xref: /netbsd-src/sys/dev/ic/atw.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: atw.c,v 1.162 2017/10/23 09:25:31 msaitoh Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.162 2017/10/23 09:25:31 msaitoh Exp $");
38 
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50 #include <sys/kauth.h>
51 #include <sys/time.h>
52 #include <sys/proc.h>
53 #include <sys/atomic.h>
54 #include <lib/libkern/libkern.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #include <net/bpf.h>
68 
69 #include <sys/bus.h>
70 #include <sys/intr.h>
71 
72 #include <dev/ic/atwreg.h>
73 #include <dev/ic/rf3000reg.h>
74 #include <dev/ic/si4136reg.h>
75 #include <dev/ic/atwvar.h>
76 #include <dev/ic/smc93cx6var.h>
77 
78 /* XXX TBD open questions
79  *
80  *
81  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
82  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
83  * handle this for me?
84  *
85  */
86 /* device attachment
87  *
88  *    print TOFS[012]
89  *
90  * device initialization
91  *
92  *    clear ATW_FRCTL_MAXPSP to disable max power saving
93  *    set ATW_TXBR_ALCUPDATE to enable ALC
94  *    set TOFS[012]? (hope not)
95  *    disable rx/tx
96  *    set ATW_PAR_SWR (software reset)
97  *    wait for ATW_PAR_SWR clear
98  *    disable interrupts
99  *    ack status register
100  *    enable interrupts
101  *
102  * rx/tx initialization
103  *
104  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
105  *    allocate and init descriptor rings
106  *    write ATW_PAR_DSL (descriptor skip length)
107  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
108  *    write ATW_NAR_SQ for one/both transmit descriptor rings
109  *    write ATW_NAR_SQ for one/both transmit descriptor rings
110  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
111  *
112  * rx/tx end
113  *
114  *    stop DMA
115  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
116  *    flush tx w/ ATW_NAR_HF
117  *
118  * scan
119  *
120  *    initialize rx/tx
121  *
122  * BSS join: (re)association response
123  *
124  *    set ATW_FRCTL_AID
125  *
126  * optimizations ???
127  *
128  */
129 
130 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
131 
132 int atw_pseudo_milli = 1;
133 int atw_magic_delay1 = 100 * 1000;
134 int atw_magic_delay2 = 100 * 1000;
135 /* more magic multi-millisecond delays (units: microseconds) */
136 int atw_nar_delay = 20 * 1000;
137 int atw_magic_delay4 = 10 * 1000;
138 int atw_rf_delay1 = 10 * 1000;
139 int atw_rf_delay2 = 5 * 1000;
140 int atw_plcphd_delay = 2 * 1000;
141 int atw_bbp_io_enable_delay = 20 * 1000;
142 int atw_bbp_io_disable_delay = 2 * 1000;
143 int atw_writewep_delay = 1000;
144 int atw_beacon_len_adjust = 4;
145 int atw_dwelltime = 200;
146 int atw_xindiv2 = 0;
147 
148 #ifdef ATW_DEBUG
149 int atw_debug = 0;
150 
151 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
152 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
153 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
154 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
155 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
156 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
157 
158 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
159 static void	atw_print_regs(struct atw_softc *, const char *);
160 
161 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
162 #	ifdef ATW_BBPDEBUG
163 static void	atw_rf3000_print(struct atw_softc *);
164 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
165 #	endif /* ATW_BBPDEBUG */
166 
167 #	ifdef ATW_SYNDEBUG
168 static void	atw_si4126_print(struct atw_softc *);
169 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
170 #	endif /* ATW_SYNDEBUG */
171 #define __atwdebugused	/* empty */
172 #else
173 #define ATW_DPRINTF(x)
174 #define ATW_DPRINTF2(x)
175 #define ATW_DPRINTF3(x)
176 #define	DPRINTF(sc, x)	/* nothing */
177 #define	DPRINTF2(sc, x)	/* nothing */
178 #define	DPRINTF3(sc, x)	/* nothing */
179 #define __atwdebugused	__unused
180 #endif
181 
182 /* ifnet methods */
183 int	atw_init(struct ifnet *);
184 int	atw_ioctl(struct ifnet *, u_long, void *);
185 void	atw_start(struct ifnet *);
186 void	atw_stop(struct ifnet *, int);
187 void	atw_watchdog(struct ifnet *);
188 
189 /* Device attachment */
190 void	atw_attach(struct atw_softc *);
191 int	atw_detach(struct atw_softc *);
192 static void atw_evcnt_attach(struct atw_softc *);
193 static void atw_evcnt_detach(struct atw_softc *);
194 
195 /* Rx/Tx process */
196 int	atw_add_rxbuf(struct atw_softc *, int);
197 void	atw_idle(struct atw_softc *, u_int32_t);
198 void	atw_rxdrain(struct atw_softc *);
199 void	atw_txdrain(struct atw_softc *);
200 
201 /* Device (de)activation and power state */
202 void	atw_reset(struct atw_softc *);
203 
204 /* Interrupt handlers */
205 void	atw_softintr(void *);
206 void	atw_linkintr(struct atw_softc *, u_int32_t);
207 void	atw_rxintr(struct atw_softc *);
208 void	atw_txintr(struct atw_softc *, uint32_t);
209 
210 /* 802.11 state machine */
211 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
212 static void	atw_next_scan(void *);
213 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
214 		              struct ieee80211_node *, int, int, u_int32_t);
215 static int	atw_tune(struct atw_softc *);
216 
217 /* Device initialization */
218 static void	atw_bbp_io_init(struct atw_softc *);
219 static void	atw_cfp_init(struct atw_softc *);
220 static void	atw_cmdr_init(struct atw_softc *);
221 static void	atw_ifs_init(struct atw_softc *);
222 static void	atw_nar_init(struct atw_softc *);
223 static void	atw_response_times_init(struct atw_softc *);
224 static void	atw_rf_reset(struct atw_softc *);
225 static void	atw_test1_init(struct atw_softc *);
226 static void	atw_tofs0_init(struct atw_softc *);
227 static void	atw_tofs2_init(struct atw_softc *);
228 static void	atw_txlmt_init(struct atw_softc *);
229 static void	atw_wcsr_init(struct atw_softc *);
230 
231 /* Key management */
232 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
233 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
234 	const u_int8_t[IEEE80211_ADDR_LEN]);
235 static void atw_key_update_begin(struct ieee80211com *);
236 static void atw_key_update_end(struct ieee80211com *);
237 
238 /* RAM/ROM utilities */
239 static void	atw_clear_sram(struct atw_softc *);
240 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
241 static int	atw_read_srom(struct atw_softc *);
242 
243 /* BSS setup */
244 static void	atw_predict_beacon(struct atw_softc *);
245 static void	atw_start_beacon(struct atw_softc *, int);
246 static void	atw_write_bssid(struct atw_softc *);
247 static void	atw_write_ssid(struct atw_softc *);
248 static void	atw_write_sup_rates(struct atw_softc *);
249 static void	atw_write_wep(struct atw_softc *);
250 
251 /* Media */
252 static int	atw_media_change(struct ifnet *);
253 
254 static void	atw_filter_setup(struct atw_softc *);
255 
256 /* 802.11 utilities */
257 static uint64_t			atw_get_tsft(struct atw_softc *);
258 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
259 				                   uint32_t);
260 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
261 static void			atw_node_free(struct ieee80211_node *);
262 
263 /*
264  * Tuner/transceiver/modem
265  */
266 static void	atw_bbp_io_enable(struct atw_softc *, int);
267 
268 /* RFMD RF3000 Baseband Processor */
269 static int	atw_rf3000_init(struct atw_softc *);
270 static int	atw_rf3000_tune(struct atw_softc *, u_int);
271 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
272 
273 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
274 static void	atw_si4126_tune(struct atw_softc *, u_int);
275 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
276 
277 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
278 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
279 
280 const char *atw_tx_state[] = {
281 	"STOPPED",
282 	"RUNNING - read descriptor",
283 	"RUNNING - transmitting",
284 	"RUNNING - filling fifo",	/* XXX */
285 	"SUSPENDED",
286 	"RUNNING -- write descriptor",
287 	"RUNNING -- write last descriptor",
288 	"RUNNING - fifo full"
289 };
290 
291 const char *atw_rx_state[] = {
292 	"STOPPED",
293 	"RUNNING - read descriptor",
294 	"RUNNING - check this packet, pre-fetch next",
295 	"RUNNING - wait for reception",
296 	"SUSPENDED",
297 	"RUNNING - write descriptor",
298 	"RUNNING - flush fifo",
299 	"RUNNING - fifo drain"
300 };
301 
302 static inline int
303 is_running(struct ifnet *ifp)
304 {
305 	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
306 }
307 
308 int
309 atw_activate(device_t self, enum devact act)
310 {
311 	struct atw_softc *sc = device_private(self);
312 
313 	switch (act) {
314 	case DVACT_DEACTIVATE:
315 		if_deactivate(&sc->sc_if);
316 		return 0;
317 	default:
318 		return EOPNOTSUPP;
319 	}
320 }
321 
322 bool
323 atw_suspend(device_t self, const pmf_qual_t *qual)
324 {
325 	struct atw_softc *sc = device_private(self);
326 
327 	atw_rxdrain(sc);
328 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
329 
330 	return true;
331 }
332 
333 /* Returns -1 on failure. */
334 static int
335 atw_read_srom(struct atw_softc *sc)
336 {
337 	struct seeprom_descriptor sd;
338 	uint32_t test0, fail_bits;
339 
340 	(void)memset(&sd, 0, sizeof(sd));
341 
342 	test0 = ATW_READ(sc, ATW_TEST0);
343 
344 	switch (sc->sc_rev) {
345 	case ATW_REVISION_BA:
346 	case ATW_REVISION_CA:
347 		fail_bits = ATW_TEST0_EPNE;
348 		break;
349 	default:
350 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
351 		break;
352 	}
353 	if ((test0 & fail_bits) != 0) {
354 		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
355 		return -1;
356 	}
357 
358 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
359 	case ATW_TEST0_EPTYP_93c66:
360 		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
361 		sc->sc_sromsz = 512;
362 		sd.sd_chip = C56_66;
363 		break;
364 	case ATW_TEST0_EPTYP_93c46:
365 		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
366 		sc->sc_sromsz = 128;
367 		sd.sd_chip = C46;
368 		break;
369 	default:
370 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
371 		    device_xname(sc->sc_dev),
372 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
373 		return -1;
374 	}
375 
376 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
377 
378 	if (sc->sc_srom == NULL) {
379 		aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
380 		return -1;
381 	}
382 
383 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
384 
385 	/* ADM8211 has a single 32-bit register for controlling the
386 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
387 	 * "ready" bit. The ADM8211 input/output sense is the reverse
388 	 * of read_seeprom's.
389 	 */
390 	sd.sd_tag = sc->sc_st;
391 	sd.sd_bsh = sc->sc_sh;
392 	sd.sd_regsize = 4;
393 	sd.sd_control_offset = ATW_SPR;
394 	sd.sd_status_offset = ATW_SPR;
395 	sd.sd_dataout_offset = ATW_SPR;
396 	sd.sd_CK = ATW_SPR_SCLK;
397 	sd.sd_CS = ATW_SPR_SCS;
398 	sd.sd_DI = ATW_SPR_SDO;
399 	sd.sd_DO = ATW_SPR_SDI;
400 	sd.sd_MS = ATW_SPR_SRS;
401 	sd.sd_RDY = 0;
402 
403 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
404 		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
405 		free(sc->sc_srom, M_DEVBUF);
406 		return -1;
407 	}
408 #ifdef ATW_DEBUG
409 	{
410 		int i;
411 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
412 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
413 			if (((i % 8) == 0) && (i != 0)) {
414 				ATW_DPRINTF(("\n\t"));
415 			}
416 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
417 		}
418 		ATW_DPRINTF(("\n"));
419 	}
420 #endif /* ATW_DEBUG */
421 	return 0;
422 }
423 
424 #ifdef ATW_DEBUG
425 static void
426 atw_print_regs(struct atw_softc *sc, const char *where)
427 {
428 #define PRINTREG(sc, reg) \
429 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
430 	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
431 
432 	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
433 
434 	PRINTREG(sc, ATW_PAR);
435 	PRINTREG(sc, ATW_FRCTL);
436 	PRINTREG(sc, ATW_TDR);
437 	PRINTREG(sc, ATW_WTDP);
438 	PRINTREG(sc, ATW_RDR);
439 	PRINTREG(sc, ATW_WRDP);
440 	PRINTREG(sc, ATW_RDB);
441 	PRINTREG(sc, ATW_CSR3A);
442 	PRINTREG(sc, ATW_TDBD);
443 	PRINTREG(sc, ATW_TDBP);
444 	PRINTREG(sc, ATW_STSR);
445 	PRINTREG(sc, ATW_CSR5A);
446 	PRINTREG(sc, ATW_NAR);
447 	PRINTREG(sc, ATW_CSR6A);
448 	PRINTREG(sc, ATW_IER);
449 	PRINTREG(sc, ATW_CSR7A);
450 	PRINTREG(sc, ATW_LPC);
451 	PRINTREG(sc, ATW_TEST1);
452 	PRINTREG(sc, ATW_SPR);
453 	PRINTREG(sc, ATW_TEST0);
454 	PRINTREG(sc, ATW_WCSR);
455 	PRINTREG(sc, ATW_WPDR);
456 	PRINTREG(sc, ATW_GPTMR);
457 	PRINTREG(sc, ATW_GPIO);
458 	PRINTREG(sc, ATW_BBPCTL);
459 	PRINTREG(sc, ATW_SYNCTL);
460 	PRINTREG(sc, ATW_PLCPHD);
461 	PRINTREG(sc, ATW_MMIWADDR);
462 	PRINTREG(sc, ATW_MMIRADDR1);
463 	PRINTREG(sc, ATW_MMIRADDR2);
464 	PRINTREG(sc, ATW_TXBR);
465 	PRINTREG(sc, ATW_CSR15A);
466 	PRINTREG(sc, ATW_ALCSTAT);
467 	PRINTREG(sc, ATW_TOFS2);
468 	PRINTREG(sc, ATW_CMDR);
469 	PRINTREG(sc, ATW_PCIC);
470 	PRINTREG(sc, ATW_PMCSR);
471 	PRINTREG(sc, ATW_PAR0);
472 	PRINTREG(sc, ATW_PAR1);
473 	PRINTREG(sc, ATW_MAR0);
474 	PRINTREG(sc, ATW_MAR1);
475 	PRINTREG(sc, ATW_ATIMDA0);
476 	PRINTREG(sc, ATW_ABDA1);
477 	PRINTREG(sc, ATW_BSSID0);
478 	PRINTREG(sc, ATW_TXLMT);
479 	PRINTREG(sc, ATW_MIBCNT);
480 	PRINTREG(sc, ATW_BCNT);
481 	PRINTREG(sc, ATW_TSFTH);
482 	PRINTREG(sc, ATW_TSC);
483 	PRINTREG(sc, ATW_SYNRF);
484 	PRINTREG(sc, ATW_BPLI);
485 	PRINTREG(sc, ATW_CAP0);
486 	PRINTREG(sc, ATW_CAP1);
487 	PRINTREG(sc, ATW_RMD);
488 	PRINTREG(sc, ATW_CFPP);
489 	PRINTREG(sc, ATW_TOFS0);
490 	PRINTREG(sc, ATW_TOFS1);
491 	PRINTREG(sc, ATW_IFST);
492 	PRINTREG(sc, ATW_RSPT);
493 	PRINTREG(sc, ATW_TSFTL);
494 	PRINTREG(sc, ATW_WEPCTL);
495 	PRINTREG(sc, ATW_WESK);
496 	PRINTREG(sc, ATW_WEPCNT);
497 	PRINTREG(sc, ATW_MACTEST);
498 	PRINTREG(sc, ATW_FER);
499 	PRINTREG(sc, ATW_FEMR);
500 	PRINTREG(sc, ATW_FPSR);
501 	PRINTREG(sc, ATW_FFER);
502 #undef PRINTREG
503 }
504 #endif /* ATW_DEBUG */
505 
506 /*
507  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
508  */
509 void
510 atw_attach(struct atw_softc *sc)
511 {
512 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
513 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
514 	};
515 	struct ieee80211com *ic = &sc->sc_ic;
516 	struct ifnet *ifp = &sc->sc_if;
517 	int country_code, error, i, nrate, srom_major;
518 	u_int32_t reg;
519 	static const char *type_strings[] = {"Intersil (not supported)",
520 	    "RFMD", "Marvel (not supported)"};
521 
522 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
523 
524 	sc->sc_soft_ih = softint_establish(SOFTINT_NET, atw_softintr, sc);
525 	if (sc->sc_soft_ih == NULL) {
526 		aprint_error_dev(sc->sc_dev, "unable to establish softint\n");
527 		goto fail_0;
528 	}
529 
530 	sc->sc_txth = atw_txthresh_tab_lo;
531 
532 	SIMPLEQ_INIT(&sc->sc_txfreeq);
533 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
534 
535 #ifdef ATW_DEBUG
536 	atw_print_regs(sc, "atw_attach");
537 #endif /* ATW_DEBUG */
538 
539 	/*
540 	 * Allocate the control data structures, and create and load the
541 	 * DMA map for it.
542 	 */
543 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
544 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
545 	    1, &sc->sc_cdnseg, 0)) != 0) {
546 		aprint_error_dev(sc->sc_dev,
547 		    "unable to allocate control data, error = %d\n",
548 		    error);
549 		goto fail_0;
550 	}
551 
552 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
553 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
554 	    BUS_DMA_COHERENT)) != 0) {
555 		aprint_error_dev(sc->sc_dev,
556 		    "unable to map control data, error = %d\n",
557 		    error);
558 		goto fail_1;
559 	}
560 
561 	if ((error = bus_dmamap_create(sc->sc_dmat,
562 	    sizeof(struct atw_control_data), 1,
563 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
564 		aprint_error_dev(sc->sc_dev,
565 		    "unable to create control data DMA map, error = %d\n",
566 		    error);
567 		goto fail_2;
568 	}
569 
570 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
571 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
572 	    0)) != 0) {
573 		aprint_error_dev(sc->sc_dev,
574 		    "unable to load control data DMA map, error = %d\n", error);
575 		goto fail_3;
576 	}
577 
578 	/*
579 	 * Create the transmit buffer DMA maps.
580 	 */
581 	sc->sc_ntxsegs = ATW_NTXSEGS;
582 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
583 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
584 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
585 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
586 			aprint_error_dev(sc->sc_dev,
587 			    "unable to create tx DMA map %d, error = %d\n", i,
588 			    error);
589 			goto fail_4;
590 		}
591 	}
592 
593 	/*
594 	 * Create the receive buffer DMA maps.
595 	 */
596 	for (i = 0; i < ATW_NRXDESC; i++) {
597 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
598 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
599 			aprint_error_dev(sc->sc_dev,
600 			    "unable to create rx DMA map %d, error = %d\n", i,
601 			    error);
602 			goto fail_5;
603 		}
604 	}
605 	for (i = 0; i < ATW_NRXDESC; i++) {
606 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
607 	}
608 
609 	switch (sc->sc_rev) {
610 	case ATW_REVISION_AB:
611 	case ATW_REVISION_AF:
612 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
613 		break;
614 	case ATW_REVISION_BA:
615 	case ATW_REVISION_CA:
616 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
617 		break;
618 	}
619 
620 	/* Reset the chip to a known state. */
621 	atw_reset(sc);
622 
623 	if (atw_read_srom(sc) == -1)
624 		goto fail_5;
625 
626 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
627 	    ATW_SR_RFTYPE_MASK);
628 
629 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
630 	    ATW_SR_BBPTYPE_MASK);
631 
632 	if (sc->sc_rftype >= __arraycount(type_strings)) {
633 		aprint_error_dev(sc->sc_dev, "unknown RF\n");
634 		goto fail_5;
635 	}
636 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
637 		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
638 		goto fail_5;
639 	}
640 
641 	aprint_normal_dev(sc->sc_dev, "%s RF, %s BBP",
642 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
643 
644 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
645 	 * MARVEL. My bug, or theirs?
646 	 */
647 
648 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
649 
650 	switch (sc->sc_rftype) {
651 	case ATW_RFTYPE_INTERSIL:
652 		reg |= ATW_SYNCTL_CS1;
653 		break;
654 	case ATW_RFTYPE_RFMD:
655 		reg |= ATW_SYNCTL_CS0;
656 		break;
657 	case ATW_RFTYPE_MARVEL:
658 		break;
659 	}
660 
661 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
662 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
663 
664 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
665 
666 	switch (sc->sc_bbptype) {
667 	case ATW_BBPTYPE_INTERSIL:
668 		reg |= ATW_BBPCTL_TWI;
669 		break;
670 	case ATW_BBPTYPE_RFMD:
671 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
672 		    ATW_BBPCTL_CCA_ACTLO;
673 		break;
674 	case ATW_BBPTYPE_MARVEL:
675 		break;
676 	case ATW_C_BBPTYPE_RFMD:
677 		aprint_error_dev(sc->sc_dev,
678 		    "ADM8211C MAC/RFMD BBP not supported yet.\n");
679 		break;
680 	}
681 
682 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
683 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
684 
685 	/*
686 	 * From this point forward, the attachment cannot fail.  A failure
687 	 * before this point releases all resources that may have been
688 	 * allocated.
689 	 */
690 	sc->sc_flags |= ATWF_ATTACHED;
691 
692 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
693 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
694 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
695 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
696 
697 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
698 	    ATW_SR_MAJOR_MASK);
699 
700 	if (srom_major < 2)
701 		sc->sc_rf3000_options1 = 0;
702 	else if (sc->sc_rev == ATW_REVISION_BA) {
703 		sc->sc_rf3000_options1 =
704 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
705 		    ATW_SR_CR28_MASK);
706 	} else
707 		sc->sc_rf3000_options1 = 0;
708 
709 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
710 	    ATW_SR_CR29_MASK);
711 
712 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
713 	    ATW_SR_CTRY_MASK);
714 
715 #define ADD_CHANNEL(_ic, _chan) do {					\
716 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
717 	_ic->ic_channels[_chan].ic_freq =				\
718 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
719 } while (0)
720 
721 	/* Find available channels */
722 	switch (country_code) {
723 	case COUNTRY_MMK2:	/* 1-14 */
724 		ADD_CHANNEL(ic, 14);
725 		/*FALLTHROUGH*/
726 	case COUNTRY_ETSI:	/* 1-13 */
727 		for (i = 1; i <= 13; i++)
728 			ADD_CHANNEL(ic, i);
729 		break;
730 	case COUNTRY_FCC:	/* 1-11 */
731 	case COUNTRY_IC:	/* 1-11 */
732 		for (i = 1; i <= 11; i++)
733 			ADD_CHANNEL(ic, i);
734 		break;
735 	case COUNTRY_MMK:	/* 14 */
736 		ADD_CHANNEL(ic, 14);
737 		break;
738 	case COUNTRY_FRANCE:	/* 10-13 */
739 		for (i = 10; i <= 13; i++)
740 			ADD_CHANNEL(ic, i);
741 		break;
742 	default:	/* assume channels 10-11 */
743 	case COUNTRY_SPAIN:	/* 10-11 */
744 		for (i = 10; i <= 11; i++)
745 			ADD_CHANNEL(ic, i);
746 		break;
747 	}
748 
749 	/* Read the MAC address. */
750 	reg = ATW_READ(sc, ATW_PAR0);
751 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
752 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
753 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
754 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
755 	reg = ATW_READ(sc, ATW_PAR1);
756 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
757 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
758 
759 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
760 		aprint_error_dev(sc->sc_dev,
761 		    "could not get mac address, attach failed\n");
762 		goto fail_5;
763 	}
764 
765 	aprint_normal(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
766 
767 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
768 	ifp->if_softc = sc;
769 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
770 	    IFF_NOTRAILERS;
771 	ifp->if_ioctl = atw_ioctl;
772 	ifp->if_start = atw_start;
773 	ifp->if_watchdog = atw_watchdog;
774 	ifp->if_init = atw_init;
775 	ifp->if_stop = atw_stop;
776 	IFQ_SET_READY(&ifp->if_snd);
777 
778 	ic->ic_ifp = ifp;
779 	ic->ic_phytype = IEEE80211_T_DS;
780 	ic->ic_opmode = IEEE80211_M_STA;
781 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
782 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
783 
784 	nrate = 0;
785 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
786 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
787 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
788 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
789 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
790 
791 	/*
792 	 * Call MI attach routines.
793 	 */
794 
795 	error = if_initialize(ifp);
796 	if (error != 0) {
797 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
798 		    error);
799 		goto fail_5;
800 	}
801 	ieee80211_ifattach(ic);
802 	/* Use common softint-based if_input */
803 	ifp->if_percpuq = if_percpuq_create(ifp);
804 	if_register(ifp);
805 
806 	atw_evcnt_attach(sc);
807 
808 	sc->sc_newstate = ic->ic_newstate;
809 	ic->ic_newstate = atw_newstate;
810 
811 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
812 	ic->ic_recv_mgmt = atw_recv_mgmt;
813 
814 	sc->sc_node_free = ic->ic_node_free;
815 	ic->ic_node_free = atw_node_free;
816 
817 	sc->sc_node_alloc = ic->ic_node_alloc;
818 	ic->ic_node_alloc = atw_node_alloc;
819 
820 	ic->ic_crypto.cs_key_delete = atw_key_delete;
821 	ic->ic_crypto.cs_key_set = atw_key_set;
822 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
823 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
824 
825 	/* possibly we should fill in our own sc_send_prresp, since
826 	 * the ADM8211 is probably sending probe responses in ad hoc
827 	 * mode.
828 	 */
829 
830 	/* complete initialization */
831 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
832 	callout_init(&sc->sc_scan_ch, 0);
833 
834 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
835 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
836 
837 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
838 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
839 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
840 
841 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
842 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
843 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
844 
845 	ieee80211_announce(ic);
846 	return;
847 
848 	/*
849 	 * Free any resources we've allocated during the failed attach
850 	 * attempt.  Do this in reverse order and fall through.
851 	 */
852  fail_5:
853 	for (i = 0; i < ATW_NRXDESC; i++) {
854 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
855 			continue;
856 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
857 	}
858  fail_4:
859 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
860 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
861 			continue;
862 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
863 	}
864 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
865  fail_3:
866 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
867  fail_2:
868 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
869 	    sizeof(struct atw_control_data));
870  fail_1:
871 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
872  fail_0:
873 	if (sc->sc_soft_ih != NULL) {
874 		softint_disestablish(sc->sc_soft_ih);
875 		sc->sc_soft_ih = NULL;
876 	}
877 }
878 
879 static struct ieee80211_node *
880 atw_node_alloc(struct ieee80211_node_table *nt)
881 {
882 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
883 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
884 
885 	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
886 	return ni;
887 }
888 
889 static void
890 atw_node_free(struct ieee80211_node *ni)
891 {
892 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
893 
894 	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
895 	    ether_sprintf(ni->ni_bssid)));
896 	(*sc->sc_node_free)(ni);
897 }
898 
899 
900 static void
901 atw_test1_reset(struct atw_softc *sc)
902 {
903 	switch (sc->sc_rev) {
904 	case ATW_REVISION_BA:
905 		if (1 /* XXX condition on transceiver type */) {
906 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
907 		}
908 		break;
909 	case ATW_REVISION_CA:
910 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
911 		break;
912 	default:
913 		break;
914 	}
915 }
916 
917 /*
918  * atw_reset:
919  *
920  *	Perform a soft reset on the ADM8211.
921  */
922 void
923 atw_reset(struct atw_softc *sc)
924 {
925 	int i;
926 	uint32_t lpc __atwdebugused;
927 
928 	ATW_WRITE(sc, ATW_NAR, 0x0);
929 	DELAY(atw_nar_delay);
930 
931 	/* Reference driver has a cryptic remark indicating that this might
932 	 * power-on the chip.  I know that it turns off power-saving....
933 	 */
934 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
935 
936 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
937 
938 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
939 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
940 			break;
941 		DELAY(atw_pseudo_milli);
942 	}
943 
944 	/* ... and then pause 100ms longer for good measure. */
945 	DELAY(atw_magic_delay1);
946 
947 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
948 
949 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
950 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
951 
952 	/*
953 	 * Initialize the PCI Access Register.
954 	 */
955 	sc->sc_busmode = ATW_PAR_PBL_8DW;
956 
957 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
958 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
959 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
960 
961 	atw_test1_reset(sc);
962 
963 	/* Turn off maximum power saving, etc. */
964 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
965 
966 	DELAY(atw_magic_delay2);
967 
968 	/* Recall EEPROM. */
969 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
970 
971 	DELAY(atw_magic_delay4);
972 
973 	lpc = ATW_READ(sc, ATW_LPC);
974 
975 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
976 
977 	/* A reset seems to affect the SRAM contents, so put them into
978 	 * a known state.
979 	 */
980 	atw_clear_sram(sc);
981 
982 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
983 }
984 
985 static void
986 atw_clear_sram(struct atw_softc *sc)
987 {
988 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
989 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
990 	/* XXX not for revision 0x20. */
991 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
992 }
993 
994 /* TBD atw_init
995  *
996  * set MAC based on ic->ic_bss->myaddr
997  * write WEP keys
998  * set TX rate
999  */
1000 
1001 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1002  * without receiving a beacon with the preferred BSSID & SSID.
1003  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1004  */
1005 static void
1006 atw_wcsr_init(struct atw_softc *sc)
1007 {
1008 	uint32_t wcsr;
1009 
1010 	wcsr = ATW_READ(sc, ATW_WCSR);
1011 	wcsr &= ~ATW_WCSR_BLN_MASK;
1012 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1013 	/* We always want to wake up on link loss or TSFT out of range */
1014 	wcsr |= ATW_WCSR_LSOE|ATW_WCSR_TSFTWE;
1015 	ATW_WRITE(sc, ATW_WCSR, wcsr);
1016 
1017 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1018 	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1019 }
1020 
1021 /* Turn off power management.  Set Rx store-and-forward mode. */
1022 static void
1023 atw_cmdr_init(struct atw_softc *sc)
1024 {
1025 	uint32_t cmdr;
1026 	cmdr = ATW_READ(sc, ATW_CMDR);
1027 	cmdr &= ~ATW_CMDR_APM;
1028 	cmdr |= ATW_CMDR_RTE;
1029 	cmdr &= ~ATW_CMDR_DRT_MASK;
1030 	cmdr |= ATW_CMDR_DRT_SF;
1031 
1032 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1033 }
1034 
1035 static void
1036 atw_tofs2_init(struct atw_softc *sc)
1037 {
1038 	uint32_t tofs2;
1039 	/* XXX this magic can probably be figured out from the RFMD docs */
1040 #ifndef ATW_REFSLAVE
1041 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1042 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1043 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1044 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1045 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1046 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1047 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1048 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1049 #else
1050 	/* XXX new magic from reference driver source */
1051 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1052 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1053 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1054 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1055 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1056 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1057 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1058 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1059 #endif
1060 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1061 }
1062 
1063 static void
1064 atw_nar_init(struct atw_softc *sc)
1065 {
1066 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1067 }
1068 
1069 static void
1070 atw_txlmt_init(struct atw_softc *sc)
1071 {
1072 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1073 	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1074 }
1075 
1076 static void
1077 atw_test1_init(struct atw_softc *sc)
1078 {
1079 	uint32_t test1;
1080 
1081 	test1 = ATW_READ(sc, ATW_TEST1);
1082 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1083 	/* XXX magic 0x1 */
1084 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1085 	ATW_WRITE(sc, ATW_TEST1, test1);
1086 }
1087 
1088 static void
1089 atw_rf_reset(struct atw_softc *sc)
1090 {
1091 	/* XXX this resets an Intersil RF front-end? */
1092 	/* TBD condition on Intersil RFType? */
1093 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1094 	DELAY(atw_rf_delay1);
1095 	ATW_WRITE(sc, ATW_SYNRF, 0);
1096 	DELAY(atw_rf_delay2);
1097 }
1098 
1099 /* Set 16 TU max duration for the contention-free period (CFP). */
1100 static void
1101 atw_cfp_init(struct atw_softc *sc)
1102 {
1103 	uint32_t cfpp;
1104 
1105 	cfpp = ATW_READ(sc, ATW_CFPP);
1106 	cfpp &= ~ATW_CFPP_CFPMD;
1107 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1108 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1109 }
1110 
1111 static void
1112 atw_tofs0_init(struct atw_softc *sc)
1113 {
1114 	/* XXX I guess that the Cardbus clock is 22 MHz?
1115 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1116 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1117 	 * very clear on this point. It says in the datasheet that it is
1118 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1119 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1120 	 * these values. These values are also the power-on default.
1121 	 */
1122 	ATW_WRITE(sc, ATW_TOFS0,
1123 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1124 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1125 }
1126 
1127 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1128 static void
1129 atw_ifs_init(struct atw_softc *sc)
1130 {
1131 	uint32_t ifst;
1132 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1133 	 * Go figure.
1134 	 */
1135 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1136 	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1137 	             ATW_IFST_SIFS_MASK) |
1138 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1139 	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1140 
1141 	ATW_WRITE(sc, ATW_IFST, ifst);
1142 }
1143 
1144 static void
1145 atw_response_times_init(struct atw_softc *sc)
1146 {
1147 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1148 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1149 	 * to pass after it transmits a frame that requires a response;
1150 	 * it waits at most SIFS + MART microseconds for the response.
1151 	 * Surely this is not the ACK timeout?
1152 	 */
1153 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1154 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1155 }
1156 
1157 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1158  * engines read and write baseband registers after Rx and before
1159  * Tx, respectively.
1160  */
1161 static void
1162 atw_bbp_io_init(struct atw_softc *sc)
1163 {
1164 	uint32_t mmiraddr2;
1165 
1166 	/* XXX The reference driver does this, but is it *really*
1167 	 * necessary?
1168 	 */
1169 	switch (sc->sc_rev) {
1170 	case ATW_REVISION_AB:
1171 	case ATW_REVISION_AF:
1172 		mmiraddr2 = 0x0;
1173 		break;
1174 	default:
1175 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1176 		mmiraddr2 &=
1177 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1178 		break;
1179 	}
1180 
1181 	switch (sc->sc_bbptype) {
1182 	case ATW_BBPTYPE_INTERSIL:
1183 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1184 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1185 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1186 		break;
1187 	case ATW_BBPTYPE_MARVEL:
1188 		/* TBD find out the Marvel settings. */
1189 		break;
1190 	case ATW_BBPTYPE_RFMD:
1191 	default:
1192 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1193 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1194 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1195 		break;
1196 	}
1197 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1198 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1199 }
1200 
1201 /*
1202  * atw_init:		[ ifnet interface function ]
1203  *
1204  *	Initialize the interface.  Must be called at splnet().
1205  */
1206 int
1207 atw_init(struct ifnet *ifp)
1208 {
1209 	struct atw_softc *sc = ifp->if_softc;
1210 	struct ieee80211com *ic = &sc->sc_ic;
1211 	struct atw_txsoft *txs;
1212 	struct atw_rxsoft *rxs;
1213 	int i, error = 0;
1214 
1215 	if (device_is_active(sc->sc_dev)) {
1216 		/*
1217 		 * Cancel any pending I/O.
1218 		 */
1219 		atw_stop(ifp, 0);
1220 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1221 	           !device_is_active(sc->sc_dev))
1222 		return 0;
1223 
1224 	/*
1225 	 * Reset the chip to a known state.
1226 	 */
1227 	atw_reset(sc);
1228 
1229 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1230 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1231 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1232 
1233 	atw_wcsr_init(sc);
1234 
1235 	atw_cmdr_init(sc);
1236 
1237 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1238 	 *
1239 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1240 	 */
1241 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1242 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1243 
1244 	atw_tofs2_init(sc);
1245 
1246 	atw_nar_init(sc);
1247 
1248 	atw_txlmt_init(sc);
1249 
1250 	atw_test1_init(sc);
1251 
1252 	atw_rf_reset(sc);
1253 
1254 	atw_cfp_init(sc);
1255 
1256 	atw_tofs0_init(sc);
1257 
1258 	atw_ifs_init(sc);
1259 
1260 	/* XXX Fall asleep after one second of inactivity.
1261 	 * XXX A frame may only dribble in for 65536us.
1262 	 */
1263 	ATW_WRITE(sc, ATW_RMD,
1264 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1265 
1266 	atw_response_times_init(sc);
1267 
1268 	atw_bbp_io_init(sc);
1269 
1270 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1271 
1272 	if ((error = atw_rf3000_init(sc)) != 0)
1273 		goto out;
1274 
1275 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1276 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1277 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1278 
1279 	/*
1280 	 * Initialize the transmit descriptor ring.
1281 	 */
1282 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1283 	for (i = 0; i < ATW_NTXDESC; i++) {
1284 		sc->sc_txdescs[i].at_ctl = 0;
1285 		/* no transmit chaining */
1286 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1287 		sc->sc_txdescs[i].at_buf2 =
1288 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1289 	}
1290 	/* use ring mode */
1291 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1292 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1293 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1294 	sc->sc_txfree = ATW_NTXDESC;
1295 	sc->sc_txnext = 0;
1296 
1297 	/*
1298 	 * Initialize the transmit job descriptors.
1299 	 */
1300 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1301 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1302 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1303 		txs = &sc->sc_txsoft[i];
1304 		txs->txs_mbuf = NULL;
1305 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1306 	}
1307 
1308 	/*
1309 	 * Initialize the receive descriptor and receive job
1310 	 * descriptor rings.
1311 	 */
1312 	for (i = 0; i < ATW_NRXDESC; i++) {
1313 		rxs = &sc->sc_rxsoft[i];
1314 		if (rxs->rxs_mbuf == NULL) {
1315 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1316 				aprint_error_dev(sc->sc_dev,
1317 				    "unable to allocate or map rx buffer %d, "
1318 				    "error = %d\n", i, error);
1319 				/*
1320 				 * XXX Should attempt to run with fewer receive
1321 				 * XXX buffers instead of just failing.
1322 				 */
1323 				atw_rxdrain(sc);
1324 				goto out;
1325 			}
1326 		} else
1327 			atw_init_rxdesc(sc, i);
1328 	}
1329 	sc->sc_rxptr = 0;
1330 
1331 	/*
1332 	 * Initialize the interrupt mask and enable interrupts.
1333 	 */
1334 	/* normal interrupts */
1335 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1336 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1337 
1338 	/* abnormal interrupts */
1339 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1340 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1341 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1342 
1343 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1344 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1345 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1346 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1347 	    ATW_INTR_TRT;
1348 
1349 	sc->sc_linkint_mask &= sc->sc_inten;
1350 	sc->sc_rxint_mask &= sc->sc_inten;
1351 	sc->sc_txint_mask &= sc->sc_inten;
1352 
1353 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1354 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1355 
1356 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1357 	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1358 
1359 	/*
1360 	 * Give the transmit and receive rings to the ADM8211.
1361 	 */
1362 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1363 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1364 
1365 	sc->sc_txthresh = 0;
1366 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1367 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1368 
1369 	/* common 802.11 configuration */
1370 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1371 	switch (ic->ic_opmode) {
1372 	case IEEE80211_M_STA:
1373 		break;
1374 	case IEEE80211_M_AHDEMO: /* XXX */
1375 	case IEEE80211_M_IBSS:
1376 		ic->ic_flags |= IEEE80211_F_IBSSON;
1377 		/*FALLTHROUGH*/
1378 	case IEEE80211_M_HOSTAP: /* XXX */
1379 		break;
1380 	case IEEE80211_M_MONITOR: /* XXX */
1381 		break;
1382 	}
1383 
1384 	switch (ic->ic_opmode) {
1385 	case IEEE80211_M_AHDEMO:
1386 	case IEEE80211_M_HOSTAP:
1387 #ifndef IEEE80211_NO_HOSTAP
1388 		ic->ic_bss->ni_intval = ic->ic_lintval;
1389 		ic->ic_bss->ni_rssi = 0;
1390 		ic->ic_bss->ni_rstamp = 0;
1391 #endif /* !IEEE80211_NO_HOSTAP */
1392 		break;
1393 	default:					/* XXX */
1394 		break;
1395 	}
1396 
1397 	sc->sc_wepctl = 0;
1398 
1399 	atw_write_ssid(sc);
1400 	atw_write_sup_rates(sc);
1401 	atw_write_wep(sc);
1402 
1403 	ic->ic_state = IEEE80211_S_INIT;
1404 
1405 	/*
1406 	 * Set the receive filter.  This will start the transmit and
1407 	 * receive processes.
1408 	 */
1409 	atw_filter_setup(sc);
1410 
1411 	/*
1412 	 * Start the receive process.
1413 	 */
1414 	ATW_WRITE(sc, ATW_RDR, 0x1);
1415 
1416 	/*
1417 	 * Note that the interface is now running.
1418 	 */
1419 	ifp->if_flags |= IFF_RUNNING;
1420 
1421 	/* send no beacons, yet. */
1422 	atw_start_beacon(sc, 0);
1423 
1424 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1425 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1426 	else
1427 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1428  out:
1429 	if (error) {
1430 		ifp->if_flags &= ~IFF_RUNNING;
1431 		sc->sc_tx_timer = 0;
1432 		ifp->if_timer = 0;
1433 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1434 	}
1435 #ifdef ATW_DEBUG
1436 	atw_print_regs(sc, "end of init");
1437 #endif /* ATW_DEBUG */
1438 
1439 	return (error);
1440 }
1441 
1442 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1443  *           0: MAC control of RF3000/Si4126.
1444  *
1445  * Applies power, or selects RF front-end? Sets reset condition.
1446  *
1447  * TBD support non-RFMD BBP, non-SiLabs synth.
1448  */
1449 static void
1450 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1451 {
1452 	if (enable) {
1453 		ATW_WRITE(sc, ATW_SYNRF,
1454 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1455 		DELAY(atw_bbp_io_enable_delay);
1456 	} else {
1457 		ATW_WRITE(sc, ATW_SYNRF, 0);
1458 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1459 	}
1460 }
1461 
1462 static int
1463 atw_tune(struct atw_softc *sc)
1464 {
1465 	int rc;
1466 	u_int chan;
1467 	struct ieee80211com *ic = &sc->sc_ic;
1468 
1469 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1470 	if (chan == IEEE80211_CHAN_ANY)
1471 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1472 
1473 	if (chan == sc->sc_cur_chan)
1474 		return 0;
1475 
1476 	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1477 	    sc->sc_cur_chan, chan));
1478 
1479 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1480 
1481 	atw_si4126_tune(sc, chan);
1482 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1483 		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1484 		    chan);
1485 
1486 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1487 	DELAY(atw_nar_delay);
1488 	ATW_WRITE(sc, ATW_RDR, 0x1);
1489 
1490 	if (rc == 0) {
1491 		sc->sc_cur_chan = chan;
1492 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1493 		    htole16(ic->ic_curchan->ic_freq);
1494 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1495 		    htole16(ic->ic_curchan->ic_flags);
1496 	}
1497 
1498 	return rc;
1499 }
1500 
1501 #ifdef ATW_SYNDEBUG
1502 static void
1503 atw_si4126_print(struct atw_softc *sc)
1504 {
1505 	struct ifnet *ifp = &sc->sc_if;
1506 	u_int addr, val;
1507 
1508 	val = 0;
1509 
1510 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1511 		return;
1512 
1513 	for (addr = 0; addr <= 8; addr++) {
1514 		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1515 		if (atw_si4126_read(sc, addr, &val) == 0) {
1516 			printf("<unknown> (quitting print-out)\n");
1517 			break;
1518 		}
1519 		printf("%05x\n", val);
1520 	}
1521 }
1522 #endif /* ATW_SYNDEBUG */
1523 
1524 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1525  *
1526  * The RF/IF synthesizer produces two reference frequencies for
1527  * the RF2948B transceiver.  The first frequency the RF2948B requires
1528  * is two times the so-called "intermediate frequency" (IF). Since
1529  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1530  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1531  * frequency required by the transceiver is the radio frequency
1532  * (RF). This is a superheterodyne transceiver; for f(chan) the
1533  * center frequency of the channel we are tuning, RF = f(chan) -
1534  * IF.
1535  *
1536  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1537  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1538  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1539  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1540  */
1541 static void
1542 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1543 {
1544 	u_int mhz;
1545 	u_int R;
1546 	u_int32_t gpio;
1547 	u_int16_t gain;
1548 
1549 #ifdef ATW_SYNDEBUG
1550 	atw_si4126_print(sc);
1551 #endif /* ATW_SYNDEBUG */
1552 
1553 	if (chan == 14)
1554 		mhz = 2484;
1555 	else
1556 		mhz = 2412 + 5 * (chan - 1);
1557 
1558 	/* Tune IF to 748 MHz to suit the IF LO input of the
1559 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1560          * because an IF in 526 MHz - 952 MHz is allowed.
1561 	 *
1562 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1563 	 * range of 2-25 MHz. SiLabs tells me that this is not
1564 	 * strictly necessary.
1565 	 */
1566 
1567 	if (atw_xindiv2)
1568 		R = 44;
1569 	else
1570 		R = 88;
1571 
1572 	/* Power-up RF, IF synthesizers. */
1573 	atw_si4126_write(sc, SI4126_POWER,
1574 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1575 
1576 	/* set LPWR, too? */
1577 	atw_si4126_write(sc, SI4126_MAIN,
1578 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1579 
1580 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1581 	 * set KP2 to 1.
1582 	 *
1583 	 * REFDIF This is different from the reference driver, which
1584 	 * always sets SI4126_GAIN to 0.
1585 	 */
1586 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1587 
1588 	atw_si4126_write(sc, SI4126_GAIN, gain);
1589 
1590 	/* XIN = 44 MHz.
1591 	 *
1592 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1593 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1594 	 *
1595 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1596 	 * so that 1496/88 * 44 MHz = 748 MHz.
1597 	 */
1598 	atw_si4126_write(sc, SI4126_IFN, 1496);
1599 
1600 	atw_si4126_write(sc, SI4126_IFR, R);
1601 
1602 #ifndef ATW_REFSLAVE
1603 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1604 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1605 	 * which has no RF1!
1606 	 */
1607 	atw_si4126_write(sc, SI4126_RF1R, R);
1608 
1609 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1610 #endif
1611 
1612 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1613 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1614 	 * Now let's multiply it to mhz. So mhz - IF = N.
1615 	 */
1616 	atw_si4126_write(sc, SI4126_RF2R, R);
1617 
1618 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1619 
1620 	/* wait 100us from power-up for RF, IF to settle */
1621 	DELAY(100);
1622 
1623 	gpio = ATW_READ(sc, ATW_GPIO);
1624 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1625 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1626 
1627 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1628 		/* Set a Prism RF front-end to a special mode for channel 14?
1629 		 *
1630 		 * Apparently the SMC2635W needs this, although I don't think
1631 		 * it has a Prism RF.
1632 		 */
1633 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1634 	}
1635 	ATW_WRITE(sc, ATW_GPIO, gpio);
1636 
1637 #ifdef ATW_SYNDEBUG
1638 	atw_si4126_print(sc);
1639 #endif /* ATW_SYNDEBUG */
1640 }
1641 
1642 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1643  * diversity.
1644  *
1645  * !!!
1646  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1647  * !!!
1648  */
1649 static int
1650 atw_rf3000_init(struct atw_softc *sc)
1651 {
1652 	int rc = 0;
1653 
1654 	atw_bbp_io_enable(sc, 1);
1655 
1656 	/* CCA is acquisition sensitive */
1657 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1658 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1659 
1660 	if (rc != 0)
1661 		goto out;
1662 
1663 	/* enable diversity */
1664 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1665 
1666 	if (rc != 0)
1667 		goto out;
1668 
1669 	/* sensible setting from a binary-only driver */
1670 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1671 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1672 
1673 	if (rc != 0)
1674 		goto out;
1675 
1676 	/* magic from a binary-only driver */
1677 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1678 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1679 
1680 	if (rc != 0)
1681 		goto out;
1682 
1683 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1684 
1685 	if (rc != 0)
1686 		goto out;
1687 
1688 	/* XXX Reference driver remarks that Abocom sets this to 50.
1689 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1690 	 * in the "reserved" area of register RF3000_OPTIONS1.
1691 	 */
1692 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1693 
1694 	if (rc != 0)
1695 		goto out;
1696 
1697 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1698 
1699 	if (rc != 0)
1700 		goto out;
1701 
1702 out:
1703 	atw_bbp_io_enable(sc, 0);
1704 	return rc;
1705 }
1706 
1707 #ifdef ATW_BBPDEBUG
1708 static void
1709 atw_rf3000_print(struct atw_softc *sc)
1710 {
1711 	struct ifnet *ifp = &sc->sc_if;
1712 	u_int addr, val;
1713 
1714 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1715 		return;
1716 
1717 	for (addr = 0x01; addr <= 0x15; addr++) {
1718 		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1719 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1720 			printf("<unknown> (quitting print-out)\n");
1721 			break;
1722 		}
1723 		printf("%08x\n", val);
1724 	}
1725 }
1726 #endif /* ATW_BBPDEBUG */
1727 
1728 /* Set the power settings on the BBP for channel `chan'. */
1729 static int
1730 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1731 {
1732 	int rc = 0;
1733 	u_int32_t reg;
1734 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1735 
1736 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1737 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1738 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1739 
1740 	/* odd channels: LSB, even channels: MSB */
1741 	if (chan % 2 == 1) {
1742 		txpower &= 0xFF;
1743 		lpf_cutoff &= 0xFF;
1744 		lna_gs_thresh &= 0xFF;
1745 	} else {
1746 		txpower >>= 8;
1747 		lpf_cutoff >>= 8;
1748 		lna_gs_thresh >>= 8;
1749 	}
1750 
1751 #ifdef ATW_BBPDEBUG
1752 	atw_rf3000_print(sc);
1753 #endif /* ATW_BBPDEBUG */
1754 
1755 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1756 	    "lna_gs_thresh %02x\n",
1757 	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1758 
1759 	atw_bbp_io_enable(sc, 1);
1760 
1761 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1762 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1763 		goto out;
1764 
1765 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1766 		goto out;
1767 
1768 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1769 		goto out;
1770 
1771 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1772 
1773 	if (rc != 0)
1774 		goto out;
1775 
1776 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1777 
1778 	if (rc != 0)
1779 		goto out;
1780 
1781 #ifdef ATW_BBPDEBUG
1782 	atw_rf3000_print(sc);
1783 #endif /* ATW_BBPDEBUG */
1784 
1785 out:
1786 	atw_bbp_io_enable(sc, 0);
1787 
1788 	/* set beacon, rts, atim transmit power */
1789 	reg = ATW_READ(sc, ATW_PLCPHD);
1790 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1791 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1792 	    ATW_PLCPHD_SERVICE_MASK);
1793 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1794 	DELAY(atw_plcphd_delay);
1795 
1796 	return rc;
1797 }
1798 
1799 /* Write a register on the RF3000 baseband processor using the
1800  * registers provided by the ADM8211 for this purpose.
1801  *
1802  * Return 0 on success.
1803  */
1804 static int
1805 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1806 {
1807 	u_int32_t reg;
1808 	int i;
1809 
1810 	reg = sc->sc_bbpctl_wr |
1811 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1812 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1813 
1814 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1815 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1816 		DELAY(2 * atw_pseudo_milli);
1817 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1818 			break;
1819 	}
1820 
1821 	if (i < 0) {
1822 		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1823 		return ETIMEDOUT;
1824 	}
1825 	return 0;
1826 }
1827 
1828 /* Read a register on the RF3000 baseband processor using the registers
1829  * the ADM8211 provides for this purpose.
1830  *
1831  * The 7-bit register address is addr.  Record the 8-bit data in the register
1832  * in *val.
1833  *
1834  * Return 0 on success.
1835  *
1836  * XXX This does not seem to work. The ADM8211 must require more or
1837  * different magic to read the chip than to write it. Possibly some
1838  * of the magic I have derived from a binary-only driver concerns
1839  * the "chip address" (see the RF3000 manual).
1840  */
1841 #ifdef ATW_BBPDEBUG
1842 static int
1843 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1844 {
1845 	u_int32_t reg;
1846 	int i;
1847 
1848 	for (i = 1000; --i >= 0; ) {
1849 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1850 			break;
1851 		DELAY(100);
1852 	}
1853 
1854 	if (i < 0) {
1855 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1856 		    device_xname(sc->sc_dev));
1857 		return ETIMEDOUT;
1858 	}
1859 
1860 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1861 
1862 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1863 
1864 	for (i = 1000; --i >= 0; ) {
1865 		DELAY(100);
1866 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1867 			break;
1868 	}
1869 
1870 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1871 
1872 	if (i < 0) {
1873 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1874 		    device_xname(sc->sc_dev), reg);
1875 		return ETIMEDOUT;
1876 	}
1877 	if (val != NULL)
1878 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1879 	return 0;
1880 }
1881 #endif /* ATW_BBPDEBUG */
1882 
1883 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1884  * provided by the ADM8211 for that purpose.
1885  *
1886  * val is 18 bits of data, and val is the 4-bit address of the register.
1887  *
1888  * Return 0 on success.
1889  */
1890 static void
1891 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1892 {
1893 	uint32_t bits, mask, reg;
1894 	const int nbits = 22;
1895 
1896 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1897 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1898 
1899 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1900 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1901 
1902 	reg = ATW_SYNRF_SELSYN;
1903 	/* reference driver: reset Si4126 serial bus to initial
1904 	 * conditions?
1905 	 */
1906 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1907 	ATW_WRITE(sc, ATW_SYNRF, reg);
1908 
1909 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1910 		if ((bits & mask) != 0)
1911 			reg |= ATW_SYNRF_SYNDATA;
1912 		else
1913 			reg &= ~ATW_SYNRF_SYNDATA;
1914 		ATW_WRITE(sc, ATW_SYNRF, reg);
1915 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1916 		ATW_WRITE(sc, ATW_SYNRF, reg);
1917 	}
1918 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1919 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1920 }
1921 
1922 /* Read 18-bit data from the 4-bit address addr in Si4126
1923  * RF synthesizer and write the data to *val. Return 0 on success.
1924  *
1925  * XXX This does not seem to work. The ADM8211 must require more or
1926  * different magic to read the chip than to write it.
1927  */
1928 #ifdef ATW_SYNDEBUG
1929 static int
1930 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1931 {
1932 	u_int32_t reg;
1933 	int i;
1934 
1935 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1936 
1937 	for (i = 1000; --i >= 0; ) {
1938 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1939 			break;
1940 		DELAY(100);
1941 	}
1942 
1943 	if (i < 0) {
1944 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1945 		    device_xname(sc->sc_dev));
1946 		return ETIMEDOUT;
1947 	}
1948 
1949 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1950 
1951 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1952 
1953 	for (i = 1000; --i >= 0; ) {
1954 		DELAY(100);
1955 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1956 			break;
1957 	}
1958 
1959 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1960 
1961 	if (i < 0) {
1962 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1963 		    device_xname(sc->sc_dev), reg);
1964 		return ETIMEDOUT;
1965 	}
1966 	if (val != NULL)
1967 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1968 		                       ATW_SYNCTL_DATA_MASK);
1969 	return 0;
1970 }
1971 #endif /* ATW_SYNDEBUG */
1972 
1973 /* XXX is the endianness correct? test. */
1974 #define	atw_calchash(addr) \
1975 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1976 
1977 /*
1978  * atw_filter_setup:
1979  *
1980  *	Set the ADM8211's receive filter.
1981  */
1982 static void
1983 atw_filter_setup(struct atw_softc *sc)
1984 {
1985 	struct ieee80211com *ic = &sc->sc_ic;
1986 	struct ethercom *ec = &sc->sc_ec;
1987 	struct ifnet *ifp = &sc->sc_if;
1988 	int hash;
1989 	u_int32_t hashes[2];
1990 	struct ether_multi *enm;
1991 	struct ether_multistep step;
1992 
1993 	/* According to comments in tlp_al981_filter_setup
1994 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1995 	 * multicast filter to be set while it is running.  Hopefully
1996 	 * the ADM8211 is not the same!
1997 	 */
1998 	if ((ifp->if_flags & IFF_RUNNING) != 0)
1999 		atw_idle(sc, ATW_NAR_SR);
2000 
2001 	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2002 	ifp->if_flags &= ~IFF_ALLMULTI;
2003 
2004 	/* XXX in scan mode, do not filter packets.  Maybe this is
2005 	 * unnecessary.
2006 	 */
2007 	if (ic->ic_state == IEEE80211_S_SCAN ||
2008 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2009 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2010 		goto allmulti;
2011 	}
2012 
2013 	hashes[0] = hashes[1] = 0x0;
2014 
2015 	/*
2016 	 * Program the 64-bit multicast hash filter.
2017 	 */
2018 	ETHER_FIRST_MULTI(step, ec, enm);
2019 	while (enm != NULL) {
2020 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2021 		    ETHER_ADDR_LEN) != 0)
2022 			goto allmulti;
2023 
2024 		hash = atw_calchash(enm->enm_addrlo);
2025 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2026 		ETHER_NEXT_MULTI(step, enm);
2027 		sc->sc_opmode |= ATW_NAR_MM;
2028 	}
2029 	ifp->if_flags &= ~IFF_ALLMULTI;
2030 	goto setit;
2031 
2032 allmulti:
2033 	sc->sc_opmode |= ATW_NAR_MM;
2034 	ifp->if_flags |= IFF_ALLMULTI;
2035 	hashes[0] = hashes[1] = 0xffffffff;
2036 
2037 setit:
2038 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2039 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2040 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2041 	DELAY(atw_nar_delay);
2042 	ATW_WRITE(sc, ATW_RDR, 0x1);
2043 
2044 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2045 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2046 }
2047 
2048 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2049  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2050  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2051  * no beacon with the preferred BSSID and SSID in the number of
2052  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2053  */
2054 static void
2055 atw_write_bssid(struct atw_softc *sc)
2056 {
2057 	struct ieee80211com *ic = &sc->sc_ic;
2058 	u_int8_t *bssid;
2059 
2060 	bssid = ic->ic_bss->ni_bssid;
2061 
2062 	ATW_WRITE(sc, ATW_BSSID0,
2063 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2064 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2065 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2066 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2067 
2068 	ATW_WRITE(sc, ATW_ABDA1,
2069 	    (ATW_READ(sc, ATW_ABDA1) &
2070 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2071 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2072 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2073 
2074 	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2075 	    ether_sprintf(sc->sc_bssid)));
2076 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2077 
2078 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2079 }
2080 
2081 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2082  * 16-bit word.
2083  */
2084 static void
2085 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2086 {
2087 	u_int i;
2088 	u_int8_t *ptr;
2089 
2090 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2091 
2092 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2093 
2094 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2095 
2096 	ptr = &sc->sc_sram[ofs];
2097 
2098 	for (i = 0; i < buflen; i += 2) {
2099 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2100 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2101 		DELAY(atw_writewep_delay);
2102 
2103 		ATW_WRITE(sc, ATW_WESK,
2104 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2105 		DELAY(atw_writewep_delay);
2106 	}
2107 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2108 
2109 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2110 		int n_octets = 0;
2111 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2112 		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2113 		for (i = 0; i < buflen; i++) {
2114 			printf(" %02x", ptr[i]);
2115 			if (++n_octets % 24 == 0)
2116 				printf("\n");
2117 		}
2118 		if (n_octets % 24 != 0)
2119 			printf("\n");
2120 	}
2121 }
2122 
2123 static int
2124 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2125 {
2126 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2127 	u_int keyix = k->wk_keyix;
2128 
2129 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2130 
2131 	if (keyix >= IEEE80211_WEP_NKID)
2132 		return 0;
2133 	if (k->wk_keylen != 0)
2134 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2135 
2136 	return 1;
2137 }
2138 
2139 static int
2140 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2141 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2142 {
2143 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2144 
2145 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2146 
2147 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2148 		return 0;
2149 
2150 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2151 
2152 	return 1;
2153 }
2154 
2155 static void
2156 atw_key_update_begin(struct ieee80211com *ic)
2157 {
2158 #ifdef ATW_DEBUG
2159 	struct ifnet *ifp = ic->ic_ifp;
2160 	struct atw_softc *sc = ifp->if_softc;
2161 #endif
2162 
2163 	DPRINTF(sc, ("%s:\n", __func__));
2164 }
2165 
2166 static void
2167 atw_key_update_end(struct ieee80211com *ic)
2168 {
2169 	struct ifnet *ifp = ic->ic_ifp;
2170 	struct atw_softc *sc = ifp->if_softc;
2171 
2172 	DPRINTF(sc, ("%s:\n", __func__));
2173 
2174 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2175 		return;
2176 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2177 		return;
2178 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2179 	atw_write_wep(sc);
2180 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2181 	DELAY(atw_nar_delay);
2182 	ATW_WRITE(sc, ATW_RDR, 0x1);
2183 }
2184 
2185 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2186 static void
2187 atw_write_wep(struct atw_softc *sc)
2188 {
2189 #if 0
2190 	struct ieee80211com *ic = &sc->sc_ic;
2191 	u_int32_t reg;
2192 	int i;
2193 #endif
2194 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2195 	u_int8_t buf[IEEE80211_WEP_NKID]
2196 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2197 
2198 	sc->sc_wepctl = 0;
2199 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2200 
2201 	memset(&buf[0][0], 0, sizeof(buf));
2202 
2203 #if 0
2204 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2205 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2206 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2207 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2208 			buf[i][1] = ATW_WEP_ENABLED;
2209 		} else {
2210 			buf[i][1] = 0;
2211 			continue;
2212 		}
2213 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2214 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2215 		    ic->ic_nw_keys[i].wk_keylen - 1);
2216 	}
2217 
2218 	reg = ATW_READ(sc, ATW_MACTEST);
2219 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2220 	reg &= ~ATW_MACTEST_KEYID_MASK;
2221 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2222 	ATW_WRITE(sc, ATW_MACTEST, reg);
2223 
2224 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2225 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2226 
2227 	switch (sc->sc_rev) {
2228 	case ATW_REVISION_AB:
2229 	case ATW_REVISION_AF:
2230 		/* Bypass WEP on Rx. */
2231 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2232 		break;
2233 	default:
2234 		break;
2235 	}
2236 #endif
2237 
2238 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2239 	    sizeof(buf));
2240 
2241 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2242 }
2243 
2244 static void
2245 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2246     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2247 {
2248 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2249 
2250 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2251 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2252 		return;
2253 
2254 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2255 
2256 	switch (subtype) {
2257 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2258 	case IEEE80211_FC0_SUBTYPE_BEACON:
2259 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2260 		    ic->ic_state == IEEE80211_S_RUN) {
2261 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2262 				(void)ieee80211_ibss_merge(ni);
2263 		}
2264 		break;
2265 	default:
2266 		break;
2267 	}
2268 	return;
2269 }
2270 
2271 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2272  * In ad hoc mode, the SSID is written to the beacons sent by the
2273  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2274  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2275  * indications.
2276  */
2277 static void
2278 atw_write_ssid(struct atw_softc *sc)
2279 {
2280 	struct ieee80211com *ic = &sc->sc_ic;
2281 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2282 	 * it only expects the element length, not its ID.
2283 	 */
2284 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2285 
2286 	memset(buf, 0, sizeof(buf));
2287 	buf[0] = ic->ic_bss->ni_esslen;
2288 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2289 
2290 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2291 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2292 }
2293 
2294 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2295  * In ad hoc mode, the supported rates are written to beacons sent by the
2296  * ADM8211.
2297  */
2298 static void
2299 atw_write_sup_rates(struct atw_softc *sc)
2300 {
2301 	struct ieee80211com *ic = &sc->sc_ic;
2302 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2303 	 * supported rates
2304 	 */
2305 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2306 
2307 	memset(buf, 0, sizeof(buf));
2308 
2309 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2310 
2311 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2312 	    ic->ic_bss->ni_rates.rs_nrates);
2313 
2314 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2315 }
2316 
2317 /* Start/stop sending beacons. */
2318 void
2319 atw_start_beacon(struct atw_softc *sc, int start)
2320 {
2321 	struct ieee80211com *ic = &sc->sc_ic;
2322 	uint16_t chan;
2323 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2324 	size_t len;
2325 
2326 	if (!device_is_active(sc->sc_dev))
2327 		return;
2328 
2329 	/* start beacons */
2330 	len = sizeof(struct ieee80211_frame) +
2331 	    8 /* timestamp */ + 2 /* beacon interval */ +
2332 	    2 /* capability info */ +
2333 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2334 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2335 	    3 /* DS parameters */ +
2336 	    IEEE80211_CRC_LEN;
2337 
2338 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2339 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2340 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2341 
2342 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2343 	ATW_WRITE(sc, ATW_CAP1, cap1);
2344 
2345 	if (!start)
2346 		return;
2347 
2348 	/* TBD use ni_capinfo */
2349 
2350 	capinfo = 0;
2351 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2352 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2353 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2354 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2355 
2356 	switch (ic->ic_opmode) {
2357 	case IEEE80211_M_IBSS:
2358 		len += 4; /* IBSS parameters */
2359 		capinfo |= IEEE80211_CAPINFO_IBSS;
2360 		break;
2361 	case IEEE80211_M_HOSTAP:
2362 		/* XXX 6-byte minimum TIM */
2363 		len += atw_beacon_len_adjust;
2364 		capinfo |= IEEE80211_CAPINFO_ESS;
2365 		break;
2366 	default:
2367 		return;
2368 	}
2369 
2370 	/* set listen interval
2371 	 * XXX do software units agree w/ hardware?
2372 	 */
2373 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2374 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2375 
2376 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2377 
2378 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2379 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2380 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2381 
2382 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2383 	ATW_WRITE(sc, ATW_BPLI, bpli);
2384 	ATW_WRITE(sc, ATW_CAP0, cap0);
2385 	ATW_WRITE(sc, ATW_CAP1, cap1);
2386 
2387 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2388 	    device_xname(sc->sc_dev), bcnt));
2389 
2390 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2391 	    device_xname(sc->sc_dev), cap1));
2392 }
2393 
2394 /* Return the 32 lsb of the last TSFT divisible by ival. */
2395 static inline uint32_t
2396 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2397 {
2398 	/* Following the reference driver's lead, I compute
2399 	 *
2400 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2401 	 *
2402 	 * without using 64-bit arithmetic, using the following
2403 	 * relationship:
2404 	 *
2405 	 *     (0x100000000 * H + L) % m
2406 	 *   = ((0x100000000 % m) * H + L) % m
2407 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2408 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2409 	 *   = ((0xffffffff % m + 1) * H + L) % m
2410 	 */
2411 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2412 }
2413 
2414 static uint64_t
2415 atw_get_tsft(struct atw_softc *sc)
2416 {
2417 	int i;
2418 	uint32_t tsfth, tsftl;
2419 	for (i = 0; i < 2; i++) {
2420 		tsfth = ATW_READ(sc, ATW_TSFTH);
2421 		tsftl = ATW_READ(sc, ATW_TSFTL);
2422 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2423 			break;
2424 	}
2425 	return ((uint64_t)tsfth << 32) | tsftl;
2426 }
2427 
2428 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2429  * the ieee80211com.
2430  *
2431  * Predict the next target beacon transmission time (TBTT) and
2432  * write it to the ADM8211.
2433  */
2434 static void
2435 atw_predict_beacon(struct atw_softc *sc)
2436 {
2437 #define TBTTOFS 20 /* TU */
2438 
2439 	struct ieee80211com *ic = &sc->sc_ic;
2440 	uint64_t tsft;
2441 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2442 	union {
2443 		uint64_t	word;
2444 		uint8_t		tstamp[8];
2445 	} u;
2446 
2447 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2448 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2449 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2450 		tsft = atw_get_tsft(sc);
2451 		u.word = htole64(tsft);
2452 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2453 		    sizeof(ic->ic_bss->ni_tstamp));
2454 	} else
2455 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2456 
2457 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2458 
2459 	tsftl = tsft & 0xFFFFFFFF;
2460 	tsfth = tsft >> 32;
2461 
2462 	/* We sent/received the last beacon `past' microseconds
2463 	 * after the interval divided the TSF timer.
2464 	 */
2465 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2466 
2467 	/* Skip ten beacons so that the TBTT cannot pass before
2468 	 * we've programmed it.  Ten is an arbitrary number.
2469 	 */
2470 	tbtt = past_even + ival * 10;
2471 
2472 	ATW_WRITE(sc, ATW_TOFS1,
2473 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2474 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2475 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2476 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2477 #undef TBTTOFS
2478 }
2479 
2480 static void
2481 atw_next_scan(void *arg)
2482 {
2483 	struct atw_softc *sc = arg;
2484 	struct ieee80211com *ic = &sc->sc_ic;
2485 	int s;
2486 
2487 	/* don't call atw_start w/o network interrupts blocked */
2488 	s = splnet();
2489 	if (ic->ic_state == IEEE80211_S_SCAN)
2490 		ieee80211_next_scan(ic);
2491 	splx(s);
2492 }
2493 
2494 /* Synchronize the hardware state with the software state. */
2495 static int
2496 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2497 {
2498 	struct ifnet *ifp = ic->ic_ifp;
2499 	struct atw_softc *sc = ifp->if_softc;
2500 	int error = 0;
2501 
2502 	callout_stop(&sc->sc_scan_ch);
2503 
2504 	switch (nstate) {
2505 	case IEEE80211_S_AUTH:
2506 	case IEEE80211_S_ASSOC:
2507 		atw_write_bssid(sc);
2508 		error = atw_tune(sc);
2509 		break;
2510 	case IEEE80211_S_INIT:
2511 		callout_stop(&sc->sc_scan_ch);
2512 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2513 		atw_start_beacon(sc, 0);
2514 		break;
2515 	case IEEE80211_S_SCAN:
2516 		error = atw_tune(sc);
2517 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2518 		    atw_next_scan, sc);
2519 		break;
2520 	case IEEE80211_S_RUN:
2521 		error = atw_tune(sc);
2522 		atw_write_bssid(sc);
2523 		atw_write_ssid(sc);
2524 		atw_write_sup_rates(sc);
2525 
2526 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2527 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2528 			break;
2529 
2530 		/* set listen interval
2531 		 * XXX do software units agree w/ hardware?
2532 		 */
2533 		ATW_WRITE(sc, ATW_BPLI,
2534 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2535 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2536 			   ATW_BPLI_LI_MASK));
2537 
2538 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2539 		    ATW_READ(sc, ATW_BPLI)));
2540 
2541 		atw_predict_beacon(sc);
2542 
2543 		switch (ic->ic_opmode) {
2544 		case IEEE80211_M_AHDEMO:
2545 		case IEEE80211_M_HOSTAP:
2546 		case IEEE80211_M_IBSS:
2547 			atw_start_beacon(sc, 1);
2548 			break;
2549 		case IEEE80211_M_MONITOR:
2550 		case IEEE80211_M_STA:
2551 			break;
2552 		}
2553 
2554 		break;
2555 	}
2556 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2557 }
2558 
2559 /*
2560  * atw_add_rxbuf:
2561  *
2562  *	Add a receive buffer to the indicated descriptor.
2563  */
2564 int
2565 atw_add_rxbuf(struct atw_softc *sc, int idx)
2566 {
2567 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2568 	struct mbuf *m;
2569 	int error;
2570 
2571 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2572 	if (m == NULL)
2573 		return (ENOBUFS);
2574 
2575 	MCLGET(m, M_DONTWAIT);
2576 	if ((m->m_flags & M_EXT) == 0) {
2577 		m_freem(m);
2578 		return (ENOBUFS);
2579 	}
2580 
2581 	if (rxs->rxs_mbuf != NULL)
2582 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2583 
2584 	rxs->rxs_mbuf = m;
2585 
2586 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2587 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2588 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2589 	if (error) {
2590 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2591 		    idx, error);
2592 		panic("atw_add_rxbuf");	/* XXX */
2593 	}
2594 
2595 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2596 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2597 
2598 	atw_init_rxdesc(sc, idx);
2599 
2600 	return (0);
2601 }
2602 
2603 /*
2604  * Release any queued transmit buffers.
2605  */
2606 void
2607 atw_txdrain(struct atw_softc *sc)
2608 {
2609 	struct atw_txsoft *txs;
2610 
2611 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2612 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2613 		if (txs->txs_mbuf != NULL) {
2614 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2615 			m_freem(txs->txs_mbuf);
2616 			txs->txs_mbuf = NULL;
2617 		}
2618 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2619 		sc->sc_txfree += txs->txs_ndescs;
2620 	}
2621 
2622 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2623 	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2624 		  sc->sc_txfree != ATW_NTXDESC));
2625 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2626 	sc->sc_tx_timer = 0;
2627 }
2628 
2629 /*
2630  * atw_stop:		[ ifnet interface function ]
2631  *
2632  *	Stop transmission on the interface.
2633  */
2634 void
2635 atw_stop(struct ifnet *ifp, int disable)
2636 {
2637 	struct atw_softc *sc = ifp->if_softc;
2638 	struct ieee80211com *ic = &sc->sc_ic;
2639 
2640 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2641 
2642 	if (device_is_active(sc->sc_dev)) {
2643 		/* Disable interrupts. */
2644 		ATW_WRITE(sc, ATW_IER, 0);
2645 
2646 		/* Stop the transmit and receive processes. */
2647 		ATW_WRITE(sc, ATW_NAR, 0);
2648 		DELAY(atw_nar_delay);
2649 		ATW_WRITE(sc, ATW_TDBD, 0);
2650 		ATW_WRITE(sc, ATW_TDBP, 0);
2651 		ATW_WRITE(sc, ATW_RDB, 0);
2652 	}
2653 
2654 	sc->sc_opmode = 0;
2655 
2656 	atw_txdrain(sc);
2657 
2658 	/*
2659 	 * Mark the interface down and cancel the watchdog timer.
2660 	 */
2661 	ifp->if_flags &= ~IFF_RUNNING;
2662 	ifp->if_timer = 0;
2663 
2664 	if (disable)
2665 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2666 }
2667 
2668 /*
2669  * atw_rxdrain:
2670  *
2671  *	Drain the receive queue.
2672  */
2673 void
2674 atw_rxdrain(struct atw_softc *sc)
2675 {
2676 	struct atw_rxsoft *rxs;
2677 	int i;
2678 
2679 	for (i = 0; i < ATW_NRXDESC; i++) {
2680 		rxs = &sc->sc_rxsoft[i];
2681 		if (rxs->rxs_mbuf == NULL)
2682 			continue;
2683 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2684 		m_freem(rxs->rxs_mbuf);
2685 		rxs->rxs_mbuf = NULL;
2686 	}
2687 }
2688 
2689 /*
2690  * atw_detach:
2691  *
2692  *	Detach an ADM8211 interface.
2693  */
2694 int
2695 atw_detach(struct atw_softc *sc)
2696 {
2697 	struct ifnet *ifp = &sc->sc_if;
2698 	struct atw_rxsoft *rxs;
2699 	struct atw_txsoft *txs;
2700 	int i;
2701 
2702 	/*
2703 	 * Succeed now if there isn't any work to do.
2704 	 */
2705 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2706 		return (0);
2707 
2708 	pmf_device_deregister(sc->sc_dev);
2709 
2710 	callout_stop(&sc->sc_scan_ch);
2711 
2712 	ieee80211_ifdetach(&sc->sc_ic);
2713 	if_detach(ifp);
2714 
2715 	for (i = 0; i < ATW_NRXDESC; i++) {
2716 		rxs = &sc->sc_rxsoft[i];
2717 		if (rxs->rxs_mbuf != NULL) {
2718 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2719 			m_freem(rxs->rxs_mbuf);
2720 			rxs->rxs_mbuf = NULL;
2721 		}
2722 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2723 	}
2724 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2725 		txs = &sc->sc_txsoft[i];
2726 		if (txs->txs_mbuf != NULL) {
2727 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2728 			m_freem(txs->txs_mbuf);
2729 			txs->txs_mbuf = NULL;
2730 		}
2731 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2732 	}
2733 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2734 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2735 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2736 	    sizeof(struct atw_control_data));
2737 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2738 
2739 	if (sc->sc_srom)
2740 		free(sc->sc_srom, M_DEVBUF);
2741 
2742 	atw_evcnt_detach(sc);
2743 
2744 	if (sc->sc_soft_ih != NULL) {
2745 		softint_disestablish(sc->sc_soft_ih);
2746 		sc->sc_soft_ih = NULL;
2747 	}
2748 
2749 	return (0);
2750 }
2751 
2752 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2753 bool
2754 atw_shutdown(device_t self, int flags)
2755 {
2756 	struct atw_softc *sc = device_private(self);
2757 
2758 	atw_stop(&sc->sc_if, 1);
2759 	return true;
2760 }
2761 
2762 #if 0
2763 static void
2764 atw_workaround1(struct atw_softc *sc)
2765 {
2766 	uint32_t test1;
2767 
2768 	test1 = ATW_READ(sc, ATW_TEST1);
2769 
2770 	sc->sc_misc_ev.ev_count++;
2771 
2772 	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2773 		sc->sc_rxpkt1in_ev.ev_count++;
2774 		return;
2775 	}
2776 	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2777 	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2778 		sc->sc_rxamatch_ev.ev_count++;
2779 		return;
2780 	}
2781 	sc->sc_workaround1_ev.ev_count++;
2782 	(void)atw_init(&sc->sc_if);
2783 }
2784 #endif
2785 
2786 int
2787 atw_intr(void *arg)
2788 {
2789 	struct atw_softc *sc = arg;
2790 	struct ifnet *ifp = &sc->sc_if;
2791 	uint32_t status;
2792 
2793 #ifdef DEBUG
2794 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2795 		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2796 #endif
2797 
2798 	/*
2799 	 * If the interface isn't running, the interrupt couldn't
2800 	 * possibly have come from us.
2801 	 */
2802 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2803 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2804 		return (0);
2805 
2806 	status = ATW_READ(sc, ATW_STSR);
2807 	if (status == 0)
2808 		return 0;
2809 
2810 	if ((status & sc->sc_inten) == 0) {
2811 		ATW_WRITE(sc, ATW_STSR, status);
2812 		return 0;
2813 	}
2814 
2815 	/* Disable interrupts */
2816 	ATW_WRITE(sc, ATW_IER, 0);
2817 
2818 	softint_schedule(sc->sc_soft_ih);
2819 	return 1;
2820 }
2821 
2822 void
2823 atw_softintr(void *arg)
2824 {
2825 	struct atw_softc *sc = arg;
2826 	struct ifnet *ifp = &sc->sc_if;
2827 	uint32_t status, rxstatus, txstatus, linkstatus;
2828 	int txthresh, s;
2829 
2830 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2831 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2832 		return;
2833 
2834 	for (;;) {
2835 		status = ATW_READ(sc, ATW_STSR);
2836 
2837 		if (status)
2838 			ATW_WRITE(sc, ATW_STSR, status);
2839 
2840 #ifdef ATW_DEBUG
2841 #define PRINTINTR(flag) do { \
2842 	if ((status & flag) != 0) { \
2843 		printf("%s" #flag, delim); \
2844 		delim = ","; \
2845 	} \
2846 } while (0)
2847 
2848 		if (atw_debug > 1 && status) {
2849 			const char *delim = "<";
2850 
2851 			printf("%s: reg[STSR] = %x",
2852 			    device_xname(sc->sc_dev), status);
2853 
2854 			PRINTINTR(ATW_INTR_FBE);
2855 			PRINTINTR(ATW_INTR_LINKOFF);
2856 			PRINTINTR(ATW_INTR_LINKON);
2857 			PRINTINTR(ATW_INTR_RCI);
2858 			PRINTINTR(ATW_INTR_RDU);
2859 			PRINTINTR(ATW_INTR_REIS);
2860 			PRINTINTR(ATW_INTR_RPS);
2861 			PRINTINTR(ATW_INTR_TCI);
2862 			PRINTINTR(ATW_INTR_TDU);
2863 			PRINTINTR(ATW_INTR_TLT);
2864 			PRINTINTR(ATW_INTR_TPS);
2865 			PRINTINTR(ATW_INTR_TRT);
2866 			PRINTINTR(ATW_INTR_TUF);
2867 			PRINTINTR(ATW_INTR_BCNTC);
2868 			PRINTINTR(ATW_INTR_ATIME);
2869 			PRINTINTR(ATW_INTR_TBTT);
2870 			PRINTINTR(ATW_INTR_TSCZ);
2871 			PRINTINTR(ATW_INTR_TSFTF);
2872 			printf(">\n");
2873 		}
2874 #undef PRINTINTR
2875 #endif /* ATW_DEBUG */
2876 
2877 		if ((status & sc->sc_inten) == 0)
2878 			break;
2879 
2880 		rxstatus = status & sc->sc_rxint_mask;
2881 		txstatus = status & sc->sc_txint_mask;
2882 		linkstatus = status & sc->sc_linkint_mask;
2883 
2884 		if (linkstatus) {
2885 			atw_linkintr(sc, linkstatus);
2886 		}
2887 
2888 		if (rxstatus) {
2889 			/* Grab any new packets. */
2890 			atw_rxintr(sc);
2891 
2892 			if (rxstatus & ATW_INTR_RDU) {
2893 				printf("%s: receive ring overrun\n",
2894 				    device_xname(sc->sc_dev));
2895 				/* Get the receive process going again. */
2896 				ATW_WRITE(sc, ATW_RDR, 0x1);
2897 			}
2898 		}
2899 
2900 		if (txstatus) {
2901 			/* Sweep up transmit descriptors. */
2902 			atw_txintr(sc, txstatus);
2903 
2904 			if (txstatus & ATW_INTR_TLT) {
2905 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2906 				    device_xname(sc->sc_dev)));
2907 				(void)atw_init(&sc->sc_if);
2908 			}
2909 
2910 			if (txstatus & ATW_INTR_TRT) {
2911 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2912 				    device_xname(sc->sc_dev)));
2913 			}
2914 
2915 			/* If Tx under-run, increase our transmit threshold
2916 			 * if another is available.
2917 			 */
2918 			txthresh = sc->sc_txthresh + 1;
2919 			if ((txstatus & ATW_INTR_TUF) &&
2920 			    sc->sc_txth[txthresh].txth_name != NULL) {
2921 				/* Idle the transmit process. */
2922 				atw_idle(sc, ATW_NAR_ST);
2923 
2924 				sc->sc_txthresh = txthresh;
2925 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2926 				sc->sc_opmode |=
2927 				    sc->sc_txth[txthresh].txth_opmode;
2928 				printf("%s: transmit underrun; new "
2929 				    "threshold: %s\n", device_xname(sc->sc_dev),
2930 				    sc->sc_txth[txthresh].txth_name);
2931 
2932 				/* Set the new threshold and restart
2933 				 * the transmit process.
2934 				 */
2935 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2936 				DELAY(atw_nar_delay);
2937 				ATW_WRITE(sc, ATW_TDR, 0x1);
2938 				/* XXX Log every Nth underrun from
2939 				 * XXX now on?
2940 				 */
2941 			}
2942 		}
2943 
2944 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2945 			if (status & ATW_INTR_TPS)
2946 				printf("%s: transmit process stopped\n",
2947 				    device_xname(sc->sc_dev));
2948 			if (status & ATW_INTR_RPS)
2949 				printf("%s: receive process stopped\n",
2950 				    device_xname(sc->sc_dev));
2951 			s = splnet();
2952 			(void)atw_init(ifp);
2953 			splx(s);
2954 			break;
2955 		}
2956 
2957 		if (status & ATW_INTR_FBE) {
2958 			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2959 			s = splnet();
2960 			(void)atw_init(ifp);
2961 			splx(s);
2962 			break;
2963 		}
2964 
2965 		/*
2966 		 * Not handled:
2967 		 *
2968 		 *	Transmit buffer unavailable -- normal
2969 		 *	condition, nothing to do, really.
2970 		 *
2971 		 *	Early receive interrupt -- not available on
2972 		 *	all chips, we just use RI.  We also only
2973 		 *	use single-segment receive DMA, so this
2974 		 *	is mostly useless.
2975 		 *
2976 		 *      TBD others
2977 		 */
2978 	}
2979 
2980 	/* Try to get more packets going. */
2981 	s = splnet();
2982 	atw_start(ifp);
2983 	splx(s);
2984 
2985 	/* Enable interrupts */
2986 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
2987 }
2988 
2989 /*
2990  * atw_idle:
2991  *
2992  *	Cause the transmit and/or receive processes to go idle.
2993  *
2994  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2995  *	process in STSR if I clear SR or ST after the process has already
2996  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2997  *      do not seem to be too reliable. Perhaps I have the sense of the
2998  *	Rx bits switched with the Tx bits?
2999  */
3000 void
3001 atw_idle(struct atw_softc *sc, u_int32_t bits)
3002 {
3003 	u_int32_t ackmask = 0, opmode, stsr, test0;
3004 	int i, s;
3005 
3006 	s = splnet();
3007 
3008 	opmode = sc->sc_opmode & ~bits;
3009 
3010 	if (bits & ATW_NAR_SR)
3011 		ackmask |= ATW_INTR_RPS;
3012 
3013 	if (bits & ATW_NAR_ST) {
3014 		ackmask |= ATW_INTR_TPS;
3015 		/* set ATW_NAR_HF to flush TX FIFO. */
3016 		opmode |= ATW_NAR_HF;
3017 	}
3018 
3019 	ATW_WRITE(sc, ATW_NAR, opmode);
3020 	DELAY(atw_nar_delay);
3021 
3022 	for (i = 0; i < 1000; i++) {
3023 		stsr = ATW_READ(sc, ATW_STSR);
3024 		if ((stsr & ackmask) == ackmask)
3025 			break;
3026 		DELAY(10);
3027 	}
3028 
3029 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
3030 
3031 	if ((stsr & ackmask) == ackmask)
3032 		goto out;
3033 
3034 	test0 = ATW_READ(sc, ATW_TEST0);
3035 
3036 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
3037 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
3038 		printf("%s: transmit process not idle [%s]\n",
3039 		    device_xname(sc->sc_dev),
3040 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
3041 		printf("%s: bits %08x test0 %08x stsr %08x\n",
3042 		    device_xname(sc->sc_dev), bits, test0, stsr);
3043 	}
3044 
3045 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3046 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3047 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3048 		    device_xname(sc->sc_dev),
3049 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3050 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3051 		    device_xname(sc->sc_dev), bits, test0, stsr));
3052 	}
3053 out:
3054 	if ((bits & ATW_NAR_ST) != 0)
3055 		atw_txdrain(sc);
3056 	splx(s);
3057 	return;
3058 }
3059 
3060 /*
3061  * atw_linkintr:
3062  *
3063  *	Helper; handle link-status interrupts.
3064  */
3065 void
3066 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3067 {
3068 	struct ieee80211com *ic = &sc->sc_ic;
3069 
3070 	if (ic->ic_state != IEEE80211_S_RUN)
3071 		return;
3072 
3073 	if (linkstatus & ATW_INTR_LINKON) {
3074 		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3075 		sc->sc_rescan_timer = 0;
3076 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3077 		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3078 		if (ic->ic_opmode != IEEE80211_M_STA)
3079 			return;
3080 		sc->sc_rescan_timer = 3;
3081 		sc->sc_if.if_timer = 1;
3082 	}
3083 }
3084 
3085 #if 0
3086 static inline int
3087 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3088 {
3089 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3090 		return 0;
3091 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3092 		return 0;
3093 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3094 }
3095 #endif
3096 
3097 /*
3098  * atw_rxintr:
3099  *
3100  *	Helper; handle receive interrupts.
3101  */
3102 void
3103 atw_rxintr(struct atw_softc *sc)
3104 {
3105 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3106 	struct ieee80211com *ic = &sc->sc_ic;
3107 	struct ieee80211_node *ni;
3108 	struct ieee80211_frame_min *wh;
3109 	struct ifnet *ifp = &sc->sc_if;
3110 	struct atw_rxsoft *rxs;
3111 	struct mbuf *m;
3112 	u_int32_t rxstat;
3113 	int i, s, len, rate, rate0;
3114 	u_int32_t rssi, ctlrssi;
3115 
3116 	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3117 		rxs = &sc->sc_rxsoft[i];
3118 
3119 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3120 
3121 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3122 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3123 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3124 
3125 		if (rxstat & ATW_RXSTAT_OWN) {
3126 			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3127 			break;
3128 		}
3129 
3130 		sc->sc_rxptr = ATW_NEXTRX(i);
3131 
3132 		DPRINTF3(sc,
3133 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3134 		    device_xname(sc->sc_dev),
3135 		    rxstat, ctlrssi,
3136 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3137 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3138 
3139 		/*
3140 		 * Make sure the packet fits in one buffer.  This should
3141 		 * always be the case.
3142 		 */
3143 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3144 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3145 			printf("%s: incoming packet spilled, resetting\n",
3146 			    device_xname(sc->sc_dev));
3147 			(void)atw_init(ifp);
3148 			return;
3149 		}
3150 
3151 		/*
3152 		 * If an error occurred, update stats, clear the status
3153 		 * word, and leave the packet buffer in place.  It will
3154 		 * simply be reused the next time the ring comes around.
3155 		 */
3156 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3157 #define	PRINTERR(bit, str)						\
3158 			if (rxstat & (bit))				\
3159 				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3160 				    str)
3161 			ifp->if_ierrors++;
3162 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3163 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3164 #if 0
3165 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3166 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3167 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3168 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3169 #endif
3170 #undef PRINTERR
3171 			atw_init_rxdesc(sc, i);
3172 			continue;
3173 		}
3174 
3175 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3176 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3177 
3178 		/*
3179 		 * No errors; receive the packet.  Note the ADM8211
3180 		 * includes the CRC in promiscuous mode.
3181 		 */
3182 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3183 
3184 		/*
3185 		 * Allocate a new mbuf cluster.  If that fails, we are
3186 		 * out of memory, and must drop the packet and recycle
3187 		 * the buffer that's already attached to this descriptor.
3188 		 */
3189 		m = rxs->rxs_mbuf;
3190 		if (atw_add_rxbuf(sc, i) != 0) {
3191 			ifp->if_ierrors++;
3192 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3193 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3194 			atw_init_rxdesc(sc, i);
3195 			continue;
3196 		}
3197 
3198 		ifp->if_ipackets++;
3199 		m_set_rcvif(m, ifp);
3200 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3201 
3202 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3203 
3204 		/* The RSSI comes straight from a register in the
3205 		 * baseband processor.  I know that for the RF3000,
3206 		 * the RSSI register also contains the antenna-selection
3207 		 * bits.  Mask those off.
3208 		 *
3209 		 * TBD Treat other basebands.
3210 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3211 		 */
3212 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3213 			rssi = ctlrssi & RF3000_RSSI_MASK;
3214 		else
3215 			rssi = ctlrssi;
3216 
3217 		s = splnet();
3218 
3219 		/* Pass this up to any BPF listeners. */
3220 		if (sc->sc_radiobpf != NULL) {
3221 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3222 
3223 			tap->ar_rate = rate;
3224 
3225 			/* TBD verify units are dB */
3226 			tap->ar_antsignal = (int)rssi;
3227 			if (sc->sc_opmode & ATW_NAR_PR)
3228 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3229 			else
3230 				tap->ar_flags = 0;
3231 
3232 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3233 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3234 
3235 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_rxtapu),
3236 			    m);
3237  		}
3238 
3239 		sc->sc_recv_ev.ev_count++;
3240 
3241 		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3242 			if (rxstat & ATW_RXSTAT_CRC16E)
3243 				sc->sc_crc16e_ev.ev_count++;
3244 			if (rxstat & ATW_RXSTAT_CRC32E)
3245 				sc->sc_crc32e_ev.ev_count++;
3246 			if (rxstat & ATW_RXSTAT_ICVE)
3247 				sc->sc_icve_ev.ev_count++;
3248 			if (rxstat & ATW_RXSTAT_SFDE)
3249 				sc->sc_sfde_ev.ev_count++;
3250 			if (rxstat & ATW_RXSTAT_SIGE)
3251 				sc->sc_sige_ev.ev_count++;
3252 			ifp->if_ierrors++;
3253 			m_freem(m);
3254 			splx(s);
3255 			continue;
3256 		}
3257 
3258 		if (sc->sc_opmode & ATW_NAR_PR)
3259 			m_adj(m, -IEEE80211_CRC_LEN);
3260 
3261 		wh = mtod(m, struct ieee80211_frame_min *);
3262 		ni = ieee80211_find_rxnode(ic, wh);
3263 #if 0
3264 		if (atw_hw_decrypted(sc, wh)) {
3265 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3266 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3267 		}
3268 #endif
3269 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3270 		ieee80211_free_node(ni);
3271 		splx(s);
3272 	}
3273 }
3274 
3275 /*
3276  * atw_txintr:
3277  *
3278  *	Helper; handle transmit interrupts.
3279  */
3280 void
3281 atw_txintr(struct atw_softc *sc, uint32_t status)
3282 {
3283 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3284 	struct ifnet *ifp = &sc->sc_if;
3285 	struct atw_txsoft *txs;
3286 	u_int32_t txstat;
3287 	int s;
3288 
3289 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3290 	    device_xname(sc->sc_dev), sc->sc_flags));
3291 
3292 	s = splnet();
3293 
3294 	/*
3295 	 * Go through our Tx list and free mbufs for those
3296 	 * frames that have been transmitted.
3297 	 */
3298 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3299 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3300 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3301 
3302 #ifdef ATW_DEBUG
3303 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3304 			int i;
3305 			printf("    txsoft %p transmit chain:\n", txs);
3306 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3307 			    txs->txs_ndescs - 1,
3308 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3309 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3310 				printf("     descriptor %d:\n", i);
3311 				printf("       at_status:   0x%08x\n",
3312 				    le32toh(sc->sc_txdescs[i].at_stat));
3313 				printf("       at_flags:      0x%08x\n",
3314 				    le32toh(sc->sc_txdescs[i].at_flags));
3315 				printf("       at_buf1: 0x%08x\n",
3316 				    le32toh(sc->sc_txdescs[i].at_buf1));
3317 				printf("       at_buf2: 0x%08x\n",
3318 				    le32toh(sc->sc_txdescs[i].at_buf2));
3319 				if (i == txs->txs_lastdesc)
3320 					break;
3321 			}
3322 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3323 			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3324 		}
3325 #endif
3326 
3327 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3328 		if (txstat & ATW_TXSTAT_OWN) {
3329 			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3330 			    BUS_DMASYNC_PREREAD);
3331 			break;
3332 		}
3333 
3334 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3335 
3336 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3337 		    0, txs->txs_dmamap->dm_mapsize,
3338 		    BUS_DMASYNC_POSTWRITE);
3339 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3340 		m_freem(txs->txs_mbuf);
3341 		txs->txs_mbuf = NULL;
3342 
3343 		sc->sc_txfree += txs->txs_ndescs;
3344 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3345 
3346 		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3347 		sc->sc_tx_timer = 0;
3348 		ifp->if_flags &= ~IFF_OACTIVE;
3349 
3350 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3351 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3352 			snprintb(txstat_buf, sizeof(txstat_buf),
3353 			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3354 			printf("%s: txstat %s %" __PRIuBITS "\n",
3355 			    device_xname(sc->sc_dev), txstat_buf,
3356 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3357 		}
3358 
3359 		sc->sc_xmit_ev.ev_count++;
3360 
3361 		/*
3362 		 * Check for errors and collisions.
3363 		 */
3364 		if (txstat & ATW_TXSTAT_TUF)
3365 			sc->sc_tuf_ev.ev_count++;
3366 		if (txstat & ATW_TXSTAT_TLT)
3367 			sc->sc_tlt_ev.ev_count++;
3368 		if (txstat & ATW_TXSTAT_TRT)
3369 			sc->sc_trt_ev.ev_count++;
3370 		if (txstat & ATW_TXSTAT_TRO)
3371 			sc->sc_tro_ev.ev_count++;
3372 		if (txstat & ATW_TXSTAT_SOFBR)
3373 			sc->sc_sofbr_ev.ev_count++;
3374 
3375 		if ((txstat & ATW_TXSTAT_ES) == 0)
3376 			ifp->if_collisions +=
3377 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3378 		else
3379 			ifp->if_oerrors++;
3380 
3381 		ifp->if_opackets++;
3382 	}
3383 
3384 	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3385 
3386 	splx(s);
3387 }
3388 
3389 /*
3390  * atw_watchdog:	[ifnet interface function]
3391  *
3392  *	Watchdog timer handler.
3393  */
3394 void
3395 atw_watchdog(struct ifnet *ifp)
3396 {
3397 	struct atw_softc *sc = ifp->if_softc;
3398 	struct ieee80211com *ic = &sc->sc_ic;
3399 
3400 	ifp->if_timer = 0;
3401 	if (!device_is_active(sc->sc_dev))
3402 		return;
3403 
3404 	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3405 		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3406 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3407 	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3408 		printf("%s: transmit timeout\n", ifp->if_xname);
3409 		ifp->if_oerrors++;
3410 		(void)atw_init(ifp);
3411 		atw_start(ifp);
3412 	}
3413 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3414 		ifp->if_timer = 1;
3415 	ieee80211_watchdog(ic);
3416 }
3417 
3418 static void
3419 atw_evcnt_detach(struct atw_softc *sc)
3420 {
3421 	evcnt_detach(&sc->sc_sige_ev);
3422 	evcnt_detach(&sc->sc_sfde_ev);
3423 	evcnt_detach(&sc->sc_icve_ev);
3424 	evcnt_detach(&sc->sc_crc32e_ev);
3425 	evcnt_detach(&sc->sc_crc16e_ev);
3426 	evcnt_detach(&sc->sc_recv_ev);
3427 
3428 	evcnt_detach(&sc->sc_tuf_ev);
3429 	evcnt_detach(&sc->sc_tro_ev);
3430 	evcnt_detach(&sc->sc_trt_ev);
3431 	evcnt_detach(&sc->sc_tlt_ev);
3432 	evcnt_detach(&sc->sc_sofbr_ev);
3433 	evcnt_detach(&sc->sc_xmit_ev);
3434 
3435 	evcnt_detach(&sc->sc_rxpkt1in_ev);
3436 	evcnt_detach(&sc->sc_rxamatch_ev);
3437 	evcnt_detach(&sc->sc_workaround1_ev);
3438 	evcnt_detach(&sc->sc_misc_ev);
3439 }
3440 
3441 static void
3442 atw_evcnt_attach(struct atw_softc *sc)
3443 {
3444 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3445 	    NULL, sc->sc_if.if_xname, "recv");
3446 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3447 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3448 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3449 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3450 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3451 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3452 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3453 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3454 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3455 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3456 
3457 	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3458 	    NULL, sc->sc_if.if_xname, "xmit");
3459 	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3460 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3461 	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3462 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3463 	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3464 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3465 	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3466 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3467 	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3468 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3469 
3470 	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3471 	    NULL, sc->sc_if.if_xname, "misc");
3472 	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3473 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3474 	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3475 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3476 	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3477 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3478 }
3479 
3480 #ifdef ATW_DEBUG
3481 static void
3482 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3483 {
3484 	struct atw_softc *sc = ifp->if_softc;
3485 	struct mbuf *m;
3486 	int i, noctets = 0;
3487 
3488 	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3489 	    m0->m_pkthdr.len);
3490 
3491 	for (m = m0; m; m = m->m_next) {
3492 		if (m->m_len == 0)
3493 			continue;
3494 		for (i = 0; i < m->m_len; i++) {
3495 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3496 			if (++noctets % 24 == 0)
3497 				printf("\n");
3498 		}
3499 	}
3500 	printf("%s%s: %d bytes emitted\n",
3501 	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3502 }
3503 #endif /* ATW_DEBUG */
3504 
3505 /*
3506  * atw_start:		[ifnet interface function]
3507  *
3508  *	Start packet transmission on the interface.
3509  */
3510 void
3511 atw_start(struct ifnet *ifp)
3512 {
3513 	struct atw_softc *sc = ifp->if_softc;
3514 	struct ieee80211_key *k;
3515 	struct ieee80211com *ic = &sc->sc_ic;
3516 	struct ieee80211_node *ni;
3517 	struct ieee80211_frame_min *whm;
3518 	struct ieee80211_frame *wh;
3519 	struct atw_frame *hh;
3520 	uint16_t hdrctl;
3521 	struct mbuf *m0, *m;
3522 	struct atw_txsoft *txs;
3523 	struct atw_txdesc *txd;
3524 	int npkt, rate;
3525 	bus_dmamap_t dmamap;
3526 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3527 
3528 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3529 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3530 
3531 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3532 		return;
3533 
3534 	/*
3535 	 * Remember the previous number of free descriptors and
3536 	 * the first descriptor we'll use.
3537 	 */
3538 	ofree = sc->sc_txfree;
3539 	firsttx = lasttx = sc->sc_txnext;
3540 
3541 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3542 	    device_xname(sc->sc_dev), ofree, firsttx));
3543 
3544 	/*
3545 	 * Loop through the send queue, setting up transmit descriptors
3546 	 * until we drain the queue, or use up all available transmit
3547 	 * descriptors.
3548 	 */
3549 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3550 	       sc->sc_txfree != 0) {
3551 
3552 		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3553 
3554 		/*
3555 		 * Grab a packet off the management queue, if it
3556 		 * is not empty. Otherwise, from the data queue.
3557 		 */
3558 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3559 		if (m0 != NULL) {
3560 			ni = M_GETCTX(m0, struct ieee80211_node *);
3561 			M_CLEARCTX(m0);
3562 		} else if (ic->ic_state != IEEE80211_S_RUN)
3563 			break; /* send no data until associated */
3564 		else {
3565 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3566 			if (m0 == NULL)
3567 				break;
3568 			bpf_mtap(ifp, m0);
3569 			ni = ieee80211_find_txnode(ic,
3570 			    mtod(m0, struct ether_header *)->ether_dhost);
3571 			if (ni == NULL) {
3572 				ifp->if_oerrors++;
3573 				break;
3574 			}
3575 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3576 				ieee80211_free_node(ni);
3577 				ifp->if_oerrors++;
3578 				break;
3579 			}
3580 		}
3581 
3582 		rate = MAX(ieee80211_get_rate(ni), 2);
3583 
3584 		whm = mtod(m0, struct ieee80211_frame_min *);
3585 
3586 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3587 			k = NULL;
3588 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3589 			m_freem(m0);
3590 			ieee80211_free_node(ni);
3591 			ifp->if_oerrors++;
3592 			break;
3593 		}
3594 #if 0
3595 		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3596 		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3597 			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3598 #endif
3599 
3600 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3601 			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3602 
3603 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3604 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3605 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3606 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3607 			m_freem(m0);
3608 			break;
3609 		}
3610 
3611 		/* XXX Misleading if fragmentation is enabled.  Better
3612 		 * to fragment in software?
3613 		 */
3614 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3615 
3616 		/*
3617 		 * Pass the packet to any BPF listeners.
3618 		 */
3619 		bpf_mtap3(ic->ic_rawbpf, m0);
3620 
3621 		if (sc->sc_radiobpf != NULL) {
3622 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3623 
3624 			tap->at_rate = rate;
3625 
3626 			bpf_mtap2(sc->sc_radiobpf, tap, sizeof(sc->sc_txtapu),
3627 			    m0);
3628 		}
3629 
3630 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3631 
3632 		if (ni != NULL)
3633 			ieee80211_free_node(ni);
3634 
3635 		if (m0 == NULL) {
3636 			ifp->if_oerrors++;
3637 			break;
3638 		}
3639 
3640 		/* just to make sure. */
3641 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3642 
3643 		if (m0 == NULL) {
3644 			ifp->if_oerrors++;
3645 			break;
3646 		}
3647 
3648 		hh = mtod(m0, struct atw_frame *);
3649 		wh = &hh->atw_ihdr;
3650 
3651 		/* Copy everything we need from the 802.11 header:
3652 		 * Frame Control; address 1, address 3, or addresses
3653 		 * 3 and 4. NIC fills in BSSID, SA.
3654 		 */
3655 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3656 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3657 				panic("%s: illegal WDS frame",
3658 				    device_xname(sc->sc_dev));
3659 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3660 		} else
3661 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3662 
3663 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3664 
3665 		/* initialize remaining Tx parameters */
3666 		memset(&hh->u, 0, sizeof(hh->u));
3667 
3668 		hh->atw_rate = rate * 5;
3669 		/* XXX this could be incorrect if M_FCS. _encap should
3670 		 * probably strip FCS just in case it sticks around in
3671 		 * bridged packets.
3672 		 */
3673 		hh->atw_service = 0x00; /* XXX guess */
3674 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3675 		    sizeof(struct atw_frame));
3676 
3677 		/* never fragment multicast frames */
3678 		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3679 			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3680 		else {
3681 			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3682 			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3683 				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3684 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3685 		}
3686 
3687 		hh->atw_rtylmt = 3;
3688 #if 0
3689 		if (do_encrypt) {
3690 			hdrctl |= htole16(ATW_HDRCTL_WEP);
3691 			hh->atw_keyid = ic->ic_def_txkey;
3692 		}
3693 #endif
3694 
3695 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3696 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3697 		if (txs->txs_d0.d_residue)
3698 			hh->atw_head_plcplen |= htole16(0x8000);
3699 		if (txs->txs_dn.d_residue)
3700 			hh->atw_tail_plcplen |= htole16(0x8000);
3701 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3702 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3703 
3704 		hh->atw_hdrctl = hdrctl;
3705 		hh->atw_fragnum = npkt << 4;
3706 #ifdef ATW_DEBUG
3707 
3708 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3709 			printf("%s: dst = %s, rate = 0x%02x, "
3710 			    "service = 0x%02x, paylen = 0x%04x\n",
3711 			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3712 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3713 
3714 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3715 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3716 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3717 			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3718 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3719 			    hh->atw_tail_dur, hh->atw_head_dur);
3720 
3721 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3722 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3723 			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3724 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3725 
3726 			printf("%s: keyid = %d\n",
3727 			    device_xname(sc->sc_dev), hh->atw_keyid);
3728 
3729 			atw_dump_pkt(ifp, m0);
3730 		}
3731 #endif /* ATW_DEBUG */
3732 
3733 		dmamap = txs->txs_dmamap;
3734 
3735 		/*
3736 		 * Load the DMA map.  Copy and try (once) again if the packet
3737 		 * didn't fit in the alloted number of segments.
3738 		 */
3739 		for (first = 1;
3740 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3741 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3742 		     first = 0) {
3743 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3744 			if (m == NULL) {
3745 				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3746 				break;
3747 			}
3748 			if (m0->m_pkthdr.len > MHLEN) {
3749 				MCLGET(m, M_DONTWAIT);
3750 				if ((m->m_flags & M_EXT) == 0) {
3751 					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3752 					    "cluster\n");
3753 					m_freem(m);
3754 					break;
3755 				}
3756 			}
3757 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3758 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3759 			m_freem(m0);
3760 			m0 = m;
3761 			m = NULL;
3762 		}
3763 		if (error != 0) {
3764 			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3765 			    "error = %d\n", error);
3766 			m_freem(m0);
3767 			break;
3768 		}
3769 
3770 		/*
3771 		 * Ensure we have enough descriptors free to describe
3772 		 * the packet.
3773 		 */
3774 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3775 			/*
3776 			 * Not enough free descriptors to transmit
3777 			 * this packet.  Unload the DMA map and
3778 			 * drop the packet.  Notify the upper layer
3779 			 * that there are no more slots left.
3780 			 *
3781 			 * XXX We could allocate an mbuf and copy, but
3782 			 * XXX it is worth it?
3783 			 */
3784 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3785 			m_freem(m0);
3786 			break;
3787 		}
3788 
3789 		/*
3790 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3791 		 */
3792 
3793 		/* Sync the DMA map. */
3794 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3795 		    BUS_DMASYNC_PREWRITE);
3796 
3797 		/* XXX arbitrary retry limit; 8 because I have seen it in
3798 		 * use already and maybe 0 means "no tries" !
3799 		 */
3800 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3801 
3802 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3803 		    device_xname(sc->sc_dev), rate * 5));
3804 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3805 
3806 		/*
3807 		 * Initialize the transmit descriptors.
3808 		 */
3809 		for (nexttx = sc->sc_txnext, seg = 0;
3810 		     seg < dmamap->dm_nsegs;
3811 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3812 			/*
3813 			 * If this is the first descriptor we're
3814 			 * enqueueing, don't set the OWN bit just
3815 			 * yet.  That could cause a race condition.
3816 			 * We'll do it below.
3817 			 */
3818 			txd = &sc->sc_txdescs[nexttx];
3819 			txd->at_ctl = ctl |
3820 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3821 
3822 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3823 			txd->at_flags =
3824 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3825 			                   ATW_TXFLAG_TBS1_MASK)) |
3826 			    ((nexttx == (ATW_NTXDESC - 1))
3827 			        ? htole32(ATW_TXFLAG_TER) : 0);
3828 			lasttx = nexttx;
3829 		}
3830 
3831 		/* Set `first segment' and `last segment' appropriately. */
3832 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3833 		    htole32(ATW_TXFLAG_FS);
3834 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3835 
3836 #ifdef ATW_DEBUG
3837 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3838 			printf("     txsoft %p transmit chain:\n", txs);
3839 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3840 				printf("     descriptor %d:\n", seg);
3841 				printf("       at_ctl:   0x%08x\n",
3842 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3843 				printf("       at_flags:      0x%08x\n",
3844 				    le32toh(sc->sc_txdescs[seg].at_flags));
3845 				printf("       at_buf1: 0x%08x\n",
3846 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3847 				printf("       at_buf2: 0x%08x\n",
3848 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3849 				if (seg == lasttx)
3850 					break;
3851 			}
3852 		}
3853 #endif
3854 
3855 		/* Sync the descriptors we're using. */
3856 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3857 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3858 
3859 		/*
3860 		 * Store a pointer to the packet so we can free it later,
3861 		 * and remember what txdirty will be once the packet is
3862 		 * done.
3863 		 */
3864 		txs->txs_mbuf = m0;
3865 		txs->txs_firstdesc = sc->sc_txnext;
3866 		txs->txs_lastdesc = lasttx;
3867 		txs->txs_ndescs = dmamap->dm_nsegs;
3868 
3869 		/* Advance the tx pointer. */
3870 		sc->sc_txfree -= dmamap->dm_nsegs;
3871 		sc->sc_txnext = nexttx;
3872 
3873 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3874 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3875 	}
3876 
3877 	if (sc->sc_txfree != ofree) {
3878 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3879 		    device_xname(sc->sc_dev), lasttx, firsttx));
3880 		/*
3881 		 * Cause a transmit interrupt to happen on the
3882 		 * last packet we enqueued.
3883 		 */
3884 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3885 		ATW_CDTXSYNC(sc, lasttx, 1,
3886 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3887 
3888 		/*
3889 		 * The entire packet chain is set up.  Give the
3890 		 * first descriptor to the chip now.
3891 		 */
3892 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3893 		ATW_CDTXSYNC(sc, firsttx, 1,
3894 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3895 
3896 		/* Wake up the transmitter. */
3897 		ATW_WRITE(sc, ATW_TDR, 0x1);
3898 
3899 		if (txs == NULL || sc->sc_txfree == 0)
3900 			ifp->if_flags |= IFF_OACTIVE;
3901 
3902 		/* Set a watchdog timer in case the chip flakes out. */
3903 		sc->sc_tx_timer = 5;
3904 		ifp->if_timer = 1;
3905 	}
3906 }
3907 
3908 /*
3909  * atw_ioctl:		[ifnet interface function]
3910  *
3911  *	Handle control requests from the operator.
3912  */
3913 int
3914 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3915 {
3916 	struct atw_softc *sc = ifp->if_softc;
3917 	struct ieee80211req *ireq;
3918 	int s, error = 0;
3919 
3920 	s = splnet();
3921 
3922 	switch (cmd) {
3923 	case SIOCSIFFLAGS:
3924 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3925 			break;
3926 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3927 		case IFF_UP|IFF_RUNNING:
3928 			/*
3929 			 * To avoid rescanning another access point,
3930 			 * do not call atw_init() here.  Instead,
3931 			 * only reflect media settings.
3932 			 */
3933 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3934 				atw_filter_setup(sc);
3935 			break;
3936 		case IFF_UP:
3937 			error = atw_init(ifp);
3938 			break;
3939 		case IFF_RUNNING:
3940 			atw_stop(ifp, 1);
3941 			break;
3942 		case 0:
3943 			break;
3944 		}
3945 		break;
3946 	case SIOCADDMULTI:
3947 	case SIOCDELMULTI:
3948 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3949 			if (ifp->if_flags & IFF_RUNNING)
3950 				atw_filter_setup(sc); /* do not rescan */
3951 			error = 0;
3952 		}
3953 		break;
3954 	case SIOCS80211:
3955 		ireq = data;
3956 		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3957 			if ((error = kauth_authorize_network(curlwp->l_cred,
3958 			    KAUTH_NETWORK_INTERFACE,
3959 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3960 			    (void *)cmd, NULL)) != 0)
3961 				break;
3962 			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3963 			      ireq->i_val <= IEEE80211_FRAG_MAX))
3964 				error = EINVAL;
3965 			else
3966 				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3967 			break;
3968 		}
3969 		/*FALLTHROUGH*/
3970 	default:
3971 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3972 		if (error == ENETRESET || error == ERESTART) {
3973 			if (is_running(ifp))
3974 				error = atw_init(ifp);
3975 			else
3976 				error = 0;
3977 		}
3978 		break;
3979 	}
3980 
3981 	/* Try to get more packets going. */
3982 	if (device_is_active(sc->sc_dev))
3983 		atw_start(ifp);
3984 
3985 	splx(s);
3986 	return (error);
3987 }
3988 
3989 static int
3990 atw_media_change(struct ifnet *ifp)
3991 {
3992 	int error;
3993 
3994 	error = ieee80211_media_change(ifp);
3995 	if (error == ENETRESET) {
3996 		if (is_running(ifp))
3997 			error = atw_init(ifp);
3998 		else
3999 			error = 0;
4000 	}
4001 	return error;
4002 }
4003