xref: /netbsd-src/sys/dev/ic/atw.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: atw.c,v 1.142 2008/12/16 22:35:30 christos Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.142 2008/12/16 22:35:30 christos Exp $");
38 
39 #include "bpfilter.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/time.h>
52 #include <lib/libkern/libkern.h>
53 
54 #include <machine/endian.h>
55 
56 #include <uvm/uvm_extern.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #include <net80211/ieee80211_netbsd.h>
64 #include <net80211/ieee80211_var.h>
65 #include <net80211/ieee80211_radiotap.h>
66 
67 #if NBPFILTER > 0
68 #include <net/bpf.h>
69 #endif
70 
71 #include <sys/bus.h>
72 #include <sys/intr.h>
73 
74 #include <dev/ic/atwreg.h>
75 #include <dev/ic/rf3000reg.h>
76 #include <dev/ic/si4136reg.h>
77 #include <dev/ic/atwvar.h>
78 #include <dev/ic/smc93cx6var.h>
79 
80 /* XXX TBD open questions
81  *
82  *
83  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
84  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
85  * handle this for me?
86  *
87  */
88 /* device attachment
89  *
90  *    print TOFS[012]
91  *
92  * device initialization
93  *
94  *    clear ATW_FRCTL_MAXPSP to disable max power saving
95  *    set ATW_TXBR_ALCUPDATE to enable ALC
96  *    set TOFS[012]? (hope not)
97  *    disable rx/tx
98  *    set ATW_PAR_SWR (software reset)
99  *    wait for ATW_PAR_SWR clear
100  *    disable interrupts
101  *    ack status register
102  *    enable interrupts
103  *
104  * rx/tx initialization
105  *
106  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
107  *    allocate and init descriptor rings
108  *    write ATW_PAR_DSL (descriptor skip length)
109  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
110  *    write ATW_NAR_SQ for one/both transmit descriptor rings
111  *    write ATW_NAR_SQ for one/both transmit descriptor rings
112  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
113  *
114  * rx/tx end
115  *
116  *    stop DMA
117  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
118  *    flush tx w/ ATW_NAR_HF
119  *
120  * scan
121  *
122  *    initialize rx/tx
123  *
124  * BSS join: (re)association response
125  *
126  *    set ATW_FRCTL_AID
127  *
128  * optimizations ???
129  *
130  */
131 
132 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
133 
134 #define	VOODOO_DUR_11_ROUNDING		0x01 /* necessary */
135 #define	VOODOO_DUR_2_4_SPECIALCASE	0x02 /* NOT necessary */
136 int atw_voodoo = VOODOO_DUR_11_ROUNDING;
137 
138 int atw_pseudo_milli = 1;
139 int atw_magic_delay1 = 100 * 1000;
140 int atw_magic_delay2 = 100 * 1000;
141 /* more magic multi-millisecond delays (units: microseconds) */
142 int atw_nar_delay = 20 * 1000;
143 int atw_magic_delay4 = 10 * 1000;
144 int atw_rf_delay1 = 10 * 1000;
145 int atw_rf_delay2 = 5 * 1000;
146 int atw_plcphd_delay = 2 * 1000;
147 int atw_bbp_io_enable_delay = 20 * 1000;
148 int atw_bbp_io_disable_delay = 2 * 1000;
149 int atw_writewep_delay = 1000;
150 int atw_beacon_len_adjust = 4;
151 int atw_dwelltime = 200;
152 int atw_xindiv2 = 0;
153 
154 #ifdef ATW_DEBUG
155 int atw_debug = 0;
156 
157 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
158 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
159 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
160 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
161 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
162 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
163 
164 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
165 static void	atw_print_regs(struct atw_softc *, const char *);
166 
167 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
168 #	ifdef ATW_BBPDEBUG
169 static void	atw_rf3000_print(struct atw_softc *);
170 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
171 #	endif /* ATW_BBPDEBUG */
172 
173 #	ifdef ATW_SYNDEBUG
174 static void	atw_si4126_print(struct atw_softc *);
175 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
176 #	endif /* ATW_SYNDEBUG */
177 
178 #else
179 #define ATW_DPRINTF(x)
180 #define ATW_DPRINTF2(x)
181 #define ATW_DPRINTF3(x)
182 #define	DPRINTF(sc, x)	/* nothing */
183 #define	DPRINTF2(sc, x)	/* nothing */
184 #define	DPRINTF3(sc, x)	/* nothing */
185 #endif
186 
187 /* ifnet methods */
188 int	atw_init(struct ifnet *);
189 int	atw_ioctl(struct ifnet *, u_long, void *);
190 void	atw_start(struct ifnet *);
191 void	atw_stop(struct ifnet *, int);
192 void	atw_watchdog(struct ifnet *);
193 
194 /* Device attachment */
195 void	atw_attach(struct atw_softc *);
196 int	atw_detach(struct atw_softc *);
197 static void atw_evcnt_attach(struct atw_softc *);
198 static void atw_evcnt_detach(struct atw_softc *);
199 
200 /* Rx/Tx process */
201 int	atw_add_rxbuf(struct atw_softc *, int);
202 void	atw_idle(struct atw_softc *, u_int32_t);
203 void	atw_rxdrain(struct atw_softc *);
204 void	atw_txdrain(struct atw_softc *);
205 
206 /* Device (de)activation and power state */
207 void	atw_disable(struct atw_softc *);
208 int	atw_enable(struct atw_softc *);
209 void	atw_reset(struct atw_softc *);
210 
211 /* Interrupt handlers */
212 void	atw_linkintr(struct atw_softc *, u_int32_t);
213 void	atw_rxintr(struct atw_softc *);
214 void	atw_txintr(struct atw_softc *);
215 
216 /* 802.11 state machine */
217 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
218 static void	atw_next_scan(void *);
219 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
220 		              struct ieee80211_node *, int, int, u_int32_t);
221 static int	atw_tune(struct atw_softc *);
222 
223 /* Device initialization */
224 static void	atw_bbp_io_init(struct atw_softc *);
225 static void	atw_cfp_init(struct atw_softc *);
226 static void	atw_cmdr_init(struct atw_softc *);
227 static void	atw_ifs_init(struct atw_softc *);
228 static void	atw_nar_init(struct atw_softc *);
229 static void	atw_response_times_init(struct atw_softc *);
230 static void	atw_rf_reset(struct atw_softc *);
231 static void	atw_test1_init(struct atw_softc *);
232 static void	atw_tofs0_init(struct atw_softc *);
233 static void	atw_tofs2_init(struct atw_softc *);
234 static void	atw_txlmt_init(struct atw_softc *);
235 static void	atw_wcsr_init(struct atw_softc *);
236 
237 /* Key management */
238 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
239 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
240 	const u_int8_t[IEEE80211_ADDR_LEN]);
241 static void atw_key_update_begin(struct ieee80211com *);
242 static void atw_key_update_end(struct ieee80211com *);
243 
244 /* RAM/ROM utilities */
245 static void	atw_clear_sram(struct atw_softc *);
246 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
247 static int	atw_read_srom(struct atw_softc *);
248 
249 /* BSS setup */
250 static void	atw_predict_beacon(struct atw_softc *);
251 static void	atw_start_beacon(struct atw_softc *, int);
252 static void	atw_write_bssid(struct atw_softc *);
253 static void	atw_write_ssid(struct atw_softc *);
254 static void	atw_write_sup_rates(struct atw_softc *);
255 static void	atw_write_wep(struct atw_softc *);
256 
257 /* Media */
258 static int	atw_media_change(struct ifnet *);
259 
260 static void	atw_filter_setup(struct atw_softc *);
261 
262 /* 802.11 utilities */
263 static uint64_t			atw_get_tsft(struct atw_softc *);
264 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
265 				                   uint32_t);
266 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
267 static void			atw_node_free(struct ieee80211_node *);
268 
269 /*
270  * Tuner/transceiver/modem
271  */
272 static void	atw_bbp_io_enable(struct atw_softc *, int);
273 
274 /* RFMD RF3000 Baseband Processor */
275 static int	atw_rf3000_init(struct atw_softc *);
276 static int	atw_rf3000_tune(struct atw_softc *, u_int);
277 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
278 
279 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
280 static void	atw_si4126_tune(struct atw_softc *, u_int);
281 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
282 
283 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
284 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
285 
286 const char *atw_tx_state[] = {
287 	"STOPPED",
288 	"RUNNING - read descriptor",
289 	"RUNNING - transmitting",
290 	"RUNNING - filling fifo",	/* XXX */
291 	"SUSPENDED",
292 	"RUNNING -- write descriptor",
293 	"RUNNING -- write last descriptor",
294 	"RUNNING - fifo full"
295 };
296 
297 const char *atw_rx_state[] = {
298 	"STOPPED",
299 	"RUNNING - read descriptor",
300 	"RUNNING - check this packet, pre-fetch next",
301 	"RUNNING - wait for reception",
302 	"SUSPENDED",
303 	"RUNNING - write descriptor",
304 	"RUNNING - flush fifo",
305 	"RUNNING - fifo drain"
306 };
307 
308 static inline int
309 is_running(struct ifnet *ifp)
310 {
311 	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
312 }
313 
314 int
315 atw_activate(device_t self, enum devact act)
316 {
317 	struct atw_softc *sc = device_private(self);
318 	int rv = 0, s;
319 
320 	s = splnet();
321 	switch (act) {
322 	case DVACT_ACTIVATE:
323 		rv = EOPNOTSUPP;
324 		break;
325 
326 	case DVACT_DEACTIVATE:
327 		if_deactivate(&sc->sc_if);
328 		break;
329 	}
330 	splx(s);
331 	return rv;
332 }
333 
334 /*
335  * atw_enable:
336  *
337  *	Enable the ADM8211 chip.
338  */
339 int
340 atw_enable(struct atw_softc *sc)
341 {
342 
343 	if (ATW_IS_ENABLED(sc) == 0) {
344 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
345 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
346 			return (EIO);
347 		}
348 		sc->sc_flags |= ATWF_ENABLED;
349                 /* Power may have been removed, and WEP keys thus
350                  * reset.
351 		 */
352 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
353 	}
354 	return (0);
355 }
356 
357 /*
358  * atw_disable:
359  *
360  *	Disable the ADM8211 chip.
361  */
362 void
363 atw_disable(struct atw_softc *sc)
364 {
365 	if (!ATW_IS_ENABLED(sc))
366 		return;
367 	if (sc->sc_disable != NULL)
368 		(*sc->sc_disable)(sc);
369 	sc->sc_flags &= ~ATWF_ENABLED;
370 }
371 
372 /* Returns -1 on failure. */
373 static int
374 atw_read_srom(struct atw_softc *sc)
375 {
376 	struct seeprom_descriptor sd;
377 	uint32_t test0, fail_bits;
378 
379 	(void)memset(&sd, 0, sizeof(sd));
380 
381 	test0 = ATW_READ(sc, ATW_TEST0);
382 
383 	switch (sc->sc_rev) {
384 	case ATW_REVISION_BA:
385 	case ATW_REVISION_CA:
386 		fail_bits = ATW_TEST0_EPNE;
387 		break;
388 	default:
389 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
390 		break;
391 	}
392 	if ((test0 & fail_bits) != 0) {
393 		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
394 		return -1;
395 	}
396 
397 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
398 	case ATW_TEST0_EPTYP_93c66:
399 		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
400 		sc->sc_sromsz = 512;
401 		sd.sd_chip = C56_66;
402 		break;
403 	case ATW_TEST0_EPTYP_93c46:
404 		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
405 		sc->sc_sromsz = 128;
406 		sd.sd_chip = C46;
407 		break;
408 	default:
409 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
410 		    device_xname(sc->sc_dev),
411 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
412 		return -1;
413 	}
414 
415 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
416 
417 	if (sc->sc_srom == NULL) {
418 		aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
419 		return -1;
420 	}
421 
422 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
423 
424 	/* ADM8211 has a single 32-bit register for controlling the
425 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
426 	 * "ready" bit. The ADM8211 input/output sense is the reverse
427 	 * of read_seeprom's.
428 	 */
429 	sd.sd_tag = sc->sc_st;
430 	sd.sd_bsh = sc->sc_sh;
431 	sd.sd_regsize = 4;
432 	sd.sd_control_offset = ATW_SPR;
433 	sd.sd_status_offset = ATW_SPR;
434 	sd.sd_dataout_offset = ATW_SPR;
435 	sd.sd_CK = ATW_SPR_SCLK;
436 	sd.sd_CS = ATW_SPR_SCS;
437 	sd.sd_DI = ATW_SPR_SDO;
438 	sd.sd_DO = ATW_SPR_SDI;
439 	sd.sd_MS = ATW_SPR_SRS;
440 	sd.sd_RDY = 0;
441 
442 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
443 		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
444 		free(sc->sc_srom, M_DEVBUF);
445 		return -1;
446 	}
447 #ifdef ATW_DEBUG
448 	{
449 		int i;
450 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
451 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
452 			if (((i % 8) == 0) && (i != 0)) {
453 				ATW_DPRINTF(("\n\t"));
454 			}
455 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
456 		}
457 		ATW_DPRINTF(("\n"));
458 	}
459 #endif /* ATW_DEBUG */
460 	return 0;
461 }
462 
463 #ifdef ATW_DEBUG
464 static void
465 atw_print_regs(struct atw_softc *sc, const char *where)
466 {
467 #define PRINTREG(sc, reg) \
468 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
469 	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
470 
471 	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
472 
473 	PRINTREG(sc, ATW_PAR);
474 	PRINTREG(sc, ATW_FRCTL);
475 	PRINTREG(sc, ATW_TDR);
476 	PRINTREG(sc, ATW_WTDP);
477 	PRINTREG(sc, ATW_RDR);
478 	PRINTREG(sc, ATW_WRDP);
479 	PRINTREG(sc, ATW_RDB);
480 	PRINTREG(sc, ATW_CSR3A);
481 	PRINTREG(sc, ATW_TDBD);
482 	PRINTREG(sc, ATW_TDBP);
483 	PRINTREG(sc, ATW_STSR);
484 	PRINTREG(sc, ATW_CSR5A);
485 	PRINTREG(sc, ATW_NAR);
486 	PRINTREG(sc, ATW_CSR6A);
487 	PRINTREG(sc, ATW_IER);
488 	PRINTREG(sc, ATW_CSR7A);
489 	PRINTREG(sc, ATW_LPC);
490 	PRINTREG(sc, ATW_TEST1);
491 	PRINTREG(sc, ATW_SPR);
492 	PRINTREG(sc, ATW_TEST0);
493 	PRINTREG(sc, ATW_WCSR);
494 	PRINTREG(sc, ATW_WPDR);
495 	PRINTREG(sc, ATW_GPTMR);
496 	PRINTREG(sc, ATW_GPIO);
497 	PRINTREG(sc, ATW_BBPCTL);
498 	PRINTREG(sc, ATW_SYNCTL);
499 	PRINTREG(sc, ATW_PLCPHD);
500 	PRINTREG(sc, ATW_MMIWADDR);
501 	PRINTREG(sc, ATW_MMIRADDR1);
502 	PRINTREG(sc, ATW_MMIRADDR2);
503 	PRINTREG(sc, ATW_TXBR);
504 	PRINTREG(sc, ATW_CSR15A);
505 	PRINTREG(sc, ATW_ALCSTAT);
506 	PRINTREG(sc, ATW_TOFS2);
507 	PRINTREG(sc, ATW_CMDR);
508 	PRINTREG(sc, ATW_PCIC);
509 	PRINTREG(sc, ATW_PMCSR);
510 	PRINTREG(sc, ATW_PAR0);
511 	PRINTREG(sc, ATW_PAR1);
512 	PRINTREG(sc, ATW_MAR0);
513 	PRINTREG(sc, ATW_MAR1);
514 	PRINTREG(sc, ATW_ATIMDA0);
515 	PRINTREG(sc, ATW_ABDA1);
516 	PRINTREG(sc, ATW_BSSID0);
517 	PRINTREG(sc, ATW_TXLMT);
518 	PRINTREG(sc, ATW_MIBCNT);
519 	PRINTREG(sc, ATW_BCNT);
520 	PRINTREG(sc, ATW_TSFTH);
521 	PRINTREG(sc, ATW_TSC);
522 	PRINTREG(sc, ATW_SYNRF);
523 	PRINTREG(sc, ATW_BPLI);
524 	PRINTREG(sc, ATW_CAP0);
525 	PRINTREG(sc, ATW_CAP1);
526 	PRINTREG(sc, ATW_RMD);
527 	PRINTREG(sc, ATW_CFPP);
528 	PRINTREG(sc, ATW_TOFS0);
529 	PRINTREG(sc, ATW_TOFS1);
530 	PRINTREG(sc, ATW_IFST);
531 	PRINTREG(sc, ATW_RSPT);
532 	PRINTREG(sc, ATW_TSFTL);
533 	PRINTREG(sc, ATW_WEPCTL);
534 	PRINTREG(sc, ATW_WESK);
535 	PRINTREG(sc, ATW_WEPCNT);
536 	PRINTREG(sc, ATW_MACTEST);
537 	PRINTREG(sc, ATW_FER);
538 	PRINTREG(sc, ATW_FEMR);
539 	PRINTREG(sc, ATW_FPSR);
540 	PRINTREG(sc, ATW_FFER);
541 #undef PRINTREG
542 }
543 #endif /* ATW_DEBUG */
544 
545 /*
546  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
547  */
548 void
549 atw_attach(struct atw_softc *sc)
550 {
551 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
552 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
553 	};
554 	struct ieee80211com *ic = &sc->sc_ic;
555 	struct ifnet *ifp = &sc->sc_if;
556 	int country_code, error, i, nrate, srom_major;
557 	u_int32_t reg;
558 	static const char *type_strings[] = {"Intersil (not supported)",
559 	    "RFMD", "Marvel (not supported)"};
560 
561 	sc->sc_txth = atw_txthresh_tab_lo;
562 
563 	SIMPLEQ_INIT(&sc->sc_txfreeq);
564 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
565 
566 #ifdef ATW_DEBUG
567 	atw_print_regs(sc, "atw_attach");
568 #endif /* ATW_DEBUG */
569 
570 	/*
571 	 * Allocate the control data structures, and create and load the
572 	 * DMA map for it.
573 	 */
574 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
575 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
576 	    1, &sc->sc_cdnseg, 0)) != 0) {
577 		aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n",
578 		    error);
579 		goto fail_0;
580 	}
581 
582 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
583 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
584 	    BUS_DMA_COHERENT)) != 0) {
585 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
586 		    error);
587 		goto fail_1;
588 	}
589 
590 	if ((error = bus_dmamap_create(sc->sc_dmat,
591 	    sizeof(struct atw_control_data), 1,
592 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
593 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
594 		    "error = %d\n", error);
595 		goto fail_2;
596 	}
597 
598 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
599 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
600 	    0)) != 0) {
601 		aprint_error_dev(sc->sc_dev, "unable to load control data DMA map, error = %d\n",
602 		    error);
603 		goto fail_3;
604 	}
605 
606 	/*
607 	 * Create the transmit buffer DMA maps.
608 	 */
609 	sc->sc_ntxsegs = ATW_NTXSEGS;
610 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
611 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
612 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
613 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
614 			aprint_error_dev(sc->sc_dev, "unable to create tx DMA map %d, "
615 			    "error = %d\n", i, error);
616 			goto fail_4;
617 		}
618 	}
619 
620 	/*
621 	 * Create the receive buffer DMA maps.
622 	 */
623 	for (i = 0; i < ATW_NRXDESC; i++) {
624 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
625 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
626 			aprint_error_dev(sc->sc_dev, "unable to create rx DMA map %d, "
627 			    "error = %d\n", i, error);
628 			goto fail_5;
629 		}
630 	}
631 	for (i = 0; i < ATW_NRXDESC; i++) {
632 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
633 	}
634 
635 	switch (sc->sc_rev) {
636 	case ATW_REVISION_AB:
637 	case ATW_REVISION_AF:
638 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
639 		break;
640 	case ATW_REVISION_BA:
641 	case ATW_REVISION_CA:
642 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
643 		break;
644 	}
645 
646 	/* Reset the chip to a known state. */
647 	atw_reset(sc);
648 
649 	if (atw_read_srom(sc) == -1)
650 		return;
651 
652 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
653 	    ATW_SR_RFTYPE_MASK);
654 
655 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
656 	    ATW_SR_BBPTYPE_MASK);
657 
658 	if (sc->sc_rftype >= __arraycount(type_strings)) {
659 		aprint_error_dev(sc->sc_dev, "unknown RF\n");
660 		return;
661 	}
662 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
663 		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
664 		return;
665 	}
666 
667 	printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
668 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
669 
670 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
671 	 * MARVEL. My bug, or theirs?
672 	 */
673 
674 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
675 
676 	switch (sc->sc_rftype) {
677 	case ATW_RFTYPE_INTERSIL:
678 		reg |= ATW_SYNCTL_CS1;
679 		break;
680 	case ATW_RFTYPE_RFMD:
681 		reg |= ATW_SYNCTL_CS0;
682 		break;
683 	case ATW_RFTYPE_MARVEL:
684 		break;
685 	}
686 
687 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
688 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
689 
690 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
691 
692 	switch (sc->sc_bbptype) {
693 	case ATW_BBPTYPE_INTERSIL:
694 		reg |= ATW_BBPCTL_TWI;
695 		break;
696 	case ATW_BBPTYPE_RFMD:
697 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
698 		    ATW_BBPCTL_CCA_ACTLO;
699 		break;
700 	case ATW_BBPTYPE_MARVEL:
701 		break;
702 	case ATW_C_BBPTYPE_RFMD:
703 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
704 		    device_xname(sc->sc_dev));
705 		break;
706 	}
707 
708 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
709 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
710 
711 	/*
712 	 * From this point forward, the attachment cannot fail.  A failure
713 	 * before this point releases all resources that may have been
714 	 * allocated.
715 	 */
716 	sc->sc_flags |= ATWF_ATTACHED /* | ATWF_RTSCTS */;
717 
718 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
719 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
720 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
721 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
722 
723 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
724 	    ATW_SR_MAJOR_MASK);
725 
726 	if (srom_major < 2)
727 		sc->sc_rf3000_options1 = 0;
728 	else if (sc->sc_rev == ATW_REVISION_BA) {
729 		sc->sc_rf3000_options1 =
730 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
731 		    ATW_SR_CR28_MASK);
732 	} else
733 		sc->sc_rf3000_options1 = 0;
734 
735 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
736 	    ATW_SR_CR29_MASK);
737 
738 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
739 	    ATW_SR_CTRY_MASK);
740 
741 #define ADD_CHANNEL(_ic, _chan) do {					\
742 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
743 	_ic->ic_channels[_chan].ic_freq =				\
744 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
745 } while (0)
746 
747 	/* Find available channels */
748 	switch (country_code) {
749 	case COUNTRY_MMK2:	/* 1-14 */
750 		ADD_CHANNEL(ic, 14);
751 		/*FALLTHROUGH*/
752 	case COUNTRY_ETSI:	/* 1-13 */
753 		for (i = 1; i <= 13; i++)
754 			ADD_CHANNEL(ic, i);
755 		break;
756 	case COUNTRY_FCC:	/* 1-11 */
757 	case COUNTRY_IC:	/* 1-11 */
758 		for (i = 1; i <= 11; i++)
759 			ADD_CHANNEL(ic, i);
760 		break;
761 	case COUNTRY_MMK:	/* 14 */
762 		ADD_CHANNEL(ic, 14);
763 		break;
764 	case COUNTRY_FRANCE:	/* 10-13 */
765 		for (i = 10; i <= 13; i++)
766 			ADD_CHANNEL(ic, i);
767 		break;
768 	default:	/* assume channels 10-11 */
769 	case COUNTRY_SPAIN:	/* 10-11 */
770 		for (i = 10; i <= 11; i++)
771 			ADD_CHANNEL(ic, i);
772 		break;
773 	}
774 
775 	/* Read the MAC address. */
776 	reg = ATW_READ(sc, ATW_PAR0);
777 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
778 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
779 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
780 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
781 	reg = ATW_READ(sc, ATW_PAR1);
782 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
783 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
784 
785 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
786 		printf(" could not get mac address, attach failed\n");
787 		return;
788 	}
789 
790 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
791 
792 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
793 	ifp->if_softc = sc;
794 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
795 	    IFF_NOTRAILERS;
796 	ifp->if_ioctl = atw_ioctl;
797 	ifp->if_start = atw_start;
798 	ifp->if_watchdog = atw_watchdog;
799 	ifp->if_init = atw_init;
800 	ifp->if_stop = atw_stop;
801 	IFQ_SET_READY(&ifp->if_snd);
802 
803 	ic->ic_ifp = ifp;
804 	ic->ic_phytype = IEEE80211_T_DS;
805 	ic->ic_opmode = IEEE80211_M_STA;
806 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
807 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
808 
809 	nrate = 0;
810 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
811 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
812 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
813 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
814 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
815 
816 	/*
817 	 * Call MI attach routines.
818 	 */
819 
820 	if_attach(ifp);
821 	ieee80211_ifattach(ic);
822 
823 	atw_evcnt_attach(sc);
824 
825 	sc->sc_newstate = ic->ic_newstate;
826 	ic->ic_newstate = atw_newstate;
827 
828 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
829 	ic->ic_recv_mgmt = atw_recv_mgmt;
830 
831 	sc->sc_node_free = ic->ic_node_free;
832 	ic->ic_node_free = atw_node_free;
833 
834 	sc->sc_node_alloc = ic->ic_node_alloc;
835 	ic->ic_node_alloc = atw_node_alloc;
836 
837 	ic->ic_crypto.cs_key_delete = atw_key_delete;
838 	ic->ic_crypto.cs_key_set = atw_key_set;
839 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
840 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
841 
842 	/* possibly we should fill in our own sc_send_prresp, since
843 	 * the ADM8211 is probably sending probe responses in ad hoc
844 	 * mode.
845 	 */
846 
847 	/* complete initialization */
848 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
849 	callout_init(&sc->sc_scan_ch, 0);
850 
851 #if NBPFILTER > 0
852 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
853 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
854 #endif
855 
856 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, atw_shutdown)) {
857 		aprint_error_dev(sc->sc_dev,
858 		    "couldn't establish power handler\n");
859 	} else
860 		pmf_class_network_register(sc->sc_dev, &sc->sc_if);
861 
862 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
863 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
864 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
865 
866 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
867 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
868 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
869 
870 	ieee80211_announce(ic);
871 	return;
872 
873 	/*
874 	 * Free any resources we've allocated during the failed attach
875 	 * attempt.  Do this in reverse order and fall through.
876 	 */
877  fail_5:
878 	for (i = 0; i < ATW_NRXDESC; i++) {
879 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
880 			continue;
881 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
882 	}
883  fail_4:
884 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
885 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
886 			continue;
887 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
888 	}
889 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
890  fail_3:
891 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
892  fail_2:
893 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
894 	    sizeof(struct atw_control_data));
895  fail_1:
896 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
897  fail_0:
898 	return;
899 }
900 
901 static struct ieee80211_node *
902 atw_node_alloc(struct ieee80211_node_table *nt)
903 {
904 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
905 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
906 
907 	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
908 	return ni;
909 }
910 
911 static void
912 atw_node_free(struct ieee80211_node *ni)
913 {
914 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
915 
916 	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
917 	    ether_sprintf(ni->ni_bssid)));
918 	(*sc->sc_node_free)(ni);
919 }
920 
921 
922 static void
923 atw_test1_reset(struct atw_softc *sc)
924 {
925 	switch (sc->sc_rev) {
926 	case ATW_REVISION_BA:
927 		if (1 /* XXX condition on transceiver type */) {
928 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
929 		}
930 		break;
931 	case ATW_REVISION_CA:
932 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
933 		break;
934 	default:
935 		break;
936 	}
937 }
938 
939 /*
940  * atw_reset:
941  *
942  *	Perform a soft reset on the ADM8211.
943  */
944 void
945 atw_reset(struct atw_softc *sc)
946 {
947 	int i;
948 	uint32_t lpc;
949 
950 	ATW_WRITE(sc, ATW_NAR, 0x0);
951 	DELAY(atw_nar_delay);
952 
953 	/* Reference driver has a cryptic remark indicating that this might
954 	 * power-on the chip.  I know that it turns off power-saving....
955 	 */
956 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
957 
958 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
959 
960 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
961 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
962 			break;
963 		DELAY(atw_pseudo_milli);
964 	}
965 
966 	/* ... and then pause 100ms longer for good measure. */
967 	DELAY(atw_magic_delay1);
968 
969 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
970 
971 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
972 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
973 
974 	/*
975 	 * Initialize the PCI Access Register.
976 	 */
977 	sc->sc_busmode = ATW_PAR_PBL_8DW;
978 
979 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
980 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
981 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
982 
983 	atw_test1_reset(sc);
984 
985 	/* Turn off maximum power saving, etc. */
986 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
987 
988 	DELAY(atw_magic_delay2);
989 
990 	/* Recall EEPROM. */
991 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
992 
993 	DELAY(atw_magic_delay4);
994 
995 	lpc = ATW_READ(sc, ATW_LPC);
996 
997 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
998 
999 	/* A reset seems to affect the SRAM contents, so put them into
1000 	 * a known state.
1001 	 */
1002 	atw_clear_sram(sc);
1003 
1004 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
1005 }
1006 
1007 static void
1008 atw_clear_sram(struct atw_softc *sc)
1009 {
1010 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
1011 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
1012 	/* XXX not for revision 0x20. */
1013 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
1014 }
1015 
1016 /* TBD atw_init
1017  *
1018  * set MAC based on ic->ic_bss->myaddr
1019  * write WEP keys
1020  * set TX rate
1021  */
1022 
1023 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
1024  * without receiving a beacon with the preferred BSSID & SSID.
1025  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
1026  */
1027 static void
1028 atw_wcsr_init(struct atw_softc *sc)
1029 {
1030 	uint32_t wcsr;
1031 
1032 	wcsr = ATW_READ(sc, ATW_WCSR);
1033 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
1034 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
1035 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
1036 
1037 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1038 	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1039 }
1040 
1041 /* Turn off power management.  Set Rx store-and-forward mode. */
1042 static void
1043 atw_cmdr_init(struct atw_softc *sc)
1044 {
1045 	uint32_t cmdr;
1046 	cmdr = ATW_READ(sc, ATW_CMDR);
1047 	cmdr &= ~ATW_CMDR_APM;
1048 	cmdr |= ATW_CMDR_RTE;
1049 	cmdr &= ~ATW_CMDR_DRT_MASK;
1050 	cmdr |= ATW_CMDR_DRT_SF;
1051 
1052 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1053 }
1054 
1055 static void
1056 atw_tofs2_init(struct atw_softc *sc)
1057 {
1058 	uint32_t tofs2;
1059 	/* XXX this magic can probably be figured out from the RFMD docs */
1060 #ifndef ATW_REFSLAVE
1061 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1062 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1063 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1064 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1065 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1066 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1067 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1068 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1069 #else
1070 	/* XXX new magic from reference driver source */
1071 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1072 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1073 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1074 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1075 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1076 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1077 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1078 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1079 #endif
1080 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1081 }
1082 
1083 static void
1084 atw_nar_init(struct atw_softc *sc)
1085 {
1086 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1087 }
1088 
1089 static void
1090 atw_txlmt_init(struct atw_softc *sc)
1091 {
1092 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1093 	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1094 }
1095 
1096 static void
1097 atw_test1_init(struct atw_softc *sc)
1098 {
1099 	uint32_t test1;
1100 
1101 	test1 = ATW_READ(sc, ATW_TEST1);
1102 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1103 	/* XXX magic 0x1 */
1104 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1105 	ATW_WRITE(sc, ATW_TEST1, test1);
1106 }
1107 
1108 static void
1109 atw_rf_reset(struct atw_softc *sc)
1110 {
1111 	/* XXX this resets an Intersil RF front-end? */
1112 	/* TBD condition on Intersil RFType? */
1113 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1114 	DELAY(atw_rf_delay1);
1115 	ATW_WRITE(sc, ATW_SYNRF, 0);
1116 	DELAY(atw_rf_delay2);
1117 }
1118 
1119 /* Set 16 TU max duration for the contention-free period (CFP). */
1120 static void
1121 atw_cfp_init(struct atw_softc *sc)
1122 {
1123 	uint32_t cfpp;
1124 
1125 	cfpp = ATW_READ(sc, ATW_CFPP);
1126 	cfpp &= ~ATW_CFPP_CFPMD;
1127 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1128 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1129 }
1130 
1131 static void
1132 atw_tofs0_init(struct atw_softc *sc)
1133 {
1134 	/* XXX I guess that the Cardbus clock is 22 MHz?
1135 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1136 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1137 	 * very clear on this point. It says in the datasheet that it is
1138 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1139 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1140 	 * these values. These values are also the power-on default.
1141 	 */
1142 	ATW_WRITE(sc, ATW_TOFS0,
1143 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1144 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1145 }
1146 
1147 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1148 static void
1149 atw_ifs_init(struct atw_softc *sc)
1150 {
1151 	uint32_t ifst;
1152 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1153 	 * Go figure.
1154 	 */
1155 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1156 	      __SHIFTIN(22 * 5 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1157 	             ATW_IFST_SIFS_MASK) |
1158 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1159 	      __SHIFTIN(0x64 /* IEEE80211_DUR_DS_EIFS */, ATW_IFST_EIFS_MASK);
1160 
1161 	ATW_WRITE(sc, ATW_IFST, ifst);
1162 }
1163 
1164 static void
1165 atw_response_times_init(struct atw_softc *sc)
1166 {
1167 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1168 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1169 	 * to pass after it transmits a frame that requires a response;
1170 	 * it waits at most SIFS + MART microseconds for the response.
1171 	 * Surely this is not the ACK timeout?
1172 	 */
1173 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1174 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1175 }
1176 
1177 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1178  * engines read and write baseband registers after Rx and before
1179  * Tx, respectively.
1180  */
1181 static void
1182 atw_bbp_io_init(struct atw_softc *sc)
1183 {
1184 	uint32_t mmiraddr2;
1185 
1186 	/* XXX The reference driver does this, but is it *really*
1187 	 * necessary?
1188 	 */
1189 	switch (sc->sc_rev) {
1190 	case ATW_REVISION_AB:
1191 	case ATW_REVISION_AF:
1192 		mmiraddr2 = 0x0;
1193 		break;
1194 	default:
1195 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1196 		mmiraddr2 &=
1197 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1198 		break;
1199 	}
1200 
1201 	switch (sc->sc_bbptype) {
1202 	case ATW_BBPTYPE_INTERSIL:
1203 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1204 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1205 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1206 		break;
1207 	case ATW_BBPTYPE_MARVEL:
1208 		/* TBD find out the Marvel settings. */
1209 		break;
1210 	case ATW_BBPTYPE_RFMD:
1211 	default:
1212 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1213 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1214 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1215 		break;
1216 	}
1217 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1218 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1219 }
1220 
1221 /*
1222  * atw_init:		[ ifnet interface function ]
1223  *
1224  *	Initialize the interface.  Must be called at splnet().
1225  */
1226 int
1227 atw_init(struct ifnet *ifp)
1228 {
1229 	struct atw_softc *sc = ifp->if_softc;
1230 	struct ieee80211com *ic = &sc->sc_ic;
1231 	struct atw_txsoft *txs;
1232 	struct atw_rxsoft *rxs;
1233 	int i, error = 0;
1234 
1235 	if ((error = atw_enable(sc)) != 0)
1236 		goto out;
1237 
1238 	/*
1239 	 * Cancel any pending I/O. This also resets.
1240 	 */
1241 	atw_stop(ifp, 0);
1242 
1243 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1244 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1245 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1246 
1247 	atw_wcsr_init(sc);
1248 
1249 	atw_cmdr_init(sc);
1250 
1251 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1252 	 *
1253 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1254 	 */
1255 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1256 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1257 
1258 	atw_tofs2_init(sc);
1259 
1260 	atw_nar_init(sc);
1261 
1262 	atw_txlmt_init(sc);
1263 
1264 	atw_test1_init(sc);
1265 
1266 	atw_rf_reset(sc);
1267 
1268 	atw_cfp_init(sc);
1269 
1270 	atw_tofs0_init(sc);
1271 
1272 	atw_ifs_init(sc);
1273 
1274 	/* XXX Fall asleep after one second of inactivity.
1275 	 * XXX A frame may only dribble in for 65536us.
1276 	 */
1277 	ATW_WRITE(sc, ATW_RMD,
1278 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1279 
1280 	atw_response_times_init(sc);
1281 
1282 	atw_bbp_io_init(sc);
1283 
1284 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1285 
1286 	if ((error = atw_rf3000_init(sc)) != 0)
1287 		goto out;
1288 
1289 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1290 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1291 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1292 
1293 	/*
1294 	 * Initialize the transmit descriptor ring.
1295 	 */
1296 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1297 	for (i = 0; i < ATW_NTXDESC; i++) {
1298 		sc->sc_txdescs[i].at_ctl = 0;
1299 		/* no transmit chaining */
1300 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1301 		sc->sc_txdescs[i].at_buf2 =
1302 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1303 	}
1304 	/* use ring mode */
1305 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1306 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1307 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1308 	sc->sc_txfree = ATW_NTXDESC;
1309 	sc->sc_txnext = 0;
1310 
1311 	/*
1312 	 * Initialize the transmit job descriptors.
1313 	 */
1314 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1315 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1316 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1317 		txs = &sc->sc_txsoft[i];
1318 		txs->txs_mbuf = NULL;
1319 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1320 	}
1321 
1322 	/*
1323 	 * Initialize the receive descriptor and receive job
1324 	 * descriptor rings.
1325 	 */
1326 	for (i = 0; i < ATW_NRXDESC; i++) {
1327 		rxs = &sc->sc_rxsoft[i];
1328 		if (rxs->rxs_mbuf == NULL) {
1329 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1330 				aprint_error_dev(sc->sc_dev, "unable to allocate or map rx "
1331 				    "buffer %d, error = %d\n",
1332 				    i, error);
1333 				/*
1334 				 * XXX Should attempt to run with fewer receive
1335 				 * XXX buffers instead of just failing.
1336 				 */
1337 				atw_rxdrain(sc);
1338 				goto out;
1339 			}
1340 		} else
1341 			atw_init_rxdesc(sc, i);
1342 	}
1343 	sc->sc_rxptr = 0;
1344 
1345 	/*
1346 	 * Initialize the interrupt mask and enable interrupts.
1347 	 */
1348 	/* normal interrupts */
1349 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1350 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1351 
1352 	/* abnormal interrupts */
1353 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1354 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1355 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1356 
1357 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1358 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1359 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1360 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1361 	    ATW_INTR_TRT;
1362 
1363 	sc->sc_linkint_mask &= sc->sc_inten;
1364 	sc->sc_rxint_mask &= sc->sc_inten;
1365 	sc->sc_txint_mask &= sc->sc_inten;
1366 
1367 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1368 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1369 
1370 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1371 	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1372 
1373 	/*
1374 	 * Give the transmit and receive rings to the ADM8211.
1375 	 */
1376 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1377 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1378 
1379 	sc->sc_txthresh = 0;
1380 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1381 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1382 
1383 	/* common 802.11 configuration */
1384 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1385 	switch (ic->ic_opmode) {
1386 	case IEEE80211_M_STA:
1387 		break;
1388 	case IEEE80211_M_AHDEMO: /* XXX */
1389 	case IEEE80211_M_IBSS:
1390 		ic->ic_flags |= IEEE80211_F_IBSSON;
1391 		/*FALLTHROUGH*/
1392 	case IEEE80211_M_HOSTAP: /* XXX */
1393 		break;
1394 	case IEEE80211_M_MONITOR: /* XXX */
1395 		break;
1396 	}
1397 
1398 	switch (ic->ic_opmode) {
1399 	case IEEE80211_M_AHDEMO:
1400 	case IEEE80211_M_HOSTAP:
1401 #ifndef IEEE80211_NO_HOSTAP
1402 		ic->ic_bss->ni_intval = ic->ic_lintval;
1403 		ic->ic_bss->ni_rssi = 0;
1404 		ic->ic_bss->ni_rstamp = 0;
1405 #endif /* !IEEE80211_NO_HOSTAP */
1406 		break;
1407 	default:					/* XXX */
1408 		break;
1409 	}
1410 
1411 	sc->sc_wepctl = 0;
1412 
1413 	atw_write_ssid(sc);
1414 	atw_write_sup_rates(sc);
1415 	atw_write_wep(sc);
1416 
1417 	ic->ic_state = IEEE80211_S_INIT;
1418 
1419 	/*
1420 	 * Set the receive filter.  This will start the transmit and
1421 	 * receive processes.
1422 	 */
1423 	atw_filter_setup(sc);
1424 
1425 	/*
1426 	 * Start the receive process.
1427 	 */
1428 	ATW_WRITE(sc, ATW_RDR, 0x1);
1429 
1430 	/*
1431 	 * Note that the interface is now running.
1432 	 */
1433 	ifp->if_flags |= IFF_RUNNING;
1434 	ifp->if_flags &= ~IFF_OACTIVE;
1435 
1436 	/* send no beacons, yet. */
1437 	atw_start_beacon(sc, 0);
1438 
1439 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1440 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1441 	else
1442 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1443  out:
1444 	if (error) {
1445 		ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1446 		sc->sc_tx_timer = 0;
1447 		ifp->if_timer = 0;
1448 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1449 	}
1450 #ifdef ATW_DEBUG
1451 	atw_print_regs(sc, "end of init");
1452 #endif /* ATW_DEBUG */
1453 
1454 	return (error);
1455 }
1456 
1457 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1458  *           0: MAC control of RF3000/Si4126.
1459  *
1460  * Applies power, or selects RF front-end? Sets reset condition.
1461  *
1462  * TBD support non-RFMD BBP, non-SiLabs synth.
1463  */
1464 static void
1465 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1466 {
1467 	if (enable) {
1468 		ATW_WRITE(sc, ATW_SYNRF,
1469 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1470 		DELAY(atw_bbp_io_enable_delay);
1471 	} else {
1472 		ATW_WRITE(sc, ATW_SYNRF, 0);
1473 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1474 	}
1475 }
1476 
1477 static int
1478 atw_tune(struct atw_softc *sc)
1479 {
1480 	int rc;
1481 	u_int chan;
1482 	struct ieee80211com *ic = &sc->sc_ic;
1483 
1484 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1485 	if (chan == IEEE80211_CHAN_ANY)
1486 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1487 
1488 	if (chan == sc->sc_cur_chan)
1489 		return 0;
1490 
1491 	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1492 	    sc->sc_cur_chan, chan));
1493 
1494 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1495 
1496 	atw_si4126_tune(sc, chan);
1497 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1498 		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1499 		    chan);
1500 
1501 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1502 	DELAY(atw_nar_delay);
1503 	ATW_WRITE(sc, ATW_RDR, 0x1);
1504 
1505 	if (rc == 0) {
1506 		sc->sc_cur_chan = chan;
1507 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1508 		    htole16(ic->ic_curchan->ic_freq);
1509 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1510 		    htole16(ic->ic_curchan->ic_flags);
1511 	}
1512 
1513 	return rc;
1514 }
1515 
1516 #ifdef ATW_SYNDEBUG
1517 static void
1518 atw_si4126_print(struct atw_softc *sc)
1519 {
1520 	struct ifnet *ifp = &sc->sc_if;
1521 	u_int addr, val;
1522 
1523 	val = 0;
1524 
1525 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1526 		return;
1527 
1528 	for (addr = 0; addr <= 8; addr++) {
1529 		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1530 		if (atw_si4126_read(sc, addr, &val) == 0) {
1531 			printf("<unknown> (quitting print-out)\n");
1532 			break;
1533 		}
1534 		printf("%05x\n", val);
1535 	}
1536 }
1537 #endif /* ATW_SYNDEBUG */
1538 
1539 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1540  *
1541  * The RF/IF synthesizer produces two reference frequencies for
1542  * the RF2948B transceiver.  The first frequency the RF2948B requires
1543  * is two times the so-called "intermediate frequency" (IF). Since
1544  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1545  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1546  * frequency required by the transceiver is the radio frequency
1547  * (RF). This is a superheterodyne transceiver; for f(chan) the
1548  * center frequency of the channel we are tuning, RF = f(chan) -
1549  * IF.
1550  *
1551  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1552  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1553  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1554  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1555  */
1556 static void
1557 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1558 {
1559 	u_int mhz;
1560 	u_int R;
1561 	u_int32_t gpio;
1562 	u_int16_t gain;
1563 
1564 #ifdef ATW_SYNDEBUG
1565 	atw_si4126_print(sc);
1566 #endif /* ATW_SYNDEBUG */
1567 
1568 	if (chan == 14)
1569 		mhz = 2484;
1570 	else
1571 		mhz = 2412 + 5 * (chan - 1);
1572 
1573 	/* Tune IF to 748 MHz to suit the IF LO input of the
1574 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1575          * because an IF in 526 MHz - 952 MHz is allowed.
1576 	 *
1577 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1578 	 * range of 2-25 MHz. SiLabs tells me that this is not
1579 	 * strictly necessary.
1580 	 */
1581 
1582 	if (atw_xindiv2)
1583 		R = 44;
1584 	else
1585 		R = 88;
1586 
1587 	/* Power-up RF, IF synthesizers. */
1588 	atw_si4126_write(sc, SI4126_POWER,
1589 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1590 
1591 	/* set LPWR, too? */
1592 	atw_si4126_write(sc, SI4126_MAIN,
1593 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1594 
1595 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1596 	 * set KP2 to 1.
1597 	 *
1598 	 * REFDIF This is different from the reference driver, which
1599 	 * always sets SI4126_GAIN to 0.
1600 	 */
1601 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1602 
1603 	atw_si4126_write(sc, SI4126_GAIN, gain);
1604 
1605 	/* XIN = 44 MHz.
1606 	 *
1607 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1608 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1609 	 *
1610 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1611 	 * so that 1496/88 * 44 MHz = 748 MHz.
1612 	 */
1613 	atw_si4126_write(sc, SI4126_IFN, 1496);
1614 
1615 	atw_si4126_write(sc, SI4126_IFR, R);
1616 
1617 #ifndef ATW_REFSLAVE
1618 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1619 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1620 	 * which has no RF1!
1621 	 */
1622 	atw_si4126_write(sc, SI4126_RF1R, R);
1623 
1624 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1625 #endif
1626 
1627 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1628 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1629 	 * Now let's multiply it to mhz. So mhz - IF = N.
1630 	 */
1631 	atw_si4126_write(sc, SI4126_RF2R, R);
1632 
1633 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1634 
1635 	/* wait 100us from power-up for RF, IF to settle */
1636 	DELAY(100);
1637 
1638 	gpio = ATW_READ(sc, ATW_GPIO);
1639 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1640 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1641 
1642 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1643 		/* Set a Prism RF front-end to a special mode for channel 14?
1644 		 *
1645 		 * Apparently the SMC2635W needs this, although I don't think
1646 		 * it has a Prism RF.
1647 		 */
1648 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1649 	}
1650 	ATW_WRITE(sc, ATW_GPIO, gpio);
1651 
1652 #ifdef ATW_SYNDEBUG
1653 	atw_si4126_print(sc);
1654 #endif /* ATW_SYNDEBUG */
1655 }
1656 
1657 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1658  * diversity.
1659  *
1660  * !!!
1661  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1662  * !!!
1663  */
1664 static int
1665 atw_rf3000_init(struct atw_softc *sc)
1666 {
1667 	int rc = 0;
1668 
1669 	atw_bbp_io_enable(sc, 1);
1670 
1671 	/* CCA is acquisition sensitive */
1672 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1673 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1674 
1675 	if (rc != 0)
1676 		goto out;
1677 
1678 	/* enable diversity */
1679 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1680 
1681 	if (rc != 0)
1682 		goto out;
1683 
1684 	/* sensible setting from a binary-only driver */
1685 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1686 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1687 
1688 	if (rc != 0)
1689 		goto out;
1690 
1691 	/* magic from a binary-only driver */
1692 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1693 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1694 
1695 	if (rc != 0)
1696 		goto out;
1697 
1698 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1699 
1700 	if (rc != 0)
1701 		goto out;
1702 
1703 	/* XXX Reference driver remarks that Abocom sets this to 50.
1704 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1705 	 * in the "reserved" area of register RF3000_OPTIONS1.
1706 	 */
1707 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1708 
1709 	if (rc != 0)
1710 		goto out;
1711 
1712 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1713 
1714 	if (rc != 0)
1715 		goto out;
1716 
1717 out:
1718 	atw_bbp_io_enable(sc, 0);
1719 	return rc;
1720 }
1721 
1722 #ifdef ATW_BBPDEBUG
1723 static void
1724 atw_rf3000_print(struct atw_softc *sc)
1725 {
1726 	struct ifnet *ifp = &sc->sc_if;
1727 	u_int addr, val;
1728 
1729 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1730 		return;
1731 
1732 	for (addr = 0x01; addr <= 0x15; addr++) {
1733 		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1734 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1735 			printf("<unknown> (quitting print-out)\n");
1736 			break;
1737 		}
1738 		printf("%08x\n", val);
1739 	}
1740 }
1741 #endif /* ATW_BBPDEBUG */
1742 
1743 /* Set the power settings on the BBP for channel `chan'. */
1744 static int
1745 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1746 {
1747 	int rc = 0;
1748 	u_int32_t reg;
1749 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1750 
1751 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1752 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1753 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1754 
1755 	/* odd channels: LSB, even channels: MSB */
1756 	if (chan % 2 == 1) {
1757 		txpower &= 0xFF;
1758 		lpf_cutoff &= 0xFF;
1759 		lna_gs_thresh &= 0xFF;
1760 	} else {
1761 		txpower >>= 8;
1762 		lpf_cutoff >>= 8;
1763 		lna_gs_thresh >>= 8;
1764 	}
1765 
1766 #ifdef ATW_BBPDEBUG
1767 	atw_rf3000_print(sc);
1768 #endif /* ATW_BBPDEBUG */
1769 
1770 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1771 	    "lna_gs_thresh %02x\n",
1772 	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1773 
1774 	atw_bbp_io_enable(sc, 1);
1775 
1776 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1777 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1778 		goto out;
1779 
1780 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1781 		goto out;
1782 
1783 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1784 		goto out;
1785 
1786 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1787 
1788 	if (rc != 0)
1789 		goto out;
1790 
1791 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1792 
1793 	if (rc != 0)
1794 		goto out;
1795 
1796 #ifdef ATW_BBPDEBUG
1797 	atw_rf3000_print(sc);
1798 #endif /* ATW_BBPDEBUG */
1799 
1800 out:
1801 	atw_bbp_io_enable(sc, 0);
1802 
1803 	/* set beacon, rts, atim transmit power */
1804 	reg = ATW_READ(sc, ATW_PLCPHD);
1805 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1806 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1807 	    ATW_PLCPHD_SERVICE_MASK);
1808 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1809 	DELAY(atw_plcphd_delay);
1810 
1811 	return rc;
1812 }
1813 
1814 /* Write a register on the RF3000 baseband processor using the
1815  * registers provided by the ADM8211 for this purpose.
1816  *
1817  * Return 0 on success.
1818  */
1819 static int
1820 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1821 {
1822 	u_int32_t reg;
1823 	int i;
1824 
1825 	reg = sc->sc_bbpctl_wr |
1826 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1827 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1828 
1829 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1830 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1831 		DELAY(2 * atw_pseudo_milli);
1832 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1833 			break;
1834 	}
1835 
1836 	if (i < 0) {
1837 		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1838 		return ETIMEDOUT;
1839 	}
1840 	return 0;
1841 }
1842 
1843 /* Read a register on the RF3000 baseband processor using the registers
1844  * the ADM8211 provides for this purpose.
1845  *
1846  * The 7-bit register address is addr.  Record the 8-bit data in the register
1847  * in *val.
1848  *
1849  * Return 0 on success.
1850  *
1851  * XXX This does not seem to work. The ADM8211 must require more or
1852  * different magic to read the chip than to write it. Possibly some
1853  * of the magic I have derived from a binary-only driver concerns
1854  * the "chip address" (see the RF3000 manual).
1855  */
1856 #ifdef ATW_BBPDEBUG
1857 static int
1858 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1859 {
1860 	u_int32_t reg;
1861 	int i;
1862 
1863 	for (i = 1000; --i >= 0; ) {
1864 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1865 			break;
1866 		DELAY(100);
1867 	}
1868 
1869 	if (i < 0) {
1870 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1871 		    device_xname(sc->sc_dev));
1872 		return ETIMEDOUT;
1873 	}
1874 
1875 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1876 
1877 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1878 
1879 	for (i = 1000; --i >= 0; ) {
1880 		DELAY(100);
1881 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1882 			break;
1883 	}
1884 
1885 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1886 
1887 	if (i < 0) {
1888 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1889 		    device_xname(sc->sc_dev), reg);
1890 		return ETIMEDOUT;
1891 	}
1892 	if (val != NULL)
1893 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1894 	return 0;
1895 }
1896 #endif /* ATW_BBPDEBUG */
1897 
1898 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1899  * provided by the ADM8211 for that purpose.
1900  *
1901  * val is 18 bits of data, and val is the 4-bit address of the register.
1902  *
1903  * Return 0 on success.
1904  */
1905 static void
1906 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1907 {
1908 	uint32_t bits, mask, reg;
1909 	const int nbits = 22;
1910 
1911 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1912 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1913 
1914 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1915 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1916 
1917 	reg = ATW_SYNRF_SELSYN;
1918 	/* reference driver: reset Si4126 serial bus to initial
1919 	 * conditions?
1920 	 */
1921 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1922 	ATW_WRITE(sc, ATW_SYNRF, reg);
1923 
1924 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1925 		if ((bits & mask) != 0)
1926 			reg |= ATW_SYNRF_SYNDATA;
1927 		else
1928 			reg &= ~ATW_SYNRF_SYNDATA;
1929 		ATW_WRITE(sc, ATW_SYNRF, reg);
1930 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1931 		ATW_WRITE(sc, ATW_SYNRF, reg);
1932 	}
1933 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1934 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1935 }
1936 
1937 /* Read 18-bit data from the 4-bit address addr in Si4126
1938  * RF synthesizer and write the data to *val. Return 0 on success.
1939  *
1940  * XXX This does not seem to work. The ADM8211 must require more or
1941  * different magic to read the chip than to write it.
1942  */
1943 #ifdef ATW_SYNDEBUG
1944 static int
1945 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1946 {
1947 	u_int32_t reg;
1948 	int i;
1949 
1950 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1951 
1952 	for (i = 1000; --i >= 0; ) {
1953 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1954 			break;
1955 		DELAY(100);
1956 	}
1957 
1958 	if (i < 0) {
1959 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1960 		    device_xname(sc->sc_dev));
1961 		return ETIMEDOUT;
1962 	}
1963 
1964 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1965 
1966 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1967 
1968 	for (i = 1000; --i >= 0; ) {
1969 		DELAY(100);
1970 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1971 			break;
1972 	}
1973 
1974 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1975 
1976 	if (i < 0) {
1977 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1978 		    device_xname(sc->sc_dev), reg);
1979 		return ETIMEDOUT;
1980 	}
1981 	if (val != NULL)
1982 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1983 		                       ATW_SYNCTL_DATA_MASK);
1984 	return 0;
1985 }
1986 #endif /* ATW_SYNDEBUG */
1987 
1988 /* XXX is the endianness correct? test. */
1989 #define	atw_calchash(addr) \
1990 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1991 
1992 /*
1993  * atw_filter_setup:
1994  *
1995  *	Set the ADM8211's receive filter.
1996  */
1997 static void
1998 atw_filter_setup(struct atw_softc *sc)
1999 {
2000 	struct ieee80211com *ic = &sc->sc_ic;
2001 	struct ethercom *ec = &sc->sc_ec;
2002 	struct ifnet *ifp = &sc->sc_if;
2003 	int hash;
2004 	u_int32_t hashes[2];
2005 	struct ether_multi *enm;
2006 	struct ether_multistep step;
2007 
2008 	/* According to comments in tlp_al981_filter_setup
2009 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
2010 	 * multicast filter to be set while it is running.  Hopefully
2011 	 * the ADM8211 is not the same!
2012 	 */
2013 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2014 		atw_idle(sc, ATW_NAR_SR);
2015 
2016 	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
2017 	ifp->if_flags &= ~IFF_ALLMULTI;
2018 
2019 	/* XXX in scan mode, do not filter packets.  Maybe this is
2020 	 * unnecessary.
2021 	 */
2022 	if (ic->ic_state == IEEE80211_S_SCAN ||
2023 	    (ifp->if_flags & IFF_PROMISC) != 0) {
2024 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
2025 		goto allmulti;
2026 	}
2027 
2028 	hashes[0] = hashes[1] = 0x0;
2029 
2030 	/*
2031 	 * Program the 64-bit multicast hash filter.
2032 	 */
2033 	ETHER_FIRST_MULTI(step, ec, enm);
2034 	while (enm != NULL) {
2035 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2036 		    ETHER_ADDR_LEN) != 0)
2037 			goto allmulti;
2038 
2039 		hash = atw_calchash(enm->enm_addrlo);
2040 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2041 		ETHER_NEXT_MULTI(step, enm);
2042 		sc->sc_opmode |= ATW_NAR_MM;
2043 	}
2044 	ifp->if_flags &= ~IFF_ALLMULTI;
2045 	goto setit;
2046 
2047 allmulti:
2048 	sc->sc_opmode |= ATW_NAR_MM;
2049 	ifp->if_flags |= IFF_ALLMULTI;
2050 	hashes[0] = hashes[1] = 0xffffffff;
2051 
2052 setit:
2053 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2054 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2055 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2056 	DELAY(atw_nar_delay);
2057 	ATW_WRITE(sc, ATW_RDR, 0x1);
2058 
2059 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2060 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2061 }
2062 
2063 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2064  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2065  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2066  * no beacon with the preferred BSSID and SSID in the number of
2067  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2068  */
2069 static void
2070 atw_write_bssid(struct atw_softc *sc)
2071 {
2072 	struct ieee80211com *ic = &sc->sc_ic;
2073 	u_int8_t *bssid;
2074 
2075 	bssid = ic->ic_bss->ni_bssid;
2076 
2077 	ATW_WRITE(sc, ATW_BSSID0,
2078 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2079 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2080 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2081 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2082 
2083 	ATW_WRITE(sc, ATW_ABDA1,
2084 	    (ATW_READ(sc, ATW_ABDA1) &
2085 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2086 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2087 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2088 
2089 	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2090 	    ether_sprintf(sc->sc_bssid)));
2091 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2092 
2093 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2094 }
2095 
2096 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2097  * 16-bit word.
2098  */
2099 static void
2100 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2101 {
2102 	u_int i;
2103 	u_int8_t *ptr;
2104 
2105 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2106 
2107 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2108 
2109 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2110 
2111 	ptr = &sc->sc_sram[ofs];
2112 
2113 	for (i = 0; i < buflen; i += 2) {
2114 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2115 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2116 		DELAY(atw_writewep_delay);
2117 
2118 		ATW_WRITE(sc, ATW_WESK,
2119 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2120 		DELAY(atw_writewep_delay);
2121 	}
2122 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2123 
2124 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2125 		int n_octets = 0;
2126 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2127 		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2128 		for (i = 0; i < buflen; i++) {
2129 			printf(" %02x", ptr[i]);
2130 			if (++n_octets % 24 == 0)
2131 				printf("\n");
2132 		}
2133 		if (n_octets % 24 != 0)
2134 			printf("\n");
2135 	}
2136 }
2137 
2138 static int
2139 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2140 {
2141 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2142 	u_int keyix = k->wk_keyix;
2143 
2144 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2145 
2146 	if (keyix >= IEEE80211_WEP_NKID)
2147 		return 0;
2148 	if (k->wk_keylen != 0)
2149 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2150 
2151 	return 1;
2152 }
2153 
2154 static int
2155 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2156 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2157 {
2158 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2159 
2160 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2161 
2162 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2163 		return 0;
2164 
2165 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2166 
2167 	return 1;
2168 }
2169 
2170 static void
2171 atw_key_update_begin(struct ieee80211com *ic)
2172 {
2173 #ifdef ATW_DEBUG
2174 	struct ifnet *ifp = ic->ic_ifp;
2175 	struct atw_softc *sc = ifp->if_softc;
2176 #endif
2177 
2178 	DPRINTF(sc, ("%s:\n", __func__));
2179 }
2180 
2181 static void
2182 atw_key_update_end(struct ieee80211com *ic)
2183 {
2184 	struct ifnet *ifp = ic->ic_ifp;
2185 	struct atw_softc *sc = ifp->if_softc;
2186 
2187 	DPRINTF(sc, ("%s:\n", __func__));
2188 
2189 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2190 		return;
2191 	if (ATW_IS_ENABLED(sc) == 0)
2192 		return;
2193 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2194 	atw_write_wep(sc);
2195 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2196 	DELAY(atw_nar_delay);
2197 	ATW_WRITE(sc, ATW_RDR, 0x1);
2198 }
2199 
2200 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2201 static void
2202 atw_write_wep(struct atw_softc *sc)
2203 {
2204 #if 0
2205 	struct ieee80211com *ic = &sc->sc_ic;
2206 	u_int32_t reg;
2207 	int i;
2208 #endif
2209 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2210 	u_int8_t buf[IEEE80211_WEP_NKID]
2211 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2212 
2213 	sc->sc_wepctl = 0;
2214 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2215 
2216 	memset(&buf[0][0], 0, sizeof(buf));
2217 
2218 #if 0
2219 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2220 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2221 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2222 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2223 			buf[i][1] = ATW_WEP_ENABLED;
2224 		} else {
2225 			buf[i][1] = 0;
2226 			continue;
2227 		}
2228 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2229 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2230 		    ic->ic_nw_keys[i].wk_keylen - 1);
2231 	}
2232 
2233 	reg = ATW_READ(sc, ATW_MACTEST);
2234 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2235 	reg &= ~ATW_MACTEST_KEYID_MASK;
2236 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2237 	ATW_WRITE(sc, ATW_MACTEST, reg);
2238 
2239 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2240 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2241 
2242 	switch (sc->sc_rev) {
2243 	case ATW_REVISION_AB:
2244 	case ATW_REVISION_AF:
2245 		/* Bypass WEP on Rx. */
2246 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2247 		break;
2248 	default:
2249 		break;
2250 	}
2251 #endif
2252 
2253 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2254 	    sizeof(buf));
2255 
2256 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2257 }
2258 
2259 static void
2260 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2261     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2262 {
2263 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2264 
2265 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2266 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2267 		return;
2268 
2269 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2270 
2271 	switch (subtype) {
2272 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2273 	case IEEE80211_FC0_SUBTYPE_BEACON:
2274 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2275 		    ic->ic_state == IEEE80211_S_RUN) {
2276 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2277 				(void)ieee80211_ibss_merge(ni);
2278 		}
2279 		break;
2280 	default:
2281 		break;
2282 	}
2283 	return;
2284 }
2285 
2286 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2287  * In ad hoc mode, the SSID is written to the beacons sent by the
2288  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2289  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2290  * indications.
2291  */
2292 static void
2293 atw_write_ssid(struct atw_softc *sc)
2294 {
2295 	struct ieee80211com *ic = &sc->sc_ic;
2296 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2297 	 * it only expects the element length, not its ID.
2298 	 */
2299 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2300 
2301 	memset(buf, 0, sizeof(buf));
2302 	buf[0] = ic->ic_bss->ni_esslen;
2303 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2304 
2305 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2306 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2307 }
2308 
2309 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2310  * In ad hoc mode, the supported rates are written to beacons sent by the
2311  * ADM8211.
2312  */
2313 static void
2314 atw_write_sup_rates(struct atw_softc *sc)
2315 {
2316 	struct ieee80211com *ic = &sc->sc_ic;
2317 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2318 	 * supported rates
2319 	 */
2320 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2321 
2322 	memset(buf, 0, sizeof(buf));
2323 
2324 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2325 
2326 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2327 	    ic->ic_bss->ni_rates.rs_nrates);
2328 
2329 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2330 }
2331 
2332 /* Start/stop sending beacons. */
2333 void
2334 atw_start_beacon(struct atw_softc *sc, int start)
2335 {
2336 	struct ieee80211com *ic = &sc->sc_ic;
2337 	uint16_t chan;
2338 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2339 	size_t len;
2340 
2341 	if (ATW_IS_ENABLED(sc) == 0)
2342 		return;
2343 
2344 	/* start beacons */
2345 	len = sizeof(struct ieee80211_frame) +
2346 	    8 /* timestamp */ + 2 /* beacon interval */ +
2347 	    2 /* capability info */ +
2348 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2349 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2350 	    3 /* DS parameters */ +
2351 	    IEEE80211_CRC_LEN;
2352 
2353 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2354 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2355 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2356 
2357 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2358 	ATW_WRITE(sc, ATW_CAP1, cap1);
2359 
2360 	if (!start)
2361 		return;
2362 
2363 	/* TBD use ni_capinfo */
2364 
2365 	capinfo = 0;
2366 	if (sc->sc_flags & ATWF_SHORT_PREAMBLE)
2367 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2368 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2369 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2370 
2371 	switch (ic->ic_opmode) {
2372 	case IEEE80211_M_IBSS:
2373 		len += 4; /* IBSS parameters */
2374 		capinfo |= IEEE80211_CAPINFO_IBSS;
2375 		break;
2376 	case IEEE80211_M_HOSTAP:
2377 		/* XXX 6-byte minimum TIM */
2378 		len += atw_beacon_len_adjust;
2379 		capinfo |= IEEE80211_CAPINFO_ESS;
2380 		break;
2381 	default:
2382 		return;
2383 	}
2384 
2385 	/* set listen interval
2386 	 * XXX do software units agree w/ hardware?
2387 	 */
2388 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2389 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2390 
2391 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2392 
2393 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2394 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2395 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2396 
2397 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2398 	ATW_WRITE(sc, ATW_BPLI, bpli);
2399 	ATW_WRITE(sc, ATW_CAP0, cap0);
2400 	ATW_WRITE(sc, ATW_CAP1, cap1);
2401 
2402 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2403 	    device_xname(sc->sc_dev), bcnt));
2404 
2405 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2406 	    device_xname(sc->sc_dev), cap1));
2407 }
2408 
2409 /* Return the 32 lsb of the last TSFT divisible by ival. */
2410 static inline uint32_t
2411 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2412 {
2413 	/* Following the reference driver's lead, I compute
2414 	 *
2415 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2416 	 *
2417 	 * without using 64-bit arithmetic, using the following
2418 	 * relationship:
2419 	 *
2420 	 *     (0x100000000 * H + L) % m
2421 	 *   = ((0x100000000 % m) * H + L) % m
2422 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2423 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2424 	 *   = ((0xffffffff % m + 1) * H + L) % m
2425 	 */
2426 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2427 }
2428 
2429 static uint64_t
2430 atw_get_tsft(struct atw_softc *sc)
2431 {
2432 	int i;
2433 	uint32_t tsfth, tsftl;
2434 	for (i = 0; i < 2; i++) {
2435 		tsfth = ATW_READ(sc, ATW_TSFTH);
2436 		tsftl = ATW_READ(sc, ATW_TSFTL);
2437 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2438 			break;
2439 	}
2440 	return ((uint64_t)tsfth << 32) | tsftl;
2441 }
2442 
2443 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2444  * the ieee80211com.
2445  *
2446  * Predict the next target beacon transmission time (TBTT) and
2447  * write it to the ADM8211.
2448  */
2449 static void
2450 atw_predict_beacon(struct atw_softc *sc)
2451 {
2452 #define TBTTOFS 20 /* TU */
2453 
2454 	struct ieee80211com *ic = &sc->sc_ic;
2455 	uint64_t tsft;
2456 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2457 	union {
2458 		uint64_t	word;
2459 		uint8_t		tstamp[8];
2460 	} u;
2461 
2462 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2463 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2464 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2465 		tsft = atw_get_tsft(sc);
2466 		u.word = htole64(tsft);
2467 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2468 		    sizeof(ic->ic_bss->ni_tstamp));
2469 	} else
2470 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2471 
2472 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2473 
2474 	tsftl = tsft & 0xFFFFFFFF;
2475 	tsfth = tsft >> 32;
2476 
2477 	/* We sent/received the last beacon `past' microseconds
2478 	 * after the interval divided the TSF timer.
2479 	 */
2480 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2481 
2482 	/* Skip ten beacons so that the TBTT cannot pass before
2483 	 * we've programmed it.  Ten is an arbitrary number.
2484 	 */
2485 	tbtt = past_even + ival * 10;
2486 
2487 	ATW_WRITE(sc, ATW_TOFS1,
2488 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2489 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2490 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2491 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2492 #undef TBTTOFS
2493 }
2494 
2495 static void
2496 atw_next_scan(void *arg)
2497 {
2498 	struct atw_softc *sc = arg;
2499 	struct ieee80211com *ic = &sc->sc_ic;
2500 	int s;
2501 
2502 	/* don't call atw_start w/o network interrupts blocked */
2503 	s = splnet();
2504 	if (ic->ic_state == IEEE80211_S_SCAN)
2505 		ieee80211_next_scan(ic);
2506 	splx(s);
2507 }
2508 
2509 /* Synchronize the hardware state with the software state. */
2510 static int
2511 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2512 {
2513 	struct ifnet *ifp = ic->ic_ifp;
2514 	struct atw_softc *sc = ifp->if_softc;
2515 	enum ieee80211_state ostate;
2516 	int error = 0;
2517 
2518 	ostate = ic->ic_state;
2519 	callout_stop(&sc->sc_scan_ch);
2520 
2521 	switch (nstate) {
2522 	case IEEE80211_S_AUTH:
2523 	case IEEE80211_S_ASSOC:
2524 		atw_write_bssid(sc);
2525 		error = atw_tune(sc);
2526 		break;
2527 	case IEEE80211_S_INIT:
2528 		callout_stop(&sc->sc_scan_ch);
2529 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2530 		atw_start_beacon(sc, 0);
2531 		break;
2532 	case IEEE80211_S_SCAN:
2533 		error = atw_tune(sc);
2534 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2535 		    atw_next_scan, sc);
2536 		break;
2537 	case IEEE80211_S_RUN:
2538 		error = atw_tune(sc);
2539 		atw_write_bssid(sc);
2540 		atw_write_ssid(sc);
2541 		atw_write_sup_rates(sc);
2542 
2543 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2544 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2545 			break;
2546 
2547 		/* set listen interval
2548 		 * XXX do software units agree w/ hardware?
2549 		 */
2550 		ATW_WRITE(sc, ATW_BPLI,
2551 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2552 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2553 			   ATW_BPLI_LI_MASK));
2554 
2555 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2556 		    ATW_READ(sc, ATW_BPLI)));
2557 
2558 		atw_predict_beacon(sc);
2559 
2560 		switch (ic->ic_opmode) {
2561 		case IEEE80211_M_AHDEMO:
2562 		case IEEE80211_M_HOSTAP:
2563 		case IEEE80211_M_IBSS:
2564 			atw_start_beacon(sc, 1);
2565 			break;
2566 		case IEEE80211_M_MONITOR:
2567 		case IEEE80211_M_STA:
2568 			break;
2569 		}
2570 
2571 		break;
2572 	}
2573 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2574 }
2575 
2576 /*
2577  * atw_add_rxbuf:
2578  *
2579  *	Add a receive buffer to the indicated descriptor.
2580  */
2581 int
2582 atw_add_rxbuf(struct atw_softc *sc, int idx)
2583 {
2584 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2585 	struct mbuf *m;
2586 	int error;
2587 
2588 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2589 	if (m == NULL)
2590 		return (ENOBUFS);
2591 
2592 	MCLGET(m, M_DONTWAIT);
2593 	if ((m->m_flags & M_EXT) == 0) {
2594 		m_freem(m);
2595 		return (ENOBUFS);
2596 	}
2597 
2598 	if (rxs->rxs_mbuf != NULL)
2599 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2600 
2601 	rxs->rxs_mbuf = m;
2602 
2603 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2604 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2605 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2606 	if (error) {
2607 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2608 		    idx, error);
2609 		panic("atw_add_rxbuf");	/* XXX */
2610 	}
2611 
2612 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2613 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2614 
2615 	atw_init_rxdesc(sc, idx);
2616 
2617 	return (0);
2618 }
2619 
2620 /*
2621  * Release any queued transmit buffers.
2622  */
2623 void
2624 atw_txdrain(struct atw_softc *sc)
2625 {
2626 	struct atw_txsoft *txs;
2627 
2628 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2629 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2630 		if (txs->txs_mbuf != NULL) {
2631 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2632 			m_freem(txs->txs_mbuf);
2633 			txs->txs_mbuf = NULL;
2634 		}
2635 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2636 		sc->sc_txfree += txs->txs_ndescs;
2637 	}
2638 
2639 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2640 	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2641 		  sc->sc_txfree != ATW_NTXDESC));
2642 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2643 	sc->sc_tx_timer = 0;
2644 }
2645 
2646 /*
2647  * atw_stop:		[ ifnet interface function ]
2648  *
2649  *	Stop transmission on the interface.
2650  */
2651 void
2652 atw_stop(struct ifnet *ifp, int disable)
2653 {
2654 	struct atw_softc *sc = ifp->if_softc;
2655 	struct ieee80211com *ic = &sc->sc_ic;
2656 
2657 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2658 
2659 	/* Disable interrupts. */
2660 	ATW_WRITE(sc, ATW_IER, 0);
2661 
2662 	/* Stop the transmit and receive processes. */
2663 	sc->sc_opmode = 0;
2664 	ATW_WRITE(sc, ATW_NAR, 0);
2665 	DELAY(atw_nar_delay);
2666 	ATW_WRITE(sc, ATW_TDBD, 0);
2667 	ATW_WRITE(sc, ATW_TDBP, 0);
2668 	ATW_WRITE(sc, ATW_RDB, 0);
2669 
2670 	atw_txdrain(sc);
2671 
2672 	/*
2673 	 * Mark the interface down and cancel the watchdog timer.
2674 	 */
2675 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2676 	sc->sc_tx_timer = 0;
2677 	ifp->if_timer = 0;
2678 
2679 	if (disable) {
2680 		atw_rxdrain(sc);
2681 		atw_disable(sc);
2682 	} else
2683 		atw_reset(sc);
2684 }
2685 
2686 /*
2687  * atw_rxdrain:
2688  *
2689  *	Drain the receive queue.
2690  */
2691 void
2692 atw_rxdrain(struct atw_softc *sc)
2693 {
2694 	struct atw_rxsoft *rxs;
2695 	int i;
2696 
2697 	for (i = 0; i < ATW_NRXDESC; i++) {
2698 		rxs = &sc->sc_rxsoft[i];
2699 		if (rxs->rxs_mbuf == NULL)
2700 			continue;
2701 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2702 		m_freem(rxs->rxs_mbuf);
2703 		rxs->rxs_mbuf = NULL;
2704 	}
2705 }
2706 
2707 /*
2708  * atw_detach:
2709  *
2710  *	Detach an ADM8211 interface.
2711  */
2712 int
2713 atw_detach(struct atw_softc *sc)
2714 {
2715 	struct ifnet *ifp = &sc->sc_if;
2716 	struct atw_rxsoft *rxs;
2717 	struct atw_txsoft *txs;
2718 	int i;
2719 
2720 	/*
2721 	 * Succeed now if there isn't any work to do.
2722 	 */
2723 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2724 		return (0);
2725 
2726 	pmf_device_deregister(sc->sc_dev);
2727 
2728 	callout_stop(&sc->sc_scan_ch);
2729 
2730 	ieee80211_ifdetach(&sc->sc_ic);
2731 	if_detach(ifp);
2732 
2733 	for (i = 0; i < ATW_NRXDESC; i++) {
2734 		rxs = &sc->sc_rxsoft[i];
2735 		if (rxs->rxs_mbuf != NULL) {
2736 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2737 			m_freem(rxs->rxs_mbuf);
2738 			rxs->rxs_mbuf = NULL;
2739 		}
2740 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2741 	}
2742 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2743 		txs = &sc->sc_txsoft[i];
2744 		if (txs->txs_mbuf != NULL) {
2745 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2746 			m_freem(txs->txs_mbuf);
2747 			txs->txs_mbuf = NULL;
2748 		}
2749 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2750 	}
2751 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2752 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2753 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2754 	    sizeof(struct atw_control_data));
2755 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2756 
2757 	if (sc->sc_srom)
2758 		free(sc->sc_srom, M_DEVBUF);
2759 
2760 	atw_evcnt_detach(sc);
2761 
2762 	return (0);
2763 }
2764 
2765 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2766 bool
2767 atw_shutdown(device_t self, int flags)
2768 {
2769 	struct atw_softc *sc = device_private(self);
2770 
2771 	atw_stop(&sc->sc_if, 1);
2772 	return true;
2773 }
2774 
2775 int
2776 atw_intr(void *arg)
2777 {
2778 	struct atw_softc *sc = arg;
2779 	struct ifnet *ifp = &sc->sc_if;
2780 	u_int32_t status, rxstatus, txstatus, linkstatus;
2781 	int handled = 0, txthresh;
2782 
2783 #ifdef DEBUG
2784 	if (ATW_IS_ENABLED(sc) == 0)
2785 		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2786 #endif
2787 
2788 	/*
2789 	 * If the interface isn't running, the interrupt couldn't
2790 	 * possibly have come from us.
2791 	 */
2792 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2793 	    !device_is_active(sc->sc_dev))
2794 		return (0);
2795 
2796 	for (;;) {
2797 		status = ATW_READ(sc, ATW_STSR);
2798 
2799 		if (status)
2800 			ATW_WRITE(sc, ATW_STSR, status);
2801 
2802 #ifdef ATW_DEBUG
2803 #define PRINTINTR(flag) do { \
2804 	if ((status & flag) != 0) { \
2805 		printf("%s" #flag, delim); \
2806 		delim = ","; \
2807 	} \
2808 } while (0)
2809 
2810 		if (atw_debug > 1 && status) {
2811 			const char *delim = "<";
2812 
2813 			printf("%s: reg[STSR] = %x",
2814 			    device_xname(sc->sc_dev), status);
2815 
2816 			PRINTINTR(ATW_INTR_FBE);
2817 			PRINTINTR(ATW_INTR_LINKOFF);
2818 			PRINTINTR(ATW_INTR_LINKON);
2819 			PRINTINTR(ATW_INTR_RCI);
2820 			PRINTINTR(ATW_INTR_RDU);
2821 			PRINTINTR(ATW_INTR_REIS);
2822 			PRINTINTR(ATW_INTR_RPS);
2823 			PRINTINTR(ATW_INTR_TCI);
2824 			PRINTINTR(ATW_INTR_TDU);
2825 			PRINTINTR(ATW_INTR_TLT);
2826 			PRINTINTR(ATW_INTR_TPS);
2827 			PRINTINTR(ATW_INTR_TRT);
2828 			PRINTINTR(ATW_INTR_TUF);
2829 			PRINTINTR(ATW_INTR_BCNTC);
2830 			PRINTINTR(ATW_INTR_ATIME);
2831 			PRINTINTR(ATW_INTR_TBTT);
2832 			PRINTINTR(ATW_INTR_TSCZ);
2833 			PRINTINTR(ATW_INTR_TSFTF);
2834 			printf(">\n");
2835 		}
2836 #undef PRINTINTR
2837 #endif /* ATW_DEBUG */
2838 
2839 		if ((status & sc->sc_inten) == 0)
2840 			break;
2841 
2842 		handled = 1;
2843 
2844 		rxstatus = status & sc->sc_rxint_mask;
2845 		txstatus = status & sc->sc_txint_mask;
2846 		linkstatus = status & sc->sc_linkint_mask;
2847 
2848 		if (linkstatus) {
2849 			atw_linkintr(sc, linkstatus);
2850 		}
2851 
2852 		if (rxstatus) {
2853 			/* Grab any new packets. */
2854 			atw_rxintr(sc);
2855 
2856 			if (rxstatus & ATW_INTR_RDU) {
2857 				printf("%s: receive ring overrun\n",
2858 				    device_xname(sc->sc_dev));
2859 				/* Get the receive process going again. */
2860 				ATW_WRITE(sc, ATW_RDR, 0x1);
2861 				break;
2862 			}
2863 		}
2864 
2865 		if (txstatus) {
2866 			/* Sweep up transmit descriptors. */
2867 			atw_txintr(sc);
2868 
2869 			if (txstatus & ATW_INTR_TLT) {
2870 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2871 				    device_xname(sc->sc_dev)));
2872 			}
2873 
2874 			if (txstatus & ATW_INTR_TRT) {
2875 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2876 				    device_xname(sc->sc_dev)));
2877 			}
2878 
2879 			/* If Tx under-run, increase our transmit threshold
2880 			 * if another is available.
2881 			 */
2882 			txthresh = sc->sc_txthresh + 1;
2883 			if ((txstatus & ATW_INTR_TUF) &&
2884 			    sc->sc_txth[txthresh].txth_name != NULL) {
2885 				/* Idle the transmit process. */
2886 				atw_idle(sc, ATW_NAR_ST);
2887 
2888 				sc->sc_txthresh = txthresh;
2889 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2890 				sc->sc_opmode |=
2891 				    sc->sc_txth[txthresh].txth_opmode;
2892 				printf("%s: transmit underrun; new "
2893 				    "threshold: %s\n", device_xname(sc->sc_dev),
2894 				    sc->sc_txth[txthresh].txth_name);
2895 
2896 				/* Set the new threshold and restart
2897 				 * the transmit process.
2898 				 */
2899 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2900 				DELAY(atw_nar_delay);
2901 				ATW_WRITE(sc, ATW_RDR, 0x1);
2902 				/* XXX Log every Nth underrun from
2903 				 * XXX now on?
2904 				 */
2905 			}
2906 		}
2907 
2908 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2909 			if (status & ATW_INTR_TPS)
2910 				printf("%s: transmit process stopped\n",
2911 				    device_xname(sc->sc_dev));
2912 			if (status & ATW_INTR_RPS)
2913 				printf("%s: receive process stopped\n",
2914 				    device_xname(sc->sc_dev));
2915 			(void)atw_init(ifp);
2916 			break;
2917 		}
2918 
2919 		if (status & ATW_INTR_FBE) {
2920 			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2921 			(void)atw_init(ifp);
2922 			break;
2923 		}
2924 
2925 		/*
2926 		 * Not handled:
2927 		 *
2928 		 *	Transmit buffer unavailable -- normal
2929 		 *	condition, nothing to do, really.
2930 		 *
2931 		 *	Early receive interrupt -- not available on
2932 		 *	all chips, we just use RI.  We also only
2933 		 *	use single-segment receive DMA, so this
2934 		 *	is mostly useless.
2935 		 *
2936 		 *      TBD others
2937 		 */
2938 	}
2939 
2940 	/* Try to get more packets going. */
2941 	atw_start(ifp);
2942 
2943 	return (handled);
2944 }
2945 
2946 /*
2947  * atw_idle:
2948  *
2949  *	Cause the transmit and/or receive processes to go idle.
2950  *
2951  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2952  *	process in STSR if I clear SR or ST after the process has already
2953  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2954  *      do not seem to be too reliable. Perhaps I have the sense of the
2955  *	Rx bits switched with the Tx bits?
2956  */
2957 void
2958 atw_idle(struct atw_softc *sc, u_int32_t bits)
2959 {
2960 	u_int32_t ackmask = 0, opmode, stsr, test0;
2961 	int i, s;
2962 
2963 	s = splnet();
2964 
2965 	opmode = sc->sc_opmode & ~bits;
2966 
2967 	if (bits & ATW_NAR_SR)
2968 		ackmask |= ATW_INTR_RPS;
2969 
2970 	if (bits & ATW_NAR_ST) {
2971 		ackmask |= ATW_INTR_TPS;
2972 		/* set ATW_NAR_HF to flush TX FIFO. */
2973 		opmode |= ATW_NAR_HF;
2974 	}
2975 
2976 	ATW_WRITE(sc, ATW_NAR, opmode);
2977 	DELAY(atw_nar_delay);
2978 
2979 	for (i = 0; i < 1000; i++) {
2980 		stsr = ATW_READ(sc, ATW_STSR);
2981 		if ((stsr & ackmask) == ackmask)
2982 			break;
2983 		DELAY(10);
2984 	}
2985 
2986 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2987 
2988 	if ((stsr & ackmask) == ackmask)
2989 		goto out;
2990 
2991 	test0 = ATW_READ(sc, ATW_TEST0);
2992 
2993 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2994 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2995 		printf("%s: transmit process not idle [%s]\n",
2996 		    device_xname(sc->sc_dev),
2997 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
2998 		printf("%s: bits %08x test0 %08x stsr %08x\n",
2999 		    device_xname(sc->sc_dev), bits, test0, stsr);
3000 	}
3001 
3002 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
3003 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
3004 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
3005 		    device_xname(sc->sc_dev),
3006 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
3007 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
3008 		    device_xname(sc->sc_dev), bits, test0, stsr));
3009 	}
3010 out:
3011 	if ((bits & ATW_NAR_ST) != 0)
3012 		atw_txdrain(sc);
3013 	splx(s);
3014 	return;
3015 }
3016 
3017 /*
3018  * atw_linkintr:
3019  *
3020  *	Helper; handle link-status interrupts.
3021  */
3022 void
3023 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3024 {
3025 	struct ieee80211com *ic = &sc->sc_ic;
3026 
3027 	if (ic->ic_state != IEEE80211_S_RUN)
3028 		return;
3029 
3030 	if (linkstatus & ATW_INTR_LINKON) {
3031 		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3032 		sc->sc_rescan_timer = 0;
3033 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3034 		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3035 		if (ic->ic_opmode != IEEE80211_M_STA)
3036 			return;
3037 		sc->sc_rescan_timer = 3;
3038 		sc->sc_if.if_timer = 1;
3039 	}
3040 }
3041 
3042 static inline int
3043 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3044 {
3045 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3046 		return 0;
3047 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3048 		return 0;
3049 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3050 }
3051 
3052 /*
3053  * atw_rxintr:
3054  *
3055  *	Helper; handle receive interrupts.
3056  */
3057 void
3058 atw_rxintr(struct atw_softc *sc)
3059 {
3060 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3061 	struct ieee80211com *ic = &sc->sc_ic;
3062 	struct ieee80211_node *ni;
3063 	struct ieee80211_frame_min *wh;
3064 	struct ifnet *ifp = &sc->sc_if;
3065 	struct atw_rxsoft *rxs;
3066 	struct mbuf *m;
3067 	u_int32_t rxstat;
3068 	int i, len, rate, rate0;
3069 	u_int32_t rssi, ctlrssi;
3070 
3071 	for (i = sc->sc_rxptr;; i = ATW_NEXTRX(i)) {
3072 		rxs = &sc->sc_rxsoft[i];
3073 
3074 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3075 
3076 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3077 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3078 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3079 
3080 		if (rxstat & ATW_RXSTAT_OWN)
3081 			break; /* We have processed all receive buffers. */
3082 
3083 		DPRINTF3(sc,
3084 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3085 		    device_xname(sc->sc_dev),
3086 		    rxstat, ctlrssi,
3087 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3088 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3089 
3090 		/*
3091 		 * Make sure the packet fits in one buffer.  This should
3092 		 * always be the case.
3093 		 */
3094 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3095 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3096 			printf("%s: incoming packet spilled, resetting\n",
3097 			    device_xname(sc->sc_dev));
3098 			(void)atw_init(ifp);
3099 			return;
3100 		}
3101 
3102 		/*
3103 		 * If an error occurred, update stats, clear the status
3104 		 * word, and leave the packet buffer in place.  It will
3105 		 * simply be reused the next time the ring comes around.
3106 		 */
3107 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3108 #define	PRINTERR(bit, str)						\
3109 			if (rxstat & (bit))				\
3110 				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3111 				    str)
3112 			ifp->if_ierrors++;
3113 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3114 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3115 #if 0
3116 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3117 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3118 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3119 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3120 #endif
3121 #undef PRINTERR
3122 			atw_init_rxdesc(sc, i);
3123 			continue;
3124 		}
3125 
3126 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3127 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3128 
3129 		/*
3130 		 * No errors; receive the packet.  Note the ADM8211
3131 		 * includes the CRC in promiscuous mode.
3132 		 */
3133 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3134 
3135 		/*
3136 		 * Allocate a new mbuf cluster.  If that fails, we are
3137 		 * out of memory, and must drop the packet and recycle
3138 		 * the buffer that's already attached to this descriptor.
3139 		 */
3140 		m = rxs->rxs_mbuf;
3141 		if (atw_add_rxbuf(sc, i) != 0) {
3142 			ifp->if_ierrors++;
3143 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3144 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3145 			atw_init_rxdesc(sc, i);
3146 			continue;
3147 		}
3148 
3149 		ifp->if_ipackets++;
3150 		m->m_pkthdr.rcvif = ifp;
3151 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3152 
3153 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3154 
3155 		/* The RSSI comes straight from a register in the
3156 		 * baseband processor.  I know that for the RF3000,
3157 		 * the RSSI register also contains the antenna-selection
3158 		 * bits.  Mask those off.
3159 		 *
3160 		 * TBD Treat other basebands.
3161 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3162 		 */
3163 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3164 			rssi = ctlrssi & RF3000_RSSI_MASK;
3165 		else
3166 			rssi = ctlrssi;
3167 
3168  #if NBPFILTER > 0
3169 		/* Pass this up to any BPF listeners. */
3170 		if (sc->sc_radiobpf != NULL) {
3171 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3172 
3173 			tap->ar_rate = rate;
3174 
3175 			/* TBD verify units are dB */
3176 			tap->ar_antsignal = (int)rssi;
3177 			if (sc->sc_opmode & ATW_NAR_PR)
3178 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3179 			else
3180 				tap->ar_flags = 0;
3181 
3182 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3183 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3184 
3185 			bpf_mtap2(sc->sc_radiobpf, tap,
3186 			    sizeof(sc->sc_rxtapu), m);
3187  		}
3188 #endif /* NBPFILTER > 0 */
3189 
3190 		sc->sc_recv_ev.ev_count++;
3191 
3192 		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3193 			if (rxstat & ATW_RXSTAT_CRC16E)
3194 				sc->sc_crc16e_ev.ev_count++;
3195 			if (rxstat & ATW_RXSTAT_CRC32E)
3196 				sc->sc_crc32e_ev.ev_count++;
3197 			if (rxstat & ATW_RXSTAT_ICVE)
3198 				sc->sc_icve_ev.ev_count++;
3199 			if (rxstat & ATW_RXSTAT_SFDE)
3200 				sc->sc_sfde_ev.ev_count++;
3201 			if (rxstat & ATW_RXSTAT_SIGE)
3202 				sc->sc_sige_ev.ev_count++;
3203 			ifp->if_ierrors++;
3204 			m_freem(m);
3205 			continue;
3206 		}
3207 
3208 		if (sc->sc_opmode & ATW_NAR_PR)
3209 			m_adj(m, -IEEE80211_CRC_LEN);
3210 
3211 		wh = mtod(m, struct ieee80211_frame_min *);
3212 		ni = ieee80211_find_rxnode(ic, wh);
3213 #if 0
3214 		if (atw_hw_decrypted(sc, wh)) {
3215 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3216 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3217 		}
3218 #endif
3219 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3220 		ieee80211_free_node(ni);
3221 	}
3222 
3223 	/* Update the receive pointer. */
3224 	sc->sc_rxptr = i;
3225 }
3226 
3227 /*
3228  * atw_txintr:
3229  *
3230  *	Helper; handle transmit interrupts.
3231  */
3232 void
3233 atw_txintr(struct atw_softc *sc)
3234 {
3235 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3236 	struct ifnet *ifp = &sc->sc_if;
3237 	struct atw_txsoft *txs;
3238 	u_int32_t txstat;
3239 
3240 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3241 	    device_xname(sc->sc_dev), sc->sc_flags));
3242 
3243 	/*
3244 	 * Go through our Tx list and free mbufs for those
3245 	 * frames that have been transmitted.
3246 	 */
3247 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3248 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3249 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3250 
3251 #ifdef ATW_DEBUG
3252 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3253 			int i;
3254 			printf("    txsoft %p transmit chain:\n", txs);
3255 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3256 			    txs->txs_ndescs - 1,
3257 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3258 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3259 				printf("     descriptor %d:\n", i);
3260 				printf("       at_status:   0x%08x\n",
3261 				    le32toh(sc->sc_txdescs[i].at_stat));
3262 				printf("       at_flags:      0x%08x\n",
3263 				    le32toh(sc->sc_txdescs[i].at_flags));
3264 				printf("       at_buf1: 0x%08x\n",
3265 				    le32toh(sc->sc_txdescs[i].at_buf1));
3266 				printf("       at_buf2: 0x%08x\n",
3267 				    le32toh(sc->sc_txdescs[i].at_buf2));
3268 				if (i == txs->txs_lastdesc)
3269 					break;
3270 			}
3271 		}
3272 #endif
3273 
3274 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3275 		if (txstat & ATW_TXSTAT_OWN)
3276 			break;
3277 
3278 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3279 
3280 		sc->sc_txfree += txs->txs_ndescs;
3281 
3282 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3283 		    0, txs->txs_dmamap->dm_mapsize,
3284 		    BUS_DMASYNC_POSTWRITE);
3285 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3286 		m_freem(txs->txs_mbuf);
3287 		txs->txs_mbuf = NULL;
3288 
3289 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3290 
3291 		KASSERT(!(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
3292 		        sc->sc_txfree == 0));
3293 		ifp->if_flags &= ~IFF_OACTIVE;
3294 
3295 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3296 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3297 			snprintb(txstat_buf, sizeof(txstat_buf),
3298 			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3299 			printf("%s: txstat %s %" __PRIuBITS "\n",
3300 			    device_xname(sc->sc_dev), txstat_buf,
3301 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3302 		}
3303 
3304 		/*
3305 		 * Check for errors and collisions.
3306 		 */
3307 		if (txstat & ATW_TXSTAT_TUF)
3308 			sc->sc_stats.ts_tx_tuf++;
3309 		if (txstat & ATW_TXSTAT_TLT)
3310 			sc->sc_stats.ts_tx_tlt++;
3311 		if (txstat & ATW_TXSTAT_TRT)
3312 			sc->sc_stats.ts_tx_trt++;
3313 		if (txstat & ATW_TXSTAT_TRO)
3314 			sc->sc_stats.ts_tx_tro++;
3315 		if (txstat & ATW_TXSTAT_SOFBR) {
3316 			sc->sc_stats.ts_tx_sofbr++;
3317 		}
3318 
3319 		if ((txstat & ATW_TXSTAT_ES) == 0)
3320 			ifp->if_collisions +=
3321 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3322 		else
3323 			ifp->if_oerrors++;
3324 
3325 		ifp->if_opackets++;
3326 	}
3327 
3328 	/*
3329 	 * If there are no more pending transmissions, cancel the watchdog
3330 	 * timer.
3331 	 */
3332 	if (txs == NULL) {
3333 		KASSERT((ifp->if_flags & IFF_OACTIVE) == 0);
3334 		sc->sc_tx_timer = 0;
3335 	}
3336 }
3337 
3338 /*
3339  * atw_watchdog:	[ifnet interface function]
3340  *
3341  *	Watchdog timer handler.
3342  */
3343 void
3344 atw_watchdog(struct ifnet *ifp)
3345 {
3346 	struct atw_softc *sc = ifp->if_softc;
3347 	struct ieee80211com *ic = &sc->sc_ic;
3348 
3349 	ifp->if_timer = 0;
3350 	if (ATW_IS_ENABLED(sc) == 0)
3351 		return;
3352 
3353 	if (sc->sc_rescan_timer) {
3354 		if (--sc->sc_rescan_timer == 0)
3355 			(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3356 	}
3357 	if (sc->sc_tx_timer) {
3358 		if (--sc->sc_tx_timer == 0 &&
3359 		    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3360 			printf("%s: transmit timeout\n", ifp->if_xname);
3361 			ifp->if_oerrors++;
3362 			(void)atw_init(ifp);
3363 			atw_start(ifp);
3364 		}
3365 	}
3366 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3367 		ifp->if_timer = 1;
3368 	ieee80211_watchdog(ic);
3369 }
3370 
3371 static void
3372 atw_evcnt_detach(struct atw_softc *sc)
3373 {
3374 	evcnt_detach(&sc->sc_sige_ev);
3375 	evcnt_detach(&sc->sc_sfde_ev);
3376 	evcnt_detach(&sc->sc_icve_ev);
3377 	evcnt_detach(&sc->sc_crc32e_ev);
3378 	evcnt_detach(&sc->sc_crc16e_ev);
3379 	evcnt_detach(&sc->sc_recv_ev);
3380 }
3381 
3382 static void
3383 atw_evcnt_attach(struct atw_softc *sc)
3384 {
3385 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3386 	    NULL, sc->sc_if.if_xname, "recv");
3387 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3388 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3389 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3390 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3391 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3392 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3393 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3394 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3395 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3396 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3397 }
3398 
3399 #ifdef ATW_DEBUG
3400 static void
3401 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3402 {
3403 	struct atw_softc *sc = ifp->if_softc;
3404 	struct mbuf *m;
3405 	int i, noctets = 0;
3406 
3407 	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3408 	    m0->m_pkthdr.len);
3409 
3410 	for (m = m0; m; m = m->m_next) {
3411 		if (m->m_len == 0)
3412 			continue;
3413 		for (i = 0; i < m->m_len; i++) {
3414 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3415 			if (++noctets % 24 == 0)
3416 				printf("\n");
3417 		}
3418 	}
3419 	printf("%s%s: %d bytes emitted\n",
3420 	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3421 }
3422 #endif /* ATW_DEBUG */
3423 
3424 /*
3425  * atw_start:		[ifnet interface function]
3426  *
3427  *	Start packet transmission on the interface.
3428  */
3429 void
3430 atw_start(struct ifnet *ifp)
3431 {
3432 	struct atw_softc *sc = ifp->if_softc;
3433 	struct ieee80211_key *k;
3434 	struct ieee80211com *ic = &sc->sc_ic;
3435 	struct ieee80211_node *ni;
3436 	struct ieee80211_frame_min *whm;
3437 	struct ieee80211_frame *wh;
3438 	struct atw_frame *hh;
3439 	struct mbuf *m0, *m;
3440 	struct atw_txsoft *txs, *last_txs;
3441 	struct atw_txdesc *txd;
3442 	int npkt, rate;
3443 	bus_dmamap_t dmamap;
3444 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3445 
3446 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3447 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3448 
3449 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3450 		return;
3451 
3452 	/*
3453 	 * Remember the previous number of free descriptors and
3454 	 * the first descriptor we'll use.
3455 	 */
3456 	ofree = sc->sc_txfree;
3457 	firsttx = lasttx = sc->sc_txnext;
3458 
3459 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3460 	    device_xname(sc->sc_dev), ofree, firsttx));
3461 
3462 	/*
3463 	 * Loop through the send queue, setting up transmit descriptors
3464 	 * until we drain the queue, or use up all available transmit
3465 	 * descriptors.
3466 	 */
3467 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3468 	       sc->sc_txfree != 0) {
3469 
3470 		/*
3471 		 * Grab a packet off the management queue, if it
3472 		 * is not empty. Otherwise, from the data queue.
3473 		 */
3474 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3475 		if (m0 != NULL) {
3476 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3477 			m0->m_pkthdr.rcvif = NULL;
3478 		} else if (ic->ic_state != IEEE80211_S_RUN)
3479 			break; /* send no data until associated */
3480 		else {
3481 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3482 			if (m0 == NULL)
3483 				break;
3484 #if NBPFILTER > 0
3485 			if (ifp->if_bpf != NULL)
3486 				bpf_mtap(ifp->if_bpf, m0);
3487 #endif /* NBPFILTER > 0 */
3488 			ni = ieee80211_find_txnode(ic,
3489 			    mtod(m0, struct ether_header *)->ether_dhost);
3490 			if (ni == NULL) {
3491 				ifp->if_oerrors++;
3492 				break;
3493 			}
3494 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3495 				ieee80211_free_node(ni);
3496 				ifp->if_oerrors++;
3497 				break;
3498 			}
3499 		}
3500 
3501 		rate = MAX(ieee80211_get_rate(ni), 2);
3502 
3503 		whm = mtod(m0, struct ieee80211_frame_min *);
3504 
3505 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3506 			k = NULL;
3507 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3508 			m_freem(m0);
3509 			ieee80211_free_node(ni);
3510 			ifp->if_oerrors++;
3511 			break;
3512 		}
3513 
3514 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3515 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3516 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3517 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3518 			m_freem(m0);
3519 			break;
3520 		}
3521 
3522 		/* XXX Misleading if fragmentation is enabled.  Better
3523 		 * to fragment in software?
3524 		 */
3525 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3526 
3527 #if NBPFILTER > 0
3528 		/*
3529 		 * Pass the packet to any BPF listeners.
3530 		 */
3531 		if (ic->ic_rawbpf != NULL)
3532 			bpf_mtap((void *)ic->ic_rawbpf, m0);
3533 
3534 		if (sc->sc_radiobpf != NULL) {
3535 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3536 
3537 			tap->at_rate = rate;
3538 
3539 			bpf_mtap2(sc->sc_radiobpf, tap,
3540 			    sizeof(sc->sc_txtapu), m0);
3541 		}
3542 #endif /* NBPFILTER > 0 */
3543 
3544 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3545 
3546 		if (ni != NULL)
3547 			ieee80211_free_node(ni);
3548 
3549 		if (m0 == NULL) {
3550 			ifp->if_oerrors++;
3551 			break;
3552 		}
3553 
3554 		/* just to make sure. */
3555 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3556 
3557 		if (m0 == NULL) {
3558 			ifp->if_oerrors++;
3559 			break;
3560 		}
3561 
3562 		hh = mtod(m0, struct atw_frame *);
3563 		wh = &hh->atw_ihdr;
3564 
3565 		/* Copy everything we need from the 802.11 header:
3566 		 * Frame Control; address 1, address 3, or addresses
3567 		 * 3 and 4. NIC fills in BSSID, SA.
3568 		 */
3569 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3570 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3571 				panic("%s: illegal WDS frame",
3572 				    device_xname(sc->sc_dev));
3573 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3574 		} else
3575 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3576 
3577 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3578 
3579 		/* initialize remaining Tx parameters */
3580 		memset(&hh->u, 0, sizeof(hh->u));
3581 
3582 		hh->atw_rate = rate * 5;
3583 		/* XXX this could be incorrect if M_FCS. _encap should
3584 		 * probably strip FCS just in case it sticks around in
3585 		 * bridged packets.
3586 		 */
3587 		hh->atw_service = 0x00; /* XXX guess */
3588 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3589 		    sizeof(struct atw_frame));
3590 
3591 		hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3592 		hh->atw_rtylmt = 3;
3593 		hh->atw_hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3594 #if 0
3595 		if (do_encrypt) {
3596 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_WEP);
3597 			hh->atw_keyid = ic->ic_def_txkey;
3598 		}
3599 #endif
3600 
3601 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3602 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3603 		if (txs->txs_d0.d_residue)
3604 			hh->atw_head_plcplen |= htole16(0x8000);
3605 		if (txs->txs_dn.d_residue)
3606 			hh->atw_tail_plcplen |= htole16(0x8000);
3607 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3608 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3609 
3610 		/* never fragment multicast frames */
3611 		if (IEEE80211_IS_MULTICAST(hh->atw_dst)) {
3612 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3613 		} else if (sc->sc_flags & ATWF_RTSCTS) {
3614 			hh->atw_hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3615 		}
3616 
3617 #ifdef ATW_DEBUG
3618 		hh->atw_fragnum = 0;
3619 
3620 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3621 			printf("%s: dst = %s, rate = 0x%02x, "
3622 			    "service = 0x%02x, paylen = 0x%04x\n",
3623 			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3624 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3625 
3626 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3627 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3628 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3629 			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3630 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3631 			    hh->atw_tail_dur, hh->atw_head_dur);
3632 
3633 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3634 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3635 			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3636 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3637 
3638 			printf("%s: keyid = %d\n",
3639 			    device_xname(sc->sc_dev), hh->atw_keyid);
3640 
3641 			atw_dump_pkt(ifp, m0);
3642 		}
3643 #endif /* ATW_DEBUG */
3644 
3645 		dmamap = txs->txs_dmamap;
3646 
3647 		/*
3648 		 * Load the DMA map.  Copy and try (once) again if the packet
3649 		 * didn't fit in the alloted number of segments.
3650 		 */
3651 		for (first = 1;
3652 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3653 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3654 		     first = 0) {
3655 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3656 			if (m == NULL) {
3657 				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3658 				break;
3659 			}
3660 			if (m0->m_pkthdr.len > MHLEN) {
3661 				MCLGET(m, M_DONTWAIT);
3662 				if ((m->m_flags & M_EXT) == 0) {
3663 					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3664 					    "cluster\n");
3665 					m_freem(m);
3666 					break;
3667 				}
3668 			}
3669 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3670 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3671 			m_freem(m0);
3672 			m0 = m;
3673 			m = NULL;
3674 		}
3675 		if (error != 0) {
3676 			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3677 			    "error = %d\n", error);
3678 			m_freem(m0);
3679 			break;
3680 		}
3681 
3682 		/*
3683 		 * Ensure we have enough descriptors free to describe
3684 		 * the packet.
3685 		 */
3686 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3687 			/*
3688 			 * Not enough free descriptors to transmit
3689 			 * this packet.  Unload the DMA map and
3690 			 * drop the packet.  Notify the upper layer
3691 			 * that there are no more slots left.
3692 			 *
3693 			 * XXX We could allocate an mbuf and copy, but
3694 			 * XXX it is worth it?
3695 			 */
3696 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3697 			m_freem(m0);
3698 			break;
3699 		}
3700 
3701 		/*
3702 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3703 		 */
3704 
3705 		/* Sync the DMA map. */
3706 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3707 		    BUS_DMASYNC_PREWRITE);
3708 
3709 		/* XXX arbitrary retry limit; 8 because I have seen it in
3710 		 * use already and maybe 0 means "no tries" !
3711 		 */
3712 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3713 
3714 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3715 		    device_xname(sc->sc_dev), rate * 5));
3716 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3717 
3718 		/*
3719 		 * Initialize the transmit descriptors.
3720 		 */
3721 		for (nexttx = sc->sc_txnext, seg = 0;
3722 		     seg < dmamap->dm_nsegs;
3723 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3724 			/*
3725 			 * If this is the first descriptor we're
3726 			 * enqueueing, don't set the OWN bit just
3727 			 * yet.  That could cause a race condition.
3728 			 * We'll do it below.
3729 			 */
3730 			txd = &sc->sc_txdescs[nexttx];
3731 			txd->at_ctl = ctl |
3732 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3733 
3734 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3735 			txd->at_flags =
3736 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3737 			                   ATW_TXFLAG_TBS1_MASK)) |
3738 			    ((nexttx == (ATW_NTXDESC - 1))
3739 			        ? htole32(ATW_TXFLAG_TER) : 0);
3740 			lasttx = nexttx;
3741 		}
3742 
3743 		/* Set `first segment' and `last segment' appropriately. */
3744 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3745 		    htole32(ATW_TXFLAG_FS);
3746 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3747 
3748 #ifdef ATW_DEBUG
3749 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3750 			printf("     txsoft %p transmit chain:\n", txs);
3751 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3752 				printf("     descriptor %d:\n", seg);
3753 				printf("       at_ctl:   0x%08x\n",
3754 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3755 				printf("       at_flags:      0x%08x\n",
3756 				    le32toh(sc->sc_txdescs[seg].at_flags));
3757 				printf("       at_buf1: 0x%08x\n",
3758 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3759 				printf("       at_buf2: 0x%08x\n",
3760 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3761 				if (seg == lasttx)
3762 					break;
3763 			}
3764 		}
3765 #endif
3766 
3767 		/* Sync the descriptors we're using. */
3768 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3769 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3770 
3771 		/*
3772 		 * Store a pointer to the packet so we can free it later,
3773 		 * and remember what txdirty will be once the packet is
3774 		 * done.
3775 		 */
3776 		txs->txs_mbuf = m0;
3777 		txs->txs_firstdesc = sc->sc_txnext;
3778 		txs->txs_lastdesc = lasttx;
3779 		txs->txs_ndescs = dmamap->dm_nsegs;
3780 
3781 		/* Advance the tx pointer. */
3782 		sc->sc_txfree -= dmamap->dm_nsegs;
3783 		sc->sc_txnext = nexttx;
3784 
3785 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3786 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3787 
3788 		last_txs = txs;
3789 	}
3790 
3791 	if (sc->sc_txfree != ofree) {
3792 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3793 		    device_xname(sc->sc_dev), lasttx, firsttx));
3794 		/*
3795 		 * Cause a transmit interrupt to happen on the
3796 		 * last packet we enqueued.
3797 		 */
3798 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3799 		ATW_CDTXSYNC(sc, lasttx, 1,
3800 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3801 
3802 		/*
3803 		 * The entire packet chain is set up.  Give the
3804 		 * first descriptor to the chip now.
3805 		 */
3806 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3807 		ATW_CDTXSYNC(sc, firsttx, 1,
3808 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3809 
3810 		/* Wake up the transmitter. */
3811 		ATW_WRITE(sc, ATW_TDR, 0x1);
3812 
3813 		if (txs == NULL || sc->sc_txfree == 0)
3814 			ifp->if_flags |= IFF_OACTIVE;
3815 
3816 		/* Set a watchdog timer in case the chip flakes out. */
3817 		sc->sc_tx_timer = 5;
3818 		ifp->if_timer = 1;
3819 	}
3820 }
3821 
3822 /*
3823  * atw_ioctl:		[ifnet interface function]
3824  *
3825  *	Handle control requests from the operator.
3826  */
3827 int
3828 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3829 {
3830 	struct atw_softc *sc = ifp->if_softc;
3831 	int s, error = 0;
3832 
3833 	/* XXX monkey see, monkey do. comes from wi_ioctl. */
3834 	if (!device_is_active(sc->sc_dev))
3835 		return ENXIO;
3836 
3837 	s = splnet();
3838 
3839 	switch (cmd) {
3840 	case SIOCSIFFLAGS:
3841 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3842 			break;
3843 		if (ifp->if_flags & IFF_UP) {
3844 			if (ATW_IS_ENABLED(sc)) {
3845 				/*
3846 				 * To avoid rescanning another access point,
3847 				 * do not call atw_init() here.  Instead,
3848 				 * only reflect media settings.
3849 				 */
3850 				atw_filter_setup(sc);
3851 			} else
3852 				error = atw_init(ifp);
3853 		} else if (ATW_IS_ENABLED(sc))
3854 			atw_stop(ifp, 1);
3855 		break;
3856 	case SIOCADDMULTI:
3857 	case SIOCDELMULTI:
3858 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3859 			if (ifp->if_flags & IFF_RUNNING)
3860 				atw_filter_setup(sc); /* do not rescan */
3861 			error = 0;
3862 		}
3863 		break;
3864 	default:
3865 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3866 		if (error == ENETRESET || error == ERESTART) {
3867 			if (is_running(ifp))
3868 				error = atw_init(ifp);
3869 			else
3870 				error = 0;
3871 		}
3872 		break;
3873 	}
3874 
3875 	/* Try to get more packets going. */
3876 	if (ATW_IS_ENABLED(sc))
3877 		atw_start(ifp);
3878 
3879 	splx(s);
3880 	return (error);
3881 }
3882 
3883 static int
3884 atw_media_change(struct ifnet *ifp)
3885 {
3886 	int error;
3887 
3888 	error = ieee80211_media_change(ifp);
3889 	if (error == ENETRESET) {
3890 		if (is_running(ifp))
3891 			error = atw_init(ifp);
3892 		else
3893 			error = 0;
3894 	}
3895 	return error;
3896 }
3897