xref: /netbsd-src/sys/dev/ic/atw.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: atw.c,v 1.137 2008/04/08 12:07:25 cegger Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.137 2008/04/08 12:07:25 cegger Exp $");
45 
46 #include "bpfilter.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 #include <lib/libkern/libkern.h>
60 
61 #include <machine/endian.h>
62 
63 #include <uvm/uvm_extern.h>
64 
65 #include <net/if.h>
66 #include <net/if_dl.h>
67 #include <net/if_media.h>
68 #include <net/if_ether.h>
69 
70 #include <net80211/ieee80211_netbsd.h>
71 #include <net80211/ieee80211_var.h>
72 #include <net80211/ieee80211_radiotap.h>
73 
74 #if NBPFILTER > 0
75 #include <net/bpf.h>
76 #endif
77 
78 #include <sys/bus.h>
79 #include <sys/intr.h>
80 
81 #include <dev/ic/atwreg.h>
82 #include <dev/ic/rf3000reg.h>
83 #include <dev/ic/si4136reg.h>
84 #include <dev/ic/atwvar.h>
85 #include <dev/ic/smc93cx6var.h>
86 
87 /* XXX TBD open questions
88  *
89  *
90  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
91  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
92  * handle this for me?
93  *
94  */
95 /* device attachment
96  *
97  *    print TOFS[012]
98  *
99  * device initialization
100  *
101  *    clear ATW_FRCTL_MAXPSP to disable max power saving
102  *    set ATW_TXBR_ALCUPDATE to enable ALC
103  *    set TOFS[012]? (hope not)
104  *    disable rx/tx
105  *    set ATW_PAR_SWR (software reset)
106  *    wait for ATW_PAR_SWR clear
107  *    disable interrupts
108  *    ack status register
109  *    enable interrupts
110  *
111  * rx/tx initialization
112  *
113  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114  *    allocate and init descriptor rings
115  *    write ATW_PAR_DSL (descriptor skip length)
116  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
118  *    write ATW_NAR_SQ for one/both transmit descriptor rings
119  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
120  *
121  * rx/tx end
122  *
123  *    stop DMA
124  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
125  *    flush tx w/ ATW_NAR_HF
126  *
127  * scan
128  *
129  *    initialize rx/tx
130  *
131  * BSS join: (re)association response
132  *
133  *    set ATW_FRCTL_AID
134  *
135  * optimizations ???
136  *
137  */
138 
139 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
140 
141 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
142 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
143 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
144 
145 int atw_pseudo_milli = 1;
146 int atw_magic_delay1 = 100 * 1000;
147 int atw_magic_delay2 = 100 * 1000;
148 /* more magic multi-millisecond delays (units: microseconds) */
149 int atw_nar_delay = 20 * 1000;
150 int atw_magic_delay4 = 10 * 1000;
151 int atw_rf_delay1 = 10 * 1000;
152 int atw_rf_delay2 = 5 * 1000;
153 int atw_plcphd_delay = 2 * 1000;
154 int atw_bbp_io_enable_delay = 20 * 1000;
155 int atw_bbp_io_disable_delay = 2 * 1000;
156 int atw_writewep_delay = 1000;
157 int atw_beacon_len_adjust = 4;
158 int atw_dwelltime = 200;
159 int atw_xindiv2 = 0;
160 
161 #ifdef ATW_DEBUG
162 int atw_debug = 0;
163 
164 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
165 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
166 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
167 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
168 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
169 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
170 
171 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
172 static void	atw_print_regs(struct atw_softc *, const char *);
173 
174 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
175 #	ifdef ATW_BBPDEBUG
176 static void	atw_rf3000_print(struct atw_softc *);
177 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
178 #	endif /* ATW_BBPDEBUG */
179 
180 #	ifdef ATW_SYNDEBUG
181 static void	atw_si4126_print(struct atw_softc *);
182 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
183 #	endif /* ATW_SYNDEBUG */
184 
185 #else
186 #define ATW_DPRINTF(x)
187 #define ATW_DPRINTF2(x)
188 #define ATW_DPRINTF3(x)
189 #define	DPRINTF(sc, x)	/* nothing */
190 #define	DPRINTF2(sc, x)	/* nothing */
191 #define	DPRINTF3(sc, x)	/* nothing */
192 #endif
193 
194 /* ifnet methods */
195 int	atw_init(struct ifnet *);
196 int	atw_ioctl(struct ifnet *, u_long, void *);
197 void	atw_start(struct ifnet *);
198 void	atw_stop(struct ifnet *, int);
199 void	atw_watchdog(struct ifnet *);
200 
201 /* Device attachment */
202 void	atw_attach(struct atw_softc *);
203 int	atw_detach(struct atw_softc *);
204 static void atw_evcnt_attach(struct atw_softc *);
205 static void atw_evcnt_detach(struct atw_softc *);
206 
207 /* Rx/Tx process */
208 int	atw_add_rxbuf(struct atw_softc *, int);
209 void	atw_idle(struct atw_softc *, u_int32_t);
210 void	atw_rxdrain(struct atw_softc *);
211 void	atw_txdrain(struct atw_softc *);
212 
213 /* Device (de)activation and power state */
214 void	atw_disable(struct atw_softc *);
215 int	atw_enable(struct atw_softc *);
216 void	atw_reset(struct atw_softc *);
217 
218 /* Interrupt handlers */
219 void	atw_linkintr(struct atw_softc *, u_int32_t);
220 void	atw_rxintr(struct atw_softc *);
221 void	atw_txintr(struct atw_softc *);
222 
223 /* 802.11 state machine */
224 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
225 static void	atw_next_scan(void *);
226 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
227 		              struct ieee80211_node *, int, int, u_int32_t);
228 static int	atw_tune(struct atw_softc *);
229 
230 /* Device initialization */
231 static void	atw_bbp_io_init(struct atw_softc *);
232 static void	atw_cfp_init(struct atw_softc *);
233 static void	atw_cmdr_init(struct atw_softc *);
234 static void	atw_ifs_init(struct atw_softc *);
235 static void	atw_nar_init(struct atw_softc *);
236 static void	atw_response_times_init(struct atw_softc *);
237 static void	atw_rf_reset(struct atw_softc *);
238 static void	atw_test1_init(struct atw_softc *);
239 static void	atw_tofs0_init(struct atw_softc *);
240 static void	atw_tofs2_init(struct atw_softc *);
241 static void	atw_txlmt_init(struct atw_softc *);
242 static void	atw_wcsr_init(struct atw_softc *);
243 
244 /* Key management */
245 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
246 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
247 	const u_int8_t[IEEE80211_ADDR_LEN]);
248 static void atw_key_update_begin(struct ieee80211com *);
249 static void atw_key_update_end(struct ieee80211com *);
250 
251 /* RAM/ROM utilities */
252 static void	atw_clear_sram(struct atw_softc *);
253 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
254 static int	atw_read_srom(struct atw_softc *);
255 
256 /* BSS setup */
257 static void	atw_predict_beacon(struct atw_softc *);
258 static void	atw_start_beacon(struct atw_softc *, int);
259 static void	atw_write_bssid(struct atw_softc *);
260 static void	atw_write_ssid(struct atw_softc *);
261 static void	atw_write_sup_rates(struct atw_softc *);
262 static void	atw_write_wep(struct atw_softc *);
263 
264 /* Media */
265 static int	atw_media_change(struct ifnet *);
266 
267 static void	atw_filter_setup(struct atw_softc *);
268 
269 /* 802.11 utilities */
270 static uint64_t			atw_get_tsft(struct atw_softc *);
271 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
272 				                   uint32_t);
273 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
274 static void			atw_node_free(struct ieee80211_node *);
275 
276 /*
277  * Tuner/transceiver/modem
278  */
279 static void	atw_bbp_io_enable(struct atw_softc *, int);
280 
281 /* RFMD RF3000 Baseband Processor */
282 static int	atw_rf3000_init(struct atw_softc *);
283 static int	atw_rf3000_tune(struct atw_softc *, u_int);
284 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
285 
286 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
287 static void	atw_si4126_tune(struct atw_softc *, u_int);
288 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
289 
290 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
291 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
292 
293 const char *atw_tx_state[] = {
294 	"STOPPED",
295 	"RUNNING - read descriptor",
296 	"RUNNING - transmitting",
297 	"RUNNING - filling fifo",	/* XXX */
298 	"SUSPENDED",
299 	"RUNNING -- write descriptor",
300 	"RUNNING -- write last descriptor",
301 	"RUNNING - fifo full"
302 };
303 
304 const char *atw_rx_state[] = {
305 	"STOPPED",
306 	"RUNNING - read descriptor",
307 	"RUNNING - check this packet, pre-fetch next",
308 	"RUNNING - wait for reception",
309 	"SUSPENDED",
310 	"RUNNING - write descriptor",
311 	"RUNNING - flush fifo",
312 	"RUNNING - fifo drain"
313 };
314 
315 static inline int
316 is_running(struct ifnet *ifp)
317 {
318 	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
319 }
320 
321 int
322 atw_activate(device_t self, enum devact act)
323 {
324 	struct atw_softc *sc = device_private(self);
325 	int rv = 0, s;
326 
327 	s = splnet();
328 	switch (act) {
329 	case DVACT_ACTIVATE:
330 		rv = EOPNOTSUPP;
331 		break;
332 
333 	case DVACT_DEACTIVATE:
334 		if_deactivate(&sc->sc_if);
335 		break;
336 	}
337 	splx(s);
338 	return rv;
339 }
340 
341 /*
342  * atw_enable:
343  *
344  *	Enable the ADM8211 chip.
345  */
346 int
347 atw_enable(struct atw_softc *sc)
348 {
349 
350 	if (ATW_IS_ENABLED(sc) == 0) {
351 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
352 			aprint_error_dev(&sc->sc_dev, "device enable failed\n");
353 			return (EIO);
354 		}
355 		sc->sc_flags |= ATWF_ENABLED;
356                 /* Power may have been removed, and WEP keys thus
357                  * reset.
358 		 */
359 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
360 	}
361 	return (0);
362 }
363 
364 /*
365  * atw_disable:
366  *
367  *	Disable the ADM8211 chip.
368  */
369 void
370 atw_disable(struct atw_softc *sc)
371 {
372 	if (!ATW_IS_ENABLED(sc))
373 		return;
374 	if (sc->sc_disable != NULL)
375 		(*sc->sc_disable)(sc);
376 	sc->sc_flags &= ~ATWF_ENABLED;
377 }
378 
379 /* Returns -1 on failure. */
380 static int
381 atw_read_srom(struct atw_softc *sc)
382 {
383 	struct seeprom_descriptor sd;
384 	uint32_t test0, fail_bits;
385 
386 	(void)memset(&sd, 0, sizeof(sd));
387 
388 	test0 = ATW_READ(sc, ATW_TEST0);
389 
390 	switch (sc->sc_rev) {
391 	case ATW_REVISION_BA:
392 	case ATW_REVISION_CA:
393 		fail_bits = ATW_TEST0_EPNE;
394 		break;
395 	default:
396 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
397 		break;
398 	}
399 	if ((test0 & fail_bits) != 0) {
400 		aprint_error_dev(&sc->sc_dev, "bad or missing/bad SROM\n");
401 		return -1;
402 	}
403 
404 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
405 	case ATW_TEST0_EPTYP_93c66:
406 		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(&sc->sc_dev)));
407 		sc->sc_sromsz = 512;
408 		sd.sd_chip = C56_66;
409 		break;
410 	case ATW_TEST0_EPTYP_93c46:
411 		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(&sc->sc_dev)));
412 		sc->sc_sromsz = 128;
413 		sd.sd_chip = C46;
414 		break;
415 	default:
416 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
417 		    device_xname(&sc->sc_dev),
418 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
419 		return -1;
420 	}
421 
422 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
423 
424 	if (sc->sc_srom == NULL) {
425 		aprint_error_dev(&sc->sc_dev, "unable to allocate SROM buffer\n");
426 		return -1;
427 	}
428 
429 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
430 
431 	/* ADM8211 has a single 32-bit register for controlling the
432 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
433 	 * "ready" bit. The ADM8211 input/output sense is the reverse
434 	 * of read_seeprom's.
435 	 */
436 	sd.sd_tag = sc->sc_st;
437 	sd.sd_bsh = sc->sc_sh;
438 	sd.sd_regsize = 4;
439 	sd.sd_control_offset = ATW_SPR;
440 	sd.sd_status_offset = ATW_SPR;
441 	sd.sd_dataout_offset = ATW_SPR;
442 	sd.sd_CK = ATW_SPR_SCLK;
443 	sd.sd_CS = ATW_SPR_SCS;
444 	sd.sd_DI = ATW_SPR_SDO;
445 	sd.sd_DO = ATW_SPR_SDI;
446 	sd.sd_MS = ATW_SPR_SRS;
447 	sd.sd_RDY = 0;
448 
449 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
450 		aprint_error_dev(&sc->sc_dev, "could not read SROM\n");
451 		free(sc->sc_srom, M_DEVBUF);
452 		return -1;
453 	}
454 #ifdef ATW_DEBUG
455 	{
456 		int i;
457 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
458 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
459 			if (((i % 8) == 0) && (i != 0)) {
460 				ATW_DPRINTF(("\n\t"));
461 			}
462 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
463 		}
464 		ATW_DPRINTF(("\n"));
465 	}
466 #endif /* ATW_DEBUG */
467 	return 0;
468 }
469 
470 #ifdef ATW_DEBUG
471 static void
472 atw_print_regs(struct atw_softc *sc, const char *where)
473 {
474 #define PRINTREG(sc, reg) \
475 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
476 	    device_xname(&sc->sc_dev), reg, ATW_READ(sc, reg)))
477 
478 	ATW_DPRINTF2(("%s: %s\n", device_xname(&sc->sc_dev), where));
479 
480 	PRINTREG(sc, ATW_PAR);
481 	PRINTREG(sc, ATW_FRCTL);
482 	PRINTREG(sc, ATW_TDR);
483 	PRINTREG(sc, ATW_WTDP);
484 	PRINTREG(sc, ATW_RDR);
485 	PRINTREG(sc, ATW_WRDP);
486 	PRINTREG(sc, ATW_RDB);
487 	PRINTREG(sc, ATW_CSR3A);
488 	PRINTREG(sc, ATW_TDBD);
489 	PRINTREG(sc, ATW_TDBP);
490 	PRINTREG(sc, ATW_STSR);
491 	PRINTREG(sc, ATW_CSR5A);
492 	PRINTREG(sc, ATW_NAR);
493 	PRINTREG(sc, ATW_CSR6A);
494 	PRINTREG(sc, ATW_IER);
495 	PRINTREG(sc, ATW_CSR7A);
496 	PRINTREG(sc, ATW_LPC);
497 	PRINTREG(sc, ATW_TEST1);
498 	PRINTREG(sc, ATW_SPR);
499 	PRINTREG(sc, ATW_TEST0);
500 	PRINTREG(sc, ATW_WCSR);
501 	PRINTREG(sc, ATW_WPDR);
502 	PRINTREG(sc, ATW_GPTMR);
503 	PRINTREG(sc, ATW_GPIO);
504 	PRINTREG(sc, ATW_BBPCTL);
505 	PRINTREG(sc, ATW_SYNCTL);
506 	PRINTREG(sc, ATW_PLCPHD);
507 	PRINTREG(sc, ATW_MMIWADDR);
508 	PRINTREG(sc, ATW_MMIRADDR1);
509 	PRINTREG(sc, ATW_MMIRADDR2);
510 	PRINTREG(sc, ATW_TXBR);
511 	PRINTREG(sc, ATW_CSR15A);
512 	PRINTREG(sc, ATW_ALCSTAT);
513 	PRINTREG(sc, ATW_TOFS2);
514 	PRINTREG(sc, ATW_CMDR);
515 	PRINTREG(sc, ATW_PCIC);
516 	PRINTREG(sc, ATW_PMCSR);
517 	PRINTREG(sc, ATW_PAR0);
518 	PRINTREG(sc, ATW_PAR1);
519 	PRINTREG(sc, ATW_MAR0);
520 	PRINTREG(sc, ATW_MAR1);
521 	PRINTREG(sc, ATW_ATIMDA0);
522 	PRINTREG(sc, ATW_ABDA1);
523 	PRINTREG(sc, ATW_BSSID0);
524 	PRINTREG(sc, ATW_TXLMT);
525 	PRINTREG(sc, ATW_MIBCNT);
526 	PRINTREG(sc, ATW_BCNT);
527 	PRINTREG(sc, ATW_TSFTH);
528 	PRINTREG(sc, ATW_TSC);
529 	PRINTREG(sc, ATW_SYNRF);
530 	PRINTREG(sc, ATW_BPLI);
531 	PRINTREG(sc, ATW_CAP0);
532 	PRINTREG(sc, ATW_CAP1);
533 	PRINTREG(sc, ATW_RMD);
534 	PRINTREG(sc, ATW_CFPP);
535 	PRINTREG(sc, ATW_TOFS0);
536 	PRINTREG(sc, ATW_TOFS1);
537 	PRINTREG(sc, ATW_IFST);
538 	PRINTREG(sc, ATW_RSPT);
539 	PRINTREG(sc, ATW_TSFTL);
540 	PRINTREG(sc, ATW_WEPCTL);
541 	PRINTREG(sc, ATW_WESK);
542 	PRINTREG(sc, ATW_WEPCNT);
543 	PRINTREG(sc, ATW_MACTEST);
544 	PRINTREG(sc, ATW_FER);
545 	PRINTREG(sc, ATW_FEMR);
546 	PRINTREG(sc, ATW_FPSR);
547 	PRINTREG(sc, ATW_FFER);
548 #undef PRINTREG
549 }
550 #endif /* ATW_DEBUG */
551 
552 /*
553  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
554  */
555 void
556 atw_attach(struct atw_softc *sc)
557 {
558 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
559 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
560 	};
561 	struct ieee80211com *ic = &sc->sc_ic;
562 	struct ifnet *ifp = &sc->sc_if;
563 	int country_code, error, i, nrate, srom_major;
564 	u_int32_t reg;
565 	static const char *type_strings[] = {"Intersil (not supported)",
566 	    "RFMD", "Marvel (not supported)"};
567 
568 	sc->sc_txth = atw_txthresh_tab_lo;
569 
570 	SIMPLEQ_INIT(&sc->sc_txfreeq);
571 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
572 
573 #ifdef ATW_DEBUG
574 	atw_print_regs(sc, "atw_attach");
575 #endif /* ATW_DEBUG */
576 
577 	/*
578 	 * Allocate the control data structures, and create and load the
579 	 * DMA map for it.
580 	 */
581 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
582 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
583 	    1, &sc->sc_cdnseg, 0)) != 0) {
584 		aprint_error_dev(&sc->sc_dev, "unable to allocate control data, error = %d\n",
585 		    error);
586 		goto fail_0;
587 	}
588 
589 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
590 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
591 	    BUS_DMA_COHERENT)) != 0) {
592 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
593 		    error);
594 		goto fail_1;
595 	}
596 
597 	if ((error = bus_dmamap_create(sc->sc_dmat,
598 	    sizeof(struct atw_control_data), 1,
599 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
600 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
601 		    "error = %d\n", error);
602 		goto fail_2;
603 	}
604 
605 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
606 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
607 	    0)) != 0) {
608 		aprint_error_dev(&sc->sc_dev, "unable to load control data DMA map, error = %d\n",
609 		    error);
610 		goto fail_3;
611 	}
612 
613 	/*
614 	 * Create the transmit buffer DMA maps.
615 	 */
616 	sc->sc_ntxsegs = ATW_NTXSEGS;
617 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
618 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
619 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
620 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
621 			aprint_error_dev(&sc->sc_dev, "unable to create tx DMA map %d, "
622 			    "error = %d\n", i, error);
623 			goto fail_4;
624 		}
625 	}
626 
627 	/*
628 	 * Create the receive buffer DMA maps.
629 	 */
630 	for (i = 0; i < ATW_NRXDESC; i++) {
631 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
632 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
633 			aprint_error_dev(&sc->sc_dev, "unable to create rx DMA map %d, "
634 			    "error = %d\n", i, error);
635 			goto fail_5;
636 		}
637 	}
638 	for (i = 0; i < ATW_NRXDESC; i++) {
639 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
640 	}
641 
642 	switch (sc->sc_rev) {
643 	case ATW_REVISION_AB:
644 	case ATW_REVISION_AF:
645 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
646 		break;
647 	case ATW_REVISION_BA:
648 	case ATW_REVISION_CA:
649 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
650 		break;
651 	}
652 
653 	/* Reset the chip to a known state. */
654 	atw_reset(sc);
655 
656 	if (atw_read_srom(sc) == -1)
657 		return;
658 
659 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
660 	    ATW_SR_RFTYPE_MASK);
661 
662 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
663 	    ATW_SR_BBPTYPE_MASK);
664 
665 	if (sc->sc_rftype >= __arraycount(type_strings)) {
666 		aprint_error_dev(&sc->sc_dev, "unknown RF\n");
667 		return;
668 	}
669 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
670 		aprint_error_dev(&sc->sc_dev, "unknown BBP\n");
671 		return;
672 	}
673 
674 	printf("%s: %s RF, %s BBP", device_xname(&sc->sc_dev),
675 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
676 
677 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
678 	 * MARVEL. My bug, or theirs?
679 	 */
680 
681 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
682 
683 	switch (sc->sc_rftype) {
684 	case ATW_RFTYPE_INTERSIL:
685 		reg |= ATW_SYNCTL_CS1;
686 		break;
687 	case ATW_RFTYPE_RFMD:
688 		reg |= ATW_SYNCTL_CS0;
689 		break;
690 	case ATW_RFTYPE_MARVEL:
691 		break;
692 	}
693 
694 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
695 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
696 
697 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
698 
699 	switch (sc->sc_bbptype) {
700 	case ATW_BBPTYPE_INTERSIL:
701 		reg |= ATW_BBPCTL_TWI;
702 		break;
703 	case ATW_BBPTYPE_RFMD:
704 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
705 		    ATW_BBPCTL_CCA_ACTLO;
706 		break;
707 	case ATW_BBPTYPE_MARVEL:
708 		break;
709 	case ATW_C_BBPTYPE_RFMD:
710 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
711 		    device_xname(&sc->sc_dev));
712 		break;
713 	}
714 
715 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
716 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
717 
718 	/*
719 	 * From this point forward, the attachment cannot fail.  A failure
720 	 * before this point releases all resources that may have been
721 	 * allocated.
722 	 */
723 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
724 
725 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
726 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
727 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
728 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
729 
730 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
731 	    ATW_SR_MAJOR_MASK);
732 
733 	if (srom_major < 2)
734 		sc->sc_rf3000_options1 = 0;
735 	else if (sc->sc_rev == ATW_REVISION_BA) {
736 		sc->sc_rf3000_options1 =
737 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
738 		    ATW_SR_CR28_MASK);
739 	} else
740 		sc->sc_rf3000_options1 = 0;
741 
742 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
743 	    ATW_SR_CR29_MASK);
744 
745 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
746 	    ATW_SR_CTRY_MASK);
747 
748 #define ADD_CHANNEL(_ic, _chan) do {					\
749 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
750 	_ic->ic_channels[_chan].ic_freq =				\
751 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
752 } while (0)
753 
754 	/* Find available channels */
755 	switch (country_code) {
756 	case COUNTRY_MMK2:	/* 1-14 */
757 		ADD_CHANNEL(ic, 14);
758 		/*FALLTHROUGH*/
759 	case COUNTRY_ETSI:	/* 1-13 */
760 		for (i = 1; i <= 13; i++)
761 			ADD_CHANNEL(ic, i);
762 		break;
763 	case COUNTRY_FCC:	/* 1-11 */
764 	case COUNTRY_IC:	/* 1-11 */
765 		for (i = 1; i <= 11; i++)
766 			ADD_CHANNEL(ic, i);
767 		break;
768 	case COUNTRY_MMK:	/* 14 */
769 		ADD_CHANNEL(ic, 14);
770 		break;
771 	case COUNTRY_FRANCE:	/* 10-13 */
772 		for (i = 10; i <= 13; i++)
773 			ADD_CHANNEL(ic, i);
774 		break;
775 	default:	/* assume channels 10-11 */
776 	case COUNTRY_SPAIN:	/* 10-11 */
777 		for (i = 10; i <= 11; i++)
778 			ADD_CHANNEL(ic, i);
779 		break;
780 	}
781 
782 	/* Read the MAC address. */
783 	reg = ATW_READ(sc, ATW_PAR0);
784 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
785 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
786 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
787 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
788 	reg = ATW_READ(sc, ATW_PAR1);
789 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
790 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
791 
792 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
793 		printf(" could not get mac address, attach failed\n");
794 		return;
795 	}
796 
797 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
798 
799 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
800 	ifp->if_softc = sc;
801 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
802 	    IFF_NOTRAILERS;
803 	ifp->if_ioctl = atw_ioctl;
804 	ifp->if_start = atw_start;
805 	ifp->if_watchdog = atw_watchdog;
806 	ifp->if_init = atw_init;
807 	ifp->if_stop = atw_stop;
808 	IFQ_SET_READY(&ifp->if_snd);
809 
810 	ic->ic_ifp = ifp;
811 	ic->ic_phytype = IEEE80211_T_DS;
812 	ic->ic_opmode = IEEE80211_M_STA;
813 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
814 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
815 
816 	nrate = 0;
817 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
818 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
819 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
820 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
821 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
822 
823 	/*
824 	 * Call MI attach routines.
825 	 */
826 
827 	if_attach(ifp);
828 	ieee80211_ifattach(ic);
829 
830 	atw_evcnt_attach(sc);
831 
832 	sc->sc_newstate = ic->ic_newstate;
833 	ic->ic_newstate = atw_newstate;
834 
835 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
836 	ic->ic_recv_mgmt = atw_recv_mgmt;
837 
838 	sc->sc_node_free = ic->ic_node_free;
839 	ic->ic_node_free = atw_node_free;
840 
841 	sc->sc_node_alloc = ic->ic_node_alloc;
842 	ic->ic_node_alloc = atw_node_alloc;
843 
844 	ic->ic_crypto.cs_key_delete = atw_key_delete;
845 	ic->ic_crypto.cs_key_set = atw_key_set;
846 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
847 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
848 
849 	/* possibly we should fill in our own sc_send_prresp, since
850 	 * the ADM8211 is probably sending probe responses in ad hoc
851 	 * mode.
852 	 */
853 
854 	/* complete initialization */
855 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
856 	callout_init(&sc->sc_scan_ch, 0);
857 
858 #if NBPFILTER > 0
859 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
860 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
861 #endif
862 
863 	if (!pmf_device_register1(&sc->sc_dev, NULL, NULL, atw_shutdown)) {
864 		aprint_error_dev(&sc->sc_dev,
865 		    "couldn't establish power handler\n");
866 	} else
867 		pmf_class_network_register(&sc->sc_dev, &sc->sc_if);
868 
869 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
870 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
871 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
872 
873 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
874 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
875 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
876 
877 	ieee80211_announce(ic);
878 	return;
879 
880 	/*
881 	 * Free any resources we've allocated during the failed attach
882 	 * attempt.  Do this in reverse order and fall through.
883 	 */
884  fail_5:
885 	for (i = 0; i < ATW_NRXDESC; i++) {
886 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
887 			continue;
888 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
889 	}
890  fail_4:
891 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
892 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
893 			continue;
894 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
895 	}
896 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
897  fail_3:
898 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
899  fail_2:
900 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
901 	    sizeof(struct atw_control_data));
902  fail_1:
903 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
904  fail_0:
905 	return;
906 }
907 
908 static struct ieee80211_node *
909 atw_node_alloc(struct ieee80211_node_table *nt)
910 {
911 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
912 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
913 
914 	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(&sc->sc_dev), ni));
915 	return ni;
916 }
917 
918 static void
919 atw_node_free(struct ieee80211_node *ni)
920 {
921 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
922 
923 	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(&sc->sc_dev), ni,
924 	    ether_sprintf(ni->ni_bssid)));
925 	(*sc->sc_node_free)(ni);
926 }
927 
928 
929 static void
930 atw_test1_reset(struct atw_softc *sc)
931 {
932 	switch (sc->sc_rev) {
933 	case ATW_REVISION_BA:
934 		if (1 /* XXX condition on transceiver type */) {
935 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
936 		}
937 		break;
938 	case ATW_REVISION_CA:
939 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
940 		break;
941 	default:
942 		break;
943 	}
944 }
945 
946 /*
947  * atw_reset:
948  *
949  *	Perform a soft reset on the ADM8211.
950  */
951 void
952 atw_reset(struct atw_softc *sc)
953 {
954 	int i;
955 	uint32_t lpc;
956 
957 	ATW_WRITE(sc, ATW_NAR, 0x0);
958 	DELAY(atw_nar_delay);
959 
960 	/* Reference driver has a cryptic remark indicating that this might
961 	 * power-on the chip.  I know that it turns off power-saving....
962 	 */
963 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
964 
965 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
966 
967 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
968 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
969 			break;
970 		DELAY(atw_pseudo_milli);
971 	}
972 
973 	/* ... and then pause 100ms longer for good measure. */
974 	DELAY(atw_magic_delay1);
975 
976 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(&sc->sc_dev), i));
977 
978 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
979 		aprint_error_dev(&sc->sc_dev, "reset failed to complete\n");
980 
981 	/*
982 	 * Initialize the PCI Access Register.
983 	 */
984 	sc->sc_busmode = ATW_PAR_PBL_8DW;
985 
986 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
987 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(&sc->sc_dev),
988 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
989 
990 	atw_test1_reset(sc);
991 
992 	/* Turn off maximum power saving, etc. */
993 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
994 
995 	DELAY(atw_magic_delay2);
996 
997 	/* Recall EEPROM. */
998 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
999 
1000 	DELAY(atw_magic_delay4);
1001 
1002 	lpc = ATW_READ(sc, ATW_LPC);
1003 
1004 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
1005 
1006 	/* A reset seems to affect the SRAM contents, so put them into
1007 	 * a known state.
1008 	 */
1009 	atw_clear_sram(sc);
1010 
1011 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1012 }
1013 
1014 static void
1015 atw_clear_sram(struct atw_softc *sc)
1016 {
1017 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1018 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1019 	/* XXX not for revision 0x20. */
1020 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1021 }
1022 
1023 /* TBD atw_init
1024  *
1025  * set MAC based on ic->ic_bss->myaddr
1026  * write WEP keys
1027  * set TX rate
1028  */
1029 
1030 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1031  * without receiving a beacon with the preferred BSSID & SSID.
1032  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1033  */
1034 static void
1035 atw_wcsr_init(struct atw_softc *sc)
1036 {
1037 	uint32_t wcsr;
1038 
1039 	wcsr = ATW_READ(sc, ATW_WCSR);
1040 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1041 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1042 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1043 
1044 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1045 	    device_xname(&sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1046 }
1047 
1048 /* Turn off power management.  Set Rx store-and-forward mode. */
1049 static void
1050 atw_cmdr_init(struct atw_softc *sc)
1051 {
1052 	uint32_t cmdr;
1053 	cmdr = ATW_READ(sc, ATW_CMDR);
1054 	cmdr &= ~ATW_CMDR_APM;
1055 	cmdr |= ATW_CMDR_RTE;
1056 	cmdr &= ~ATW_CMDR_DRT_MASK;
1057 	cmdr |= ATW_CMDR_DRT_SF;
1058 
1059 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1060 }
1061 
1062 static void
1063 atw_tofs2_init(struct atw_softc *sc)
1064 {
1065 	uint32_t tofs2;
1066 	/* XXX this magic can probably be figured out from the RFMD docs */
1067 #ifndef ATW_REFSLAVE
1068 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1069 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1070 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1071 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1072 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1073 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1074 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1075 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1076 #else
1077 	/* XXX new magic from reference driver source */
1078 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1079 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1080 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1081 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1082 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1083 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1084 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1085 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1086 #endif
1087 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1088 }
1089 
1090 static void
1091 atw_nar_init(struct atw_softc *sc)
1092 {
1093 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1094 }
1095 
1096 static void
1097 atw_txlmt_init(struct atw_softc *sc)
1098 {
1099 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1100 	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1101 }
1102 
1103 static void
1104 atw_test1_init(struct atw_softc *sc)
1105 {
1106 	uint32_t test1;
1107 
1108 	test1 = ATW_READ(sc, ATW_TEST1);
1109 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1110 	/* XXX magic 0x1 */
1111 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1112 	ATW_WRITE(sc, ATW_TEST1, test1);
1113 }
1114 
1115 static void
1116 atw_rf_reset(struct atw_softc *sc)
1117 {
1118 	/* XXX this resets an Intersil RF front-end? */
1119 	/* TBD condition on Intersil RFType? */
1120 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1121 	DELAY(atw_rf_delay1);
1122 	ATW_WRITE(sc, ATW_SYNRF, 0);
1123 	DELAY(atw_rf_delay2);
1124 }
1125 
1126 /* Set 16 TU max duration for the contention-free period (CFP). */
1127 static void
1128 atw_cfp_init(struct atw_softc *sc)
1129 {
1130 	uint32_t cfpp;
1131 
1132 	cfpp = ATW_READ(sc, ATW_CFPP);
1133 	cfpp &= ~ATW_CFPP_CFPMD;
1134 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1135 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1136 }
1137 
1138 static void
1139 atw_tofs0_init(struct atw_softc *sc)
1140 {
1141 	/* XXX I guess that the Cardbus clock is 22 MHz?
1142 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1143 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1144 	 * very clear on this point. It says in the datasheet that it is
1145 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1146 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1147 	 * these values. These values are also the power-on default.
1148 	 */
1149 	ATW_WRITE(sc, ATW_TOFS0,
1150 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1151 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1152 }
1153 
1154 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1155 static void
1156 atw_ifs_init(struct atw_softc *sc)
1157 {
1158 	uint32_t ifst;
1159 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1160 	 * Go figure.
1161 	 */
1162 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1163 	      __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1164 	             ATW_IFST_SIFS_MASK) |
1165 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1166 	      __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1167 
1168 	ATW_WRITE(sc, ATW_IFST, ifst);
1169 }
1170 
1171 static void
1172 atw_response_times_init(struct atw_softc *sc)
1173 {
1174 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1175 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1176 	 * to pass after it transmits a frame that requires a response;
1177 	 * it waits at most SIFS + MART microseconds for the response.
1178 	 * Surely this is not the ACK timeout?
1179 	 */
1180 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1181 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1182 }
1183 
1184 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1185  * engines read and write baseband registers after Rx and before
1186  * Tx, respectively.
1187  */
1188 static void
1189 atw_bbp_io_init(struct atw_softc *sc)
1190 {
1191 	uint32_t mmiraddr2;
1192 
1193 	/* XXX The reference driver does this, but is it *really*
1194 	 * necessary?
1195 	 */
1196 	switch (sc->sc_rev) {
1197 	case ATW_REVISION_AB:
1198 	case ATW_REVISION_AF:
1199 		mmiraddr2 = 0x0;
1200 		break;
1201 	default:
1202 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1203 		mmiraddr2 &=
1204 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1205 		break;
1206 	}
1207 
1208 	switch (sc->sc_bbptype) {
1209 	case ATW_BBPTYPE_INTERSIL:
1210 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1211 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1212 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1213 		break;
1214 	case ATW_BBPTYPE_MARVEL:
1215 		/* TBD find out the Marvel settings. */
1216 		break;
1217 	case ATW_BBPTYPE_RFMD:
1218 	default:
1219 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1220 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1221 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1222 		break;
1223 	}
1224 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1225 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1226 }
1227 
1228 /*
1229  * atw_init:		[ ifnet interface function ]
1230  *
1231  *	Initialize the interface.  Must be called at splnet().
1232  */
1233 int
1234 atw_init(struct ifnet *ifp)
1235 {
1236 	struct atw_softc *sc = ifp->if_softc;
1237 	struct ieee80211com *ic = &sc->sc_ic;
1238 	struct atw_txsoft *txs;
1239 	struct atw_rxsoft *rxs;
1240 	int i, error = 0;
1241 
1242 	if ((error = atw_enable(sc)) != 0)
1243 		goto out;
1244 
1245 	/*
1246 	 * Cancel any pending I/O. This also resets.
1247 	 */
1248 	atw_stop(ifp, 0);
1249 
1250 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1251 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1252 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1253 
1254 	atw_wcsr_init(sc);
1255 
1256 	atw_cmdr_init(sc);
1257 
1258 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1259 	 *
1260 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1261 	 */
1262 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1263 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1264 
1265 	atw_tofs2_init(sc);
1266 
1267 	atw_nar_init(sc);
1268 
1269 	atw_txlmt_init(sc);
1270 
1271 	atw_test1_init(sc);
1272 
1273 	atw_rf_reset(sc);
1274 
1275 	atw_cfp_init(sc);
1276 
1277 	atw_tofs0_init(sc);
1278 
1279 	atw_ifs_init(sc);
1280 
1281 	/* XXX Fall asleep after one second of inactivity.
1282 	 * XXX A frame may only dribble in for 65536us.
1283 	 */
1284 	ATW_WRITE(sc, ATW_RMD,
1285 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1286 
1287 	atw_response_times_init(sc);
1288 
1289 	atw_bbp_io_init(sc);
1290 
1291 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1292 
1293 	if ((error = atw_rf3000_init(sc)) != 0)
1294 		goto out;
1295 
1296 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1297 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(&sc->sc_dev),
1298 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1299 
1300 	/*
1301 	 * Initialize the transmit descriptor ring.
1302 	 */
1303 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1304 	for (i = 0; i < ATW_NTXDESC; i++) {
1305 		sc->sc_txdescs[i].at_ctl = 0;
1306 		/* no transmit chaining */
1307 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1308 		sc->sc_txdescs[i].at_buf2 =
1309 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1310 	}
1311 	/* use ring mode */
1312 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1313 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1314 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1315 	sc->sc_txfree = ATW_NTXDESC;
1316 	sc->sc_txnext = 0;
1317 
1318 	/*
1319 	 * Initialize the transmit job descriptors.
1320 	 */
1321 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1322 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1323 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1324 		txs = &sc->sc_txsoft[i];
1325 		txs->txs_mbuf = NULL;
1326 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1327 	}
1328 
1329 	/*
1330 	 * Initialize the receive descriptor and receive job
1331 	 * descriptor rings.
1332 	 */
1333 	for (i = 0; i < ATW_NRXDESC; i++) {
1334 		rxs = &sc->sc_rxsoft[i];
1335 		if (rxs->rxs_mbuf == NULL) {
1336 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1337 				aprint_error_dev(&sc->sc_dev, "unable to allocate or map rx "
1338 				    "buffer %d, error = %d\n",
1339 				    i, error);
1340 				/*
1341 				 * XXX Should attempt to run with fewer receive
1342 				 * XXX buffers instead of just failing.
1343 				 */
1344 				atw_rxdrain(sc);
1345 				goto out;
1346 			}
1347 		} else
1348 			atw_init_rxdesc(sc, i);
1349 	}
1350 	sc->sc_rxptr = 0;
1351 
1352 	/*
1353 	 * Initialize the interrupt mask and enable interrupts.
1354 	 */
1355 	/* normal interrupts */
1356 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1357 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1358 
1359 	/* abnormal interrupts */
1360 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1361 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1362 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1363 
1364 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1365 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1366 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1367 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1368 	    ATW_INTR_TRT;
1369 
1370 	sc->sc_linkint_mask &= sc->sc_inten;
1371 	sc->sc_rxint_mask &= sc->sc_inten;
1372 	sc->sc_txint_mask &= sc->sc_inten;
1373 
1374 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1375 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1376 
1377 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1378 	    device_xname(&sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1379 
1380 	/*
1381 	 * Give the transmit and receive rings to the ADM8211.
1382 	 */
1383 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1384 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1385 
1386 	sc->sc_txthresh = 0;
1387 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1388 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1389 
1390 	/* common 802.11 configuration */
1391 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1392 	switch (ic->ic_opmode) {
1393 	case IEEE80211_M_STA:
1394 		break;
1395 	case IEEE80211_M_AHDEMO: /* XXX */
1396 	case IEEE80211_M_IBSS:
1397 		ic->ic_flags |= IEEE80211_F_IBSSON;
1398 		/*FALLTHROUGH*/
1399 	case IEEE80211_M_HOSTAP: /* XXX */
1400 		break;
1401 	case IEEE80211_M_MONITOR: /* XXX */
1402 		break;
1403 	}
1404 
1405 	switch (ic->ic_opmode) {
1406 	case IEEE80211_M_AHDEMO:
1407 	case IEEE80211_M_HOSTAP:
1408 #ifndef IEEE80211_NO_HOSTAP
1409 		ic->ic_bss->ni_intval = ic->ic_lintval;
1410 		ic->ic_bss->ni_rssi = 0;
1411 		ic->ic_bss->ni_rstamp = 0;
1412 #endif /* !IEEE80211_NO_HOSTAP */
1413 		break;
1414 	default:					/* XXX */
1415 		break;
1416 	}
1417 
1418 	sc->sc_wepctl = 0;
1419 
1420 	atw_write_ssid(sc);
1421 	atw_write_sup_rates(sc);
1422 	atw_write_wep(sc);
1423 
1424 	ic->ic_state = IEEE80211_S_INIT;
1425 
1426 	/*
1427 	 * Set the receive filter.  This will start the transmit and
1428 	 * receive processes.
1429 	 */
1430 	atw_filter_setup(sc);
1431 
1432 	/*
1433 	 * Start the receive process.
1434 	 */
1435 	ATW_WRITE(sc, ATW_RDR, 0x1);
1436 
1437 	/*
1438 	 * Note that the interface is now running.
1439 	 */
1440 	ifp->if_flags |= IFF_RUNNING;
1441 	ifp->if_flags &= ~IFF_OACTIVE;
1442 
1443 	/* send no beacons, yet. */
1444 	atw_start_beacon(sc, 0);
1445 
1446 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1447 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1448 	else
1449 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1450  out:
1451 	if (error) {
1452 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1453 		sc->sc_tx_timer = 0;
1454 		ifp->if_timer = 0;
1455 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
1456 	}
1457 #ifdef ATW_DEBUG
1458 	atw_print_regs(sc, "end of init");
1459 #endif /* ATW_DEBUG */
1460 
1461 	return (error);
1462 }
1463 
1464 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1465  *           0: MAC control of RF3000/Si4126.
1466  *
1467  * Applies power, or selects RF front-end? Sets reset condition.
1468  *
1469  * TBD support non-RFMD BBP, non-SiLabs synth.
1470  */
1471 static void
1472 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1473 {
1474 	if (enable) {
1475 		ATW_WRITE(sc, ATW_SYNRF,
1476 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1477 		DELAY(atw_bbp_io_enable_delay);
1478 	} else {
1479 		ATW_WRITE(sc, ATW_SYNRF, 0);
1480 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1481 	}
1482 }
1483 
1484 static int
1485 atw_tune(struct atw_softc *sc)
1486 {
1487 	int rc;
1488 	u_int chan;
1489 	struct ieee80211com *ic = &sc->sc_ic;
1490 
1491 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1492 	if (chan == IEEE80211_CHAN_ANY)
1493 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1494 
1495 	if (chan == sc->sc_cur_chan)
1496 		return 0;
1497 
1498 	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(&sc->sc_dev),
1499 	    sc->sc_cur_chan, chan));
1500 
1501 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1502 
1503 	atw_si4126_tune(sc, chan);
1504 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1505 		printf("%s: failed to tune channel %d\n", device_xname(&sc->sc_dev),
1506 		    chan);
1507 
1508 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1509 	DELAY(atw_nar_delay);
1510 	ATW_WRITE(sc, ATW_RDR, 0x1);
1511 
1512 	if (rc == 0) {
1513 		sc->sc_cur_chan = chan;
1514 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1515 		    htole16(ic->ic_curchan->ic_freq);
1516 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1517 		    htole16(ic->ic_curchan->ic_flags);
1518 	}
1519 
1520 	return rc;
1521 }
1522 
1523 #ifdef ATW_SYNDEBUG
1524 static void
1525 atw_si4126_print(struct atw_softc *sc)
1526 {
1527 	struct ifnet *ifp = &sc->sc_if;
1528 	u_int addr, val;
1529 
1530 	val = 0;
1531 
1532 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1533 		return;
1534 
1535 	for (addr = 0; addr <= 8; addr++) {
1536 		printf("%s: synth[%d] = ", device_xname(&sc->sc_dev), addr);
1537 		if (atw_si4126_read(sc, addr, &val) == 0) {
1538 			printf("<unknown> (quitting print-out)\n");
1539 			break;
1540 		}
1541 		printf("%05x\n", val);
1542 	}
1543 }
1544 #endif /* ATW_SYNDEBUG */
1545 
1546 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1547  *
1548  * The RF/IF synthesizer produces two reference frequencies for
1549  * the RF2948B transceiver.  The first frequency the RF2948B requires
1550  * is two times the so-called "intermediate frequency" (IF). Since
1551  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1552  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1553  * frequency required by the transceiver is the radio frequency
1554  * (RF). This is a superheterodyne transceiver; for f(chan) the
1555  * center frequency of the channel we are tuning, RF = f(chan) -
1556  * IF.
1557  *
1558  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1559  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1560  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1561  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1562  */
1563 static void
1564 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1565 {
1566 	u_int mhz;
1567 	u_int R;
1568 	u_int32_t gpio;
1569 	u_int16_t gain;
1570 
1571 #ifdef ATW_SYNDEBUG
1572 	atw_si4126_print(sc);
1573 #endif /* ATW_SYNDEBUG */
1574 
1575 	if (chan == 14)
1576 		mhz = 2484;
1577 	else
1578 		mhz = 2412 + 5 * (chan - 1);
1579 
1580 	/* Tune IF to 748 MHz to suit the IF LO input of the
1581 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1582          * because an IF in 526 MHz - 952 MHz is allowed.
1583 	 *
1584 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1585 	 * range of 2-25 MHz. SiLabs tells me that this is not
1586 	 * strictly necessary.
1587 	 */
1588 
1589 	if (atw_xindiv2)
1590 		R = 44;
1591 	else
1592 		R = 88;
1593 
1594 	/* Power-up RF, IF synthesizers. */
1595 	atw_si4126_write(sc, SI4126_POWER,
1596 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1597 
1598 	/* set LPWR, too? */
1599 	atw_si4126_write(sc, SI4126_MAIN,
1600 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1601 
1602 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1603 	 * set KP2 to 1.
1604 	 *
1605 	 * REFDIF This is different from the reference driver, which
1606 	 * always sets SI4126_GAIN to 0.
1607 	 */
1608 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1609 
1610 	atw_si4126_write(sc, SI4126_GAIN, gain);
1611 
1612 	/* XIN = 44 MHz.
1613 	 *
1614 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1615 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1616 	 *
1617 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1618 	 * so that 1496/88 * 44 MHz = 748 MHz.
1619 	 */
1620 	atw_si4126_write(sc, SI4126_IFN, 1496);
1621 
1622 	atw_si4126_write(sc, SI4126_IFR, R);
1623 
1624 #ifndef ATW_REFSLAVE
1625 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1626 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1627 	 * which has no RF1!
1628 	 */
1629 	atw_si4126_write(sc, SI4126_RF1R, R);
1630 
1631 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1632 #endif
1633 
1634 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1635 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1636 	 * Now let's multiply it to mhz. So mhz - IF = N.
1637 	 */
1638 	atw_si4126_write(sc, SI4126_RF2R, R);
1639 
1640 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1641 
1642 	/* wait 100us from power-up for RF, IF to settle */
1643 	DELAY(100);
1644 
1645 	gpio = ATW_READ(sc, ATW_GPIO);
1646 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1647 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1648 
1649 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1650 		/* Set a Prism RF front-end to a special mode for channel 14?
1651 		 *
1652 		 * Apparently the SMC2635W needs this, although I don't think
1653 		 * it has a Prism RF.
1654 		 */
1655 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1656 	}
1657 	ATW_WRITE(sc, ATW_GPIO, gpio);
1658 
1659 #ifdef ATW_SYNDEBUG
1660 	atw_si4126_print(sc);
1661 #endif /* ATW_SYNDEBUG */
1662 }
1663 
1664 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1665  * diversity.
1666  *
1667  * !!!
1668  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1669  * !!!
1670  */
1671 static int
1672 atw_rf3000_init(struct atw_softc *sc)
1673 {
1674 	int rc = 0;
1675 
1676 	atw_bbp_io_enable(sc, 1);
1677 
1678 	/* CCA is acquisition sensitive */
1679 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1680 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1681 
1682 	if (rc != 0)
1683 		goto out;
1684 
1685 	/* enable diversity */
1686 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1687 
1688 	if (rc != 0)
1689 		goto out;
1690 
1691 	/* sensible setting from a binary-only driver */
1692 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1693 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1694 
1695 	if (rc != 0)
1696 		goto out;
1697 
1698 	/* magic from a binary-only driver */
1699 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1700 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1701 
1702 	if (rc != 0)
1703 		goto out;
1704 
1705 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1706 
1707 	if (rc != 0)
1708 		goto out;
1709 
1710 	/* XXX Reference driver remarks that Abocom sets this to 50.
1711 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1712 	 * in the "reserved" area of register RF3000_OPTIONS1.
1713 	 */
1714 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1715 
1716 	if (rc != 0)
1717 		goto out;
1718 
1719 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1720 
1721 	if (rc != 0)
1722 		goto out;
1723 
1724 out:
1725 	atw_bbp_io_enable(sc, 0);
1726 	return rc;
1727 }
1728 
1729 #ifdef ATW_BBPDEBUG
1730 static void
1731 atw_rf3000_print(struct atw_softc *sc)
1732 {
1733 	struct ifnet *ifp = &sc->sc_if;
1734 	u_int addr, val;
1735 
1736 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1737 		return;
1738 
1739 	for (addr = 0x01; addr <= 0x15; addr++) {
1740 		printf("%s: bbp[%d] = \n", device_xname(&sc->sc_dev), addr);
1741 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1742 			printf("<unknown> (quitting print-out)\n");
1743 			break;
1744 		}
1745 		printf("%08x\n", val);
1746 	}
1747 }
1748 #endif /* ATW_BBPDEBUG */
1749 
1750 /* Set the power settings on the BBP for channel `chan'. */
1751 static int
1752 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1753 {
1754 	int rc = 0;
1755 	u_int32_t reg;
1756 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1757 
1758 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1759 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1760 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1761 
1762 	/* odd channels: LSB, even channels: MSB */
1763 	if (chan % 2 == 1) {
1764 		txpower &= 0xFF;
1765 		lpf_cutoff &= 0xFF;
1766 		lna_gs_thresh &= 0xFF;
1767 	} else {
1768 		txpower >>= 8;
1769 		lpf_cutoff >>= 8;
1770 		lna_gs_thresh >>= 8;
1771 	}
1772 
1773 #ifdef ATW_BBPDEBUG
1774 	atw_rf3000_print(sc);
1775 #endif /* ATW_BBPDEBUG */
1776 
1777 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1778 	    "lna_gs_thresh %02x\n",
1779 	    device_xname(&sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1780 
1781 	atw_bbp_io_enable(sc, 1);
1782 
1783 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1784 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1785 		goto out;
1786 
1787 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1788 		goto out;
1789 
1790 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1791 		goto out;
1792 
1793 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1794 
1795 	if (rc != 0)
1796 		goto out;
1797 
1798 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1799 
1800 	if (rc != 0)
1801 		goto out;
1802 
1803 #ifdef ATW_BBPDEBUG
1804 	atw_rf3000_print(sc);
1805 #endif /* ATW_BBPDEBUG */
1806 
1807 out:
1808 	atw_bbp_io_enable(sc, 0);
1809 
1810 	/* set beacon, rts, atim transmit power */
1811 	reg = ATW_READ(sc, ATW_PLCPHD);
1812 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1813 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1814 	    ATW_PLCPHD_SERVICE_MASK);
1815 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1816 	DELAY(atw_plcphd_delay);
1817 
1818 	return rc;
1819 }
1820 
1821 /* Write a register on the RF3000 baseband processor using the
1822  * registers provided by the ADM8211 for this purpose.
1823  *
1824  * Return 0 on success.
1825  */
1826 static int
1827 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1828 {
1829 	u_int32_t reg;
1830 	int i;
1831 
1832 	reg = sc->sc_bbpctl_wr |
1833 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1834 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1835 
1836 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1837 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1838 		DELAY(2 * atw_pseudo_milli);
1839 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1840 			break;
1841 	}
1842 
1843 	if (i < 0) {
1844 		printf("%s: BBPCTL still busy\n", device_xname(&sc->sc_dev));
1845 		return ETIMEDOUT;
1846 	}
1847 	return 0;
1848 }
1849 
1850 /* Read a register on the RF3000 baseband processor using the registers
1851  * the ADM8211 provides for this purpose.
1852  *
1853  * The 7-bit register address is addr.  Record the 8-bit data in the register
1854  * in *val.
1855  *
1856  * Return 0 on success.
1857  *
1858  * XXX This does not seem to work. The ADM8211 must require more or
1859  * different magic to read the chip than to write it. Possibly some
1860  * of the magic I have derived from a binary-only driver concerns
1861  * the "chip address" (see the RF3000 manual).
1862  */
1863 #ifdef ATW_BBPDEBUG
1864 static int
1865 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1866 {
1867 	u_int32_t reg;
1868 	int i;
1869 
1870 	for (i = 1000; --i >= 0; ) {
1871 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1872 			break;
1873 		DELAY(100);
1874 	}
1875 
1876 	if (i < 0) {
1877 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1878 		    device_xname(&sc->sc_dev));
1879 		return ETIMEDOUT;
1880 	}
1881 
1882 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1883 
1884 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1885 
1886 	for (i = 1000; --i >= 0; ) {
1887 		DELAY(100);
1888 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1889 			break;
1890 	}
1891 
1892 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1893 
1894 	if (i < 0) {
1895 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1896 		    device_xname(&sc->sc_dev), reg);
1897 		return ETIMEDOUT;
1898 	}
1899 	if (val != NULL)
1900 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1901 	return 0;
1902 }
1903 #endif /* ATW_BBPDEBUG */
1904 
1905 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1906  * provided by the ADM8211 for that purpose.
1907  *
1908  * val is 18 bits of data, and val is the 4-bit address of the register.
1909  *
1910  * Return 0 on success.
1911  */
1912 static void
1913 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1914 {
1915 	uint32_t bits, mask, reg;
1916 	const int nbits = 22;
1917 
1918 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1919 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1920 
1921 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1922 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1923 
1924 	reg = ATW_SYNRF_SELSYN;
1925 	/* reference driver: reset Si4126 serial bus to initial
1926 	 * conditions?
1927 	 */
1928 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1929 	ATW_WRITE(sc, ATW_SYNRF, reg);
1930 
1931 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1932 		if ((bits & mask) != 0)
1933 			reg |= ATW_SYNRF_SYNDATA;
1934 		else
1935 			reg &= ~ATW_SYNRF_SYNDATA;
1936 		ATW_WRITE(sc, ATW_SYNRF, reg);
1937 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1938 		ATW_WRITE(sc, ATW_SYNRF, reg);
1939 	}
1940 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1941 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1942 }
1943 
1944 /* Read 18-bit data from the 4-bit address addr in Si4126
1945  * RF synthesizer and write the data to *val. Return 0 on success.
1946  *
1947  * XXX This does not seem to work. The ADM8211 must require more or
1948  * different magic to read the chip than to write it.
1949  */
1950 #ifdef ATW_SYNDEBUG
1951 static int
1952 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1953 {
1954 	u_int32_t reg;
1955 	int i;
1956 
1957 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1958 
1959 	for (i = 1000; --i >= 0; ) {
1960 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1961 			break;
1962 		DELAY(100);
1963 	}
1964 
1965 	if (i < 0) {
1966 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1967 		    device_xname(&sc->sc_dev));
1968 		return ETIMEDOUT;
1969 	}
1970 
1971 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1972 
1973 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1974 
1975 	for (i = 1000; --i >= 0; ) {
1976 		DELAY(100);
1977 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1978 			break;
1979 	}
1980 
1981 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1982 
1983 	if (i < 0) {
1984 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1985 		    device_xname(&sc->sc_dev), reg);
1986 		return ETIMEDOUT;
1987 	}
1988 	if (val != NULL)
1989 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1990 		                       ATW_SYNCTL_DATA_MASK);
1991 	return 0;
1992 }
1993 #endif /* ATW_SYNDEBUG */
1994 
1995 /* XXX is the endianness correct? test. */
1996 #define	atw_calchash(addr) \
1997 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1998 
1999 /*
2000  * atw_filter_setup:
2001  *
2002  *	Set the ADM8211's receive filter.
2003  */
2004 static void
2005 atw_filter_setup(struct atw_softc *sc)
2006 {
2007 	struct ieee80211com *ic = &sc->sc_ic;
2008 	struct ethercom *ec = &sc->sc_ec;
2009 	struct ifnet *ifp = &sc->sc_if;
2010 	int hash;
2011 	u_int32_t hashes[2];
2012 	struct ether_multi *enm;
2013 	struct ether_multistep step;
2014 
2015 	/* According to comments in tlp_al981_filter_setup
2016 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2017 	 * multicast filter to be set while it is running.  Hopefully
2018 	 * the ADM8211 is not the same!
2019 	 */
2020 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2021 		atw_idle(sc, ATW_NAR_SR);
2022 
2023 	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2024 	ifp->if_flags &= ~IFF_ALLMULTI;
2025 
2026 	/* XXX in scan mode, do not filter packets.  Maybe this is
2027 	 * unnecessary.
2028 	 */
2029 	if (ic->ic_state == IEEE80211_S_SCAN ||
2030 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2031 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2032 		goto allmulti;
2033 	}
2034 
2035 	hashes[0] = hashes[1] = 0x0;
2036 
2037 	/*
2038 	 * Program the 64-bit multicast hash filter.
2039 	 */
2040 	ETHER_FIRST_MULTI(step, ec, enm);
2041 	while (enm != NULL) {
2042 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2043 		    ETHER_ADDR_LEN) != 0)
2044 			goto allmulti;
2045 
2046 		hash = atw_calchash(enm->enm_addrlo);
2047 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2048 		ETHER_NEXT_MULTI(step, enm);
2049 		sc->sc_opmode |= ATW_NAR_MM;
2050 	}
2051 	ifp->if_flags &= ~IFF_ALLMULTI;
2052 	goto setit;
2053 
2054 allmulti:
2055 	sc->sc_opmode |= ATW_NAR_MM;
2056 	ifp->if_flags |= IFF_ALLMULTI;
2057 	hashes[0] = hashes[1] = 0xffffffff;
2058 
2059 setit:
2060 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2061 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2062 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2063 	DELAY(atw_nar_delay);
2064 	ATW_WRITE(sc, ATW_RDR, 0x1);
2065 
2066 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(&sc->sc_dev),
2067 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2068 }
2069 
2070 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2071  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2072  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2073  * no beacon with the preferred BSSID and SSID in the number of
2074  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2075  */
2076 static void
2077 atw_write_bssid(struct atw_softc *sc)
2078 {
2079 	struct ieee80211com *ic = &sc->sc_ic;
2080 	u_int8_t *bssid;
2081 
2082 	bssid = ic->ic_bss->ni_bssid;
2083 
2084 	ATW_WRITE(sc, ATW_BSSID0,
2085 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2086 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2087 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2088 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2089 
2090 	ATW_WRITE(sc, ATW_ABDA1,
2091 	    (ATW_READ(sc, ATW_ABDA1) &
2092 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2093 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2094 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2095 
2096 	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(&sc->sc_dev),
2097 	    ether_sprintf(sc->sc_bssid)));
2098 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2099 
2100 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2101 }
2102 
2103 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2104  * 16-bit word.
2105  */
2106 static void
2107 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2108 {
2109 	u_int i;
2110 	u_int8_t *ptr;
2111 
2112 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2113 
2114 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2115 
2116 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2117 
2118 	ptr = &sc->sc_sram[ofs];
2119 
2120 	for (i = 0; i < buflen; i += 2) {
2121 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2122 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2123 		DELAY(atw_writewep_delay);
2124 
2125 		ATW_WRITE(sc, ATW_WESK,
2126 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2127 		DELAY(atw_writewep_delay);
2128 	}
2129 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2130 
2131 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2132 		int n_octets = 0;
2133 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2134 		    device_xname(&sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2135 		for (i = 0; i < buflen; i++) {
2136 			printf(" %02x", ptr[i]);
2137 			if (++n_octets % 24 == 0)
2138 				printf("\n");
2139 		}
2140 		if (n_octets % 24 != 0)
2141 			printf("\n");
2142 	}
2143 }
2144 
2145 static int
2146 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2147 {
2148 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2149 	u_int keyix = k->wk_keyix;
2150 
2151 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2152 
2153 	if (keyix >= IEEE80211_WEP_NKID)
2154 		return 0;
2155 	if (k->wk_keylen != 0)
2156 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2157 
2158 	return 1;
2159 }
2160 
2161 static int
2162 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2163 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2164 {
2165 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2166 
2167 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2168 
2169 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2170 		return 0;
2171 
2172 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2173 
2174 	return 1;
2175 }
2176 
2177 static void
2178 atw_key_update_begin(struct ieee80211com *ic)
2179 {
2180 #ifdef ATW_DEBUG
2181 	struct ifnet *ifp = ic->ic_ifp;
2182 	struct atw_softc *sc = ifp->if_softc;
2183 #endif
2184 
2185 	DPRINTF(sc, ("%s:\n", __func__));
2186 }
2187 
2188 static void
2189 atw_key_update_end(struct ieee80211com *ic)
2190 {
2191 	struct ifnet *ifp = ic->ic_ifp;
2192 	struct atw_softc *sc = ifp->if_softc;
2193 
2194 	DPRINTF(sc, ("%s:\n", __func__));
2195 
2196 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2197 		return;
2198 	if (ATW_IS_ENABLED(sc) == 0)
2199 		return;
2200 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2201 	atw_write_wep(sc);
2202 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2203 	DELAY(atw_nar_delay);
2204 	ATW_WRITE(sc, ATW_RDR, 0x1);
2205 }
2206 
2207 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2208 static void
2209 atw_write_wep(struct atw_softc *sc)
2210 {
2211 #if 0
2212 	struct ieee80211com *ic = &sc->sc_ic;
2213 	u_int32_t reg;
2214 	int i;
2215 #endif
2216 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2217 	u_int8_t buf[IEEE80211_WEP_NKID]
2218 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2219 
2220 	sc->sc_wepctl = 0;
2221 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2222 
2223 	memset(&buf[0][0], 0, sizeof(buf));
2224 
2225 #if 0
2226 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2227 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2228 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2229 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2230 			buf[i][1] = ATW_WEP_ENABLED;
2231 		} else {
2232 			buf[i][1] = 0;
2233 			continue;
2234 		}
2235 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2236 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2237 		    ic->ic_nw_keys[i].wk_keylen - 1);
2238 	}
2239 
2240 	reg = ATW_READ(sc, ATW_MACTEST);
2241 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2242 	reg &= ~ATW_MACTEST_KEYID_MASK;
2243 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2244 	ATW_WRITE(sc, ATW_MACTEST, reg);
2245 
2246 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2247 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2248 
2249 	switch (sc->sc_rev) {
2250 	case ATW_REVISION_AB:
2251 	case ATW_REVISION_AF:
2252 		/* Bypass WEP on Rx. */
2253 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2254 		break;
2255 	default:
2256 		break;
2257 	}
2258 #endif
2259 
2260 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2261 	    sizeof(buf));
2262 
2263 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2264 }
2265 
2266 static void
2267 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2268     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2269 {
2270 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2271 
2272 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2273 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2274 		return;
2275 
2276 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2277 
2278 	switch (subtype) {
2279 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2280 	case IEEE80211_FC0_SUBTYPE_BEACON:
2281 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2282 		    ic->ic_state == IEEE80211_S_RUN) {
2283 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2284 				(void)ieee80211_ibss_merge(ni);
2285 		}
2286 		break;
2287 	default:
2288 		break;
2289 	}
2290 	return;
2291 }
2292 
2293 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2294  * In ad hoc mode, the SSID is written to the beacons sent by the
2295  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2296  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2297  * indications.
2298  */
2299 static void
2300 atw_write_ssid(struct atw_softc *sc)
2301 {
2302 	struct ieee80211com *ic = &sc->sc_ic;
2303 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2304 	 * it only expects the element length, not its ID.
2305 	 */
2306 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2307 
2308 	memset(buf, 0, sizeof(buf));
2309 	buf[0] = ic->ic_bss->ni_esslen;
2310 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2311 
2312 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2313 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2314 }
2315 
2316 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2317  * In ad hoc mode, the supported rates are written to beacons sent by the
2318  * ADM8211.
2319  */
2320 static void
2321 atw_write_sup_rates(struct atw_softc *sc)
2322 {
2323 	struct ieee80211com *ic = &sc->sc_ic;
2324 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2325 	 * supported rates
2326 	 */
2327 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2328 
2329 	memset(buf, 0, sizeof(buf));
2330 
2331 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2332 
2333 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2334 	    ic->ic_bss->ni_rates.rs_nrates);
2335 
2336 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2337 }
2338 
2339 /* Start/stop sending beacons. */
2340 void
2341 atw_start_beacon(struct atw_softc *sc, int start)
2342 {
2343 	struct ieee80211com *ic = &sc->sc_ic;
2344 	uint16_t chan;
2345 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2346 	size_t len;
2347 
2348 	if (ATW_IS_ENABLED(sc) == 0)
2349 		return;
2350 
2351 	/* start beacons */
2352 	len = sizeof(struct ieee80211_frame) +
2353 	    8 /* timestamp */ + 2 /* beacon interval */ +
2354 	    2 /* capability info */ +
2355 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2356 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2357 	    3 /* DS parameters */ +
2358 	    IEEE80211_CRC_LEN;
2359 
2360 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2361 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2362 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2363 
2364 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2365 	ATW_WRITE(sc, ATW_CAP1, cap1);
2366 
2367 	if (!start)
2368 		return;
2369 
2370 	/* TBD use ni_capinfo */
2371 
2372 	capinfo = 0;
2373 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2374 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2375 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2376 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2377 
2378 	switch (ic->ic_opmode) {
2379 	case IEEE80211_M_IBSS:
2380 		len += 4; /* IBSS parameters */
2381 		capinfo |= IEEE80211_CAPINFO_IBSS;
2382 		break;
2383 	case IEEE80211_M_HOSTAP:
2384 		/* XXX 6-byte minimum TIM */
2385 		len += atw_beacon_len_adjust;
2386 		capinfo |= IEEE80211_CAPINFO_ESS;
2387 		break;
2388 	default:
2389 		return;
2390 	}
2391 
2392 	/* set listen interval
2393 	 * XXX do software units agree w/ hardware?
2394 	 */
2395 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2396 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2397 
2398 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2399 
2400 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2401 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2402 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2403 
2404 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2405 	ATW_WRITE(sc, ATW_BPLI, bpli);
2406 	ATW_WRITE(sc, ATW_CAP0, cap0);
2407 	ATW_WRITE(sc, ATW_CAP1, cap1);
2408 
2409 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2410 	    device_xname(&sc->sc_dev), bcnt));
2411 
2412 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2413 	    device_xname(&sc->sc_dev), cap1));
2414 }
2415 
2416 /* Return the 32 lsb of the last TSFT divisible by ival. */
2417 static inline uint32_t
2418 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2419 {
2420 	/* Following the reference driver's lead, I compute
2421 	 *
2422 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2423 	 *
2424 	 * without using 64-bit arithmetic, using the following
2425 	 * relationship:
2426 	 *
2427 	 *     (0x100000000 * H + L) % m
2428 	 *   = ((0x100000000 % m) * H + L) % m
2429 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2430 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2431 	 *   = ((0xffffffff % m + 1) * H + L) % m
2432 	 */
2433 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2434 }
2435 
2436 static uint64_t
2437 atw_get_tsft(struct atw_softc *sc)
2438 {
2439 	int i;
2440 	uint32_t tsfth, tsftl;
2441 	for (i = 0; i < 2; i++) {
2442 		tsfth = ATW_READ(sc, ATW_TSFTH);
2443 		tsftl = ATW_READ(sc, ATW_TSFTL);
2444 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2445 			break;
2446 	}
2447 	return ((uint64_t)tsfth << 32) | tsftl;
2448 }
2449 
2450 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2451  * the ieee80211com.
2452  *
2453  * Predict the next target beacon transmission time (TBTT) and
2454  * write it to the ADM8211.
2455  */
2456 static void
2457 atw_predict_beacon(struct atw_softc *sc)
2458 {
2459 #define TBTTOFS 20 /* TU */
2460 
2461 	struct ieee80211com *ic = &sc->sc_ic;
2462 	uint64_t tsft;
2463 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2464 	union {
2465 		uint64_t	word;
2466 		uint8_t		tstamp[8];
2467 	} u;
2468 
2469 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2470 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2471 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2472 		tsft = atw_get_tsft(sc);
2473 		u.word = htole64(tsft);
2474 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2475 		    sizeof(ic->ic_bss->ni_tstamp));
2476 	} else
2477 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2478 
2479 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2480 
2481 	tsftl = tsft & 0xFFFFFFFF;
2482 	tsfth = tsft >> 32;
2483 
2484 	/* We sent/received the last beacon `past' microseconds
2485 	 * after the interval divided the TSF timer.
2486 	 */
2487 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2488 
2489 	/* Skip ten beacons so that the TBTT cannot pass before
2490 	 * we've programmed it.  Ten is an arbitrary number.
2491 	 */
2492 	tbtt = past_even + ival * 10;
2493 
2494 	ATW_WRITE(sc, ATW_TOFS1,
2495 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2496 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2497 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2498 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2499 #undef TBTTOFS
2500 }
2501 
2502 static void
2503 atw_next_scan(void *arg)
2504 {
2505 	struct atw_softc *sc = arg;
2506 	struct ieee80211com *ic = &sc->sc_ic;
2507 	int s;
2508 
2509 	/* don't call atw_start w/o network interrupts blocked */
2510 	s = splnet();
2511 	if (ic->ic_state == IEEE80211_S_SCAN)
2512 		ieee80211_next_scan(ic);
2513 	splx(s);
2514 }
2515 
2516 /* Synchronize the hardware state with the software state. */
2517 static int
2518 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2519 {
2520 	struct ifnet *ifp = ic->ic_ifp;
2521 	struct atw_softc *sc = ifp->if_softc;
2522 	enum ieee80211_state ostate;
2523 	int error = 0;
2524 
2525 	ostate = ic->ic_state;
2526 	callout_stop(&sc->sc_scan_ch);
2527 
2528 	switch (nstate) {
2529 	case IEEE80211_S_AUTH:
2530 	case IEEE80211_S_ASSOC:
2531 		atw_write_bssid(sc);
2532 		error = atw_tune(sc);
2533 		break;
2534 	case IEEE80211_S_INIT:
2535 		callout_stop(&sc->sc_scan_ch);
2536 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2537 		atw_start_beacon(sc, 0);
2538 		break;
2539 	case IEEE80211_S_SCAN:
2540 		error = atw_tune(sc);
2541 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2542 		    atw_next_scan, sc);
2543 		break;
2544 	case IEEE80211_S_RUN:
2545 		error = atw_tune(sc);
2546 		atw_write_bssid(sc);
2547 		atw_write_ssid(sc);
2548 		atw_write_sup_rates(sc);
2549 
2550 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2551 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2552 			break;
2553 
2554 		/* set listen interval
2555 		 * XXX do software units agree w/ hardware?
2556 		 */
2557 		ATW_WRITE(sc, ATW_BPLI,
2558 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2559 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2560 			   ATW_BPLI_LI_MASK));
2561 
2562 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(&sc->sc_dev),
2563 		    ATW_READ(sc, ATW_BPLI)));
2564 
2565 		atw_predict_beacon(sc);
2566 
2567 		switch (ic->ic_opmode) {
2568 		case IEEE80211_M_AHDEMO:
2569 		case IEEE80211_M_HOSTAP:
2570 		case IEEE80211_M_IBSS:
2571 			atw_start_beacon(sc, 1);
2572 			break;
2573 		case IEEE80211_M_MONITOR:
2574 		case IEEE80211_M_STA:
2575 			break;
2576 		}
2577 
2578 		break;
2579 	}
2580 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2581 }
2582 
2583 /*
2584  * atw_add_rxbuf:
2585  *
2586  *	Add a receive buffer to the indicated descriptor.
2587  */
2588 int
2589 atw_add_rxbuf(struct atw_softc *sc, int idx)
2590 {
2591 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2592 	struct mbuf *m;
2593 	int error;
2594 
2595 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2596 	if (m == NULL)
2597 		return (ENOBUFS);
2598 
2599 	MCLGET(m, M_DONTWAIT);
2600 	if ((m->m_flags & M_EXT) == 0) {
2601 		m_freem(m);
2602 		return (ENOBUFS);
2603 	}
2604 
2605 	if (rxs->rxs_mbuf != NULL)
2606 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2607 
2608 	rxs->rxs_mbuf = m;
2609 
2610 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2611 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2612 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2613 	if (error) {
2614 		aprint_error_dev(&sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2615 		    idx, error);
2616 		panic("atw_add_rxbuf");	/* XXX */
2617 	}
2618 
2619 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2620 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2621 
2622 	atw_init_rxdesc(sc, idx);
2623 
2624 	return (0);
2625 }
2626 
2627 /*
2628  * Release any queued transmit buffers.
2629  */
2630 void
2631 atw_txdrain(struct atw_softc *sc)
2632 {
2633 	struct atw_txsoft *txs;
2634 
2635 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2636 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2637 		if (txs->txs_mbuf != NULL) {
2638 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2639 			m_freem(txs->txs_mbuf);
2640 			txs->txs_mbuf = NULL;
2641 		}
2642 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2643 		sc->sc_txfree += txs->txs_ndescs;
2644 	}
2645 
2646 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2647 	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2648 		  sc->sc_txfree != ATW_NTXDESC));
2649 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2650 	sc->sc_tx_timer = 0;
2651 }
2652 
2653 /*
2654  * atw_stop:		[ ifnet interface function ]
2655  *
2656  *	Stop transmission on the interface.
2657  */
2658 void
2659 atw_stop(struct ifnet *ifp, int disable)
2660 {
2661 	struct atw_softc *sc = ifp->if_softc;
2662 	struct ieee80211com *ic = &sc->sc_ic;
2663 
2664 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2665 
2666 	/* Disable interrupts. */
2667 	ATW_WRITE(sc, ATW_IER, 0);
2668 
2669 	/* Stop the transmit and receive processes. */
2670 	sc->sc_opmode = 0;
2671 	ATW_WRITE(sc, ATW_NAR, 0);
2672 	DELAY(atw_nar_delay);
2673 	ATW_WRITE(sc, ATW_TDBD, 0);
2674 	ATW_WRITE(sc, ATW_TDBP, 0);
2675 	ATW_WRITE(sc, ATW_RDB, 0);
2676 
2677 	atw_txdrain(sc);
2678 
2679 	/*
2680 	 * Mark the interface down and cancel the watchdog timer.
2681 	 */
2682 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2683 	sc->sc_tx_timer = 0;
2684 	ifp->if_timer = 0;
2685 
2686 	if (disable) {
2687 		atw_rxdrain(sc);
2688 		atw_disable(sc);
2689 	} else
2690 		atw_reset(sc);
2691 }
2692 
2693 /*
2694  * atw_rxdrain:
2695  *
2696  *	Drain the receive queue.
2697  */
2698 void
2699 atw_rxdrain(struct atw_softc *sc)
2700 {
2701 	struct atw_rxsoft *rxs;
2702 	int i;
2703 
2704 	for (i = 0; i < ATW_NRXDESC; i++) {
2705 		rxs = &sc->sc_rxsoft[i];
2706 		if (rxs->rxs_mbuf == NULL)
2707 			continue;
2708 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2709 		m_freem(rxs->rxs_mbuf);
2710 		rxs->rxs_mbuf = NULL;
2711 	}
2712 }
2713 
2714 /*
2715  * atw_detach:
2716  *
2717  *	Detach an ADM8211 interface.
2718  */
2719 int
2720 atw_detach(struct atw_softc *sc)
2721 {
2722 	struct ifnet *ifp = &sc->sc_if;
2723 	struct atw_rxsoft *rxs;
2724 	struct atw_txsoft *txs;
2725 	int i;
2726 
2727 	/*
2728 	 * Succeed now if there isn't any work to do.
2729 	 */
2730 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2731 		return (0);
2732 
2733 	pmf_device_deregister(&sc->sc_dev);
2734 
2735 	callout_stop(&sc->sc_scan_ch);
2736 
2737 	ieee80211_ifdetach(&sc->sc_ic);
2738 	if_detach(ifp);
2739 
2740 	for (i = 0; i < ATW_NRXDESC; i++) {
2741 		rxs = &sc->sc_rxsoft[i];
2742 		if (rxs->rxs_mbuf != NULL) {
2743 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2744 			m_freem(rxs->rxs_mbuf);
2745 			rxs->rxs_mbuf = NULL;
2746 		}
2747 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2748 	}
2749 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2750 		txs = &sc->sc_txsoft[i];
2751 		if (txs->txs_mbuf != NULL) {
2752 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2753 			m_freem(txs->txs_mbuf);
2754 			txs->txs_mbuf = NULL;
2755 		}
2756 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2757 	}
2758 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2759 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2760 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2761 	    sizeof(struct atw_control_data));
2762 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2763 
2764 	if (sc->sc_srom)
2765 		free(sc->sc_srom, M_DEVBUF);
2766 
2767 	atw_evcnt_detach(sc);
2768 
2769 	return (0);
2770 }
2771 
2772 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2773 bool
2774 atw_shutdown(device_t self, int flags)
2775 {
2776 	struct atw_softc *sc = device_private(self);
2777 
2778 	atw_stop(&sc->sc_if, 1);
2779 	return true;
2780 }
2781 
2782 int
2783 atw_intr(void *arg)
2784 {
2785 	struct atw_softc *sc = arg;
2786 	struct ifnet *ifp = &sc->sc_if;
2787 	u_int32_t status, rxstatus, txstatus, linkstatus;
2788 	int handled = 0, txthresh;
2789 
2790 #ifdef DEBUG
2791 	if (ATW_IS_ENABLED(sc) == 0)
2792 		panic("%s: atw_intr: not enabled", device_xname(&sc->sc_dev));
2793 #endif
2794 
2795 	/*
2796 	 * If the interface isn't running, the interrupt couldn't
2797 	 * possibly have come from us.
2798 	 */
2799 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2800 	    !device_is_active(&sc->sc_dev))
2801 		return (0);
2802 
2803 	for (;;) {
2804 		status = ATW_READ(sc, ATW_STSR);
2805 
2806 		if (status)
2807 			ATW_WRITE(sc, ATW_STSR, status);
2808 
2809 #ifdef ATW_DEBUG
2810 #define PRINTINTR(flag) do { \
2811 	if ((status & flag) != 0) { \
2812 		printf("%s" #flag, delim); \
2813 		delim = ","; \
2814 	} \
2815 } while (0)
2816 
2817 		if (atw_debug > 1 && status) {
2818 			const char *delim = "<";
2819 
2820 			printf("%s: reg[STSR] = %x",
2821 			    device_xname(&sc->sc_dev), status);
2822 
2823 			PRINTINTR(ATW_INTR_FBE);
2824 			PRINTINTR(ATW_INTR_LINKOFF);
2825 			PRINTINTR(ATW_INTR_LINKON);
2826 			PRINTINTR(ATW_INTR_RCI);
2827 			PRINTINTR(ATW_INTR_RDU);
2828 			PRINTINTR(ATW_INTR_REIS);
2829 			PRINTINTR(ATW_INTR_RPS);
2830 			PRINTINTR(ATW_INTR_TCI);
2831 			PRINTINTR(ATW_INTR_TDU);
2832 			PRINTINTR(ATW_INTR_TLT);
2833 			PRINTINTR(ATW_INTR_TPS);
2834 			PRINTINTR(ATW_INTR_TRT);
2835 			PRINTINTR(ATW_INTR_TUF);
2836 			PRINTINTR(ATW_INTR_BCNTC);
2837 			PRINTINTR(ATW_INTR_ATIME);
2838 			PRINTINTR(ATW_INTR_TBTT);
2839 			PRINTINTR(ATW_INTR_TSCZ);
2840 			PRINTINTR(ATW_INTR_TSFTF);
2841 			printf(">\n");
2842 		}
2843 #undef PRINTINTR
2844 #endif /* ATW_DEBUG */
2845 
2846 		if ((status & sc->sc_inten) == 0)
2847 			break;
2848 
2849 		handled = 1;
2850 
2851 		rxstatus = status & sc->sc_rxint_mask;
2852 		txstatus = status & sc->sc_txint_mask;
2853 		linkstatus = status & sc->sc_linkint_mask;
2854 
2855 		if (linkstatus) {
2856 			atw_linkintr(sc, linkstatus);
2857 		}
2858 
2859 		if (rxstatus) {
2860 			/* Grab any new packets. */
2861 			atw_rxintr(sc);
2862 
2863 			if (rxstatus & ATW_INTR_RDU) {
2864 				printf("%s: receive ring overrun\n",
2865 				    device_xname(&sc->sc_dev));
2866 				/* Get the receive process going again. */
2867 				ATW_WRITE(sc, ATW_RDR, 0x1);
2868 				break;
2869 			}
2870 		}
2871 
2872 		if (txstatus) {
2873 			/* Sweep up transmit descriptors. */
2874 			atw_txintr(sc);
2875 
2876 			if (txstatus & ATW_INTR_TLT) {
2877 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2878 				    device-xname(&sc->sc_dev)));
2879 			}
2880 
2881 			if (txstatus & ATW_INTR_TRT) {
2882 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2883 				    device_xname(&sc->sc_dev)));
2884 			}
2885 
2886 			/* If Tx under-run, increase our transmit threshold
2887 			 * if another is available.
2888 			 */
2889 			txthresh = sc->sc_txthresh + 1;
2890 			if ((txstatus & ATW_INTR_TUF) &&
2891 			    sc->sc_txth[txthresh].txth_name != NULL) {
2892 				/* Idle the transmit process. */
2893 				atw_idle(sc, ATW_NAR_ST);
2894 
2895 				sc->sc_txthresh = txthresh;
2896 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2897 				sc->sc_opmode |=
2898 				    sc->sc_txth[txthresh].txth_opmode;
2899 				printf("%s: transmit underrun; new "
2900 				    "threshold: %s\n", device_xname(&sc->sc_dev),
2901 				    sc->sc_txth[txthresh].txth_name);
2902 
2903 				/* Set the new threshold and restart
2904 				 * the transmit process.
2905 				 */
2906 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2907 				DELAY(atw_nar_delay);
2908 				ATW_WRITE(sc, ATW_RDR, 0x1);
2909 				/* XXX Log every Nth underrun from
2910 				 * XXX now on?
2911 				 */
2912 			}
2913 		}
2914 
2915 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2916 			if (status & ATW_INTR_TPS)
2917 				printf("%s: transmit process stopped\n",
2918 				    device_xname(&sc->sc_dev));
2919 			if (status & ATW_INTR_RPS)
2920 				printf("%s: receive process stopped\n",
2921 				    device_xname(&sc->sc_dev));
2922 			(void)atw_init(ifp);
2923 			break;
2924 		}
2925 
2926 		if (status & ATW_INTR_FBE) {
2927 			aprint_error_dev(&sc->sc_dev, "fatal bus error\n");
2928 			(void)atw_init(ifp);
2929 			break;
2930 		}
2931 
2932 		/*
2933 		 * Not handled:
2934 		 *
2935 		 *	Transmit buffer unavailable -- normal
2936 		 *	condition, nothing to do, really.
2937 		 *
2938 		 *	Early receive interrupt -- not available on
2939 		 *	all chips, we just use RI.  We also only
2940 		 *	use single-segment receive DMA, so this
2941 		 *	is mostly useless.
2942 		 *
2943 		 *      TBD others
2944 		 */
2945 	}
2946 
2947 	/* Try to get more packets going. */
2948 	atw_start(ifp);
2949 
2950 	return (handled);
2951 }
2952 
2953 /*
2954  * atw_idle:
2955  *
2956  *	Cause the transmit and/or receive processes to go idle.
2957  *
2958  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2959  *	process in STSR if I clear SR or ST after the process has already
2960  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2961  *      do not seem to be too reliable. Perhaps I have the sense of the
2962  *	Rx bits switched with the Tx bits?
2963  */
2964 void
2965 atw_idle(struct atw_softc *sc, u_int32_t bits)
2966 {
2967 	u_int32_t ackmask = 0, opmode, stsr, test0;
2968 	int i, s;
2969 
2970 	s = splnet();
2971 
2972 	opmode = sc->sc_opmode & ~bits;
2973 
2974 	if (bits & ATW_NAR_SR)
2975 		ackmask |= ATW_INTR_RPS;
2976 
2977 	if (bits & ATW_NAR_ST) {
2978 		ackmask |= ATW_INTR_TPS;
2979 		/* set ATW_NAR_HF to flush TX FIFO. */
2980 		opmode |= ATW_NAR_HF;
2981 	}
2982 
2983 	ATW_WRITE(sc, ATW_NAR, opmode);
2984 	DELAY(atw_nar_delay);
2985 
2986 	for (i = 0; i < 1000; i++) {
2987 		stsr = ATW_READ(sc, ATW_STSR);
2988 		if ((stsr & ackmask) == ackmask)
2989 			break;
2990 		DELAY(10);
2991 	}
2992 
2993 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2994 
2995 	if ((stsr & ackmask) == ackmask)
2996 		goto out;
2997 
2998 	test0 = ATW_READ(sc, ATW_TEST0);
2999 
3000 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3001 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3002 		printf("%s: transmit process not idle [%s]\n",
3003 		    device_xname(&sc->sc_dev),
3004 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3005 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3006 		    device_xname(&sc->sc_dev), bits, test0, stsr);
3007 	}
3008 
3009 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3010 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3011 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3012 		    device_xname(&sc->sc_dev),
3013 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3014 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3015 		    device_xname(&sc->sc_dev), bits, test0, stsr));
3016 	}
3017 out:
3018 	if ((bits & ATW_NAR_ST) != 0)
3019 		atw_txdrain(sc);
3020 	splx(s);
3021 	return;
3022 }
3023 
3024 /*
3025  * atw_linkintr:
3026  *
3027  *	Helper; handle link-status interrupts.
3028  */
3029 void
3030 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3031 {
3032 	struct ieee80211com *ic = &sc->sc_ic;
3033 
3034 	if (ic->ic_state != IEEE80211_S_RUN)
3035 		return;
3036 
3037 	if (linkstatus & ATW_INTR_LINKON) {
3038 		DPRINTF(sc, ("%s: link on\n", device_xname(&sc->sc_dev)));
3039 		sc->sc_rescan_timer = 0;
3040 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3041 		DPRINTF(sc, ("%s: link off\n", device_xname(&sc->sc_dev)));
3042 		if (ic->ic_opmode != IEEE80211_M_STA)
3043 			return;
3044 		sc->sc_rescan_timer = 3;
3045 		sc->sc_if.if_timer = 1;
3046 	}
3047 }
3048 
3049 static inline int
3050 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3051 {
3052 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3053 		return 0;
3054 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3055 		return 0;
3056 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3057 }
3058 
3059 /*
3060  * atw_rxintr:
3061  *
3062  *	Helper; handle receive interrupts.
3063  */
3064 void
3065 atw_rxintr(struct atw_softc *sc)
3066 {
3067 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3068 	struct ieee80211com *ic = &sc->sc_ic;
3069 	struct ieee80211_node *ni;
3070 	struct ieee80211_frame_min *wh;
3071 	struct ifnet *ifp = &sc->sc_if;
3072 	struct atw_rxsoft *rxs;
3073 	struct mbuf *m;
3074 	u_int32_t rxstat;
3075 	int i, len, rate, rate0;
3076 	u_int32_t rssi, ctlrssi;
3077 
3078 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3079 		rxs = &sc->sc_rxsoft[i];
3080 
3081 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3082 
3083 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3084 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3085 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3086 
3087 		if (rxstat & ATW_RXSTAT_OWN)
3088 			break; /* We have processed all receive buffers. */
3089 
3090 		DPRINTF3(sc,
3091 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3092 		    device_xname(&sc->sc_dev),
3093 		    rxstat, ctlrssi,
3094 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3095 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3096 
3097 		/*
3098 		 * Make sure the packet fits in one buffer.  This should
3099 		 * always be the case.
3100 		 */
3101 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3102 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3103 			printf("%s: incoming packet spilled, resetting\n",
3104 			    device_xname(&sc->sc_dev));
3105 			(void)atw_init(ifp);
3106 			return;
3107 		}
3108 
3109 		/*
3110 		 * If an error occurred, update stats, clear the status
3111 		 * word, and leave the packet buffer in place.  It will
3112 		 * simply be reused the next time the ring comes around.
3113 		 */
3114 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3115 #define	PRINTERR(bit, str)						\
3116 			if (rxstat & (bit))				\
3117 				aprint_error_dev(&sc->sc_dev, "receive error: %s\n",	\
3118 				    str)
3119 			ifp->if_ierrors++;
3120 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3121 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3122 #if 0
3123 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3124 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3125 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3126 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3127 #endif
3128 #undef PRINTERR
3129 			atw_init_rxdesc(sc, i);
3130 			continue;
3131 		}
3132 
3133 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3134 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3135 
3136 		/*
3137 		 * No errors; receive the packet.  Note the ADM8211
3138 		 * includes the CRC in promiscuous mode.
3139 		 */
3140 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3141 
3142 		/*
3143 		 * Allocate a new mbuf cluster.  If that fails, we are
3144 		 * out of memory, and must drop the packet and recycle
3145 		 * the buffer that's already attached to this descriptor.
3146 		 */
3147 		m = rxs->rxs_mbuf;
3148 		if (atw_add_rxbuf(sc, i) != 0) {
3149 			ifp->if_ierrors++;
3150 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3151 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3152 			atw_init_rxdesc(sc, i);
3153 			continue;
3154 		}
3155 
3156 		ifp->if_ipackets++;
3157 		m->m_pkthdr.rcvif = ifp;
3158 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3159 
3160 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3161 
3162 		/* The RSSI comes straight from a register in the
3163 		 * baseband processor.  I know that for the RF3000,
3164 		 * the RSSI register also contains the antenna-selection
3165 		 * bits.  Mask those off.
3166 		 *
3167 		 * TBD Treat other basebands.
3168 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3169 		 */
3170 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3171 			rssi = ctlrssi & RF3000_RSSI_MASK;
3172 		else
3173 			rssi = ctlrssi;
3174 
3175  #if NBPFILTER > 0
3176 		/* Pass this up to any BPF listeners. */
3177 		if (sc->sc_radiobpf != NULL) {
3178 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3179 
3180 			tap->ar_rate = rate;
3181 
3182 			/* TBD verify units are dB */
3183 			tap->ar_antsignal = (int)rssi;
3184 			if (sc->sc_opmode & ATW_NAR_PR)
3185 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3186 			else
3187 				tap->ar_flags = 0;
3188 
3189 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3190 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3191 
3192 			bpf_mtap2(sc->sc_radiobpf, tap,
3193 			    sizeof(sc->sc_rxtapu), m);
3194  		}
3195 #endif /* NBPFILTER > 0 */
3196 
3197 		sc->sc_recv_ev.ev_count++;
3198 
3199 		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3200 			if (rxstat & ATW_RXSTAT_CRC16E)
3201 				sc->sc_crc16e_ev.ev_count++;
3202 			if (rxstat & ATW_RXSTAT_CRC32E)
3203 				sc->sc_crc32e_ev.ev_count++;
3204 			if (rxstat & ATW_RXSTAT_ICVE)
3205 				sc->sc_icve_ev.ev_count++;
3206 			if (rxstat & ATW_RXSTAT_SFDE)
3207 				sc->sc_sfde_ev.ev_count++;
3208 			if (rxstat & ATW_RXSTAT_SIGE)
3209 				sc->sc_sige_ev.ev_count++;
3210 			ifp->if_ierrors++;
3211 			m_freem(m);
3212 			continue;
3213 		}
3214 
3215 		if (sc->sc_opmode & ATW_NAR_PR)
3216 			m_adj(m, -IEEE80211_CRC_LEN);
3217 
3218 		wh = mtod(m, struct ieee80211_frame_min *);
3219 		ni = ieee80211_find_rxnode(ic, wh);
3220 #if 0
3221 		if (atw_hw_decrypted(sc, wh)) {
3222 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3223 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3224 		}
3225 #endif
3226 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3227 		ieee80211_free_node(ni);
3228 	}
3229 
3230 	/* Update the receive pointer. */
3231 	sc->sc_rxptr = i;
3232 }
3233 
3234 /*
3235  * atw_txintr:
3236  *
3237  *	Helper; handle transmit interrupts.
3238  */
3239 void
3240 atw_txintr(struct atw_softc *sc)
3241 {
3242 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3243 	struct ifnet *ifp = &sc->sc_if;
3244 	struct atw_txsoft *txs;
3245 	u_int32_t txstat;
3246 
3247 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3248 	    device_xname(&sc->sc_dev), sc->sc_flags));
3249 
3250 	/*
3251 	 * Go through our Tx list and free mbufs for those
3252 	 * frames that have been transmitted.
3253 	 */
3254 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3255 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3256 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3257 
3258 #ifdef ATW_DEBUG
3259 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3260 			int i;
3261 			printf("    txsoft %p transmit chain:\n", txs);
3262 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3263 			    txs->txs_ndescs - 1,
3264 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3265 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3266 				printf("     descriptor %d:\n", i);
3267 				printf("       at_status:   0x%08x\n",
3268 				    le32toh(sc->sc_txdescs[i].at_stat));
3269 				printf("       at_flags:      0x%08x\n",
3270 				    le32toh(sc->sc_txdescs[i].at_flags));
3271 				printf("       at_buf1: 0x%08x\n",
3272 				    le32toh(sc->sc_txdescs[i].at_buf1));
3273 				printf("       at_buf2: 0x%08x\n",
3274 				    le32toh(sc->sc_txdescs[i].at_buf2));
3275 				if (i == txs->txs_lastdesc)
3276 					break;
3277 			}
3278 		}
3279 #endif
3280 
3281 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3282 		if (txstat & ATW_TXSTAT_OWN)
3283 			break;
3284 
3285 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3286 
3287 		sc->sc_txfree += txs->txs_ndescs;
3288 
3289 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3290 		    0, txs->txs_dmamap->dm_mapsize,
3291 		    BUS_DMASYNC_POSTWRITE);
3292 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3293 		m_freem(txs->txs_mbuf);
3294 		txs->txs_mbuf = NULL;
3295 
3296 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3297 
3298 		KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3299 		        sc->sc_txfree == 0));
3300 		ifp->if_flags &= ~IFF_OACTIVE;
3301 
3302 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3303 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3304 			bitmask_snprintf(txstat & ATW_TXSTAT_ERRMASK,
3305 			    ATW_TXSTAT_FMT, txstat_buf, sizeof(txstat_buf));
3306 			printf("%s: txstat %s %" __PRIuBITS "\n",
3307 			    device_xname(&sc->sc_dev), txstat_buf,
3308 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3309 		}
3310 
3311 		/*
3312 		 * Check for errors and collisions.
3313 		 */
3314 		if (txstat & ATW_TXSTAT_TUF)
3315 			sc->sc_stats.ts_tx_tuf++;
3316 		if (txstat & ATW_TXSTAT_TLT)
3317 			sc->sc_stats.ts_tx_tlt++;
3318 		if (txstat & ATW_TXSTAT_TRT)
3319 			sc->sc_stats.ts_tx_trt++;
3320 		if (txstat & ATW_TXSTAT_TRO)
3321 			sc->sc_stats.ts_tx_tro++;
3322 		if (txstat & ATW_TXSTAT_SOFBR) {
3323 			sc->sc_stats.ts_tx_sofbr++;
3324 		}
3325 
3326 		if ((txstat & ATW_TXSTAT_ES) == 0)
3327 			ifp->if_collisions +=
3328 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3329 		else
3330 			ifp->if_oerrors++;
3331 
3332 		ifp->if_opackets++;
3333 	}
3334 
3335 	/*
3336 	 * If there are no more pending transmissions, cancel the watchdog
3337 	 * timer.
3338 	 */
3339 	if (txs == NULL) {
3340 		KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3341 		sc->sc_tx_timer = 0;
3342 	}
3343 }
3344 
3345 /*
3346  * atw_watchdog:	[ifnet interface function]
3347  *
3348  *	Watchdog timer handler.
3349  */
3350 void
3351 atw_watchdog(struct ifnet *ifp)
3352 {
3353 	struct atw_softc *sc = ifp->if_softc;
3354 	struct ieee80211com *ic = &sc->sc_ic;
3355 
3356 	ifp->if_timer = 0;
3357 	if (ATW_IS_ENABLED(sc) == 0)
3358 		return;
3359 
3360 	if (sc->sc_rescan_timer) {
3361 		if (--sc->sc_rescan_timer == 0)
3362 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3363 	}
3364 	if (sc->sc_tx_timer) {
3365 		if (--sc->sc_tx_timer == 0 &&
3366 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3367 			printf("%s: transmit timeout\n", ifp->if_xname);
3368 			ifp->if_oerrors++;
3369 			(void)atw_init(ifp);
3370 			atw_start(ifp);
3371 		}
3372 	}
3373 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3374 		ifp->if_timer = 1;
3375 	ieee80211_watchdog(ic);
3376 }
3377 
3378 static void
3379 atw_evcnt_detach(struct atw_softc *sc)
3380 {
3381 	evcnt_detach(&sc->sc_sige_ev);
3382 	evcnt_detach(&sc->sc_sfde_ev);
3383 	evcnt_detach(&sc->sc_icve_ev);
3384 	evcnt_detach(&sc->sc_crc32e_ev);
3385 	evcnt_detach(&sc->sc_crc16e_ev);
3386 	evcnt_detach(&sc->sc_recv_ev);
3387 }
3388 
3389 static void
3390 atw_evcnt_attach(struct atw_softc *sc)
3391 {
3392 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3393 	    NULL, sc->sc_if.if_xname, "recv");
3394 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3395 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3396 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3397 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3398 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3399 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3400 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3401 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3402 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3403 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3404 }
3405 
3406 #ifdef ATW_DEBUG
3407 static void
3408 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3409 {
3410 	struct atw_softc *sc = ifp->if_softc;
3411 	struct mbuf *m;
3412 	int i, noctets = 0;
3413 
3414 	printf("%s: %d-byte packet\n", device_xname(&sc->sc_dev),
3415 	    m0->m_pkthdr.len);
3416 
3417 	for (m = m0; m; m = m->m_next) {
3418 		if (m->m_len == 0)
3419 			continue;
3420 		for (i = 0; i < m->m_len; i++) {
3421 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3422 			if (++noctets % 24 == 0)
3423 				printf("\n");
3424 		}
3425 	}
3426 	printf("%s%s: %d bytes emitted\n",
3427 	    (noctets % 24 != 0) ? "\n" : "", device_xname(&sc->sc_dev), noctets);
3428 }
3429 #endif /* ATW_DEBUG */
3430 
3431 /*
3432  * atw_start:		[ifnet interface function]
3433  *
3434  *	Start packet transmission on the interface.
3435  */
3436 void
3437 atw_start(struct ifnet *ifp)
3438 {
3439 	struct atw_softc *sc = ifp->if_softc;
3440 	struct ieee80211_key *k;
3441 	struct ieee80211com *ic = &sc->sc_ic;
3442 	struct ieee80211_node *ni;
3443 	struct ieee80211_frame_min *whm;
3444 	struct ieee80211_frame *wh;
3445 	struct atw_frame *hh;
3446 	struct mbuf *m0, *m;
3447 	struct atw_txsoft *txs, *last_txs;
3448 	struct atw_txdesc *txd;
3449 	int npkt, rate;
3450 	bus_dmamap_t dmamap;
3451 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3452 
3453 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3454 	    device_xname(&sc->sc_dev), sc->sc_flags, ifp->if_flags));
3455 
3456 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3457 		return;
3458 
3459 	/*
3460 	 * Remember the previous number of free descriptors and
3461 	 * the first descriptor we'll use.
3462 	 */
3463 	ofree = sc->sc_txfree;
3464 	firsttx = lasttx = sc->sc_txnext;
3465 
3466 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3467 	    device_xname(&sc->sc_dev), ofree, firsttx));
3468 
3469 	/*
3470 	 * Loop through the send queue, setting up transmit descriptors
3471 	 * until we drain the queue, or use up all available transmit
3472 	 * descriptors.
3473 	 */
3474 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3475 	       sc->sc_txfree != 0) {
3476 
3477 		/*
3478 		 * Grab a packet off the management queue, if it
3479 		 * is not empty. Otherwise, from the data queue.
3480 		 */
3481 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3482 		if (m0 != NULL) {
3483 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3484 			m0->m_pkthdr.rcvif = NULL;
3485 		} else if (ic->ic_state != IEEE80211_S_RUN)
3486 			break; /* send no data until associated */
3487 		else {
3488 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3489 			if (m0 == NULL)
3490 				break;
3491 #if NBPFILTER > 0
3492 			if (ifp->if_bpf != NULL)
3493 				bpf_mtap(ifp->if_bpf, m0);
3494 #endif /* NBPFILTER > 0 */
3495 			ni = ieee80211_find_txnode(ic,
3496 			    mtod(m0, struct ether_header *)->ether_dhost);
3497 			if (ni == NULL) {
3498 				ifp->if_oerrors++;
3499 				break;
3500 			}
3501 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3502 				ieee80211_free_node(ni);
3503 				ifp->if_oerrors++;
3504 				break;
3505 			}
3506 		}
3507 
3508 		rate = MAX(ieee80211_get_rate(ni), 2);
3509 
3510 		whm = mtod(m0, struct ieee80211_frame_min *);
3511 
3512 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3513 			k = NULL;
3514 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3515 			m_freem(m0);
3516 			ieee80211_free_node(ni);
3517 			ifp->if_oerrors++;
3518 			break;
3519 		}
3520 
3521 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3522 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3523 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3524 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3525 			m_freem(m0);
3526 			break;
3527 		}
3528 
3529 		/* XXX Misleading if fragmentation is enabled.  Better
3530 		 * to fragment in software?
3531 		 */
3532 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3533 
3534 #if NBPFILTER > 0
3535 		/*
3536 		 * Pass the packet to any BPF listeners.
3537 		 */
3538 		if (ic->ic_rawbpf != NULL)
3539 			bpf_mtap((void *)ic->ic_rawbpf, m0);
3540 
3541 		if (sc->sc_radiobpf != NULL) {
3542 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3543 
3544 			tap->at_rate = rate;
3545 
3546 			bpf_mtap2(sc->sc_radiobpf, tap,
3547 			    sizeof(sc->sc_txtapu), m0);
3548 		}
3549 #endif /* NBPFILTER > 0 */
3550 
3551 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3552 
3553 		if (ni != NULL)
3554 			ieee80211_free_node(ni);
3555 
3556 		if (m0 == NULL) {
3557 			ifp->if_oerrors++;
3558 			break;
3559 		}
3560 
3561 		/* just to make sure. */
3562 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3563 
3564 		if (m0 == NULL) {
3565 			ifp->if_oerrors++;
3566 			break;
3567 		}
3568 
3569 		hh = mtod(m0, struct atw_frame *);
3570 		wh = &hh->atw_ihdr;
3571 
3572 		/* Copy everything we need from the 802.11 header:
3573 		 * Frame Control; address 1, address 3, or addresses
3574 		 * 3 and 4. NIC fills in BSSID, SA.
3575 		 */
3576 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3577 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3578 				panic("%s: illegal WDS frame",
3579 				    device_xname(&sc->sc_dev));
3580 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3581 		} else
3582 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3583 
3584 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3585 
3586 		/* initialize remaining Tx parameters */
3587 		memset(&hh->u, 0, sizeof(hh->u));
3588 
3589 		hh->atw_rate = rate * 5;
3590 		/* XXX this could be incorrect if M_FCS. _encap should
3591 		 * probably strip FCS just in case it sticks around in
3592 		 * bridged packets.
3593 		 */
3594 		hh->atw_service = 0x00; /* XXX guess */
3595 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3596 		    sizeof(struct atw_frame));
3597 
3598 		hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3599 		hh->atw_rtylmt = 3;
3600 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3601 #if 0
3602 		if (do_encrypt) {
3603 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3604 			hh->atw_keyid = ic->ic_def_txkey;
3605 		}
3606 #endif
3607 
3608 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3609 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3610 		if (txs->txs_d0.d_residue)
3611 			hh->atw_head_plcplen |= htole16(0x8000);
3612 		if (txs->txs_dn.d_residue)
3613 			hh->atw_tail_plcplen |= htole16(0x8000);
3614 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3615 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3616 
3617 		/* never fragment multicast frames */
3618 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3619 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3620 		} else if (sc->sc_flags & ATWF_RTSCTS) {
3621 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3622 		}
3623 
3624 #ifdef ATW_DEBUG
3625 		hh->atw_fragnum = 0;
3626 
3627 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3628 			printf("%s: dst = %s, rate = 0x%02x, "
3629 			    "service = 0x%02x, paylen = 0x%04x\n",
3630 			    device_xname(&sc->sc_dev), ether_sprintf(hh->atw_dst),
3631 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3632 
3633 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3634 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3635 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3636 			    device_xname(&sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3637 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3638 			    hh->atw_tail_dur, hh->atw_head_dur);
3639 
3640 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3641 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3642 			    device_xname(&sc->sc_dev), hh->atw_hdrctl,
3643 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3644 
3645 			printf("%s: keyid = %d\n",
3646 			    device_xname(&sc->sc_dev), hh->atw_keyid);
3647 
3648 			atw_dump_pkt(ifp, m0);
3649 		}
3650 #endif /* ATW_DEBUG */
3651 
3652 		dmamap = txs->txs_dmamap;
3653 
3654 		/*
3655 		 * Load the DMA map.  Copy and try (once) again if the packet
3656 		 * didn't fit in the alloted number of segments.
3657 		 */
3658 		for (first = 1;
3659 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3660 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3661 		     first = 0) {
3662 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3663 			if (m == NULL) {
3664 				aprint_error_dev(&sc->sc_dev, "unable to allocate Tx mbuf\n");
3665 				break;
3666 			}
3667 			if (m0->m_pkthdr.len > MHLEN) {
3668 				MCLGET(m, M_DONTWAIT);
3669 				if ((m->m_flags & M_EXT) == 0) {
3670 					aprint_error_dev(&sc->sc_dev, "unable to allocate Tx "
3671 					    "cluster\n");
3672 					m_freem(m);
3673 					break;
3674 				}
3675 			}
3676 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3677 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3678 			m_freem(m0);
3679 			m0 = m;
3680 			m = NULL;
3681 		}
3682 		if (error != 0) {
3683 			aprint_error_dev(&sc->sc_dev, "unable to load Tx buffer, "
3684 			    "error = %d\n", error);
3685 			m_freem(m0);
3686 			break;
3687 		}
3688 
3689 		/*
3690 		 * Ensure we have enough descriptors free to describe
3691 		 * the packet.
3692 		 */
3693 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3694 			/*
3695 			 * Not enough free descriptors to transmit
3696 			 * this packet.  Unload the DMA map and
3697 			 * drop the packet.  Notify the upper layer
3698 			 * that there are no more slots left.
3699 			 *
3700 			 * XXX We could allocate an mbuf and copy, but
3701 			 * XXX it is worth it?
3702 			 */
3703 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3704 			m_freem(m0);
3705 			break;
3706 		}
3707 
3708 		/*
3709 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3710 		 */
3711 
3712 		/* Sync the DMA map. */
3713 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3714 		    BUS_DMASYNC_PREWRITE);
3715 
3716 		/* XXX arbitrary retry limit; 8 because I have seen it in
3717 		 * use already and maybe 0 means "no tries" !
3718 		 */
3719 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3720 
3721 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3722 		    device_xname(&sc->sc_dev), rate * 5));
3723 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3724 
3725 		/*
3726 		 * Initialize the transmit descriptors.
3727 		 */
3728 		for (nexttx = sc->sc_txnext, seg = 0;
3729 		     seg < dmamap->dm_nsegs;
3730 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3731 			/*
3732 			 * If this is the first descriptor we're
3733 			 * enqueueing, don't set the OWN bit just
3734 			 * yet.  That could cause a race condition.
3735 			 * We'll do it below.
3736 			 */
3737 			txd = &sc->sc_txdescs[nexttx];
3738 			txd->at_ctl = ctl |
3739 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3740 
3741 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3742 			txd->at_flags =
3743 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3744 			                   ATW_TXFLAG_TBS1_MASK)) |
3745 			    ((nexttx == (ATW_NTXDESC - 1))
3746 			        ? htole32(ATW_TXFLAG_TER) : 0);
3747 			lasttx = nexttx;
3748 		}
3749 
3750 		/* Set `first segment' and `last segment' appropriately. */
3751 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3752 		    htole32(ATW_TXFLAG_FS);
3753 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3754 
3755 #ifdef ATW_DEBUG
3756 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3757 			printf("     txsoft %p transmit chain:\n", txs);
3758 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3759 				printf("     descriptor %d:\n", seg);
3760 				printf("       at_ctl:   0x%08x\n",
3761 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3762 				printf("       at_flags:      0x%08x\n",
3763 				    le32toh(sc->sc_txdescs[seg].at_flags));
3764 				printf("       at_buf1: 0x%08x\n",
3765 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3766 				printf("       at_buf2: 0x%08x\n",
3767 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3768 				if (seg == lasttx)
3769 					break;
3770 			}
3771 		}
3772 #endif
3773 
3774 		/* Sync the descriptors we're using. */
3775 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3776 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3777 
3778 		/*
3779 		 * Store a pointer to the packet so we can free it later,
3780 		 * and remember what txdirty will be once the packet is
3781 		 * done.
3782 		 */
3783 		txs->txs_mbuf = m0;
3784 		txs->txs_firstdesc = sc->sc_txnext;
3785 		txs->txs_lastdesc = lasttx;
3786 		txs->txs_ndescs = dmamap->dm_nsegs;
3787 
3788 		/* Advance the tx pointer. */
3789 		sc->sc_txfree -= dmamap->dm_nsegs;
3790 		sc->sc_txnext = nexttx;
3791 
3792 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3793 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3794 
3795 		last_txs = txs;
3796 	}
3797 
3798 	if (sc->sc_txfree != ofree) {
3799 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3800 		    device_xname(&sc->sc_dev), lasttx, firsttx));
3801 		/*
3802 		 * Cause a transmit interrupt to happen on the
3803 		 * last packet we enqueued.
3804 		 */
3805 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3806 		ATW_CDTXSYNC(sc, lasttx, 1,
3807 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3808 
3809 		/*
3810 		 * The entire packet chain is set up.  Give the
3811 		 * first descriptor to the chip now.
3812 		 */
3813 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3814 		ATW_CDTXSYNC(sc, firsttx, 1,
3815 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3816 
3817 		/* Wake up the transmitter. */
3818 		ATW_WRITE(sc, ATW_TDR, 0x1);
3819 
3820 		if (txs == NULL || sc->sc_txfree == 0)
3821 			ifp->if_flags |= IFF_OACTIVE;
3822 
3823 		/* Set a watchdog timer in case the chip flakes out. */
3824 		sc->sc_tx_timer = 5;
3825 		ifp->if_timer = 1;
3826 	}
3827 }
3828 
3829 /*
3830  * atw_ioctl:		[ifnet interface function]
3831  *
3832  *	Handle control requests from the operator.
3833  */
3834 int
3835 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3836 {
3837 	struct atw_softc *sc = ifp->if_softc;
3838 	int s, error = 0;
3839 
3840 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3841 	if (!device_is_active(&sc->sc_dev))
3842 		return ENXIO;
3843 
3844 	s = splnet();
3845 
3846 	switch (cmd) {
3847 	case SIOCSIFFLAGS:
3848 		if (ifp->if_flags & IFF_UP) {
3849 			if (ATW_IS_ENABLED(sc)) {
3850 				/*
3851 				 * To avoid rescanning another access point,
3852 				 * do not call atw_init() here.  Instead,
3853 				 * only reflect media settings.
3854 				 */
3855 				atw_filter_setup(sc);
3856 			} else
3857 				error = atw_init(ifp);
3858 		} else if (ATW_IS_ENABLED(sc))
3859 			atw_stop(ifp, 1);
3860 		break;
3861 	case SIOCADDMULTI:
3862 	case SIOCDELMULTI:
3863 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3864 			if (ifp->if_flags & IFF_RUNNING)
3865 				atw_filter_setup(sc); /* do not rescan */
3866 			error = 0;
3867 		}
3868 		break;
3869 	default:
3870 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3871 		if (error == ENETRESET || error == ERESTART) {
3872 			if (is_running(ifp))
3873 				error = atw_init(ifp);
3874 			else
3875 				error = 0;
3876 		}
3877 		break;
3878 	}
3879 
3880 	/* Try to get more packets going. */
3881 	if (ATW_IS_ENABLED(sc))
3882 		atw_start(ifp);
3883 
3884 	splx(s);
3885 	return (error);
3886 }
3887 
3888 static int
3889 atw_media_change(struct ifnet *ifp)
3890 {
3891 	int error;
3892 
3893 	error = ieee80211_media_change(ifp);
3894 	if (error == ENETRESET) {
3895 		if (is_running(ifp))
3896 			error = atw_init(ifp);
3897 		else
3898 			error = 0;
3899 	}
3900 	return error;
3901 }
3902