver does this, but is it *really*
1200 	 * necessary?
1201 	 */
1202 	switch (sc->sc_rev) {
1203 	case ATW_REVISION_AB:
1204 	case ATW_REVISION_AF:
1205 		mmiraddr2 = 0x0;
1206 		break;
1207 	default:
1208 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1209 		mmiraddr2 &=
1210 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1211 		break;
1212 	}
1213 
1214 	switch (sc->sc_bbptype) {
1215 	case ATW_BBPTYPE_INTERSIL:
1216 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1217 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1218 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1219 		break;
1220 	case ATW_BBPTYPE_MARVEL:
1221 		/* TBD find out the Marvel settings. */
1222 		break;
1223 	case ATW_BBPTYPE_RFMD:
1224 	default:
1225 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1226 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1227 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1228 		break;
1229 	}
1230 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1231 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1232 }
1233 
1234 /*
1235  * atw_init:		[ ifnet interface function ]
1236  *
1237  *	Initialize the interface.  Must be called at splnet().
1238  */
1239 int
1240 atw_init(struct ifnet *ifp)
1241 {
1242 	struct atw_softc *sc = ifp->if_softc;
1243 	struct ieee80211com *ic = &sc->sc_ic;
1244 	struct atw_txsoft *txs;
1245 	struct atw_rxsoft *rxs;
1246 	int i, error = 0;
1247 
1248 	if ((error = atw_enable(sc)) != 0)
1249 		goto out;
1250 
1251 	/*
1252 	 * Cancel any pending I/O. This also resets.
1253 	 */
1254 	atw_stop(ifp, 0);
1255 
1256 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1257 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1258 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1259 
1260 	atw_wcsr_init(sc);
1261 
1262 	atw_cmdr_init(sc);
1263 
1264 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1265 	 *
1266 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1267 	 */
1268 	ATW_WRITE(sc, ATW_PLCPHD, LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
1269 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK));
1270 
1271 	atw_tofs2_init(sc);
1272 
1273 	atw_nar_init(sc);
1274 
1275 	atw_txlmt_init(sc);
1276 
1277 	atw_test1_init(sc);
1278 
1279 	atw_rf_reset(sc);
1280 
1281 	atw_cfp_init(sc);
1282 
1283 	atw_tofs0_init(sc);
1284 
1285 	atw_ifs_init(sc);
1286 
1287 	/* XXX Fall asleep after one second of inactivity.
1288 	 * XXX A frame may only dribble in for 65536us.
1289 	 */
1290 	ATW_WRITE(sc, ATW_RMD,
1291 	    LSHIFT(1, ATW_RMD_PCNT) | LSHIFT(0xffff, ATW_RMD_RMRD_MASK));
1292 
1293 	atw_response_times_init(sc);
1294 
1295 	atw_bbp_io_init(sc);
1296 
1297 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1298 
1299 	if ((error = atw_rf3000_init(sc)) != 0)
1300 		goto out;
1301 
1302 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1303 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1304 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1305 
1306 	/*
1307 	 * Initialize the transmit descriptor ring.
1308 	 */
1309 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1310 	for (i = 0; i < ATW_NTXDESC; i++) {
1311 		sc->sc_txdescs[i].at_ctl = 0;
1312 		/* no transmit chaining */
1313 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1314 		sc->sc_txdescs[i].at_buf2 =
1315 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1316 	}
1317 	/* use ring mode */
1318 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1319 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1320 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1321 	sc->sc_txfree = ATW_NTXDESC;
1322 	sc->sc_txnext = 0;
1323 
1324 	/*
1325 	 * Initialize the transmit job descriptors.
1326 	 */
1327 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1328 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1329 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1330 		txs = &sc->sc_txsoft[i];
1331 		txs->txs_mbuf = NULL;
1332 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1333 	}
1334 
1335 	/*
1336 	 * Initialize the receive descriptor and receive job
1337 	 * descriptor rings.
1338 	 */
1339 	for (i = 0; i < ATW_NRXDESC; i++) {
1340 		rxs = &sc->sc_rxsoft[i];
1341 		if (rxs->rxs_mbuf == NULL) {
1342 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1343 				printf("%s: unable to allocate or map rx "
1344 				    "buffer %d, error = %d\n",
1345 				    sc->sc_dev.dv_xname, i, error);
1346 				/*
1347 				 * XXX Should attempt to run with fewer receive
1348 				 * XXX buffers instead of just failing.
1349 				 */
1350 				atw_rxdrain(sc);
1351 				goto out;
1352 			}
1353 		} else
1354 			ATW_INIT_RXDESC(sc, i);
1355 	}
1356 	sc->sc_rxptr = 0;
1357 
1358 	/*
1359 	 * Initialize the interrupt mask and enable interrupts.
1360 	 */
1361 	/* normal interrupts */
1362 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1363 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1364 
1365 	/* abnormal interrupts */
1366 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1367 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1368 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1369 
1370 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1371 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1372 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1373 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1374 	    ATW_INTR_TRT;
1375 
1376 	sc->sc_linkint_mask &= sc->sc_inten;
1377 	sc->sc_rxint_mask &= sc->sc_inten;
1378 	sc->sc_txint_mask &= sc->sc_inten;
1379 
1380 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1381 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1382 
1383 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1384 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1385 
1386 	/*
1387 	 * Give the transmit and receive rings to the ADM8211.
1388 	 */
1389 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1390 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1391 
1392 	sc->sc_txthresh = 0;
1393 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1394 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1395 
1396 	/* common 802.11 configuration */
1397 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1398 	switch (ic->ic_opmode) {
1399 	case IEEE80211_M_STA:
1400 		break;
1401 	case IEEE80211_M_AHDEMO: /* XXX */
1402 	case IEEE80211_M_IBSS:
1403 		ic->ic_flags |= IEEE80211_F_IBSSON;
1404 		/*FALLTHROUGH*/
1405 	case IEEE80211_M_HOSTAP: /* XXX */
1406 		break;
1407 	case IEEE80211_M_MONITOR: /* XXX */
1408 		break;
1409 	}
1410 
1411 	switch (ic->ic_opmode) {
1412 	case IEEE80211_M_AHDEMO:
1413 	case IEEE80211_M_HOSTAP:
1414 #ifndef IEEE80211_NO_HOSTAP
1415 		ic->ic_bss->ni_intval = ic->ic_lintval;
1416 		ic->ic_bss->ni_rssi = 0;
1417 		ic->ic_bss->ni_rstamp = 0;
1418 #endif /* !IEEE80211_NO_HOSTAP */
1419 		break;
1420 	default:					/* XXX */
1421 		break;
1422 	}
1423 
1424 	sc->sc_wepctl = 0;
1425 
1426 	atw_write_ssid(sc);
1427 	atw_write_sup_rates(sc);
1428 	if (ic->ic_caps & IEEE80211_C_WEP)
1429 		atw_write_wep(sc);
1430 
1431 	ic->ic_state = IEEE80211_S_INIT;
1432 
1433 	/*
1434 	 * Set the receive filter.  This will start the transmit and
1435 	 * receive processes.
1436 	 */
1437 	atw_filter_setup(sc);
1438 
1439 	/*
1440 	 * Start the receive process.
1441 	 */
1442 	ATW_WRITE(sc, ATW_RDR, 0x1);
1443 
1444 	/*
1445 	 * Note that the interface is now running.
1446 	 */
1447 	ifp->if_flags |= IFF_RUNNING;
1448 	ifp->if_flags &= ~IFF_OACTIVE;
1449 
1450 	/* send no beacons, yet. */
1451 	atw_start_beacon(sc, 0);
1452 
1453 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1454 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1455 	else
1456 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1457  out:
1458 	if (error) {
1459 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1460 		sc->sc_tx_timer = 0;
1461 		ifp->if_timer = 0;
1462 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1463 	}
1464 #ifdef ATW_DEBUG
1465 	atw_print_regs(sc, "end of init");
1466 #endif /* ATW_DEBUG */
1467 
1468 	return (error);
1469 }
1470 
1471 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1472  *           0: MAC control of RF3000/Si4126.
1473  *
1474  * Applies power, or selects RF front-end? Sets reset condition.
1475  *
1476  * TBD support non-RFMD BBP, non-SiLabs synth.
1477  */
1478 static void
1479 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1480 {
1481 	if (enable) {
1482 		ATW_WRITE(sc, ATW_SYNRF,
1483 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1484 		DELAY(atw_bbp_io_enable_delay);
1485 	} else {
1486 		ATW_WRITE(sc, ATW_SYNRF, 0);
1487 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1488 	}
1489 }
1490 
1491 static int
1492 atw_tune(struct atw_softc *sc)
1493 {
1494 	int rc;
1495 	u_int chan;
1496 	struct ieee80211com *ic = &sc->sc_ic;
1497 
1498 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1499 	if (chan == IEEE80211_CHAN_ANY)
1500 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1501 
1502 	if (chan == sc->sc_cur_chan)
1503 		return 0;
1504 
1505 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1506 	    sc->sc_cur_chan, chan));
1507 
1508 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1509 
1510 	atw_si4126_tune(sc, chan);
1511 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1512 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1513 		    chan);
1514 
1515 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1516 	DELAY(atw_nar_delay);
1517 	ATW_WRITE(sc, ATW_RDR, 0x1);
1518 
1519 	if (rc == 0)
1520 		sc->sc_cur_chan = chan;
1521 
1522 	return rc;
1523 }
1524 
1525 #ifdef ATW_SYNDEBUG
1526 static void
1527 atw_si4126_print(struct atw_softc *sc)
1528 {
1529 	struct ifnet *ifp = &sc->sc_if;
1530 	u_int addr, val;
1531 
1532 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1533 		return;
1534 
1535 	for (addr = 0; addr <= 8; addr++) {
1536 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1537 		if (atw_si4126_read(sc, addr, &val) == 0) {
1538 			printf("<unknown> (quitting print-out)\n");
1539 			break;
1540 		}
1541 		printf("%05x\n", val);
1542 	}
1543 }
1544 #endif /* ATW_SYNDEBUG */
1545 
1546 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1547  *
1548  * The RF/IF synthesizer produces two reference frequencies for
1549  * the RF2948B transceiver.  The first frequency the RF2948B requires
1550  * is two times the so-called "intermediate frequency" (IF). Since
1551  * a SAW filter on the radio fixes the IF at 374MHz, I program the
1552  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1553  * frequency required by the transceiver is the radio frequency
1554  * (RF). This is a superheterodyne transceiver; for f(chan) the
1555  * center frequency of the channel we are tuning, RF = f(chan) -
1556  * IF.
1557  *
1558  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1559  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1560  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1561  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1562  */
1563 static void
1564 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1565 {
1566 	u_int mhz;
1567 	u_int R;
1568 	u_int32_t gpio;
1569 	u_int16_t gain;
1570 
1571 #ifdef ATW_SYNDEBUG
1572 	atw_si4126_print(sc);
1573 #endif /* ATW_SYNDEBUG */
1574 
1575 	if (chan == 14)
1576 		mhz = 2484;
1577 	else
1578 		mhz = 2412 + 5 * (chan - 1);
1579 
1580 	/* Tune IF to 748MHz to suit the IF LO input of the
1581 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1582          * because an IF in 526MHz - 952MHz is allowed.
1583 	 *
1584 	 * XIN is 44.000MHz, so divide it by two to get allowable
1585 	 * range of 2-25MHz. SiLabs tells me that this is not
1586 	 * strictly necessary.
1587 	 */
1588 
1589 	if (atw_xindiv2)
1590 		R = 44;
1591 	else
1592 		R = 88;
1593 
1594 	/* Power-up RF, IF synthesizers. */
1595 	atw_si4126_write(sc, SI4126_POWER,
1596 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1597 
1598 	/* set LPWR, too? */
1599 	atw_si4126_write(sc, SI4126_MAIN,
1600 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1601 
1602 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1603 	 * set KP2 to 1.
1604 	 *
1605 	 * REFDIF This is different from the reference driver, which
1606 	 * always sets SI4126_GAIN to 0.
1607 	 */
1608 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1609 
1610 	atw_si4126_write(sc, SI4126_GAIN, gain);
1611 
1612 	/* XIN = 44MHz.
1613 	 *
1614 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1615 	 * R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1616 	 *
1617 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1618 	 * so that 1496/88 * 44MHz = 748MHz.
1619 	 */
1620 	atw_si4126_write(sc, SI4126_IFN, 1496);
1621 
1622 	atw_si4126_write(sc, SI4126_IFR, R);
1623 
1624 #ifndef ATW_REFSLAVE
1625 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1626 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1627 	 * which has no RF1!
1628 	 */
1629 	atw_si4126_write(sc, SI4126_RF1R, R);
1630 
1631 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1632 #endif
1633 
1634 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1635 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1636 	 * Now let's multiply it to mhz. So mhz - IF = N.
1637 	 */
1638 	atw_si4126_write(sc, SI4126_RF2R, R);
1639 
1640 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1641 
1642 	/* wait 100us from power-up for RF, IF to settle */
1643 	DELAY(100);
1644 
1645 	gpio = ATW_READ(sc, ATW_GPIO);
1646 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1647 	gpio |= LSHIFT(1, ATW_GPIO_EN_MASK);
1648 
1649 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1650 		/* Set a Prism RF front-end to a special mode for channel 14?
1651 		 *
1652 		 * Apparently the SMC2635W needs this, although I don't think
1653 		 * it has a Prism RF.
1654 		 */
1655 		gpio |= LSHIFT(1, ATW_GPIO_O_MASK);
1656 	}
1657 	ATW_WRITE(sc, ATW_GPIO, gpio);
1658 
1659 #ifdef ATW_SYNDEBUG
1660 	atw_si4126_print(sc);
1661 #endif /* ATW_SYNDEBUG */
1662 }
1663 
1664 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1665  * diversity.
1666  *
1667  * !!!
1668  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1669  * !!!
1670  */
1671 static int
1672 atw_rf3000_init(struct atw_softc *sc)
1673 {
1674 	int rc = 0;
1675 
1676 	atw_bbp_io_enable(sc, 1);
1677 
1678 	/* CCA is acquisition sensitive */
1679 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1680 	    LSHIFT(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1681 
1682 	if (rc != 0)
1683 		goto out;
1684 
1685 	/* enable diversity */
1686 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1687 
1688 	if (rc != 0)
1689 		goto out;
1690 
1691 	/* sensible setting from a binary-only driver */
1692 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1693 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1694 
1695 	if (rc != 0)
1696 		goto out;
1697 
1698 	/* magic from a binary-only driver */
1699 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1700 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1701 
1702 	if (rc != 0)
1703 		goto out;
1704 
1705 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1706 
1707 	if (rc != 0)
1708 		goto out;
1709 
1710 	/* XXX Reference driver remarks that Abocom sets this to 50.
1711 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1712 	 * in the "reserved" area of register RF3000_OPTIONS1.
1713 	 */
1714 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1715 
1716 	if (rc != 0)
1717 		goto out;
1718 
1719 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1720 
1721 	if (rc != 0)
1722 		goto out;
1723 
1724 out:
1725 	atw_bbp_io_enable(sc, 0);
1726 	return rc;
1727 }
1728 
1729 #ifdef ATW_BBPDEBUG
1730 static void
1731 atw_rf3000_print(struct atw_softc *sc)
1732 {
1733 	struct ifnet *ifp = &sc->sc_if;
1734 	u_int addr, val;
1735 
1736 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1737 		return;
1738 
1739 	for (addr = 0x01; addr <= 0x15; addr++) {
1740 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1741 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1742 			printf("<unknown> (quitting print-out)\n");
1743 			break;
1744 		}
1745 		printf("%08x\n", val);
1746 	}
1747 }
1748 #endif /* ATW_BBPDEBUG */
1749 
1750 /* Set the power settings on the BBP for channel `chan'. */
1751 static int
1752 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1753 {
1754 	int rc = 0;
1755 	u_int32_t reg;
1756 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1757 
1758 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1759 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1760 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1761 
1762 	/* odd channels: LSB, even channels: MSB */
1763 	if (chan % 2 == 1) {
1764 		txpower &= 0xFF;
1765 		lpf_cutoff &= 0xFF;
1766 		lna_gs_thresh &= 0xFF;
1767 	} else {
1768 		txpower >>= 8;
1769 		lpf_cutoff >>= 8;
1770 		lna_gs_thresh >>= 8;
1771 	}
1772 
1773 #ifdef ATW_BBPDEBUG
1774 	atw_rf3000_print(sc);
1775 #endif /* ATW_BBPDEBUG */
1776 
1777 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1778 	    "lna_gs_thresh %02x\n",
1779 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1780 
1781 	atw_bbp_io_enable(sc, 1);
1782 
1783 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1784 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1785 		goto out;
1786 
1787 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1788 		goto out;
1789 
1790 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1791 		goto out;
1792 
1793 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1794 
1795 	if (rc != 0)
1796 		goto out;
1797 
1798 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1799 
1800 	if (rc != 0)
1801 		goto out;
1802 
1803 #ifdef ATW_BBPDEBUG
1804 	atw_rf3000_print(sc);
1805 #endif /* ATW_BBPDEBUG */
1806 
1807 out:
1808 	atw_bbp_io_enable(sc, 0);
1809 
1810 	/* set beacon, rts, atim transmit power */
1811 	reg = ATW_READ(sc, ATW_PLCPHD);
1812 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1813 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1814 	    ATW_PLCPHD_SERVICE_MASK);
1815 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1816 	DELAY(atw_plcphd_delay);
1817 
1818 	return rc;
1819 }
1820 
1821 /* Write a register on the RF3000 baseband processor using the
1822  * registers provided by the ADM8211 for this purpose.
1823  *
1824  * Return 0 on success.
1825  */
1826 static int
1827 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1828 {
1829 	u_int32_t reg;
1830 	int i;
1831 
1832 	reg = sc->sc_bbpctl_wr |
1833 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1834 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1835 
1836 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1837 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1838 		DELAY(2 * atw_pseudo_milli);
1839 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1840 			break;
1841 	}
1842 
1843 	if (i < 0) {
1844 		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1845 		return ETIMEDOUT;
1846 	}
1847 	return 0;
1848 }
1849 
1850 /* Read a register on the RF3000 baseband processor using the registers
1851  * the ADM8211 provides for this purpose.
1852  *
1853  * The 7-bit register address is addr.  Record the 8-bit data in the register
1854  * in *val.
1855  *
1856  * Return 0 on success.
1857  *
1858  * XXX This does not seem to work. The ADM8211 must require more or
1859  * different magic to read the chip than to write it. Possibly some
1860  * of the magic I have derived from a binary-only driver concerns
1861  * the "chip address" (see the RF3000 manual).
1862  */
1863 #ifdef ATW_BBPDEBUG
1864 static int
1865 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1866 {
1867 	u_int32_t reg;
1868 	int i;
1869 
1870 	for (i = 1000; --i >= 0; ) {
1871 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1872 			break;
1873 		DELAY(100);
1874 	}
1875 
1876 	if (i < 0) {
1877 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1878 		    sc->sc_dev.dv_xname);
1879 		return ETIMEDOUT;
1880 	}
1881 
1882 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1883 
1884 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1885 
1886 	for (i = 1000; --i >= 0; ) {
1887 		DELAY(100);
1888 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1889 			break;
1890 	}
1891 
1892 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1893 
1894 	if (i < 0) {
1895 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1896 		    sc->sc_dev.dv_xname, reg);
1897 		return ETIMEDOUT;
1898 	}
1899 	if (val != NULL)
1900 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1901 	return 0;
1902 }
1903 #endif /* ATW_BBPDEBUG */
1904 
1905 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1906  * provided by the ADM8211 for that purpose.
1907  *
1908  * val is 18 bits of data, and val is the 4-bit address of the register.
1909  *
1910  * Return 0 on success.
1911  */
1912 static void
1913 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1914 {
1915 	uint32_t bits, mask, reg;
1916 	const int nbits = 22;
1917 
1918 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1919 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1920 
1921 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1922 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1923 
1924 	reg = ATW_SYNRF_SELSYN;
1925 	/* reference driver: reset Si4126 serial bus to initial
1926 	 * conditions?
1927 	 */
1928 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1929 	ATW_WRITE(sc, ATW_SYNRF, reg);
1930 
1931 	for (mask = BIT(nbits - 1); mask != 0; mask >>= 1) {
1932 		if ((bits & mask) != 0)
1933 			reg |= ATW_SYNRF_SYNDATA;
1934 		else
1935 			reg &= ~ATW_SYNRF_SYNDATA;
1936 		ATW_WRITE(sc, ATW_SYNRF, reg);
1937 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1938 		ATW_WRITE(sc, ATW_SYNRF, reg);
1939 	}
1940 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1941 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1942 }
1943 
1944 /* Read 18-bit data from the 4-bit address addr in Si4126
1945  * RF synthesizer and write the data to *val. Return 0 on success.
1946  *
1947  * XXX This does not seem to work. The ADM8211 must require more or
1948  * different magic to read the chip than to write it.
1949  */
1950 #ifdef ATW_SYNDEBUG
1951 static int
1952 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1953 {
1954 	u_int32_t reg;
1955 	int i;
1956 
1957 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1958 
1959 	for (i = 1000; --i >= 0; ) {
1960 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1961 			break;
1962 		DELAY(100);
1963 	}
1964 
1965 	if (i < 0) {
1966 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1967 		    sc->sc_dev.dv_xname);
1968 		return ETIMEDOUT;
1969 	}
1970 
1971 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1972 
1973 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1974 
1975 	for (i = 1000; --i >= 0; ) {
1976 		DELAY(100);
1977 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1978 			break;
1979 	}
1980 
1981 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1982 
1983 	if (i < 0) {
1984 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1985 		    sc->sc_dev.dv_xname, reg);
1986 		return ETIMEDOUT;
1987 	}
1988 	if (val != NULL)
1989 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1990 		                       ATW_SYNCTL_DATA_MASK);
1991 	return 0;
1992 }
1993 #endif /* ATW_SYNDEBUG */
1994 
1995 /* XXX is the endianness correct? test. */
1996 #define	atw_calchash(addr) \
1997 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1998 
1999 /*
2000  * atw_filter_setup:
2001  *
2002  *	Set the ADM8211's receive filter.
2003  */
2004 static void
2005 atw_filter_setup(struct atw_softc *sc)
2006 {
2007 	struct ieee80211com *ic = &sc->sc_ic;
2008 	struct ethercom *ec = &sc->sc_ec;
2009 	struct ifnet *ifp = &sc->sc_if;
2010 	int hash;
2011 	u_int32_t hashes[2];
2012 	struct ether_multi *enm;
2013 	struct ether_multistep step;
2014 
2015 	/* According to comments in tlp_al981_filter_setup
2016 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2017 	 * multicast filter to be set while it is running.  Hopefully
2018 	 * the ADM8211 is not the same!
2019 	 */
2020 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2021 		atw_idle(sc, ATW_NAR_SR);
2022 
2023 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
2024 	ifp->if_flags &= ~IFF_ALLMULTI;
2025 
2026 	/* XXX in scan mode, do not filter packets.  Maybe this is
2027 	 * unnecessary.
2028 	 */
2029 	if (ic->ic_state == IEEE80211_S_SCAN ||
2030 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2031 		sc->sc_opmode |= ATW_NAR_PR;
2032 		goto allmulti;
2033 	}
2034 
2035 	hashes[0] = hashes[1] = 0x0;
2036 
2037 	/*
2038 	 * Program the 64-bit multicast hash filter.
2039 	 */
2040 	ETHER_FIRST_MULTI(step, ec, enm);
2041 	while (enm != NULL) {
2042 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2043 		    ETHER_ADDR_LEN) != 0)
2044 			goto allmulti;
2045 
2046 		hash = atw_calchash(enm->enm_addrlo);
2047 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2048 		ETHER_NEXT_MULTI(step, enm);
2049 		sc->sc_opmode |= ATW_NAR_MM;
2050 	}
2051 	ifp->if_flags &= ~IFF_ALLMULTI;
2052 	goto setit;
2053 
2054 allmulti:
2055 	sc->sc_opmode |= ATW_NAR_MM;
2056 	ifp->if_flags |= IFF_ALLMULTI;
2057 	hashes[0] = hashes[1] = 0xffffffff;
2058 
2059 setit:
2060 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2061 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2062 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2063 	DELAY(atw_nar_delay);
2064 
2065 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2066 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2067 }
2068 
2069 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2070  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2071  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2072  * no beacon with the preferred BSSID and SSID in the number of
2073  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2074  */
2075 static void
2076 atw_write_bssid(struct atw_softc *sc)
2077 {
2078 	struct ieee80211com *ic = &sc->sc_ic;
2079 	u_int8_t *bssid;
2080 
2081 	bssid = ic->ic_bss->ni_bssid;
2082 
2083 	ATW_WRITE(sc, ATW_BSSID0,
2084 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2085 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2086 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2087 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2088 
2089 	ATW_WRITE(sc, ATW_ABDA1,
2090 	    (ATW_READ(sc, ATW_ABDA1) &
2091 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2092 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2093 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2094 
2095 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2096 	    ether_sprintf(sc->sc_bssid)));
2097 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2098 
2099 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2100 }
2101 
2102 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2103  * 16-bit word.
2104  */
2105 static void
2106 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2107 {
2108 	u_int i;
2109 	u_int8_t *ptr;
2110 
2111 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2112 
2113 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2114 
2115 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2116 
2117 	ptr = &sc->sc_sram[ofs];
2118 
2119 	for (i = 0; i < buflen; i += 2) {
2120 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2121 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2122 		DELAY(atw_writewep_delay);
2123 
2124 		ATW_WRITE(sc, ATW_WESK,
2125 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2126 		DELAY(atw_writewep_delay);
2127 	}
2128 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2129 
2130 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2131 		int n_octets = 0;
2132 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2133 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2134 		for (i = 0; i < buflen; i++) {
2135 			printf(" %02x", ptr[i]);
2136 			if (++n_octets % 24 == 0)
2137 				printf("\n");
2138 		}
2139 		if (n_octets % 24 != 0)
2140 			printf("\n");
2141 	}
2142 }
2143 
2144 static int
2145 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2146 {
2147 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2148 	u_int keyix = k->wk_keyix;
2149 
2150 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2151 
2152 	if (keyix >= IEEE80211_WEP_NKID)
2153 		return 0;
2154 	if (k->wk_keylen != 0)
2155 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2156 
2157 	return 1;
2158 }
2159 
2160 static int
2161 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2162 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2163 {
2164 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2165 
2166 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2167 
2168 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2169 		return 0;
2170 
2171 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2172 
2173 	return 1;
2174 }
2175 
2176 static void
2177 atw_key_update_begin(struct ieee80211com *ic)
2178 {
2179 #ifdef ATW_DEBUG
2180 	struct ifnet *ifp = ic->ic_ifp;
2181 	struct atw_softc *sc = ifp->if_softc;
2182 #endif
2183 
2184 	DPRINTF(sc, ("%s:\n", __func__));
2185 }
2186 
2187 static void
2188 atw_key_update_end(struct ieee80211com *ic)
2189 {
2190 	struct ifnet *ifp = ic->ic_ifp;
2191 	struct atw_softc *sc = ifp->if_softc;
2192 
2193 	DPRINTF(sc, ("%s:\n", __func__));
2194 
2195 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2196 		return;
2197 	if (ATW_IS_ENABLED(sc) == 0)
2198 		return;
2199 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2200 	atw_write_wep(sc);
2201 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2202 }
2203 
2204 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2205 static void
2206 atw_write_wep(struct atw_softc *sc)
2207 {
2208 	struct ieee80211com *ic = &sc->sc_ic;
2209 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2210 	u_int8_t buf[IEEE80211_WEP_NKID]
2211 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2212 	u_int32_t reg;
2213 	int i;
2214 
2215 	sc->sc_wepctl = 0;
2216 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2217 
2218 	memset(&buf[0][0], 0, sizeof(buf));
2219 
2220 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2221 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2222 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2223 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2224 			buf[i][1] = ATW_WEP_ENABLED;
2225 		} else {
2226 			buf[i][1] = 0;
2227 			continue;
2228 		}
2229 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2230 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2231 		    ic->ic_nw_keys[i].wk_keylen - 1);
2232 	}
2233 
2234 	reg = ATW_READ(sc, ATW_MACTEST);
2235 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2236 	reg &= ~ATW_MACTEST_KEYID_MASK;
2237 	reg |= LSHIFT(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2238 	ATW_WRITE(sc, ATW_MACTEST, reg);
2239 
2240 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2241 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2242 
2243 	switch (sc->sc_rev) {
2244 	case ATW_REVISION_AB:
2245 	case ATW_REVISION_AF:
2246 		/* Bypass WEP on Rx. */
2247 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2248 		break;
2249 	default:
2250 		break;
2251 	}
2252 
2253 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2254 	    sizeof(buf));
2255 
2256 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2257 }
2258 
2259 static void
2260 atw_change_ibss(struct atw_softc *sc)
2261 {
2262 	atw_predict_beacon(sc);
2263 	atw_write_bssid(sc);
2264 	atw_start_beacon(sc, 1);
2265 }
2266 
2267 static void
2268 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2269     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2270 {
2271 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2272 
2273 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2274 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2275 		return;
2276 
2277 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2278 
2279 	switch (subtype) {
2280 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2281 	case IEEE80211_FC0_SUBTYPE_BEACON:
2282 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
2283 		    ic->ic_state != IEEE80211_S_RUN)
2284 			break;
2285 		if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc) &&
2286 		    ieee80211_ibss_merge(ni) == ENETRESET)
2287 			atw_change_ibss(sc);
2288 		break;
2289 	default:
2290 		break;
2291 	}
2292 	return;
2293 }
2294 
2295 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2296  * In ad hoc mode, the SSID is written to the beacons sent by the
2297  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2298  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2299  * indications.
2300  */
2301 static void
2302 atw_write_ssid(struct atw_softc *sc)
2303 {
2304 	struct ieee80211com *ic = &sc->sc_ic;
2305 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2306 	 * it only expects the element length, not its ID.
2307 	 */
2308 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2309 
2310 	memset(buf, 0, sizeof(buf));
2311 	buf[0] = ic->ic_bss->ni_esslen;
2312 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2313 
2314 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2315 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2316 }
2317 
2318 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2319  * In ad hoc mode, the supported rates are written to beacons sent by the
2320  * ADM8211.
2321  */
2322 static void
2323 atw_write_sup_rates(struct atw_softc *sc)
2324 {
2325 	struct ieee80211com *ic = &sc->sc_ic;
2326 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2327 	 * supported rates
2328 	 */
2329 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2330 
2331 	memset(buf, 0, sizeof(buf));
2332 
2333 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2334 
2335 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2336 	    ic->ic_bss->ni_rates.rs_nrates);
2337 
2338 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2339 }
2340 
2341 /* Start/stop sending beacons. */
2342 void
2343 atw_start_beacon(struct atw_softc *sc, int start)
2344 {
2345 	struct ieee80211com *ic = &sc->sc_ic;
2346 	uint16_t chan;
2347 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2348 	size_t len;
2349 
2350 	if (ATW_IS_ENABLED(sc) == 0)
2351 		return;
2352 
2353 	/* start beacons */
2354 	len = sizeof(struct ieee80211_frame) +
2355 	    8 /* timestamp */ + 2 /* beacon interval */ +
2356 	    2 /* capability info */ +
2357 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2358 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2359 	    3 /* DS parameters */ +
2360 	    IEEE80211_CRC_LEN;
2361 
2362 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2363 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2364 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2365 
2366 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2367 	ATW_WRITE(sc, ATW_CAP1, cap1);
2368 
2369 	if (!start)
2370 		return;
2371 
2372 	/* TBD use ni_capinfo */
2373 
2374 	capinfo = 0;
2375 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2376 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2377 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2378 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2379 
2380 	switch (ic->ic_opmode) {
2381 	case IEEE80211_M_IBSS:
2382 		len += 4; /* IBSS parameters */
2383 		capinfo |= IEEE80211_CAPINFO_IBSS;
2384 		break;
2385 	case IEEE80211_M_HOSTAP:
2386 		/* XXX 6-byte minimum TIM */
2387 		len += atw_beacon_len_adjust;
2388 		capinfo |= IEEE80211_CAPINFO_ESS;
2389 		break;
2390 	default:
2391 		return;
2392 	}
2393 
2394 	/* set listen interval
2395 	 * XXX do software units agree w/ hardware?
2396 	 */
2397 	bpli = LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2398 	    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2399 
2400 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2401 
2402 	bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2403 	cap0 |= LSHIFT(chan, ATW_CAP0_CHN_MASK);
2404 	cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2405 
2406 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2407 	ATW_WRITE(sc, ATW_BPLI, bpli);
2408 	ATW_WRITE(sc, ATW_CAP0, cap0);
2409 	ATW_WRITE(sc, ATW_CAP1, cap1);
2410 
2411 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2412 	    sc->sc_dev.dv_xname, bcnt));
2413 
2414 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2415 	    sc->sc_dev.dv_xname, cap1));
2416 }
2417 
2418 /* Return the 32 lsb of the last TSFT divisible by ival. */
2419 static inline uint32_t
2420 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2421 {
2422 	/* Following the reference driver's lead, I compute
2423 	 *
2424 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2425 	 *
2426 	 * without using 64-bit arithmetic, using the following
2427 	 * relationship:
2428 	 *
2429 	 *     (0x100000000 * H + L) % m
2430 	 *   = ((0x100000000 % m) * H + L) % m
2431 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2432 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2433 	 *   = ((0xffffffff % m + 1) * H + L) % m
2434 	 */
2435 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2436 }
2437 
2438 static uint64_t
2439 atw_get_tsft(struct atw_softc *sc)
2440 {
2441 	int i;
2442 	uint32_t tsfth, tsftl;
2443 	for (i = 0; i < 2; i++) {
2444 		tsfth = ATW_READ(sc, ATW_TSFTH);
2445 		tsftl = ATW_READ(sc, ATW_TSFTL);
2446 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2447 			break;
2448 	}
2449 	return ((uint64_t)tsfth << 32) | tsftl;
2450 }
2451 
2452 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2453  * the ieee80211com.
2454  *
2455  * Predict the next target beacon transmission time (TBTT) and
2456  * write it to the ADM8211.
2457  */
2458 static void
2459 atw_predict_beacon(struct atw_softc *sc)
2460 {
2461 #define TBTTOFS 20 /* TU */
2462 
2463 	struct ieee80211com *ic = &sc->sc_ic;
2464 	uint64_t tsft;
2465 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2466 	union {
2467 		uint64_t	word;
2468 		uint8_t		tstamp[8];
2469 	} u;
2470 
2471 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2472 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2473 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2474 		tsft = atw_get_tsft(sc);
2475 		u.word = htole64(tsft);
2476 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2477 		    sizeof(ic->ic_bss->ni_tstamp));
2478 	} else
2479 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2480 
2481 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2482 
2483 	tsftl = tsft & 0xFFFFFFFF;
2484 	tsfth = tsft >> 32;
2485 
2486 	/* We sent/received the last beacon `past' microseconds
2487 	 * after the interval divided the TSF timer.
2488 	 */
2489 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2490 
2491 	/* Skip ten beacons so that the TBTT cannot pass before
2492 	 * we've programmed it.  Ten is an arbitrary number.
2493 	 */
2494 	tbtt = past_even + ival * 10;
2495 
2496 	ATW_WRITE(sc, ATW_TOFS1,
2497 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2498 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2499 	    LSHIFT(MASK_AND_RSHIFT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2500 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2501 #undef TBTTOFS
2502 }
2503 
2504 static void
2505 atw_next_scan(void *arg)
2506 {
2507 	struct atw_softc *sc = arg;
2508 	struct ieee80211com *ic = &sc->sc_ic;
2509 	int s;
2510 
2511 	/* don't call atw_start w/o network interrupts blocked */
2512 	s = splnet();
2513 	if (ic->ic_state == IEEE80211_S_SCAN)
2514 		ieee80211_next_scan(ic);
2515 	splx(s);
2516 }
2517 
2518 /* Synchronize the hardware state with the software state. */
2519 static int
2520 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2521 {
2522 	struct ifnet *ifp = ic->ic_ifp;
2523 	struct atw_softc *sc = ifp->if_softc;
2524 	enum ieee80211_state ostate;
2525 	int error = 0;
2526 
2527 	ostate = ic->ic_state;
2528 	callout_stop(&sc->sc_scan_ch);
2529 	atw_start_beacon(sc, 0);
2530 
2531 	switch (nstate) {
2532 	case IEEE80211_S_ASSOC:
2533 		error = atw_tune(sc);
2534 		break;
2535 	case IEEE80211_S_INIT:
2536 		callout_stop(&sc->sc_scan_ch);
2537 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2538 		break;
2539 	case IEEE80211_S_SCAN:
2540 		error = atw_tune(sc);
2541 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2542 		    atw_next_scan, sc);
2543 		break;
2544 	case IEEE80211_S_AUTH:
2545 		error = atw_tune(sc);
2546 		break;
2547 	case IEEE80211_S_RUN:
2548 		error = atw_tune(sc);
2549 		atw_write_bssid(sc);
2550 		atw_write_ssid(sc);
2551 		atw_write_sup_rates(sc);
2552 
2553 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2554 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2555 			break;
2556 
2557 		/* set listen interval
2558 		 * XXX do software units agree w/ hardware?
2559 		 */
2560 		ATW_WRITE(sc, ATW_BPLI,
2561 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2562 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2563 			   ATW_BPLI_LI_MASK));
2564 
2565 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2566 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2567 
2568 		atw_predict_beacon(sc);
2569 		atw_start_beacon(sc,
2570 		    ic->ic_opmode == IEEE80211_M_HOSTAP ||
2571 		    ic->ic_opmode == IEEE80211_M_IBSS);
2572 		break;
2573 	}
2574 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2575 }
2576 
2577 /*
2578  * atw_add_rxbuf:
2579  *
2580  *	Add a receive buffer to the indicated descriptor.
2581  */
2582 int
2583 atw_add_rxbuf(struct atw_softc *sc, int idx)
2584 {
2585 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2586 	struct mbuf *m;
2587 	int error;
2588 
2589 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2590 	if (m == NULL)
2591 		return (ENOBUFS);
2592 
2593 	MCLGET(m, M_DONTWAIT);
2594 	if ((m->m_flags & M_EXT) == 0) {
2595 		m_freem(m);
2596 		return (ENOBUFS);
2597 	}
2598 
2599 	if (rxs->rxs_mbuf != NULL)
2600 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2601 
2602 	rxs->rxs_mbuf = m;
2603 
2604 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2605 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2606 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2607 	if (error) {
2608 		printf("%s: can't load rx DMA map %d, error = %d\n",
2609 		    sc->sc_dev.dv_xname, idx, error);
2610 		panic("atw_add_rxbuf");	/* XXX */
2611 	}
2612 
2613 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2614 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2615 
2616 	ATW_INIT_RXDESC(sc, idx);
2617 
2618 	return (0);
2619 }
2620 
2621 /*
2622  * Release any queued transmit buffers.
2623  */
2624 void
2625 atw_txdrain(struct atw_softc *sc)
2626 {
2627 	struct atw_txsoft *txs;
2628 
2629 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2630 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2631 		if (txs->txs_mbuf != NULL) {
2632 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2633 			m_freem(txs->txs_mbuf);
2634 			txs->txs_mbuf = NULL;
2635 		}
2636 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2637 		sc->sc_txfree += txs->txs_ndescs;
2638 	}
2639 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2640 	sc->sc_tx_timer = 0;
2641 }
2642 
2643 /*
2644  * atw_stop:		[ ifnet interface function ]
2645  *
2646  *	Stop transmission on the interface.
2647  */
2648 void
2649 atw_stop(struct ifnet *ifp, int disable)
2650 {
2651 	struct atw_softc *sc = ifp->if_softc;
2652 	struct ieee80211com *ic = &sc->sc_ic;
2653 
2654 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2655 
2656 	/* Disable interrupts. */
2657 	ATW_WRITE(sc, ATW_IER, 0);
2658 
2659 	/* Stop the transmit and receive processes. */
2660 	sc->sc_opmode = 0;
2661 	ATW_WRITE(sc, ATW_NAR, 0);
2662 	DELAY(atw_nar_delay);
2663 	ATW_WRITE(sc, ATW_TDBD, 0);
2664 	ATW_WRITE(sc, ATW_TDBP, 0);
2665 	ATW_WRITE(sc, ATW_RDB, 0);
2666 
2667 	atw_txdrain(sc);
2668 
2669 	if (disable) {
2670 		atw_rxdrain(sc);
2671 		atw_disable(sc);
2672 	}
2673 
2674 	/*
2675 	 * Mark the interface down and cancel the watchdog timer.
2676 	 */
2677 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2678 	sc->sc_tx_timer = 0;
2679 	ifp->if_timer = 0;
2680 
2681 	if (!disable)
2682 		atw_reset(sc);
2683 }
2684 
2685 /*
2686  * atw_rxdrain:
2687  *
2688  *	Drain the receive queue.
2689  */
2690 void
2691 atw_rxdrain(struct atw_softc *sc)
2692 {
2693 	struct atw_rxsoft *rxs;
2694 	int i;
2695 
2696 	for (i = 0; i < ATW_NRXDESC; i++) {
2697 		rxs = &sc->sc_rxsoft[i];
2698 		if (rxs->rxs_mbuf == NULL)
2699 			continue;
2700 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2701 		m_freem(rxs->rxs_mbuf);
2702 		rxs->rxs_mbuf = NULL;
2703 	}
2704 }
2705 
2706 /*
2707  * atw_detach:
2708  *
2709  *	Detach an ADM8211 interface.
2710  */
2711 int
2712 atw_detach(struct atw_softc *sc)
2713 {
2714 	struct ifnet *ifp = &sc->sc_if;
2715 	struct atw_rxsoft *rxs;
2716 	struct atw_txsoft *txs;
2717 	int i;
2718 
2719 	/*
2720 	 * Succeed now if there isn't any work to do.
2721 	 */
2722 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2723 		return (0);
2724 
2725 	callout_stop(&sc->sc_scan_ch);
2726 
2727 	ieee80211_ifdetach(&sc->sc_ic);
2728 	if_detach(ifp);
2729 
2730 	for (i = 0; i < ATW_NRXDESC; i++) {
2731 		rxs = &sc->sc_rxsoft[i];
2732 		if (rxs->rxs_mbuf != NULL) {
2733 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2734 			m_freem(rxs->rxs_mbuf);
2735 			rxs->rxs_mbuf = NULL;
2736 		}
2737 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2738 	}
2739 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2740 		txs = &sc->sc_txsoft[i];
2741 		if (txs->txs_mbuf != NULL) {
2742 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2743 			m_freem(txs->txs_mbuf);
2744 			txs->txs_mbuf = NULL;
2745 		}
2746 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2747 	}
2748 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2749 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2750 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2751 	    sizeof(struct atw_control_data));
2752 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2753 
2754 	shutdownhook_disestablish(sc->sc_sdhook);
2755 	powerhook_disestablish(sc->sc_powerhook);
2756 
2757 	if (sc->sc_srom)
2758 		free(sc->sc_srom, M_DEVBUF);
2759 
2760 	return (0);
2761 }
2762 
2763 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2764 void
2765 atw_shutdown(void *arg)
2766 {
2767 	struct atw_softc *sc = arg;
2768 
2769 	atw_stop(&sc->sc_if, 1);
2770 }
2771 
2772 int
2773 atw_intr(void *arg)
2774 {
2775 	struct atw_softc *sc = arg;
2776 	struct ifnet *ifp = &sc->sc_if;
2777 	u_int32_t status, rxstatus, txstatus, linkstatus;
2778 	int handled = 0, txthresh;
2779 
2780 #ifdef DEBUG
2781 	if (ATW_IS_ENABLED(sc) == 0)
2782 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2783 #endif
2784 
2785 	/*
2786 	 * If the interface isn't running, the interrupt couldn't
2787 	 * possibly have come from us.
2788 	 */
2789 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2790 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2791 		return (0);
2792 
2793 	for (;;) {
2794 		status = ATW_READ(sc, ATW_STSR);
2795 
2796 		if (status)
2797 			ATW_WRITE(sc, ATW_STSR, status);
2798 
2799 #ifdef ATW_DEBUG
2800 #define PRINTINTR(flag) do { \
2801 	if ((status & flag) != 0) { \
2802 		printf("%s" #flag, delim); \
2803 		delim = ","; \
2804 	} \
2805 } while (0)
2806 
2807 		if (atw_debug > 1 && status) {
2808 			const char *delim = "<";
2809 
2810 			printf("%s: reg[STSR] = %x",
2811 			    sc->sc_dev.dv_xname, status);
2812 
2813 			PRINTINTR(ATW_INTR_FBE);
2814 			PRINTINTR(ATW_INTR_LINKOFF);
2815 			PRINTINTR(ATW_INTR_LINKON);
2816 			PRINTINTR(ATW_INTR_RCI);
2817 			PRINTINTR(ATW_INTR_RDU);
2818 			PRINTINTR(ATW_INTR_REIS);
2819 			PRINTINTR(ATW_INTR_RPS);
2820 			PRINTINTR(ATW_INTR_TCI);
2821 			PRINTINTR(ATW_INTR_TDU);
2822 			PRINTINTR(ATW_INTR_TLT);
2823 			PRINTINTR(ATW_INTR_TPS);
2824 			PRINTINTR(ATW_INTR_TRT);
2825 			PRINTINTR(ATW_INTR_TUF);
2826 			PRINTINTR(ATW_INTR_BCNTC);
2827 			PRINTINTR(ATW_INTR_ATIME);
2828 			PRINTINTR(ATW_INTR_TBTT);
2829 			PRINTINTR(ATW_INTR_TSCZ);
2830 			PRINTINTR(ATW_INTR_TSFTF);
2831 			printf(">\n");
2832 		}
2833 #undef PRINTINTR
2834 #endif /* ATW_DEBUG */
2835 
2836 		if ((status & sc->sc_inten) == 0)
2837 			break;
2838 
2839 		handled = 1;
2840 
2841 		rxstatus = status & sc->sc_rxint_mask;
2842 		txstatus = status & sc->sc_txint_mask;
2843 		linkstatus = status & sc->sc_linkint_mask;
2844 
2845 		if (linkstatus) {
2846 			atw_linkintr(sc, linkstatus);
2847 		}
2848 
2849 		if (rxstatus) {
2850 			/* Grab any new packets. */
2851 			atw_rxintr(sc);
2852 
2853 			if (rxstatus & ATW_INTR_RDU) {
2854 				printf("%s: receive ring overrun\n",
2855 				    sc->sc_dev.dv_xname);
2856 				/* Get the receive process going again. */
2857 				ATW_WRITE(sc, ATW_RDR, 0x1);
2858 				break;
2859 			}
2860 		}
2861 
2862 		if (txstatus) {
2863 			/* Sweep up transmit descriptors. */
2864 			atw_txintr(sc);
2865 
2866 			if (txstatus & ATW_INTR_TLT)
2867 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2868 				    sc->sc_dev.dv_xname));
2869 
2870 			if (txstatus & ATW_INTR_TRT)
2871 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2872 				    sc->sc_dev.dv_xname));
2873 
2874 			/* If Tx under-run, increase our transmit threshold
2875 			 * if another is available.
2876 			 */
2877 			txthresh = sc->sc_txthresh + 1;
2878 			if ((txstatus & ATW_INTR_TUF) &&
2879 			    sc->sc_txth[txthresh].txth_name != NULL) {
2880 				/* Idle the transmit process. */
2881 				atw_idle(sc, ATW_NAR_ST);
2882 
2883 				sc->sc_txthresh = txthresh;
2884 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2885 				sc->sc_opmode |=
2886 				    sc->sc_txth[txthresh].txth_opmode;
2887 				printf("%s: transmit underrun; new "
2888 				    "threshold: %s\n", sc->sc_dev.dv_xname,
2889 				    sc->sc_txth[txthresh].txth_name);
2890 
2891 				/* Set the new threshold and restart
2892 				 * the transmit process.
2893 				 */
2894 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2895 				DELAY(atw_nar_delay);
2896 				ATW_WRITE(sc, ATW_RDR, 0x1);
2897 				/* XXX Log every Nth underrun from
2898 				 * XXX now on?
2899 				 */
2900 			}
2901 		}
2902 
2903 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2904 			if (status & ATW_INTR_TPS)
2905 				printf("%s: transmit process stopped\n",
2906 				    sc->sc_dev.dv_xname);
2907 			if (status & ATW_INTR_RPS)
2908 				printf("%s: receive process stopped\n",
2909 				    sc->sc_dev.dv_xname);
2910 			(void)atw_init(ifp);
2911 			break;
2912 		}
2913 
2914 		if (status & ATW_INTR_FBE) {
2915 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2916 			(void)atw_init(ifp);
2917 			break;
2918 		}
2919 
2920 		/*
2921 		 * Not handled:
2922 		 *
2923 		 *	Transmit buffer unavailable -- normal
2924 		 *	condition, nothing to do, really.
2925 		 *
2926 		 *	Early receive interrupt -- not available on
2927 		 *	all chips, we just use RI.  We also only
2928 		 *	use single-segment receive DMA, so this
2929 		 *	is mostly useless.
2930 		 *
2931 		 *      TBD others
2932 		 */
2933 	}
2934 
2935 	/* Try to get more packets going. */
2936 	atw_start(ifp);
2937 
2938 	return (handled);
2939 }
2940 
2941 /*
2942  * atw_idle:
2943  *
2944  *	Cause the transmit and/or receive processes to go idle.
2945  *
2946  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2947  *	process in STSR if I clear SR or ST after the process has already
2948  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2949  *      do not seem to be too reliable. Perhaps I have the sense of the
2950  *	Rx bits switched with the Tx bits?
2951  */
2952 void
2953 atw_idle(struct atw_softc *sc, u_int32_t bits)
2954 {
2955 	u_int32_t ackmask = 0, opmode, stsr, test0;
2956 	int i, s;
2957 
2958 	s = splnet();
2959 
2960 	opmode = sc->sc_opmode & ~bits;
2961 
2962 	if (bits & ATW_NAR_SR)
2963 		ackmask |= ATW_INTR_RPS;
2964 
2965 	if (bits & ATW_NAR_ST) {
2966 		ackmask |= ATW_INTR_TPS;
2967 		/* set ATW_NAR_HF to flush TX FIFO. */
2968 		opmode |= ATW_NAR_HF;
2969 	}
2970 
2971 	ATW_WRITE(sc, ATW_NAR, opmode);
2972 	DELAY(atw_nar_delay);
2973 
2974 	for (i = 0; i < 1000; i++) {
2975 		stsr = ATW_READ(sc, ATW_STSR);
2976 		if ((stsr & ackmask) == ackmask)
2977 			break;
2978 		DELAY(10);
2979 	}
2980 
2981 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2982 
2983 	if ((stsr & ackmask) == ackmask)
2984 		goto out;
2985 
2986 	test0 = ATW_READ(sc, ATW_TEST0);
2987 
2988 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2989 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2990 		printf("%s: transmit process not idle [%s]\n",
2991 		    sc->sc_dev.dv_xname,
2992 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2993 		printf("%s: bits %08x test0 %08x stsr %08x\n",
2994 		    sc->sc_dev.dv_xname, bits, test0, stsr);
2995 	}
2996 
2997 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2998 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2999 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3000 		    sc->sc_dev.dv_xname,
3001 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
3002 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3003 		    sc->sc_dev.dv_xname, bits, test0, stsr));
3004 	}
3005 out:
3006 	if ((bits & ATW_NAR_ST) != 0)
3007 		atw_txdrain(sc);
3008 	splx(s);
3009 	return;
3010 }
3011 
3012 /*
3013  * atw_linkintr:
3014  *
3015  *	Helper; handle link-status interrupts.
3016  */
3017 void
3018 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3019 {
3020 	struct ieee80211com *ic = &sc->sc_ic;
3021 
3022 	if (ic->ic_state != IEEE80211_S_RUN)
3023 		return;
3024 
3025 	if (linkstatus & ATW_INTR_LINKON) {
3026 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3027 		sc->sc_rescan_timer = 0;
3028 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3029 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3030 		if (ic->ic_opmode != IEEE80211_M_STA)
3031 			return;
3032 		sc->sc_rescan_timer = 3;
3033 		sc->sc_if.if_timer = 1;
3034 	}
3035 }
3036 
3037 static inline int
3038 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3039 {
3040 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3041 		return 0;
3042 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3043 		return 0;
3044 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3045 }
3046 
3047 /*
3048  * atw_rxintr:
3049  *
3050  *	Helper; handle receive interrupts.
3051  */
3052 void
3053 atw_rxintr(struct atw_softc *sc)
3054 {
3055 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3056 	struct ieee80211com *ic = &sc->sc_ic;
3057 	struct ieee80211_node *ni;
3058 	struct ieee80211_frame_min *wh;
3059 	struct ifnet *ifp = &sc->sc_if;
3060 	struct atw_rxsoft *rxs;
3061 	struct mbuf *m;
3062 	u_int32_t rxstat;
3063 	int i, len, rate, rate0;
3064 	u_int32_t rssi, rssi0;
3065 
3066 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3067 		rxs = &sc->sc_rxsoft[i];
3068 
3069 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3070 
3071 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3072 		rssi0 = le32toh(sc->sc_rxdescs[i].ar_rssi);
3073 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
3074 
3075 		if (rxstat & ATW_RXSTAT_OWN)
3076 			break; /* We have processed all receive buffers. */
3077 
3078 		DPRINTF3(sc,
3079 		    ("%s: rx stat %08x rssi0 %08x buf1 %08x buf2 %08x\n",
3080 		    sc->sc_dev.dv_xname,
3081 		    rxstat, rssi0,
3082 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3083 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3084 
3085 		/*
3086 		 * Make sure the packet fits in one buffer.  This should
3087 		 * always be the case.
3088 		 */
3089 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3090 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3091 			printf("%s: incoming packet spilled, resetting\n",
3092 			    sc->sc_dev.dv_xname);
3093 			(void)atw_init(ifp);
3094 			return;
3095 		}
3096 
3097 		/*
3098 		 * If an error occurred, update stats, clear the status
3099 		 * word, and leave the packet buffer in place.  It will
3100 		 * simply be reused the next time the ring comes around.
3101 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
3102 		 * error.
3103 		 */
3104 
3105 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
3106 		    ((sc->sc_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
3107 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
3108 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
3109 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
3110 				ATW_RXSTAT_ICVE)) != 0)) {
3111 #define	PRINTERR(bit, str)						\
3112 			if (rxstat & (bit))				\
3113 				printf("%s: receive error: %s\n",	\
3114 				    sc->sc_dev.dv_xname, str)
3115 			ifp->if_ierrors++;
3116 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3117 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3118 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3119 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3120 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3121 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
3122 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3123 #undef PRINTERR
3124 			ATW_INIT_RXDESC(sc, i);
3125 			continue;
3126 		}
3127 
3128 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3129 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3130 
3131 		/*
3132 		 * No errors; receive the packet.  Note the ADM8211
3133 		 * includes the CRC in promiscuous mode.
3134 		 */
3135 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
3136 
3137 		/*
3138 		 * Allocate a new mbuf cluster.  If that fails, we are
3139 		 * out of memory, and must drop the packet and recycle
3140 		 * the buffer that's already attached to this descriptor.
3141 		 */
3142 		m = rxs->rxs_mbuf;
3143 		if (atw_add_rxbuf(sc, i) != 0) {
3144 			ifp->if_ierrors++;
3145 			ATW_INIT_RXDESC(sc, i);
3146 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3147 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3148 			continue;
3149 		}
3150 
3151 		ifp->if_ipackets++;
3152 		if (sc->sc_opmode & ATW_NAR_PR)
3153 			len -= IEEE80211_CRC_LEN;
3154 		m->m_pkthdr.rcvif = ifp;
3155 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3156 
3157 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3158 			rate = 0;
3159 		else
3160 			rate = rate_tbl[rate0];
3161 
3162 		/* The RSSI comes straight from a register in the
3163 		 * baseband processor.  I know that for the RF3000,
3164 		 * the RSSI register also contains the antenna-selection
3165 		 * bits.  Mask those off.
3166 		 *
3167 		 * TBD Treat other basebands.
3168 		 */
3169 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3170 			rssi = rssi0 & RF3000_RSSI_MASK;
3171 		else
3172 			rssi = rssi0;
3173 
3174  #if NBPFILTER > 0
3175 		/* Pass this up to any BPF listeners. */
3176 		if (sc->sc_radiobpf != NULL) {
3177 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3178 
3179 			tap->ar_rate = rate;
3180 			tap->ar_chan_freq = ic->ic_curchan->ic_freq;
3181 			tap->ar_chan_flags = ic->ic_curchan->ic_flags;
3182 
3183 			/* TBD verify units are dB */
3184 			tap->ar_antsignal = (int)rssi;
3185 			/* TBD tap->ar_flags */
3186 
3187 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3188 			    tap->ar_ihdr.it_len, m);
3189  		}
3190  #endif /* NPBFILTER > 0 */
3191 
3192 		wh = mtod(m, struct ieee80211_frame_min *);
3193 		ni = ieee80211_find_rxnode(ic, wh);
3194 		if (atw_hw_decrypted(sc, wh)) {
3195 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3196 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3197 		}
3198 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3199 		ieee80211_free_node(ni);
3200 	}
3201 
3202 	/* Update the receive pointer. */
3203 	sc->sc_rxptr = i;
3204 }
3205 
3206 /*
3207  * atw_txintr:
3208  *
3209  *	Helper; handle transmit interrupts.
3210  */
3211 void
3212 atw_txintr(struct atw_softc *sc)
3213 {
3214 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3215     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3216 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3217     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3218 
3219 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3220 	struct ifnet *ifp = &sc->sc_if;
3221 	struct atw_txsoft *txs;
3222 	u_int32_t txstat;
3223 
3224 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3225 	    sc->sc_dev.dv_xname, sc->sc_flags));
3226 
3227 	/*
3228 	 * Go through our Tx list and free mbufs for those
3229 	 * frames that have been transmitted.
3230 	 */
3231 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3232 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3233 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3234 
3235 #ifdef ATW_DEBUG
3236 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3237 			int i;
3238 			printf("    txsoft %p transmit chain:\n", txs);
3239 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3240 			    txs->txs_ndescs - 1,
3241 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3242 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3243 				printf("     descriptor %d:\n", i);
3244 				printf("       at_status:   0x%08x\n",
3245 				    le32toh(sc->sc_txdescs[i].at_stat));
3246 				printf("       at_flags:      0x%08x\n",
3247 				    le32toh(sc->sc_txdescs[i].at_flags));
3248 				printf("       at_buf1: 0x%08x\n",
3249 				    le32toh(sc->sc_txdescs[i].at_buf1));
3250 				printf("       at_buf2: 0x%08x\n",
3251 				    le32toh(sc->sc_txdescs[i].at_buf2));
3252 				if (i == txs->txs_lastdesc)
3253 					break;
3254 			}
3255 		}
3256 #endif
3257 
3258 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3259 		if (txstat & ATW_TXSTAT_OWN)
3260 			break;
3261 
3262 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3263 
3264 		sc->sc_txfree += txs->txs_ndescs;
3265 
3266 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3267 		    0, txs->txs_dmamap->dm_mapsize,
3268 		    BUS_DMASYNC_POSTWRITE);
3269 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3270 		m_freem(txs->txs_mbuf);
3271 		txs->txs_mbuf = NULL;
3272 
3273 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3274 
3275 		ifp->if_flags &= ~IFF_OACTIVE;
3276 
3277 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3278 		    (txstat & TXSTAT_ERRMASK) != 0) {
3279 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3280 			    txstat_buf, sizeof(txstat_buf));
3281 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3282 			    txstat_buf,
3283 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3284 		}
3285 
3286 		/*
3287 		 * Check for errors and collisions.
3288 		 */
3289 		if (txstat & ATW_TXSTAT_TUF)
3290 			sc->sc_stats.ts_tx_tuf++;
3291 		if (txstat & ATW_TXSTAT_TLT)
3292 			sc->sc_stats.ts_tx_tlt++;
3293 		if (txstat & ATW_TXSTAT_TRT)
3294 			sc->sc_stats.ts_tx_trt++;
3295 		if (txstat & ATW_TXSTAT_TRO)
3296 			sc->sc_stats.ts_tx_tro++;
3297 		if (txstat & ATW_TXSTAT_SOFBR) {
3298 			sc->sc_stats.ts_tx_sofbr++;
3299 		}
3300 
3301 		if ((txstat & ATW_TXSTAT_ES) == 0)
3302 			ifp->if_collisions +=
3303 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3304 		else
3305 			ifp->if_oerrors++;
3306 
3307 		ifp->if_opackets++;
3308 	}
3309 
3310 	/*
3311 	 * If there are no more pending transmissions, cancel the watchdog
3312 	 * timer.
3313 	 */
3314 	if (txs == NULL)
3315 		sc->sc_tx_timer = 0;
3316 #undef TXSTAT_ERRMASK
3317 #undef TXSTAT_FMT
3318 }
3319 
3320 /*
3321  * atw_watchdog:	[ifnet interface function]
3322  *
3323  *	Watchdog timer handler.
3324  */
3325 void
3326 atw_watchdog(struct ifnet *ifp)
3327 {
3328 	struct atw_softc *sc = ifp->if_softc;
3329 	struct ieee80211com *ic = &sc->sc_ic;
3330 
3331 	ifp->if_timer = 0;
3332 	if (ATW_IS_ENABLED(sc) == 0)
3333 		return;
3334 
3335 	if (sc->sc_rescan_timer) {
3336 		if (--sc->sc_rescan_timer == 0)
3337 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3338 	}
3339 	if (sc->sc_tx_timer) {
3340 		if (--sc->sc_tx_timer == 0 &&
3341 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3342 			printf("%s: transmit timeout\n", ifp->if_xname);
3343 			ifp->if_oerrors++;
3344 			(void)atw_init(ifp);
3345 			atw_start(ifp);
3346 		}
3347 	}
3348 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3349 		ifp->if_timer = 1;
3350 	ieee80211_watchdog(ic);
3351 }
3352 
3353 /* Compute the 802.11 Duration field and the PLCP Length fields for
3354  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3355  * Write the fields to the ADM8211 Tx header, frm.
3356  *
3357  * TBD use the fragmentation threshold to find the right duration for
3358  * the first & last fragments.
3359  *
3360  * TBD make certain of the duration fields applied by the ADM8211 to each
3361  * fragment. I think that the ADM8211 knows how to subtract the CTS
3362  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3363  * I also think that the ADM8211 does *some* arithmetic for us, because
3364  * otherwise I think we would have to set a first duration for CTS/first
3365  * fragment, a second duration for fragments between the first and the
3366  * last, and a third duration for the last fragment.
3367  *
3368  * TBD make certain that duration fields reflect addition of FCS/WEP
3369  * and correct duration arithmetic as necessary.
3370  */
3371 static void
3372 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3373     int len)
3374 {
3375 	int remainder;
3376 
3377 	/* deal also with encrypted fragments */
3378 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3379 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3380 		    sc->sc_dev.dv_xname));
3381 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3382 		       IEEE80211_WEP_CRCLEN;
3383 	}
3384 
3385 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3386 	 * duration (XXX added by MAC?).
3387 	 */
3388 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3389 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3390 
3391 	if (rate <= 4)
3392 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3393 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3394 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3395 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3396 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3397 	else
3398 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3399 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3400 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3401 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3402 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3403 
3404 	/* lengthen duration if long preamble */
3405 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3406 		frm->atw_head_dur +=
3407 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3408 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3409 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3410 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3411 
3412 	if (remainder != 0)
3413 		frm->atw_head_dur++;
3414 
3415 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3416 	    (rate == 2 || rate == 4)) {
3417 		/* derived from Linux: how could this be right? */
3418 		frm->atw_head_plcplen = frm->atw_head_dur;
3419 	} else {
3420 		frm->atw_head_plcplen = (16 * len) / rate;
3421 		remainder = (80 * len) % (rate * 5);
3422 
3423 		if (remainder != 0) {
3424 			frm->atw_head_plcplen++;
3425 
3426 			/* XXX magic */
3427 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3428 			    rate == 22 && remainder <= 30)
3429 				frm->atw_head_plcplen |= 0x8000;
3430 		}
3431 	}
3432 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3433 	    htole16(frm->atw_head_plcplen);
3434 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3435 }
3436 
3437 #ifdef ATW_DEBUG
3438 static void
3439 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3440 {
3441 	struct atw_softc *sc = ifp->if_softc;
3442 	struct mbuf *m;
3443 	int i, noctets = 0;
3444 
3445 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3446 	    m0->m_pkthdr.len);
3447 
3448 	for (m = m0; m; m = m->m_next) {
3449 		if (m->m_len == 0)
3450 			continue;
3451 		for (i = 0; i < m->m_len; i++) {
3452 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3453 			if (++noctets % 24 == 0)
3454 				printf("\n");
3455 		}
3456 	}
3457 	printf("%s%s: %d bytes emitted\n",
3458 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3459 }
3460 #endif /* ATW_DEBUG */
3461 
3462 /*
3463  * atw_start:		[ifnet interface function]
3464  *
3465  *	Start packet transmission on the interface.
3466  */
3467 void
3468 atw_start(struct ifnet *ifp)
3469 {
3470 	struct atw_softc *sc = ifp->if_softc;
3471 	struct ieee80211com *ic = &sc->sc_ic;
3472 	struct ieee80211_node *ni;
3473 	struct ieee80211_frame *wh;
3474 	struct atw_frame *hh;
3475 	struct mbuf *m0, *m;
3476 	struct atw_txsoft *txs, *last_txs;
3477 	struct atw_txdesc *txd;
3478 	int do_encrypt, rate;
3479 	bus_dmamap_t dmamap;
3480 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3481 
3482 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3483 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3484 
3485 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3486 		return;
3487 
3488 	/*
3489 	 * Remember the previous number of free descriptors and
3490 	 * the first descriptor we'll use.
3491 	 */
3492 	ofree = sc->sc_txfree;
3493 	firsttx = sc->sc_txnext;
3494 
3495 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3496 	    sc->sc_dev.dv_xname, ofree, firsttx));
3497 
3498 	/*
3499 	 * Loop through the send queue, setting up transmit descriptors
3500 	 * until we drain the queue, or use up all available transmit
3501 	 * descriptors.
3502 	 */
3503 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3504 	       sc->sc_txfree != 0) {
3505 
3506 		/*
3507 		 * Grab a packet off the management queue, if it
3508 		 * is not empty. Otherwise, from the data queue.
3509 		 */
3510 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3511 		if (m0 != NULL) {
3512 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3513 			m0->m_pkthdr.rcvif = NULL;
3514 		} else {
3515 			/* send no data packets until we are associated */
3516 			if (ic->ic_state != IEEE80211_S_RUN)
3517 				break;
3518 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3519 			if (m0 == NULL)
3520 				break;
3521 #if NBPFILTER > 0
3522 			if (ifp->if_bpf != NULL)
3523 				bpf_mtap(ifp->if_bpf, m0);
3524 #endif /* NBPFILTER > 0 */
3525 			ni = ieee80211_find_txnode(ic,
3526 			    mtod(m0, struct ether_header *)->ether_dhost);
3527 			if (ni == NULL) {
3528 				ifp->if_oerrors++;
3529 				break;
3530 			}
3531 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3532 				ieee80211_free_node(ni);
3533 				ifp->if_oerrors++;
3534 				break;
3535 			}
3536 		}
3537 
3538 		rate = MAX(ieee80211_get_rate(ic), 2);
3539 
3540 #if NBPFILTER > 0
3541 		/*
3542 		 * Pass the packet to any BPF listeners.
3543 		 */
3544 		if (ic->ic_rawbpf != NULL)
3545 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3546 
3547 		if (sc->sc_radiobpf != NULL) {
3548 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3549 
3550 			tap->at_rate = rate;
3551 			tap->at_chan_freq = ic->ic_curchan->ic_freq;
3552 			tap->at_chan_flags = ic->ic_curchan->ic_flags;
3553 
3554 			/* TBD tap->at_flags */
3555 
3556 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3557 			    tap->at_ihdr.it_len, m0);
3558 		}
3559 #endif /* NBPFILTER > 0 */
3560 
3561 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3562 
3563 		if (ni != NULL)
3564 			ieee80211_free_node(ni);
3565 
3566 		if (m0 == NULL) {
3567 			ifp->if_oerrors++;
3568 			break;
3569 		}
3570 
3571 		/* just to make sure. */
3572 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3573 
3574 		if (m0 == NULL) {
3575 			ifp->if_oerrors++;
3576 			break;
3577 		}
3578 
3579 		hh = mtod(m0, struct atw_frame *);
3580 		wh = &hh->atw_ihdr;
3581 
3582 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3583 
3584 		/* Copy everything we need from the 802.11 header:
3585 		 * Frame Control; address 1, address 3, or addresses
3586 		 * 3 and 4. NIC fills in BSSID, SA.
3587 		 */
3588 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3589 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3590 				panic("%s: illegal WDS frame",
3591 				    sc->sc_dev.dv_xname);
3592 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3593 		} else
3594 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3595 
3596 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3597 
3598 		/* initialize remaining Tx parameters */
3599 		memset(&hh->u, 0, sizeof(hh->u));
3600 
3601 		hh->atw_rate = rate * 5;
3602 		/* XXX this could be incorrect if M_FCS. _encap should
3603 		 * probably strip FCS just in case it sticks around in
3604 		 * bridged packets.
3605 		 */
3606 		hh->atw_service = 0x00; /* XXX guess */
3607 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3608 		    sizeof(struct atw_frame));
3609 
3610 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3611 		hh->atw_rtylmt = 3;
3612 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3613 		if (do_encrypt) {
3614 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3615 			hh->atw_keyid = ic->ic_def_txkey;
3616 		}
3617 
3618 		/* TBD 4-addr frames */
3619 		atw_frame_setdurs(sc, hh, rate,
3620 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3621 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3622 
3623 		/* never fragment multicast frames */
3624 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3625 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3626 		} else if (sc->sc_flags & ATWF_RTSCTS) {
3627 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3628 		}
3629 
3630 #ifdef ATW_DEBUG
3631 		hh->atw_fragnum = 0;
3632 
3633 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3634 			printf("%s: dst = %s, rate = 0x%02x, "
3635 			    "service = 0x%02x, paylen = 0x%04x\n",
3636 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3637 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3638 
3639 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3640 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3641 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3642 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3643 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3644 			    hh->atw_tail_dur, hh->atw_head_dur);
3645 
3646 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3647 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3648 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3649 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3650 
3651 			printf("%s: keyid = %d\n",
3652 			    sc->sc_dev.dv_xname, hh->atw_keyid);
3653 
3654 			atw_dump_pkt(ifp, m0);
3655 		}
3656 #endif /* ATW_DEBUG */
3657 
3658 		dmamap = txs->txs_dmamap;
3659 
3660 		/*
3661 		 * Load the DMA map.  Copy and try (once) again if the packet
3662 		 * didn't fit in the alloted number of segments.
3663 		 */
3664 		for (first = 1;
3665 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3666 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3667 		     first = 0) {
3668 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3669 			if (m == NULL) {
3670 				printf("%s: unable to allocate Tx mbuf\n",
3671 				    sc->sc_dev.dv_xname);
3672 				break;
3673 			}
3674 			if (m0->m_pkthdr.len > MHLEN) {
3675 				MCLGET(m, M_DONTWAIT);
3676 				if ((m->m_flags & M_EXT) == 0) {
3677 					printf("%s: unable to allocate Tx "
3678 					    "cluster\n", sc->sc_dev.dv_xname);
3679 					m_freem(m);
3680 					break;
3681 				}
3682 			}
3683 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3684 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3685 			m_freem(m0);
3686 			m0 = m;
3687 			m = NULL;
3688 		}
3689 		if (error != 0) {
3690 			printf("%s: unable to load Tx buffer, "
3691 			    "error = %d\n", sc->sc_dev.dv_xname, error);
3692 			m_freem(m0);
3693 			break;
3694 		}
3695 
3696 		/*
3697 		 * Ensure we have enough descriptors free to describe
3698 		 * the packet.
3699 		 */
3700 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3701 			/*
3702 			 * Not enough free descriptors to transmit
3703 			 * this packet.  Unload the DMA map and
3704 			 * drop the packet.  Notify the upper layer
3705 			 * that there are no more slots left.
3706 			 *
3707 			 * XXX We could allocate an mbuf and copy, but
3708 			 * XXX it is worth it?
3709 			 */
3710 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3711 			m_freem(m0);
3712 			break;
3713 		}
3714 
3715 		/*
3716 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3717 		 */
3718 
3719 		/* Sync the DMA map. */
3720 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3721 		    BUS_DMASYNC_PREWRITE);
3722 
3723 		/* XXX arbitrary retry limit; 8 because I have seen it in
3724 		 * use already and maybe 0 means "no tries" !
3725 		 */
3726 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3727 
3728 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3729 		    sc->sc_dev.dv_xname, rate * 5));
3730 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3731 
3732 		/*
3733 		 * Initialize the transmit descriptors.
3734 		 */
3735 		for (nexttx = sc->sc_txnext, seg = 0;
3736 		     seg < dmamap->dm_nsegs;
3737 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3738 			/*
3739 			 * If this is the first descriptor we're
3740 			 * enqueueing, don't set the OWN bit just
3741 			 * yet.  That could cause a race condition.
3742 			 * We'll do it below.
3743 			 */
3744 			txd = &sc->sc_txdescs[nexttx];
3745 			txd->at_ctl = ctl |
3746 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3747 
3748 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3749 			txd->at_flags =
3750 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3751 			                   ATW_TXFLAG_TBS1_MASK)) |
3752 			    ((nexttx == (ATW_NTXDESC - 1))
3753 			        ? htole32(ATW_TXFLAG_TER) : 0);
3754 			lasttx = nexttx;
3755 		}
3756 
3757 		IASSERT(lasttx != -1, ("bad lastx"));
3758 		/* Set `first segment' and `last segment' appropriately. */
3759 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3760 		    htole32(ATW_TXFLAG_FS);
3761 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3762 
3763 #ifdef ATW_DEBUG
3764 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3765 			printf("     txsoft %p transmit chain:\n", txs);
3766 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3767 				printf("     descriptor %d:\n", seg);
3768 				printf("       at_ctl:   0x%08x\n",
3769 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3770 				printf("       at_flags:      0x%08x\n",
3771 				    le32toh(sc->sc_txdescs[seg].at_flags));
3772 				printf("       at_buf1: 0x%08x\n",
3773 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3774 				printf("       at_buf2: 0x%08x\n",
3775 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3776 				if (seg == lasttx)
3777 					break;
3778 			}
3779 		}
3780 #endif
3781 
3782 		/* Sync the descriptors we're using. */
3783 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3784 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3785 
3786 		/*
3787 		 * Store a pointer to the packet so we can free it later,
3788 		 * and remember what txdirty will be once the packet is
3789 		 * done.
3790 		 */
3791 		txs->txs_mbuf = m0;
3792 		txs->txs_firstdesc = sc->sc_txnext;
3793 		txs->txs_lastdesc = lasttx;
3794 		txs->txs_ndescs = dmamap->dm_nsegs;
3795 
3796 		/* Advance the tx pointer. */
3797 		sc->sc_txfree -= dmamap->dm_nsegs;
3798 		sc->sc_txnext = nexttx;
3799 
3800 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3801 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3802 
3803 		last_txs = txs;
3804 	}
3805 
3806 	if (txs == NULL || sc->sc_txfree == 0) {
3807 		/* No more slots left; notify upper layer. */
3808 		ifp->if_flags |= IFF_OACTIVE;
3809 	}
3810 
3811 	if (sc->sc_txfree != ofree) {
3812 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3813 		    sc->sc_dev.dv_xname, lasttx, firsttx));
3814 		/*
3815 		 * Cause a transmit interrupt to happen on the
3816 		 * last packet we enqueued.
3817 		 */
3818 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3819 		ATW_CDTXSYNC(sc, lasttx, 1,
3820 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3821 
3822 		/*
3823 		 * The entire packet chain is set up.  Give the
3824 		 * first descriptor to the chip now.
3825 		 */
3826 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3827 		ATW_CDTXSYNC(sc, firsttx, 1,
3828 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3829 
3830 		/* Wake up the transmitter. */
3831 		ATW_WRITE(sc, ATW_TDR, 0x1);
3832 
3833 		/* Set a watchdog timer in case the chip flakes out. */
3834 		sc->sc_tx_timer = 5;
3835 		ifp->if_timer = 1;
3836 	}
3837 }
3838 
3839 /*
3840  * atw_power:
3841  *
3842  *	Power management (suspend/resume) hook.
3843  */
3844 void
3845 atw_power(int why, void *arg)
3846 {
3847 	struct atw_softc *sc = arg;
3848 	struct ifnet *ifp = &sc->sc_if;
3849 	int s;
3850 
3851 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3852 
3853 	s = splnet();
3854 	switch (why) {
3855 	case PWR_STANDBY:
3856 		/* XXX do nothing. */
3857 		break;
3858 	case PWR_SUSPEND:
3859 		atw_stop(ifp, 0);
3860 		if (sc->sc_power != NULL)
3861 			(*sc->sc_power)(sc, why);
3862 		break;
3863 	case PWR_RESUME:
3864 		if (ifp->if_flags & IFF_UP) {
3865 			if (sc->sc_power != NULL)
3866 				(*sc->sc_power)(sc, why);
3867 			atw_init(ifp);
3868 		}
3869 		break;
3870 	case PWR_SOFTSUSPEND:
3871 	case PWR_SOFTSTANDBY:
3872 	case PWR_SOFTRESUME:
3873 		break;
3874 	}
3875 	splx(s);
3876 }
3877 
3878 /*
3879  * atw_ioctl:		[ifnet interface function]
3880  *
3881  *	Handle control requests from the operator.
3882  */
3883 int
3884 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3885 {
3886 	struct atw_softc *sc = ifp->if_softc;
3887 	struct ifreq *ifr = (struct ifreq *)data;
3888 	int s, error = 0;
3889 
3890 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3891 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3892 		return ENXIO;
3893 
3894 	s = splnet();
3895 
3896 	switch (cmd) {
3897 	case SIOCSIFFLAGS:
3898 		if (ifp->if_flags & IFF_UP) {
3899 			if (ATW_IS_ENABLED(sc)) {
3900 				/*
3901 				 * To avoid rescanning another access point,
3902 				 * do not call atw_init() here.  Instead,
3903 				 * only reflect media settings.
3904 				 */
3905 				atw_filter_setup(sc);
3906 			} else
3907 				error = atw_init(ifp);
3908 		} else if (ATW_IS_ENABLED(sc))
3909 			atw_stop(ifp, 1);
3910 		break;
3911 	case SIOCADDMULTI:
3912 	case SIOCDELMULTI:
3913 		error = (cmd == SIOCADDMULTI) ?
3914 		    ether_addmulti(ifr, &sc->sc_ec) :
3915 		    ether_delmulti(ifr, &sc->sc_ec);
3916 		if (error == ENETRESET) {
3917 			if (ifp->if_flags & IFF_RUNNING)
3918 				atw_filter_setup(sc); /* do not rescan */
3919 			error = 0;
3920 		}
3921 		break;
3922 	default:
3923 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3924 		if (error == ENETRESET) {
3925 			if (ATW_IS_ENABLED(sc))
3926 				error = atw_init(ifp);
3927 			else
3928 				error = 0;
3929 		}
3930 		break;
3931 	}
3932 
3933 	/* Try to get more packets going. */
3934 	if (ATW_IS_ENABLED(sc))
3935 		atw_start(ifp);
3936 
3937 	splx(s);
3938 	return (error);
3939 }
3940 
3941 static int
3942 atw_media_change(struct ifnet *ifp)
3943 {
3944 	int error;
3945 
3946 	error = ieee80211_media_change(ifp);
3947 	if (error == ENETRESET) {
3948 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3949 		    (IFF_RUNNING|IFF_UP))
3950 			atw_init(ifp);		/* XXX lose error */
3951 		error = 0;
3952 	}
3953 	return error;
3954 }
3955 
3956 static void
3957 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3958 {
3959 	struct atw_softc *sc = ifp->if_softc;
3960 
3961 	if (ATW_IS_ENABLED(sc) == 0) {
3962 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3963 		imr->ifm_status = 0;
3964 		return;
3965 	}
3966 	ieee80211_media_status(ifp, imr);
3967 }
3968