xref: /netbsd-src/sys/dev/ic/atw.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: atw.c,v 1.134 2007/11/16 23:51:02 dyoung Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.134 2007/11/16 23:51:02 dyoung Exp $");
45 
46 #include "bpfilter.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60 
61 #include <machine/endian.h>
62 
63 #include <uvm/uvm_extern.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69 
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73 
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77 
78 #include <sys/bus.h>
79 #include <sys/intr.h>
80 
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86 
87 /* XXX TBD open questions
88  *
89  *
90  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92  * handle this for me?
93  *
94  */
95 /* device attachment
96  *
97  *    print TOFS[012]
98  *
99  * device initialization
100  *
101  *    clear ATW_FRCTL_MAXPSP to disable max power saving
102  *    set ATW_TXBR_ALCUPDATE to enable ALC
103  *    set TOFS[012]? (hope not)
104  *    disable rx/tx
105  *    set ATW_PAR_SWR (software reset)
106  *    wait for ATW_PAR_SWR clear
107  *    disable interrupts
108  *    ack status register
109  *    enable interrupts
110  *
111  * rx/tx initialization
112  *
113  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114  *    allocate and init descriptor rings
115  *    write ATW_PAR_DSL (descriptor skip length)
116  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
118  *    write ATW_NAR_SQ for one/both transmit descriptor rings
119  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120  *
121  * rx/tx end
122  *
123  *    stop DMA
124  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125  *    flush tx w/ ATW_NAR_HF
126  *
127  * scan
128  *
129  *    initialize rx/tx
130  *
131  * BSS join: (re)association response
132  *
133  *    set ATW_FRCTL_AID
134  *
135  * optimizations ???
136  *
137  */
138 
139 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
140 
141 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
142 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144 
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160 
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163 
164 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
167 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170 
171 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void	atw_print_regs(struct atw_softc *, const char *);
173 
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 #	ifdef ATW_BBPDEBUG
176 static void	atw_rf3000_print(struct atw_softc *);
177 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 #	endif /* ATW_BBPDEBUG */
179 
180 #	ifdef ATW_SYNDEBUG
181 static void	atw_si4126_print(struct atw_softc *);
182 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 #	endif /* ATW_SYNDEBUG */
184 
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define	DPRINTF(sc, x)	/* nothing */
190 #define	DPRINTF2(sc, x)	/* nothing */
191 #define	DPRINTF3(sc, x)	/* nothing */
192 #endif
193 
194 /* ifnet methods */
195 int	atw_init(struct ifnet *);
196 int	atw_ioctl(struct ifnet *, u_long, void *);
197 void	atw_start(struct ifnet *);
198 void	atw_stop(struct ifnet *, int);
199 void	atw_watchdog(struct ifnet *);
200 
201 /* Device attachment */
202 void	atw_attach(struct atw_softc *);
203 int	atw_detach(struct atw_softc *);
204 static void atw_evcnt_attach(struct atw_softc *);
205 static void atw_evcnt_detach(struct atw_softc *);
206 
207 /* Rx/Tx process */
208 int	atw_add_rxbuf(struct atw_softc *, int);
209 void	atw_idle(struct atw_softc *, u_int32_t);
210 void	atw_rxdrain(struct atw_softc *);
211 void	atw_txdrain(struct atw_softc *);
212 
213 /* Device (de)activation and power state */
214 void	atw_disable(struct atw_softc *);
215 int	atw_enable(struct atw_softc *);
216 void	atw_power(int, void *);
217 void	atw_reset(struct atw_softc *);
218 void	atw_shutdown(void *);
219 
220 /* Interrupt handlers */
221 void	atw_linkintr(struct atw_softc *, u_int32_t);
222 void	atw_rxintr(struct atw_softc *);
223 void	atw_txintr(struct atw_softc *);
224 
225 /* 802.11 state machine */
226 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
227 static void	atw_next_scan(void *);
228 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
229 		              struct ieee80211_node *, int, int, u_int32_t);
230 static int	atw_tune(struct atw_softc *);
231 
232 /* Device initialization */
233 static void	atw_bbp_io_init(struct atw_softc *);
234 static void	atw_cfp_init(struct atw_softc *);
235 static void	atw_cmdr_init(struct atw_softc *);
236 static void	atw_ifs_init(struct atw_softc *);
237 static void	atw_nar_init(struct atw_softc *);
238 static void	atw_response_times_init(struct atw_softc *);
239 static void	atw_rf_reset(struct atw_softc *);
240 static void	atw_test1_init(struct atw_softc *);
241 static void	atw_tofs0_init(struct atw_softc *);
242 static void	atw_tofs2_init(struct atw_softc *);
243 static void	atw_txlmt_init(struct atw_softc *);
244 static void	atw_wcsr_init(struct atw_softc *);
245 
246 /* Key management */
247 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
248 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
249 	const u_int8_t[IEEE80211_ADDR_LEN]);
250 static void atw_key_update_begin(struct ieee80211com *);
251 static void atw_key_update_end(struct ieee80211com *);
252 
253 /* RAM/ROM utilities */
254 static void	atw_clear_sram(struct atw_softc *);
255 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
256 static int	atw_read_srom(struct atw_softc *);
257 
258 /* BSS setup */
259 static void	atw_predict_beacon(struct atw_softc *);
260 static void	atw_start_beacon(struct atw_softc *, int);
261 static void	atw_write_bssid(struct atw_softc *);
262 static void	atw_write_ssid(struct atw_softc *);
263 static void	atw_write_sup_rates(struct atw_softc *);
264 static void	atw_write_wep(struct atw_softc *);
265 
266 /* Media */
267 static int	atw_media_change(struct ifnet *);
268 
269 static void	atw_filter_setup(struct atw_softc *);
270 
271 /* 802.11 utilities */
272 static uint64_t			atw_get_tsft(struct atw_softc *);
273 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
274 				                   uint32_t);
275 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
276 static void			atw_node_free(struct ieee80211_node *);
277 
278 /*
279  * Tuner/transceiver/modem
280  */
281 static void	atw_bbp_io_enable(struct atw_softc *, int);
282 
283 /* RFMD RF3000 Baseband Processor */
284 static int	atw_rf3000_init(struct atw_softc *);
285 static int	atw_rf3000_tune(struct atw_softc *, u_int);
286 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
287 
288 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
289 static void	atw_si4126_tune(struct atw_softc *, u_int);
290 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
291 
292 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
293 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
294 
295 const char *atw_tx_state[] = {
296 	"STOPPED",
297 	"RUNNING - read descriptor",
298 	"RUNNING - transmitting",
299 	"RUNNING - filling fifo",	/* XXX */
300 	"SUSPENDED",
301 	"RUNNING -- write descriptor",
302 	"RUNNING -- write last descriptor",
303 	"RUNNING - fifo full"
304 };
305 
306 const char *atw_rx_state[] = {
307 	"STOPPED",
308 	"RUNNING - read descriptor",
309 	"RUNNING - check this packet, pre-fetch next",
310 	"RUNNING - wait for reception",
311 	"SUSPENDED",
312 	"RUNNING - write descriptor",
313 	"RUNNING - flush fifo",
314 	"RUNNING - fifo drain"
315 };
316 
317 static inline int
318 is_running(struct ifnet *ifp)
319 {
320 	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
321 }
322 
323 int
324 atw_activate(struct device *self, enum devact act)
325 {
326 	struct atw_softc *sc = (struct atw_softc *)self;
327 	int rv = 0, s;
328 
329 	s = splnet();
330 	switch (act) {
331 	case DVACT_ACTIVATE:
332 		rv = EOPNOTSUPP;
333 		break;
334 
335 	case DVACT_DEACTIVATE:
336 		if_deactivate(&sc->sc_if);
337 		break;
338 	}
339 	splx(s);
340 	return rv;
341 }
342 
343 /*
344  * atw_enable:
345  *
346  *	Enable the ADM8211 chip.
347  */
348 int
349 atw_enable(struct atw_softc *sc)
350 {
351 
352 	if (ATW_IS_ENABLED(sc) == 0) {
353 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
354 			printf("%s: device enable failed\n",
355 			    sc->sc_dev.dv_xname);
356 			return (EIO);
357 		}
358 		sc->sc_flags |= ATWF_ENABLED;
359                 /* Power may have been removed, and WEP keys thus
360                  * reset.
361 		 */
362 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
363 	}
364 	return (0);
365 }
366 
367 /*
368  * atw_disable:
369  *
370  *	Disable the ADM8211 chip.
371  */
372 void
373 atw_disable(struct atw_softc *sc)
374 {
375 	if (!ATW_IS_ENABLED(sc))
376 		return;
377 	if (sc->sc_disable != NULL)
378 		(*sc->sc_disable)(sc);
379 	sc->sc_flags &= ~ATWF_ENABLED;
380 }
381 
382 /* Returns -1 on failure. */
383 static int
384 atw_read_srom(struct atw_softc *sc)
385 {
386 	struct seeprom_descriptor sd;
387 	uint32_t test0, fail_bits;
388 
389 	(void)memset(&sd, 0, sizeof(sd));
390 
391 	test0 = ATW_READ(sc, ATW_TEST0);
392 
393 	switch (sc->sc_rev) {
394 	case ATW_REVISION_BA:
395 	case ATW_REVISION_CA:
396 		fail_bits = ATW_TEST0_EPNE;
397 		break;
398 	default:
399 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
400 		break;
401 	}
402 	if ((test0 & fail_bits) != 0) {
403 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
404 		return -1;
405 	}
406 
407 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
408 	case ATW_TEST0_EPTYP_93c66:
409 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
410 		sc->sc_sromsz = 512;
411 		sd.sd_chip = C56_66;
412 		break;
413 	case ATW_TEST0_EPTYP_93c46:
414 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
415 		sc->sc_sromsz = 128;
416 		sd.sd_chip = C46;
417 		break;
418 	default:
419 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
420 		    sc->sc_dev.dv_xname,
421 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
422 		return -1;
423 	}
424 
425 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
426 
427 	if (sc->sc_srom == NULL) {
428 		printf("%s: unable to allocate SROM buffer\n",
429 		    sc->sc_dev.dv_xname);
430 		return -1;
431 	}
432 
433 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
434 
435 	/* ADM8211 has a single 32-bit register for controlling the
436 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
437 	 * "ready" bit. The ADM8211 input/output sense is the reverse
438 	 * of read_seeprom's.
439 	 */
440 	sd.sd_tag = sc->sc_st;
441 	sd.sd_bsh = sc->sc_sh;
442 	sd.sd_regsize = 4;
443 	sd.sd_control_offset = ATW_SPR;
444 	sd.sd_status_offset = ATW_SPR;
445 	sd.sd_dataout_offset = ATW_SPR;
446 	sd.sd_CK = ATW_SPR_SCLK;
447 	sd.sd_CS = ATW_SPR_SCS;
448 	sd.sd_DI = ATW_SPR_SDO;
449 	sd.sd_DO = ATW_SPR_SDI;
450 	sd.sd_MS = ATW_SPR_SRS;
451 	sd.sd_RDY = 0;
452 
453 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
454 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
455 		free(sc->sc_srom, M_DEVBUF);
456 		return -1;
457 	}
458 #ifdef ATW_DEBUG
459 	{
460 		int i;
461 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
462 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
463 			if (((i % 8) == 0) && (i != 0)) {
464 				ATW_DPRINTF(("\n\t"));
465 			}
466 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
467 		}
468 		ATW_DPRINTF(("\n"));
469 	}
470 #endif /* ATW_DEBUG */
471 	return 0;
472 }
473 
474 #ifdef ATW_DEBUG
475 static void
476 atw_print_regs(struct atw_softc *sc, const char *where)
477 {
478 #define PRINTREG(sc, reg) \
479 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
480 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
481 
482 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
483 
484 	PRINTREG(sc, ATW_PAR);
485 	PRINTREG(sc, ATW_FRCTL);
486 	PRINTREG(sc, ATW_TDR);
487 	PRINTREG(sc, ATW_WTDP);
488 	PRINTREG(sc, ATW_RDR);
489 	PRINTREG(sc, ATW_WRDP);
490 	PRINTREG(sc, ATW_RDB);
491 	PRINTREG(sc, ATW_CSR3A);
492 	PRINTREG(sc, ATW_TDBD);
493 	PRINTREG(sc, ATW_TDBP);
494 	PRINTREG(sc, ATW_STSR);
495 	PRINTREG(sc, ATW_CSR5A);
496 	PRINTREG(sc, ATW_NAR);
497 	PRINTREG(sc, ATW_CSR6A);
498 	PRINTREG(sc, ATW_IER);
499 	PRINTREG(sc, ATW_CSR7A);
500 	PRINTREG(sc, ATW_LPC);
501 	PRINTREG(sc, ATW_TEST1);
502 	PRINTREG(sc, ATW_SPR);
503 	PRINTREG(sc, ATW_TEST0);
504 	PRINTREG(sc, ATW_WCSR);
505 	PRINTREG(sc, ATW_WPDR);
506 	PRINTREG(sc, ATW_GPTMR);
507 	PRINTREG(sc, ATW_GPIO);
508 	PRINTREG(sc, ATW_BBPCTL);
509 	PRINTREG(sc, ATW_SYNCTL);
510 	PRINTREG(sc, ATW_PLCPHD);
511 	PRINTREG(sc, ATW_MMIWADDR);
512 	PRINTREG(sc, ATW_MMIRADDR1);
513 	PRINTREG(sc, ATW_MMIRADDR2);
514 	PRINTREG(sc, ATW_TXBR);
515 	PRINTREG(sc, ATW_CSR15A);
516 	PRINTREG(sc, ATW_ALCSTAT);
517 	PRINTREG(sc, ATW_TOFS2);
518 	PRINTREG(sc, ATW_CMDR);
519 	PRINTREG(sc, ATW_PCIC);
520 	PRINTREG(sc, ATW_PMCSR);
521 	PRINTREG(sc, ATW_PAR0);
522 	PRINTREG(sc, ATW_PAR1);
523 	PRINTREG(sc, ATW_MAR0);
524 	PRINTREG(sc, ATW_MAR1);
525 	PRINTREG(sc, ATW_ATIMDA0);
526 	PRINTREG(sc, ATW_ABDA1);
527 	PRINTREG(sc, ATW_BSSID0);
528 	PRINTREG(sc, ATW_TXLMT);
529 	PRINTREG(sc, ATW_MIBCNT);
530 	PRINTREG(sc, ATW_BCNT);
531 	PRINTREG(sc, ATW_TSFTH);
532 	PRINTREG(sc, ATW_TSC);
533 	PRINTREG(sc, ATW_SYNRF);
534 	PRINTREG(sc, ATW_BPLI);
535 	PRINTREG(sc, ATW_CAP0);
536 	PRINTREG(sc, ATW_CAP1);
537 	PRINTREG(sc, ATW_RMD);
538 	PRINTREG(sc, ATW_CFPP);
539 	PRINTREG(sc, ATW_TOFS0);
540 	PRINTREG(sc, ATW_TOFS1);
541 	PRINTREG(sc, ATW_IFST);
542 	PRINTREG(sc, ATW_RSPT);
543 	PRINTREG(sc, ATW_TSFTL);
544 	PRINTREG(sc, ATW_WEPCTL);
545 	PRINTREG(sc, ATW_WESK);
546 	PRINTREG(sc, ATW_WEPCNT);
547 	PRINTREG(sc, ATW_MACTEST);
548 	PRINTREG(sc, ATW_FER);
549 	PRINTREG(sc, ATW_FEMR);
550 	PRINTREG(sc, ATW_FPSR);
551 	PRINTREG(sc, ATW_FFER);
552 #undef PRINTREG
553 }
554 #endif /* ATW_DEBUG */
555 
556 /*
557  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
558  */
559 void
560 atw_attach(struct atw_softc *sc)
561 {
562 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
563 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
564 	};
565 	struct ieee80211com *ic = &sc->sc_ic;
566 	struct ifnet *ifp = &sc->sc_if;
567 	int country_code, error, i, nrate, srom_major;
568 	u_int32_t reg;
569 	static const char *type_strings[] = {"Intersil (not supported)",
570 	    "RFMD", "Marvel (not supported)"};
571 
572 	sc->sc_txth = atw_txthresh_tab_lo;
573 
574 	SIMPLEQ_INIT(&sc->sc_txfreeq);
575 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
576 
577 #ifdef ATW_DEBUG
578 	atw_print_regs(sc, "atw_attach");
579 #endif /* ATW_DEBUG */
580 
581 	/*
582 	 * Allocate the control data structures, and create and load the
583 	 * DMA map for it.
584 	 */
585 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
586 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
587 	    1, &sc->sc_cdnseg, 0)) != 0) {
588 		printf("%s: unable to allocate control data, error = %d\n",
589 		    sc->sc_dev.dv_xname, error);
590 		goto fail_0;
591 	}
592 
593 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
594 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
595 	    BUS_DMA_COHERENT)) != 0) {
596 		printf("%s: unable to map control data, error = %d\n",
597 		    sc->sc_dev.dv_xname, error);
598 		goto fail_1;
599 	}
600 
601 	if ((error = bus_dmamap_create(sc->sc_dmat,
602 	    sizeof(struct atw_control_data), 1,
603 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
604 		printf("%s: unable to create control data DMA map, "
605 		    "error = %d\n", sc->sc_dev.dv_xname, error);
606 		goto fail_2;
607 	}
608 
609 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
610 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
611 	    0)) != 0) {
612 		printf("%s: unable to load control data DMA map, error = %d\n",
613 		    sc->sc_dev.dv_xname, error);
614 		goto fail_3;
615 	}
616 
617 	/*
618 	 * Create the transmit buffer DMA maps.
619 	 */
620 	sc->sc_ntxsegs = ATW_NTXSEGS;
621 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
622 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
623 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
624 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
625 			printf("%s: unable to create tx DMA map %d, "
626 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
627 			goto fail_4;
628 		}
629 	}
630 
631 	/*
632 	 * Create the receive buffer DMA maps.
633 	 */
634 	for (i = 0; i < ATW_NRXDESC; i++) {
635 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
636 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
637 			printf("%s: unable to create rx DMA map %d, "
638 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
639 			goto fail_5;
640 		}
641 	}
642 	for (i = 0; i < ATW_NRXDESC; i++) {
643 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
644 	}
645 
646 	switch (sc->sc_rev) {
647 	case ATW_REVISION_AB:
648 	case ATW_REVISION_AF:
649 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
650 		break;
651 	case ATW_REVISION_BA:
652 	case ATW_REVISION_CA:
653 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
654 		break;
655 	}
656 
657 	/* Reset the chip to a known state. */
658 	atw_reset(sc);
659 
660 	if (atw_read_srom(sc) == -1)
661 		return;
662 
663 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
664 	    ATW_SR_RFTYPE_MASK);
665 
666 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
667 	    ATW_SR_BBPTYPE_MASK);
668 
669 	if (sc->sc_rftype >= __arraycount(type_strings)) {
670 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
671 		return;
672 	}
673 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
674 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
675 		return;
676 	}
677 
678 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
679 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
680 
681 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
682 	 * MARVEL. My bug, or theirs?
683 	 */
684 
685 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
686 
687 	switch (sc->sc_rftype) {
688 	case ATW_RFTYPE_INTERSIL:
689 		reg |= ATW_SYNCTL_CS1;
690 		break;
691 	case ATW_RFTYPE_RFMD:
692 		reg |= ATW_SYNCTL_CS0;
693 		break;
694 	case ATW_RFTYPE_MARVEL:
695 		break;
696 	}
697 
698 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
699 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
700 
701 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
702 
703 	switch (sc->sc_bbptype) {
704 	case ATW_BBPTYPE_INTERSIL:
705 		reg |= ATW_BBPCTL_TWI;
706 		break;
707 	case ATW_BBPTYPE_RFMD:
708 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
709 		    ATW_BBPCTL_CCA_ACTLO;
710 		break;
711 	case ATW_BBPTYPE_MARVEL:
712 		break;
713 	case ATW_C_BBPTYPE_RFMD:
714 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
715 		    sc->sc_dev.dv_xname);
716 		break;
717 	}
718 
719 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
720 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
721 
722 	/*
723 	 * From this point forward, the attachment cannot fail.  A failure
724 	 * before this point releases all resources that may have been
725 	 * allocated.
726 	 */
727 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
728 
729 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
730 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
731 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
732 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
733 
734 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
735 	    ATW_SR_MAJOR_MASK);
736 
737 	if (srom_major < 2)
738 		sc->sc_rf3000_options1 = 0;
739 	else if (sc->sc_rev == ATW_REVISION_BA) {
740 		sc->sc_rf3000_options1 =
741 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
742 		    ATW_SR_CR28_MASK);
743 	} else
744 		sc->sc_rf3000_options1 = 0;
745 
746 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
747 	    ATW_SR_CR29_MASK);
748 
749 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
750 	    ATW_SR_CTRY_MASK);
751 
752 #define ADD_CHANNEL(_ic, _chan) do {					\
753 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
754 	_ic->ic_channels[_chan].ic_freq =				\
755 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
756 } while (0)
757 
758 	/* Find available channels */
759 	switch (country_code) {
760 	case COUNTRY_MMK2:	/* 1-14 */
761 		ADD_CHANNEL(ic, 14);
762 		/*FALLTHROUGH*/
763 	case COUNTRY_ETSI:	/* 1-13 */
764 		for (i = 1; i <= 13; i++)
765 			ADD_CHANNEL(ic, i);
766 		break;
767 	case COUNTRY_FCC:	/* 1-11 */
768 	case COUNTRY_IC:	/* 1-11 */
769 		for (i = 1; i <= 11; i++)
770 			ADD_CHANNEL(ic, i);
771 		break;
772 	case COUNTRY_MMK:	/* 14 */
773 		ADD_CHANNEL(ic, 14);
774 		break;
775 	case COUNTRY_FRANCE:	/* 10-13 */
776 		for (i = 10; i <= 13; i++)
777 			ADD_CHANNEL(ic, i);
778 		break;
779 	default:	/* assume channels 10-11 */
780 	case COUNTRY_SPAIN:	/* 10-11 */
781 		for (i = 10; i <= 11; i++)
782 			ADD_CHANNEL(ic, i);
783 		break;
784 	}
785 
786 	/* Read the MAC address. */
787 	reg = ATW_READ(sc, ATW_PAR0);
788 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
789 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
790 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
791 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
792 	reg = ATW_READ(sc, ATW_PAR1);
793 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
794 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
795 
796 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
797 		printf(" could not get mac address, attach failed\n");
798 		return;
799 	}
800 
801 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
802 
803 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
804 	ifp->if_softc = sc;
805 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
806 	    IFF_NOTRAILERS;
807 	ifp->if_ioctl = atw_ioctl;
808 	ifp->if_start = atw_start;
809 	ifp->if_watchdog = atw_watchdog;
810 	ifp->if_init = atw_init;
811 	ifp->if_stop = atw_stop;
812 	IFQ_SET_READY(&ifp->if_snd);
813 
814 	ic->ic_ifp = ifp;
815 	ic->ic_phytype = IEEE80211_T_DS;
816 	ic->ic_opmode = IEEE80211_M_STA;
817 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
818 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
819 
820 	nrate = 0;
821 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
822 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
823 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
824 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
825 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
826 
827 	/*
828 	 * Call MI attach routines.
829 	 */
830 
831 	if_attach(ifp);
832 	ieee80211_ifattach(ic);
833 
834 	atw_evcnt_attach(sc);
835 
836 	sc->sc_newstate = ic->ic_newstate;
837 	ic->ic_newstate = atw_newstate;
838 
839 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
840 	ic->ic_recv_mgmt = atw_recv_mgmt;
841 
842 	sc->sc_node_free = ic->ic_node_free;
843 	ic->ic_node_free = atw_node_free;
844 
845 	sc->sc_node_alloc = ic->ic_node_alloc;
846 	ic->ic_node_alloc = atw_node_alloc;
847 
848 	ic->ic_crypto.cs_key_delete = atw_key_delete;
849 	ic->ic_crypto.cs_key_set = atw_key_set;
850 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
851 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
852 
853 	/* possibly we should fill in our own sc_send_prresp, since
854 	 * the ADM8211 is probably sending probe responses in ad hoc
855 	 * mode.
856 	 */
857 
858 	/* complete initialization */
859 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
860 	callout_init(&sc->sc_scan_ch, 0);
861 
862 #if NBPFILTER > 0
863 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
864 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
865 #endif
866 
867 	/*
868 	 * Make sure the interface is shutdown during reboot.
869 	 */
870 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
871 	if (sc->sc_sdhook == NULL)
872 		printf("%s: WARNING: unable to establish shutdown hook\n",
873 		    sc->sc_dev.dv_xname);
874 
875 	/*
876 	 * Add a suspend hook to make sure we come back up after a
877 	 * resume.
878 	 */
879 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
880 	    atw_power, sc);
881 	if (sc->sc_powerhook == NULL)
882 		printf("%s: WARNING: unable to establish power hook\n",
883 		    sc->sc_dev.dv_xname);
884 
885 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
886 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
887 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
888 
889 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
890 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
891 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
892 
893 	ieee80211_announce(ic);
894 	return;
895 
896 	/*
897 	 * Free any resources we've allocated during the failed attach
898 	 * attempt.  Do this in reverse order and fall through.
899 	 */
900  fail_5:
901 	for (i = 0; i < ATW_NRXDESC; i++) {
902 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
903 			continue;
904 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
905 	}
906  fail_4:
907 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
908 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
909 			continue;
910 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
911 	}
912 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
913  fail_3:
914 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
915  fail_2:
916 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
917 	    sizeof(struct atw_control_data));
918  fail_1:
919 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
920  fail_0:
921 	return;
922 }
923 
924 static struct ieee80211_node *
925 atw_node_alloc(struct ieee80211_node_table *nt)
926 {
927 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
928 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
929 
930 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
931 	return ni;
932 }
933 
934 static void
935 atw_node_free(struct ieee80211_node *ni)
936 {
937 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
938 
939 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
940 	    ether_sprintf(ni->ni_bssid)));
941 	(*sc->sc_node_free)(ni);
942 }
943 
944 
945 static void
946 atw_test1_reset(struct atw_softc *sc)
947 {
948 	switch (sc->sc_rev) {
949 	case ATW_REVISION_BA:
950 		if (1 /* XXX condition on transceiver type */) {
951 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
952 		}
953 		break;
954 	case ATW_REVISION_CA:
955 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
956 		break;
957 	default:
958 		break;
959 	}
960 }
961 
962 /*
963  * atw_reset:
964  *
965  *	Perform a soft reset on the ADM8211.
966  */
967 void
968 atw_reset(struct atw_softc *sc)
969 {
970 	int i;
971 	uint32_t lpc;
972 
973 	ATW_WRITE(sc, ATW_NAR, 0x0);
974 	DELAY(atw_nar_delay);
975 
976 	/* Reference driver has a cryptic remark indicating that this might
977 	 * power-on the chip.  I know that it turns off power-saving....
978 	 */
979 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
980 
981 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
982 
983 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
984 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
985 			break;
986 		DELAY(atw_pseudo_milli);
987 	}
988 
989 	/* ... and then pause 100ms longer for good measure. */
990 	DELAY(atw_magic_delay1);
991 
992 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
993 
994 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
995 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
996 
997 	/*
998 	 * Initialize the PCI Access Register.
999 	 */
1000 	sc->sc_busmode = ATW_PAR_PBL_8DW;
1001 
1002 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1003 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1004 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1005 
1006 	atw_test1_reset(sc);
1007 
1008 	/* Turn off maximum power saving, etc. */
1009 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
1010 
1011 	DELAY(atw_magic_delay2);
1012 
1013 	/* Recall EEPROM. */
1014 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
1015 
1016 	DELAY(atw_magic_delay4);
1017 
1018 	lpc = ATW_READ(sc, ATW_LPC);
1019 
1020 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1021 
1022 	/* A reset seems to affect the SRAM contents, so put them into
1023 	 * a known state.
1024 	 */
1025 	atw_clear_sram(sc);
1026 
1027 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1028 }
1029 
1030 static void
1031 atw_clear_sram(struct atw_softc *sc)
1032 {
1033 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1034 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1035 	/* XXX not for revision 0x20. */
1036 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1037 }
1038 
1039 /* TBD atw_init
1040  *
1041  * set MAC based on ic->ic_bss->myaddr
1042  * write WEP keys
1043  * set TX rate
1044  */
1045 
1046 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1047  * without receiving a beacon with the preferred BSSID & SSID.
1048  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1049  */
1050 static void
1051 atw_wcsr_init(struct atw_softc *sc)
1052 {
1053 	uint32_t wcsr;
1054 
1055 	wcsr = ATW_READ(sc, ATW_WCSR);
1056 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1057 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1058 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1059 
1060 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1061 	    sc->sc_dev.dv_xname, __func__, ATW_READ(sc, ATW_WCSR)));
1062 }
1063 
1064 /* Turn off power management.  Set Rx store-and-forward mode. */
1065 static void
1066 atw_cmdr_init(struct atw_softc *sc)
1067 {
1068 	uint32_t cmdr;
1069 	cmdr = ATW_READ(sc, ATW_CMDR);
1070 	cmdr &= ~ATW_CMDR_APM;
1071 	cmdr |= ATW_CMDR_RTE;
1072 	cmdr &= ~ATW_CMDR_DRT_MASK;
1073 	cmdr |= ATW_CMDR_DRT_SF;
1074 
1075 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1076 }
1077 
1078 static void
1079 atw_tofs2_init(struct atw_softc *sc)
1080 {
1081 	uint32_t tofs2;
1082 	/* XXX this magic can probably be figured out from the RFMD docs */
1083 #ifndef ATW_REFSLAVE
1084 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1085 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1086 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1087 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1088 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1089 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1090 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1091 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1092 #else
1093 	/* XXX new magic from reference driver source */
1094 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1095 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1096 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1097 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1098 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1099 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1100 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1101 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1102 #endif
1103 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1104 }
1105 
1106 static void
1107 atw_nar_init(struct atw_softc *sc)
1108 {
1109 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1110 }
1111 
1112 static void
1113 atw_txlmt_init(struct atw_softc *sc)
1114 {
1115 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1116 	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1117 }
1118 
1119 static void
1120 atw_test1_init(struct atw_softc *sc)
1121 {
1122 	uint32_t test1;
1123 
1124 	test1 = ATW_READ(sc, ATW_TEST1);
1125 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1126 	/* XXX magic 0x1 */
1127 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1128 	ATW_WRITE(sc, ATW_TEST1, test1);
1129 }
1130 
1131 static void
1132 atw_rf_reset(struct atw_softc *sc)
1133 {
1134 	/* XXX this resets an Intersil RF front-end? */
1135 	/* TBD condition on Intersil RFType? */
1136 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1137 	DELAY(atw_rf_delay1);
1138 	ATW_WRITE(sc, ATW_SYNRF, 0);
1139 	DELAY(atw_rf_delay2);
1140 }
1141 
1142 /* Set 16 TU max duration for the contention-free period (CFP). */
1143 static void
1144 atw_cfp_init(struct atw_softc *sc)
1145 {
1146 	uint32_t cfpp;
1147 
1148 	cfpp = ATW_READ(sc, ATW_CFPP);
1149 	cfpp &= ~ATW_CFPP_CFPMD;
1150 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1151 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1152 }
1153 
1154 static void
1155 atw_tofs0_init(struct atw_softc *sc)
1156 {
1157 	/* XXX I guess that the Cardbus clock is 22 MHz?
1158 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1159 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1160 	 * very clear on this point. It says in the datasheet that it is
1161 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1162 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1163 	 * these values. These values are also the power-on default.
1164 	 */
1165 	ATW_WRITE(sc, ATW_TOFS0,
1166 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1167 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1168 }
1169 
1170 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1171 static void
1172 atw_ifs_init(struct atw_softc *sc)
1173 {
1174 	uint32_t ifst;
1175 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1176 	 * Go figure.
1177 	 */
1178 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1179 	      __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1180 	             ATW_IFST_SIFS_MASK) |
1181 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1182 	      __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1183 
1184 	ATW_WRITE(sc, ATW_IFST, ifst);
1185 }
1186 
1187 static void
1188 atw_response_times_init(struct atw_softc *sc)
1189 {
1190 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1191 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1192 	 * to pass after it transmits a frame that requires a response;
1193 	 * it waits at most SIFS + MART microseconds for the response.
1194 	 * Surely this is not the ACK timeout?
1195 	 */
1196 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1197 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1198 }
1199 
1200 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1201  * engines read and write baseband registers after Rx and before
1202  * Tx, respectively.
1203  */
1204 static void
1205 atw_bbp_io_init(struct atw_softc *sc)
1206 {
1207 	uint32_t mmiraddr2;
1208 
1209 	/* XXX The reference driver does this, but is it *really*
1210 	 * necessary?
1211 	 */
1212 	switch (sc->sc_rev) {
1213 	case ATW_REVISION_AB:
1214 	case ATW_REVISION_AF:
1215 		mmiraddr2 = 0x0;
1216 		break;
1217 	default:
1218 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1219 		mmiraddr2 &=
1220 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1221 		break;
1222 	}
1223 
1224 	switch (sc->sc_bbptype) {
1225 	case ATW_BBPTYPE_INTERSIL:
1226 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1227 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1228 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1229 		break;
1230 	case ATW_BBPTYPE_MARVEL:
1231 		/* TBD find out the Marvel settings. */
1232 		break;
1233 	case ATW_BBPTYPE_RFMD:
1234 	default:
1235 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1236 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1237 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1238 		break;
1239 	}
1240 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1241 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1242 }
1243 
1244 /*
1245  * atw_init:		[ ifnet interface function ]
1246  *
1247  *	Initialize the interface.  Must be called at splnet().
1248  */
1249 int
1250 atw_init(struct ifnet *ifp)
1251 {
1252 	struct atw_softc *sc = ifp->if_softc;
1253 	struct ieee80211com *ic = &sc->sc_ic;
1254 	struct atw_txsoft *txs;
1255 	struct atw_rxsoft *rxs;
1256 	int i, error = 0;
1257 
1258 	if ((error = atw_enable(sc)) != 0)
1259 		goto out;
1260 
1261 	/*
1262 	 * Cancel any pending I/O. This also resets.
1263 	 */
1264 	atw_stop(ifp, 0);
1265 
1266 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1267 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1268 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1269 
1270 	atw_wcsr_init(sc);
1271 
1272 	atw_cmdr_init(sc);
1273 
1274 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1275 	 *
1276 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1277 	 */
1278 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1279 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1280 
1281 	atw_tofs2_init(sc);
1282 
1283 	atw_nar_init(sc);
1284 
1285 	atw_txlmt_init(sc);
1286 
1287 	atw_test1_init(sc);
1288 
1289 	atw_rf_reset(sc);
1290 
1291 	atw_cfp_init(sc);
1292 
1293 	atw_tofs0_init(sc);
1294 
1295 	atw_ifs_init(sc);
1296 
1297 	/* XXX Fall asleep after one second of inactivity.
1298 	 * XXX A frame may only dribble in for 65536us.
1299 	 */
1300 	ATW_WRITE(sc, ATW_RMD,
1301 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1302 
1303 	atw_response_times_init(sc);
1304 
1305 	atw_bbp_io_init(sc);
1306 
1307 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1308 
1309 	if ((error = atw_rf3000_init(sc)) != 0)
1310 		goto out;
1311 
1312 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1313 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1314 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1315 
1316 	/*
1317 	 * Initialize the transmit descriptor ring.
1318 	 */
1319 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1320 	for (i = 0; i < ATW_NTXDESC; i++) {
1321 		sc->sc_txdescs[i].at_ctl = 0;
1322 		/* no transmit chaining */
1323 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1324 		sc->sc_txdescs[i].at_buf2 =
1325 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1326 	}
1327 	/* use ring mode */
1328 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1329 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1330 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1331 	sc->sc_txfree = ATW_NTXDESC;
1332 	sc->sc_txnext = 0;
1333 
1334 	/*
1335 	 * Initialize the transmit job descriptors.
1336 	 */
1337 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1338 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1339 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1340 		txs = &sc->sc_txsoft[i];
1341 		txs->txs_mbuf = NULL;
1342 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1343 	}
1344 
1345 	/*
1346 	 * Initialize the receive descriptor and receive job
1347 	 * descriptor rings.
1348 	 */
1349 	for (i = 0; i < ATW_NRXDESC; i++) {
1350 		rxs = &sc->sc_rxsoft[i];
1351 		if (rxs->rxs_mbuf == NULL) {
1352 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1353 				printf("%s: unable to allocate or map rx "
1354 				    "buffer %d, error = %d\n",
1355 				    sc->sc_dev.dv_xname, i, error);
1356 				/*
1357 				 * XXX Should attempt to run with fewer receive
1358 				 * XXX buffers instead of just failing.
1359 				 */
1360 				atw_rxdrain(sc);
1361 				goto out;
1362 			}
1363 		} else
1364 			atw_init_rxdesc(sc, i);
1365 	}
1366 	sc->sc_rxptr = 0;
1367 
1368 	/*
1369 	 * Initialize the interrupt mask and enable interrupts.
1370 	 */
1371 	/* normal interrupts */
1372 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1373 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1374 
1375 	/* abnormal interrupts */
1376 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1377 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1378 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1379 
1380 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1381 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1382 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1383 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1384 	    ATW_INTR_TRT;
1385 
1386 	sc->sc_linkint_mask &= sc->sc_inten;
1387 	sc->sc_rxint_mask &= sc->sc_inten;
1388 	sc->sc_txint_mask &= sc->sc_inten;
1389 
1390 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1391 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1392 
1393 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1394 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1395 
1396 	/*
1397 	 * Give the transmit and receive rings to the ADM8211.
1398 	 */
1399 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1400 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1401 
1402 	sc->sc_txthresh = 0;
1403 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1404 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1405 
1406 	/* common 802.11 configuration */
1407 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1408 	switch (ic->ic_opmode) {
1409 	case IEEE80211_M_STA:
1410 		break;
1411 	case IEEE80211_M_AHDEMO: /* XXX */
1412 	case IEEE80211_M_IBSS:
1413 		ic->ic_flags |= IEEE80211_F_IBSSON;
1414 		/*FALLTHROUGH*/
1415 	case IEEE80211_M_HOSTAP: /* XXX */
1416 		break;
1417 	case IEEE80211_M_MONITOR: /* XXX */
1418 		break;
1419 	}
1420 
1421 	switch (ic->ic_opmode) {
1422 	case IEEE80211_M_AHDEMO:
1423 	case IEEE80211_M_HOSTAP:
1424 #ifndef IEEE80211_NO_HOSTAP
1425 		ic->ic_bss->ni_intval = ic->ic_lintval;
1426 		ic->ic_bss->ni_rssi = 0;
1427 		ic->ic_bss->ni_rstamp = 0;
1428 #endif /* !IEEE80211_NO_HOSTAP */
1429 		break;
1430 	default:					/* XXX */
1431 		break;
1432 	}
1433 
1434 	sc->sc_wepctl = 0;
1435 
1436 	atw_write_ssid(sc);
1437 	atw_write_sup_rates(sc);
1438 	atw_write_wep(sc);
1439 
1440 	ic->ic_state = IEEE80211_S_INIT;
1441 
1442 	/*
1443 	 * Set the receive filter.  This will start the transmit and
1444 	 * receive processes.
1445 	 */
1446 	atw_filter_setup(sc);
1447 
1448 	/*
1449 	 * Start the receive process.
1450 	 */
1451 	ATW_WRITE(sc, ATW_RDR, 0x1);
1452 
1453 	/*
1454 	 * Note that the interface is now running.
1455 	 */
1456 	ifp->if_flags |= IFF_RUNNING;
1457 	ifp->if_flags &= ~IFF_OACTIVE;
1458 
1459 	/* send no beacons, yet. */
1460 	atw_start_beacon(sc, 0);
1461 
1462 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1463 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1464 	else
1465 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1466  out:
1467 	if (error) {
1468 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1469 		sc->sc_tx_timer = 0;
1470 		ifp->if_timer = 0;
1471 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1472 	}
1473 #ifdef ATW_DEBUG
1474 	atw_print_regs(sc, "end of init");
1475 #endif /* ATW_DEBUG */
1476 
1477 	return (error);
1478 }
1479 
1480 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1481  *           0: MAC control of RF3000/Si4126.
1482  *
1483  * Applies power, or selects RF front-end? Sets reset condition.
1484  *
1485  * TBD support non-RFMD BBP, non-SiLabs synth.
1486  */
1487 static void
1488 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1489 {
1490 	if (enable) {
1491 		ATW_WRITE(sc, ATW_SYNRF,
1492 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1493 		DELAY(atw_bbp_io_enable_delay);
1494 	} else {
1495 		ATW_WRITE(sc, ATW_SYNRF, 0);
1496 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1497 	}
1498 }
1499 
1500 static int
1501 atw_tune(struct atw_softc *sc)
1502 {
1503 	int rc;
1504 	u_int chan;
1505 	struct ieee80211com *ic = &sc->sc_ic;
1506 
1507 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1508 	if (chan == IEEE80211_CHAN_ANY)
1509 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1510 
1511 	if (chan == sc->sc_cur_chan)
1512 		return 0;
1513 
1514 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1515 	    sc->sc_cur_chan, chan));
1516 
1517 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1518 
1519 	atw_si4126_tune(sc, chan);
1520 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1521 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1522 		    chan);
1523 
1524 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1525 	DELAY(atw_nar_delay);
1526 	ATW_WRITE(sc, ATW_RDR, 0x1);
1527 
1528 	if (rc == 0) {
1529 		sc->sc_cur_chan = chan;
1530 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1531 		    htole16(ic->ic_curchan->ic_freq);
1532 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1533 		    htole16(ic->ic_curchan->ic_flags);
1534 	}
1535 
1536 	return rc;
1537 }
1538 
1539 #ifdef ATW_SYNDEBUG
1540 static void
1541 atw_si4126_print(struct atw_softc *sc)
1542 {
1543 	struct ifnet *ifp = &sc->sc_if;
1544 	u_int addr, val;
1545 
1546 	val = 0;
1547 
1548 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1549 		return;
1550 
1551 	for (addr = 0; addr <= 8; addr++) {
1552 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1553 		if (atw_si4126_read(sc, addr, &val) == 0) {
1554 			printf("<unknown> (quitting print-out)\n");
1555 			break;
1556 		}
1557 		printf("%05x\n", val);
1558 	}
1559 }
1560 #endif /* ATW_SYNDEBUG */
1561 
1562 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1563  *
1564  * The RF/IF synthesizer produces two reference frequencies for
1565  * the RF2948B transceiver.  The first frequency the RF2948B requires
1566  * is two times the so-called "intermediate frequency" (IF). Since
1567  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1568  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1569  * frequency required by the transceiver is the radio frequency
1570  * (RF). This is a superheterodyne transceiver; for f(chan) the
1571  * center frequency of the channel we are tuning, RF = f(chan) -
1572  * IF.
1573  *
1574  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1575  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1576  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1577  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1578  */
1579 static void
1580 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1581 {
1582 	u_int mhz;
1583 	u_int R;
1584 	u_int32_t gpio;
1585 	u_int16_t gain;
1586 
1587 #ifdef ATW_SYNDEBUG
1588 	atw_si4126_print(sc);
1589 #endif /* ATW_SYNDEBUG */
1590 
1591 	if (chan == 14)
1592 		mhz = 2484;
1593 	else
1594 		mhz = 2412 + 5 * (chan - 1);
1595 
1596 	/* Tune IF to 748 MHz to suit the IF LO input of the
1597 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1598          * because an IF in 526 MHz - 952 MHz is allowed.
1599 	 *
1600 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1601 	 * range of 2-25 MHz. SiLabs tells me that this is not
1602 	 * strictly necessary.
1603 	 */
1604 
1605 	if (atw_xindiv2)
1606 		R = 44;
1607 	else
1608 		R = 88;
1609 
1610 	/* Power-up RF, IF synthesizers. */
1611 	atw_si4126_write(sc, SI4126_POWER,
1612 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1613 
1614 	/* set LPWR, too? */
1615 	atw_si4126_write(sc, SI4126_MAIN,
1616 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1617 
1618 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1619 	 * set KP2 to 1.
1620 	 *
1621 	 * REFDIF This is different from the reference driver, which
1622 	 * always sets SI4126_GAIN to 0.
1623 	 */
1624 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1625 
1626 	atw_si4126_write(sc, SI4126_GAIN, gain);
1627 
1628 	/* XIN = 44 MHz.
1629 	 *
1630 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1631 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1632 	 *
1633 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1634 	 * so that 1496/88 * 44 MHz = 748 MHz.
1635 	 */
1636 	atw_si4126_write(sc, SI4126_IFN, 1496);
1637 
1638 	atw_si4126_write(sc, SI4126_IFR, R);
1639 
1640 #ifndef ATW_REFSLAVE
1641 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1642 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1643 	 * which has no RF1!
1644 	 */
1645 	atw_si4126_write(sc, SI4126_RF1R, R);
1646 
1647 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1648 #endif
1649 
1650 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1651 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1652 	 * Now let's multiply it to mhz. So mhz - IF = N.
1653 	 */
1654 	atw_si4126_write(sc, SI4126_RF2R, R);
1655 
1656 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1657 
1658 	/* wait 100us from power-up for RF, IF to settle */
1659 	DELAY(100);
1660 
1661 	gpio = ATW_READ(sc, ATW_GPIO);
1662 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1663 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1664 
1665 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1666 		/* Set a Prism RF front-end to a special mode for channel 14?
1667 		 *
1668 		 * Apparently the SMC2635W needs this, although I don't think
1669 		 * it has a Prism RF.
1670 		 */
1671 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1672 	}
1673 	ATW_WRITE(sc, ATW_GPIO, gpio);
1674 
1675 #ifdef ATW_SYNDEBUG
1676 	atw_si4126_print(sc);
1677 #endif /* ATW_SYNDEBUG */
1678 }
1679 
1680 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1681  * diversity.
1682  *
1683  * !!!
1684  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1685  * !!!
1686  */
1687 static int
1688 atw_rf3000_init(struct atw_softc *sc)
1689 {
1690 	int rc = 0;
1691 
1692 	atw_bbp_io_enable(sc, 1);
1693 
1694 	/* CCA is acquisition sensitive */
1695 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1696 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1697 
1698 	if (rc != 0)
1699 		goto out;
1700 
1701 	/* enable diversity */
1702 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1703 
1704 	if (rc != 0)
1705 		goto out;
1706 
1707 	/* sensible setting from a binary-only driver */
1708 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1709 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1710 
1711 	if (rc != 0)
1712 		goto out;
1713 
1714 	/* magic from a binary-only driver */
1715 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1716 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1717 
1718 	if (rc != 0)
1719 		goto out;
1720 
1721 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1722 
1723 	if (rc != 0)
1724 		goto out;
1725 
1726 	/* XXX Reference driver remarks that Abocom sets this to 50.
1727 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1728 	 * in the "reserved" area of register RF3000_OPTIONS1.
1729 	 */
1730 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1731 
1732 	if (rc != 0)
1733 		goto out;
1734 
1735 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1736 
1737 	if (rc != 0)
1738 		goto out;
1739 
1740 out:
1741 	atw_bbp_io_enable(sc, 0);
1742 	return rc;
1743 }
1744 
1745 #ifdef ATW_BBPDEBUG
1746 static void
1747 atw_rf3000_print(struct atw_softc *sc)
1748 {
1749 	struct ifnet *ifp = &sc->sc_if;
1750 	u_int addr, val;
1751 
1752 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1753 		return;
1754 
1755 	for (addr = 0x01; addr <= 0x15; addr++) {
1756 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1757 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1758 			printf("<unknown> (quitting print-out)\n");
1759 			break;
1760 		}
1761 		printf("%08x\n", val);
1762 	}
1763 }
1764 #endif /* ATW_BBPDEBUG */
1765 
1766 /* Set the power settings on the BBP for channel `chan'. */
1767 static int
1768 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1769 {
1770 	int rc = 0;
1771 	u_int32_t reg;
1772 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1773 
1774 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1775 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1776 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1777 
1778 	/* odd channels: LSB, even channels: MSB */
1779 	if (chan % 2 == 1) {
1780 		txpower &= 0xFF;
1781 		lpf_cutoff &= 0xFF;
1782 		lna_gs_thresh &= 0xFF;
1783 	} else {
1784 		txpower >>= 8;
1785 		lpf_cutoff >>= 8;
1786 		lna_gs_thresh >>= 8;
1787 	}
1788 
1789 #ifdef ATW_BBPDEBUG
1790 	atw_rf3000_print(sc);
1791 #endif /* ATW_BBPDEBUG */
1792 
1793 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1794 	    "lna_gs_thresh %02x\n",
1795 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1796 
1797 	atw_bbp_io_enable(sc, 1);
1798 
1799 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1800 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1801 		goto out;
1802 
1803 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1804 		goto out;
1805 
1806 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1807 		goto out;
1808 
1809 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1810 
1811 	if (rc != 0)
1812 		goto out;
1813 
1814 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1815 
1816 	if (rc != 0)
1817 		goto out;
1818 
1819 #ifdef ATW_BBPDEBUG
1820 	atw_rf3000_print(sc);
1821 #endif /* ATW_BBPDEBUG */
1822 
1823 out:
1824 	atw_bbp_io_enable(sc, 0);
1825 
1826 	/* set beacon, rts, atim transmit power */
1827 	reg = ATW_READ(sc, ATW_PLCPHD);
1828 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1829 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1830 	    ATW_PLCPHD_SERVICE_MASK);
1831 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1832 	DELAY(atw_plcphd_delay);
1833 
1834 	return rc;
1835 }
1836 
1837 /* Write a register on the RF3000 baseband processor using the
1838  * registers provided by the ADM8211 for this purpose.
1839  *
1840  * Return 0 on success.
1841  */
1842 static int
1843 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1844 {
1845 	u_int32_t reg;
1846 	int i;
1847 
1848 	reg = sc->sc_bbpctl_wr |
1849 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1850 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1851 
1852 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1853 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1854 		DELAY(2 * atw_pseudo_milli);
1855 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1856 			break;
1857 	}
1858 
1859 	if (i < 0) {
1860 		printf("%s: BBPCTL still busy\n", sc->sc_dev.dv_xname);
1861 		return ETIMEDOUT;
1862 	}
1863 	return 0;
1864 }
1865 
1866 /* Read a register on the RF3000 baseband processor using the registers
1867  * the ADM8211 provides for this purpose.
1868  *
1869  * The 7-bit register address is addr.  Record the 8-bit data in the register
1870  * in *val.
1871  *
1872  * Return 0 on success.
1873  *
1874  * XXX This does not seem to work. The ADM8211 must require more or
1875  * different magic to read the chip than to write it. Possibly some
1876  * of the magic I have derived from a binary-only driver concerns
1877  * the "chip address" (see the RF3000 manual).
1878  */
1879 #ifdef ATW_BBPDEBUG
1880 static int
1881 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1882 {
1883 	u_int32_t reg;
1884 	int i;
1885 
1886 	for (i = 1000; --i >= 0; ) {
1887 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1888 			break;
1889 		DELAY(100);
1890 	}
1891 
1892 	if (i < 0) {
1893 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1894 		    sc->sc_dev.dv_xname);
1895 		return ETIMEDOUT;
1896 	}
1897 
1898 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1899 
1900 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1901 
1902 	for (i = 1000; --i >= 0; ) {
1903 		DELAY(100);
1904 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1905 			break;
1906 	}
1907 
1908 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1909 
1910 	if (i < 0) {
1911 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1912 		    sc->sc_dev.dv_xname, reg);
1913 		return ETIMEDOUT;
1914 	}
1915 	if (val != NULL)
1916 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1917 	return 0;
1918 }
1919 #endif /* ATW_BBPDEBUG */
1920 
1921 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1922  * provided by the ADM8211 for that purpose.
1923  *
1924  * val is 18 bits of data, and val is the 4-bit address of the register.
1925  *
1926  * Return 0 on success.
1927  */
1928 static void
1929 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1930 {
1931 	uint32_t bits, mask, reg;
1932 	const int nbits = 22;
1933 
1934 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1935 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1936 
1937 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1938 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1939 
1940 	reg = ATW_SYNRF_SELSYN;
1941 	/* reference driver: reset Si4126 serial bus to initial
1942 	 * conditions?
1943 	 */
1944 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1945 	ATW_WRITE(sc, ATW_SYNRF, reg);
1946 
1947 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1948 		if ((bits & mask) != 0)
1949 			reg |= ATW_SYNRF_SYNDATA;
1950 		else
1951 			reg &= ~ATW_SYNRF_SYNDATA;
1952 		ATW_WRITE(sc, ATW_SYNRF, reg);
1953 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1954 		ATW_WRITE(sc, ATW_SYNRF, reg);
1955 	}
1956 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1957 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1958 }
1959 
1960 /* Read 18-bit data from the 4-bit address addr in Si4126
1961  * RF synthesizer and write the data to *val. Return 0 on success.
1962  *
1963  * XXX This does not seem to work. The ADM8211 must require more or
1964  * different magic to read the chip than to write it.
1965  */
1966 #ifdef ATW_SYNDEBUG
1967 static int
1968 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1969 {
1970 	u_int32_t reg;
1971 	int i;
1972 
1973 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1974 
1975 	for (i = 1000; --i >= 0; ) {
1976 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1977 			break;
1978 		DELAY(100);
1979 	}
1980 
1981 	if (i < 0) {
1982 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1983 		    sc->sc_dev.dv_xname);
1984 		return ETIMEDOUT;
1985 	}
1986 
1987 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1988 
1989 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1990 
1991 	for (i = 1000; --i >= 0; ) {
1992 		DELAY(100);
1993 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1994 			break;
1995 	}
1996 
1997 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1998 
1999 	if (i < 0) {
2000 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
2001 		    sc->sc_dev.dv_xname, reg);
2002 		return ETIMEDOUT;
2003 	}
2004 	if (val != NULL)
2005 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
2006 		                       ATW_SYNCTL_DATA_MASK);
2007 	return 0;
2008 }
2009 #endif /* ATW_SYNDEBUG */
2010 
2011 /* XXX is the endianness correct? test. */
2012 #define	atw_calchash(addr) \
2013 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
2014 
2015 /*
2016  * atw_filter_setup:
2017  *
2018  *	Set the ADM8211's receive filter.
2019  */
2020 static void
2021 atw_filter_setup(struct atw_softc *sc)
2022 {
2023 	struct ieee80211com *ic = &sc->sc_ic;
2024 	struct ethercom *ec = &sc->sc_ec;
2025 	struct ifnet *ifp = &sc->sc_if;
2026 	int hash;
2027 	u_int32_t hashes[2];
2028 	struct ether_multi *enm;
2029 	struct ether_multistep step;
2030 
2031 	/* According to comments in tlp_al981_filter_setup
2032 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2033 	 * multicast filter to be set while it is running.  Hopefully
2034 	 * the ADM8211 is not the same!
2035 	 */
2036 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2037 		atw_idle(sc, ATW_NAR_SR);
2038 
2039 	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2040 	ifp->if_flags &= ~IFF_ALLMULTI;
2041 
2042 	/* XXX in scan mode, do not filter packets.  Maybe this is
2043 	 * unnecessary.
2044 	 */
2045 	if (ic->ic_state == IEEE80211_S_SCAN ||
2046 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2047 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2048 		goto allmulti;
2049 	}
2050 
2051 	hashes[0] = hashes[1] = 0x0;
2052 
2053 	/*
2054 	 * Program the 64-bit multicast hash filter.
2055 	 */
2056 	ETHER_FIRST_MULTI(step, ec, enm);
2057 	while (enm != NULL) {
2058 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2059 		    ETHER_ADDR_LEN) != 0)
2060 			goto allmulti;
2061 
2062 		hash = atw_calchash(enm->enm_addrlo);
2063 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2064 		ETHER_NEXT_MULTI(step, enm);
2065 		sc->sc_opmode |= ATW_NAR_MM;
2066 	}
2067 	ifp->if_flags &= ~IFF_ALLMULTI;
2068 	goto setit;
2069 
2070 allmulti:
2071 	sc->sc_opmode |= ATW_NAR_MM;
2072 	ifp->if_flags |= IFF_ALLMULTI;
2073 	hashes[0] = hashes[1] = 0xffffffff;
2074 
2075 setit:
2076 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2077 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2078 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2079 	DELAY(atw_nar_delay);
2080 	ATW_WRITE(sc, ATW_RDR, 0x1);
2081 
2082 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
2083 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2084 }
2085 
2086 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2087  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2088  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2089  * no beacon with the preferred BSSID and SSID in the number of
2090  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2091  */
2092 static void
2093 atw_write_bssid(struct atw_softc *sc)
2094 {
2095 	struct ieee80211com *ic = &sc->sc_ic;
2096 	u_int8_t *bssid;
2097 
2098 	bssid = ic->ic_bss->ni_bssid;
2099 
2100 	ATW_WRITE(sc, ATW_BSSID0,
2101 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2102 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2103 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2104 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2105 
2106 	ATW_WRITE(sc, ATW_ABDA1,
2107 	    (ATW_READ(sc, ATW_ABDA1) &
2108 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2109 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2110 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2111 
2112 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
2113 	    ether_sprintf(sc->sc_bssid)));
2114 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2115 
2116 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2117 }
2118 
2119 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2120  * 16-bit word.
2121  */
2122 static void
2123 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2124 {
2125 	u_int i;
2126 	u_int8_t *ptr;
2127 
2128 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2129 
2130 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2131 
2132 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2133 
2134 	ptr = &sc->sc_sram[ofs];
2135 
2136 	for (i = 0; i < buflen; i += 2) {
2137 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2138 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2139 		DELAY(atw_writewep_delay);
2140 
2141 		ATW_WRITE(sc, ATW_WESK,
2142 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2143 		DELAY(atw_writewep_delay);
2144 	}
2145 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2146 
2147 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2148 		int n_octets = 0;
2149 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2150 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2151 		for (i = 0; i < buflen; i++) {
2152 			printf(" %02x", ptr[i]);
2153 			if (++n_octets % 24 == 0)
2154 				printf("\n");
2155 		}
2156 		if (n_octets % 24 != 0)
2157 			printf("\n");
2158 	}
2159 }
2160 
2161 static int
2162 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2163 {
2164 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2165 	u_int keyix = k->wk_keyix;
2166 
2167 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2168 
2169 	if (keyix >= IEEE80211_WEP_NKID)
2170 		return 0;
2171 	if (k->wk_keylen != 0)
2172 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2173 
2174 	return 1;
2175 }
2176 
2177 static int
2178 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2179 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2180 {
2181 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2182 
2183 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2184 
2185 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2186 		return 0;
2187 
2188 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2189 
2190 	return 1;
2191 }
2192 
2193 static void
2194 atw_key_update_begin(struct ieee80211com *ic)
2195 {
2196 #ifdef ATW_DEBUG
2197 	struct ifnet *ifp = ic->ic_ifp;
2198 	struct atw_softc *sc = ifp->if_softc;
2199 #endif
2200 
2201 	DPRINTF(sc, ("%s:\n", __func__));
2202 }
2203 
2204 static void
2205 atw_key_update_end(struct ieee80211com *ic)
2206 {
2207 	struct ifnet *ifp = ic->ic_ifp;
2208 	struct atw_softc *sc = ifp->if_softc;
2209 
2210 	DPRINTF(sc, ("%s:\n", __func__));
2211 
2212 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2213 		return;
2214 	if (ATW_IS_ENABLED(sc) == 0)
2215 		return;
2216 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2217 	atw_write_wep(sc);
2218 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2219 	DELAY(atw_nar_delay);
2220 	ATW_WRITE(sc, ATW_RDR, 0x1);
2221 }
2222 
2223 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2224 static void
2225 atw_write_wep(struct atw_softc *sc)
2226 {
2227 #if 0
2228 	struct ieee80211com *ic = &sc->sc_ic;
2229 	u_int32_t reg;
2230 	int i;
2231 #endif
2232 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2233 	u_int8_t buf[IEEE80211_WEP_NKID]
2234 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2235 
2236 	sc->sc_wepctl = 0;
2237 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2238 
2239 	memset(&buf[0][0], 0, sizeof(buf));
2240 
2241 #if 0
2242 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2243 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2244 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2245 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2246 			buf[i][1] = ATW_WEP_ENABLED;
2247 		} else {
2248 			buf[i][1] = 0;
2249 			continue;
2250 		}
2251 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2252 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2253 		    ic->ic_nw_keys[i].wk_keylen - 1);
2254 	}
2255 
2256 	reg = ATW_READ(sc, ATW_MACTEST);
2257 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2258 	reg &= ~ATW_MACTEST_KEYID_MASK;
2259 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2260 	ATW_WRITE(sc, ATW_MACTEST, reg);
2261 
2262 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2263 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2264 
2265 	switch (sc->sc_rev) {
2266 	case ATW_REVISION_AB:
2267 	case ATW_REVISION_AF:
2268 		/* Bypass WEP on Rx. */
2269 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2270 		break;
2271 	default:
2272 		break;
2273 	}
2274 #endif
2275 
2276 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2277 	    sizeof(buf));
2278 
2279 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2280 }
2281 
2282 static void
2283 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2284     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2285 {
2286 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2287 
2288 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2289 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2290 		return;
2291 
2292 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2293 
2294 	switch (subtype) {
2295 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2296 	case IEEE80211_FC0_SUBTYPE_BEACON:
2297 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2298 		    ic->ic_state == IEEE80211_S_RUN) {
2299 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2300 				(void)ieee80211_ibss_merge(ni);
2301 		}
2302 		break;
2303 	default:
2304 		break;
2305 	}
2306 	return;
2307 }
2308 
2309 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2310  * In ad hoc mode, the SSID is written to the beacons sent by the
2311  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2312  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2313  * indications.
2314  */
2315 static void
2316 atw_write_ssid(struct atw_softc *sc)
2317 {
2318 	struct ieee80211com *ic = &sc->sc_ic;
2319 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2320 	 * it only expects the element length, not its ID.
2321 	 */
2322 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2323 
2324 	memset(buf, 0, sizeof(buf));
2325 	buf[0] = ic->ic_bss->ni_esslen;
2326 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2327 
2328 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2329 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2330 }
2331 
2332 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2333  * In ad hoc mode, the supported rates are written to beacons sent by the
2334  * ADM8211.
2335  */
2336 static void
2337 atw_write_sup_rates(struct atw_softc *sc)
2338 {
2339 	struct ieee80211com *ic = &sc->sc_ic;
2340 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2341 	 * supported rates
2342 	 */
2343 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2344 
2345 	memset(buf, 0, sizeof(buf));
2346 
2347 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2348 
2349 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2350 	    ic->ic_bss->ni_rates.rs_nrates);
2351 
2352 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2353 }
2354 
2355 /* Start/stop sending beacons. */
2356 void
2357 atw_start_beacon(struct atw_softc *sc, int start)
2358 {
2359 	struct ieee80211com *ic = &sc->sc_ic;
2360 	uint16_t chan;
2361 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2362 	size_t len;
2363 
2364 	if (ATW_IS_ENABLED(sc) == 0)
2365 		return;
2366 
2367 	/* start beacons */
2368 	len = sizeof(struct ieee80211_frame) +
2369 	    8 /* timestamp */ + 2 /* beacon interval */ +
2370 	    2 /* capability info */ +
2371 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2372 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2373 	    3 /* DS parameters */ +
2374 	    IEEE80211_CRC_LEN;
2375 
2376 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2377 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2378 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2379 
2380 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2381 	ATW_WRITE(sc, ATW_CAP1, cap1);
2382 
2383 	if (!start)
2384 		return;
2385 
2386 	/* TBD use ni_capinfo */
2387 
2388 	capinfo = 0;
2389 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2390 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2391 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2392 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2393 
2394 	switch (ic->ic_opmode) {
2395 	case IEEE80211_M_IBSS:
2396 		len += 4; /* IBSS parameters */
2397 		capinfo |= IEEE80211_CAPINFO_IBSS;
2398 		break;
2399 	case IEEE80211_M_HOSTAP:
2400 		/* XXX 6-byte minimum TIM */
2401 		len += atw_beacon_len_adjust;
2402 		capinfo |= IEEE80211_CAPINFO_ESS;
2403 		break;
2404 	default:
2405 		return;
2406 	}
2407 
2408 	/* set listen interval
2409 	 * XXX do software units agree w/ hardware?
2410 	 */
2411 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2412 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2413 
2414 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2415 
2416 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2417 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2418 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2419 
2420 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2421 	ATW_WRITE(sc, ATW_BPLI, bpli);
2422 	ATW_WRITE(sc, ATW_CAP0, cap0);
2423 	ATW_WRITE(sc, ATW_CAP1, cap1);
2424 
2425 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2426 	    sc->sc_dev.dv_xname, bcnt));
2427 
2428 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2429 	    sc->sc_dev.dv_xname, cap1));
2430 }
2431 
2432 /* Return the 32 lsb of the last TSFT divisible by ival. */
2433 static inline uint32_t
2434 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2435 {
2436 	/* Following the reference driver's lead, I compute
2437 	 *
2438 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2439 	 *
2440 	 * without using 64-bit arithmetic, using the following
2441 	 * relationship:
2442 	 *
2443 	 *     (0x100000000 * H + L) % m
2444 	 *   = ((0x100000000 % m) * H + L) % m
2445 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2446 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2447 	 *   = ((0xffffffff % m + 1) * H + L) % m
2448 	 */
2449 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2450 }
2451 
2452 static uint64_t
2453 atw_get_tsft(struct atw_softc *sc)
2454 {
2455 	int i;
2456 	uint32_t tsfth, tsftl;
2457 	for (i = 0; i < 2; i++) {
2458 		tsfth = ATW_READ(sc, ATW_TSFTH);
2459 		tsftl = ATW_READ(sc, ATW_TSFTL);
2460 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2461 			break;
2462 	}
2463 	return ((uint64_t)tsfth << 32) | tsftl;
2464 }
2465 
2466 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2467  * the ieee80211com.
2468  *
2469  * Predict the next target beacon transmission time (TBTT) and
2470  * write it to the ADM8211.
2471  */
2472 static void
2473 atw_predict_beacon(struct atw_softc *sc)
2474 {
2475 #define TBTTOFS 20 /* TU */
2476 
2477 	struct ieee80211com *ic = &sc->sc_ic;
2478 	uint64_t tsft;
2479 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2480 	union {
2481 		uint64_t	word;
2482 		uint8_t		tstamp[8];
2483 	} u;
2484 
2485 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2486 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2487 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2488 		tsft = atw_get_tsft(sc);
2489 		u.word = htole64(tsft);
2490 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2491 		    sizeof(ic->ic_bss->ni_tstamp));
2492 	} else
2493 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2494 
2495 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2496 
2497 	tsftl = tsft & 0xFFFFFFFF;
2498 	tsfth = tsft >> 32;
2499 
2500 	/* We sent/received the last beacon `past' microseconds
2501 	 * after the interval divided the TSF timer.
2502 	 */
2503 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2504 
2505 	/* Skip ten beacons so that the TBTT cannot pass before
2506 	 * we've programmed it.  Ten is an arbitrary number.
2507 	 */
2508 	tbtt = past_even + ival * 10;
2509 
2510 	ATW_WRITE(sc, ATW_TOFS1,
2511 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2512 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2513 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2514 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2515 #undef TBTTOFS
2516 }
2517 
2518 static void
2519 atw_next_scan(void *arg)
2520 {
2521 	struct atw_softc *sc = arg;
2522 	struct ieee80211com *ic = &sc->sc_ic;
2523 	int s;
2524 
2525 	/* don't call atw_start w/o network interrupts blocked */
2526 	s = splnet();
2527 	if (ic->ic_state == IEEE80211_S_SCAN)
2528 		ieee80211_next_scan(ic);
2529 	splx(s);
2530 }
2531 
2532 /* Synchronize the hardware state with the software state. */
2533 static int
2534 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2535 {
2536 	struct ifnet *ifp = ic->ic_ifp;
2537 	struct atw_softc *sc = ifp->if_softc;
2538 	enum ieee80211_state ostate;
2539 	int error = 0;
2540 
2541 	ostate = ic->ic_state;
2542 	callout_stop(&sc->sc_scan_ch);
2543 
2544 	switch (nstate) {
2545 	case IEEE80211_S_AUTH:
2546 	case IEEE80211_S_ASSOC:
2547 		atw_write_bssid(sc);
2548 		error = atw_tune(sc);
2549 		break;
2550 	case IEEE80211_S_INIT:
2551 		callout_stop(&sc->sc_scan_ch);
2552 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2553 		atw_start_beacon(sc, 0);
2554 		break;
2555 	case IEEE80211_S_SCAN:
2556 		error = atw_tune(sc);
2557 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2558 		    atw_next_scan, sc);
2559 		break;
2560 	case IEEE80211_S_RUN:
2561 		error = atw_tune(sc);
2562 		atw_write_bssid(sc);
2563 		atw_write_ssid(sc);
2564 		atw_write_sup_rates(sc);
2565 
2566 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2567 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2568 			break;
2569 
2570 		/* set listen interval
2571 		 * XXX do software units agree w/ hardware?
2572 		 */
2573 		ATW_WRITE(sc, ATW_BPLI,
2574 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2575 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2576 			   ATW_BPLI_LI_MASK));
2577 
2578 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", sc->sc_dev.dv_xname,
2579 		    ATW_READ(sc, ATW_BPLI)));
2580 
2581 		atw_predict_beacon(sc);
2582 
2583 		switch (ic->ic_opmode) {
2584 		case IEEE80211_M_AHDEMO:
2585 		case IEEE80211_M_HOSTAP:
2586 		case IEEE80211_M_IBSS:
2587 			atw_start_beacon(sc, 1);
2588 			break;
2589 		case IEEE80211_M_MONITOR:
2590 		case IEEE80211_M_STA:
2591 			break;
2592 		}
2593 
2594 		break;
2595 	}
2596 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2597 }
2598 
2599 /*
2600  * atw_add_rxbuf:
2601  *
2602  *	Add a receive buffer to the indicated descriptor.
2603  */
2604 int
2605 atw_add_rxbuf(struct atw_softc *sc, int idx)
2606 {
2607 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2608 	struct mbuf *m;
2609 	int error;
2610 
2611 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2612 	if (m == NULL)
2613 		return (ENOBUFS);
2614 
2615 	MCLGET(m, M_DONTWAIT);
2616 	if ((m->m_flags & M_EXT) == 0) {
2617 		m_freem(m);
2618 		return (ENOBUFS);
2619 	}
2620 
2621 	if (rxs->rxs_mbuf != NULL)
2622 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2623 
2624 	rxs->rxs_mbuf = m;
2625 
2626 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2627 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2628 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2629 	if (error) {
2630 		printf("%s: can't load rx DMA map %d, error = %d\n",
2631 		    sc->sc_dev.dv_xname, idx, error);
2632 		panic("atw_add_rxbuf");	/* XXX */
2633 	}
2634 
2635 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2636 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2637 
2638 	atw_init_rxdesc(sc, idx);
2639 
2640 	return (0);
2641 }
2642 
2643 /*
2644  * Release any queued transmit buffers.
2645  */
2646 void
2647 atw_txdrain(struct atw_softc *sc)
2648 {
2649 	struct atw_txsoft *txs;
2650 
2651 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2652 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2653 		if (txs->txs_mbuf != NULL) {
2654 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2655 			m_freem(txs->txs_mbuf);
2656 			txs->txs_mbuf = NULL;
2657 		}
2658 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2659 		sc->sc_txfree += txs->txs_ndescs;
2660 	}
2661 
2662 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2663 	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2664 		  sc->sc_txfree != ATW_NTXDESC));
2665 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2666 	sc->sc_tx_timer = 0;
2667 }
2668 
2669 /*
2670  * atw_stop:		[ ifnet interface function ]
2671  *
2672  *	Stop transmission on the interface.
2673  */
2674 void
2675 atw_stop(struct ifnet *ifp, int disable)
2676 {
2677 	struct atw_softc *sc = ifp->if_softc;
2678 	struct ieee80211com *ic = &sc->sc_ic;
2679 
2680 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2681 
2682 	/* Disable interrupts. */
2683 	ATW_WRITE(sc, ATW_IER, 0);
2684 
2685 	/* Stop the transmit and receive processes. */
2686 	sc->sc_opmode = 0;
2687 	ATW_WRITE(sc, ATW_NAR, 0);
2688 	DELAY(atw_nar_delay);
2689 	ATW_WRITE(sc, ATW_TDBD, 0);
2690 	ATW_WRITE(sc, ATW_TDBP, 0);
2691 	ATW_WRITE(sc, ATW_RDB, 0);
2692 
2693 	atw_txdrain(sc);
2694 
2695 	if (disable) {
2696 		atw_rxdrain(sc);
2697 		atw_disable(sc);
2698 	}
2699 
2700 	/*
2701 	 * Mark the interface down and cancel the watchdog timer.
2702 	 */
2703 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2704 	sc->sc_tx_timer = 0;
2705 	ifp->if_timer = 0;
2706 
2707 	if (!disable)
2708 		atw_reset(sc);
2709 }
2710 
2711 /*
2712  * atw_rxdrain:
2713  *
2714  *	Drain the receive queue.
2715  */
2716 void
2717 atw_rxdrain(struct atw_softc *sc)
2718 {
2719 	struct atw_rxsoft *rxs;
2720 	int i;
2721 
2722 	for (i = 0; i < ATW_NRXDESC; i++) {
2723 		rxs = &sc->sc_rxsoft[i];
2724 		if (rxs->rxs_mbuf == NULL)
2725 			continue;
2726 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2727 		m_freem(rxs->rxs_mbuf);
2728 		rxs->rxs_mbuf = NULL;
2729 	}
2730 }
2731 
2732 /*
2733  * atw_detach:
2734  *
2735  *	Detach an ADM8211 interface.
2736  */
2737 int
2738 atw_detach(struct atw_softc *sc)
2739 {
2740 	struct ifnet *ifp = &sc->sc_if;
2741 	struct atw_rxsoft *rxs;
2742 	struct atw_txsoft *txs;
2743 	int i;
2744 
2745 	/*
2746 	 * Succeed now if there isn't any work to do.
2747 	 */
2748 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2749 		return (0);
2750 
2751 	callout_stop(&sc->sc_scan_ch);
2752 
2753 	ieee80211_ifdetach(&sc->sc_ic);
2754 	if_detach(ifp);
2755 
2756 	for (i = 0; i < ATW_NRXDESC; i++) {
2757 		rxs = &sc->sc_rxsoft[i];
2758 		if (rxs->rxs_mbuf != NULL) {
2759 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2760 			m_freem(rxs->rxs_mbuf);
2761 			rxs->rxs_mbuf = NULL;
2762 		}
2763 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2764 	}
2765 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2766 		txs = &sc->sc_txsoft[i];
2767 		if (txs->txs_mbuf != NULL) {
2768 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2769 			m_freem(txs->txs_mbuf);
2770 			txs->txs_mbuf = NULL;
2771 		}
2772 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2773 	}
2774 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2775 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2776 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2777 	    sizeof(struct atw_control_data));
2778 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2779 
2780 	shutdownhook_disestablish(sc->sc_sdhook);
2781 	powerhook_disestablish(sc->sc_powerhook);
2782 
2783 	if (sc->sc_srom)
2784 		free(sc->sc_srom, M_DEVBUF);
2785 
2786 	atw_evcnt_detach(sc);
2787 
2788 	return (0);
2789 }
2790 
2791 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2792 void
2793 atw_shutdown(void *arg)
2794 {
2795 	struct atw_softc *sc = arg;
2796 
2797 	atw_stop(&sc->sc_if, 1);
2798 }
2799 
2800 int
2801 atw_intr(void *arg)
2802 {
2803 	struct atw_softc *sc = arg;
2804 	struct ifnet *ifp = &sc->sc_if;
2805 	u_int32_t status, rxstatus, txstatus, linkstatus;
2806 	int handled = 0, txthresh;
2807 
2808 #ifdef DEBUG
2809 	if (ATW_IS_ENABLED(sc) == 0)
2810 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2811 #endif
2812 
2813 	/*
2814 	 * If the interface isn't running, the interrupt couldn't
2815 	 * possibly have come from us.
2816 	 */
2817 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2818 	    !device_is_active(&sc->sc_dev))
2819 		return (0);
2820 
2821 	for (;;) {
2822 		status = ATW_READ(sc, ATW_STSR);
2823 
2824 		if (status)
2825 			ATW_WRITE(sc, ATW_STSR, status);
2826 
2827 #ifdef ATW_DEBUG
2828 #define PRINTINTR(flag) do { \
2829 	if ((status & flag) != 0) { \
2830 		printf("%s" #flag, delim); \
2831 		delim = ","; \
2832 	} \
2833 } while (0)
2834 
2835 		if (atw_debug > 1 && status) {
2836 			const char *delim = "<";
2837 
2838 			printf("%s: reg[STSR] = %x",
2839 			    sc->sc_dev.dv_xname, status);
2840 
2841 			PRINTINTR(ATW_INTR_FBE);
2842 			PRINTINTR(ATW_INTR_LINKOFF);
2843 			PRINTINTR(ATW_INTR_LINKON);
2844 			PRINTINTR(ATW_INTR_RCI);
2845 			PRINTINTR(ATW_INTR_RDU);
2846 			PRINTINTR(ATW_INTR_REIS);
2847 			PRINTINTR(ATW_INTR_RPS);
2848 			PRINTINTR(ATW_INTR_TCI);
2849 			PRINTINTR(ATW_INTR_TDU);
2850 			PRINTINTR(ATW_INTR_TLT);
2851 			PRINTINTR(ATW_INTR_TPS);
2852 			PRINTINTR(ATW_INTR_TRT);
2853 			PRINTINTR(ATW_INTR_TUF);
2854 			PRINTINTR(ATW_INTR_BCNTC);
2855 			PRINTINTR(ATW_INTR_ATIME);
2856 			PRINTINTR(ATW_INTR_TBTT);
2857 			PRINTINTR(ATW_INTR_TSCZ);
2858 			PRINTINTR(ATW_INTR_TSFTF);
2859 			printf(">\n");
2860 		}
2861 #undef PRINTINTR
2862 #endif /* ATW_DEBUG */
2863 
2864 		if ((status & sc->sc_inten) == 0)
2865 			break;
2866 
2867 		handled = 1;
2868 
2869 		rxstatus = status & sc->sc_rxint_mask;
2870 		txstatus = status & sc->sc_txint_mask;
2871 		linkstatus = status & sc->sc_linkint_mask;
2872 
2873 		if (linkstatus) {
2874 			atw_linkintr(sc, linkstatus);
2875 		}
2876 
2877 		if (rxstatus) {
2878 			/* Grab any new packets. */
2879 			atw_rxintr(sc);
2880 
2881 			if (rxstatus & ATW_INTR_RDU) {
2882 				printf("%s: receive ring overrun\n",
2883 				    sc->sc_dev.dv_xname);
2884 				/* Get the receive process going again. */
2885 				ATW_WRITE(sc, ATW_RDR, 0x1);
2886 				break;
2887 			}
2888 		}
2889 
2890 		if (txstatus) {
2891 			/* Sweep up transmit descriptors. */
2892 			atw_txintr(sc);
2893 
2894 			if (txstatus & ATW_INTR_TLT) {
2895 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2896 				    sc->sc_dev.dv_xname));
2897 			}
2898 
2899 			if (txstatus & ATW_INTR_TRT) {
2900 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2901 				    sc->sc_dev.dv_xname));
2902 			}
2903 
2904 			/* If Tx under-run, increase our transmit threshold
2905 			 * if another is available.
2906 			 */
2907 			txthresh = sc->sc_txthresh + 1;
2908 			if ((txstatus & ATW_INTR_TUF) &&
2909 			    sc->sc_txth[txthresh].txth_name != NULL) {
2910 				/* Idle the transmit process. */
2911 				atw_idle(sc, ATW_NAR_ST);
2912 
2913 				sc->sc_txthresh = txthresh;
2914 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2915 				sc->sc_opmode |=
2916 				    sc->sc_txth[txthresh].txth_opmode;
2917 				printf("%s: transmit underrun; new "
2918 				    "threshold: %s\n", sc->sc_dev.dv_xname,
2919 				    sc->sc_txth[txthresh].txth_name);
2920 
2921 				/* Set the new threshold and restart
2922 				 * the transmit process.
2923 				 */
2924 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2925 				DELAY(atw_nar_delay);
2926 				ATW_WRITE(sc, ATW_RDR, 0x1);
2927 				/* XXX Log every Nth underrun from
2928 				 * XXX now on?
2929 				 */
2930 			}
2931 		}
2932 
2933 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2934 			if (status & ATW_INTR_TPS)
2935 				printf("%s: transmit process stopped\n",
2936 				    sc->sc_dev.dv_xname);
2937 			if (status & ATW_INTR_RPS)
2938 				printf("%s: receive process stopped\n",
2939 				    sc->sc_dev.dv_xname);
2940 			(void)atw_init(ifp);
2941 			break;
2942 		}
2943 
2944 		if (status & ATW_INTR_FBE) {
2945 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2946 			(void)atw_init(ifp);
2947 			break;
2948 		}
2949 
2950 		/*
2951 		 * Not handled:
2952 		 *
2953 		 *	Transmit buffer unavailable -- normal
2954 		 *	condition, nothing to do, really.
2955 		 *
2956 		 *	Early receive interrupt -- not available on
2957 		 *	all chips, we just use RI.  We also only
2958 		 *	use single-segment receive DMA, so this
2959 		 *	is mostly useless.
2960 		 *
2961 		 *      TBD others
2962 		 */
2963 	}
2964 
2965 	/* Try to get more packets going. */
2966 	atw_start(ifp);
2967 
2968 	return (handled);
2969 }
2970 
2971 /*
2972  * atw_idle:
2973  *
2974  *	Cause the transmit and/or receive processes to go idle.
2975  *
2976  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2977  *	process in STSR if I clear SR or ST after the process has already
2978  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2979  *      do not seem to be too reliable. Perhaps I have the sense of the
2980  *	Rx bits switched with the Tx bits?
2981  */
2982 void
2983 atw_idle(struct atw_softc *sc, u_int32_t bits)
2984 {
2985 	u_int32_t ackmask = 0, opmode, stsr, test0;
2986 	int i, s;
2987 
2988 	s = splnet();
2989 
2990 	opmode = sc->sc_opmode & ~bits;
2991 
2992 	if (bits & ATW_NAR_SR)
2993 		ackmask |= ATW_INTR_RPS;
2994 
2995 	if (bits & ATW_NAR_ST) {
2996 		ackmask |= ATW_INTR_TPS;
2997 		/* set ATW_NAR_HF to flush TX FIFO. */
2998 		opmode |= ATW_NAR_HF;
2999 	}
3000 
3001 	ATW_WRITE(sc, ATW_NAR, opmode);
3002 	DELAY(atw_nar_delay);
3003 
3004 	for (i = 0; i < 1000; i++) {
3005 		stsr = ATW_READ(sc, ATW_STSR);
3006 		if ((stsr & ackmask) == ackmask)
3007 			break;
3008 		DELAY(10);
3009 	}
3010 
3011 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3012 
3013 	if ((stsr & ackmask) == ackmask)
3014 		goto out;
3015 
3016 	test0 = ATW_READ(sc, ATW_TEST0);
3017 
3018 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3019 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3020 		printf("%s: transmit process not idle [%s]\n",
3021 		    sc->sc_dev.dv_xname,
3022 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3023 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3024 		    sc->sc_dev.dv_xname, bits, test0, stsr);
3025 	}
3026 
3027 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3028 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3029 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3030 		    sc->sc_dev.dv_xname,
3031 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3032 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3033 		    sc->sc_dev.dv_xname, bits, test0, stsr));
3034 	}
3035 out:
3036 	if ((bits & ATW_NAR_ST) != 0)
3037 		atw_txdrain(sc);
3038 	splx(s);
3039 	return;
3040 }
3041 
3042 /*
3043  * atw_linkintr:
3044  *
3045  *	Helper; handle link-status interrupts.
3046  */
3047 void
3048 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3049 {
3050 	struct ieee80211com *ic = &sc->sc_ic;
3051 
3052 	if (ic->ic_state != IEEE80211_S_RUN)
3053 		return;
3054 
3055 	if (linkstatus & ATW_INTR_LINKON) {
3056 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
3057 		sc->sc_rescan_timer = 0;
3058 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3059 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
3060 		if (ic->ic_opmode != IEEE80211_M_STA)
3061 			return;
3062 		sc->sc_rescan_timer = 3;
3063 		sc->sc_if.if_timer = 1;
3064 	}
3065 }
3066 
3067 static inline int
3068 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3069 {
3070 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3071 		return 0;
3072 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3073 		return 0;
3074 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3075 }
3076 
3077 /*
3078  * atw_rxintr:
3079  *
3080  *	Helper; handle receive interrupts.
3081  */
3082 void
3083 atw_rxintr(struct atw_softc *sc)
3084 {
3085 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3086 	struct ieee80211com *ic = &sc->sc_ic;
3087 	struct ieee80211_node *ni;
3088 	struct ieee80211_frame_min *wh;
3089 	struct ifnet *ifp = &sc->sc_if;
3090 	struct atw_rxsoft *rxs;
3091 	struct mbuf *m;
3092 	u_int32_t rxstat;
3093 	int i, len, rate, rate0;
3094 	u_int32_t rssi, ctlrssi;
3095 
3096 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3097 		rxs = &sc->sc_rxsoft[i];
3098 
3099 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3100 
3101 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3102 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3103 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3104 
3105 		if (rxstat & ATW_RXSTAT_OWN)
3106 			break; /* We have processed all receive buffers. */
3107 
3108 		DPRINTF3(sc,
3109 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3110 		    sc->sc_dev.dv_xname,
3111 		    rxstat, ctlrssi,
3112 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3113 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3114 
3115 		/*
3116 		 * Make sure the packet fits in one buffer.  This should
3117 		 * always be the case.
3118 		 */
3119 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3120 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3121 			printf("%s: incoming packet spilled, resetting\n",
3122 			    sc->sc_dev.dv_xname);
3123 			(void)atw_init(ifp);
3124 			return;
3125 		}
3126 
3127 		/*
3128 		 * If an error occurred, update stats, clear the status
3129 		 * word, and leave the packet buffer in place.  It will
3130 		 * simply be reused the next time the ring comes around.
3131 		 */
3132 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3133 #define	PRINTERR(bit, str)						\
3134 			if (rxstat & (bit))				\
3135 				printf("%s: receive error: %s\n",	\
3136 				    sc->sc_dev.dv_xname, str)
3137 			ifp->if_ierrors++;
3138 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3139 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3140 #if 0
3141 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3142 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3143 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3144 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3145 #endif
3146 #undef PRINTERR
3147 			atw_init_rxdesc(sc, i);
3148 			continue;
3149 		}
3150 
3151 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3152 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3153 
3154 		/*
3155 		 * No errors; receive the packet.  Note the ADM8211
3156 		 * includes the CRC in promiscuous mode.
3157 		 */
3158 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3159 
3160 		/*
3161 		 * Allocate a new mbuf cluster.  If that fails, we are
3162 		 * out of memory, and must drop the packet and recycle
3163 		 * the buffer that's already attached to this descriptor.
3164 		 */
3165 		m = rxs->rxs_mbuf;
3166 		if (atw_add_rxbuf(sc, i) != 0) {
3167 			ifp->if_ierrors++;
3168 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3169 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3170 			atw_init_rxdesc(sc, i);
3171 			continue;
3172 		}
3173 
3174 		ifp->if_ipackets++;
3175 		m->m_pkthdr.rcvif = ifp;
3176 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3177 
3178 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3179 
3180 		/* The RSSI comes straight from a register in the
3181 		 * baseband processor.  I know that for the RF3000,
3182 		 * the RSSI register also contains the antenna-selection
3183 		 * bits.  Mask those off.
3184 		 *
3185 		 * TBD Treat other basebands.
3186 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3187 		 */
3188 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3189 			rssi = ctlrssi & RF3000_RSSI_MASK;
3190 		else
3191 			rssi = ctlrssi;
3192 
3193  #if NBPFILTER > 0
3194 		/* Pass this up to any BPF listeners. */
3195 		if (sc->sc_radiobpf != NULL) {
3196 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3197 
3198 			tap->ar_rate = rate;
3199 
3200 			/* TBD verify units are dB */
3201 			tap->ar_antsignal = (int)rssi;
3202 			if (sc->sc_opmode & ATW_NAR_PR)
3203 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3204 			else
3205 				tap->ar_flags = 0;
3206 
3207 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3208 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3209 
3210 			bpf_mtap2(sc->sc_radiobpf, tap,
3211 			    sizeof(sc->sc_rxtapu), m);
3212  		}
3213 #endif /* NBPFILTER > 0 */
3214 
3215 		sc->sc_recv_ev.ev_count++;
3216 
3217 		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3218 			if (rxstat & ATW_RXSTAT_CRC16E)
3219 				sc->sc_crc16e_ev.ev_count++;
3220 			if (rxstat & ATW_RXSTAT_CRC32E)
3221 				sc->sc_crc32e_ev.ev_count++;
3222 			if (rxstat & ATW_RXSTAT_ICVE)
3223 				sc->sc_icve_ev.ev_count++;
3224 			if (rxstat & ATW_RXSTAT_SFDE)
3225 				sc->sc_sfde_ev.ev_count++;
3226 			if (rxstat & ATW_RXSTAT_SIGE)
3227 				sc->sc_sige_ev.ev_count++;
3228 			ifp->if_ierrors++;
3229 			m_freem(m);
3230 			continue;
3231 		}
3232 
3233 		if (sc->sc_opmode & ATW_NAR_PR)
3234 			m_adj(m, -IEEE80211_CRC_LEN);
3235 
3236 		wh = mtod(m, struct ieee80211_frame_min *);
3237 		ni = ieee80211_find_rxnode(ic, wh);
3238 #if 0
3239 		if (atw_hw_decrypted(sc, wh)) {
3240 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3241 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3242 		}
3243 #endif
3244 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3245 		ieee80211_free_node(ni);
3246 	}
3247 
3248 	/* Update the receive pointer. */
3249 	sc->sc_rxptr = i;
3250 }
3251 
3252 /*
3253  * atw_txintr:
3254  *
3255  *	Helper; handle transmit interrupts.
3256  */
3257 void
3258 atw_txintr(struct atw_softc *sc)
3259 {
3260 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3261 	struct ifnet *ifp = &sc->sc_if;
3262 	struct atw_txsoft *txs;
3263 	u_int32_t txstat;
3264 
3265 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3266 	    sc->sc_dev.dv_xname, sc->sc_flags));
3267 
3268 	/*
3269 	 * Go through our Tx list and free mbufs for those
3270 	 * frames that have been transmitted.
3271 	 */
3272 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3273 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3274 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3275 
3276 #ifdef ATW_DEBUG
3277 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3278 			int i;
3279 			printf("    txsoft %p transmit chain:\n", txs);
3280 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3281 			    txs->txs_ndescs - 1,
3282 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3283 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3284 				printf("     descriptor %d:\n", i);
3285 				printf("       at_status:   0x%08x\n",
3286 				    le32toh(sc->sc_txdescs[i].at_stat));
3287 				printf("       at_flags:      0x%08x\n",
3288 				    le32toh(sc->sc_txdescs[i].at_flags));
3289 				printf("       at_buf1: 0x%08x\n",
3290 				    le32toh(sc->sc_txdescs[i].at_buf1));
3291 				printf("       at_buf2: 0x%08x\n",
3292 				    le32toh(sc->sc_txdescs[i].at_buf2));
3293 				if (i == txs->txs_lastdesc)
3294 					break;
3295 			}
3296 		}
3297 #endif
3298 
3299 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3300 		if (txstat & ATW_TXSTAT_OWN)
3301 			break;
3302 
3303 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3304 
3305 		sc->sc_txfree += txs->txs_ndescs;
3306 
3307 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3308 		    0, txs->txs_dmamap->dm_mapsize,
3309 		    BUS_DMASYNC_POSTWRITE);
3310 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3311 		m_freem(txs->txs_mbuf);
3312 		txs->txs_mbuf = NULL;
3313 
3314 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3315 
3316 		KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3317 		        sc->sc_txfree == 0));
3318 		ifp->if_flags &= ~IFF_OACTIVE;
3319 
3320 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3321 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3322 			bitmask_snprintf(txstat & ATW_TXSTAT_ERRMASK,
3323 			    ATW_TXSTAT_FMT, txstat_buf, sizeof(txstat_buf));
3324 			printf("%s: txstat %s %" __PRIuBITS "\n",
3325 			    sc->sc_dev.dv_xname, txstat_buf,
3326 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3327 		}
3328 
3329 		/*
3330 		 * Check for errors and collisions.
3331 		 */
3332 		if (txstat & ATW_TXSTAT_TUF)
3333 			sc->sc_stats.ts_tx_tuf++;
3334 		if (txstat & ATW_TXSTAT_TLT)
3335 			sc->sc_stats.ts_tx_tlt++;
3336 		if (txstat & ATW_TXSTAT_TRT)
3337 			sc->sc_stats.ts_tx_trt++;
3338 		if (txstat & ATW_TXSTAT_TRO)
3339 			sc->sc_stats.ts_tx_tro++;
3340 		if (txstat & ATW_TXSTAT_SOFBR) {
3341 			sc->sc_stats.ts_tx_sofbr++;
3342 		}
3343 
3344 		if ((txstat & ATW_TXSTAT_ES) == 0)
3345 			ifp->if_collisions +=
3346 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3347 		else
3348 			ifp->if_oerrors++;
3349 
3350 		ifp->if_opackets++;
3351 	}
3352 
3353 	/*
3354 	 * If there are no more pending transmissions, cancel the watchdog
3355 	 * timer.
3356 	 */
3357 	if (txs == NULL) {
3358 		KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3359 		sc->sc_tx_timer = 0;
3360 	}
3361 }
3362 
3363 /*
3364  * atw_watchdog:	[ifnet interface function]
3365  *
3366  *	Watchdog timer handler.
3367  */
3368 void
3369 atw_watchdog(struct ifnet *ifp)
3370 {
3371 	struct atw_softc *sc = ifp->if_softc;
3372 	struct ieee80211com *ic = &sc->sc_ic;
3373 
3374 	ifp->if_timer = 0;
3375 	if (ATW_IS_ENABLED(sc) == 0)
3376 		return;
3377 
3378 	if (sc->sc_rescan_timer) {
3379 		if (--sc->sc_rescan_timer == 0)
3380 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3381 	}
3382 	if (sc->sc_tx_timer) {
3383 		if (--sc->sc_tx_timer == 0 &&
3384 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3385 			printf("%s: transmit timeout\n", ifp->if_xname);
3386 			ifp->if_oerrors++;
3387 			(void)atw_init(ifp);
3388 			atw_start(ifp);
3389 		}
3390 	}
3391 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3392 		ifp->if_timer = 1;
3393 	ieee80211_watchdog(ic);
3394 }
3395 
3396 static void
3397 atw_evcnt_detach(struct atw_softc *sc)
3398 {
3399 	evcnt_detach(&sc->sc_sige_ev);
3400 	evcnt_detach(&sc->sc_sfde_ev);
3401 	evcnt_detach(&sc->sc_icve_ev);
3402 	evcnt_detach(&sc->sc_crc32e_ev);
3403 	evcnt_detach(&sc->sc_crc16e_ev);
3404 	evcnt_detach(&sc->sc_recv_ev);
3405 }
3406 
3407 static void
3408 atw_evcnt_attach(struct atw_softc *sc)
3409 {
3410 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3411 	    NULL, sc->sc_if.if_xname, "recv");
3412 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3413 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3414 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3415 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3416 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3417 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3418 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3419 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3420 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3421 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3422 }
3423 
3424 #ifdef ATW_DEBUG
3425 static void
3426 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3427 {
3428 	struct atw_softc *sc = ifp->if_softc;
3429 	struct mbuf *m;
3430 	int i, noctets = 0;
3431 
3432 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3433 	    m0->m_pkthdr.len);
3434 
3435 	for (m = m0; m; m = m->m_next) {
3436 		if (m->m_len == 0)
3437 			continue;
3438 		for (i = 0; i < m->m_len; i++) {
3439 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3440 			if (++noctets % 24 == 0)
3441 				printf("\n");
3442 		}
3443 	}
3444 	printf("%s%s: %d bytes emitted\n",
3445 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3446 }
3447 #endif /* ATW_DEBUG */
3448 
3449 /*
3450  * atw_start:		[ifnet interface function]
3451  *
3452  *	Start packet transmission on the interface.
3453  */
3454 void
3455 atw_start(struct ifnet *ifp)
3456 {
3457 	struct atw_softc *sc = ifp->if_softc;
3458 	struct ieee80211_key *k;
3459 	struct ieee80211com *ic = &sc->sc_ic;
3460 	struct ieee80211_node *ni;
3461 	struct ieee80211_frame_min *whm;
3462 	struct ieee80211_frame *wh;
3463 	struct atw_frame *hh;
3464 	struct mbuf *m0, *m;
3465 	struct atw_txsoft *txs, *last_txs;
3466 	struct atw_txdesc *txd;
3467 	int npkt, rate;
3468 	bus_dmamap_t dmamap;
3469 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3470 
3471 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3472 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3473 
3474 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3475 		return;
3476 
3477 	/*
3478 	 * Remember the previous number of free descriptors and
3479 	 * the first descriptor we'll use.
3480 	 */
3481 	ofree = sc->sc_txfree;
3482 	firsttx = lasttx = sc->sc_txnext;
3483 
3484 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3485 	    sc->sc_dev.dv_xname, ofree, firsttx));
3486 
3487 	/*
3488 	 * Loop through the send queue, setting up transmit descriptors
3489 	 * until we drain the queue, or use up all available transmit
3490 	 * descriptors.
3491 	 */
3492 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3493 	       sc->sc_txfree != 0) {
3494 
3495 		/*
3496 		 * Grab a packet off the management queue, if it
3497 		 * is not empty. Otherwise, from the data queue.
3498 		 */
3499 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3500 		if (m0 != NULL) {
3501 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3502 			m0->m_pkthdr.rcvif = NULL;
3503 		} else if (ic->ic_state != IEEE80211_S_RUN)
3504 			break; /* send no data until associated */
3505 		else {
3506 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3507 			if (m0 == NULL)
3508 				break;
3509 #if NBPFILTER > 0
3510 			if (ifp->if_bpf != NULL)
3511 				bpf_mtap(ifp->if_bpf, m0);
3512 #endif /* NBPFILTER > 0 */
3513 			ni = ieee80211_find_txnode(ic,
3514 			    mtod(m0, struct ether_header *)->ether_dhost);
3515 			if (ni == NULL) {
3516 				ifp->if_oerrors++;
3517 				break;
3518 			}
3519 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3520 				ieee80211_free_node(ni);
3521 				ifp->if_oerrors++;
3522 				break;
3523 			}
3524 		}
3525 
3526 		rate = MAX(ieee80211_get_rate(ni), 2);
3527 
3528 		whm = mtod(m0, struct ieee80211_frame_min *);
3529 
3530 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3531 			k = NULL;
3532 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3533 			m_freem(m0);
3534 			ieee80211_free_node(ni);
3535 			ifp->if_oerrors++;
3536 			break;
3537 		}
3538 
3539 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3540 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3541 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3542 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3543 			m_freem(m0);
3544 			break;
3545 		}
3546 
3547 		/* XXX Misleading if fragmentation is enabled.  Better
3548 		 * to fragment in software?
3549 		 */
3550 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3551 
3552 #if NBPFILTER > 0
3553 		/*
3554 		 * Pass the packet to any BPF listeners.
3555 		 */
3556 		if (ic->ic_rawbpf != NULL)
3557 			bpf_mtap((void *)ic->ic_rawbpf, m0);
3558 
3559 		if (sc->sc_radiobpf != NULL) {
3560 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3561 
3562 			tap->at_rate = rate;
3563 
3564 			bpf_mtap2(sc->sc_radiobpf, tap,
3565 			    sizeof(sc->sc_txtapu), m0);
3566 		}
3567 #endif /* NBPFILTER > 0 */
3568 
3569 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3570 
3571 		if (ni != NULL)
3572 			ieee80211_free_node(ni);
3573 
3574 		if (m0 == NULL) {
3575 			ifp->if_oerrors++;
3576 			break;
3577 		}
3578 
3579 		/* just to make sure. */
3580 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3581 
3582 		if (m0 == NULL) {
3583 			ifp->if_oerrors++;
3584 			break;
3585 		}
3586 
3587 		hh = mtod(m0, struct atw_frame *);
3588 		wh = &hh->atw_ihdr;
3589 
3590 		/* Copy everything we need from the 802.11 header:
3591 		 * Frame Control; address 1, address 3, or addresses
3592 		 * 3 and 4. NIC fills in BSSID, SA.
3593 		 */
3594 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3595 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3596 				panic("%s: illegal WDS frame",
3597 				    sc->sc_dev.dv_xname);
3598 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3599 		} else
3600 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3601 
3602 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3603 
3604 		/* initialize remaining Tx parameters */
3605 		memset(&hh->u, 0, sizeof(hh->u));
3606 
3607 		hh->atw_rate = rate * 5;
3608 		/* XXX this could be incorrect if M_FCS. _encap should
3609 		 * probably strip FCS just in case it sticks around in
3610 		 * bridged packets.
3611 		 */
3612 		hh->atw_service = 0x00; /* XXX guess */
3613 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3614 		    sizeof(struct atw_frame));
3615 
3616 		hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3617 		hh->atw_rtylmt = 3;
3618 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3619 #if 0
3620 		if (do_encrypt) {
3621 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3622 			hh->atw_keyid = ic->ic_def_txkey;
3623 		}
3624 #endif
3625 
3626 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3627 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3628 		if (txs->txs_d0.d_residue)
3629 			hh->atw_head_plcplen |= htole16(0x8000);
3630 		if (txs->txs_dn.d_residue)
3631 			hh->atw_tail_plcplen |= htole16(0x8000);
3632 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3633 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3634 
3635 		/* never fragment multicast frames */
3636 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3637 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3638 		} else if (sc->sc_flags & ATWF_RTSCTS) {
3639 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3640 		}
3641 
3642 #ifdef ATW_DEBUG
3643 		hh->atw_fragnum = 0;
3644 
3645 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3646 			printf("%s: dst = %s, rate = 0x%02x, "
3647 			    "service = 0x%02x, paylen = 0x%04x\n",
3648 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3649 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3650 
3651 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3652 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3653 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3654 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3655 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3656 			    hh->atw_tail_dur, hh->atw_head_dur);
3657 
3658 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3659 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3660 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3661 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3662 
3663 			printf("%s: keyid = %d\n",
3664 			    sc->sc_dev.dv_xname, hh->atw_keyid);
3665 
3666 			atw_dump_pkt(ifp, m0);
3667 		}
3668 #endif /* ATW_DEBUG */
3669 
3670 		dmamap = txs->txs_dmamap;
3671 
3672 		/*
3673 		 * Load the DMA map.  Copy and try (once) again if the packet
3674 		 * didn't fit in the alloted number of segments.
3675 		 */
3676 		for (first = 1;
3677 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3678 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3679 		     first = 0) {
3680 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3681 			if (m == NULL) {
3682 				printf("%s: unable to allocate Tx mbuf\n",
3683 				    sc->sc_dev.dv_xname);
3684 				break;
3685 			}
3686 			if (m0->m_pkthdr.len > MHLEN) {
3687 				MCLGET(m, M_DONTWAIT);
3688 				if ((m->m_flags & M_EXT) == 0) {
3689 					printf("%s: unable to allocate Tx "
3690 					    "cluster\n", sc->sc_dev.dv_xname);
3691 					m_freem(m);
3692 					break;
3693 				}
3694 			}
3695 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3696 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3697 			m_freem(m0);
3698 			m0 = m;
3699 			m = NULL;
3700 		}
3701 		if (error != 0) {
3702 			printf("%s: unable to load Tx buffer, "
3703 			    "error = %d\n", sc->sc_dev.dv_xname, error);
3704 			m_freem(m0);
3705 			break;
3706 		}
3707 
3708 		/*
3709 		 * Ensure we have enough descriptors free to describe
3710 		 * the packet.
3711 		 */
3712 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3713 			/*
3714 			 * Not enough free descriptors to transmit
3715 			 * this packet.  Unload the DMA map and
3716 			 * drop the packet.  Notify the upper layer
3717 			 * that there are no more slots left.
3718 			 *
3719 			 * XXX We could allocate an mbuf and copy, but
3720 			 * XXX it is worth it?
3721 			 */
3722 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3723 			m_freem(m0);
3724 			break;
3725 		}
3726 
3727 		/*
3728 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3729 		 */
3730 
3731 		/* Sync the DMA map. */
3732 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3733 		    BUS_DMASYNC_PREWRITE);
3734 
3735 		/* XXX arbitrary retry limit; 8 because I have seen it in
3736 		 * use already and maybe 0 means "no tries" !
3737 		 */
3738 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3739 
3740 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3741 		    sc->sc_dev.dv_xname, rate * 5));
3742 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3743 
3744 		/*
3745 		 * Initialize the transmit descriptors.
3746 		 */
3747 		for (nexttx = sc->sc_txnext, seg = 0;
3748 		     seg < dmamap->dm_nsegs;
3749 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3750 			/*
3751 			 * If this is the first descriptor we're
3752 			 * enqueueing, don't set the OWN bit just
3753 			 * yet.  That could cause a race condition.
3754 			 * We'll do it below.
3755 			 */
3756 			txd = &sc->sc_txdescs[nexttx];
3757 			txd->at_ctl = ctl |
3758 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3759 
3760 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3761 			txd->at_flags =
3762 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3763 			                   ATW_TXFLAG_TBS1_MASK)) |
3764 			    ((nexttx == (ATW_NTXDESC - 1))
3765 			        ? htole32(ATW_TXFLAG_TER) : 0);
3766 			lasttx = nexttx;
3767 		}
3768 
3769 		/* Set `first segment' and `last segment' appropriately. */
3770 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3771 		    htole32(ATW_TXFLAG_FS);
3772 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3773 
3774 #ifdef ATW_DEBUG
3775 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3776 			printf("     txsoft %p transmit chain:\n", txs);
3777 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3778 				printf("     descriptor %d:\n", seg);
3779 				printf("       at_ctl:   0x%08x\n",
3780 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3781 				printf("       at_flags:      0x%08x\n",
3782 				    le32toh(sc->sc_txdescs[seg].at_flags));
3783 				printf("       at_buf1: 0x%08x\n",
3784 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3785 				printf("       at_buf2: 0x%08x\n",
3786 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3787 				if (seg == lasttx)
3788 					break;
3789 			}
3790 		}
3791 #endif
3792 
3793 		/* Sync the descriptors we're using. */
3794 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3795 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3796 
3797 		/*
3798 		 * Store a pointer to the packet so we can free it later,
3799 		 * and remember what txdirty will be once the packet is
3800 		 * done.
3801 		 */
3802 		txs->txs_mbuf = m0;
3803 		txs->txs_firstdesc = sc->sc_txnext;
3804 		txs->txs_lastdesc = lasttx;
3805 		txs->txs_ndescs = dmamap->dm_nsegs;
3806 
3807 		/* Advance the tx pointer. */
3808 		sc->sc_txfree -= dmamap->dm_nsegs;
3809 		sc->sc_txnext = nexttx;
3810 
3811 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3812 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3813 
3814 		last_txs = txs;
3815 	}
3816 
3817 	if (sc->sc_txfree != ofree) {
3818 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3819 		    sc->sc_dev.dv_xname, lasttx, firsttx));
3820 		/*
3821 		 * Cause a transmit interrupt to happen on the
3822 		 * last packet we enqueued.
3823 		 */
3824 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3825 		ATW_CDTXSYNC(sc, lasttx, 1,
3826 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3827 
3828 		/*
3829 		 * The entire packet chain is set up.  Give the
3830 		 * first descriptor to the chip now.
3831 		 */
3832 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3833 		ATW_CDTXSYNC(sc, firsttx, 1,
3834 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3835 
3836 		/* Wake up the transmitter. */
3837 		ATW_WRITE(sc, ATW_TDR, 0x1);
3838 
3839 		if (txs == NULL || sc->sc_txfree == 0)
3840 			ifp->if_flags |= IFF_OACTIVE;
3841 
3842 		/* Set a watchdog timer in case the chip flakes out. */
3843 		sc->sc_tx_timer = 5;
3844 		ifp->if_timer = 1;
3845 	}
3846 }
3847 
3848 /*
3849  * atw_power:
3850  *
3851  *	Power management (suspend/resume) hook.
3852  */
3853 void
3854 atw_power(int why, void *arg)
3855 {
3856 	struct atw_softc *sc = arg;
3857 	struct ifnet *ifp = &sc->sc_if;
3858 	int s;
3859 
3860 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3861 
3862 	s = splnet();
3863 	switch (why) {
3864 	case PWR_STANDBY:
3865 		/* XXX do nothing. */
3866 		break;
3867 	case PWR_SUSPEND:
3868 		atw_stop(ifp, 0);
3869 		if (sc->sc_power != NULL)
3870 			(*sc->sc_power)(sc, why);
3871 		break;
3872 	case PWR_RESUME:
3873 		if (ifp->if_flags & IFF_UP) {
3874 			if (sc->sc_power != NULL)
3875 				(*sc->sc_power)(sc, why);
3876 			atw_init(ifp);
3877 		}
3878 		break;
3879 	case PWR_SOFTSUSPEND:
3880 	case PWR_SOFTSTANDBY:
3881 	case PWR_SOFTRESUME:
3882 		break;
3883 	}
3884 	splx(s);
3885 }
3886 
3887 /*
3888  * atw_ioctl:		[ifnet interface function]
3889  *
3890  *	Handle control requests from the operator.
3891  */
3892 int
3893 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3894 {
3895 	struct atw_softc *sc = ifp->if_softc;
3896 	int s, error = 0;
3897 
3898 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3899 	if (!device_is_active(&sc->sc_dev))
3900 		return ENXIO;
3901 
3902 	s = splnet();
3903 
3904 	switch (cmd) {
3905 	case SIOCSIFFLAGS:
3906 		if (ifp->if_flags & IFF_UP) {
3907 			if (ATW_IS_ENABLED(sc)) {
3908 				/*
3909 				 * To avoid rescanning another access point,
3910 				 * do not call atw_init() here.  Instead,
3911 				 * only reflect media settings.
3912 				 */
3913 				atw_filter_setup(sc);
3914 			} else
3915 				error = atw_init(ifp);
3916 		} else if (ATW_IS_ENABLED(sc))
3917 			atw_stop(ifp, 1);
3918 		break;
3919 	case SIOCADDMULTI:
3920 	case SIOCDELMULTI:
3921 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3922 			if (ifp->if_flags & IFF_RUNNING)
3923 				atw_filter_setup(sc); /* do not rescan */
3924 			error = 0;
3925 		}
3926 		break;
3927 	default:
3928 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3929 		if (error == ENETRESET || error == ERESTART) {
3930 			if (is_running(ifp))
3931 				error = atw_init(ifp);
3932 			else
3933 				error = 0;
3934 		}
3935 		break;
3936 	}
3937 
3938 	/* Try to get more packets going. */
3939 	if (ATW_IS_ENABLED(sc))
3940 		atw_start(ifp);
3941 
3942 	splx(s);
3943 	return (error);
3944 }
3945 
3946 static int
3947 atw_media_change(struct ifnet *ifp)
3948 {
3949 	int error;
3950 
3951 	error = ieee80211_media_change(ifp);
3952 	if (error == ENETRESET) {
3953 		if (is_running(ifp))
3954 			error = atw_init(ifp);
3955 		else
3956 			error = 0;
3957 	}
3958 	return error;
3959 }
3960