xref: /netbsd-src/sys/dev/ic/atw.c (revision 4b896b232495b7a9b8b94a1cf1e21873296d53b8)
1 /*	$NetBSD: atw.c,v 1.32 2004/06/06 04:38:33 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
41  */
42 
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.32 2004/06/06 04:38:33 dyoung Exp $");
45 
46 #include "bpfilter.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/callout.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58 #include <sys/time.h>
59 
60 #include <machine/endian.h>
61 
62 #include <uvm/uvm_extern.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68 
69 #include <net80211/ieee80211_var.h>
70 #include <net80211/ieee80211_compat.h>
71 #include <net80211/ieee80211_radiotap.h>
72 
73 #if NBPFILTER > 0
74 #include <net/bpf.h>
75 #endif
76 
77 #include <machine/bus.h>
78 #include <machine/intr.h>
79 
80 #include <dev/ic/atwreg.h>
81 #include <dev/ic/rf3000reg.h>
82 #include <dev/ic/si4136reg.h>
83 #include <dev/ic/atwvar.h>
84 #include <dev/ic/smc93cx6var.h>
85 
86 /* XXX TBD open questions
87  *
88  *
89  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
90  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
91  * handle this for me?
92  *
93  */
94 /* device attachment
95  *
96  *    print TOFS[012]
97  *
98  * device initialization
99  *
100  *    clear ATW_FRCTL_MAXPSP to disable max power saving
101  *    set ATW_TXBR_ALCUPDATE to enable ALC
102  *    set TOFS[012]? (hope not)
103  *    disable rx/tx
104  *    set ATW_PAR_SWR (software reset)
105  *    wait for ATW_PAR_SWR clear
106  *    disable interrupts
107  *    ack status register
108  *    enable interrupts
109  *
110  * rx/tx initialization
111  *
112  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113  *    allocate and init descriptor rings
114  *    write ATW_PAR_DSL (descriptor skip length)
115  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
116  *    write ATW_NAR_SQ for one/both transmit descriptor rings
117  *    write ATW_NAR_SQ for one/both transmit descriptor rings
118  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119  *
120  * rx/tx end
121  *
122  *    stop DMA
123  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
124  *    flush tx w/ ATW_NAR_HF
125  *
126  * scan
127  *
128  *    initialize rx/tx
129  *
130  * IBSS join/create
131  *
132  *    set ATW_NAR_EA (is set by ASIC?)
133  *
134  * BSS join: (re)association response
135  *
136  *    set ATW_FRCTL_AID
137  *
138  * optimizations ???
139  *
140  */
141 
142 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
143 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
144 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
145 
146 int atw_rfio_enable_delay = 20 * 1000;
147 int atw_rfio_disable_delay = 2 * 1000;
148 int atw_writewep_delay = 5;
149 int atw_beacon_len_adjust = 4;
150 int atw_dwelltime = 200;
151 
152 #ifdef ATW_DEBUG
153 int atw_xhdrctl = 0;
154 int atw_xrtylmt = ~0;
155 int atw_xservice = IEEE80211_PLCP_SERVICE;
156 int atw_xpaylen = 0;
157 
158 int atw_debug = 0;
159 
160 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
161 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
162 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
163 #define	DPRINTF(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) printf x
164 #define	DPRINTF2(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
165 #define	DPRINTF3(sc, x)	if ((sc)->sc_ic.ic_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
166 static void atw_print_regs(struct atw_softc *, const char *);
167 static void atw_rf3000_print(struct atw_softc *);
168 static void atw_si4126_print(struct atw_softc *);
169 static void atw_dump_pkt(struct ifnet *, struct mbuf *);
170 #else
171 #define ATW_DPRINTF(x)
172 #define ATW_DPRINTF2(x)
173 #define ATW_DPRINTF3(x)
174 #define	DPRINTF(sc, x)	/* nothing */
175 #define	DPRINTF2(sc, x)	/* nothing */
176 #define	DPRINTF3(sc, x)	/* nothing */
177 #endif
178 
179 #ifdef ATW_STATS
180 void	atw_print_stats(struct atw_softc *);
181 #endif
182 
183 void	atw_start(struct ifnet *);
184 void	atw_watchdog(struct ifnet *);
185 int	atw_ioctl(struct ifnet *, u_long, caddr_t);
186 int	atw_init(struct ifnet *);
187 void	atw_stop(struct ifnet *, int);
188 
189 void	atw_reset(struct atw_softc *);
190 int	atw_read_srom(struct atw_softc *);
191 
192 void	atw_shutdown(void *);
193 
194 void	atw_rxdrain(struct atw_softc *);
195 int	atw_add_rxbuf(struct atw_softc *, int);
196 void	atw_idle(struct atw_softc *, u_int32_t);
197 
198 int	atw_enable(struct atw_softc *);
199 void	atw_disable(struct atw_softc *);
200 void	atw_power(int, void *);
201 
202 void	atw_rxintr(struct atw_softc *);
203 void	atw_txintr(struct atw_softc *);
204 void	atw_linkintr(struct atw_softc *, u_int32_t);
205 
206 static int atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
207 static void atw_tsf(struct atw_softc *);
208 static void atw_start_beacon(struct atw_softc *, int);
209 static void atw_write_wep(struct atw_softc *);
210 static void atw_write_bssid(struct atw_softc *);
211 static void atw_write_bcn_thresh(struct atw_softc *);
212 static void atw_write_ssid(struct atw_softc *);
213 static void atw_write_sup_rates(struct atw_softc *);
214 static void atw_clear_sram(struct atw_softc *);
215 static void atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
216 static int atw_media_change(struct ifnet *);
217 static void atw_media_status(struct ifnet *, struct ifmediareq *);
218 static void atw_filter_setup(struct atw_softc *);
219 static void atw_frame_setdurs(struct atw_softc *, struct atw_frame *, int, int);
220 static __inline u_int64_t atw_predict_beacon(u_int64_t, u_int32_t);
221 static void atw_recv_beacon(struct ieee80211com *, struct mbuf *,
222     struct ieee80211_node *, int, int, u_int32_t);
223 static void atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
224     struct ieee80211_node *, int, int, u_int32_t);
225 static void atw_node_free(struct ieee80211com *, struct ieee80211_node *);
226 static struct ieee80211_node *atw_node_alloc(struct ieee80211com *);
227 
228 static int atw_tune(struct atw_softc *);
229 
230 static void atw_rfio_enable(struct atw_softc *, int);
231 
232 /* RFMD RF3000 Baseband Processor */
233 static int atw_rf3000_init(struct atw_softc *);
234 static int atw_rf3000_tune(struct atw_softc *, u_int8_t);
235 static int atw_rf3000_write(struct atw_softc *, u_int, u_int);
236 #ifdef ATW_DEBUG
237 static int atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
238 #endif /* ATW_DEBUG */
239 
240 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
241 static int atw_si4126_tune(struct atw_softc *, u_int8_t);
242 static int atw_si4126_write(struct atw_softc *, u_int, u_int);
243 #ifdef ATW_DEBUG
244 static int atw_si4126_read(struct atw_softc *, u_int, u_int *);
245 #endif /* ATW_DEBUG */
246 
247 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
248 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
249 
250 const char *atw_tx_state[] = {
251 	"STOPPED",
252 	"RUNNING - read descriptor",
253 	"RUNNING - transmitting",
254 	"RUNNING - filling fifo",	/* XXX */
255 	"SUSPENDED",
256 	"RUNNING -- write descriptor",
257 	"RUNNING -- write last descriptor",
258 	"RUNNING - fifo full"
259 };
260 
261 const char *atw_rx_state[] = {
262 	"STOPPED",
263 	"RUNNING - read descriptor",
264 	"RUNNING - check this packet, pre-fetch next",
265 	"RUNNING - wait for reception",
266 	"SUSPENDED",
267 	"RUNNING - write descriptor",
268 	"RUNNING - flush fifo",
269 	"RUNNING - fifo drain"
270 };
271 
272 int
273 atw_activate(struct device *self, enum devact act)
274 {
275 	struct atw_softc *sc = (struct atw_softc *)self;
276 	int rv = 0, s;
277 
278 	s = splnet();
279 	switch (act) {
280 	case DVACT_ACTIVATE:
281 		rv = EOPNOTSUPP;
282 		break;
283 
284 	case DVACT_DEACTIVATE:
285 		if_deactivate(&sc->sc_ic.ic_if);
286 		break;
287 	}
288 	splx(s);
289 	return rv;
290 }
291 
292 /*
293  * atw_enable:
294  *
295  *	Enable the ADM8211 chip.
296  */
297 int
298 atw_enable(struct atw_softc *sc)
299 {
300 
301 	if (ATW_IS_ENABLED(sc) == 0) {
302 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
303 			printf("%s: device enable failed\n",
304 			    sc->sc_dev.dv_xname);
305 			return (EIO);
306 		}
307 		sc->sc_flags |= ATWF_ENABLED;
308 	}
309 	return (0);
310 }
311 
312 /*
313  * atw_disable:
314  *
315  *	Disable the ADM8211 chip.
316  */
317 void
318 atw_disable(struct atw_softc *sc)
319 {
320 	if (!ATW_IS_ENABLED(sc))
321 		return;
322 	if (sc->sc_disable != NULL)
323 		(*sc->sc_disable)(sc);
324 	sc->sc_flags &= ~ATWF_ENABLED;
325 }
326 
327 /* Returns -1 on failure. */
328 int
329 atw_read_srom(struct atw_softc *sc)
330 {
331 	struct seeprom_descriptor sd;
332 	u_int32_t reg;
333 
334 	(void)memset(&sd, 0, sizeof(sd));
335 
336 	reg = ATW_READ(sc, ATW_TEST0);
337 
338 	if ((reg & (ATW_TEST0_EPNE|ATW_TEST0_EPSNM)) != 0) {
339 		printf("%s: bad or missing/bad SROM\n", sc->sc_dev.dv_xname);
340 		return -1;
341 	}
342 
343 	switch (reg & ATW_TEST0_EPTYP_MASK) {
344 	case ATW_TEST0_EPTYP_93c66:
345 		ATW_DPRINTF(("%s: 93c66 SROM\n", sc->sc_dev.dv_xname));
346 		sc->sc_sromsz = 512;
347 		sd.sd_chip = C56_66;
348 		break;
349 	case ATW_TEST0_EPTYP_93c46:
350 		ATW_DPRINTF(("%s: 93c46 SROM\n", sc->sc_dev.dv_xname));
351 		sc->sc_sromsz = 128;
352 		sd.sd_chip = C46;
353 		break;
354 	default:
355 		printf("%s: unknown SROM type %d\n", sc->sc_dev.dv_xname,
356 		    MASK_AND_RSHIFT(reg, ATW_TEST0_EPTYP_MASK));
357 		return -1;
358 	}
359 
360 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
361 
362 	if (sc->sc_srom == NULL) {
363 		printf("%s: unable to allocate SROM buffer\n",
364 		    sc->sc_dev.dv_xname);
365 		return -1;
366 	}
367 
368 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
369 
370 	/* ADM8211 has a single 32-bit register for controlling the
371 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
372 	 * "ready" bit. The ADM8211 input/output sense is the reverse
373 	 * of read_seeprom's.
374 	 */
375 	sd.sd_tag = sc->sc_st;
376 	sd.sd_bsh = sc->sc_sh;
377 	sd.sd_regsize = 4;
378 	sd.sd_control_offset = ATW_SPR;
379 	sd.sd_status_offset = ATW_SPR;
380 	sd.sd_dataout_offset = ATW_SPR;
381 	sd.sd_CK = ATW_SPR_SCLK;
382 	sd.sd_CS = ATW_SPR_SCS;
383 	sd.sd_DI = ATW_SPR_SDO;
384 	sd.sd_DO = ATW_SPR_SDI;
385 	sd.sd_MS = ATW_SPR_SRS;
386 	sd.sd_RDY = 0;
387 
388 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
389 		printf("%s: could not read SROM\n", sc->sc_dev.dv_xname);
390 		free(sc->sc_srom, M_DEVBUF);
391 		return -1;
392 	}
393 #ifdef ATW_DEBUG
394 	{
395 		int i;
396 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
397 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
398 			if (((i % 8) == 0) && (i != 0)) {
399 				ATW_DPRINTF(("\n\t"));
400 			}
401 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
402 		}
403 		ATW_DPRINTF(("\n"));
404 	}
405 #endif /* ATW_DEBUG */
406 	return 0;
407 }
408 
409 #ifdef ATW_DEBUG
410 static void
411 atw_print_regs(struct atw_softc *sc, const char *where)
412 {
413 #define PRINTREG(sc, reg) \
414 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
415 	    sc->sc_dev.dv_xname, reg, ATW_READ(sc, reg)))
416 
417 	ATW_DPRINTF2(("%s: %s\n", sc->sc_dev.dv_xname, where));
418 
419 	PRINTREG(sc, ATW_PAR);
420 	PRINTREG(sc, ATW_FRCTL);
421 	PRINTREG(sc, ATW_TDR);
422 	PRINTREG(sc, ATW_WTDP);
423 	PRINTREG(sc, ATW_RDR);
424 	PRINTREG(sc, ATW_WRDP);
425 	PRINTREG(sc, ATW_RDB);
426 	PRINTREG(sc, ATW_CSR3A);
427 	PRINTREG(sc, ATW_TDBD);
428 	PRINTREG(sc, ATW_TDBP);
429 	PRINTREG(sc, ATW_STSR);
430 	PRINTREG(sc, ATW_CSR5A);
431 	PRINTREG(sc, ATW_NAR);
432 	PRINTREG(sc, ATW_CSR6A);
433 	PRINTREG(sc, ATW_IER);
434 	PRINTREG(sc, ATW_CSR7A);
435 	PRINTREG(sc, ATW_LPC);
436 	PRINTREG(sc, ATW_TEST1);
437 	PRINTREG(sc, ATW_SPR);
438 	PRINTREG(sc, ATW_TEST0);
439 	PRINTREG(sc, ATW_WCSR);
440 	PRINTREG(sc, ATW_WPDR);
441 	PRINTREG(sc, ATW_GPTMR);
442 	PRINTREG(sc, ATW_GPIO);
443 	PRINTREG(sc, ATW_BBPCTL);
444 	PRINTREG(sc, ATW_SYNCTL);
445 	PRINTREG(sc, ATW_PLCPHD);
446 	PRINTREG(sc, ATW_MMIWADDR);
447 	PRINTREG(sc, ATW_MMIRADDR1);
448 	PRINTREG(sc, ATW_MMIRADDR2);
449 	PRINTREG(sc, ATW_TXBR);
450 	PRINTREG(sc, ATW_CSR15A);
451 	PRINTREG(sc, ATW_ALCSTAT);
452 	PRINTREG(sc, ATW_TOFS2);
453 	PRINTREG(sc, ATW_CMDR);
454 	PRINTREG(sc, ATW_PCIC);
455 	PRINTREG(sc, ATW_PMCSR);
456 	PRINTREG(sc, ATW_PAR0);
457 	PRINTREG(sc, ATW_PAR1);
458 	PRINTREG(sc, ATW_MAR0);
459 	PRINTREG(sc, ATW_MAR1);
460 	PRINTREG(sc, ATW_ATIMDA0);
461 	PRINTREG(sc, ATW_ABDA1);
462 	PRINTREG(sc, ATW_BSSID0);
463 	PRINTREG(sc, ATW_TXLMT);
464 	PRINTREG(sc, ATW_MIBCNT);
465 	PRINTREG(sc, ATW_BCNT);
466 	PRINTREG(sc, ATW_TSFTH);
467 	PRINTREG(sc, ATW_TSC);
468 	PRINTREG(sc, ATW_SYNRF);
469 	PRINTREG(sc, ATW_BPLI);
470 	PRINTREG(sc, ATW_CAP0);
471 	PRINTREG(sc, ATW_CAP1);
472 	PRINTREG(sc, ATW_RMD);
473 	PRINTREG(sc, ATW_CFPP);
474 	PRINTREG(sc, ATW_TOFS0);
475 	PRINTREG(sc, ATW_TOFS1);
476 	PRINTREG(sc, ATW_IFST);
477 	PRINTREG(sc, ATW_RSPT);
478 	PRINTREG(sc, ATW_TSFTL);
479 	PRINTREG(sc, ATW_WEPCTL);
480 	PRINTREG(sc, ATW_WESK);
481 	PRINTREG(sc, ATW_WEPCNT);
482 	PRINTREG(sc, ATW_MACTEST);
483 	PRINTREG(sc, ATW_FER);
484 	PRINTREG(sc, ATW_FEMR);
485 	PRINTREG(sc, ATW_FPSR);
486 	PRINTREG(sc, ATW_FFER);
487 #undef PRINTREG
488 }
489 #endif /* ATW_DEBUG */
490 
491 /*
492  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
493  */
494 void
495 atw_attach(struct atw_softc *sc)
496 {
497 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
498 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
499 	};
500 	struct ieee80211com *ic = &sc->sc_ic;
501 	struct ifnet *ifp = &ic->ic_if;
502 	int country_code, error, i, nrate;
503 	u_int32_t reg;
504 	static const char *type_strings[] = {"Intersil (not supported)",
505 	    "RFMD", "Marvel (not supported)"};
506 
507 	sc->sc_txth = atw_txthresh_tab_lo;
508 
509 	SIMPLEQ_INIT(&sc->sc_txfreeq);
510 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
511 
512 #ifdef ATW_DEBUG
513 	atw_print_regs(sc, "atw_attach");
514 #endif /* ATW_DEBUG */
515 
516 	/*
517 	 * Allocate the control data structures, and create and load the
518 	 * DMA map for it.
519 	 */
520 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
521 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
522 	    1, &sc->sc_cdnseg, 0)) != 0) {
523 		printf("%s: unable to allocate control data, error = %d\n",
524 		    sc->sc_dev.dv_xname, error);
525 		goto fail_0;
526 	}
527 
528 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
529 	    sizeof(struct atw_control_data), (caddr_t *)&sc->sc_control_data,
530 	    BUS_DMA_COHERENT)) != 0) {
531 		printf("%s: unable to map control data, error = %d\n",
532 		    sc->sc_dev.dv_xname, error);
533 		goto fail_1;
534 	}
535 
536 	if ((error = bus_dmamap_create(sc->sc_dmat,
537 	    sizeof(struct atw_control_data), 1,
538 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
539 		printf("%s: unable to create control data DMA map, "
540 		    "error = %d\n", sc->sc_dev.dv_xname, error);
541 		goto fail_2;
542 	}
543 
544 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
545 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
546 	    0)) != 0) {
547 		printf("%s: unable to load control data DMA map, error = %d\n",
548 		    sc->sc_dev.dv_xname, error);
549 		goto fail_3;
550 	}
551 
552 	/*
553 	 * Create the transmit buffer DMA maps.
554 	 */
555 	sc->sc_ntxsegs = ATW_NTXSEGS;
556 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
557 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
558 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
559 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
560 			printf("%s: unable to create tx DMA map %d, "
561 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
562 			goto fail_4;
563 		}
564 	}
565 
566 	/*
567 	 * Create the receive buffer DMA maps.
568 	 */
569 	for (i = 0; i < ATW_NRXDESC; i++) {
570 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
571 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 			printf("%s: unable to create rx DMA map %d, "
573 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
574 			goto fail_5;
575 		}
576 	}
577 	for (i = 0; i < ATW_NRXDESC; i++) {
578 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
579 	}
580 
581 	/* Reset the chip to a known state. */
582 	atw_reset(sc);
583 
584 	if (atw_read_srom(sc) == -1)
585 		return;
586 
587 	sc->sc_rftype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
588 	    ATW_SR_RFTYPE_MASK);
589 
590 	sc->sc_bbptype = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CSR20],
591 	    ATW_SR_BBPTYPE_MASK);
592 
593 	if (sc->sc_rftype > sizeof(type_strings)/sizeof(type_strings[0])) {
594 		printf("%s: unknown RF\n", sc->sc_dev.dv_xname);
595 		return;
596 	}
597 	if (sc->sc_bbptype > sizeof(type_strings)/sizeof(type_strings[0])) {
598 		printf("%s: unknown BBP\n", sc->sc_dev.dv_xname);
599 		return;
600 	}
601 
602 	printf("%s: %s RF, %s BBP", sc->sc_dev.dv_xname,
603 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
604 
605 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
606 	 * MARVEL. My bug, or theirs?
607 	 */
608 
609 	reg = LSHIFT(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
610 
611 	switch (sc->sc_rftype) {
612 	case ATW_RFTYPE_INTERSIL:
613 		reg |= ATW_SYNCTL_CS1;
614 		break;
615 	case ATW_RFTYPE_RFMD:
616 		reg |= ATW_SYNCTL_CS0;
617 		break;
618 	case ATW_RFTYPE_MARVEL:
619 		break;
620 	}
621 
622 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
623 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
624 
625 	reg = LSHIFT(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
626 
627 	switch (sc->sc_bbptype) {
628 	case ATW_RFTYPE_INTERSIL:
629 		reg |= ATW_BBPCTL_TWI;
630 		break;
631 	case ATW_RFTYPE_RFMD:
632 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
633 		    ATW_BBPCTL_CCA_ACTLO;
634 		break;
635 	case ATW_RFTYPE_MARVEL:
636 		break;
637 	}
638 
639 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
640 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
641 
642 	/*
643 	 * From this point forward, the attachment cannot fail.  A failure
644 	 * before this point releases all resources that may have been
645 	 * allocated.
646 	 */
647 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
648 
649 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
650 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
651 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
652 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
653 
654 	country_code = MASK_AND_RSHIFT(sc->sc_srom[ATW_SR_CTRY_CR29],
655 	    ATW_SR_CTRY_MASK);
656 
657 #define ADD_CHANNEL(_ic, _chan) do {					\
658 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
659 	_ic->ic_channels[_chan].ic_freq =				\
660 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
661 } while (0)
662 
663 	/* Find available channels */
664 	switch (country_code) {
665 	case COUNTRY_MMK2:	/* 1-14 */
666 		ADD_CHANNEL(ic, 14);
667 		/*FALLTHROUGH*/
668 	case COUNTRY_ETSI:	/* 1-13 */
669 		for (i = 1; i <= 13; i++)
670 			ADD_CHANNEL(ic, i);
671 		break;
672 	case COUNTRY_FCC:	/* 1-11 */
673 	case COUNTRY_IC:	/* 1-11 */
674 		for (i = 1; i <= 11; i++)
675 			ADD_CHANNEL(ic, i);
676 		break;
677 	case COUNTRY_MMK:	/* 14 */
678 		ADD_CHANNEL(ic, 14);
679 		break;
680 	case COUNTRY_FRANCE:	/* 10-13 */
681 		for (i = 10; i <= 13; i++)
682 			ADD_CHANNEL(ic, i);
683 		break;
684 	default:	/* assume channels 10-11 */
685 	case COUNTRY_SPAIN:	/* 10-11 */
686 		for (i = 10; i <= 11; i++)
687 			ADD_CHANNEL(ic, i);
688 		break;
689 	}
690 
691 	/* Read the MAC address. */
692 	reg = ATW_READ(sc, ATW_PAR0);
693 	ic->ic_myaddr[0] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB0_MASK);
694 	ic->ic_myaddr[1] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB1_MASK);
695 	ic->ic_myaddr[2] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB2_MASK);
696 	ic->ic_myaddr[3] = MASK_AND_RSHIFT(reg, ATW_PAR0_PAB3_MASK);
697 	reg = ATW_READ(sc, ATW_PAR1);
698 	ic->ic_myaddr[4] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB4_MASK);
699 	ic->ic_myaddr[5] = MASK_AND_RSHIFT(reg, ATW_PAR1_PAB5_MASK);
700 
701 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
702 		printf(" could not get mac address, attach failed\n");
703 		return;
704 	}
705 
706 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
707 
708 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
709 	ifp->if_softc = sc;
710 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
711 	    IFF_NOTRAILERS;
712 	ifp->if_ioctl = atw_ioctl;
713 	ifp->if_start = atw_start;
714 	ifp->if_watchdog = atw_watchdog;
715 	ifp->if_init = atw_init;
716 	ifp->if_stop = atw_stop;
717 	IFQ_SET_READY(&ifp->if_snd);
718 
719 	ic->ic_phytype = IEEE80211_T_DS;
720 	ic->ic_opmode = IEEE80211_M_STA;
721 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
722 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP;
723 
724 	nrate = 0;
725 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
726 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
727 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
728 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
729 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
730 
731 	/*
732 	 * Call MI attach routines.
733 	 */
734 
735 	if_attach(ifp);
736 	ieee80211_ifattach(ifp);
737 
738 	sc->sc_newstate = ic->ic_newstate;
739 	ic->ic_newstate = atw_newstate;
740 
741 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
742 	ic->ic_recv_mgmt = atw_recv_mgmt;
743 
744 	sc->sc_node_free = ic->ic_node_free;
745 	ic->ic_node_free = atw_node_free;
746 
747 	sc->sc_node_alloc = ic->ic_node_alloc;
748 	ic->ic_node_alloc = atw_node_alloc;
749 
750 	/* possibly we should fill in our own sc_send_prresp, since
751 	 * the ADM8211 is probably sending probe responses in ad hoc
752 	 * mode.
753 	 */
754 
755 	/* complete initialization */
756 	ieee80211_media_init(ifp, atw_media_change, atw_media_status);
757 	callout_init(&sc->sc_scan_ch);
758 
759 #if NBPFILTER > 0
760 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
761 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
762 #endif
763 
764 	/*
765 	 * Make sure the interface is shutdown during reboot.
766 	 */
767 	sc->sc_sdhook = shutdownhook_establish(atw_shutdown, sc);
768 	if (sc->sc_sdhook == NULL)
769 		printf("%s: WARNING: unable to establish shutdown hook\n",
770 		    sc->sc_dev.dv_xname);
771 
772 	/*
773 	 * Add a suspend hook to make sure we come back up after a
774 	 * resume.
775 	 */
776 	sc->sc_powerhook = powerhook_establish(atw_power, sc);
777 	if (sc->sc_powerhook == NULL)
778 		printf("%s: WARNING: unable to establish power hook\n",
779 		    sc->sc_dev.dv_xname);
780 
781 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
782 	sc->sc_rxtap.ar_ihdr.it_len = sizeof(sc->sc_rxtapu);
783 	sc->sc_rxtap.ar_ihdr.it_present = ATW_RX_RADIOTAP_PRESENT;
784 
785 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
786 	sc->sc_txtap.at_ihdr.it_len = sizeof(sc->sc_txtapu);
787 	sc->sc_txtap.at_ihdr.it_present = ATW_TX_RADIOTAP_PRESENT;
788 
789 	return;
790 
791 	/*
792 	 * Free any resources we've allocated during the failed attach
793 	 * attempt.  Do this in reverse order and fall through.
794 	 */
795  fail_5:
796 	for (i = 0; i < ATW_NRXDESC; i++) {
797 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
798 			continue;
799 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
800 	}
801  fail_4:
802 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
803 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
804 			continue;
805 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
806 	}
807 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
808  fail_3:
809 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
810  fail_2:
811 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
812 	    sizeof(struct atw_control_data));
813  fail_1:
814 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
815  fail_0:
816 	return;
817 }
818 
819 static struct ieee80211_node *
820 atw_node_alloc(struct ieee80211com *ic)
821 {
822 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
823 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(ic);
824 
825 	DPRINTF(sc, ("%s: alloc node %p\n", sc->sc_dev.dv_xname, ni));
826 	return ni;
827 }
828 
829 static void
830 atw_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
831 {
832 	struct atw_softc *sc = (struct atw_softc *)ic->ic_if.if_softc;
833 
834 	DPRINTF(sc, ("%s: freeing node %p %s\n", sc->sc_dev.dv_xname, ni,
835 	    ether_sprintf(ni->ni_bssid)));
836 	(*sc->sc_node_free)(ic, ni);
837 }
838 
839 /*
840  * atw_reset:
841  *
842  *	Perform a soft reset on the ADM8211.
843  */
844 void
845 atw_reset(struct atw_softc *sc)
846 {
847 	int i;
848 
849 	if (ATW_IS_ENABLED(sc) == 0)
850 		return;
851 
852 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
853 
854 	for (i = 0; i < 10000; i++) {
855 		if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR) == 0)
856 			break;
857 		DELAY(1);
858 	}
859 
860 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", sc->sc_dev.dv_xname, i));
861 
862 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
863 		printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname);
864 
865 	/* Turn off maximum power saving. */
866 	ATW_CLR(sc, ATW_FRCTL, ATW_FRCTL_MAXPSP);
867 
868 	/* Recall EEPROM. */
869 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
870 
871 	DELAY(10 * 1000);
872 
873 	/* A reset seems to affect the SRAM contents, so put them into
874 	 * a known state.
875 	 */
876 	atw_clear_sram(sc);
877 
878 	memset(sc->sc_bssid, 0, sizeof(sc->sc_bssid));
879 
880 	sc->sc_lost_bcn_thresh = 0;
881 }
882 
883 static void
884 atw_clear_sram(struct atw_softc *sc)
885 {
886 #if 0
887 	for (addr = 0; addr < 448; addr++) {
888 		ATW_WRITE(sc, ATW_WEPCTL,
889 		    ATW_WEPCTL_WR | ATW_WEPCTL_UNKNOWN0	| addr);
890 		DELAY(1000);
891 		ATW_WRITE(sc, ATW_WESK, 0);
892 		DELAY(1000); /* paranoia */
893 	}
894 	return;
895 #endif
896 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
897 	/* XXX not for revision 0x20. */
898 	atw_write_sram(sc, 0, sc->sc_sram, sizeof(sc->sc_sram));
899 }
900 
901 /* TBD atw_init
902  *
903  * set MAC based on ic->ic_bss->myaddr
904  * write WEP keys
905  * set TX rate
906  */
907 
908 /*
909  * atw_init:		[ ifnet interface function ]
910  *
911  *	Initialize the interface.  Must be called at splnet().
912  */
913 int
914 atw_init(struct ifnet *ifp)
915 {
916 	struct atw_softc *sc = ifp->if_softc;
917 	struct ieee80211com *ic = &sc->sc_ic;
918 	struct atw_txsoft *txs;
919 	struct atw_rxsoft *rxs;
920 	u_int32_t reg;
921 	int i, error = 0;
922 
923 	if ((error = atw_enable(sc)) != 0)
924 		goto out;
925 
926 	/*
927 	 * Cancel any pending I/O. This also resets.
928 	 */
929 	atw_stop(ifp, 0);
930 
931 	ic->ic_bss->ni_chan = ic->ic_ibss_chan;
932 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
933 	    __func__, ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan),
934 	    ic->ic_bss->ni_chan->ic_freq, ic->ic_bss->ni_chan->ic_flags));
935 
936 	/* Turn off APM??? (A binary-only driver does this.)
937 	 *
938 	 * Set Rx store-and-forward mode.
939 	 */
940 	reg = ATW_READ(sc, ATW_CMDR);
941 	reg &= ~ATW_CMDR_APM;
942 	reg &= ~ATW_CMDR_DRT_MASK;
943 	reg |= ATW_CMDR_RTE | LSHIFT(0x2, ATW_CMDR_DRT_MASK);
944 
945 	ATW_WRITE(sc, ATW_CMDR, reg);
946 
947 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
948 	 *
949 	 * XXX a binary-only driver sets a different service field than
950 	 * 0. why?
951 	 */
952 	reg = ATW_READ(sc, ATW_PLCPHD);
953 	reg &= ~(ATW_PLCPHD_SERVICE_MASK|ATW_PLCPHD_SIGNAL_MASK);
954 	reg |= LSHIFT(10, ATW_PLCPHD_SIGNAL_MASK) |
955 	    LSHIFT(0xb0, ATW_PLCPHD_SERVICE_MASK);
956 	ATW_WRITE(sc, ATW_PLCPHD, reg);
957 
958 	/* XXX this magic can probably be figured out from the RFMD docs */
959 	reg = LSHIFT(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
960 	      LSHIFT(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
961 	      LSHIFT(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
962 	      LSHIFT(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
963 	      LSHIFT(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
964 	      LSHIFT(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
965 	      LSHIFT(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
966 	      LSHIFT(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
967 	ATW_WRITE(sc, ATW_TOFS2, reg);
968 
969 	ATW_WRITE(sc, ATW_TXLMT, LSHIFT(512, ATW_TXLMT_MTMLT_MASK) |
970 	                         LSHIFT(224, ATW_TXLMT_SRTYLIM_MASK));
971 
972 	/* XXX this resets an Intersil RF front-end? */
973 	/* TBD condition on Intersil RFType? */
974 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
975 	DELAY(10 * 1000);
976 	ATW_WRITE(sc, ATW_SYNRF, 0);
977 	DELAY(5 * 1000);
978 
979 	/* 16 TU max duration for contention-free period */
980 	reg = ATW_READ(sc, ATW_CFPP) & ~ATW_CFPP_CFPMD;
981 	ATW_WRITE(sc, ATW_CFPP, reg | LSHIFT(16, ATW_CFPP_CFPMD));
982 
983 	/* XXX I guess that the Cardbus clock is 22MHz?
984 	 * I am assuming that the role of ATW_TOFS0_USCNT is
985 	 * to divide the bus clock to get a 1MHz clock---the datasheet is not
986 	 * very clear on this point. It says in the datasheet that it is
987 	 * possible for the ADM8211 to accomodate bus speeds between 22MHz
988 	 * and 33MHz; maybe this is the way? I see a binary-only driver write
989 	 * these values. These values are also the power-on default.
990 	 */
991 	ATW_WRITE(sc, ATW_TOFS0,
992 	    LSHIFT(22, ATW_TOFS0_USCNT_MASK) |
993 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
994 
995 	/* Initialize interframe spacing.  EIFS=0x64 is used by a binary-only
996 	 * driver. Go figure.
997 	 */
998 	reg = LSHIFT(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
999 	      LSHIFT(22 * IEEE80211_DUR_DS_SIFS /* # of 22MHz cycles */,
1000 	             ATW_IFST_SIFS_MASK) |
1001 	      LSHIFT(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1002 	      LSHIFT(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1003 
1004 	ATW_WRITE(sc, ATW_IFST, reg);
1005 
1006 	/* XXX More magic. Might relate to ACK timing. */
1007 	ATW_WRITE(sc, ATW_RSPT, LSHIFT(0xffff, ATW_RSPT_MART_MASK) |
1008 	    LSHIFT(0xff, ATW_RSPT_MIRT_MASK));
1009 
1010 	/* Set up the MMI read/write addresses for the BBP.
1011 	 *
1012 	 * TBD find out the Marvel settings.
1013 	 */
1014 	switch (sc->sc_bbptype) {
1015 	case ATW_BBPTYPE_INTERSIL:
1016 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1017 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1018 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_INTERSIL);
1019 		break;
1020 	case ATW_BBPTYPE_MARVEL:
1021 		break;
1022 	case ATW_BBPTYPE_RFMD:
1023 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1024 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1025 		ATW_WRITE(sc, ATW_MMIRADDR2, ATW_MMIRADDR2_RFMD);
1026 	default:
1027 		break;
1028 	}
1029 
1030 	sc->sc_wepctl = 0;
1031 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1032 
1033 	if ((error = atw_rf3000_init(sc)) != 0)
1034 		goto out;
1035 
1036 	/*
1037 	 * Initialize the PCI Access Register.
1038 	 */
1039 	sc->sc_busmode = ATW_PAR_BAR;	/* XXX what is this? */
1040 
1041 	/*
1042 	 * If we're allowed to do so, use Memory Read Line
1043 	 * and Memory Read Multiple.
1044 	 *
1045 	 * XXX Should we use Memory Write and Invalidate?
1046 	 */
1047 	if (sc->sc_flags & ATWF_MRL)
1048 		sc->sc_busmode |= ATW_PAR_MRLE;
1049 	if (sc->sc_flags & ATWF_MRM)
1050 		sc->sc_busmode |= ATW_PAR_MRME;
1051 	if (sc->sc_flags & ATWF_MWI)
1052 		sc->sc_busmode |= ATW_PAR_MWIE;
1053 	if (sc->sc_maxburst == 0)
1054 		sc->sc_maxburst = 8;	/* ADM8211 default */
1055 
1056 	switch (sc->sc_cacheline) {
1057 	default:
1058 		/* Use burst length. */
1059 		break;
1060 	case 8:
1061 		sc->sc_busmode |= ATW_PAR_CAL_8DW;
1062 		break;
1063 	case 16:
1064 		sc->sc_busmode |= ATW_PAR_CAL_16DW;
1065 		break;
1066 	case 32:
1067 		sc->sc_busmode |= ATW_PAR_CAL_32DW;
1068 		break;
1069 	}
1070 	switch (sc->sc_maxburst) {
1071 	case 1:
1072 		sc->sc_busmode |= ATW_PAR_PBL_1DW;
1073 		break;
1074 	case 2:
1075 		sc->sc_busmode |= ATW_PAR_PBL_2DW;
1076 		break;
1077 	case 4:
1078 		sc->sc_busmode |= ATW_PAR_PBL_4DW;
1079 		break;
1080 	case 8:
1081 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1082 		break;
1083 	case 16:
1084 		sc->sc_busmode |= ATW_PAR_PBL_16DW;
1085 		break;
1086 	case 32:
1087 		sc->sc_busmode |= ATW_PAR_PBL_32DW;
1088 		break;
1089 	default:
1090 		sc->sc_busmode |= ATW_PAR_PBL_8DW;
1091 		break;
1092 	}
1093 
1094 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1095 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", sc->sc_dev.dv_xname,
1096 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1097 
1098 	/*
1099 	 * Initialize the OPMODE register.  We don't write it until
1100 	 * we're ready to begin the transmit and receive processes.
1101 	 */
1102 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1103 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1104 
1105 	/*
1106 	 * Initialize the transmit descriptor ring.
1107 	 */
1108 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1109 	for (i = 0; i < ATW_NTXDESC; i++) {
1110 		/* no transmit chaining */
1111 		sc->sc_txdescs[i].at_ctl = 0 /* ATW_TXFLAG_TCH */;
1112 		sc->sc_txdescs[i].at_buf2 =
1113 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1114 	}
1115 	/* use ring mode */
1116 	sc->sc_txdescs[ATW_NTXDESC - 1].at_ctl |= ATW_TXFLAG_TER;
1117 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1118 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1119 	sc->sc_txfree = ATW_NTXDESC;
1120 	sc->sc_txnext = 0;
1121 
1122 	/*
1123 	 * Initialize the transmit job descriptors.
1124 	 */
1125 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1126 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1127 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1128 		txs = &sc->sc_txsoft[i];
1129 		txs->txs_mbuf = NULL;
1130 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1131 	}
1132 
1133 	/*
1134 	 * Initialize the receive descriptor and receive job
1135 	 * descriptor rings.
1136 	 */
1137 	for (i = 0; i < ATW_NRXDESC; i++) {
1138 		rxs = &sc->sc_rxsoft[i];
1139 		if (rxs->rxs_mbuf == NULL) {
1140 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1141 				printf("%s: unable to allocate or map rx "
1142 				    "buffer %d, error = %d\n",
1143 				    sc->sc_dev.dv_xname, i, error);
1144 				/*
1145 				 * XXX Should attempt to run with fewer receive
1146 				 * XXX buffers instead of just failing.
1147 				 */
1148 				atw_rxdrain(sc);
1149 				goto out;
1150 			}
1151 		} else
1152 			ATW_INIT_RXDESC(sc, i);
1153 	}
1154 	sc->sc_rxptr = 0;
1155 
1156 	/* disable all wake-up events */
1157 	ATW_CLR(sc, ATW_WCSR, ATW_WCSR_WP1E|ATW_WCSR_WP2E|ATW_WCSR_WP3E|
1158 	                      ATW_WCSR_WP4E|ATW_WCSR_WP5E|ATW_WCSR_TSFTWE|
1159 			      ATW_WCSR_TIMWE|ATW_WCSR_ATIMWE|ATW_WCSR_KEYWE|
1160 			      ATW_WCSR_WFRE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1161 
1162 	/* ack all wake-up events */
1163 	ATW_SET(sc, ATW_WCSR, 0);
1164 
1165 	/*
1166 	 * Initialize the interrupt mask and enable interrupts.
1167 	 */
1168 	/* normal interrupts */
1169 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1170 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1171 
1172 	/* abnormal interrupts */
1173 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1174 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1175 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1176 
1177 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1178 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1179 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1180 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1181 	    ATW_INTR_TRT;
1182 
1183 	sc->sc_linkint_mask &= sc->sc_inten;
1184 	sc->sc_rxint_mask &= sc->sc_inten;
1185 	sc->sc_txint_mask &= sc->sc_inten;
1186 
1187 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1188 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1189 	if (sc->sc_intr_ack != NULL)
1190 		(*sc->sc_intr_ack)(sc);
1191 
1192 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1193 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_IER), sc->sc_inten));
1194 
1195 	/*
1196 	 * Give the transmit and receive rings to the ADM8211.
1197 	 */
1198 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1199 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1200 
1201 	/* common 802.11 configuration */
1202 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1203 	switch (ic->ic_opmode) {
1204 	case IEEE80211_M_STA:
1205 		sc->sc_opmode &= ~ATW_NAR_EA;
1206 		break;
1207 	case IEEE80211_M_AHDEMO: /* XXX */
1208 	case IEEE80211_M_IBSS:
1209 		ic->ic_flags |= IEEE80211_F_IBSSON;
1210 		/*FALLTHROUGH*/
1211 	case IEEE80211_M_HOSTAP: /* XXX */
1212 		/* EA bit seems important for ad hoc reception. */
1213 		sc->sc_opmode |= ATW_NAR_EA;
1214 		break;
1215 	case IEEE80211_M_MONITOR: /* XXX */
1216 		break;
1217 	}
1218 
1219 	atw_start_beacon(sc, 0);
1220 
1221 	switch (ic->ic_opmode) {
1222 	case IEEE80211_M_AHDEMO:
1223 	case IEEE80211_M_HOSTAP:
1224 		ic->ic_bss->ni_intval = ic->ic_lintval;
1225 		ic->ic_bss->ni_rssi = 0;
1226 		ic->ic_bss->ni_rstamp = 0;
1227 		break;
1228 	default:					/* XXX */
1229 		break;
1230 	}
1231 
1232 	atw_write_ssid(sc);
1233 	atw_write_sup_rates(sc);
1234 	if (ic->ic_caps & IEEE80211_C_WEP)
1235 		atw_write_wep(sc);
1236 
1237 	/*
1238 	 * Set the receive filter.  This will start the transmit and
1239 	 * receive processes.
1240 	 */
1241 	atw_filter_setup(sc);
1242 
1243 	/*
1244 	 * Start the receive process.
1245 	 */
1246 	ATW_WRITE(sc, ATW_RDR, 0x1);
1247 
1248 	/*
1249 	 * Note that the interface is now running.
1250 	 */
1251 	ifp->if_flags |= IFF_RUNNING;
1252 	ifp->if_flags &= ~IFF_OACTIVE;
1253 	ic->ic_state = IEEE80211_S_INIT;
1254 
1255 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1256 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1257 	else
1258 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1259  out:
1260 	if (error) {
1261 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1262 		ifp->if_timer = 0;
1263 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1264 	}
1265 #ifdef ATW_DEBUG
1266 	atw_print_regs(sc, "end of init");
1267 #endif /* ATW_DEBUG */
1268 
1269 	return (error);
1270 }
1271 
1272 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1273  *           0: MAC control of RF3000/Si4126.
1274  *
1275  * Applies power, or selects RF front-end? Sets reset condition.
1276  *
1277  * TBD support non-RFMD BBP, non-SiLabs synth.
1278  */
1279 static void
1280 atw_rfio_enable(struct atw_softc *sc, int enable)
1281 {
1282 	if (enable) {
1283 		ATW_WRITE(sc, ATW_SYNRF,
1284 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1285 		DELAY(atw_rfio_enable_delay);
1286 	} else {
1287 		ATW_WRITE(sc, ATW_SYNRF, 0);
1288 		DELAY(atw_rfio_disable_delay); /* shorter for some reason */
1289 	}
1290 }
1291 
1292 static int
1293 atw_tune(struct atw_softc *sc)
1294 {
1295 	int rc;
1296 	u_int32_t reg;
1297 	int chan;
1298 	struct ieee80211com *ic = &sc->sc_ic;
1299 
1300 	chan = ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan);
1301 	if (chan == IEEE80211_CHAN_ANY)
1302 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1303 
1304 	if (chan == sc->sc_cur_chan)
1305 		return 0;
1306 
1307 	DPRINTF(sc, ("%s: chan %d -> %d\n", sc->sc_dev.dv_xname,
1308 	    sc->sc_cur_chan, chan));
1309 
1310 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1311 
1312 	if ((rc = atw_si4126_tune(sc, chan)) != 0 ||
1313 	    (rc = atw_rf3000_tune(sc, chan)) != 0)
1314 		printf("%s: failed to tune channel %d\n", sc->sc_dev.dv_xname,
1315 		    chan);
1316 
1317 	reg = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
1318 	ATW_WRITE(sc, ATW_CAP0,
1319 	    reg | LSHIFT(chan, ATW_CAP0_CHN_MASK));
1320 
1321 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1322 
1323 	if (rc == 0)
1324 		sc->sc_cur_chan = chan;
1325 
1326 	return rc;
1327 }
1328 
1329 #ifdef ATW_DEBUG
1330 static void
1331 atw_si4126_print(struct atw_softc *sc)
1332 {
1333 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1334 	u_int addr, val;
1335 
1336 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1337 		return;
1338 
1339 	for (addr = 0; addr <= 8; addr++) {
1340 		printf("%s: synth[%d] = ", sc->sc_dev.dv_xname, addr);
1341 		if (atw_si4126_read(sc, addr, &val) == 0) {
1342 			printf("<unknown> (quitting print-out)\n");
1343 			break;
1344 		}
1345 		printf("%05x\n", val);
1346 	}
1347 }
1348 #endif /* ATW_DEBUG */
1349 
1350 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1351  *
1352  * The RF/IF synthesizer produces two reference frequencies for
1353  * the RF2948B transceiver.  The first frequency the RF2948B requires
1354  * is two times the so-called "intermediate frequency" (IF). Since
1355  * a SAW filter on the radio fixes the IF at 374MHz, I program the
1356  * Si4126 to generate IF LO = 374MHz x 2 = 748MHz.  The second
1357  * frequency required by the transceiver is the radio frequency
1358  * (RF). This is a superheterodyne transceiver; for f(chan) the
1359  * center frequency of the channel we are tuning, RF = f(chan) -
1360  * IF.
1361  *
1362  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1363  * of XIN than the 2-25MHz mentioned by the datasheet, even *without*
1364  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1365  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1366  */
1367 static int
1368 atw_si4126_tune(struct atw_softc *sc, u_int8_t chan)
1369 {
1370 	int rc = 0;
1371 	u_int mhz;
1372 	u_int R;
1373 	u_int32_t reg;
1374 	u_int16_t gain;
1375 
1376 #ifdef ATW_DEBUG
1377 	atw_si4126_print(sc);
1378 #endif /* ATW_DEBUG */
1379 
1380 	if (chan == 14)
1381 		mhz = 2484;
1382 	else
1383 		mhz = 2412 + 5 * (chan - 1);
1384 
1385 	/* Tune IF to 748MHz to suit the IF LO input of the
1386 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1387          * because an IF in 526MHz - 952MHz is allowed.
1388 	 *
1389 	 * XIN is 44.000MHz, so divide it by two to get allowable
1390 	 * range of 2-25MHz. SiLabs tells me that this is not
1391 	 * strictly necessary.
1392 	 */
1393 
1394 	R = 44;
1395 
1396 	atw_rfio_enable(sc, 1);
1397 
1398 	/* Power-up RF, IF synthesizers. */
1399 	if ((rc = atw_si4126_write(sc, SI4126_POWER,
1400 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB)) != 0)
1401 		goto out;
1402 
1403 	/* If RF2 N > 2047, then set KP2 to 1. */
1404 	gain = LSHIFT(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1405 
1406 	if ((rc = atw_si4126_write(sc, SI4126_GAIN, gain)) != 0)
1407 		goto out;
1408 
1409 	/* set LPWR, too? */
1410 	if ((rc = atw_si4126_write(sc, SI4126_MAIN,
1411 	    SI4126_MAIN_XINDIV2)) != 0)
1412 		goto out;
1413 
1414 	/* We set XINDIV2 = 1, so IF = N/(2 * R) * XIN.  XIN = 44MHz.
1415 	 * I choose N = 1496, R = 44 so that 1496/(2 * 44) * 44MHz = 748MHz.
1416 	 */
1417 	if ((rc = atw_si4126_write(sc, SI4126_IFN, 1496)) != 0)
1418 		goto out;
1419 
1420 	if ((rc = atw_si4126_write(sc, SI4126_IFR, R)) != 0)
1421 		goto out;
1422 
1423 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1424 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1425 	 * which has no RF1!
1426 	 */
1427 	if ((rc = atw_si4126_write(sc, SI4126_RF1R, R)) != 0)
1428 		goto out;
1429 
1430 	if ((rc = atw_si4126_write(sc, SI4126_RF1N, mhz - 374)) != 0)
1431 		goto out;
1432 
1433 	/* N/R * XIN = RF. XIN = 44MHz. We desire RF = mhz - IF,
1434 	 * where IF = 374MHz.  Let's divide XIN to 1MHz. So R = 44.
1435 	 * Now let's multiply it to mhz. So mhz - IF = N.
1436 	 */
1437 	if ((rc = atw_si4126_write(sc, SI4126_RF2R, R)) != 0)
1438 		goto out;
1439 
1440 	if ((rc = atw_si4126_write(sc, SI4126_RF2N, mhz - 374)) != 0)
1441 		goto out;
1442 
1443 	/* wait 100us from power-up for RF, IF to settle */
1444 	DELAY(100);
1445 
1446 	if ((sc->sc_if.if_flags & IFF_LINK1) == 0 || chan == 14) {
1447 		/* XXX there is a binary driver which sends
1448 		 * ATW_GPIO_EN_MASK = 1, ATW_GPIO_O_MASK = 1. I had speculated
1449 		 * that this enables the Si4126 by raising its PWDN#, but I
1450 		 * think that it actually sets the Prism RF front-end
1451 		 * to a special mode for channel 14.
1452 		 */
1453 		reg = ATW_READ(sc, ATW_GPIO);
1454 		reg &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1455 		reg |= LSHIFT(1, ATW_GPIO_EN_MASK) | LSHIFT(1, ATW_GPIO_O_MASK);
1456 		ATW_WRITE(sc, ATW_GPIO, reg);
1457 	}
1458 
1459 #ifdef ATW_DEBUG
1460 	atw_si4126_print(sc);
1461 #endif /* ATW_DEBUG */
1462 
1463 out:
1464 	atw_rfio_enable(sc, 0);
1465 
1466 	return rc;
1467 }
1468 
1469 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1470  * diversity.
1471  *
1472  * Call this w/ Tx/Rx suspended.
1473  */
1474 static int
1475 atw_rf3000_init(struct atw_softc *sc)
1476 {
1477 	int rc = 0;
1478 
1479 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1480 
1481 	atw_rfio_enable(sc, 1);
1482 
1483 	/* enable diversity */
1484 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1485 
1486 	if (rc != 0)
1487 		goto out;
1488 
1489 	/* sensible setting from a binary-only driver */
1490 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1491 	    LSHIFT(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1492 
1493 	if (rc != 0)
1494 		goto out;
1495 
1496 	/* magic from a binary-only driver */
1497 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1498 	    LSHIFT(0x38, RF3000_LOGAINCAL_CAL_MASK));
1499 
1500 	if (rc != 0)
1501 		goto out;
1502 
1503 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1504 
1505 	if (rc != 0)
1506 		goto out;
1507 
1508 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1509 
1510 	if (rc != 0)
1511 		goto out;
1512 
1513 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1514 
1515 	if (rc != 0)
1516 		goto out;
1517 
1518 	/* CCA is acquisition sensitive */
1519 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1520 	    LSHIFT(RF3000_CCACTL_MODE_ACQ, RF3000_CCACTL_MODE_MASK));
1521 
1522 	if (rc != 0)
1523 		goto out;
1524 
1525 out:
1526 	atw_rfio_enable(sc, 0);
1527 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1528 	return rc;
1529 }
1530 
1531 #ifdef ATW_DEBUG
1532 static void
1533 atw_rf3000_print(struct atw_softc *sc)
1534 {
1535 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1536 	u_int addr, val;
1537 
1538 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1539 		return;
1540 
1541 	for (addr = 0x01; addr <= 0x15; addr++) {
1542 		printf("%s: bbp[%d] = \n", sc->sc_dev.dv_xname, addr);
1543 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1544 			printf("<unknown> (quitting print-out)\n");
1545 			break;
1546 		}
1547 		printf("%08x\n", val);
1548 	}
1549 }
1550 #endif /* ATW_DEBUG */
1551 
1552 /* Set the power settings on the BBP for channel `chan'. */
1553 static int
1554 atw_rf3000_tune(struct atw_softc *sc, u_int8_t chan)
1555 {
1556 	int rc = 0;
1557 	u_int32_t reg;
1558 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1559 
1560 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1561 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1562 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1563 
1564 	/* odd channels: LSB, even channels: MSB */
1565 	if (chan % 2 == 1) {
1566 		txpower &= 0xFF;
1567 		lpf_cutoff &= 0xFF;
1568 		lna_gs_thresh &= 0xFF;
1569 	} else {
1570 		txpower >>= 8;
1571 		lpf_cutoff >>= 8;
1572 		lna_gs_thresh >>= 8;
1573 	}
1574 
1575 #ifdef ATW_DEBUG
1576 	atw_rf3000_print(sc);
1577 #endif /* ATW_DEBUG */
1578 
1579 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1580 	    "lna_gs_thresh %02x\n",
1581 	    sc->sc_dev.dv_xname, chan, txpower, lpf_cutoff, lna_gs_thresh));
1582 
1583 	atw_rfio_enable(sc, 1);
1584 
1585 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1586 	    LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1587 		goto out;
1588 
1589 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1590 		goto out;
1591 
1592 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1593 		goto out;
1594 
1595 	/* from a binary-only driver. */
1596 	reg = ATW_READ(sc, ATW_PLCPHD);
1597 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1598 	reg |= LSHIFT(LSHIFT(txpower, RF3000_GAINCTL_TXVGC_MASK),
1599 	    ATW_PLCPHD_SERVICE_MASK);
1600 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1601 
1602 #ifdef ATW_DEBUG
1603 	atw_rf3000_print(sc);
1604 #endif /* ATW_DEBUG */
1605 
1606 out:
1607 	atw_rfio_enable(sc, 0);
1608 
1609 	return rc;
1610 }
1611 
1612 /* Write a register on the RF3000 baseband processor using the
1613  * registers provided by the ADM8211 for this purpose.
1614  *
1615  * Return 0 on success.
1616  */
1617 static int
1618 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1619 {
1620 	u_int32_t reg;
1621 	int i;
1622 
1623 	for (i = 1000; --i >= 0; ) {
1624 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1625 			break;
1626 		DELAY(100);
1627 	}
1628 
1629 	if (i < 0) {
1630 		printf("%s: BBPCTL busy (pre-write)\n", sc->sc_dev.dv_xname);
1631 		return ETIMEDOUT;
1632 	}
1633 
1634 	reg = sc->sc_bbpctl_wr |
1635 	     LSHIFT(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1636 	     LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1637 
1638 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1639 
1640 	for (i = 1000; --i >= 0; ) {
1641 		DELAY(100);
1642 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1643 			break;
1644 	}
1645 
1646 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_WR);
1647 
1648 	if (i < 0) {
1649 		printf("%s: BBPCTL busy (post-write)\n", sc->sc_dev.dv_xname);
1650 		return ETIMEDOUT;
1651 	}
1652 	return 0;
1653 }
1654 
1655 /* Read a register on the RF3000 baseband processor using the registers
1656  * the ADM8211 provides for this purpose.
1657  *
1658  * The 7-bit register address is addr.  Record the 8-bit data in the register
1659  * in *val.
1660  *
1661  * Return 0 on success.
1662  *
1663  * XXX This does not seem to work. The ADM8211 must require more or
1664  * different magic to read the chip than to write it. Possibly some
1665  * of the magic I have derived from a binary-only driver concerns
1666  * the "chip address" (see the RF3000 manual).
1667  */
1668 #ifdef ATW_DEBUG
1669 static int
1670 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1671 {
1672 	u_int32_t reg;
1673 	int i;
1674 
1675 	for (i = 1000; --i >= 0; ) {
1676 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1677 			break;
1678 		DELAY(100);
1679 	}
1680 
1681 	if (i < 0) {
1682 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1683 		    sc->sc_dev.dv_xname);
1684 		return ETIMEDOUT;
1685 	}
1686 
1687 	reg = sc->sc_bbpctl_rd | LSHIFT(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1688 
1689 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1690 
1691 	for (i = 1000; --i >= 0; ) {
1692 		DELAY(100);
1693 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1694 			break;
1695 	}
1696 
1697 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1698 
1699 	if (i < 0) {
1700 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1701 		    sc->sc_dev.dv_xname, reg);
1702 		return ETIMEDOUT;
1703 	}
1704 	if (val != NULL)
1705 		*val = MASK_AND_RSHIFT(reg, ATW_BBPCTL_DATA_MASK);
1706 	return 0;
1707 }
1708 #endif /* ATW_DEBUG */
1709 
1710 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1711  * provided by the ADM8211 for that purpose.
1712  *
1713  * val is 18 bits of data, and val is the 4-bit address of the register.
1714  *
1715  * Return 0 on success.
1716  */
1717 static int
1718 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1719 {
1720 	u_int32_t bits, reg;
1721 	int i;
1722 
1723 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1724 	KASSERT((val & ~PRESHIFT(SI4126_TWI_DATA_MASK)) == 0);
1725 
1726 	for (i = 1000; --i >= 0; ) {
1727 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1728 			break;
1729 		DELAY(100);
1730 	}
1731 
1732 	if (i < 0) {
1733 		printf("%s: start atw_si4126_write, SYNCTL busy\n",
1734 		    sc->sc_dev.dv_xname);
1735 		return ETIMEDOUT;
1736 	}
1737 
1738 	bits = LSHIFT(val, SI4126_TWI_DATA_MASK) |
1739 	       LSHIFT(addr, SI4126_TWI_ADDR_MASK);
1740 
1741 	reg = sc->sc_synctl_wr | LSHIFT(bits, ATW_SYNCTL_DATA_MASK);
1742 
1743 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1744 
1745 	for (i = 1000; --i >= 0; ) {
1746 		DELAY(100);
1747 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_WR) == 0)
1748 			break;
1749 	}
1750 
1751 	/* restore to acceptable starting condition */
1752 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_WR);
1753 
1754 	if (i < 0) {
1755 		printf("%s: atw_si4126_write wrote %08x, SYNCTL still busy\n",
1756 		    sc->sc_dev.dv_xname, reg);
1757 		return ETIMEDOUT;
1758 	}
1759 	return 0;
1760 }
1761 
1762 /* Read 18-bit data from the 4-bit address addr in Si4126
1763  * RF synthesizer and write the data to *val. Return 0 on success.
1764  *
1765  * XXX This does not seem to work. The ADM8211 must require more or
1766  * different magic to read the chip than to write it.
1767  */
1768 #ifdef ATW_DEBUG
1769 static int
1770 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1771 {
1772 	u_int32_t reg;
1773 	int i;
1774 
1775 	KASSERT((addr & ~PRESHIFT(SI4126_TWI_ADDR_MASK)) == 0);
1776 
1777 	for (i = 1000; --i >= 0; ) {
1778 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1779 			break;
1780 		DELAY(100);
1781 	}
1782 
1783 	if (i < 0) {
1784 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1785 		    sc->sc_dev.dv_xname);
1786 		return ETIMEDOUT;
1787 	}
1788 
1789 	reg = sc->sc_synctl_rd | LSHIFT(addr, ATW_SYNCTL_DATA_MASK);
1790 
1791 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1792 
1793 	for (i = 1000; --i >= 0; ) {
1794 		DELAY(100);
1795 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1796 			break;
1797 	}
1798 
1799 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1800 
1801 	if (i < 0) {
1802 		printf("%s: atw_si4126_read wrote %08x, SYNCTL still busy\n",
1803 		    sc->sc_dev.dv_xname, reg);
1804 		return ETIMEDOUT;
1805 	}
1806 	if (val != NULL)
1807 		*val = MASK_AND_RSHIFT(ATW_READ(sc, ATW_SYNCTL),
1808 		                       ATW_SYNCTL_DATA_MASK);
1809 	return 0;
1810 }
1811 #endif /* ATW_DEBUG */
1812 
1813 /* XXX is the endianness correct? test. */
1814 #define	atw_calchash(addr) \
1815 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & BITS(5, 0))
1816 
1817 /*
1818  * atw_filter_setup:
1819  *
1820  *	Set the ADM8211's receive filter.
1821  */
1822 static void
1823 atw_filter_setup(struct atw_softc *sc)
1824 {
1825 	struct ieee80211com *ic = &sc->sc_ic;
1826 	struct ethercom *ec = &ic->ic_ec;
1827 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1828 	int hash;
1829 	u_int32_t hashes[2] = { 0, 0 };
1830 	struct ether_multi *enm;
1831 	struct ether_multistep step;
1832 
1833 	DPRINTF(sc, ("%s: atw_filter_setup: sc_flags 0x%08x\n",
1834 	    sc->sc_dev.dv_xname, sc->sc_flags));
1835 
1836 	/*
1837 	 * If we're running, idle the receive engine.  If we're NOT running,
1838 	 * we're being called from atw_init(), and our writing ATW_NAR will
1839 	 * start the transmit and receive processes in motion.
1840 	 */
1841 	if (ifp->if_flags & IFF_RUNNING)
1842 		atw_idle(sc, ATW_NAR_SR);
1843 
1844 	sc->sc_opmode &= ~(ATW_NAR_PR|ATW_NAR_MM);
1845 
1846 	ifp->if_flags &= ~IFF_ALLMULTI;
1847 
1848 	if (ifp->if_flags & IFF_PROMISC) {
1849 		sc->sc_opmode |= ATW_NAR_PR;
1850 allmulti:
1851 		ifp->if_flags |= IFF_ALLMULTI;
1852 		goto setit;
1853 	}
1854 
1855 	/*
1856 	 * Program the 64-bit multicast hash filter.
1857 	 */
1858 	ETHER_FIRST_MULTI(step, ec, enm);
1859 	while (enm != NULL) {
1860 		/* XXX */
1861 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1862 		    ETHER_ADDR_LEN) != 0)
1863 			goto allmulti;
1864 
1865 		hash = atw_calchash(enm->enm_addrlo);
1866 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1867 		ETHER_NEXT_MULTI(step, enm);
1868 	}
1869 
1870 	if (ifp->if_flags & IFF_BROADCAST) {
1871 		hash = atw_calchash(etherbroadcastaddr);
1872 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
1873 	}
1874 
1875 	/* all bits set => hash is useless */
1876 	if (~(hashes[0] & hashes[1]) == 0)
1877 		goto allmulti;
1878 
1879  setit:
1880 	if (ifp->if_flags & IFF_ALLMULTI)
1881 		sc->sc_opmode |= ATW_NAR_MM;
1882 
1883 	/* XXX in scan mode, do not filter packets. maybe this is
1884 	 * unnecessary.
1885 	 */
1886 	if (ic->ic_state == IEEE80211_S_SCAN)
1887 		sc->sc_opmode |= ATW_NAR_PR;
1888 
1889 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
1890 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
1891 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1892 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", sc->sc_dev.dv_xname,
1893 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
1894 
1895 	DPRINTF(sc, ("%s: atw_filter_setup: returning\n", sc->sc_dev.dv_xname));
1896 }
1897 
1898 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
1899  * a beacon's BSSID and SSID against the preferred BSSID and SSID
1900  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
1901  * no beacon with the preferred BSSID and SSID in the number of
1902  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
1903  */
1904 static void
1905 atw_write_bssid(struct atw_softc *sc)
1906 {
1907 	struct ieee80211com *ic = &sc->sc_ic;
1908 	u_int8_t *bssid;
1909 
1910 	bssid = ic->ic_bss->ni_bssid;
1911 
1912 	ATW_WRITE(sc, ATW_ABDA1,
1913 	    (ATW_READ(sc, ATW_ABDA1) &
1914 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
1915 	    LSHIFT(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
1916 	    LSHIFT(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
1917 
1918 	ATW_WRITE(sc, ATW_BSSID0,
1919 	    LSHIFT(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
1920 	    LSHIFT(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
1921 	    LSHIFT(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
1922 	    LSHIFT(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
1923 
1924 	DPRINTF(sc, ("%s: BSSID %s -> ", sc->sc_dev.dv_xname,
1925 	    ether_sprintf(sc->sc_bssid)));
1926 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
1927 
1928 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
1929 }
1930 
1931 /* Tell the ADM8211 how many beacon intervals must pass without
1932  * receiving a beacon with the preferred BSSID & SSID set by
1933  * atw_write_bssid and atw_write_ssid before ATW_INTR_LINKOFF
1934  * raised.
1935  */
1936 static void
1937 atw_write_bcn_thresh(struct atw_softc *sc)
1938 {
1939 	struct ieee80211com *ic = &sc->sc_ic;
1940 	int lost_bcn_thresh;
1941 
1942 	/* Lose link after one second or 7 beacons, whichever comes
1943 	 * first, but do not lose link before 2 beacons are lost.
1944 	 *
1945 	 * In host AP mode, set the lost-beacon threshold to 0.
1946 	 */
1947 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1948 		lost_bcn_thresh = 0;
1949 	else {
1950 		int beacons_per_second =
1951 		    1000000 / (IEEE80211_DUR_TU * MAX(1,ic->ic_bss->ni_intval));
1952 		lost_bcn_thresh = MAX(2, MIN(7, beacons_per_second));
1953 	}
1954 
1955 	/* XXX resets wake-up status bits */
1956 	ATW_WRITE(sc, ATW_WCSR,
1957 	    (ATW_READ(sc, ATW_WCSR) & ~ATW_WCSR_BLN_MASK) |
1958 	    (LSHIFT(lost_bcn_thresh, ATW_WCSR_BLN_MASK) & ATW_WCSR_BLN_MASK));
1959 
1960 	DPRINTF(sc, ("%s: lost-beacon threshold %d -> %d\n",
1961 	    sc->sc_dev.dv_xname, sc->sc_lost_bcn_thresh, lost_bcn_thresh));
1962 
1963 	sc->sc_lost_bcn_thresh = lost_bcn_thresh;
1964 
1965 	DPRINTF(sc, ("%s: atw_write_bcn_thresh reg[WCSR] = %08x\n",
1966 	    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_WCSR)));
1967 }
1968 
1969 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
1970  * 16-bit word.
1971  */
1972 static void
1973 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
1974 {
1975 	u_int i;
1976 	u_int8_t *ptr;
1977 
1978 	memcpy(&sc->sc_sram[ofs], buf, buflen);
1979 
1980 	if (ofs % 2 != 0) {
1981 		ofs--;
1982 		buflen++;
1983 	}
1984 
1985 	if (buflen % 2 != 0)
1986 		buflen++;
1987 
1988 	assert(buflen + ofs <= ATW_SRAM_SIZE);
1989 
1990 	ptr = &sc->sc_sram[ofs];
1991 
1992 	for (i = 0; i < buflen; i += 2) {
1993 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
1994 		    LSHIFT((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
1995 		DELAY(atw_writewep_delay);
1996 
1997 		ATW_WRITE(sc, ATW_WESK,
1998 		    LSHIFT((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
1999 		DELAY(atw_writewep_delay);
2000 	}
2001 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2002 
2003 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2004 		int n_octets = 0;
2005 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2006 		    sc->sc_dev.dv_xname, buflen, ofs, sc->sc_wepctl);
2007 		for (i = 0; i < buflen; i++) {
2008 			printf(" %02x", ptr[i]);
2009 			if (++n_octets % 24 == 0)
2010 				printf("\n");
2011 		}
2012 		if (n_octets % 24 != 0)
2013 			printf("\n");
2014 	}
2015 }
2016 
2017 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2018 static void
2019 atw_write_wep(struct atw_softc *sc)
2020 {
2021 	struct ieee80211com *ic = &sc->sc_ic;
2022 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2023 	u_int8_t buf[IEEE80211_WEP_NKID]
2024 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2025 	u_int32_t reg;
2026 	int i;
2027 
2028 	sc->sc_wepctl = 0;
2029 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2030 
2031 	if ((ic->ic_flags & IEEE80211_F_WEPON) == 0)
2032 		return;
2033 
2034 	memset(&buf[0][0], 0, sizeof(buf));
2035 
2036 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2037 		if (ic->ic_nw_keys[i].wk_len > 5) {
2038 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2039 		} else if (ic->ic_nw_keys[i].wk_len != 0) {
2040 			buf[i][1] = ATW_WEP_ENABLED;
2041 		} else {
2042 			buf[i][1] = 0;
2043 			continue;
2044 		}
2045 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2046 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2047 		    ic->ic_nw_keys[i].wk_len - 1);
2048 	}
2049 
2050 	reg = ATW_READ(sc, ATW_MACTEST);
2051 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2052 	reg &= ~ATW_MACTEST_KEYID_MASK;
2053 	reg |= LSHIFT(ic->ic_wep_txkey, ATW_MACTEST_KEYID_MASK);
2054 	ATW_WRITE(sc, ATW_MACTEST, reg);
2055 
2056 	/* RX bypass WEP if revision != 0x20. (I assume revision != 0x20
2057 	 * throughout.)
2058 	 */
2059 	sc->sc_wepctl = ATW_WEPCTL_WEPENABLE | ATW_WEPCTL_WEPRXBYP;
2060 	if (sc->sc_if.if_flags & IFF_LINK2)
2061 		sc->sc_wepctl &= ~ATW_WEPCTL_WEPRXBYP;
2062 
2063 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2064 	    sizeof(buf));
2065 }
2066 
2067 const struct timeval atw_beacon_mininterval = {1, 0}; /* 1s */
2068 
2069 static void
2070 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2071     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2072 {
2073 	struct atw_softc *sc = (struct atw_softc*)ic->ic_softc;
2074 
2075 	switch (subtype) {
2076 	case IEEE80211_FC0_SUBTYPE_PROBE_REQ:
2077 		/* do nothing: hardware answers probe request */
2078 		break;
2079 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2080 	case IEEE80211_FC0_SUBTYPE_BEACON:
2081 		atw_recv_beacon(ic, m, ni, subtype, rssi, rstamp);
2082 		break;
2083 	default:
2084 		(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2085 		break;
2086 	}
2087 	return;
2088 }
2089 
2090 /* In ad hoc mode, atw_recv_beacon is responsible for the coalescence
2091  * of IBSSs with like SSID/channel but different BSSID. It joins the
2092  * oldest IBSS (i.e., with greatest TSF time), since that is the WECA
2093  * convention. Possibly the ADMtek chip does this for us; I will have
2094  * to test to find out.
2095  *
2096  * XXX we should add the duration field of the received beacon to
2097  * the TSF time it contains before comparing it with the ADM8211's
2098  * TSF.
2099  */
2100 static void
2101 atw_recv_beacon(struct ieee80211com *ic, struct mbuf *m0,
2102     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2103 {
2104 	struct atw_softc *sc;
2105 	struct ieee80211_frame *wh;
2106 	u_int64_t tsft, bcn_tsft;
2107 	u_int32_t tsftl, tsfth;
2108 	int do_print = 0;
2109 
2110 	sc = (struct atw_softc*)ic->ic_if.if_softc;
2111 
2112 	if (ic->ic_if.if_flags & IFF_DEBUG)
2113 		do_print = (ic->ic_if.if_flags & IFF_LINK0)
2114 		    ? 1 : ratecheck(&sc->sc_last_beacon,
2115 		    &atw_beacon_mininterval);
2116 
2117 	wh = mtod(m0, struct ieee80211_frame *);
2118 
2119 	(*sc->sc_recv_mgmt)(ic, m0, ni, subtype, rssi, rstamp);
2120 
2121 	if (ic->ic_state != IEEE80211_S_RUN) {
2122 		if (do_print)
2123 			printf("%s: atw_recv_beacon: not running\n",
2124 			    sc->sc_dev.dv_xname);
2125 		return;
2126 	}
2127 
2128 	if ((ni = ieee80211_lookup_node(ic, wh->i_addr2,
2129 	    ic->ic_bss->ni_chan)) == NULL) {
2130 		if (do_print)
2131 			printf("%s: atw_recv_beacon: no node %s\n",
2132 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2133 		return;
2134 	}
2135 
2136 	if (ieee80211_match_bss(ic, ni) != 0) {
2137 		if (do_print)
2138 			printf("%s: atw_recv_beacon: ssid mismatch %s\n",
2139 			    sc->sc_dev.dv_xname, ether_sprintf(wh->i_addr2));
2140 		return;
2141 	}
2142 
2143 	if (memcmp(ni->ni_bssid, ic->ic_bss->ni_bssid, IEEE80211_ADDR_LEN) == 0)
2144 		return;
2145 
2146 	if (do_print)
2147 		printf("%s: atw_recv_beacon: bssid mismatch %s\n",
2148 		    sc->sc_dev.dv_xname, ether_sprintf(ni->ni_bssid));
2149 
2150 	if (ic->ic_opmode != IEEE80211_M_IBSS)
2151 		return;
2152 
2153 	/* If we read TSFTL right before rollover, we read a TSF timer
2154 	 * that is too high rather than too low. This prevents a spurious
2155 	 * synchronization down the line, however, our IBSS could suffer
2156 	 * from a creeping TSF....
2157 	 */
2158 	tsftl = ATW_READ(sc, ATW_TSFTL);
2159 	tsfth = ATW_READ(sc, ATW_TSFTH);
2160 
2161 	tsft = (u_int64_t)tsfth << 32 | tsftl;
2162 	bcn_tsft = le64toh(*(u_int64_t*)ni->ni_tstamp);
2163 
2164 	if (do_print)
2165 		printf("%s: my tsft %" PRIu64 " beacon tsft %" PRIu64 "\n",
2166 		    sc->sc_dev.dv_xname, tsft, bcn_tsft);
2167 
2168 	/* we are faster, let the other guy catch up */
2169 	if (bcn_tsft < tsft)
2170 		return;
2171 
2172 	if (do_print)
2173 		printf("%s: sync TSF with %s\n", sc->sc_dev.dv_xname,
2174 		    ether_sprintf(wh->i_addr2));
2175 
2176 	ic->ic_flags &= ~IEEE80211_F_SIBSS;
2177 
2178 #if 0
2179 	atw_tsf(sc);
2180 #endif
2181 
2182 	/* negotiate rates with new IBSS */
2183 	ieee80211_fix_rate(ic, ni, IEEE80211_F_DOFRATE |
2184 	    IEEE80211_F_DONEGO | IEEE80211_F_DODEL);
2185 	if (ni->ni_rates.rs_nrates == 0) {
2186 		printf("%s: rates mismatch, BSSID %s\n", sc->sc_dev.dv_xname,
2187 			ether_sprintf(ni->ni_bssid));
2188 		return;
2189 	}
2190 
2191 	if (do_print) {
2192 		printf("%s: sync BSSID %s -> ", sc->sc_dev.dv_xname,
2193 		    ether_sprintf(ic->ic_bss->ni_bssid));
2194 		printf("%s ", ether_sprintf(ni->ni_bssid));
2195 		printf("(from %s)\n", ether_sprintf(wh->i_addr2));
2196 	}
2197 
2198 	(*ic->ic_node_copy)(ic, ic->ic_bss, ni);
2199 
2200 	atw_write_bssid(sc);
2201 	atw_write_bcn_thresh(sc);
2202 	atw_start_beacon(sc, 1);
2203 }
2204 
2205 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2206  * In ad hoc mode, the SSID is written to the beacons sent by the
2207  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2208  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2209  * indications.
2210  */
2211 static void
2212 atw_write_ssid(struct atw_softc *sc)
2213 {
2214 	struct ieee80211com *ic = &sc->sc_ic;
2215 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID */
2216 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2217 
2218 	memset(buf, 0, sizeof(buf));
2219 	buf[0] = ic->ic_bss->ni_esslen;
2220 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2221 
2222 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf, sizeof(buf));
2223 }
2224 
2225 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2226  * In ad hoc mode, the supported rates are written to beacons sent by the
2227  * ADM8211.
2228  */
2229 static void
2230 atw_write_sup_rates(struct atw_softc *sc)
2231 {
2232 	struct ieee80211com *ic = &sc->sc_ic;
2233 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2234 	 * supported rates
2235 	 */
2236 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2237 
2238 	memset(buf, 0, sizeof(buf));
2239 
2240 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2241 
2242 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2243 	    ic->ic_bss->ni_rates.rs_nrates);
2244 
2245 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2246 }
2247 
2248 /* Start/stop sending beacons. */
2249 void
2250 atw_start_beacon(struct atw_softc *sc, int start)
2251 {
2252 	struct ieee80211com *ic = &sc->sc_ic;
2253 	u_int32_t len, capinfo, reg_bcnt, reg_cap1;
2254 
2255 	if (ATW_IS_ENABLED(sc) == 0)
2256 		return;
2257 
2258 	len = capinfo = 0;
2259 
2260 	/* start beacons */
2261 	len = sizeof(struct ieee80211_frame) +
2262 	    8 /* timestamp */ + 2 /* beacon interval */ +
2263 	    2 /* capability info */ +
2264 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2265 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2266 	    3 /* DS parameters */ +
2267 	    IEEE80211_CRC_LEN;
2268 
2269 	reg_bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2270 
2271 	reg_cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2272 
2273 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2274 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2275 
2276 	if (!start)
2277 		return;
2278 
2279 	/* TBD use ni_capinfo */
2280 
2281 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2282 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2283 	if (ic->ic_flags & IEEE80211_F_WEPON)
2284 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2285 
2286 	switch (ic->ic_opmode) {
2287 	case IEEE80211_M_IBSS:
2288 		len += 4; /* IBSS parameters */
2289 		capinfo |= IEEE80211_CAPINFO_IBSS;
2290 		break;
2291 	case IEEE80211_M_HOSTAP:
2292 		/* XXX 6-byte minimum TIM */
2293 		len += atw_beacon_len_adjust;
2294 		capinfo |= IEEE80211_CAPINFO_ESS;
2295 		break;
2296 	default:
2297 		return;
2298 	}
2299 
2300 	reg_bcnt |= LSHIFT(len, ATW_BCNT_BCNT_MASK);
2301 	reg_cap1 |= LSHIFT(capinfo, ATW_CAP1_CAPI_MASK);
2302 
2303 	ATW_WRITE(sc, ATW_BCNT, reg_bcnt);
2304 	ATW_WRITE(sc, ATW_CAP1, reg_cap1);
2305 
2306 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2307 	    sc->sc_dev.dv_xname, reg_bcnt));
2308 
2309 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2310 	    sc->sc_dev.dv_xname, reg_cap1));
2311 }
2312 
2313 /* First beacon was sent at time 0 microseconds, current time is
2314  * tsfth << 32 | tsftl microseconds, and beacon interval is tbtt
2315  * microseconds.  Return the expected time in microseconds for the
2316  * beacon after next.
2317  */
2318 static __inline u_int64_t
2319 atw_predict_beacon(u_int64_t tsft, u_int32_t tbtt)
2320 {
2321 	return tsft + (tbtt - tsft % tbtt);
2322 }
2323 
2324 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2325  * the ieee80211com.
2326  *
2327  * Predict the next target beacon transmission time (TBTT) and
2328  * write it to the ADM8211.
2329  */
2330 static void
2331 atw_tsf(struct atw_softc *sc)
2332 {
2333 #define TBTTOFS 20 /* TU */
2334 
2335 	struct ieee80211com *ic = &sc->sc_ic;
2336 	u_int64_t tsft, tbtt;
2337 
2338 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2339 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2340 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2341 		tsft = ATW_READ(sc, ATW_TSFTH);
2342 		tsft <<= 32;
2343 		tsft |= ATW_READ(sc, ATW_TSFTL);
2344 		*(u_int64_t*)&ic->ic_bss->ni_tstamp[0] = htole64(tsft);
2345 	} else
2346 		tsft = le64toh(*(u_int64_t*)&ic->ic_bss->ni_tstamp[0]);
2347 
2348 	tbtt = atw_predict_beacon(tsft,
2349 	    ic->ic_bss->ni_intval * IEEE80211_DUR_TU);
2350 
2351 	/* skip one more beacon so that the TBTT cannot pass before
2352 	 * we've programmed it, and also so that we can subtract a
2353 	 * few TU so that we wake a little before TBTT.
2354 	 */
2355 	tbtt += ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2356 
2357 	/* wake up a little early */
2358 	tbtt -= TBTTOFS * IEEE80211_DUR_TU;
2359 
2360 	DPRINTF(sc, ("%s: tsft %" PRIu64 " tbtt %" PRIu64 "\n",
2361 	    sc->sc_dev.dv_xname, tsft, tbtt));
2362 
2363 	ATW_WRITE(sc, ATW_TOFS1,
2364 	    LSHIFT(1, ATW_TOFS1_TSFTOFSR_MASK) |
2365 	    LSHIFT(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2366 	    LSHIFT(
2367 		MASK_AND_RSHIFT((u_int32_t)tbtt, BITS(25, 10)),
2368 		ATW_TOFS1_TBTTPRE_MASK));
2369 #undef TBTTOFS
2370 }
2371 
2372 static void
2373 atw_next_scan(void *arg)
2374 {
2375 	struct atw_softc *sc = arg;
2376 	struct ieee80211com *ic = &sc->sc_ic;
2377 	struct ifnet *ifp = &ic->ic_if;
2378 	int s;
2379 
2380 	/* don't call atw_start w/o network interrupts blocked */
2381 	s = splnet();
2382 	if (ic->ic_state == IEEE80211_S_SCAN)
2383 		ieee80211_next_scan(ifp);
2384 	splx(s);
2385 }
2386 
2387 /* Synchronize the hardware state with the software state. */
2388 static int
2389 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2390 {
2391 	struct ifnet *ifp = &ic->ic_if;
2392 	struct atw_softc *sc = ifp->if_softc;
2393 	enum ieee80211_state ostate;
2394 	int error;
2395 
2396 	ostate = ic->ic_state;
2397 
2398 	if (nstate == IEEE80211_S_INIT) {
2399 		callout_stop(&sc->sc_scan_ch);
2400 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2401 		atw_start_beacon(sc, 0);
2402 		return (*sc->sc_newstate)(ic, nstate, arg);
2403 	}
2404 
2405 	if ((error = atw_tune(sc)) != 0)
2406 		return error;
2407 
2408 	switch (nstate) {
2409 	case IEEE80211_S_ASSOC:
2410 		break;
2411 	case IEEE80211_S_INIT:
2412 		panic("%s: unexpected state IEEE80211_S_INIT\n", __func__);
2413 		break;
2414 	case IEEE80211_S_SCAN:
2415 		memset(sc->sc_bssid, 0, IEEE80211_ADDR_LEN);
2416 		atw_write_bssid(sc);
2417 
2418 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2419 		    atw_next_scan, sc);
2420 
2421 		break;
2422 	case IEEE80211_S_RUN:
2423 		if (ic->ic_opmode == IEEE80211_M_STA)
2424 			break;
2425 		/*FALLTHROUGH*/
2426 	case IEEE80211_S_AUTH:
2427 		atw_write_bssid(sc);
2428 		atw_write_bcn_thresh(sc);
2429 		atw_write_ssid(sc);
2430 		atw_write_sup_rates(sc);
2431 
2432 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2433 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2434 			break;
2435 
2436 		/* set listen interval
2437 		 * XXX do software units agree w/ hardware?
2438 		 */
2439 		ATW_WRITE(sc, ATW_BPLI,
2440 		    LSHIFT(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2441 		    LSHIFT(ic->ic_lintval / ic->ic_bss->ni_intval,
2442 			   ATW_BPLI_LI_MASK));
2443 
2444 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n",
2445 		    sc->sc_dev.dv_xname, ATW_READ(sc, ATW_BPLI)));
2446 
2447 		atw_tsf(sc);
2448 		break;
2449 	}
2450 
2451 	if (nstate != IEEE80211_S_SCAN)
2452 		callout_stop(&sc->sc_scan_ch);
2453 
2454 	if (nstate == IEEE80211_S_RUN &&
2455 	    (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2456 	     ic->ic_opmode == IEEE80211_M_IBSS))
2457 		atw_start_beacon(sc, 1);
2458 	else
2459 		atw_start_beacon(sc, 0);
2460 
2461 	return (*sc->sc_newstate)(ic, nstate, arg);
2462 }
2463 
2464 /*
2465  * atw_add_rxbuf:
2466  *
2467  *	Add a receive buffer to the indicated descriptor.
2468  */
2469 int
2470 atw_add_rxbuf(struct atw_softc *sc, int idx)
2471 {
2472 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2473 	struct mbuf *m;
2474 	int error;
2475 
2476 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2477 	if (m == NULL)
2478 		return (ENOBUFS);
2479 
2480 	MCLGET(m, M_DONTWAIT);
2481 	if ((m->m_flags & M_EXT) == 0) {
2482 		m_freem(m);
2483 		return (ENOBUFS);
2484 	}
2485 
2486 	if (rxs->rxs_mbuf != NULL)
2487 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2488 
2489 	rxs->rxs_mbuf = m;
2490 
2491 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2492 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2493 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2494 	if (error) {
2495 		printf("%s: can't load rx DMA map %d, error = %d\n",
2496 		    sc->sc_dev.dv_xname, idx, error);
2497 		panic("atw_add_rxbuf");	/* XXX */
2498 	}
2499 
2500 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2501 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2502 
2503 	ATW_INIT_RXDESC(sc, idx);
2504 
2505 	return (0);
2506 }
2507 
2508 /*
2509  * atw_stop:		[ ifnet interface function ]
2510  *
2511  *	Stop transmission on the interface.
2512  */
2513 void
2514 atw_stop(struct ifnet *ifp, int disable)
2515 {
2516 	struct atw_softc *sc = ifp->if_softc;
2517 	struct ieee80211com *ic = &sc->sc_ic;
2518 	struct atw_txsoft *txs;
2519 
2520 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2521 
2522 	/* Disable interrupts. */
2523 	ATW_WRITE(sc, ATW_IER, 0);
2524 
2525 	/* Stop the transmit and receive processes. */
2526 	sc->sc_opmode = 0;
2527 	ATW_WRITE(sc, ATW_NAR, 0);
2528 	ATW_WRITE(sc, ATW_TDBD, 0);
2529 	ATW_WRITE(sc, ATW_TDBP, 0);
2530 	ATW_WRITE(sc, ATW_RDB, 0);
2531 
2532 	/*
2533 	 * Release any queued transmit buffers.
2534 	 */
2535 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2536 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2537 		if (txs->txs_mbuf != NULL) {
2538 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2539 			m_freem(txs->txs_mbuf);
2540 			txs->txs_mbuf = NULL;
2541 		}
2542 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2543 	}
2544 
2545 	if (disable) {
2546 		atw_rxdrain(sc);
2547 		atw_disable(sc);
2548 	}
2549 
2550 	/*
2551 	 * Mark the interface down and cancel the watchdog timer.
2552 	 */
2553 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2554 	ifp->if_timer = 0;
2555 
2556 	/* XXX */
2557 	atw_reset(sc);
2558 }
2559 
2560 /*
2561  * atw_rxdrain:
2562  *
2563  *	Drain the receive queue.
2564  */
2565 void
2566 atw_rxdrain(struct atw_softc *sc)
2567 {
2568 	struct atw_rxsoft *rxs;
2569 	int i;
2570 
2571 	for (i = 0; i < ATW_NRXDESC; i++) {
2572 		rxs = &sc->sc_rxsoft[i];
2573 		if (rxs->rxs_mbuf == NULL)
2574 			continue;
2575 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2576 		m_freem(rxs->rxs_mbuf);
2577 		rxs->rxs_mbuf = NULL;
2578 	}
2579 }
2580 
2581 /*
2582  * atw_detach:
2583  *
2584  *	Detach an ADM8211 interface.
2585  */
2586 int
2587 atw_detach(struct atw_softc *sc)
2588 {
2589 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2590 	struct atw_rxsoft *rxs;
2591 	struct atw_txsoft *txs;
2592 	int i;
2593 
2594 	/*
2595 	 * Succeed now if there isn't any work to do.
2596 	 */
2597 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2598 		return (0);
2599 
2600 	ieee80211_ifdetach(ifp);
2601 	if_detach(ifp);
2602 
2603 	for (i = 0; i < ATW_NRXDESC; i++) {
2604 		rxs = &sc->sc_rxsoft[i];
2605 		if (rxs->rxs_mbuf != NULL) {
2606 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2607 			m_freem(rxs->rxs_mbuf);
2608 			rxs->rxs_mbuf = NULL;
2609 		}
2610 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2611 	}
2612 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2613 		txs = &sc->sc_txsoft[i];
2614 		if (txs->txs_mbuf != NULL) {
2615 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2616 			m_freem(txs->txs_mbuf);
2617 			txs->txs_mbuf = NULL;
2618 		}
2619 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2620 	}
2621 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2622 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2623 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
2624 	    sizeof(struct atw_control_data));
2625 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2626 
2627 	shutdownhook_disestablish(sc->sc_sdhook);
2628 	powerhook_disestablish(sc->sc_powerhook);
2629 
2630 	if (sc->sc_srom)
2631 		free(sc->sc_srom, M_DEVBUF);
2632 
2633 	return (0);
2634 }
2635 
2636 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2637 void
2638 atw_shutdown(void *arg)
2639 {
2640 	struct atw_softc *sc = arg;
2641 
2642 	atw_stop(&sc->sc_ic.ic_if, 1);
2643 }
2644 
2645 int
2646 atw_intr(void *arg)
2647 {
2648 	struct atw_softc *sc = arg;
2649 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2650 	u_int32_t status, rxstatus, txstatus, linkstatus;
2651 	int handled = 0, txthresh;
2652 
2653 #ifdef DEBUG
2654 	if (ATW_IS_ENABLED(sc) == 0)
2655 		panic("%s: atw_intr: not enabled", sc->sc_dev.dv_xname);
2656 #endif
2657 
2658 	/*
2659 	 * If the interface isn't running, the interrupt couldn't
2660 	 * possibly have come from us.
2661 	 */
2662 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2663 	    (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
2664 		return (0);
2665 
2666 	for (;;) {
2667 		status = ATW_READ(sc, ATW_STSR);
2668 
2669 		if (status)
2670 			ATW_WRITE(sc, ATW_STSR, status);
2671 
2672 		if (sc->sc_intr_ack != NULL)
2673 			(*sc->sc_intr_ack)(sc);
2674 
2675 #ifdef ATW_DEBUG
2676 #define PRINTINTR(flag) do { \
2677 	if ((status & flag) != 0) { \
2678 		printf("%s" #flag, delim); \
2679 		delim = ","; \
2680 	} \
2681 } while (0)
2682 
2683 		if (atw_debug > 1 && status) {
2684 			const char *delim = "<";
2685 
2686 			printf("%s: reg[STSR] = %x",
2687 			    sc->sc_dev.dv_xname, status);
2688 
2689 			PRINTINTR(ATW_INTR_FBE);
2690 			PRINTINTR(ATW_INTR_LINKOFF);
2691 			PRINTINTR(ATW_INTR_LINKON);
2692 			PRINTINTR(ATW_INTR_RCI);
2693 			PRINTINTR(ATW_INTR_RDU);
2694 			PRINTINTR(ATW_INTR_REIS);
2695 			PRINTINTR(ATW_INTR_RPS);
2696 			PRINTINTR(ATW_INTR_TCI);
2697 			PRINTINTR(ATW_INTR_TDU);
2698 			PRINTINTR(ATW_INTR_TLT);
2699 			PRINTINTR(ATW_INTR_TPS);
2700 			PRINTINTR(ATW_INTR_TRT);
2701 			PRINTINTR(ATW_INTR_TUF);
2702 			PRINTINTR(ATW_INTR_BCNTC);
2703 			PRINTINTR(ATW_INTR_ATIME);
2704 			PRINTINTR(ATW_INTR_TBTT);
2705 			PRINTINTR(ATW_INTR_TSCZ);
2706 			PRINTINTR(ATW_INTR_TSFTF);
2707 			printf(">\n");
2708 		}
2709 #undef PRINTINTR
2710 #endif /* ATW_DEBUG */
2711 
2712 		if ((status & sc->sc_inten) == 0)
2713 			break;
2714 
2715 		handled = 1;
2716 
2717 		rxstatus = status & sc->sc_rxint_mask;
2718 		txstatus = status & sc->sc_txint_mask;
2719 		linkstatus = status & sc->sc_linkint_mask;
2720 
2721 		if (linkstatus) {
2722 			atw_linkintr(sc, linkstatus);
2723 		}
2724 
2725 		if (rxstatus) {
2726 			/* Grab any new packets. */
2727 			atw_rxintr(sc);
2728 
2729 			if (rxstatus & ATW_INTR_RDU) {
2730 				printf("%s: receive ring overrun\n",
2731 				    sc->sc_dev.dv_xname);
2732 				/* Get the receive process going again. */
2733 				ATW_WRITE(sc, ATW_RDR, 0x1);
2734 				break;
2735 			}
2736 		}
2737 
2738 		if (txstatus) {
2739 			/* Sweep up transmit descriptors. */
2740 			atw_txintr(sc);
2741 
2742 			if (txstatus & ATW_INTR_TLT)
2743 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2744 				    sc->sc_dev.dv_xname));
2745 
2746 			if (txstatus & ATW_INTR_TRT)
2747 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2748 				    sc->sc_dev.dv_xname));
2749 
2750 			/* If Tx under-run, increase our transmit threshold
2751 			 * if another is available.
2752 			 */
2753 			txthresh = sc->sc_txthresh + 1;
2754 			if ((txstatus & ATW_INTR_TUF) &&
2755 			    sc->sc_txth[txthresh].txth_name != NULL) {
2756 				/* Idle the transmit process. */
2757 				atw_idle(sc, ATW_NAR_ST);
2758 
2759 				sc->sc_txthresh = txthresh;
2760 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2761 				sc->sc_opmode |=
2762 				    sc->sc_txth[txthresh].txth_opmode;
2763 				printf("%s: transmit underrun; new "
2764 				    "threshold: %s\n", sc->sc_dev.dv_xname,
2765 				    sc->sc_txth[txthresh].txth_name);
2766 
2767 				/* Set the new threshold and restart
2768 				 * the transmit process.
2769 				 */
2770 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2771 				/* XXX Log every Nth underrun from
2772 				 * XXX now on?
2773 				 */
2774 			}
2775 		}
2776 
2777 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2778 			if (status & ATW_INTR_TPS)
2779 				printf("%s: transmit process stopped\n",
2780 				    sc->sc_dev.dv_xname);
2781 			if (status & ATW_INTR_RPS)
2782 				printf("%s: receive process stopped\n",
2783 				    sc->sc_dev.dv_xname);
2784 			(void)atw_init(ifp);
2785 			break;
2786 		}
2787 
2788 		if (status & ATW_INTR_FBE) {
2789 			printf("%s: fatal bus error\n", sc->sc_dev.dv_xname);
2790 			(void)atw_init(ifp);
2791 			break;
2792 		}
2793 
2794 		/*
2795 		 * Not handled:
2796 		 *
2797 		 *	Transmit buffer unavailable -- normal
2798 		 *	condition, nothing to do, really.
2799 		 *
2800 		 *	Early receive interrupt -- not available on
2801 		 *	all chips, we just use RI.  We also only
2802 		 *	use single-segment receive DMA, so this
2803 		 *	is mostly useless.
2804 		 *
2805 		 *      TBD others
2806 		 */
2807 	}
2808 
2809 	/* Try to get more packets going. */
2810 	atw_start(ifp);
2811 
2812 	return (handled);
2813 }
2814 
2815 /*
2816  * atw_idle:
2817  *
2818  *	Cause the transmit and/or receive processes to go idle.
2819  *
2820  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2821  *	process in STSR if I clear SR or ST after the process has already
2822  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2823  *      do not seem to be too reliable. Perhaps I have the sense of the
2824  *	Rx bits switched with the Tx bits?
2825  */
2826 void
2827 atw_idle(struct atw_softc *sc, u_int32_t bits)
2828 {
2829 	u_int32_t ackmask = 0, opmode, stsr, test0;
2830 	int i, s;
2831 
2832 	/* without this, somehow we run concurrently w/ interrupt handler */
2833 	s = splnet();
2834 
2835 	opmode = sc->sc_opmode & ~bits;
2836 
2837 	if (bits & ATW_NAR_SR)
2838 		ackmask |= ATW_INTR_RPS;
2839 
2840 	if (bits & ATW_NAR_ST) {
2841 		ackmask |= ATW_INTR_TPS;
2842 		/* set ATW_NAR_HF to flush TX FIFO. */
2843 		opmode |= ATW_NAR_HF;
2844 	}
2845 
2846 	ATW_WRITE(sc, ATW_NAR, opmode);
2847 
2848 	for (i = 0; i < 1000; i++) {
2849 		stsr = ATW_READ(sc, ATW_STSR);
2850 		if ((stsr & ackmask) == ackmask)
2851 			break;
2852 		DELAY(10);
2853 	}
2854 
2855 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2856 
2857 	if ((stsr & ackmask) == ackmask)
2858 		goto out;
2859 
2860 	test0 = ATW_READ(sc, ATW_TEST0);
2861 
2862 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2863 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2864 		printf("%s: transmit process not idle [%s]\n",
2865 		    sc->sc_dev.dv_xname,
2866 		    atw_tx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_TS_MASK)]);
2867 		printf("%s: bits %08x test0 %08x stsr %08x\n",
2868 		    sc->sc_dev.dv_xname, bits, test0, stsr);
2869 	}
2870 
2871 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2872 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2873 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2874 		    sc->sc_dev.dv_xname,
2875 		    atw_rx_state[MASK_AND_RSHIFT(test0, ATW_TEST0_RS_MASK)]));
2876 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2877 		    sc->sc_dev.dv_xname, bits, test0, stsr));
2878 	}
2879 out:
2880 	splx(s);
2881 	return;
2882 }
2883 
2884 /*
2885  * atw_linkintr:
2886  *
2887  *	Helper; handle link-status interrupts.
2888  */
2889 void
2890 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
2891 {
2892 	struct ieee80211com *ic = &sc->sc_ic;
2893 
2894 	if (ic->ic_state != IEEE80211_S_RUN)
2895 		return;
2896 
2897 	if (linkstatus & ATW_INTR_LINKON) {
2898 		DPRINTF(sc, ("%s: link on\n", sc->sc_dev.dv_xname));
2899 		sc->sc_rescan_timer = 0;
2900 	} else if (linkstatus & ATW_INTR_LINKOFF) {
2901 		DPRINTF(sc, ("%s: link off\n", sc->sc_dev.dv_xname));
2902 		if (ic->ic_opmode != IEEE80211_M_STA)
2903 			return;
2904 		sc->sc_rescan_timer = 3;
2905 		ic->ic_if.if_timer = 1;
2906 	}
2907 }
2908 
2909 /*
2910  * atw_rxintr:
2911  *
2912  *	Helper; handle receive interrupts.
2913  */
2914 void
2915 atw_rxintr(struct atw_softc *sc)
2916 {
2917 	static int rate_tbl[] = {2, 4, 11, 22, 44};
2918 	struct ieee80211com *ic = &sc->sc_ic;
2919 	struct ieee80211_node *ni;
2920 	struct ieee80211_frame *wh;
2921 	struct ifnet *ifp = &ic->ic_if;
2922 	struct atw_rxsoft *rxs;
2923 	struct mbuf *m;
2924 	u_int32_t rxstat;
2925 	int i, len, rate, rate0;
2926 	u_int32_t rssi;
2927 
2928 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
2929 		rxs = &sc->sc_rxsoft[i];
2930 
2931 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2932 
2933 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
2934 		rssi = le32toh(sc->sc_rxdescs[i].ar_rssi);
2935 		rate0 = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_RXDR_MASK);
2936 
2937 		if (rxstat & ATW_RXSTAT_OWN)
2938 			break; /* We have processed all receive buffers. */
2939 
2940 		DPRINTF3(sc,
2941 		    ("%s: rx stat %08x rssi %08x buf1 %08x buf2 %08x\n",
2942 		    sc->sc_dev.dv_xname,
2943 		    sc->sc_rxdescs[i].ar_stat,
2944 		    sc->sc_rxdescs[i].ar_rssi,
2945 		    sc->sc_rxdescs[i].ar_buf1,
2946 		    sc->sc_rxdescs[i].ar_buf2));
2947 
2948 		/*
2949 		 * Make sure the packet fits in one buffer.  This should
2950 		 * always be the case.
2951 		 */
2952 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
2953 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
2954 			printf("%s: incoming packet spilled, resetting\n",
2955 			    sc->sc_dev.dv_xname);
2956 			(void)atw_init(ifp);
2957 			return;
2958 		}
2959 
2960 		/*
2961 		 * If an error occurred, update stats, clear the status
2962 		 * word, and leave the packet buffer in place.  It will
2963 		 * simply be reused the next time the ring comes around.
2964 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
2965 		 * error.
2966 		 */
2967 
2968 		if ((rxstat & ATW_RXSTAT_ES) != 0 &&
2969 		    ((sc->sc_ic.ic_ec.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
2970 		     (rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_SFDE |
2971 		                ATW_RXSTAT_SIGE | ATW_RXSTAT_CRC16E |
2972 				ATW_RXSTAT_RXTOE | ATW_RXSTAT_CRC32E |
2973 				ATW_RXSTAT_ICVE)) != 0)) {
2974 #define	PRINTERR(bit, str)						\
2975 			if (rxstat & (bit))				\
2976 				printf("%s: receive error: %s\n",	\
2977 				    sc->sc_dev.dv_xname, str)
2978 			ifp->if_ierrors++;
2979 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
2980 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
2981 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
2982 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
2983 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
2984 			PRINTERR(ATW_RXSTAT_CRC32E, "FCS error");
2985 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
2986 #undef PRINTERR
2987 			ATW_INIT_RXDESC(sc, i);
2988 			continue;
2989 		}
2990 
2991 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2992 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2993 
2994 		/*
2995 		 * No errors; receive the packet.  Note the ADM8211
2996 		 * includes the CRC in promiscuous mode.
2997 		 */
2998 		len = MASK_AND_RSHIFT(rxstat, ATW_RXSTAT_FL_MASK);
2999 
3000 		/*
3001 		 * Allocate a new mbuf cluster.  If that fails, we are
3002 		 * out of memory, and must drop the packet and recycle
3003 		 * the buffer that's already attached to this descriptor.
3004 		 */
3005 		m = rxs->rxs_mbuf;
3006 		if (atw_add_rxbuf(sc, i) != 0) {
3007 			ifp->if_ierrors++;
3008 			ATW_INIT_RXDESC(sc, i);
3009 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3010 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3011 			continue;
3012 		}
3013 
3014 		ifp->if_ipackets++;
3015 		if (sc->sc_opmode & ATW_NAR_PR)
3016 			m->m_flags |= M_HASFCS;
3017 		m->m_pkthdr.rcvif = ifp;
3018 		m->m_pkthdr.len = m->m_len = len;
3019 
3020 		if (rate0 >= sizeof(rate_tbl) / sizeof(rate_tbl[0]))
3021 			rate = 0;
3022 		else
3023 			rate = rate_tbl[rate0];
3024 
3025  #if NBPFILTER > 0
3026 		/* Pass this up to any BPF listeners. */
3027 		if (sc->sc_radiobpf != NULL) {
3028 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3029 
3030 			tap->ar_rate = rate;
3031 			tap->ar_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3032 			tap->ar_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3033 
3034 			/* TBD verify units are dB */
3035 			tap->ar_antsignal = (int)rssi;
3036 			/* TBD tap->ar_flags */
3037 
3038 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3039 			    tap->ar_ihdr.it_len, m);
3040  		}
3041  #endif /* NPBFILTER > 0 */
3042 
3043 		wh = mtod(m, struct ieee80211_frame *);
3044 		ni = ieee80211_find_rxnode(ic, wh);
3045 		ieee80211_input(ifp, m, ni, (int)rssi, 0);
3046 		/*
3047 		 * The frame may have caused the node to be marked for
3048 		 * reclamation (e.g. in response to a DEAUTH message)
3049 		 * so use free_node here instead of unref_node.
3050 		 */
3051 		if (ni == ic->ic_bss)
3052 			ieee80211_unref_node(&ni);
3053 		else
3054 			ieee80211_free_node(ic, ni);
3055 	}
3056 
3057 	/* Update the receive pointer. */
3058 	sc->sc_rxptr = i;
3059 }
3060 
3061 /*
3062  * atw_txintr:
3063  *
3064  *	Helper; handle transmit interrupts.
3065  */
3066 void
3067 atw_txintr(struct atw_softc *sc)
3068 {
3069 #define TXSTAT_ERRMASK (ATW_TXSTAT_TUF | ATW_TXSTAT_TLT | ATW_TXSTAT_TRT | \
3070     ATW_TXSTAT_TRO | ATW_TXSTAT_SOFBR)
3071 #define TXSTAT_FMT "\20\31ATW_TXSTAT_SOFBR\32ATW_TXSTAT_TRO\33ATW_TXSTAT_TUF" \
3072     "\34ATW_TXSTAT_TRT\35ATW_TXSTAT_TLT"
3073 
3074 	static char txstat_buf[sizeof("ffffffff<>" TXSTAT_FMT)];
3075 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3076 	struct atw_txsoft *txs;
3077 	u_int32_t txstat;
3078 
3079 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3080 	    sc->sc_dev.dv_xname, sc->sc_flags));
3081 
3082 	ifp->if_flags &= ~IFF_OACTIVE;
3083 
3084 	/*
3085 	 * Go through our Tx list and free mbufs for those
3086 	 * frames that have been transmitted.
3087 	 */
3088 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3089 		ATW_CDTXSYNC(sc, txs->txs_lastdesc,
3090 		    txs->txs_ndescs,
3091 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3092 
3093 #ifdef ATW_DEBUG
3094 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3095 			int i;
3096 			printf("    txsoft %p transmit chain:\n", txs);
3097 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3098 				printf("     descriptor %d:\n", i);
3099 				printf("       at_status:   0x%08x\n",
3100 				    le32toh(sc->sc_txdescs[i].at_stat));
3101 				printf("       at_flags:      0x%08x\n",
3102 				    le32toh(sc->sc_txdescs[i].at_flags));
3103 				printf("       at_buf1: 0x%08x\n",
3104 				    le32toh(sc->sc_txdescs[i].at_buf1));
3105 				printf("       at_buf2: 0x%08x\n",
3106 				    le32toh(sc->sc_txdescs[i].at_buf2));
3107 				if (i == txs->txs_lastdesc)
3108 					break;
3109 			}
3110 		}
3111 #endif
3112 
3113 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3114 		if (txstat & ATW_TXSTAT_OWN)
3115 			break;
3116 
3117 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3118 
3119 		sc->sc_txfree += txs->txs_ndescs;
3120 
3121 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3122 		    0, txs->txs_dmamap->dm_mapsize,
3123 		    BUS_DMASYNC_POSTWRITE);
3124 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3125 		m_freem(txs->txs_mbuf);
3126 		txs->txs_mbuf = NULL;
3127 
3128 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3129 
3130 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3131 		    (txstat & TXSTAT_ERRMASK) != 0) {
3132 			bitmask_snprintf(txstat & TXSTAT_ERRMASK, TXSTAT_FMT,
3133 			    txstat_buf, sizeof(txstat_buf));
3134 			printf("%s: txstat %s %d\n", sc->sc_dev.dv_xname,
3135 			    txstat_buf,
3136 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK));
3137 		}
3138 
3139 		/*
3140 		 * Check for errors and collisions.
3141 		 */
3142 		if (txstat & ATW_TXSTAT_TUF)
3143 			sc->sc_stats.ts_tx_tuf++;
3144 		if (txstat & ATW_TXSTAT_TLT)
3145 			sc->sc_stats.ts_tx_tlt++;
3146 		if (txstat & ATW_TXSTAT_TRT)
3147 			sc->sc_stats.ts_tx_trt++;
3148 		if (txstat & ATW_TXSTAT_TRO)
3149 			sc->sc_stats.ts_tx_tro++;
3150 		if (txstat & ATW_TXSTAT_SOFBR) {
3151 			sc->sc_stats.ts_tx_sofbr++;
3152 		}
3153 
3154 		if ((txstat & ATW_TXSTAT_ES) == 0)
3155 			ifp->if_collisions +=
3156 			    MASK_AND_RSHIFT(txstat, ATW_TXSTAT_ARC_MASK);
3157 		else
3158 			ifp->if_oerrors++;
3159 
3160 		ifp->if_opackets++;
3161 	}
3162 
3163 	/*
3164 	 * If there are no more pending transmissions, cancel the watchdog
3165 	 * timer.
3166 	 */
3167 	if (txs == NULL)
3168 		sc->sc_tx_timer = 0;
3169 #undef TXSTAT_ERRMASK
3170 #undef TXSTAT_FMT
3171 }
3172 
3173 /*
3174  * atw_watchdog:	[ifnet interface function]
3175  *
3176  *	Watchdog timer handler.
3177  */
3178 void
3179 atw_watchdog(struct ifnet *ifp)
3180 {
3181 	struct atw_softc *sc = ifp->if_softc;
3182 	struct ieee80211com *ic = &sc->sc_ic;
3183 
3184 	ifp->if_timer = 0;
3185 	if (ATW_IS_ENABLED(sc) == 0)
3186 		return;
3187 
3188 	if (sc->sc_rescan_timer) {
3189 		if (--sc->sc_rescan_timer == 0)
3190 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3191 	}
3192 	if (sc->sc_tx_timer) {
3193 		if (--sc->sc_tx_timer == 0 &&
3194 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3195 			printf("%s: transmit timeout\n", ifp->if_xname);
3196 			ifp->if_oerrors++;
3197 			(void)atw_init(ifp);
3198 			atw_start(ifp);
3199 		}
3200 	}
3201 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3202 		ifp->if_timer = 1;
3203 	ieee80211_watchdog(ifp);
3204 }
3205 
3206 /* Compute the 802.11 Duration field and the PLCP Length fields for
3207  * a len-byte frame (HEADER + PAYLOAD + FCS) sent at rate * 500Kbps.
3208  * Write the fields to the ADM8211 Tx header, frm.
3209  *
3210  * TBD use the fragmentation threshold to find the right duration for
3211  * the first & last fragments.
3212  *
3213  * TBD make certain of the duration fields applied by the ADM8211 to each
3214  * fragment. I think that the ADM8211 knows how to subtract the CTS
3215  * duration when ATW_HDRCTL_RTSCTS is clear; that is why I add it regardless.
3216  * I also think that the ADM8211 does *some* arithmetic for us, because
3217  * otherwise I think we would have to set a first duration for CTS/first
3218  * fragment, a second duration for fragments between the first and the
3219  * last, and a third duration for the last fragment.
3220  *
3221  * TBD make certain that duration fields reflect addition of FCS/WEP
3222  * and correct duration arithmetic as necessary.
3223  */
3224 static void
3225 atw_frame_setdurs(struct atw_softc *sc, struct atw_frame *frm, int rate,
3226     int len)
3227 {
3228 	int remainder;
3229 
3230 	/* deal also with encrypted fragments */
3231 	if (frm->atw_hdrctl & htole16(ATW_HDRCTL_WEP)) {
3232 		DPRINTF2(sc, ("%s: atw_frame_setdurs len += 8\n",
3233 		    sc->sc_dev.dv_xname));
3234 		len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
3235 		       IEEE80211_WEP_CRCLEN;
3236 	}
3237 
3238 	/* 802.11 Duration Field for CTS/Data/ACK sequence minus FCS & WEP
3239 	 * duration (XXX added by MAC?).
3240 	 */
3241 	frm->atw_head_dur = (16 * (len - IEEE80211_CRC_LEN)) / rate;
3242 	remainder = (16 * (len - IEEE80211_CRC_LEN)) % rate;
3243 
3244 	if (rate <= 4)
3245 		/* 1-2Mbps WLAN: send ACK/CTS at 1Mbps */
3246 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3247 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3248 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3249 		    IEEE80211_DUR_DS_SLOW_CTS + IEEE80211_DUR_DS_SLOW_ACK;
3250 	else
3251 		/* 5-11Mbps WLAN: send ACK/CTS at 2Mbps */
3252 		frm->atw_head_dur += 3 * (IEEE80211_DUR_DS_SIFS +
3253 		    IEEE80211_DUR_DS_SHORT_PREAMBLE +
3254 		    IEEE80211_DUR_DS_FAST_PLCPHDR) +
3255 		    IEEE80211_DUR_DS_FAST_CTS + IEEE80211_DUR_DS_FAST_ACK;
3256 
3257 	/* lengthen duration if long preamble */
3258 	if ((sc->sc_flags & ATWF_SHORT_PREAMBLE) == 0)
3259 		frm->atw_head_dur +=
3260 		    3 * (IEEE80211_DUR_DS_LONG_PREAMBLE -
3261 		         IEEE80211_DUR_DS_SHORT_PREAMBLE) +
3262 		    3 * (IEEE80211_DUR_DS_SLOW_PLCPHDR -
3263 		         IEEE80211_DUR_DS_FAST_PLCPHDR);
3264 
3265 	if (remainder != 0)
3266 		frm->atw_head_dur++;
3267 
3268 	if ((atw_voodoo & VOODOO_DUR_2_4_SPECIALCASE) &&
3269 	    (rate == 2 || rate == 4)) {
3270 		/* derived from Linux: how could this be right? */
3271 		frm->atw_head_plcplen = frm->atw_head_dur;
3272 	} else {
3273 		frm->atw_head_plcplen = (16 * len) / rate;
3274 		remainder = (80 * len) % (rate * 5);
3275 
3276 		if (remainder != 0) {
3277 			frm->atw_head_plcplen++;
3278 
3279 			/* XXX magic */
3280 			if ((atw_voodoo & VOODOO_DUR_11_ROUNDING) &&
3281 			    rate == 22 && remainder <= 30)
3282 				frm->atw_head_plcplen |= 0x8000;
3283 		}
3284 	}
3285 	frm->atw_tail_plcplen = frm->atw_head_plcplen =
3286 	    htole16(frm->atw_head_plcplen);
3287 	frm->atw_tail_dur = frm->atw_head_dur = htole16(frm->atw_head_dur);
3288 }
3289 
3290 #ifdef ATW_DEBUG
3291 static void
3292 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3293 {
3294 	struct atw_softc *sc = ifp->if_softc;
3295 	struct mbuf *m;
3296 	int i, noctets = 0;
3297 
3298 	printf("%s: %d-byte packet\n", sc->sc_dev.dv_xname,
3299 	    m0->m_pkthdr.len);
3300 
3301 	for (m = m0; m; m = m->m_next) {
3302 		if (m->m_len == 0)
3303 			continue;
3304 		for (i = 0; i < m->m_len; i++) {
3305 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3306 			if (++noctets % 24 == 0)
3307 				printf("\n");
3308 		}
3309 	}
3310 	printf("%s%s: %d bytes emitted\n",
3311 	    (noctets % 24 != 0) ? "\n" : "", sc->sc_dev.dv_xname, noctets);
3312 }
3313 #endif /* ATW_DEBUG */
3314 
3315 /*
3316  * atw_start:		[ifnet interface function]
3317  *
3318  *	Start packet transmission on the interface.
3319  */
3320 void
3321 atw_start(struct ifnet *ifp)
3322 {
3323 	struct atw_softc *sc = ifp->if_softc;
3324 	struct ieee80211com *ic = &sc->sc_ic;
3325 	struct ieee80211_node *ni;
3326 	struct ieee80211_frame *wh;
3327 	struct atw_frame *hh;
3328 	struct mbuf *m0, *m;
3329 	struct atw_txsoft *txs, *last_txs;
3330 	struct atw_txdesc *txd;
3331 	int do_encrypt, rate;
3332 	bus_dmamap_t dmamap;
3333 	int ctl, error, firsttx, nexttx, lasttx = -1, first, ofree, seg;
3334 
3335 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3336 	    sc->sc_dev.dv_xname, sc->sc_flags, ifp->if_flags));
3337 
3338 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3339 		return;
3340 
3341 #if 0 /* TBD ??? */
3342 	if ((sc->sc_flags & ATWF_LINK_UP) == 0 && ifp->if_snd.ifq_len < 10)
3343 		return;
3344 #endif
3345 
3346 	/*
3347 	 * Remember the previous number of free descriptors and
3348 	 * the first descriptor we'll use.
3349 	 */
3350 	ofree = sc->sc_txfree;
3351 	firsttx = sc->sc_txnext;
3352 
3353 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3354 	    sc->sc_dev.dv_xname, ofree, firsttx));
3355 
3356 	/*
3357 	 * Loop through the send queue, setting up transmit descriptors
3358 	 * until we drain the queue, or use up all available transmit
3359 	 * descriptors.
3360 	 */
3361 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3362 	       sc->sc_txfree != 0) {
3363 
3364 		/*
3365 		 * Grab a packet off the management queue, if it
3366 		 * is not empty. Otherwise, from the data queue.
3367 		 */
3368 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3369 		if (m0 != NULL) {
3370 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3371 			m0->m_pkthdr.rcvif = NULL;
3372 		} else {
3373 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3374 			if (m0 == NULL)
3375 				break;
3376 #if NBPFILTER > 0
3377 			if (ifp->if_bpf != NULL)
3378 				bpf_mtap(ifp->if_bpf, m0);
3379 #endif /* NBPFILTER > 0 */
3380 			if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) {
3381 				ifp->if_oerrors++;
3382 				break;
3383 			}
3384 		}
3385 
3386 		rate = MAX(ieee80211_get_rate(ic), 2);
3387 
3388 #if NBPFILTER > 0
3389 		/*
3390 		 * Pass the packet to any BPF listeners.
3391 		 */
3392 		if (ic->ic_rawbpf != NULL)
3393 			bpf_mtap((caddr_t)ic->ic_rawbpf, m0);
3394 
3395 		if (sc->sc_radiobpf != NULL) {
3396 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3397 
3398 			tap->at_rate = rate;
3399 			tap->at_chan_freq = ic->ic_bss->ni_chan->ic_freq;
3400 			tap->at_chan_flags = ic->ic_bss->ni_chan->ic_flags;
3401 
3402 			/* TBD tap->at_flags */
3403 
3404 			bpf_mtap2(sc->sc_radiobpf, (caddr_t)tap,
3405 			    tap->at_ihdr.it_len, m0);
3406 		}
3407 #endif /* NBPFILTER > 0 */
3408 
3409 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3410 
3411 		if (ni != NULL && ni != ic->ic_bss)
3412 			ieee80211_free_node(ic, ni);
3413 
3414 		if (m0 == NULL) {
3415 			ifp->if_oerrors++;
3416 			break;
3417 		}
3418 
3419 		/* just to make sure. */
3420 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3421 
3422 		if (m0 == NULL) {
3423 			ifp->if_oerrors++;
3424 			break;
3425 		}
3426 
3427 		hh = mtod(m0, struct atw_frame *);
3428 		wh = &hh->atw_ihdr;
3429 
3430 		do_encrypt = ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0) ? 1 : 0;
3431 
3432 		/* Copy everything we need from the 802.11 header:
3433 		 * Frame Control; address 1, address 3, or addresses
3434 		 * 3 and 4. NIC fills in BSSID, SA.
3435 		 */
3436 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3437 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3438 				panic("%s: illegal WDS frame",
3439 				    sc->sc_dev.dv_xname);
3440 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3441 		} else
3442 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3443 
3444 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3445 
3446 		/* initialize remaining Tx parameters */
3447 		memset(&hh->u, 0, sizeof(hh->u));
3448 
3449 		hh->atw_rate = rate * 5;
3450 		/* XXX this could be incorrect if M_FCS. _encap should
3451 		 * probably strip FCS just in case it sticks around in
3452 		 * bridged packets.
3453 		 */
3454 		hh->atw_service = IEEE80211_PLCP_SERVICE; /* XXX guess */
3455 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3456 		    sizeof(struct atw_frame));
3457 
3458 #if 0
3459 		/* this virtually guaranteed that WEP-encrypted frames
3460 		 * are fragmented. oops.
3461 		 */
3462 		hh->atw_fragthr = htole16(m0->m_pkthdr.len -
3463 		    sizeof(struct atw_frame) + sizeof(struct ieee80211_frame));
3464 		hh->atw_fragthr &= htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3465 #else
3466 		hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3467 #endif
3468 
3469 		hh->atw_rtylmt = 3;
3470 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3471 		if (do_encrypt) {
3472 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3473 			hh->atw_keyid = ic->ic_wep_txkey;
3474 		}
3475 
3476 		/* TBD 4-addr frames */
3477 		atw_frame_setdurs(sc, hh, rate,
3478 		    m0->m_pkthdr.len - sizeof(struct atw_frame) +
3479 		    sizeof(struct ieee80211_frame) + IEEE80211_CRC_LEN);
3480 
3481 		/* never fragment multicast frames */
3482 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3483 			hh->atw_fragthr = htole16(ATW_FRAGTHR_FRAGTHR_MASK);
3484 		} else if (sc->sc_flags & ATWF_RTSCTS) {
3485 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3486 		}
3487 
3488 #ifdef ATW_DEBUG
3489 		/* experimental stuff */
3490 		if (atw_xrtylmt != ~0)
3491 			hh->atw_rtylmt = atw_xrtylmt;
3492 		if (atw_xhdrctl != 0)
3493 			hh->atw_hdrctl |= htole16(atw_xhdrctl);
3494 		if (atw_xservice != IEEE80211_PLCP_SERVICE)
3495 			hh->atw_service = atw_xservice;
3496 		if (atw_xpaylen != 0)
3497 			hh->atw_paylen = htole16(atw_xpaylen);
3498 		hh->atw_fragnum = 0;
3499 
3500 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3501 			printf("%s: dst = %s, rate = 0x%02x, "
3502 			    "service = 0x%02x, paylen = 0x%04x\n",
3503 			    sc->sc_dev.dv_xname, ether_sprintf(hh->atw_dst),
3504 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3505 
3506 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3507 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3508 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3509 			    sc->sc_dev.dv_xname, hh->atw_fc[0], hh->atw_fc[1],
3510 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3511 			    hh->atw_tail_dur, hh->atw_head_dur);
3512 
3513 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3514 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3515 			    sc->sc_dev.dv_xname, hh->atw_hdrctl,
3516 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3517 
3518 			printf("%s: keyid = %d\n",
3519 			    sc->sc_dev.dv_xname, hh->atw_keyid);
3520 
3521 			atw_dump_pkt(ifp, m0);
3522 		}
3523 #endif /* ATW_DEBUG */
3524 
3525 		dmamap = txs->txs_dmamap;
3526 
3527 		/*
3528 		 * Load the DMA map.  Copy and try (once) again if the packet
3529 		 * didn't fit in the alloted number of segments.
3530 		 */
3531 		for (first = 1;
3532 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3533 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3534 		     first = 0) {
3535 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3536 			if (m == NULL) {
3537 				printf("%s: unable to allocate Tx mbuf\n",
3538 				    sc->sc_dev.dv_xname);
3539 				break;
3540 			}
3541 			if (m0->m_pkthdr.len > MHLEN) {
3542 				MCLGET(m, M_DONTWAIT);
3543 				if ((m->m_flags & M_EXT) == 0) {
3544 					printf("%s: unable to allocate Tx "
3545 					    "cluster\n", sc->sc_dev.dv_xname);
3546 					m_freem(m);
3547 					break;
3548 				}
3549 			}
3550 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3551 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3552 			m_freem(m0);
3553 			m0 = m;
3554 			m = NULL;
3555 		}
3556 		if (error != 0) {
3557 			printf("%s: unable to load Tx buffer, "
3558 			    "error = %d\n", sc->sc_dev.dv_xname, error);
3559 			m_freem(m0);
3560 			break;
3561 		}
3562 
3563 		/*
3564 		 * Ensure we have enough descriptors free to describe
3565 		 * the packet.
3566 		 */
3567 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3568 			/*
3569 			 * Not enough free descriptors to transmit
3570 			 * this packet.  Unload the DMA map and
3571 			 * drop the packet.  Notify the upper layer
3572 			 * that there are no more slots left.
3573 			 *
3574 			 * XXX We could allocate an mbuf and copy, but
3575 			 * XXX it is worth it?
3576 			 */
3577 			ifp->if_flags |= IFF_OACTIVE;
3578 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3579 			m_freem(m0);
3580 			break;
3581 		}
3582 
3583 		/*
3584 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3585 		 */
3586 
3587 		/* Sync the DMA map. */
3588 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3589 		    BUS_DMASYNC_PREWRITE);
3590 
3591 		/* XXX arbitrary retry limit; 8 because I have seen it in
3592 		 * use already and maybe 0 means "no tries" !
3593 		 */
3594 		ctl = htole32(LSHIFT(8, ATW_TXCTL_TL_MASK));
3595 
3596 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3597 		    sc->sc_dev.dv_xname, rate * 5));
3598 		ctl |= htole32(LSHIFT(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3599 
3600 		/*
3601 		 * Initialize the transmit descriptors.
3602 		 */
3603 		for (nexttx = sc->sc_txnext, seg = 0;
3604 		     seg < dmamap->dm_nsegs;
3605 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3606 			/*
3607 			 * If this is the first descriptor we're
3608 			 * enqueueing, don't set the OWN bit just
3609 			 * yet.  That could cause a race condition.
3610 			 * We'll do it below.
3611 			 */
3612 			txd = &sc->sc_txdescs[nexttx];
3613 			txd->at_ctl = ctl |
3614 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3615 
3616 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3617 			txd->at_flags =
3618 			    htole32(LSHIFT(dmamap->dm_segs[seg].ds_len,
3619 			                   ATW_TXFLAG_TBS1_MASK)) |
3620 			    ((nexttx == (ATW_NTXDESC - 1))
3621 			        ? htole32(ATW_TXFLAG_TER) : 0);
3622 			lasttx = nexttx;
3623 		}
3624 
3625 		IASSERT(lasttx != -1, ("bad lastx"));
3626 		/* Set `first segment' and `last segment' appropriately. */
3627 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3628 		    htole32(ATW_TXFLAG_FS);
3629 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3630 
3631 #ifdef ATW_DEBUG
3632 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3633 			printf("     txsoft %p transmit chain:\n", txs);
3634 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3635 				printf("     descriptor %d:\n", seg);
3636 				printf("       at_ctl:   0x%08x\n",
3637 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3638 				printf("       at_flags:      0x%08x\n",
3639 				    le32toh(sc->sc_txdescs[seg].at_flags));
3640 				printf("       at_buf1: 0x%08x\n",
3641 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3642 				printf("       at_buf2: 0x%08x\n",
3643 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3644 				if (seg == lasttx)
3645 					break;
3646 			}
3647 		}
3648 #endif
3649 
3650 		/* Sync the descriptors we're using. */
3651 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3652 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3653 
3654 		/*
3655 		 * Store a pointer to the packet so we can free it later,
3656 		 * and remember what txdirty will be once the packet is
3657 		 * done.
3658 		 */
3659 		txs->txs_mbuf = m0;
3660 		txs->txs_firstdesc = sc->sc_txnext;
3661 		txs->txs_lastdesc = lasttx;
3662 		txs->txs_ndescs = dmamap->dm_nsegs;
3663 
3664 		/* Advance the tx pointer. */
3665 		sc->sc_txfree -= dmamap->dm_nsegs;
3666 		sc->sc_txnext = nexttx;
3667 
3668 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3669 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3670 
3671 		last_txs = txs;
3672 	}
3673 
3674 	if (txs == NULL || sc->sc_txfree == 0) {
3675 		/* No more slots left; notify upper layer. */
3676 		ifp->if_flags |= IFF_OACTIVE;
3677 	}
3678 
3679 	if (sc->sc_txfree != ofree) {
3680 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3681 		    sc->sc_dev.dv_xname, lasttx, firsttx));
3682 		/*
3683 		 * Cause a transmit interrupt to happen on the
3684 		 * last packet we enqueued.
3685 		 */
3686 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3687 		ATW_CDTXSYNC(sc, lasttx, 1,
3688 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3689 
3690 		/*
3691 		 * The entire packet chain is set up.  Give the
3692 		 * first descriptor to the chip now.
3693 		 */
3694 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3695 		ATW_CDTXSYNC(sc, firsttx, 1,
3696 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3697 
3698 		/* Wake up the transmitter. */
3699 		ATW_WRITE(sc, ATW_TDR, 0x1);
3700 
3701 		/* Set a watchdog timer in case the chip flakes out. */
3702 		sc->sc_tx_timer = 5;
3703 		ifp->if_timer = 1;
3704 	}
3705 }
3706 
3707 /*
3708  * atw_power:
3709  *
3710  *	Power management (suspend/resume) hook.
3711  */
3712 void
3713 atw_power(int why, void *arg)
3714 {
3715 	struct atw_softc *sc = arg;
3716 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3717 	int s;
3718 
3719 	DPRINTF(sc, ("%s: atw_power(%d,)\n", sc->sc_dev.dv_xname, why));
3720 
3721 	s = splnet();
3722 	switch (why) {
3723 	case PWR_STANDBY:
3724 		/* XXX do nothing. */
3725 		break;
3726 	case PWR_SUSPEND:
3727 		atw_stop(ifp, 0);
3728 		if (sc->sc_power != NULL)
3729 			(*sc->sc_power)(sc, why);
3730 		break;
3731 	case PWR_RESUME:
3732 		if (ifp->if_flags & IFF_UP) {
3733 			if (sc->sc_power != NULL)
3734 				(*sc->sc_power)(sc, why);
3735 			atw_init(ifp);
3736 		}
3737 		break;
3738 	case PWR_SOFTSUSPEND:
3739 	case PWR_SOFTSTANDBY:
3740 	case PWR_SOFTRESUME:
3741 		break;
3742 	}
3743 	splx(s);
3744 }
3745 
3746 /*
3747  * atw_ioctl:		[ifnet interface function]
3748  *
3749  *	Handle control requests from the operator.
3750  */
3751 int
3752 atw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3753 {
3754 	struct atw_softc *sc = ifp->if_softc;
3755 	struct ifreq *ifr = (struct ifreq *)data;
3756 	int s, error = 0;
3757 
3758 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3759 	if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
3760 		return ENXIO;
3761 
3762 	s = splnet();
3763 
3764 	switch (cmd) {
3765 	case SIOCSIFFLAGS:
3766 		if (ifp->if_flags & IFF_UP) {
3767 			if (ATW_IS_ENABLED(sc)) {
3768 				/*
3769 				 * To avoid rescanning another access point,
3770 				 * do not call atw_init() here.  Instead,
3771 				 * only reflect media settings.
3772 				 */
3773 				atw_filter_setup(sc);
3774 			} else
3775 				error = atw_init(ifp);
3776 		} else if (ATW_IS_ENABLED(sc))
3777 			atw_stop(ifp, 1);
3778 		break;
3779 	case SIOCADDMULTI:
3780 	case SIOCDELMULTI:
3781 		error = (cmd == SIOCADDMULTI) ?
3782 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
3783 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
3784 		if (error == ENETRESET) {
3785 			if (ATW_IS_ENABLED(sc))
3786 				atw_filter_setup(sc); /* do not rescan */
3787 			error = 0;
3788 		}
3789 		break;
3790 	default:
3791 		error = ieee80211_ioctl(ifp, cmd, data);
3792 		if (error == ENETRESET) {
3793 			if (ATW_IS_ENABLED(sc))
3794 				error = atw_init(ifp);
3795 			else
3796 				error = 0;
3797 		}
3798 		break;
3799 	}
3800 
3801 	/* Try to get more packets going. */
3802 	if (ATW_IS_ENABLED(sc))
3803 		atw_start(ifp);
3804 
3805 	splx(s);
3806 	return (error);
3807 }
3808 
3809 static int
3810 atw_media_change(struct ifnet *ifp)
3811 {
3812 	int error;
3813 
3814 	error = ieee80211_media_change(ifp);
3815 	if (error == ENETRESET) {
3816 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
3817 		    (IFF_RUNNING|IFF_UP))
3818 			atw_init(ifp);		/* XXX lose error */
3819 		error = 0;
3820 	}
3821 	return error;
3822 }
3823 
3824 static void
3825 atw_media_status(struct ifnet *ifp, struct ifmediareq *imr)
3826 {
3827 	struct atw_softc *sc = ifp->if_softc;
3828 
3829 	if (ATW_IS_ENABLED(sc) == 0) {
3830 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
3831 		imr->ifm_status = 0;
3832 		return;
3833 	}
3834 	ieee80211_media_status(ifp, imr);
3835 }
3836