xref: /netbsd-src/sys/dev/ic/atw.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: atw.c,v 1.170 2020/01/29 14:09:58 thorpej Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.170 2020/01/29 14:09:58 thorpej Exp $");
38 
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <lib/libkern/libkern.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #include <net/bpf.h>
68 
69 #include <sys/bus.h>
70 #include <sys/intr.h>
71 
72 #include <dev/ic/atwreg.h>
73 #include <dev/ic/rf3000reg.h>
74 #include <dev/ic/si4136reg.h>
75 #include <dev/ic/atwvar.h>
76 #include <dev/ic/smc93cx6var.h>
77 
78 /* XXX TBD open questions
79  *
80  *
81  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83  * handle this for me?
84  *
85  */
86 /* device attachment
87  *
88  *    print TOFS[012]
89  *
90  * device initialization
91  *
92  *    clear ATW_FRCTL_MAXPSP to disable max power saving
93  *    set ATW_TXBR_ALCUPDATE to enable ALC
94  *    set TOFS[012]? (hope not)
95  *    disable rx/tx
96  *    set ATW_PAR_SWR (software reset)
97  *    wait for ATW_PAR_SWR clear
98  *    disable interrupts
99  *    ack status register
100  *    enable interrupts
101  *
102  * rx/tx initialization
103  *
104  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105  *    allocate and init descriptor rings
106  *    write ATW_PAR_DSL (descriptor skip length)
107  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108  *    write ATW_NAR_SQ for one/both transmit descriptor rings
109  *    write ATW_NAR_SQ for one/both transmit descriptor rings
110  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111  *
112  * rx/tx end
113  *
114  *    stop DMA
115  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116  *    flush tx w/ ATW_NAR_HF
117  *
118  * scan
119  *
120  *    initialize rx/tx
121  *
122  * BSS join: (re)association response
123  *
124  *    set ATW_FRCTL_AID
125  *
126  * optimizations ???
127  *
128  */
129 
130 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
131 
132 int atw_pseudo_milli = 1;
133 int atw_magic_delay1 = 100 * 1000;
134 int atw_magic_delay2 = 100 * 1000;
135 /* more magic multi-millisecond delays (units: microseconds) */
136 int atw_nar_delay = 20 * 1000;
137 int atw_magic_delay4 = 10 * 1000;
138 int atw_rf_delay1 = 10 * 1000;
139 int atw_rf_delay2 = 5 * 1000;
140 int atw_plcphd_delay = 2 * 1000;
141 int atw_bbp_io_enable_delay = 20 * 1000;
142 int atw_bbp_io_disable_delay = 2 * 1000;
143 int atw_writewep_delay = 1000;
144 int atw_beacon_len_adjust = 4;
145 int atw_dwelltime = 200;
146 int atw_xindiv2 = 0;
147 
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150 
151 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
154 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157 
158 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
159 static void	atw_print_regs(struct atw_softc *, const char *);
160 
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 #	ifdef ATW_BBPDEBUG
163 static void	atw_rf3000_print(struct atw_softc *);
164 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165 #	endif /* ATW_BBPDEBUG */
166 
167 #	ifdef ATW_SYNDEBUG
168 static void	atw_si4126_print(struct atw_softc *);
169 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
170 #	endif /* ATW_SYNDEBUG */
171 #define __atwdebugused	/* empty */
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define	DPRINTF(sc, x)	/* nothing */
177 #define	DPRINTF2(sc, x)	/* nothing */
178 #define	DPRINTF3(sc, x)	/* nothing */
179 #define __atwdebugused	__unused
180 #endif
181 
182 /* ifnet methods */
183 int	atw_init(struct ifnet *);
184 int	atw_ioctl(struct ifnet *, u_long, void *);
185 void	atw_start(struct ifnet *);
186 void	atw_stop(struct ifnet *, int);
187 void	atw_watchdog(struct ifnet *);
188 
189 /* Device attachment */
190 void	atw_attach(struct atw_softc *);
191 int	atw_detach(struct atw_softc *);
192 static void atw_evcnt_attach(struct atw_softc *);
193 static void atw_evcnt_detach(struct atw_softc *);
194 
195 /* Rx/Tx process */
196 int	atw_add_rxbuf(struct atw_softc *, int);
197 void	atw_idle(struct atw_softc *, uint32_t);
198 void	atw_rxdrain(struct atw_softc *);
199 void	atw_txdrain(struct atw_softc *);
200 
201 /* Device (de)activation and power state */
202 void	atw_reset(struct atw_softc *);
203 
204 /* Interrupt handlers */
205 void	atw_softintr(void *);
206 void	atw_linkintr(struct atw_softc *, uint32_t);
207 void	atw_rxintr(struct atw_softc *);
208 void	atw_txintr(struct atw_softc *, uint32_t);
209 
210 /* 802.11 state machine */
211 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 static void	atw_next_scan(void *);
213 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214 			      struct ieee80211_node *, int, int, uint32_t);
215 static int	atw_tune(struct atw_softc *);
216 
217 /* Device initialization */
218 static void	atw_bbp_io_init(struct atw_softc *);
219 static void	atw_cfp_init(struct atw_softc *);
220 static void	atw_cmdr_init(struct atw_softc *);
221 static void	atw_ifs_init(struct atw_softc *);
222 static void	atw_nar_init(struct atw_softc *);
223 static void	atw_response_times_init(struct atw_softc *);
224 static void	atw_rf_reset(struct atw_softc *);
225 static void	atw_test1_init(struct atw_softc *);
226 static void	atw_tofs0_init(struct atw_softc *);
227 static void	atw_tofs2_init(struct atw_softc *);
228 static void	atw_txlmt_init(struct atw_softc *);
229 static void	atw_wcsr_init(struct atw_softc *);
230 
231 /* Key management */
232 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234 	const uint8_t[IEEE80211_ADDR_LEN]);
235 static void atw_key_update_begin(struct ieee80211com *);
236 static void atw_key_update_end(struct ieee80211com *);
237 
238 /* RAM/ROM utilities */
239 static void	atw_clear_sram(struct atw_softc *);
240 static void	atw_write_sram(struct atw_softc *, u_int, uint8_t *, u_int);
241 static int	atw_read_srom(struct atw_softc *);
242 
243 /* BSS setup */
244 static void	atw_predict_beacon(struct atw_softc *);
245 static void	atw_start_beacon(struct atw_softc *, int);
246 static void	atw_write_bssid(struct atw_softc *);
247 static void	atw_write_ssid(struct atw_softc *);
248 static void	atw_write_sup_rates(struct atw_softc *);
249 static void	atw_write_wep(struct atw_softc *);
250 
251 /* Media */
252 static int	atw_media_change(struct ifnet *);
253 
254 static void	atw_filter_setup(struct atw_softc *);
255 
256 /* 802.11 utilities */
257 static uint64_t			atw_get_tsft(struct atw_softc *);
258 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
259 						   uint32_t);
260 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
261 static void			atw_node_free(struct ieee80211_node *);
262 
263 /*
264  * Tuner/transceiver/modem
265  */
266 static void	atw_bbp_io_enable(struct atw_softc *, int);
267 
268 /* RFMD RF3000 Baseband Processor */
269 static int	atw_rf3000_init(struct atw_softc *);
270 static int	atw_rf3000_tune(struct atw_softc *, u_int);
271 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
272 
273 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
274 static void	atw_si4126_tune(struct atw_softc *, u_int);
275 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
276 
277 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279 
280 const char *atw_tx_state[] = {
281 	"STOPPED",
282 	"RUNNING - read descriptor",
283 	"RUNNING - transmitting",
284 	"RUNNING - filling fifo",	/* XXX */
285 	"SUSPENDED",
286 	"RUNNING -- write descriptor",
287 	"RUNNING -- write last descriptor",
288 	"RUNNING - fifo full"
289 };
290 
291 const char *atw_rx_state[] = {
292 	"STOPPED",
293 	"RUNNING - read descriptor",
294 	"RUNNING - check this packet, pre-fetch next",
295 	"RUNNING - wait for reception",
296 	"SUSPENDED",
297 	"RUNNING - write descriptor",
298 	"RUNNING - flush fifo",
299 	"RUNNING - fifo drain"
300 };
301 
302 static inline int
303 is_running(struct ifnet *ifp)
304 {
305 	return (ifp->if_flags & (IFF_RUNNING | IFF_UP))
306 	    == (IFF_RUNNING | IFF_UP);
307 }
308 
309 int
310 atw_activate(device_t self, enum devact act)
311 {
312 	struct atw_softc *sc = device_private(self);
313 
314 	switch (act) {
315 	case DVACT_DEACTIVATE:
316 		if_deactivate(&sc->sc_if);
317 		return 0;
318 	default:
319 		return EOPNOTSUPP;
320 	}
321 }
322 
323 bool
324 atw_suspend(device_t self, const pmf_qual_t *qual)
325 {
326 	struct atw_softc *sc = device_private(self);
327 
328 	atw_rxdrain(sc);
329 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
330 
331 	return true;
332 }
333 
334 /* Returns -1 on failure. */
335 static int
336 atw_read_srom(struct atw_softc *sc)
337 {
338 	struct seeprom_descriptor sd;
339 	uint32_t test0, fail_bits;
340 
341 	(void)memset(&sd, 0, sizeof(sd));
342 
343 	test0 = ATW_READ(sc, ATW_TEST0);
344 
345 	switch (sc->sc_rev) {
346 	case ATW_REVISION_BA:
347 	case ATW_REVISION_CA:
348 		fail_bits = ATW_TEST0_EPNE;
349 		break;
350 	default:
351 		fail_bits = ATW_TEST0_EPNE | ATW_TEST0_EPSNM;
352 		break;
353 	}
354 	if ((test0 & fail_bits) != 0) {
355 		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
356 		return -1;
357 	}
358 
359 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
360 	case ATW_TEST0_EPTYP_93c66:
361 		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
362 		sc->sc_sromsz = 512;
363 		sd.sd_chip = C56_66;
364 		break;
365 	case ATW_TEST0_EPTYP_93c46:
366 		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
367 		sc->sc_sromsz = 128;
368 		sd.sd_chip = C46;
369 		break;
370 	default:
371 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
372 		    device_xname(sc->sc_dev),
373 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
374 		return -1;
375 	}
376 
377 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_WAITOK | M_ZERO);
378 
379 	/* ADM8211 has a single 32-bit register for controlling the
380 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
381 	 * "ready" bit. The ADM8211 input/output sense is the reverse
382 	 * of read_seeprom's.
383 	 */
384 	sd.sd_tag = sc->sc_st;
385 	sd.sd_bsh = sc->sc_sh;
386 	sd.sd_regsize = 4;
387 	sd.sd_control_offset = ATW_SPR;
388 	sd.sd_status_offset = ATW_SPR;
389 	sd.sd_dataout_offset = ATW_SPR;
390 	sd.sd_CK = ATW_SPR_SCLK;
391 	sd.sd_CS = ATW_SPR_SCS;
392 	sd.sd_DI = ATW_SPR_SDO;
393 	sd.sd_DO = ATW_SPR_SDI;
394 	sd.sd_MS = ATW_SPR_SRS;
395 	sd.sd_RDY = 0;
396 
397 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
398 		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
399 		free(sc->sc_srom, M_DEVBUF);
400 		return -1;
401 	}
402 #ifdef ATW_DEBUG
403 	{
404 		int i;
405 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
406 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
407 			if (((i % 8) == 0) && (i != 0)) {
408 				ATW_DPRINTF(("\n\t"));
409 			}
410 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
411 		}
412 		ATW_DPRINTF(("\n"));
413 	}
414 #endif /* ATW_DEBUG */
415 	return 0;
416 }
417 
418 #ifdef ATW_DEBUG
419 static void
420 atw_print_regs(struct atw_softc *sc, const char *where)
421 {
422 #define PRINTREG(sc, reg) \
423 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
424 	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
425 
426 	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
427 
428 	PRINTREG(sc, ATW_PAR);
429 	PRINTREG(sc, ATW_FRCTL);
430 	PRINTREG(sc, ATW_TDR);
431 	PRINTREG(sc, ATW_WTDP);
432 	PRINTREG(sc, ATW_RDR);
433 	PRINTREG(sc, ATW_WRDP);
434 	PRINTREG(sc, ATW_RDB);
435 	PRINTREG(sc, ATW_CSR3A);
436 	PRINTREG(sc, ATW_TDBD);
437 	PRINTREG(sc, ATW_TDBP);
438 	PRINTREG(sc, ATW_STSR);
439 	PRINTREG(sc, ATW_CSR5A);
440 	PRINTREG(sc, ATW_NAR);
441 	PRINTREG(sc, ATW_CSR6A);
442 	PRINTREG(sc, ATW_IER);
443 	PRINTREG(sc, ATW_CSR7A);
444 	PRINTREG(sc, ATW_LPC);
445 	PRINTREG(sc, ATW_TEST1);
446 	PRINTREG(sc, ATW_SPR);
447 	PRINTREG(sc, ATW_TEST0);
448 	PRINTREG(sc, ATW_WCSR);
449 	PRINTREG(sc, ATW_WPDR);
450 	PRINTREG(sc, ATW_GPTMR);
451 	PRINTREG(sc, ATW_GPIO);
452 	PRINTREG(sc, ATW_BBPCTL);
453 	PRINTREG(sc, ATW_SYNCTL);
454 	PRINTREG(sc, ATW_PLCPHD);
455 	PRINTREG(sc, ATW_MMIWADDR);
456 	PRINTREG(sc, ATW_MMIRADDR1);
457 	PRINTREG(sc, ATW_MMIRADDR2);
458 	PRINTREG(sc, ATW_TXBR);
459 	PRINTREG(sc, ATW_CSR15A);
460 	PRINTREG(sc, ATW_ALCSTAT);
461 	PRINTREG(sc, ATW_TOFS2);
462 	PRINTREG(sc, ATW_CMDR);
463 	PRINTREG(sc, ATW_PCIC);
464 	PRINTREG(sc, ATW_PMCSR);
465 	PRINTREG(sc, ATW_PAR0);
466 	PRINTREG(sc, ATW_PAR1);
467 	PRINTREG(sc, ATW_MAR0);
468 	PRINTREG(sc, ATW_MAR1);
469 	PRINTREG(sc, ATW_ATIMDA0);
470 	PRINTREG(sc, ATW_ABDA1);
471 	PRINTREG(sc, ATW_BSSID0);
472 	PRINTREG(sc, ATW_TXLMT);
473 	PRINTREG(sc, ATW_MIBCNT);
474 	PRINTREG(sc, ATW_BCNT);
475 	PRINTREG(sc, ATW_TSFTH);
476 	PRINTREG(sc, ATW_TSC);
477 	PRINTREG(sc, ATW_SYNRF);
478 	PRINTREG(sc, ATW_BPLI);
479 	PRINTREG(sc, ATW_CAP0);
480 	PRINTREG(sc, ATW_CAP1);
481 	PRINTREG(sc, ATW_RMD);
482 	PRINTREG(sc, ATW_CFPP);
483 	PRINTREG(sc, ATW_TOFS0);
484 	PRINTREG(sc, ATW_TOFS1);
485 	PRINTREG(sc, ATW_IFST);
486 	PRINTREG(sc, ATW_RSPT);
487 	PRINTREG(sc, ATW_TSFTL);
488 	PRINTREG(sc, ATW_WEPCTL);
489 	PRINTREG(sc, ATW_WESK);
490 	PRINTREG(sc, ATW_WEPCNT);
491 	PRINTREG(sc, ATW_MACTEST);
492 	PRINTREG(sc, ATW_FER);
493 	PRINTREG(sc, ATW_FEMR);
494 	PRINTREG(sc, ATW_FPSR);
495 	PRINTREG(sc, ATW_FFER);
496 #undef PRINTREG
497 }
498 #endif /* ATW_DEBUG */
499 
500 /*
501  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
502  */
503 void
504 atw_attach(struct atw_softc *sc)
505 {
506 	static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
507 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
508 	};
509 	struct ieee80211com *ic = &sc->sc_ic;
510 	struct ifnet *ifp = &sc->sc_if;
511 	int country_code, error, i, srom_major;
512 	uint32_t reg;
513 	static const char *type_strings[] = {"Intersil (not supported)",
514 	    "RFMD", "Marvel (not supported)"};
515 
516 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
517 
518 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
519 	if (sc->sc_soft_ih == NULL) {
520 		aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
521 		goto fail_0;
522 	}
523 
524 	sc->sc_txth = atw_txthresh_tab_lo;
525 
526 	SIMPLEQ_INIT(&sc->sc_txfreeq);
527 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
528 
529 #ifdef ATW_DEBUG
530 	atw_print_regs(sc, "atw_attach");
531 #endif /* ATW_DEBUG */
532 
533 	/*
534 	 * Allocate the control data structures, and create and load the
535 	 * DMA map for it.
536 	 */
537 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
538 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
539 	    1, &sc->sc_cdnseg, 0)) != 0) {
540 		aprint_error_dev(sc->sc_dev,
541 		    "unable to allocate control data, error = %d\n",
542 		    error);
543 		goto fail_0;
544 	}
545 
546 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
547 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
548 	    BUS_DMA_COHERENT)) != 0) {
549 		aprint_error_dev(sc->sc_dev,
550 		    "unable to map control data, error = %d\n",
551 		    error);
552 		goto fail_1;
553 	}
554 
555 	if ((error = bus_dmamap_create(sc->sc_dmat,
556 	    sizeof(struct atw_control_data), 1,
557 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
558 		aprint_error_dev(sc->sc_dev,
559 		    "unable to create control data DMA map, error = %d\n",
560 		    error);
561 		goto fail_2;
562 	}
563 
564 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
565 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
566 	    0)) != 0) {
567 		aprint_error_dev(sc->sc_dev,
568 		    "unable to load control data DMA map, error = %d\n", error);
569 		goto fail_3;
570 	}
571 
572 	/*
573 	 * Create the transmit buffer DMA maps.
574 	 */
575 	sc->sc_ntxsegs = ATW_NTXSEGS;
576 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
577 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
578 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
579 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
580 			aprint_error_dev(sc->sc_dev,
581 			    "unable to create tx DMA map %d, error = %d\n", i,
582 			    error);
583 			goto fail_4;
584 		}
585 	}
586 
587 	/*
588 	 * Create the receive buffer DMA maps.
589 	 */
590 	for (i = 0; i < ATW_NRXDESC; i++) {
591 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
592 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
593 			aprint_error_dev(sc->sc_dev,
594 			    "unable to create rx DMA map %d, error = %d\n", i,
595 			    error);
596 			goto fail_5;
597 		}
598 	}
599 	for (i = 0; i < ATW_NRXDESC; i++) {
600 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
601 	}
602 
603 	switch (sc->sc_rev) {
604 	case ATW_REVISION_AB:
605 	case ATW_REVISION_AF:
606 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
607 		break;
608 	case ATW_REVISION_BA:
609 	case ATW_REVISION_CA:
610 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
611 		break;
612 	}
613 
614 	/* Reset the chip to a known state. */
615 	atw_reset(sc);
616 
617 	if (atw_read_srom(sc) == -1)
618 		goto fail_5;
619 
620 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
621 	    ATW_SR_RFTYPE_MASK);
622 
623 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
624 	    ATW_SR_BBPTYPE_MASK);
625 
626 	if (sc->sc_rftype >= __arraycount(type_strings)) {
627 		aprint_error_dev(sc->sc_dev, "unknown RF\n");
628 		goto fail_5;
629 	}
630 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
631 		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
632 		goto fail_5;
633 	}
634 
635 	aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
636 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
637 
638 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
639 	 * MARVEL. My bug, or theirs?
640 	 */
641 
642 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
643 
644 	switch (sc->sc_rftype) {
645 	case ATW_RFTYPE_INTERSIL:
646 		reg |= ATW_SYNCTL_CS1;
647 		break;
648 	case ATW_RFTYPE_RFMD:
649 		reg |= ATW_SYNCTL_CS0;
650 		break;
651 	case ATW_RFTYPE_MARVEL:
652 		break;
653 	}
654 
655 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
656 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
657 
658 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
659 
660 	switch (sc->sc_bbptype) {
661 	case ATW_BBPTYPE_INTERSIL:
662 		reg |= ATW_BBPCTL_TWI;
663 		break;
664 	case ATW_BBPTYPE_RFMD:
665 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
666 		    ATW_BBPCTL_CCA_ACTLO;
667 		break;
668 	case ATW_BBPTYPE_MARVEL:
669 		break;
670 	case ATW_C_BBPTYPE_RFMD:
671 		aprint_error_dev(sc->sc_dev,
672 		    "ADM8211C MAC/RFMD BBP not supported yet.\n");
673 		break;
674 	}
675 
676 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
677 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
678 
679 	/*
680 	 * From this point forward, the attachment cannot fail.  A failure
681 	 * before this point releases all resources that may have been
682 	 * allocated.
683 	 */
684 	sc->sc_flags |= ATWF_ATTACHED;
685 
686 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
687 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
688 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
689 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
690 
691 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
692 	    ATW_SR_MAJOR_MASK);
693 
694 	if (srom_major < 2)
695 		sc->sc_rf3000_options1 = 0;
696 	else if (sc->sc_rev == ATW_REVISION_BA) {
697 		sc->sc_rf3000_options1 =
698 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
699 		    ATW_SR_CR28_MASK);
700 	} else
701 		sc->sc_rf3000_options1 = 0;
702 
703 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
704 	    ATW_SR_CR29_MASK);
705 
706 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
707 	    ATW_SR_CTRY_MASK);
708 
709 #define ADD_CHANNEL(_ic, _chan) do {					\
710 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
711 	_ic->ic_channels[_chan].ic_freq =				\
712 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
713 } while (0)
714 
715 	/* Find available channels */
716 	switch (country_code) {
717 	case COUNTRY_MMK2:	/* 1-14 */
718 		ADD_CHANNEL(ic, 14);
719 		/*FALLTHROUGH*/
720 	case COUNTRY_ETSI:	/* 1-13 */
721 		for (i = 1; i <= 13; i++)
722 			ADD_CHANNEL(ic, i);
723 		break;
724 	case COUNTRY_FCC:	/* 1-11 */
725 	case COUNTRY_IC:	/* 1-11 */
726 		for (i = 1; i <= 11; i++)
727 			ADD_CHANNEL(ic, i);
728 		break;
729 	case COUNTRY_MMK:	/* 14 */
730 		ADD_CHANNEL(ic, 14);
731 		break;
732 	case COUNTRY_FRANCE:	/* 10-13 */
733 		for (i = 10; i <= 13; i++)
734 			ADD_CHANNEL(ic, i);
735 		break;
736 	default:	/* assume channels 10-11 */
737 	case COUNTRY_SPAIN:	/* 10-11 */
738 		for (i = 10; i <= 11; i++)
739 			ADD_CHANNEL(ic, i);
740 		break;
741 	}
742 
743 	/* Read the MAC address. */
744 	reg = ATW_READ(sc, ATW_PAR0);
745 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
746 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
747 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
748 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
749 	reg = ATW_READ(sc, ATW_PAR1);
750 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
751 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
752 
753 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
754 		aprint_error_dev(sc->sc_dev,
755 		    "could not get mac address, attach failed\n");
756 		goto fail_5;
757 	}
758 
759 	aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
760 
761 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
762 	ifp->if_softc = sc;
763 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
764 	ifp->if_ioctl = atw_ioctl;
765 	ifp->if_start = atw_start;
766 	ifp->if_watchdog = atw_watchdog;
767 	ifp->if_init = atw_init;
768 	ifp->if_stop = atw_stop;
769 	IFQ_SET_READY(&ifp->if_snd);
770 
771 	ic->ic_ifp = ifp;
772 	ic->ic_phytype = IEEE80211_T_DS;
773 	ic->ic_opmode = IEEE80211_M_STA;
774 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
775 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
776 
777 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
778 
779 	/*
780 	 * Call MI attach routines.
781 	 */
782 
783 	error = if_initialize(ifp);
784 	if (error != 0) {
785 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
786 		    error);
787 		goto fail_5;
788 	}
789 	ieee80211_ifattach(ic);
790 	/* Use common softint-based if_input */
791 	ifp->if_percpuq = if_percpuq_create(ifp);
792 	if_register(ifp);
793 
794 	atw_evcnt_attach(sc);
795 
796 	sc->sc_newstate = ic->ic_newstate;
797 	ic->ic_newstate = atw_newstate;
798 
799 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
800 	ic->ic_recv_mgmt = atw_recv_mgmt;
801 
802 	sc->sc_node_free = ic->ic_node_free;
803 	ic->ic_node_free = atw_node_free;
804 
805 	sc->sc_node_alloc = ic->ic_node_alloc;
806 	ic->ic_node_alloc = atw_node_alloc;
807 
808 	ic->ic_crypto.cs_key_delete = atw_key_delete;
809 	ic->ic_crypto.cs_key_set = atw_key_set;
810 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
811 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
812 
813 	/* possibly we should fill in our own sc_send_prresp, since
814 	 * the ADM8211 is probably sending probe responses in ad hoc
815 	 * mode.
816 	 */
817 
818 	/* complete initialization */
819 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
820 	callout_init(&sc->sc_scan_ch, 0);
821 
822 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
823 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
824 
825 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
826 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
827 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
828 
829 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
830 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
831 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
832 
833 	ieee80211_announce(ic);
834 	return;
835 
836 	/*
837 	 * Free any resources we've allocated during the failed attach
838 	 * attempt.  Do this in reverse order and fall through.
839 	 */
840  fail_5:
841 	for (i = 0; i < ATW_NRXDESC; i++) {
842 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
843 			continue;
844 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
845 	}
846  fail_4:
847 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
848 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
849 			continue;
850 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
851 	}
852 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
853  fail_3:
854 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
855  fail_2:
856 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
857 	    sizeof(struct atw_control_data));
858  fail_1:
859 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
860  fail_0:
861 	if (sc->sc_soft_ih != NULL) {
862 		softint_disestablish(sc->sc_soft_ih);
863 		sc->sc_soft_ih = NULL;
864 	}
865 }
866 
867 static struct ieee80211_node *
868 atw_node_alloc(struct ieee80211_node_table *nt)
869 {
870 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
871 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
872 
873 	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
874 	return ni;
875 }
876 
877 static void
878 atw_node_free(struct ieee80211_node *ni)
879 {
880 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
881 
882 	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
883 	    ether_sprintf(ni->ni_bssid)));
884 	(*sc->sc_node_free)(ni);
885 }
886 
887 
888 static void
889 atw_test1_reset(struct atw_softc *sc)
890 {
891 	switch (sc->sc_rev) {
892 	case ATW_REVISION_BA:
893 		if (1 /* XXX condition on transceiver type */) {
894 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
895 		}
896 		break;
897 	case ATW_REVISION_CA:
898 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
899 		break;
900 	default:
901 		break;
902 	}
903 }
904 
905 /*
906  * atw_reset:
907  *
908  *	Perform a soft reset on the ADM8211.
909  */
910 void
911 atw_reset(struct atw_softc *sc)
912 {
913 	int i;
914 	uint32_t lpc __atwdebugused;
915 
916 	ATW_WRITE(sc, ATW_NAR, 0x0);
917 	DELAY(atw_nar_delay);
918 
919 	/* Reference driver has a cryptic remark indicating that this might
920 	 * power-on the chip.  I know that it turns off power-saving....
921 	 */
922 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
923 
924 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
925 
926 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
927 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
928 			break;
929 		DELAY(atw_pseudo_milli);
930 	}
931 
932 	/* ... and then pause 100ms longer for good measure. */
933 	DELAY(atw_magic_delay1);
934 
935 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
936 
937 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
938 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
939 
940 	/*
941 	 * Initialize the PCI Access Register.
942 	 */
943 	sc->sc_busmode = ATW_PAR_PBL_8DW;
944 
945 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
946 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
947 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
948 
949 	atw_test1_reset(sc);
950 
951 	/* Turn off maximum power saving, etc. */
952 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
953 
954 	DELAY(atw_magic_delay2);
955 
956 	/* Recall EEPROM. */
957 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
958 
959 	DELAY(atw_magic_delay4);
960 
961 	lpc = ATW_READ(sc, ATW_LPC);
962 
963 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
964 
965 	/* A reset seems to affect the SRAM contents, so put them into
966 	 * a known state.
967 	 */
968 	atw_clear_sram(sc);
969 
970 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
971 }
972 
973 static void
974 atw_clear_sram(struct atw_softc *sc)
975 {
976 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
977 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
978 	/* XXX not for revision 0x20. */
979 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
980 }
981 
982 /* TBD atw_init
983  *
984  * set MAC based on ic->ic_bss->myaddr
985  * write WEP keys
986  * set TX rate
987  */
988 
989 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
990  * without receiving a beacon with the preferred BSSID & SSID.
991  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
992  */
993 static void
994 atw_wcsr_init(struct atw_softc *sc)
995 {
996 	uint32_t wcsr;
997 
998 	wcsr = ATW_READ(sc, ATW_WCSR);
999 	wcsr &= ~ATW_WCSR_BLN_MASK;
1000 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1001 	/* We always want to wake up on link loss or TSFT out of range */
1002 	wcsr |= ATW_WCSR_LSOE | ATW_WCSR_TSFTWE;
1003 	ATW_WRITE(sc, ATW_WCSR, wcsr);
1004 
1005 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1006 	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1007 }
1008 
1009 /* Turn off power management.  Set Rx store-and-forward mode. */
1010 static void
1011 atw_cmdr_init(struct atw_softc *sc)
1012 {
1013 	uint32_t cmdr;
1014 	cmdr = ATW_READ(sc, ATW_CMDR);
1015 	cmdr &= ~ATW_CMDR_APM;
1016 	cmdr |= ATW_CMDR_RTE;
1017 	cmdr &= ~ATW_CMDR_DRT_MASK;
1018 	cmdr |= ATW_CMDR_DRT_SF;
1019 
1020 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1021 }
1022 
1023 static void
1024 atw_tofs2_init(struct atw_softc *sc)
1025 {
1026 	uint32_t tofs2;
1027 	/* XXX this magic can probably be figured out from the RFMD docs */
1028 #ifndef ATW_REFSLAVE
1029 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1030 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1031 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1032 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1033 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1034 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1035 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1036 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1037 #else
1038 	/* XXX new magic from reference driver source */
1039 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1040 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1041 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1042 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1043 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1044 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1045 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1046 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1047 #endif
1048 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1049 }
1050 
1051 static void
1052 atw_nar_init(struct atw_softc *sc)
1053 {
1054 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF | ATW_NAR_PB);
1055 }
1056 
1057 static void
1058 atw_txlmt_init(struct atw_softc *sc)
1059 {
1060 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1061 				 __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1062 }
1063 
1064 static void
1065 atw_test1_init(struct atw_softc *sc)
1066 {
1067 	uint32_t test1;
1068 
1069 	test1 = ATW_READ(sc, ATW_TEST1);
1070 	test1 &= ~(ATW_TEST1_DBGREAD_MASK | ATW_TEST1_CONTROL);
1071 	/* XXX magic 0x1 */
1072 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1073 	ATW_WRITE(sc, ATW_TEST1, test1);
1074 }
1075 
1076 static void
1077 atw_rf_reset(struct atw_softc *sc)
1078 {
1079 	/* XXX this resets an Intersil RF front-end? */
1080 	/* TBD condition on Intersil RFType? */
1081 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1082 	DELAY(atw_rf_delay1);
1083 	ATW_WRITE(sc, ATW_SYNRF, 0);
1084 	DELAY(atw_rf_delay2);
1085 }
1086 
1087 /* Set 16 TU max duration for the contention-free period (CFP). */
1088 static void
1089 atw_cfp_init(struct atw_softc *sc)
1090 {
1091 	uint32_t cfpp;
1092 
1093 	cfpp = ATW_READ(sc, ATW_CFPP);
1094 	cfpp &= ~ATW_CFPP_CFPMD;
1095 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1096 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1097 }
1098 
1099 static void
1100 atw_tofs0_init(struct atw_softc *sc)
1101 {
1102 	/* XXX I guess that the Cardbus clock is 22 MHz?
1103 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1104 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1105 	 * very clear on this point. It says in the datasheet that it is
1106 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1107 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1108 	 * these values. These values are also the power-on default.
1109 	 */
1110 	ATW_WRITE(sc, ATW_TOFS0,
1111 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1112 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1113 }
1114 
1115 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1116 static void
1117 atw_ifs_init(struct atw_softc *sc)
1118 {
1119 	uint32_t ifst;
1120 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1121 	 * Go figure.
1122 	 */
1123 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1124 	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1125 		     ATW_IFST_SIFS_MASK) |
1126 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1127 	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1128 
1129 	ATW_WRITE(sc, ATW_IFST, ifst);
1130 }
1131 
1132 static void
1133 atw_response_times_init(struct atw_softc *sc)
1134 {
1135 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1136 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1137 	 * to pass after it transmits a frame that requires a response;
1138 	 * it waits at most SIFS + MART microseconds for the response.
1139 	 * Surely this is not the ACK timeout?
1140 	 */
1141 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1142 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1143 }
1144 
1145 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1146  * engines read and write baseband registers after Rx and before
1147  * Tx, respectively.
1148  */
1149 static void
1150 atw_bbp_io_init(struct atw_softc *sc)
1151 {
1152 	uint32_t mmiraddr2;
1153 
1154 	/* XXX The reference driver does this, but is it *really*
1155 	 * necessary?
1156 	 */
1157 	switch (sc->sc_rev) {
1158 	case ATW_REVISION_AB:
1159 	case ATW_REVISION_AF:
1160 		mmiraddr2 = 0x0;
1161 		break;
1162 	default:
1163 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1164 		mmiraddr2 &=
1165 		    ~(ATW_MMIRADDR2_PROREXT | ATW_MMIRADDR2_PRORLEN_MASK);
1166 		break;
1167 	}
1168 
1169 	switch (sc->sc_bbptype) {
1170 	case ATW_BBPTYPE_INTERSIL:
1171 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1172 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1173 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1174 		break;
1175 	case ATW_BBPTYPE_MARVEL:
1176 		/* TBD find out the Marvel settings. */
1177 		break;
1178 	case ATW_BBPTYPE_RFMD:
1179 	default:
1180 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1181 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1182 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1183 		break;
1184 	}
1185 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1186 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1187 }
1188 
1189 /*
1190  * atw_init:		[ ifnet interface function ]
1191  *
1192  *	Initialize the interface.  Must be called at splnet().
1193  */
1194 int
1195 atw_init(struct ifnet *ifp)
1196 {
1197 	struct atw_softc *sc = ifp->if_softc;
1198 	struct ieee80211com *ic = &sc->sc_ic;
1199 	struct atw_txsoft *txs;
1200 	struct atw_rxsoft *rxs;
1201 	int i, error = 0;
1202 
1203 	if (device_is_active(sc->sc_dev)) {
1204 		/*
1205 		 * Cancel any pending I/O.
1206 		 */
1207 		atw_stop(ifp, 0);
1208 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1209 		   !device_is_active(sc->sc_dev))
1210 		return 0;
1211 
1212 	/*
1213 	 * Reset the chip to a known state.
1214 	 */
1215 	atw_reset(sc);
1216 
1217 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1218 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1219 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1220 
1221 	atw_wcsr_init(sc);
1222 
1223 	atw_cmdr_init(sc);
1224 
1225 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1226 	 *
1227 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1228 	 */
1229 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1230 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1231 
1232 	atw_tofs2_init(sc);
1233 
1234 	atw_nar_init(sc);
1235 
1236 	atw_txlmt_init(sc);
1237 
1238 	atw_test1_init(sc);
1239 
1240 	atw_rf_reset(sc);
1241 
1242 	atw_cfp_init(sc);
1243 
1244 	atw_tofs0_init(sc);
1245 
1246 	atw_ifs_init(sc);
1247 
1248 	/* XXX Fall asleep after one second of inactivity.
1249 	 * XXX A frame may only dribble in for 65536us.
1250 	 */
1251 	ATW_WRITE(sc, ATW_RMD,
1252 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1253 
1254 	atw_response_times_init(sc);
1255 
1256 	atw_bbp_io_init(sc);
1257 
1258 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1259 
1260 	if ((error = atw_rf3000_init(sc)) != 0)
1261 		goto out;
1262 
1263 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1264 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1265 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1266 
1267 	/*
1268 	 * Initialize the transmit descriptor ring.
1269 	 */
1270 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1271 	for (i = 0; i < ATW_NTXDESC; i++) {
1272 		sc->sc_txdescs[i].at_ctl = 0;
1273 		/* no transmit chaining */
1274 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1275 		sc->sc_txdescs[i].at_buf2 =
1276 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1277 	}
1278 	/* use ring mode */
1279 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1280 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1281 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1282 	sc->sc_txfree = ATW_NTXDESC;
1283 	sc->sc_txnext = 0;
1284 
1285 	/*
1286 	 * Initialize the transmit job descriptors.
1287 	 */
1288 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1289 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1290 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1291 		txs = &sc->sc_txsoft[i];
1292 		txs->txs_mbuf = NULL;
1293 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1294 	}
1295 
1296 	/*
1297 	 * Initialize the receive descriptor and receive job
1298 	 * descriptor rings.
1299 	 */
1300 	for (i = 0; i < ATW_NRXDESC; i++) {
1301 		rxs = &sc->sc_rxsoft[i];
1302 		if (rxs->rxs_mbuf == NULL) {
1303 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1304 				aprint_error_dev(sc->sc_dev,
1305 				    "unable to allocate or map rx buffer %d, "
1306 				    "error = %d\n", i, error);
1307 				/*
1308 				 * XXX Should attempt to run with fewer receive
1309 				 * XXX buffers instead of just failing.
1310 				 */
1311 				atw_rxdrain(sc);
1312 				goto out;
1313 			}
1314 		} else
1315 			atw_init_rxdesc(sc, i);
1316 	}
1317 	sc->sc_rxptr = 0;
1318 
1319 	/*
1320 	 * Initialize the interrupt mask and enable interrupts.
1321 	 */
1322 	/* normal interrupts */
1323 	sc->sc_inten = ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1324 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1325 
1326 	/* abnormal interrupts */
1327 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1328 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1329 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1330 
1331 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1332 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1333 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1334 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1335 	    ATW_INTR_TRT;
1336 
1337 	sc->sc_linkint_mask &= sc->sc_inten;
1338 	sc->sc_rxint_mask &= sc->sc_inten;
1339 	sc->sc_txint_mask &= sc->sc_inten;
1340 
1341 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1342 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1343 
1344 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1345 	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1346 
1347 	/*
1348 	 * Give the transmit and receive rings to the ADM8211.
1349 	 */
1350 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1351 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1352 
1353 	sc->sc_txthresh = 0;
1354 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1355 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1356 
1357 	/* common 802.11 configuration */
1358 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1359 	switch (ic->ic_opmode) {
1360 	case IEEE80211_M_STA:
1361 		break;
1362 	case IEEE80211_M_AHDEMO: /* XXX */
1363 	case IEEE80211_M_IBSS:
1364 		ic->ic_flags |= IEEE80211_F_IBSSON;
1365 		/*FALLTHROUGH*/
1366 	case IEEE80211_M_HOSTAP: /* XXX */
1367 		break;
1368 	case IEEE80211_M_MONITOR: /* XXX */
1369 		break;
1370 	}
1371 
1372 	switch (ic->ic_opmode) {
1373 	case IEEE80211_M_AHDEMO:
1374 	case IEEE80211_M_HOSTAP:
1375 #ifndef IEEE80211_NO_HOSTAP
1376 		ic->ic_bss->ni_intval = ic->ic_lintval;
1377 		ic->ic_bss->ni_rssi = 0;
1378 		ic->ic_bss->ni_rstamp = 0;
1379 #endif /* !IEEE80211_NO_HOSTAP */
1380 		break;
1381 	default:					/* XXX */
1382 		break;
1383 	}
1384 
1385 	sc->sc_wepctl = 0;
1386 
1387 	atw_write_ssid(sc);
1388 	atw_write_sup_rates(sc);
1389 	atw_write_wep(sc);
1390 
1391 	ic->ic_state = IEEE80211_S_INIT;
1392 
1393 	/*
1394 	 * Set the receive filter.  This will start the transmit and
1395 	 * receive processes.
1396 	 */
1397 	atw_filter_setup(sc);
1398 
1399 	/*
1400 	 * Start the receive process.
1401 	 */
1402 	ATW_WRITE(sc, ATW_RDR, 0x1);
1403 
1404 	/*
1405 	 * Note that the interface is now running.
1406 	 */
1407 	ifp->if_flags |= IFF_RUNNING;
1408 
1409 	/* send no beacons, yet. */
1410 	atw_start_beacon(sc, 0);
1411 
1412 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1413 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1414 	else
1415 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1416  out:
1417 	if (error) {
1418 		ifp->if_flags &= ~IFF_RUNNING;
1419 		sc->sc_tx_timer = 0;
1420 		ifp->if_timer = 0;
1421 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1422 	}
1423 #ifdef ATW_DEBUG
1424 	atw_print_regs(sc, "end of init");
1425 #endif /* ATW_DEBUG */
1426 
1427 	return (error);
1428 }
1429 
1430 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1431  *           0: MAC control of RF3000/Si4126.
1432  *
1433  * Applies power, or selects RF front-end? Sets reset condition.
1434  *
1435  * TBD support non-RFMD BBP, non-SiLabs synth.
1436  */
1437 static void
1438 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1439 {
1440 	if (enable) {
1441 		ATW_WRITE(sc, ATW_SYNRF,
1442 		    ATW_SYNRF_SELRF | ATW_SYNRF_PE1 | ATW_SYNRF_PHYRST);
1443 		DELAY(atw_bbp_io_enable_delay);
1444 	} else {
1445 		ATW_WRITE(sc, ATW_SYNRF, 0);
1446 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1447 	}
1448 }
1449 
1450 static int
1451 atw_tune(struct atw_softc *sc)
1452 {
1453 	int rc;
1454 	u_int chan;
1455 	struct ieee80211com *ic = &sc->sc_ic;
1456 
1457 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1458 	if (chan == IEEE80211_CHAN_ANY)
1459 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1460 
1461 	if (chan == sc->sc_cur_chan)
1462 		return 0;
1463 
1464 	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1465 	    sc->sc_cur_chan, chan));
1466 
1467 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
1468 
1469 	atw_si4126_tune(sc, chan);
1470 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1471 		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1472 		    chan);
1473 
1474 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1475 	DELAY(atw_nar_delay);
1476 	ATW_WRITE(sc, ATW_RDR, 0x1);
1477 
1478 	if (rc == 0) {
1479 		sc->sc_cur_chan = chan;
1480 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1481 		    htole16(ic->ic_curchan->ic_freq);
1482 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1483 		    htole16(ic->ic_curchan->ic_flags);
1484 	}
1485 
1486 	return rc;
1487 }
1488 
1489 #ifdef ATW_SYNDEBUG
1490 static void
1491 atw_si4126_print(struct atw_softc *sc)
1492 {
1493 	struct ifnet *ifp = &sc->sc_if;
1494 	u_int addr, val;
1495 
1496 	val = 0;
1497 
1498 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1499 		return;
1500 
1501 	for (addr = 0; addr <= 8; addr++) {
1502 		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1503 		if (atw_si4126_read(sc, addr, &val) == 0) {
1504 			printf("<unknown> (quitting print-out)\n");
1505 			break;
1506 		}
1507 		printf("%05x\n", val);
1508 	}
1509 }
1510 #endif /* ATW_SYNDEBUG */
1511 
1512 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1513  *
1514  * The RF/IF synthesizer produces two reference frequencies for
1515  * the RF2948B transceiver.  The first frequency the RF2948B requires
1516  * is two times the so-called "intermediate frequency" (IF). Since
1517  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1518  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1519  * frequency required by the transceiver is the radio frequency
1520  * (RF). This is a superheterodyne transceiver; for f(chan) the
1521  * center frequency of the channel we are tuning, RF = f(chan) -
1522  * IF.
1523  *
1524  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1525  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1526  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1527  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1528  */
1529 static void
1530 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1531 {
1532 	u_int mhz;
1533 	u_int R;
1534 	uint32_t gpio;
1535 	uint16_t gain;
1536 
1537 #ifdef ATW_SYNDEBUG
1538 	atw_si4126_print(sc);
1539 #endif /* ATW_SYNDEBUG */
1540 
1541 	if (chan == 14)
1542 		mhz = 2484;
1543 	else
1544 		mhz = 2412 + 5 * (chan - 1);
1545 
1546 	/* Tune IF to 748 MHz to suit the IF LO input of the
1547 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1548 	 * because an IF in 526 MHz - 952 MHz is allowed.
1549 	 *
1550 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1551 	 * range of 2-25 MHz. SiLabs tells me that this is not
1552 	 * strictly necessary.
1553 	 */
1554 
1555 	if (atw_xindiv2)
1556 		R = 44;
1557 	else
1558 		R = 88;
1559 
1560 	/* Power-up RF, IF synthesizers. */
1561 	atw_si4126_write(sc, SI4126_POWER,
1562 	    SI4126_POWER_PDIB | SI4126_POWER_PDRB);
1563 
1564 	/* set LPWR, too? */
1565 	atw_si4126_write(sc, SI4126_MAIN,
1566 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1567 
1568 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1569 	 * set KP2 to 1.
1570 	 *
1571 	 * REFDIF This is different from the reference driver, which
1572 	 * always sets SI4126_GAIN to 0.
1573 	 */
1574 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1575 
1576 	atw_si4126_write(sc, SI4126_GAIN, gain);
1577 
1578 	/* XIN = 44 MHz.
1579 	 *
1580 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1581 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1582 	 *
1583 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1584 	 * so that 1496/88 * 44 MHz = 748 MHz.
1585 	 */
1586 	atw_si4126_write(sc, SI4126_IFN, 1496);
1587 
1588 	atw_si4126_write(sc, SI4126_IFR, R);
1589 
1590 #ifndef ATW_REFSLAVE
1591 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1592 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1593 	 * which has no RF1!
1594 	 */
1595 	atw_si4126_write(sc, SI4126_RF1R, R);
1596 
1597 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1598 #endif
1599 
1600 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1601 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1602 	 * Now let's multiply it to mhz. So mhz - IF = N.
1603 	 */
1604 	atw_si4126_write(sc, SI4126_RF2R, R);
1605 
1606 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1607 
1608 	/* wait 100us from power-up for RF, IF to settle */
1609 	DELAY(100);
1610 
1611 	gpio = ATW_READ(sc, ATW_GPIO);
1612 	gpio &= ~(ATW_GPIO_EN_MASK | ATW_GPIO_O_MASK | ATW_GPIO_I_MASK);
1613 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1614 
1615 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1616 		/* Set a Prism RF front-end to a special mode for channel 14?
1617 		 *
1618 		 * Apparently the SMC2635W needs this, although I don't think
1619 		 * it has a Prism RF.
1620 		 */
1621 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1622 	}
1623 	ATW_WRITE(sc, ATW_GPIO, gpio);
1624 
1625 #ifdef ATW_SYNDEBUG
1626 	atw_si4126_print(sc);
1627 #endif /* ATW_SYNDEBUG */
1628 }
1629 
1630 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1631  * diversity.
1632  *
1633  * !!!
1634  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1635  * !!!
1636  */
1637 static int
1638 atw_rf3000_init(struct atw_softc *sc)
1639 {
1640 	int rc = 0;
1641 
1642 	atw_bbp_io_enable(sc, 1);
1643 
1644 	/* CCA is acquisition sensitive */
1645 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1646 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1647 
1648 	if (rc != 0)
1649 		goto out;
1650 
1651 	/* enable diversity */
1652 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1653 
1654 	if (rc != 0)
1655 		goto out;
1656 
1657 	/* sensible setting from a binary-only driver */
1658 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1659 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1660 
1661 	if (rc != 0)
1662 		goto out;
1663 
1664 	/* magic from a binary-only driver */
1665 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1666 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1667 
1668 	if (rc != 0)
1669 		goto out;
1670 
1671 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1672 
1673 	if (rc != 0)
1674 		goto out;
1675 
1676 	/* XXX Reference driver remarks that Abocom sets this to 50.
1677 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1678 	 * in the "reserved" area of register RF3000_OPTIONS1.
1679 	 */
1680 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1681 
1682 	if (rc != 0)
1683 		goto out;
1684 
1685 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1686 
1687 	if (rc != 0)
1688 		goto out;
1689 
1690 out:
1691 	atw_bbp_io_enable(sc, 0);
1692 	return rc;
1693 }
1694 
1695 #ifdef ATW_BBPDEBUG
1696 static void
1697 atw_rf3000_print(struct atw_softc *sc)
1698 {
1699 	struct ifnet *ifp = &sc->sc_if;
1700 	u_int addr, val;
1701 
1702 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1703 		return;
1704 
1705 	for (addr = 0x01; addr <= 0x15; addr++) {
1706 		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1707 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1708 			printf("<unknown> (quitting print-out)\n");
1709 			break;
1710 		}
1711 		printf("%08x\n", val);
1712 	}
1713 }
1714 #endif /* ATW_BBPDEBUG */
1715 
1716 /* Set the power settings on the BBP for channel `chan'. */
1717 static int
1718 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1719 {
1720 	int rc = 0;
1721 	uint32_t reg;
1722 	uint16_t txpower, lpf_cutoff, lna_gs_thresh;
1723 
1724 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1725 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1726 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1727 
1728 	/* odd channels: LSB, even channels: MSB */
1729 	if (chan % 2 == 1) {
1730 		txpower &= 0xFF;
1731 		lpf_cutoff &= 0xFF;
1732 		lna_gs_thresh &= 0xFF;
1733 	} else {
1734 		txpower >>= 8;
1735 		lpf_cutoff >>= 8;
1736 		lna_gs_thresh >>= 8;
1737 	}
1738 
1739 #ifdef ATW_BBPDEBUG
1740 	atw_rf3000_print(sc);
1741 #endif /* ATW_BBPDEBUG */
1742 
1743 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1744 	    "lna_gs_thresh %02x\n",
1745 	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1746 
1747 	atw_bbp_io_enable(sc, 1);
1748 
1749 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1750 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1751 		goto out;
1752 
1753 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1754 		goto out;
1755 
1756 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1757 		goto out;
1758 
1759 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1760 
1761 	if (rc != 0)
1762 		goto out;
1763 
1764 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1765 
1766 	if (rc != 0)
1767 		goto out;
1768 
1769 #ifdef ATW_BBPDEBUG
1770 	atw_rf3000_print(sc);
1771 #endif /* ATW_BBPDEBUG */
1772 
1773 out:
1774 	atw_bbp_io_enable(sc, 0);
1775 
1776 	/* set beacon, rts, atim transmit power */
1777 	reg = ATW_READ(sc, ATW_PLCPHD);
1778 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1779 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1780 	    ATW_PLCPHD_SERVICE_MASK);
1781 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1782 	DELAY(atw_plcphd_delay);
1783 
1784 	return rc;
1785 }
1786 
1787 /* Write a register on the RF3000 baseband processor using the
1788  * registers provided by the ADM8211 for this purpose.
1789  *
1790  * Return 0 on success.
1791  */
1792 static int
1793 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1794 {
1795 	uint32_t reg;
1796 	int i;
1797 
1798 	reg = sc->sc_bbpctl_wr |
1799 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1800 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1801 
1802 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1803 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1804 		DELAY(2 * atw_pseudo_milli);
1805 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1806 			break;
1807 	}
1808 
1809 	if (i < 0) {
1810 		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1811 		return ETIMEDOUT;
1812 	}
1813 	return 0;
1814 }
1815 
1816 /* Read a register on the RF3000 baseband processor using the registers
1817  * the ADM8211 provides for this purpose.
1818  *
1819  * The 7-bit register address is addr.  Record the 8-bit data in the register
1820  * in *val.
1821  *
1822  * Return 0 on success.
1823  *
1824  * XXX This does not seem to work. The ADM8211 must require more or
1825  * different magic to read the chip than to write it. Possibly some
1826  * of the magic I have derived from a binary-only driver concerns
1827  * the "chip address" (see the RF3000 manual).
1828  */
1829 #ifdef ATW_BBPDEBUG
1830 static int
1831 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1832 {
1833 	uint32_t reg;
1834 	int i;
1835 
1836 	for (i = 1000; --i >= 0; ) {
1837 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD | ATW_BBPCTL_WR)
1838 		    == 0)
1839 			break;
1840 		DELAY(100);
1841 	}
1842 
1843 	if (i < 0) {
1844 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1845 		    device_xname(sc->sc_dev));
1846 		return ETIMEDOUT;
1847 	}
1848 
1849 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1850 
1851 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1852 
1853 	for (i = 1000; --i >= 0; ) {
1854 		DELAY(100);
1855 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1856 			break;
1857 	}
1858 
1859 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1860 
1861 	if (i < 0) {
1862 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1863 		    device_xname(sc->sc_dev), reg);
1864 		return ETIMEDOUT;
1865 	}
1866 	if (val != NULL)
1867 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1868 	return 0;
1869 }
1870 #endif /* ATW_BBPDEBUG */
1871 
1872 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1873  * provided by the ADM8211 for that purpose.
1874  *
1875  * val is 18 bits of data, and val is the 4-bit address of the register.
1876  *
1877  * Return 0 on success.
1878  */
1879 static void
1880 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1881 {
1882 	uint32_t bits, mask, reg;
1883 	const int nbits = 22;
1884 
1885 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1886 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1887 
1888 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1889 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1890 
1891 	reg = ATW_SYNRF_SELSYN;
1892 	/* reference driver: reset Si4126 serial bus to initial
1893 	 * conditions?
1894 	 */
1895 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1896 	ATW_WRITE(sc, ATW_SYNRF, reg);
1897 
1898 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1899 		if ((bits & mask) != 0)
1900 			reg |= ATW_SYNRF_SYNDATA;
1901 		else
1902 			reg &= ~ATW_SYNRF_SYNDATA;
1903 		ATW_WRITE(sc, ATW_SYNRF, reg);
1904 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1905 		ATW_WRITE(sc, ATW_SYNRF, reg);
1906 	}
1907 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1908 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1909 }
1910 
1911 /* Read 18-bit data from the 4-bit address addr in Si4126
1912  * RF synthesizer and write the data to *val. Return 0 on success.
1913  *
1914  * XXX This does not seem to work. The ADM8211 must require more or
1915  * different magic to read the chip than to write it.
1916  */
1917 #ifdef ATW_SYNDEBUG
1918 static int
1919 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1920 {
1921 	uint32_t reg;
1922 	int i;
1923 
1924 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1925 
1926 	for (i = 1000; --i >= 0; ) {
1927 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD | ATW_SYNCTL_WR)
1928 		    == 0)
1929 			break;
1930 		DELAY(100);
1931 	}
1932 
1933 	if (i < 0) {
1934 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1935 		    device_xname(sc->sc_dev));
1936 		return ETIMEDOUT;
1937 	}
1938 
1939 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1940 
1941 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1942 
1943 	for (i = 1000; --i >= 0; ) {
1944 		DELAY(100);
1945 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1946 			break;
1947 	}
1948 
1949 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1950 
1951 	if (i < 0) {
1952 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1953 		    device_xname(sc->sc_dev), reg);
1954 		return ETIMEDOUT;
1955 	}
1956 	if (val != NULL)
1957 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1958 				       ATW_SYNCTL_DATA_MASK);
1959 	return 0;
1960 }
1961 #endif /* ATW_SYNDEBUG */
1962 
1963 /* XXX is the endianness correct? test. */
1964 #define	atw_calchash(addr) \
1965 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1966 
1967 /*
1968  * atw_filter_setup:
1969  *
1970  *	Set the ADM8211's receive filter.
1971  */
1972 static void
1973 atw_filter_setup(struct atw_softc *sc)
1974 {
1975 	struct ieee80211com *ic = &sc->sc_ic;
1976 	struct ethercom *ec = &sc->sc_ec;
1977 	struct ifnet *ifp = &sc->sc_if;
1978 	int hash;
1979 	uint32_t hashes[2];
1980 	struct ether_multi *enm;
1981 	struct ether_multistep step;
1982 
1983 	/* According to comments in tlp_al981_filter_setup
1984 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1985 	 * multicast filter to be set while it is running.  Hopefully
1986 	 * the ADM8211 is not the same!
1987 	 */
1988 	if ((ifp->if_flags & IFF_RUNNING) != 0)
1989 		atw_idle(sc, ATW_NAR_SR);
1990 
1991 	sc->sc_opmode &= ~(ATW_NAR_PB | ATW_NAR_PR | ATW_NAR_MM);
1992 	ifp->if_flags &= ~IFF_ALLMULTI;
1993 
1994 	/* XXX in scan mode, do not filter packets.  Maybe this is
1995 	 * unnecessary.
1996 	 */
1997 	if (ic->ic_state == IEEE80211_S_SCAN ||
1998 	    (ifp->if_flags & IFF_PROMISC) != 0) {
1999 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2000 		goto allmulti;
2001 	}
2002 
2003 	hashes[0] = hashes[1] = 0x0;
2004 
2005 	/*
2006 	 * Program the 64-bit multicast hash filter.
2007 	 */
2008 	ETHER_LOCK(ec);
2009 	ETHER_FIRST_MULTI(step, ec, enm);
2010 	while (enm != NULL) {
2011 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2012 		    ETHER_ADDR_LEN) != 0) {
2013 			ETHER_UNLOCK(ec);
2014 			goto allmulti;
2015 		}
2016 
2017 		hash = atw_calchash(enm->enm_addrlo);
2018 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2019 		ETHER_NEXT_MULTI(step, enm);
2020 		sc->sc_opmode |= ATW_NAR_MM;
2021 	}
2022 	ETHER_UNLOCK(ec);
2023 	ifp->if_flags &= ~IFF_ALLMULTI;
2024 	goto setit;
2025 
2026 allmulti:
2027 	sc->sc_opmode |= ATW_NAR_MM;
2028 	ifp->if_flags |= IFF_ALLMULTI;
2029 	hashes[0] = hashes[1] = 0xffffffff;
2030 
2031 setit:
2032 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2033 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2034 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2035 	DELAY(atw_nar_delay);
2036 	ATW_WRITE(sc, ATW_RDR, 0x1);
2037 
2038 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2039 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2040 }
2041 
2042 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2043  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2044  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2045  * no beacon with the preferred BSSID and SSID in the number of
2046  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2047  */
2048 static void
2049 atw_write_bssid(struct atw_softc *sc)
2050 {
2051 	struct ieee80211com *ic = &sc->sc_ic;
2052 	uint8_t *bssid;
2053 
2054 	bssid = ic->ic_bss->ni_bssid;
2055 
2056 	ATW_WRITE(sc, ATW_BSSID0,
2057 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2058 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2059 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2060 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2061 
2062 	ATW_WRITE(sc, ATW_ABDA1,
2063 	    (ATW_READ(sc, ATW_ABDA1) &
2064 	    ~(ATW_ABDA1_BSSIDB4_MASK | ATW_ABDA1_BSSIDB5_MASK)) |
2065 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2066 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2067 
2068 	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2069 	    ether_sprintf(sc->sc_bssid)));
2070 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2071 
2072 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2073 }
2074 
2075 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2076  * 16-bit word.
2077  */
2078 static void
2079 atw_write_sram(struct atw_softc *sc, u_int ofs, uint8_t *buf, u_int buflen)
2080 {
2081 	u_int i;
2082 	uint8_t *ptr;
2083 
2084 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2085 
2086 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2087 
2088 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2089 
2090 	ptr = &sc->sc_sram[ofs];
2091 
2092 	for (i = 0; i < buflen; i += 2) {
2093 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2094 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2095 		DELAY(atw_writewep_delay);
2096 
2097 		ATW_WRITE(sc, ATW_WESK,
2098 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2099 		DELAY(atw_writewep_delay);
2100 	}
2101 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2102 
2103 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2104 		int n_octets = 0;
2105 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2106 		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2107 		for (i = 0; i < buflen; i++) {
2108 			printf(" %02x", ptr[i]);
2109 			if (++n_octets % 24 == 0)
2110 				printf("\n");
2111 		}
2112 		if (n_octets % 24 != 0)
2113 			printf("\n");
2114 	}
2115 }
2116 
2117 static int
2118 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2119 {
2120 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2121 	u_int keyix = k->wk_keyix;
2122 
2123 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2124 
2125 	if (keyix >= IEEE80211_WEP_NKID)
2126 		return 0;
2127 	if (k->wk_keylen != 0)
2128 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2129 
2130 	return 1;
2131 }
2132 
2133 static int
2134 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2135 	const uint8_t mac[IEEE80211_ADDR_LEN])
2136 {
2137 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2138 
2139 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2140 
2141 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2142 		return 0;
2143 
2144 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2145 
2146 	return 1;
2147 }
2148 
2149 static void
2150 atw_key_update_begin(struct ieee80211com *ic)
2151 {
2152 #ifdef ATW_DEBUG
2153 	struct ifnet *ifp = ic->ic_ifp;
2154 	struct atw_softc *sc = ifp->if_softc;
2155 #endif
2156 
2157 	DPRINTF(sc, ("%s:\n", __func__));
2158 }
2159 
2160 static void
2161 atw_key_update_end(struct ieee80211com *ic)
2162 {
2163 	struct ifnet *ifp = ic->ic_ifp;
2164 	struct atw_softc *sc = ifp->if_softc;
2165 
2166 	DPRINTF(sc, ("%s:\n", __func__));
2167 
2168 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2169 		return;
2170 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2171 		return;
2172 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2173 	atw_write_wep(sc);
2174 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2175 	DELAY(atw_nar_delay);
2176 	ATW_WRITE(sc, ATW_RDR, 0x1);
2177 }
2178 
2179 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2180 static void
2181 atw_write_wep(struct atw_softc *sc)
2182 {
2183 #if 0
2184 	struct ieee80211com *ic = &sc->sc_ic;
2185 	uint32_t reg;
2186 	int i;
2187 #endif
2188 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2189 	uint8_t buf[IEEE80211_WEP_NKID]
2190 		    [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2191 
2192 	sc->sc_wepctl = 0;
2193 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2194 
2195 	memset(&buf[0][0], 0, sizeof(buf));
2196 
2197 #if 0
2198 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2199 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2200 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2201 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2202 			buf[i][1] = ATW_WEP_ENABLED;
2203 		} else {
2204 			buf[i][1] = 0;
2205 			continue;
2206 		}
2207 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2208 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2209 		    ic->ic_nw_keys[i].wk_keylen - 1);
2210 	}
2211 
2212 	reg = ATW_READ(sc, ATW_MACTEST);
2213 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2214 	reg &= ~ATW_MACTEST_KEYID_MASK;
2215 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2216 	ATW_WRITE(sc, ATW_MACTEST, reg);
2217 
2218 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2219 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2220 
2221 	switch (sc->sc_rev) {
2222 	case ATW_REVISION_AB:
2223 	case ATW_REVISION_AF:
2224 		/* Bypass WEP on Rx. */
2225 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2226 		break;
2227 	default:
2228 		break;
2229 	}
2230 #endif
2231 
2232 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (uint8_t*)&buf[0][0],
2233 	    sizeof(buf));
2234 
2235 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2236 }
2237 
2238 static void
2239 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2240     struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
2241 {
2242 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2243 
2244 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2245 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2246 		return;
2247 
2248 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2249 
2250 	switch (subtype) {
2251 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2252 	case IEEE80211_FC0_SUBTYPE_BEACON:
2253 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2254 		    ic->ic_state == IEEE80211_S_RUN) {
2255 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2256 				(void)ieee80211_ibss_merge(ni);
2257 		}
2258 		break;
2259 	default:
2260 		break;
2261 	}
2262 	return;
2263 }
2264 
2265 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2266  * In ad hoc mode, the SSID is written to the beacons sent by the
2267  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2268  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2269  * indications.
2270  */
2271 static void
2272 atw_write_ssid(struct atw_softc *sc)
2273 {
2274 	struct ieee80211com *ic = &sc->sc_ic;
2275 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2276 	 * it only expects the element length, not its ID.
2277 	 */
2278 	uint8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2279 
2280 	memset(buf, 0, sizeof(buf));
2281 	buf[0] = ic->ic_bss->ni_esslen;
2282 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2283 
2284 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2285 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2286 }
2287 
2288 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2289  * In ad hoc mode, the supported rates are written to beacons sent by the
2290  * ADM8211.
2291  */
2292 static void
2293 atw_write_sup_rates(struct atw_softc *sc)
2294 {
2295 	struct ieee80211com *ic = &sc->sc_ic;
2296 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2297 	 * supported rates
2298 	 */
2299 	uint8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2300 
2301 	memset(buf, 0, sizeof(buf));
2302 
2303 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2304 
2305 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2306 	    ic->ic_bss->ni_rates.rs_nrates);
2307 
2308 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2309 }
2310 
2311 /* Start/stop sending beacons. */
2312 void
2313 atw_start_beacon(struct atw_softc *sc, int start)
2314 {
2315 	struct ieee80211com *ic = &sc->sc_ic;
2316 	uint16_t chan;
2317 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2318 	size_t len;
2319 
2320 	if (!device_is_active(sc->sc_dev))
2321 		return;
2322 
2323 	/* start beacons */
2324 	len = sizeof(struct ieee80211_frame) +
2325 	    8 /* timestamp */ + 2 /* beacon interval */ +
2326 	    2 /* capability info */ +
2327 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2328 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2329 	    3 /* DS parameters */ +
2330 	    IEEE80211_CRC_LEN;
2331 
2332 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2333 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2334 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2335 
2336 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2337 	ATW_WRITE(sc, ATW_CAP1, cap1);
2338 
2339 	if (!start)
2340 		return;
2341 
2342 	/* TBD use ni_capinfo */
2343 
2344 	capinfo = 0;
2345 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2346 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2347 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2348 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2349 
2350 	switch (ic->ic_opmode) {
2351 	case IEEE80211_M_IBSS:
2352 		len += 4; /* IBSS parameters */
2353 		capinfo |= IEEE80211_CAPINFO_IBSS;
2354 		break;
2355 	case IEEE80211_M_HOSTAP:
2356 		/* XXX 6-byte minimum TIM */
2357 		len += atw_beacon_len_adjust;
2358 		capinfo |= IEEE80211_CAPINFO_ESS;
2359 		break;
2360 	default:
2361 		return;
2362 	}
2363 
2364 	/* set listen interval
2365 	 * XXX do software units agree w/ hardware?
2366 	 */
2367 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2368 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2369 
2370 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2371 
2372 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2373 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2374 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2375 
2376 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2377 	ATW_WRITE(sc, ATW_BPLI, bpli);
2378 	ATW_WRITE(sc, ATW_CAP0, cap0);
2379 	ATW_WRITE(sc, ATW_CAP1, cap1);
2380 
2381 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2382 	    device_xname(sc->sc_dev), bcnt));
2383 
2384 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2385 	    device_xname(sc->sc_dev), cap1));
2386 }
2387 
2388 /* Return the 32 lsb of the last TSFT divisible by ival. */
2389 static inline uint32_t
2390 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2391 {
2392 	/* Following the reference driver's lead, I compute
2393 	 *
2394 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2395 	 *
2396 	 * without using 64-bit arithmetic, using the following
2397 	 * relationship:
2398 	 *
2399 	 *     (0x100000000 * H + L) % m
2400 	 *   = ((0x100000000 % m) * H + L) % m
2401 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2402 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2403 	 *   = ((0xffffffff % m + 1) * H + L) % m
2404 	 */
2405 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2406 }
2407 
2408 static uint64_t
2409 atw_get_tsft(struct atw_softc *sc)
2410 {
2411 	int i;
2412 	uint32_t tsfth, tsftl;
2413 	for (i = 0; i < 2; i++) {
2414 		tsfth = ATW_READ(sc, ATW_TSFTH);
2415 		tsftl = ATW_READ(sc, ATW_TSFTL);
2416 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2417 			break;
2418 	}
2419 	return ((uint64_t)tsfth << 32) | tsftl;
2420 }
2421 
2422 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2423  * the ieee80211com.
2424  *
2425  * Predict the next target beacon transmission time (TBTT) and
2426  * write it to the ADM8211.
2427  */
2428 static void
2429 atw_predict_beacon(struct atw_softc *sc)
2430 {
2431 #define TBTTOFS 20 /* TU */
2432 
2433 	struct ieee80211com *ic = &sc->sc_ic;
2434 	uint64_t tsft;
2435 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2436 	union {
2437 		uint64_t	word;
2438 		uint8_t		tstamp[8];
2439 	} u;
2440 
2441 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2442 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2443 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2444 		tsft = atw_get_tsft(sc);
2445 		u.word = htole64(tsft);
2446 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2447 		    sizeof(ic->ic_bss->ni_tstamp));
2448 	} else
2449 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2450 
2451 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2452 
2453 	tsftl = tsft & 0xFFFFFFFF;
2454 	tsfth = tsft >> 32;
2455 
2456 	/* We sent/received the last beacon `past' microseconds
2457 	 * after the interval divided the TSF timer.
2458 	 */
2459 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2460 
2461 	/* Skip ten beacons so that the TBTT cannot pass before
2462 	 * we've programmed it.  Ten is an arbitrary number.
2463 	 */
2464 	tbtt = past_even + ival * 10;
2465 
2466 	ATW_WRITE(sc, ATW_TOFS1,
2467 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2468 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2469 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2470 		ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2471 #undef TBTTOFS
2472 }
2473 
2474 static void
2475 atw_next_scan(void *arg)
2476 {
2477 	struct atw_softc *sc = arg;
2478 	struct ieee80211com *ic = &sc->sc_ic;
2479 	int s;
2480 
2481 	/* don't call atw_start w/o network interrupts blocked */
2482 	s = splnet();
2483 	if (ic->ic_state == IEEE80211_S_SCAN)
2484 		ieee80211_next_scan(ic);
2485 	splx(s);
2486 }
2487 
2488 /* Synchronize the hardware state with the software state. */
2489 static int
2490 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2491 {
2492 	struct ifnet *ifp = ic->ic_ifp;
2493 	struct atw_softc *sc = ifp->if_softc;
2494 	int error = 0;
2495 
2496 	callout_stop(&sc->sc_scan_ch);
2497 
2498 	switch (nstate) {
2499 	case IEEE80211_S_AUTH:
2500 	case IEEE80211_S_ASSOC:
2501 		atw_write_bssid(sc);
2502 		error = atw_tune(sc);
2503 		break;
2504 	case IEEE80211_S_INIT:
2505 		callout_stop(&sc->sc_scan_ch);
2506 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2507 		atw_start_beacon(sc, 0);
2508 		break;
2509 	case IEEE80211_S_SCAN:
2510 		error = atw_tune(sc);
2511 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2512 		    atw_next_scan, sc);
2513 		break;
2514 	case IEEE80211_S_RUN:
2515 		error = atw_tune(sc);
2516 		atw_write_bssid(sc);
2517 		atw_write_ssid(sc);
2518 		atw_write_sup_rates(sc);
2519 
2520 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2521 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2522 			break;
2523 
2524 		/* set listen interval
2525 		 * XXX do software units agree w/ hardware?
2526 		 */
2527 		ATW_WRITE(sc, ATW_BPLI,
2528 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2529 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2530 			   ATW_BPLI_LI_MASK));
2531 
2532 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2533 		    ATW_READ(sc, ATW_BPLI)));
2534 
2535 		atw_predict_beacon(sc);
2536 
2537 		switch (ic->ic_opmode) {
2538 		case IEEE80211_M_AHDEMO:
2539 		case IEEE80211_M_HOSTAP:
2540 		case IEEE80211_M_IBSS:
2541 			atw_start_beacon(sc, 1);
2542 			break;
2543 		case IEEE80211_M_MONITOR:
2544 		case IEEE80211_M_STA:
2545 			break;
2546 		}
2547 
2548 		break;
2549 	}
2550 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2551 }
2552 
2553 /*
2554  * atw_add_rxbuf:
2555  *
2556  *	Add a receive buffer to the indicated descriptor.
2557  */
2558 int
2559 atw_add_rxbuf(struct atw_softc *sc, int idx)
2560 {
2561 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2562 	struct mbuf *m;
2563 	int error;
2564 
2565 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2566 	if (m == NULL)
2567 		return (ENOBUFS);
2568 
2569 	MCLGET(m, M_DONTWAIT);
2570 	if ((m->m_flags & M_EXT) == 0) {
2571 		m_freem(m);
2572 		return (ENOBUFS);
2573 	}
2574 
2575 	if (rxs->rxs_mbuf != NULL)
2576 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2577 
2578 	rxs->rxs_mbuf = m;
2579 
2580 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2581 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2582 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2583 	if (error) {
2584 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2585 		    idx, error);
2586 		panic("atw_add_rxbuf");	/* XXX */
2587 	}
2588 
2589 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2590 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2591 
2592 	atw_init_rxdesc(sc, idx);
2593 
2594 	return (0);
2595 }
2596 
2597 /*
2598  * Release any queued transmit buffers.
2599  */
2600 void
2601 atw_txdrain(struct atw_softc *sc)
2602 {
2603 	struct atw_txsoft *txs;
2604 
2605 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2606 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2607 		if (txs->txs_mbuf != NULL) {
2608 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2609 			m_freem(txs->txs_mbuf);
2610 			txs->txs_mbuf = NULL;
2611 		}
2612 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2613 		sc->sc_txfree += txs->txs_ndescs;
2614 	}
2615 
2616 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2617 		!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2618 		  sc->sc_txfree != ATW_NTXDESC));
2619 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2620 	sc->sc_tx_timer = 0;
2621 }
2622 
2623 /*
2624  * atw_stop:		[ ifnet interface function ]
2625  *
2626  *	Stop transmission on the interface.
2627  */
2628 void
2629 atw_stop(struct ifnet *ifp, int disable)
2630 {
2631 	struct atw_softc *sc = ifp->if_softc;
2632 	struct ieee80211com *ic = &sc->sc_ic;
2633 
2634 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2635 
2636 	if (device_is_active(sc->sc_dev)) {
2637 		/* Disable interrupts. */
2638 		ATW_WRITE(sc, ATW_IER, 0);
2639 
2640 		/* Stop the transmit and receive processes. */
2641 		ATW_WRITE(sc, ATW_NAR, 0);
2642 		DELAY(atw_nar_delay);
2643 		ATW_WRITE(sc, ATW_TDBD, 0);
2644 		ATW_WRITE(sc, ATW_TDBP, 0);
2645 		ATW_WRITE(sc, ATW_RDB, 0);
2646 	}
2647 
2648 	sc->sc_opmode = 0;
2649 
2650 	atw_txdrain(sc);
2651 
2652 	/*
2653 	 * Mark the interface down and cancel the watchdog timer.
2654 	 */
2655 	ifp->if_flags &= ~IFF_RUNNING;
2656 	ifp->if_timer = 0;
2657 
2658 	if (disable)
2659 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2660 }
2661 
2662 /*
2663  * atw_rxdrain:
2664  *
2665  *	Drain the receive queue.
2666  */
2667 void
2668 atw_rxdrain(struct atw_softc *sc)
2669 {
2670 	struct atw_rxsoft *rxs;
2671 	int i;
2672 
2673 	for (i = 0; i < ATW_NRXDESC; i++) {
2674 		rxs = &sc->sc_rxsoft[i];
2675 		if (rxs->rxs_mbuf == NULL)
2676 			continue;
2677 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2678 		m_freem(rxs->rxs_mbuf);
2679 		rxs->rxs_mbuf = NULL;
2680 	}
2681 }
2682 
2683 /*
2684  * atw_detach:
2685  *
2686  *	Detach an ADM8211 interface.
2687  */
2688 int
2689 atw_detach(struct atw_softc *sc)
2690 {
2691 	struct ifnet *ifp = &sc->sc_if;
2692 	struct atw_rxsoft *rxs;
2693 	struct atw_txsoft *txs;
2694 	int i;
2695 
2696 	/*
2697 	 * Succeed now if there isn't any work to do.
2698 	 */
2699 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2700 		return (0);
2701 
2702 	pmf_device_deregister(sc->sc_dev);
2703 
2704 	callout_stop(&sc->sc_scan_ch);
2705 
2706 	ieee80211_ifdetach(&sc->sc_ic);
2707 	if_detach(ifp);
2708 
2709 	for (i = 0; i < ATW_NRXDESC; i++) {
2710 		rxs = &sc->sc_rxsoft[i];
2711 		if (rxs->rxs_mbuf != NULL) {
2712 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2713 			m_freem(rxs->rxs_mbuf);
2714 			rxs->rxs_mbuf = NULL;
2715 		}
2716 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2717 	}
2718 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2719 		txs = &sc->sc_txsoft[i];
2720 		if (txs->txs_mbuf != NULL) {
2721 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2722 			m_freem(txs->txs_mbuf);
2723 			txs->txs_mbuf = NULL;
2724 		}
2725 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2726 	}
2727 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2728 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2729 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2730 	    sizeof(struct atw_control_data));
2731 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2732 
2733 	if (sc->sc_srom)
2734 		free(sc->sc_srom, M_DEVBUF);
2735 
2736 	atw_evcnt_detach(sc);
2737 
2738 	if (sc->sc_soft_ih != NULL) {
2739 		softint_disestablish(sc->sc_soft_ih);
2740 		sc->sc_soft_ih = NULL;
2741 	}
2742 
2743 	return (0);
2744 }
2745 
2746 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2747 bool
2748 atw_shutdown(device_t self, int flags)
2749 {
2750 	struct atw_softc *sc = device_private(self);
2751 
2752 	atw_stop(&sc->sc_if, 1);
2753 	return true;
2754 }
2755 
2756 #if 0
2757 static void
2758 atw_workaround1(struct atw_softc *sc)
2759 {
2760 	uint32_t test1;
2761 
2762 	test1 = ATW_READ(sc, ATW_TEST1);
2763 
2764 	sc->sc_misc_ev.ev_count++;
2765 
2766 	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2767 		sc->sc_rxpkt1in_ev.ev_count++;
2768 		return;
2769 	}
2770 	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2771 	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2772 		sc->sc_rxamatch_ev.ev_count++;
2773 		return;
2774 	}
2775 	sc->sc_workaround1_ev.ev_count++;
2776 	(void)atw_init(&sc->sc_if);
2777 }
2778 #endif
2779 
2780 int
2781 atw_intr(void *arg)
2782 {
2783 	struct atw_softc *sc = arg;
2784 	struct ifnet *ifp = &sc->sc_if;
2785 	uint32_t status;
2786 
2787 #ifdef DEBUG
2788 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2789 		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2790 #endif
2791 
2792 	/*
2793 	 * If the interface isn't running, the interrupt couldn't
2794 	 * possibly have come from us.
2795 	 */
2796 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2797 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2798 		return (0);
2799 
2800 	status = ATW_READ(sc, ATW_STSR);
2801 	if (status == 0)
2802 		return 0;
2803 
2804 	if ((status & sc->sc_inten) == 0) {
2805 		ATW_WRITE(sc, ATW_STSR, status);
2806 		return 0;
2807 	}
2808 
2809 	/* Disable interrupts */
2810 	ATW_WRITE(sc, ATW_IER, 0);
2811 
2812 	softint_schedule(sc->sc_soft_ih);
2813 	return 1;
2814 }
2815 
2816 void
2817 atw_softintr(void *arg)
2818 {
2819 	struct atw_softc *sc = arg;
2820 	struct ifnet *ifp = &sc->sc_if;
2821 	uint32_t status, rxstatus, txstatus, linkstatus;
2822 	int txthresh, s;
2823 
2824 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2825 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2826 		return;
2827 
2828 	for (;;) {
2829 		status = ATW_READ(sc, ATW_STSR);
2830 
2831 		if (status)
2832 			ATW_WRITE(sc, ATW_STSR, status);
2833 
2834 #ifdef ATW_DEBUG
2835 #define PRINTINTR(flag) do { \
2836 	if ((status & flag) != 0) { \
2837 		printf("%s" #flag, delim); \
2838 		delim = ","; \
2839 	} \
2840 } while (0)
2841 
2842 		if (atw_debug > 1 && status) {
2843 			const char *delim = "<";
2844 
2845 			printf("%s: reg[STSR] = %x",
2846 			    device_xname(sc->sc_dev), status);
2847 
2848 			PRINTINTR(ATW_INTR_FBE);
2849 			PRINTINTR(ATW_INTR_LINKOFF);
2850 			PRINTINTR(ATW_INTR_LINKON);
2851 			PRINTINTR(ATW_INTR_RCI);
2852 			PRINTINTR(ATW_INTR_RDU);
2853 			PRINTINTR(ATW_INTR_REIS);
2854 			PRINTINTR(ATW_INTR_RPS);
2855 			PRINTINTR(ATW_INTR_TCI);
2856 			PRINTINTR(ATW_INTR_TDU);
2857 			PRINTINTR(ATW_INTR_TLT);
2858 			PRINTINTR(ATW_INTR_TPS);
2859 			PRINTINTR(ATW_INTR_TRT);
2860 			PRINTINTR(ATW_INTR_TUF);
2861 			PRINTINTR(ATW_INTR_BCNTC);
2862 			PRINTINTR(ATW_INTR_ATIME);
2863 			PRINTINTR(ATW_INTR_TBTT);
2864 			PRINTINTR(ATW_INTR_TSCZ);
2865 			PRINTINTR(ATW_INTR_TSFTF);
2866 			printf(">\n");
2867 		}
2868 #undef PRINTINTR
2869 #endif /* ATW_DEBUG */
2870 
2871 		if ((status & sc->sc_inten) == 0)
2872 			break;
2873 
2874 		rxstatus = status & sc->sc_rxint_mask;
2875 		txstatus = status & sc->sc_txint_mask;
2876 		linkstatus = status & sc->sc_linkint_mask;
2877 
2878 		if (linkstatus) {
2879 			atw_linkintr(sc, linkstatus);
2880 		}
2881 
2882 		if (rxstatus) {
2883 			/* Grab any new packets. */
2884 			atw_rxintr(sc);
2885 
2886 			if (rxstatus & ATW_INTR_RDU) {
2887 				printf("%s: receive ring overrun\n",
2888 				    device_xname(sc->sc_dev));
2889 				/* Get the receive process going again. */
2890 				ATW_WRITE(sc, ATW_RDR, 0x1);
2891 			}
2892 		}
2893 
2894 		if (txstatus) {
2895 			/* Sweep up transmit descriptors. */
2896 			atw_txintr(sc, txstatus);
2897 
2898 			if (txstatus & ATW_INTR_TLT) {
2899 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2900 				    device_xname(sc->sc_dev)));
2901 				(void)atw_init(&sc->sc_if);
2902 			}
2903 
2904 			if (txstatus & ATW_INTR_TRT) {
2905 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2906 				    device_xname(sc->sc_dev)));
2907 			}
2908 
2909 			/* If Tx under-run, increase our transmit threshold
2910 			 * if another is available.
2911 			 */
2912 			txthresh = sc->sc_txthresh + 1;
2913 			if ((txstatus & ATW_INTR_TUF) &&
2914 			    sc->sc_txth[txthresh].txth_name != NULL) {
2915 				/* Idle the transmit process. */
2916 				atw_idle(sc, ATW_NAR_ST);
2917 
2918 				sc->sc_txthresh = txthresh;
2919 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2920 				sc->sc_opmode |=
2921 				    sc->sc_txth[txthresh].txth_opmode;
2922 				printf("%s: transmit underrun; new "
2923 				    "threshold: %s\n", device_xname(sc->sc_dev),
2924 				    sc->sc_txth[txthresh].txth_name);
2925 
2926 				/* Set the new threshold and restart
2927 				 * the transmit process.
2928 				 */
2929 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2930 				DELAY(atw_nar_delay);
2931 				ATW_WRITE(sc, ATW_TDR, 0x1);
2932 				/* XXX Log every Nth underrun from
2933 				 * XXX now on?
2934 				 */
2935 			}
2936 		}
2937 
2938 		if (status & (ATW_INTR_TPS | ATW_INTR_RPS)) {
2939 			if (status & ATW_INTR_TPS)
2940 				printf("%s: transmit process stopped\n",
2941 				    device_xname(sc->sc_dev));
2942 			if (status & ATW_INTR_RPS)
2943 				printf("%s: receive process stopped\n",
2944 				    device_xname(sc->sc_dev));
2945 			s = splnet();
2946 			(void)atw_init(ifp);
2947 			splx(s);
2948 			break;
2949 		}
2950 
2951 		if (status & ATW_INTR_FBE) {
2952 			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2953 			s = splnet();
2954 			(void)atw_init(ifp);
2955 			splx(s);
2956 			break;
2957 		}
2958 
2959 		/*
2960 		 * Not handled:
2961 		 *
2962 		 *	Transmit buffer unavailable -- normal
2963 		 *	condition, nothing to do, really.
2964 		 *
2965 		 *	Early receive interrupt -- not available on
2966 		 *	all chips, we just use RI.  We also only
2967 		 *	use single-segment receive DMA, so this
2968 		 *	is mostly useless.
2969 		 *
2970 		 *	TBD others
2971 		 */
2972 	}
2973 
2974 	/* Try to get more packets going. */
2975 	s = splnet();
2976 	atw_start(ifp);
2977 	splx(s);
2978 
2979 	/* Enable interrupts */
2980 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2981 }
2982 
2983 /*
2984  * atw_idle:
2985  *
2986  *	Cause the transmit and/or receive processes to go idle.
2987  *
2988  *	XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2989  *	process in STSR if I clear SR or ST after the process has already
2990  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2991  *	do not seem to be too reliable. Perhaps I have the sense of the
2992  *	Rx bits switched with the Tx bits?
2993  */
2994 void
2995 atw_idle(struct atw_softc *sc, uint32_t bits)
2996 {
2997 	uint32_t ackmask = 0, opmode, stsr, test0;
2998 	int i, s;
2999 
3000 	s = splnet();
3001 
3002 	opmode = sc->sc_opmode & ~bits;
3003 
3004 	if (bits & ATW_NAR_SR)
3005 		ackmask |= ATW_INTR_RPS;
3006 
3007 	if (bits & ATW_NAR_ST) {
3008 		ackmask |= ATW_INTR_TPS;
3009 		/* set ATW_NAR_HF to flush TX FIFO. */
3010 		opmode |= ATW_NAR_HF;
3011 	}
3012 
3013 	ATW_WRITE(sc, ATW_NAR, opmode);
3014 	DELAY(atw_nar_delay);
3015 
3016 	for (i = 0; i < 1000; i++) {
3017 		stsr = ATW_READ(sc, ATW_STSR);
3018 		if ((stsr & ackmask) == ackmask)
3019 			break;
3020 		DELAY(10);
3021 	}
3022 
3023 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3024 
3025 	if ((stsr & ackmask) == ackmask)
3026 		goto out;
3027 
3028 	test0 = ATW_READ(sc, ATW_TEST0);
3029 
3030 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3031 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3032 		printf("%s: transmit process not idle [%s]\n",
3033 		    device_xname(sc->sc_dev),
3034 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3035 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3036 		    device_xname(sc->sc_dev), bits, test0, stsr);
3037 	}
3038 
3039 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3040 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3041 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3042 		    device_xname(sc->sc_dev),
3043 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3044 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3045 		    device_xname(sc->sc_dev), bits, test0, stsr));
3046 	}
3047 out:
3048 	if ((bits & ATW_NAR_ST) != 0)
3049 		atw_txdrain(sc);
3050 	splx(s);
3051 	return;
3052 }
3053 
3054 /*
3055  * atw_linkintr:
3056  *
3057  *	Helper; handle link-status interrupts.
3058  */
3059 void
3060 atw_linkintr(struct atw_softc *sc, uint32_t linkstatus)
3061 {
3062 	struct ieee80211com *ic = &sc->sc_ic;
3063 
3064 	if (ic->ic_state != IEEE80211_S_RUN)
3065 		return;
3066 
3067 	if (linkstatus & ATW_INTR_LINKON) {
3068 		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3069 		sc->sc_rescan_timer = 0;
3070 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3071 		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3072 		if (ic->ic_opmode != IEEE80211_M_STA)
3073 			return;
3074 		sc->sc_rescan_timer = 3;
3075 		sc->sc_if.if_timer = 1;
3076 	}
3077 }
3078 
3079 #if 0
3080 static inline int
3081 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3082 {
3083 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3084 		return 0;
3085 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3086 		return 0;
3087 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3088 }
3089 #endif
3090 
3091 /*
3092  * atw_rxintr:
3093  *
3094  *	Helper; handle receive interrupts.
3095  */
3096 void
3097 atw_rxintr(struct atw_softc *sc)
3098 {
3099 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3100 	struct ieee80211com *ic = &sc->sc_ic;
3101 	struct ieee80211_node *ni;
3102 	struct ieee80211_frame_min *wh;
3103 	struct ifnet *ifp = &sc->sc_if;
3104 	struct atw_rxsoft *rxs;
3105 	struct mbuf *m;
3106 	uint32_t rxstat;
3107 	int i, s, len, rate, rate0;
3108 	uint32_t rssi, ctlrssi;
3109 
3110 	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3111 		rxs = &sc->sc_rxsoft[i];
3112 
3113 		ATW_CDRXSYNC(sc, i,
3114 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3115 
3116 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3117 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3118 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3119 
3120 		if (rxstat & ATW_RXSTAT_OWN) {
3121 			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3122 			break;
3123 		}
3124 
3125 		sc->sc_rxptr = ATW_NEXTRX(i);
3126 
3127 		DPRINTF3(sc,
3128 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3129 		    device_xname(sc->sc_dev),
3130 		    rxstat, ctlrssi,
3131 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3132 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3133 
3134 		/*
3135 		 * Make sure the packet fits in one buffer.  This should
3136 		 * always be the case.
3137 		 */
3138 		if ((rxstat & (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) !=
3139 		    (ATW_RXSTAT_FS | ATW_RXSTAT_LS)) {
3140 			printf("%s: incoming packet spilled, resetting\n",
3141 			    device_xname(sc->sc_dev));
3142 			(void)atw_init(ifp);
3143 			return;
3144 		}
3145 
3146 		/*
3147 		 * If an error occurred, update stats, clear the status
3148 		 * word, and leave the packet buffer in place.  It will
3149 		 * simply be reused the next time the ring comes around.
3150 		 */
3151 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3152 #define	PRINTERR(bit, str)						\
3153 			if (rxstat & (bit))				\
3154 				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3155 				    str)
3156 			if_statinc(ifp, if_ierrors);
3157 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3158 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3159 #if 0
3160 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3161 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3162 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3163 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3164 #endif
3165 #undef PRINTERR
3166 			atw_init_rxdesc(sc, i);
3167 			continue;
3168 		}
3169 
3170 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3171 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3172 
3173 		/*
3174 		 * No errors; receive the packet.  Note the ADM8211
3175 		 * includes the CRC in promiscuous mode.
3176 		 */
3177 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3178 
3179 		/*
3180 		 * Allocate a new mbuf cluster.  If that fails, we are
3181 		 * out of memory, and must drop the packet and recycle
3182 		 * the buffer that's already attached to this descriptor.
3183 		 */
3184 		m = rxs->rxs_mbuf;
3185 		if (atw_add_rxbuf(sc, i) != 0) {
3186 			if_statinc(ifp, if_ierrors);
3187 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3188 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3189 			atw_init_rxdesc(sc, i);
3190 			continue;
3191 		}
3192 
3193 		if_statinc(ifp, if_ipackets);
3194 		m_set_rcvif(m, ifp);
3195 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3196 
3197 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3198 
3199 		/* The RSSI comes straight from a register in the
3200 		 * baseband processor.  I know that for the RF3000,
3201 		 * the RSSI register also contains the antenna-selection
3202 		 * bits.  Mask those off.
3203 		 *
3204 		 * TBD Treat other basebands.
3205 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3206 		 */
3207 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3208 			rssi = ctlrssi & RF3000_RSSI_MASK;
3209 		else
3210 			rssi = ctlrssi;
3211 
3212 		s = splnet();
3213 
3214 		/* Pass this up to any BPF listeners. */
3215 		if (sc->sc_radiobpf != NULL) {
3216 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3217 
3218 			tap->ar_rate = rate;
3219 
3220 			/* TBD verify units are dB */
3221 			tap->ar_antsignal = (int)rssi;
3222 			if (sc->sc_opmode & ATW_NAR_PR)
3223 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3224 			else
3225 				tap->ar_flags = 0;
3226 
3227 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3228 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3229 
3230 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3231 			    m, BPF_D_IN);
3232 		}
3233 
3234 		sc->sc_recv_ev.ev_count++;
3235 
3236 		if ((rxstat & (ATW_RXSTAT_CRC16E | ATW_RXSTAT_CRC32E |
3237 		    ATW_RXSTAT_ICVE | ATW_RXSTAT_SFDE | ATW_RXSTAT_SIGE))
3238 		    != 0) {
3239 			if (rxstat & ATW_RXSTAT_CRC16E)
3240 				sc->sc_crc16e_ev.ev_count++;
3241 			if (rxstat & ATW_RXSTAT_CRC32E)
3242 				sc->sc_crc32e_ev.ev_count++;
3243 			if (rxstat & ATW_RXSTAT_ICVE)
3244 				sc->sc_icve_ev.ev_count++;
3245 			if (rxstat & ATW_RXSTAT_SFDE)
3246 				sc->sc_sfde_ev.ev_count++;
3247 			if (rxstat & ATW_RXSTAT_SIGE)
3248 				sc->sc_sige_ev.ev_count++;
3249 			if_statinc(ifp, if_ierrors);
3250 			m_freem(m);
3251 			splx(s);
3252 			continue;
3253 		}
3254 
3255 		if (sc->sc_opmode & ATW_NAR_PR)
3256 			m_adj(m, -IEEE80211_CRC_LEN);
3257 
3258 		wh = mtod(m, struct ieee80211_frame_min *);
3259 		ni = ieee80211_find_rxnode(ic, wh);
3260 #if 0
3261 		if (atw_hw_decrypted(sc, wh)) {
3262 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3263 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3264 		}
3265 #endif
3266 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3267 		ieee80211_free_node(ni);
3268 		splx(s);
3269 	}
3270 }
3271 
3272 /*
3273  * atw_txintr:
3274  *
3275  *	Helper; handle transmit interrupts.
3276  */
3277 void
3278 atw_txintr(struct atw_softc *sc, uint32_t status)
3279 {
3280 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3281 	struct ifnet *ifp = &sc->sc_if;
3282 	struct atw_txsoft *txs;
3283 	uint32_t txstat;
3284 	int s;
3285 
3286 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3287 	    device_xname(sc->sc_dev), sc->sc_flags));
3288 
3289 	s = splnet();
3290 
3291 	/*
3292 	 * Go through our Tx list and free mbufs for those
3293 	 * frames that have been transmitted.
3294 	 */
3295 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3296 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3297 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3298 
3299 #ifdef ATW_DEBUG
3300 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3301 			int i;
3302 			printf("    txsoft %p transmit chain:\n", txs);
3303 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3304 			    txs->txs_ndescs - 1,
3305 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3306 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3307 				printf("     descriptor %d:\n", i);
3308 				printf("       at_status:   0x%08x\n",
3309 				    le32toh(sc->sc_txdescs[i].at_stat));
3310 				printf("       at_flags:      0x%08x\n",
3311 				    le32toh(sc->sc_txdescs[i].at_flags));
3312 				printf("       at_buf1: 0x%08x\n",
3313 				    le32toh(sc->sc_txdescs[i].at_buf1));
3314 				printf("       at_buf2: 0x%08x\n",
3315 				    le32toh(sc->sc_txdescs[i].at_buf2));
3316 				if (i == txs->txs_lastdesc)
3317 					break;
3318 			}
3319 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3320 			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3321 		}
3322 #endif
3323 
3324 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3325 		if (txstat & ATW_TXSTAT_OWN) {
3326 			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3327 			    BUS_DMASYNC_PREREAD);
3328 			break;
3329 		}
3330 
3331 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3332 
3333 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3334 		    0, txs->txs_dmamap->dm_mapsize,
3335 		    BUS_DMASYNC_POSTWRITE);
3336 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3337 		m_freem(txs->txs_mbuf);
3338 		txs->txs_mbuf = NULL;
3339 
3340 		sc->sc_txfree += txs->txs_ndescs;
3341 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3342 
3343 		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3344 		sc->sc_tx_timer = 0;
3345 		ifp->if_flags &= ~IFF_OACTIVE;
3346 
3347 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3348 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3349 			snprintb(txstat_buf, sizeof(txstat_buf),
3350 			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3351 			printf("%s: txstat %s %" __PRIuBITS "\n",
3352 			    device_xname(sc->sc_dev), txstat_buf,
3353 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3354 		}
3355 
3356 		sc->sc_xmit_ev.ev_count++;
3357 
3358 		/*
3359 		 * Check for errors and collisions.
3360 		 */
3361 		if (txstat & ATW_TXSTAT_TUF)
3362 			sc->sc_tuf_ev.ev_count++;
3363 		if (txstat & ATW_TXSTAT_TLT)
3364 			sc->sc_tlt_ev.ev_count++;
3365 		if (txstat & ATW_TXSTAT_TRT)
3366 			sc->sc_trt_ev.ev_count++;
3367 		if (txstat & ATW_TXSTAT_TRO)
3368 			sc->sc_tro_ev.ev_count++;
3369 		if (txstat & ATW_TXSTAT_SOFBR)
3370 			sc->sc_sofbr_ev.ev_count++;
3371 
3372 		if ((txstat & ATW_TXSTAT_ES) == 0)
3373 			if_statadd(ifp, if_collisions,
3374 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3375 		else
3376 			if_statinc(ifp, if_oerrors);
3377 
3378 		if_statinc(ifp, if_opackets);
3379 	}
3380 
3381 	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3382 
3383 	splx(s);
3384 }
3385 
3386 /*
3387  * atw_watchdog:	[ifnet interface function]
3388  *
3389  *	Watchdog timer handler.
3390  */
3391 void
3392 atw_watchdog(struct ifnet *ifp)
3393 {
3394 	struct atw_softc *sc = ifp->if_softc;
3395 	struct ieee80211com *ic = &sc->sc_ic;
3396 
3397 	ifp->if_timer = 0;
3398 	if (!device_is_active(sc->sc_dev))
3399 		return;
3400 
3401 	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3402 		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3403 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3404 	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3405 		printf("%s: transmit timeout\n", ifp->if_xname);
3406 		if_statinc(ifp, if_oerrors);
3407 		(void)atw_init(ifp);
3408 		atw_start(ifp);
3409 	}
3410 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3411 		ifp->if_timer = 1;
3412 	ieee80211_watchdog(ic);
3413 }
3414 
3415 static void
3416 atw_evcnt_detach(struct atw_softc *sc)
3417 {
3418 	evcnt_detach(&sc->sc_sige_ev);
3419 	evcnt_detach(&sc->sc_sfde_ev);
3420 	evcnt_detach(&sc->sc_icve_ev);
3421 	evcnt_detach(&sc->sc_crc32e_ev);
3422 	evcnt_detach(&sc->sc_crc16e_ev);
3423 	evcnt_detach(&sc->sc_recv_ev);
3424 
3425 	evcnt_detach(&sc->sc_tuf_ev);
3426 	evcnt_detach(&sc->sc_tro_ev);
3427 	evcnt_detach(&sc->sc_trt_ev);
3428 	evcnt_detach(&sc->sc_tlt_ev);
3429 	evcnt_detach(&sc->sc_sofbr_ev);
3430 	evcnt_detach(&sc->sc_xmit_ev);
3431 
3432 	evcnt_detach(&sc->sc_rxpkt1in_ev);
3433 	evcnt_detach(&sc->sc_rxamatch_ev);
3434 	evcnt_detach(&sc->sc_workaround1_ev);
3435 	evcnt_detach(&sc->sc_misc_ev);
3436 }
3437 
3438 static void
3439 atw_evcnt_attach(struct atw_softc *sc)
3440 {
3441 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3442 	    NULL, sc->sc_if.if_xname, "recv");
3443 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3444 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3445 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3446 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3447 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3448 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3449 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3450 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3451 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3452 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3453 
3454 	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3455 	    NULL, sc->sc_if.if_xname, "xmit");
3456 	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3457 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3458 	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3459 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3460 	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3461 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3462 	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3463 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3464 	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3465 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3466 
3467 	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3468 	    NULL, sc->sc_if.if_xname, "misc");
3469 	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3470 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3471 	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3472 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3473 	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3474 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3475 }
3476 
3477 #ifdef ATW_DEBUG
3478 static void
3479 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3480 {
3481 	struct atw_softc *sc = ifp->if_softc;
3482 	struct mbuf *m;
3483 	int i, noctets = 0;
3484 
3485 	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3486 	    m0->m_pkthdr.len);
3487 
3488 	for (m = m0; m; m = m->m_next) {
3489 		if (m->m_len == 0)
3490 			continue;
3491 		for (i = 0; i < m->m_len; i++) {
3492 			printf(" %02x", ((uint8_t*)m->m_data)[i]);
3493 			if (++noctets % 24 == 0)
3494 				printf("\n");
3495 		}
3496 	}
3497 	printf("%s%s: %d bytes emitted\n",
3498 	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3499 }
3500 #endif /* ATW_DEBUG */
3501 
3502 /*
3503  * atw_start:		[ifnet interface function]
3504  *
3505  *	Start packet transmission on the interface.
3506  */
3507 void
3508 atw_start(struct ifnet *ifp)
3509 {
3510 	struct atw_softc *sc = ifp->if_softc;
3511 	struct ieee80211_key *k;
3512 	struct ieee80211com *ic = &sc->sc_ic;
3513 	struct ieee80211_node *ni;
3514 	struct ieee80211_frame_min *whm;
3515 	struct ieee80211_frame *wh;
3516 	struct atw_frame *hh;
3517 	uint16_t hdrctl;
3518 	struct mbuf *m0, *m;
3519 	struct atw_txsoft *txs;
3520 	struct atw_txdesc *txd;
3521 	int npkt, rate;
3522 	bus_dmamap_t dmamap;
3523 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3524 
3525 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3526 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3527 
3528 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3529 		return;
3530 
3531 	/*
3532 	 * Remember the previous number of free descriptors and
3533 	 * the first descriptor we'll use.
3534 	 */
3535 	ofree = sc->sc_txfree;
3536 	firsttx = lasttx = sc->sc_txnext;
3537 
3538 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3539 	    device_xname(sc->sc_dev), ofree, firsttx));
3540 
3541 	/*
3542 	 * Loop through the send queue, setting up transmit descriptors
3543 	 * until we drain the queue, or use up all available transmit
3544 	 * descriptors.
3545 	 */
3546 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3547 	       sc->sc_txfree != 0) {
3548 
3549 		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3550 
3551 		/*
3552 		 * Grab a packet off the management queue, if it
3553 		 * is not empty. Otherwise, from the data queue.
3554 		 */
3555 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3556 		if (m0 != NULL) {
3557 			ni = M_GETCTX(m0, struct ieee80211_node *);
3558 			M_CLEARCTX(m0);
3559 		} else if (ic->ic_state != IEEE80211_S_RUN)
3560 			break; /* send no data until associated */
3561 		else {
3562 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3563 			if (m0 == NULL)
3564 				break;
3565 			bpf_mtap(ifp, m0, BPF_D_OUT);
3566 			ni = ieee80211_find_txnode(ic,
3567 			    mtod(m0, struct ether_header *)->ether_dhost);
3568 			if (ni == NULL) {
3569 				if_statinc(ifp, if_oerrors);
3570 				break;
3571 			}
3572 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3573 				ieee80211_free_node(ni);
3574 				if_statinc(ifp, if_oerrors);
3575 				break;
3576 			}
3577 		}
3578 
3579 		rate = MAX(ieee80211_get_rate(ni), 2);
3580 
3581 		whm = mtod(m0, struct ieee80211_frame_min *);
3582 
3583 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3584 			k = NULL;
3585 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3586 			m_freem(m0);
3587 			ieee80211_free_node(ni);
3588 			if_statinc(ifp, if_oerrors);
3589 			break;
3590 		}
3591 #if 0
3592 		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3593 		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3594 			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3595 #endif
3596 
3597 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3598 			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3599 
3600 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3601 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3602 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3603 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3604 			m_freem(m0);
3605 			break;
3606 		}
3607 
3608 		/* XXX Misleading if fragmentation is enabled.  Better
3609 		 * to fragment in software?
3610 		 */
3611 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3612 
3613 		/*
3614 		 * Pass the packet to any BPF listeners.
3615 		 */
3616 		bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3617 
3618 		if (sc->sc_radiobpf != NULL) {
3619 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3620 
3621 			tap->at_rate = rate;
3622 
3623 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3624 			    m0, BPF_D_OUT);
3625 		}
3626 
3627 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3628 
3629 		if (ni != NULL)
3630 			ieee80211_free_node(ni);
3631 
3632 		if (m0 == NULL) {
3633 			if_statinc(ifp, if_oerrors);
3634 			break;
3635 		}
3636 
3637 		/* just to make sure. */
3638 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3639 
3640 		if (m0 == NULL) {
3641 			if_statinc(ifp, if_oerrors);
3642 			break;
3643 		}
3644 
3645 		hh = mtod(m0, struct atw_frame *);
3646 		wh = &hh->atw_ihdr;
3647 
3648 		/* Copy everything we need from the 802.11 header:
3649 		 * Frame Control; address 1, address 3, or addresses
3650 		 * 3 and 4. NIC fills in BSSID, SA.
3651 		 */
3652 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3653 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3654 				panic("%s: illegal WDS frame",
3655 				    device_xname(sc->sc_dev));
3656 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3657 		} else
3658 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3659 
3660 		*(uint16_t*)hh->atw_fc = *(uint16_t*)wh->i_fc;
3661 
3662 		/* initialize remaining Tx parameters */
3663 		memset(&hh->u, 0, sizeof(hh->u));
3664 
3665 		hh->atw_rate = rate * 5;
3666 		/* XXX this could be incorrect if M_FCS. _encap should
3667 		 * probably strip FCS just in case it sticks around in
3668 		 * bridged packets.
3669 		 */
3670 		hh->atw_service = 0x00; /* XXX guess */
3671 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3672 		    sizeof(struct atw_frame));
3673 
3674 		/* never fragment multicast frames */
3675 		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3676 			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3677 		else {
3678 			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3679 			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3680 				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3681 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3682 		}
3683 
3684 		hh->atw_rtylmt = 3;
3685 #if 0
3686 		if (do_encrypt) {
3687 			hdrctl |= htole16(ATW_HDRCTL_WEP);
3688 			hh->atw_keyid = ic->ic_def_txkey;
3689 		}
3690 #endif
3691 
3692 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3693 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3694 		if (txs->txs_d0.d_residue)
3695 			hh->atw_head_plcplen |= htole16(0x8000);
3696 		if (txs->txs_dn.d_residue)
3697 			hh->atw_tail_plcplen |= htole16(0x8000);
3698 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3699 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3700 
3701 		hh->atw_hdrctl = hdrctl;
3702 		hh->atw_fragnum = npkt << 4;
3703 #ifdef ATW_DEBUG
3704 
3705 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3706 			printf("%s: dst = %s, rate = 0x%02x, "
3707 			    "service = 0x%02x, paylen = 0x%04x\n",
3708 			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3709 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3710 
3711 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3712 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3713 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3714 			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3715 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3716 			    hh->atw_tail_dur, hh->atw_head_dur);
3717 
3718 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3719 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3720 			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3721 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3722 
3723 			printf("%s: keyid = %d\n",
3724 			    device_xname(sc->sc_dev), hh->atw_keyid);
3725 
3726 			atw_dump_pkt(ifp, m0);
3727 		}
3728 #endif /* ATW_DEBUG */
3729 
3730 		dmamap = txs->txs_dmamap;
3731 
3732 		/*
3733 		 * Load the DMA map.  Copy and try (once) again if the packet
3734 		 * didn't fit in the alloted number of segments.
3735 		 */
3736 		for (first = 1;
3737 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3738 			 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 && first;
3739 		     first = 0) {
3740 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3741 			if (m == NULL) {
3742 				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3743 				break;
3744 			}
3745 			if (m0->m_pkthdr.len > MHLEN) {
3746 				MCLGET(m, M_DONTWAIT);
3747 				if ((m->m_flags & M_EXT) == 0) {
3748 					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3749 					    "cluster\n");
3750 					m_freem(m);
3751 					break;
3752 				}
3753 			}
3754 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3755 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3756 			m_freem(m0);
3757 			m0 = m;
3758 			m = NULL;
3759 		}
3760 		if (error != 0) {
3761 			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3762 			    "error = %d\n", error);
3763 			m_freem(m0);
3764 			break;
3765 		}
3766 
3767 		/*
3768 		 * Ensure we have enough descriptors free to describe
3769 		 * the packet.
3770 		 */
3771 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3772 			/*
3773 			 * Not enough free descriptors to transmit
3774 			 * this packet.  Unload the DMA map and
3775 			 * drop the packet.  Notify the upper layer
3776 			 * that there are no more slots left.
3777 			 *
3778 			 * XXX We could allocate an mbuf and copy, but
3779 			 * XXX it is worth it?
3780 			 */
3781 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3782 			m_freem(m0);
3783 			break;
3784 		}
3785 
3786 		/*
3787 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3788 		 */
3789 
3790 		/* Sync the DMA map. */
3791 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3792 		    BUS_DMASYNC_PREWRITE);
3793 
3794 		/* XXX arbitrary retry limit; 8 because I have seen it in
3795 		 * use already and maybe 0 means "no tries" !
3796 		 */
3797 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3798 
3799 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3800 		    device_xname(sc->sc_dev), rate * 5));
3801 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3802 
3803 		/*
3804 		 * Initialize the transmit descriptors.
3805 		 */
3806 		for (nexttx = sc->sc_txnext, seg = 0;
3807 		     seg < dmamap->dm_nsegs;
3808 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3809 			/*
3810 			 * If this is the first descriptor we're
3811 			 * enqueueing, don't set the OWN bit just
3812 			 * yet.  That could cause a race condition.
3813 			 * We'll do it below.
3814 			 */
3815 			txd = &sc->sc_txdescs[nexttx];
3816 			txd->at_ctl = ctl |
3817 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3818 
3819 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3820 			txd->at_flags =
3821 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3822 					   ATW_TXFLAG_TBS1_MASK)) |
3823 			    ((nexttx == (ATW_NTXDESC - 1))
3824 			        ? htole32(ATW_TXFLAG_TER) : 0);
3825 			lasttx = nexttx;
3826 		}
3827 
3828 		/* Set `first segment' and `last segment' appropriately. */
3829 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3830 		    htole32(ATW_TXFLAG_FS);
3831 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3832 
3833 #ifdef ATW_DEBUG
3834 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3835 			printf("     txsoft %p transmit chain:\n", txs);
3836 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3837 				printf("     descriptor %d:\n", seg);
3838 				printf("       at_ctl:   0x%08x\n",
3839 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3840 				printf("       at_flags:      0x%08x\n",
3841 				    le32toh(sc->sc_txdescs[seg].at_flags));
3842 				printf("       at_buf1: 0x%08x\n",
3843 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3844 				printf("       at_buf2: 0x%08x\n",
3845 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3846 				if (seg == lasttx)
3847 					break;
3848 			}
3849 		}
3850 #endif
3851 
3852 		/* Sync the descriptors we're using. */
3853 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3854 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3855 
3856 		/*
3857 		 * Store a pointer to the packet so we can free it later,
3858 		 * and remember what txdirty will be once the packet is
3859 		 * done.
3860 		 */
3861 		txs->txs_mbuf = m0;
3862 		txs->txs_firstdesc = sc->sc_txnext;
3863 		txs->txs_lastdesc = lasttx;
3864 		txs->txs_ndescs = dmamap->dm_nsegs;
3865 
3866 		/* Advance the tx pointer. */
3867 		sc->sc_txfree -= dmamap->dm_nsegs;
3868 		sc->sc_txnext = nexttx;
3869 
3870 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3871 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3872 	}
3873 
3874 	if (sc->sc_txfree != ofree) {
3875 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3876 		    device_xname(sc->sc_dev), lasttx, firsttx));
3877 		/*
3878 		 * Cause a transmit interrupt to happen on the
3879 		 * last packet we enqueued.
3880 		 */
3881 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3882 		ATW_CDTXSYNC(sc, lasttx, 1,
3883 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3884 
3885 		/*
3886 		 * The entire packet chain is set up.  Give the
3887 		 * first descriptor to the chip now.
3888 		 */
3889 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3890 		ATW_CDTXSYNC(sc, firsttx, 1,
3891 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3892 
3893 		/* Wake up the transmitter. */
3894 		ATW_WRITE(sc, ATW_TDR, 0x1);
3895 
3896 		if (txs == NULL || sc->sc_txfree == 0)
3897 			ifp->if_flags |= IFF_OACTIVE;
3898 
3899 		/* Set a watchdog timer in case the chip flakes out. */
3900 		sc->sc_tx_timer = 5;
3901 		ifp->if_timer = 1;
3902 	}
3903 }
3904 
3905 /*
3906  * atw_ioctl:		[ifnet interface function]
3907  *
3908  *	Handle control requests from the operator.
3909  */
3910 int
3911 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3912 {
3913 	struct atw_softc *sc = ifp->if_softc;
3914 	struct ieee80211req *ireq;
3915 	int s, error = 0;
3916 
3917 	s = splnet();
3918 
3919 	switch (cmd) {
3920 	case SIOCSIFFLAGS:
3921 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3922 			break;
3923 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
3924 		case IFF_UP | IFF_RUNNING:
3925 			/*
3926 			 * To avoid rescanning another access point,
3927 			 * do not call atw_init() here.  Instead,
3928 			 * only reflect media settings.
3929 			 */
3930 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3931 				atw_filter_setup(sc);
3932 			break;
3933 		case IFF_UP:
3934 			error = atw_init(ifp);
3935 			break;
3936 		case IFF_RUNNING:
3937 			atw_stop(ifp, 1);
3938 			break;
3939 		case 0:
3940 			break;
3941 		}
3942 		break;
3943 	case SIOCADDMULTI:
3944 	case SIOCDELMULTI:
3945 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3946 			if (ifp->if_flags & IFF_RUNNING)
3947 				atw_filter_setup(sc); /* do not rescan */
3948 			error = 0;
3949 		}
3950 		break;
3951 	case SIOCS80211:
3952 		ireq = data;
3953 		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3954 			if ((error = kauth_authorize_network(curlwp->l_cred,
3955 			    KAUTH_NETWORK_INTERFACE,
3956 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3957 			    (void *)cmd, NULL)) != 0)
3958 				break;
3959 			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3960 			      ireq->i_val <= IEEE80211_FRAG_MAX))
3961 				error = EINVAL;
3962 			else
3963 				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3964 			break;
3965 		}
3966 		/*FALLTHROUGH*/
3967 	default:
3968 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3969 		if (error == ENETRESET || error == ERESTART) {
3970 			if (is_running(ifp))
3971 				error = atw_init(ifp);
3972 			else
3973 				error = 0;
3974 		}
3975 		break;
3976 	}
3977 
3978 	/* Try to get more packets going. */
3979 	if (device_is_active(sc->sc_dev))
3980 		atw_start(ifp);
3981 
3982 	splx(s);
3983 	return (error);
3984 }
3985 
3986 static int
3987 atw_media_change(struct ifnet *ifp)
3988 {
3989 	int error;
3990 
3991 	error = ieee80211_media_change(ifp);
3992 	if (error == ENETRESET) {
3993 		if (is_running(ifp))
3994 			error = atw_init(ifp);
3995 		else
3996 			error = 0;
3997 	}
3998 	return error;
3999 }
4000