xref: /netbsd-src/sys/dev/ic/atw.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: atw.c,v 1.148 2010/01/08 20:02:39 dyoung Exp $  */
2 
3 /*-
4  * Copyright (c) 1998, 1999, 2000, 2002, 2003, 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by David Young, by Jason R. Thorpe, and by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Device driver for the ADMtek ADM8211 802.11 MAC/BBP.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: atw.c,v 1.148 2010/01/08 20:02:39 dyoung Exp $");
38 
39 #include "bpfilter.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51 #include <sys/kauth.h>
52 #include <sys/time.h>
53 #include <lib/libkern/libkern.h>
54 
55 #include <machine/endian.h>
56 
57 #include <uvm/uvm_extern.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63 
64 #include <net80211/ieee80211_netbsd.h>
65 #include <net80211/ieee80211_var.h>
66 #include <net80211/ieee80211_radiotap.h>
67 
68 #if NBPFILTER > 0
69 #include <net/bpf.h>
70 #endif
71 
72 #include <sys/bus.h>
73 #include <sys/intr.h>
74 
75 #include <dev/ic/atwreg.h>
76 #include <dev/ic/rf3000reg.h>
77 #include <dev/ic/si4136reg.h>
78 #include <dev/ic/atwvar.h>
79 #include <dev/ic/smc93cx6var.h>
80 
81 /* XXX TBD open questions
82  *
83  *
84  * When should I set DSSS PAD in reg 0x15 of RF3000? In 1-2Mbps
85  * modes only, or all modes (5.5-11 Mbps CCK modes, too?) Does the MAC
86  * handle this for me?
87  *
88  */
89 /* device attachment
90  *
91  *    print TOFS[012]
92  *
93  * device initialization
94  *
95  *    clear ATW_FRCTL_MAXPSP to disable max power saving
96  *    set ATW_TXBR_ALCUPDATE to enable ALC
97  *    set TOFS[012]? (hope not)
98  *    disable rx/tx
99  *    set ATW_PAR_SWR (software reset)
100  *    wait for ATW_PAR_SWR clear
101  *    disable interrupts
102  *    ack status register
103  *    enable interrupts
104  *
105  * rx/tx initialization
106  *
107  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
108  *    allocate and init descriptor rings
109  *    write ATW_PAR_DSL (descriptor skip length)
110  *    write descriptor base addrs: ATW_TDBD, ATW_TDBP, write ATW_RDB
111  *    write ATW_NAR_SQ for one/both transmit descriptor rings
112  *    write ATW_NAR_SQ for one/both transmit descriptor rings
113  *    enable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
114  *
115  * rx/tx end
116  *
117  *    stop DMA
118  *    disable rx/tx w/ ATW_NAR_SR, ATW_NAR_ST
119  *    flush tx w/ ATW_NAR_HF
120  *
121  * scan
122  *
123  *    initialize rx/tx
124  *
125  * BSS join: (re)association response
126  *
127  *    set ATW_FRCTL_AID
128  *
129  * optimizations ???
130  *
131  */
132 
133 #define ATW_REFSLAVE	/* slavishly do what the reference driver does */
134 
135 int atw_pseudo_milli = 1;
136 int atw_magic_delay1 = 100 * 1000;
137 int atw_magic_delay2 = 100 * 1000;
138 /* more magic multi-millisecond delays (units: microseconds) */
139 int atw_nar_delay = 20 * 1000;
140 int atw_magic_delay4 = 10 * 1000;
141 int atw_rf_delay1 = 10 * 1000;
142 int atw_rf_delay2 = 5 * 1000;
143 int atw_plcphd_delay = 2 * 1000;
144 int atw_bbp_io_enable_delay = 20 * 1000;
145 int atw_bbp_io_disable_delay = 2 * 1000;
146 int atw_writewep_delay = 1000;
147 int atw_beacon_len_adjust = 4;
148 int atw_dwelltime = 200;
149 int atw_xindiv2 = 0;
150 
151 #ifdef ATW_DEBUG
152 int atw_debug = 0;
153 
154 #define ATW_DPRINTF(x)	if (atw_debug > 0) printf x
155 #define ATW_DPRINTF2(x)	if (atw_debug > 1) printf x
156 #define ATW_DPRINTF3(x)	if (atw_debug > 2) printf x
157 #define	DPRINTF(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) printf x
158 #define	DPRINTF2(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF2(x)
159 #define	DPRINTF3(sc, x)	if ((sc)->sc_if.if_flags & IFF_DEBUG) ATW_DPRINTF3(x)
160 
161 static void	atw_dump_pkt(struct ifnet *, struct mbuf *);
162 static void	atw_print_regs(struct atw_softc *, const char *);
163 
164 /* Note well: I never got atw_rf3000_read or atw_si4126_read to work. */
165 #	ifdef ATW_BBPDEBUG
166 static void	atw_rf3000_print(struct atw_softc *);
167 static int	atw_rf3000_read(struct atw_softc *sc, u_int, u_int *);
168 #	endif /* ATW_BBPDEBUG */
169 
170 #	ifdef ATW_SYNDEBUG
171 static void	atw_si4126_print(struct atw_softc *);
172 static int	atw_si4126_read(struct atw_softc *, u_int, u_int *);
173 #	endif /* ATW_SYNDEBUG */
174 
175 #else
176 #define ATW_DPRINTF(x)
177 #define ATW_DPRINTF2(x)
178 #define ATW_DPRINTF3(x)
179 #define	DPRINTF(sc, x)	/* nothing */
180 #define	DPRINTF2(sc, x)	/* nothing */
181 #define	DPRINTF3(sc, x)	/* nothing */
182 #endif
183 
184 /* ifnet methods */
185 int	atw_init(struct ifnet *);
186 int	atw_ioctl(struct ifnet *, u_long, void *);
187 void	atw_start(struct ifnet *);
188 void	atw_stop(struct ifnet *, int);
189 void	atw_watchdog(struct ifnet *);
190 
191 /* Device attachment */
192 void	atw_attach(struct atw_softc *);
193 int	atw_detach(struct atw_softc *);
194 static void atw_evcnt_attach(struct atw_softc *);
195 static void atw_evcnt_detach(struct atw_softc *);
196 
197 /* Rx/Tx process */
198 int	atw_add_rxbuf(struct atw_softc *, int);
199 void	atw_idle(struct atw_softc *, u_int32_t);
200 void	atw_rxdrain(struct atw_softc *);
201 void	atw_txdrain(struct atw_softc *);
202 
203 /* Device (de)activation and power state */
204 void	atw_reset(struct atw_softc *);
205 
206 /* Interrupt handlers */
207 void	atw_linkintr(struct atw_softc *, u_int32_t);
208 void	atw_rxintr(struct atw_softc *);
209 void	atw_txintr(struct atw_softc *, uint32_t);
210 
211 /* 802.11 state machine */
212 static int	atw_newstate(struct ieee80211com *, enum ieee80211_state, int);
213 static void	atw_next_scan(void *);
214 static void	atw_recv_mgmt(struct ieee80211com *, struct mbuf *,
215 		              struct ieee80211_node *, int, int, u_int32_t);
216 static int	atw_tune(struct atw_softc *);
217 
218 /* Device initialization */
219 static void	atw_bbp_io_init(struct atw_softc *);
220 static void	atw_cfp_init(struct atw_softc *);
221 static void	atw_cmdr_init(struct atw_softc *);
222 static void	atw_ifs_init(struct atw_softc *);
223 static void	atw_nar_init(struct atw_softc *);
224 static void	atw_response_times_init(struct atw_softc *);
225 static void	atw_rf_reset(struct atw_softc *);
226 static void	atw_test1_init(struct atw_softc *);
227 static void	atw_tofs0_init(struct atw_softc *);
228 static void	atw_tofs2_init(struct atw_softc *);
229 static void	atw_txlmt_init(struct atw_softc *);
230 static void	atw_wcsr_init(struct atw_softc *);
231 
232 /* Key management */
233 static int atw_key_delete(struct ieee80211com *, const struct ieee80211_key *);
234 static int atw_key_set(struct ieee80211com *, const struct ieee80211_key *,
235 	const u_int8_t[IEEE80211_ADDR_LEN]);
236 static void atw_key_update_begin(struct ieee80211com *);
237 static void atw_key_update_end(struct ieee80211com *);
238 
239 /* RAM/ROM utilities */
240 static void	atw_clear_sram(struct atw_softc *);
241 static void	atw_write_sram(struct atw_softc *, u_int, u_int8_t *, u_int);
242 static int	atw_read_srom(struct atw_softc *);
243 
244 /* BSS setup */
245 static void	atw_predict_beacon(struct atw_softc *);
246 static void	atw_start_beacon(struct atw_softc *, int);
247 static void	atw_write_bssid(struct atw_softc *);
248 static void	atw_write_ssid(struct atw_softc *);
249 static void	atw_write_sup_rates(struct atw_softc *);
250 static void	atw_write_wep(struct atw_softc *);
251 
252 /* Media */
253 static int	atw_media_change(struct ifnet *);
254 
255 static void	atw_filter_setup(struct atw_softc *);
256 
257 /* 802.11 utilities */
258 static uint64_t			atw_get_tsft(struct atw_softc *);
259 static inline uint32_t	atw_last_even_tsft(uint32_t, uint32_t,
260 				                   uint32_t);
261 static struct ieee80211_node	*atw_node_alloc(struct ieee80211_node_table *);
262 static void			atw_node_free(struct ieee80211_node *);
263 
264 /*
265  * Tuner/transceiver/modem
266  */
267 static void	atw_bbp_io_enable(struct atw_softc *, int);
268 
269 /* RFMD RF3000 Baseband Processor */
270 static int	atw_rf3000_init(struct atw_softc *);
271 static int	atw_rf3000_tune(struct atw_softc *, u_int);
272 static int	atw_rf3000_write(struct atw_softc *, u_int, u_int);
273 
274 /* Silicon Laboratories Si4126 RF/IF Synthesizer */
275 static void	atw_si4126_tune(struct atw_softc *, u_int);
276 static void	atw_si4126_write(struct atw_softc *, u_int, u_int);
277 
278 const struct atw_txthresh_tab atw_txthresh_tab_lo[] = ATW_TXTHRESH_TAB_LO_RATE;
279 const struct atw_txthresh_tab atw_txthresh_tab_hi[] = ATW_TXTHRESH_TAB_HI_RATE;
280 
281 const char *atw_tx_state[] = {
282 	"STOPPED",
283 	"RUNNING - read descriptor",
284 	"RUNNING - transmitting",
285 	"RUNNING - filling fifo",	/* XXX */
286 	"SUSPENDED",
287 	"RUNNING -- write descriptor",
288 	"RUNNING -- write last descriptor",
289 	"RUNNING - fifo full"
290 };
291 
292 const char *atw_rx_state[] = {
293 	"STOPPED",
294 	"RUNNING - read descriptor",
295 	"RUNNING - check this packet, pre-fetch next",
296 	"RUNNING - wait for reception",
297 	"SUSPENDED",
298 	"RUNNING - write descriptor",
299 	"RUNNING - flush fifo",
300 	"RUNNING - fifo drain"
301 };
302 
303 static inline int
304 is_running(struct ifnet *ifp)
305 {
306 	return (ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP);
307 }
308 
309 int
310 atw_activate(device_t self, enum devact act)
311 {
312 	struct atw_softc *sc = device_private(self);
313 
314 	switch (act) {
315 	case DVACT_DEACTIVATE:
316 		if_deactivate(&sc->sc_if);
317 		return 0;
318 	default:
319 		return EOPNOTSUPP;
320 	}
321 }
322 
323 bool
324 atw_suspend(device_t self, pmf_qual_t qual)
325 {
326 	struct atw_softc *sc = device_private(self);
327 
328 	atw_rxdrain(sc);
329 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
330 
331 	return true;
332 }
333 
334 /* Returns -1 on failure. */
335 static int
336 atw_read_srom(struct atw_softc *sc)
337 {
338 	struct seeprom_descriptor sd;
339 	uint32_t test0, fail_bits;
340 
341 	(void)memset(&sd, 0, sizeof(sd));
342 
343 	test0 = ATW_READ(sc, ATW_TEST0);
344 
345 	switch (sc->sc_rev) {
346 	case ATW_REVISION_BA:
347 	case ATW_REVISION_CA:
348 		fail_bits = ATW_TEST0_EPNE;
349 		break;
350 	default:
351 		fail_bits = ATW_TEST0_EPNE|ATW_TEST0_EPSNM;
352 		break;
353 	}
354 	if ((test0 & fail_bits) != 0) {
355 		aprint_error_dev(sc->sc_dev, "bad or missing/bad SROM\n");
356 		return -1;
357 	}
358 
359 	switch (test0 & ATW_TEST0_EPTYP_MASK) {
360 	case ATW_TEST0_EPTYP_93c66:
361 		ATW_DPRINTF(("%s: 93c66 SROM\n", device_xname(sc->sc_dev)));
362 		sc->sc_sromsz = 512;
363 		sd.sd_chip = C56_66;
364 		break;
365 	case ATW_TEST0_EPTYP_93c46:
366 		ATW_DPRINTF(("%s: 93c46 SROM\n", device_xname(sc->sc_dev)));
367 		sc->sc_sromsz = 128;
368 		sd.sd_chip = C46;
369 		break;
370 	default:
371 		printf("%s: unknown SROM type %" __PRIuBITS "\n",
372 		    device_xname(sc->sc_dev),
373 		    __SHIFTOUT(test0, ATW_TEST0_EPTYP_MASK));
374 		return -1;
375 	}
376 
377 	sc->sc_srom = malloc(sc->sc_sromsz, M_DEVBUF, M_NOWAIT);
378 
379 	if (sc->sc_srom == NULL) {
380 		aprint_error_dev(sc->sc_dev, "unable to allocate SROM buffer\n");
381 		return -1;
382 	}
383 
384 	(void)memset(sc->sc_srom, 0, sc->sc_sromsz);
385 
386 	/* ADM8211 has a single 32-bit register for controlling the
387 	 * 93cx6 SROM.  Bit SRS enables the serial port. There is no
388 	 * "ready" bit. The ADM8211 input/output sense is the reverse
389 	 * of read_seeprom's.
390 	 */
391 	sd.sd_tag = sc->sc_st;
392 	sd.sd_bsh = sc->sc_sh;
393 	sd.sd_regsize = 4;
394 	sd.sd_control_offset = ATW_SPR;
395 	sd.sd_status_offset = ATW_SPR;
396 	sd.sd_dataout_offset = ATW_SPR;
397 	sd.sd_CK = ATW_SPR_SCLK;
398 	sd.sd_CS = ATW_SPR_SCS;
399 	sd.sd_DI = ATW_SPR_SDO;
400 	sd.sd_DO = ATW_SPR_SDI;
401 	sd.sd_MS = ATW_SPR_SRS;
402 	sd.sd_RDY = 0;
403 
404 	if (!read_seeprom(&sd, sc->sc_srom, 0, sc->sc_sromsz/2)) {
405 		aprint_error_dev(sc->sc_dev, "could not read SROM\n");
406 		free(sc->sc_srom, M_DEVBUF);
407 		return -1;
408 	}
409 #ifdef ATW_DEBUG
410 	{
411 		int i;
412 		ATW_DPRINTF(("\nSerial EEPROM:\n\t"));
413 		for (i = 0; i < sc->sc_sromsz/2; i = i + 1) {
414 			if (((i % 8) == 0) && (i != 0)) {
415 				ATW_DPRINTF(("\n\t"));
416 			}
417 			ATW_DPRINTF((" 0x%x", sc->sc_srom[i]));
418 		}
419 		ATW_DPRINTF(("\n"));
420 	}
421 #endif /* ATW_DEBUG */
422 	return 0;
423 }
424 
425 #ifdef ATW_DEBUG
426 static void
427 atw_print_regs(struct atw_softc *sc, const char *where)
428 {
429 #define PRINTREG(sc, reg) \
430 	ATW_DPRINTF2(("%s: reg[ " #reg " / %03x ] = %08x\n", \
431 	    device_xname(sc->sc_dev), reg, ATW_READ(sc, reg)))
432 
433 	ATW_DPRINTF2(("%s: %s\n", device_xname(sc->sc_dev), where));
434 
435 	PRINTREG(sc, ATW_PAR);
436 	PRINTREG(sc, ATW_FRCTL);
437 	PRINTREG(sc, ATW_TDR);
438 	PRINTREG(sc, ATW_WTDP);
439 	PRINTREG(sc, ATW_RDR);
440 	PRINTREG(sc, ATW_WRDP);
441 	PRINTREG(sc, ATW_RDB);
442 	PRINTREG(sc, ATW_CSR3A);
443 	PRINTREG(sc, ATW_TDBD);
444 	PRINTREG(sc, ATW_TDBP);
445 	PRINTREG(sc, ATW_STSR);
446 	PRINTREG(sc, ATW_CSR5A);
447 	PRINTREG(sc, ATW_NAR);
448 	PRINTREG(sc, ATW_CSR6A);
449 	PRINTREG(sc, ATW_IER);
450 	PRINTREG(sc, ATW_CSR7A);
451 	PRINTREG(sc, ATW_LPC);
452 	PRINTREG(sc, ATW_TEST1);
453 	PRINTREG(sc, ATW_SPR);
454 	PRINTREG(sc, ATW_TEST0);
455 	PRINTREG(sc, ATW_WCSR);
456 	PRINTREG(sc, ATW_WPDR);
457 	PRINTREG(sc, ATW_GPTMR);
458 	PRINTREG(sc, ATW_GPIO);
459 	PRINTREG(sc, ATW_BBPCTL);
460 	PRINTREG(sc, ATW_SYNCTL);
461 	PRINTREG(sc, ATW_PLCPHD);
462 	PRINTREG(sc, ATW_MMIWADDR);
463 	PRINTREG(sc, ATW_MMIRADDR1);
464 	PRINTREG(sc, ATW_MMIRADDR2);
465 	PRINTREG(sc, ATW_TXBR);
466 	PRINTREG(sc, ATW_CSR15A);
467 	PRINTREG(sc, ATW_ALCSTAT);
468 	PRINTREG(sc, ATW_TOFS2);
469 	PRINTREG(sc, ATW_CMDR);
470 	PRINTREG(sc, ATW_PCIC);
471 	PRINTREG(sc, ATW_PMCSR);
472 	PRINTREG(sc, ATW_PAR0);
473 	PRINTREG(sc, ATW_PAR1);
474 	PRINTREG(sc, ATW_MAR0);
475 	PRINTREG(sc, ATW_MAR1);
476 	PRINTREG(sc, ATW_ATIMDA0);
477 	PRINTREG(sc, ATW_ABDA1);
478 	PRINTREG(sc, ATW_BSSID0);
479 	PRINTREG(sc, ATW_TXLMT);
480 	PRINTREG(sc, ATW_MIBCNT);
481 	PRINTREG(sc, ATW_BCNT);
482 	PRINTREG(sc, ATW_TSFTH);
483 	PRINTREG(sc, ATW_TSC);
484 	PRINTREG(sc, ATW_SYNRF);
485 	PRINTREG(sc, ATW_BPLI);
486 	PRINTREG(sc, ATW_CAP0);
487 	PRINTREG(sc, ATW_CAP1);
488 	PRINTREG(sc, ATW_RMD);
489 	PRINTREG(sc, ATW_CFPP);
490 	PRINTREG(sc, ATW_TOFS0);
491 	PRINTREG(sc, ATW_TOFS1);
492 	PRINTREG(sc, ATW_IFST);
493 	PRINTREG(sc, ATW_RSPT);
494 	PRINTREG(sc, ATW_TSFTL);
495 	PRINTREG(sc, ATW_WEPCTL);
496 	PRINTREG(sc, ATW_WESK);
497 	PRINTREG(sc, ATW_WEPCNT);
498 	PRINTREG(sc, ATW_MACTEST);
499 	PRINTREG(sc, ATW_FER);
500 	PRINTREG(sc, ATW_FEMR);
501 	PRINTREG(sc, ATW_FPSR);
502 	PRINTREG(sc, ATW_FFER);
503 #undef PRINTREG
504 }
505 #endif /* ATW_DEBUG */
506 
507 /*
508  * Finish attaching an ADMtek ADM8211 MAC.  Called by bus-specific front-end.
509  */
510 void
511 atw_attach(struct atw_softc *sc)
512 {
513 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
514 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
515 	};
516 	struct ieee80211com *ic = &sc->sc_ic;
517 	struct ifnet *ifp = &sc->sc_if;
518 	int country_code, error, i, nrate, srom_major;
519 	u_int32_t reg;
520 	static const char *type_strings[] = {"Intersil (not supported)",
521 	    "RFMD", "Marvel (not supported)"};
522 
523 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
524 
525 	sc->sc_txth = atw_txthresh_tab_lo;
526 
527 	SIMPLEQ_INIT(&sc->sc_txfreeq);
528 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
529 
530 #ifdef ATW_DEBUG
531 	atw_print_regs(sc, "atw_attach");
532 #endif /* ATW_DEBUG */
533 
534 	/*
535 	 * Allocate the control data structures, and create and load the
536 	 * DMA map for it.
537 	 */
538 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
539 	    sizeof(struct atw_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
540 	    1, &sc->sc_cdnseg, 0)) != 0) {
541 		aprint_error_dev(sc->sc_dev,
542 		    "unable to allocate control data, error = %d\n",
543 		    error);
544 		goto fail_0;
545 	}
546 
547 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
548 	    sizeof(struct atw_control_data), (void **)&sc->sc_control_data,
549 	    BUS_DMA_COHERENT)) != 0) {
550 		aprint_error_dev(sc->sc_dev,
551 		    "unable to map control data, error = %d\n",
552 		    error);
553 		goto fail_1;
554 	}
555 
556 	if ((error = bus_dmamap_create(sc->sc_dmat,
557 	    sizeof(struct atw_control_data), 1,
558 	    sizeof(struct atw_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
559 		aprint_error_dev(sc->sc_dev,
560 		    "unable to create control data DMA map, error = %d\n",
561 		    error);
562 		goto fail_2;
563 	}
564 
565 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
566 	    sc->sc_control_data, sizeof(struct atw_control_data), NULL,
567 	    0)) != 0) {
568 		aprint_error_dev(sc->sc_dev,
569 		    "unable to load control data DMA map, error = %d\n", error);
570 		goto fail_3;
571 	}
572 
573 	/*
574 	 * Create the transmit buffer DMA maps.
575 	 */
576 	sc->sc_ntxsegs = ATW_NTXSEGS;
577 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
578 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
579 		    sc->sc_ntxsegs, MCLBYTES, 0, 0,
580 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
581 			aprint_error_dev(sc->sc_dev,
582 			    "unable to create tx DMA map %d, error = %d\n", i,
583 			    error);
584 			goto fail_4;
585 		}
586 	}
587 
588 	/*
589 	 * Create the receive buffer DMA maps.
590 	 */
591 	for (i = 0; i < ATW_NRXDESC; i++) {
592 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
593 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
594 			aprint_error_dev(sc->sc_dev,
595 			    "unable to create rx DMA map %d, error = %d\n", i,
596 			    error);
597 			goto fail_5;
598 		}
599 	}
600 	for (i = 0; i < ATW_NRXDESC; i++) {
601 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
602 	}
603 
604 	switch (sc->sc_rev) {
605 	case ATW_REVISION_AB:
606 	case ATW_REVISION_AF:
607 		sc->sc_sramlen = ATW_SRAM_A_SIZE;
608 		break;
609 	case ATW_REVISION_BA:
610 	case ATW_REVISION_CA:
611 		sc->sc_sramlen = ATW_SRAM_B_SIZE;
612 		break;
613 	}
614 
615 	/* Reset the chip to a known state. */
616 	atw_reset(sc);
617 
618 	if (atw_read_srom(sc) == -1)
619 		return;
620 
621 	sc->sc_rftype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
622 	    ATW_SR_RFTYPE_MASK);
623 
624 	sc->sc_bbptype = __SHIFTOUT(sc->sc_srom[ATW_SR_CSR20],
625 	    ATW_SR_BBPTYPE_MASK);
626 
627 	if (sc->sc_rftype >= __arraycount(type_strings)) {
628 		aprint_error_dev(sc->sc_dev, "unknown RF\n");
629 		return;
630 	}
631 	if (sc->sc_bbptype >= __arraycount(type_strings)) {
632 		aprint_error_dev(sc->sc_dev, "unknown BBP\n");
633 		return;
634 	}
635 
636 	printf("%s: %s RF, %s BBP", device_xname(sc->sc_dev),
637 	    type_strings[sc->sc_rftype], type_strings[sc->sc_bbptype]);
638 
639 	/* XXX There exists a Linux driver which seems to use RFType = 0 for
640 	 * MARVEL. My bug, or theirs?
641 	 */
642 
643 	reg = __SHIFTIN(sc->sc_rftype, ATW_SYNCTL_RFTYPE_MASK);
644 
645 	switch (sc->sc_rftype) {
646 	case ATW_RFTYPE_INTERSIL:
647 		reg |= ATW_SYNCTL_CS1;
648 		break;
649 	case ATW_RFTYPE_RFMD:
650 		reg |= ATW_SYNCTL_CS0;
651 		break;
652 	case ATW_RFTYPE_MARVEL:
653 		break;
654 	}
655 
656 	sc->sc_synctl_rd = reg | ATW_SYNCTL_RD;
657 	sc->sc_synctl_wr = reg | ATW_SYNCTL_WR;
658 
659 	reg = __SHIFTIN(sc->sc_bbptype, ATW_BBPCTL_TYPE_MASK);
660 
661 	switch (sc->sc_bbptype) {
662 	case ATW_BBPTYPE_INTERSIL:
663 		reg |= ATW_BBPCTL_TWI;
664 		break;
665 	case ATW_BBPTYPE_RFMD:
666 		reg |= ATW_BBPCTL_RF3KADDR_ADDR | ATW_BBPCTL_NEGEDGE_DO |
667 		    ATW_BBPCTL_CCA_ACTLO;
668 		break;
669 	case ATW_BBPTYPE_MARVEL:
670 		break;
671 	case ATW_C_BBPTYPE_RFMD:
672 		printf("%s: ADM8211C MAC/RFMD BBP not supported yet.\n",
673 		    device_xname(sc->sc_dev));
674 		break;
675 	}
676 
677 	sc->sc_bbpctl_wr = reg | ATW_BBPCTL_WR;
678 	sc->sc_bbpctl_rd = reg | ATW_BBPCTL_RD;
679 
680 	/*
681 	 * From this point forward, the attachment cannot fail.  A failure
682 	 * before this point releases all resources that may have been
683 	 * allocated.
684 	 */
685 	sc->sc_flags |= ATWF_ATTACHED;
686 
687 	ATW_DPRINTF((" SROM MAC %04x%04x%04x",
688 	    htole16(sc->sc_srom[ATW_SR_MAC00]),
689 	    htole16(sc->sc_srom[ATW_SR_MAC01]),
690 	    htole16(sc->sc_srom[ATW_SR_MAC10])));
691 
692 	srom_major = __SHIFTOUT(sc->sc_srom[ATW_SR_FORMAT_VERSION],
693 	    ATW_SR_MAJOR_MASK);
694 
695 	if (srom_major < 2)
696 		sc->sc_rf3000_options1 = 0;
697 	else if (sc->sc_rev == ATW_REVISION_BA) {
698 		sc->sc_rf3000_options1 =
699 		    __SHIFTOUT(sc->sc_srom[ATW_SR_CR28_CR03],
700 		    ATW_SR_CR28_MASK);
701 	} else
702 		sc->sc_rf3000_options1 = 0;
703 
704 	sc->sc_rf3000_options2 = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
705 	    ATW_SR_CR29_MASK);
706 
707 	country_code = __SHIFTOUT(sc->sc_srom[ATW_SR_CTRY_CR29],
708 	    ATW_SR_CTRY_MASK);
709 
710 #define ADD_CHANNEL(_ic, _chan) do {					\
711 	_ic->ic_channels[_chan].ic_flags = IEEE80211_CHAN_B;		\
712 	_ic->ic_channels[_chan].ic_freq =				\
713 	    ieee80211_ieee2mhz(_chan, _ic->ic_channels[_chan].ic_flags);\
714 } while (0)
715 
716 	/* Find available channels */
717 	switch (country_code) {
718 	case COUNTRY_MMK2:	/* 1-14 */
719 		ADD_CHANNEL(ic, 14);
720 		/*FALLTHROUGH*/
721 	case COUNTRY_ETSI:	/* 1-13 */
722 		for (i = 1; i <= 13; i++)
723 			ADD_CHANNEL(ic, i);
724 		break;
725 	case COUNTRY_FCC:	/* 1-11 */
726 	case COUNTRY_IC:	/* 1-11 */
727 		for (i = 1; i <= 11; i++)
728 			ADD_CHANNEL(ic, i);
729 		break;
730 	case COUNTRY_MMK:	/* 14 */
731 		ADD_CHANNEL(ic, 14);
732 		break;
733 	case COUNTRY_FRANCE:	/* 10-13 */
734 		for (i = 10; i <= 13; i++)
735 			ADD_CHANNEL(ic, i);
736 		break;
737 	default:	/* assume channels 10-11 */
738 	case COUNTRY_SPAIN:	/* 10-11 */
739 		for (i = 10; i <= 11; i++)
740 			ADD_CHANNEL(ic, i);
741 		break;
742 	}
743 
744 	/* Read the MAC address. */
745 	reg = ATW_READ(sc, ATW_PAR0);
746 	ic->ic_myaddr[0] = __SHIFTOUT(reg, ATW_PAR0_PAB0_MASK);
747 	ic->ic_myaddr[1] = __SHIFTOUT(reg, ATW_PAR0_PAB1_MASK);
748 	ic->ic_myaddr[2] = __SHIFTOUT(reg, ATW_PAR0_PAB2_MASK);
749 	ic->ic_myaddr[3] = __SHIFTOUT(reg, ATW_PAR0_PAB3_MASK);
750 	reg = ATW_READ(sc, ATW_PAR1);
751 	ic->ic_myaddr[4] = __SHIFTOUT(reg, ATW_PAR1_PAB4_MASK);
752 	ic->ic_myaddr[5] = __SHIFTOUT(reg, ATW_PAR1_PAB5_MASK);
753 
754 	if (IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
755 		printf(" could not get mac address, attach failed\n");
756 		return;
757 	}
758 
759 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
760 
761 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
762 	ifp->if_softc = sc;
763 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST |
764 	    IFF_NOTRAILERS;
765 	ifp->if_ioctl = atw_ioctl;
766 	ifp->if_start = atw_start;
767 	ifp->if_watchdog = atw_watchdog;
768 	ifp->if_init = atw_init;
769 	ifp->if_stop = atw_stop;
770 	IFQ_SET_READY(&ifp->if_snd);
771 
772 	ic->ic_ifp = ifp;
773 	ic->ic_phytype = IEEE80211_T_DS;
774 	ic->ic_opmode = IEEE80211_M_STA;
775 	ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS |
776 	    IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR;
777 
778 	nrate = 0;
779 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 2;
780 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 4;
781 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11;
782 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22;
783 	ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
784 
785 	/*
786 	 * Call MI attach routines.
787 	 */
788 
789 	if_attach(ifp);
790 	ieee80211_ifattach(ic);
791 
792 	atw_evcnt_attach(sc);
793 
794 	sc->sc_newstate = ic->ic_newstate;
795 	ic->ic_newstate = atw_newstate;
796 
797 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
798 	ic->ic_recv_mgmt = atw_recv_mgmt;
799 
800 	sc->sc_node_free = ic->ic_node_free;
801 	ic->ic_node_free = atw_node_free;
802 
803 	sc->sc_node_alloc = ic->ic_node_alloc;
804 	ic->ic_node_alloc = atw_node_alloc;
805 
806 	ic->ic_crypto.cs_key_delete = atw_key_delete;
807 	ic->ic_crypto.cs_key_set = atw_key_set;
808 	ic->ic_crypto.cs_key_update_begin = atw_key_update_begin;
809 	ic->ic_crypto.cs_key_update_end = atw_key_update_end;
810 
811 	/* possibly we should fill in our own sc_send_prresp, since
812 	 * the ADM8211 is probably sending probe responses in ad hoc
813 	 * mode.
814 	 */
815 
816 	/* complete initialization */
817 	ieee80211_media_init(ic, atw_media_change, ieee80211_media_status);
818 	callout_init(&sc->sc_scan_ch, 0);
819 
820 #if NBPFILTER > 0
821 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
822 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf);
823 #endif
824 
825 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
826 	sc->sc_rxtap.ar_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
827 	sc->sc_rxtap.ar_ihdr.it_present = htole32(ATW_RX_RADIOTAP_PRESENT);
828 
829 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
830 	sc->sc_txtap.at_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
831 	sc->sc_txtap.at_ihdr.it_present = htole32(ATW_TX_RADIOTAP_PRESENT);
832 
833 	ieee80211_announce(ic);
834 	return;
835 
836 	/*
837 	 * Free any resources we've allocated during the failed attach
838 	 * attempt.  Do this in reverse order and fall through.
839 	 */
840  fail_5:
841 	for (i = 0; i < ATW_NRXDESC; i++) {
842 		if (sc->sc_rxsoft[i].rxs_dmamap == NULL)
843 			continue;
844 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap);
845 	}
846  fail_4:
847 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
848 		if (sc->sc_txsoft[i].txs_dmamap == NULL)
849 			continue;
850 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap);
851 	}
852 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
853  fail_3:
854 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
855  fail_2:
856 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
857 	    sizeof(struct atw_control_data));
858  fail_1:
859 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
860  fail_0:
861 	return;
862 }
863 
864 static struct ieee80211_node *
865 atw_node_alloc(struct ieee80211_node_table *nt)
866 {
867 	struct atw_softc *sc = (struct atw_softc *)nt->nt_ic->ic_ifp->if_softc;
868 	struct ieee80211_node *ni = (*sc->sc_node_alloc)(nt);
869 
870 	DPRINTF(sc, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni));
871 	return ni;
872 }
873 
874 static void
875 atw_node_free(struct ieee80211_node *ni)
876 {
877 	struct atw_softc *sc = (struct atw_softc *)ni->ni_ic->ic_ifp->if_softc;
878 
879 	DPRINTF(sc, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni,
880 	    ether_sprintf(ni->ni_bssid)));
881 	(*sc->sc_node_free)(ni);
882 }
883 
884 
885 static void
886 atw_test1_reset(struct atw_softc *sc)
887 {
888 	switch (sc->sc_rev) {
889 	case ATW_REVISION_BA:
890 		if (1 /* XXX condition on transceiver type */) {
891 			ATW_SET(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MONITOR);
892 		}
893 		break;
894 	case ATW_REVISION_CA:
895 		ATW_CLR(sc, ATW_TEST1, ATW_TEST1_TESTMODE_MASK);
896 		break;
897 	default:
898 		break;
899 	}
900 }
901 
902 /*
903  * atw_reset:
904  *
905  *	Perform a soft reset on the ADM8211.
906  */
907 void
908 atw_reset(struct atw_softc *sc)
909 {
910 	int i;
911 	uint32_t lpc;
912 
913 	ATW_WRITE(sc, ATW_NAR, 0x0);
914 	DELAY(atw_nar_delay);
915 
916 	/* Reference driver has a cryptic remark indicating that this might
917 	 * power-on the chip.  I know that it turns off power-saving....
918 	 */
919 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
920 
921 	ATW_WRITE(sc, ATW_PAR, ATW_PAR_SWR);
922 
923 	for (i = 0; i < 50000 / atw_pseudo_milli; i++) {
924 		if ((ATW_READ(sc, ATW_PAR) & ATW_PAR_SWR) == 0)
925 			break;
926 		DELAY(atw_pseudo_milli);
927 	}
928 
929 	/* ... and then pause 100ms longer for good measure. */
930 	DELAY(atw_magic_delay1);
931 
932 	DPRINTF2(sc, ("%s: atw_reset %d iterations\n", device_xname(sc->sc_dev), i));
933 
934 	if (ATW_ISSET(sc, ATW_PAR, ATW_PAR_SWR))
935 		aprint_error_dev(sc->sc_dev, "reset failed to complete\n");
936 
937 	/*
938 	 * Initialize the PCI Access Register.
939 	 */
940 	sc->sc_busmode = ATW_PAR_PBL_8DW;
941 
942 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
943 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
944 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
945 
946 	atw_test1_reset(sc);
947 
948 	/* Turn off maximum power saving, etc. */
949 	ATW_WRITE(sc, ATW_FRCTL, 0x0);
950 
951 	DELAY(atw_magic_delay2);
952 
953 	/* Recall EEPROM. */
954 	ATW_SET(sc, ATW_TEST0, ATW_TEST0_EPRLD);
955 
956 	DELAY(atw_magic_delay4);
957 
958 	lpc = ATW_READ(sc, ATW_LPC);
959 
960 	DPRINTF(sc, ("%s: ATW_LPC %#08x\n", __func__, lpc));
961 
962 	/* A reset seems to affect the SRAM contents, so put them into
963 	 * a known state.
964 	 */
965 	atw_clear_sram(sc);
966 
967 	memset(sc->sc_bssid, 0xff, sizeof(sc->sc_bssid));
968 }
969 
970 static void
971 atw_clear_sram(struct atw_softc *sc)
972 {
973 	memset(sc->sc_sram, 0, sizeof(sc->sc_sram));
974 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
975 	/* XXX not for revision 0x20. */
976 	atw_write_sram(sc, 0, sc->sc_sram, sc->sc_sramlen);
977 }
978 
979 /* TBD atw_init
980  *
981  * set MAC based on ic->ic_bss->myaddr
982  * write WEP keys
983  * set TX rate
984  */
985 
986 /* Tell the ADM8211 to raise ATW_INTR_LINKOFF if 7 beacon intervals pass
987  * without receiving a beacon with the preferred BSSID & SSID.
988  * atw_write_bssid & atw_write_ssid set the BSSID & SSID.
989  */
990 static void
991 atw_wcsr_init(struct atw_softc *sc)
992 {
993 	uint32_t wcsr;
994 
995 	wcsr = ATW_READ(sc, ATW_WCSR);
996 	wcsr &= ~(ATW_WCSR_BLN_MASK|ATW_WCSR_LSOE|ATW_WCSR_MPRE|ATW_WCSR_LSOE);
997 	wcsr |= __SHIFTIN(7, ATW_WCSR_BLN_MASK);
998 	ATW_WRITE(sc, ATW_WCSR, wcsr);	/* XXX resets wake-up status bits */
999 
1000 	DPRINTF(sc, ("%s: %s reg[WCSR] = %08x\n",
1001 	    device_xname(sc->sc_dev), __func__, ATW_READ(sc, ATW_WCSR)));
1002 }
1003 
1004 /* Turn off power management.  Set Rx store-and-forward mode. */
1005 static void
1006 atw_cmdr_init(struct atw_softc *sc)
1007 {
1008 	uint32_t cmdr;
1009 	cmdr = ATW_READ(sc, ATW_CMDR);
1010 	cmdr &= ~ATW_CMDR_APM;
1011 	cmdr |= ATW_CMDR_RTE;
1012 	cmdr &= ~ATW_CMDR_DRT_MASK;
1013 	cmdr |= ATW_CMDR_DRT_SF;
1014 
1015 	ATW_WRITE(sc, ATW_CMDR, cmdr);
1016 }
1017 
1018 static void
1019 atw_tofs2_init(struct atw_softc *sc)
1020 {
1021 	uint32_t tofs2;
1022 	/* XXX this magic can probably be figured out from the RFMD docs */
1023 #ifndef ATW_REFSLAVE
1024 	tofs2 = __SHIFTIN(4, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1025 	      __SHIFTIN(13, ATW_TOFS2_PWR0PAPE_MASK) | /* 13 us */
1026 	      __SHIFTIN(8, ATW_TOFS2_PWR1PAPE_MASK)  | /* 8 us */
1027 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1028 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1029 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1030 	      __SHIFTIN(4, ATW_TOFS2_PWR1PE2_MASK)   | /* 4 us */
1031 	      __SHIFTIN(5, ATW_TOFS2_PWR0TXPE_MASK);  /* 5 us */
1032 #else
1033 	/* XXX new magic from reference driver source */
1034 	tofs2 = __SHIFTIN(8, ATW_TOFS2_PWR1UP_MASK)    | /* 8 ms = 4 * 2 ms */
1035 	      __SHIFTIN(8, ATW_TOFS2_PWR0PAPE_MASK) | /* 8 us */
1036 	      __SHIFTIN(1, ATW_TOFS2_PWR1PAPE_MASK)  | /* 1 us */
1037 	      __SHIFTIN(5, ATW_TOFS2_PWR0TRSW_MASK)  | /* 5 us */
1038 	      __SHIFTIN(12, ATW_TOFS2_PWR1TRSW_MASK) | /* 12 us */
1039 	      __SHIFTIN(13, ATW_TOFS2_PWR0PE2_MASK)  | /* 13 us */
1040 	      __SHIFTIN(1, ATW_TOFS2_PWR1PE2_MASK)   | /* 1 us */
1041 	      __SHIFTIN(8, ATW_TOFS2_PWR0TXPE_MASK);  /* 8 us */
1042 #endif
1043 	ATW_WRITE(sc, ATW_TOFS2, tofs2);
1044 }
1045 
1046 static void
1047 atw_nar_init(struct atw_softc *sc)
1048 {
1049 	ATW_WRITE(sc, ATW_NAR, ATW_NAR_SF|ATW_NAR_PB);
1050 }
1051 
1052 static void
1053 atw_txlmt_init(struct atw_softc *sc)
1054 {
1055 	ATW_WRITE(sc, ATW_TXLMT, __SHIFTIN(512, ATW_TXLMT_MTMLT_MASK) |
1056 	                         __SHIFTIN(1, ATW_TXLMT_SRTYLIM_MASK));
1057 }
1058 
1059 static void
1060 atw_test1_init(struct atw_softc *sc)
1061 {
1062 	uint32_t test1;
1063 
1064 	test1 = ATW_READ(sc, ATW_TEST1);
1065 	test1 &= ~(ATW_TEST1_DBGREAD_MASK|ATW_TEST1_CONTROL);
1066 	/* XXX magic 0x1 */
1067 	test1 |= __SHIFTIN(0x1, ATW_TEST1_DBGREAD_MASK) | ATW_TEST1_CONTROL;
1068 	ATW_WRITE(sc, ATW_TEST1, test1);
1069 }
1070 
1071 static void
1072 atw_rf_reset(struct atw_softc *sc)
1073 {
1074 	/* XXX this resets an Intersil RF front-end? */
1075 	/* TBD condition on Intersil RFType? */
1076 	ATW_WRITE(sc, ATW_SYNRF, ATW_SYNRF_INTERSIL_EN);
1077 	DELAY(atw_rf_delay1);
1078 	ATW_WRITE(sc, ATW_SYNRF, 0);
1079 	DELAY(atw_rf_delay2);
1080 }
1081 
1082 /* Set 16 TU max duration for the contention-free period (CFP). */
1083 static void
1084 atw_cfp_init(struct atw_softc *sc)
1085 {
1086 	uint32_t cfpp;
1087 
1088 	cfpp = ATW_READ(sc, ATW_CFPP);
1089 	cfpp &= ~ATW_CFPP_CFPMD;
1090 	cfpp |= __SHIFTIN(16, ATW_CFPP_CFPMD);
1091 	ATW_WRITE(sc, ATW_CFPP, cfpp);
1092 }
1093 
1094 static void
1095 atw_tofs0_init(struct atw_softc *sc)
1096 {
1097 	/* XXX I guess that the Cardbus clock is 22 MHz?
1098 	 * I am assuming that the role of ATW_TOFS0_USCNT is
1099 	 * to divide the bus clock to get a 1 MHz clock---the datasheet is not
1100 	 * very clear on this point. It says in the datasheet that it is
1101 	 * possible for the ADM8211 to accommodate bus speeds between 22 MHz
1102 	 * and 33 MHz; maybe this is the way? I see a binary-only driver write
1103 	 * these values. These values are also the power-on default.
1104 	 */
1105 	ATW_WRITE(sc, ATW_TOFS0,
1106 	    __SHIFTIN(22, ATW_TOFS0_USCNT_MASK) |
1107 	    ATW_TOFS0_TUCNT_MASK /* set all bits in TUCNT */);
1108 }
1109 
1110 /* Initialize interframe spacing: 802.11b slot time, SIFS, DIFS, EIFS. */
1111 static void
1112 atw_ifs_init(struct atw_softc *sc)
1113 {
1114 	uint32_t ifst;
1115 	/* XXX EIFS=0x64, SIFS=110 are used by the reference driver.
1116 	 * Go figure.
1117 	 */
1118 	ifst = __SHIFTIN(IEEE80211_DUR_DS_SLOT, ATW_IFST_SLOT_MASK) |
1119 	      __SHIFTIN(22 * 10 /* IEEE80211_DUR_DS_SIFS */ /* # of 22 MHz cycles */,
1120 	             ATW_IFST_SIFS_MASK) |
1121 	      __SHIFTIN(IEEE80211_DUR_DS_DIFS, ATW_IFST_DIFS_MASK) |
1122 	      __SHIFTIN(IEEE80211_DUR_DS_EIFS, ATW_IFST_EIFS_MASK);
1123 
1124 	ATW_WRITE(sc, ATW_IFST, ifst);
1125 }
1126 
1127 static void
1128 atw_response_times_init(struct atw_softc *sc)
1129 {
1130 	/* XXX More magic. Relates to ACK timing?  The datasheet seems to
1131 	 * indicate that the MAC expects at least SIFS + MIRT microseconds
1132 	 * to pass after it transmits a frame that requires a response;
1133 	 * it waits at most SIFS + MART microseconds for the response.
1134 	 * Surely this is not the ACK timeout?
1135 	 */
1136 	ATW_WRITE(sc, ATW_RSPT, __SHIFTIN(0xffff, ATW_RSPT_MART_MASK) |
1137 	    __SHIFTIN(0xff, ATW_RSPT_MIRT_MASK));
1138 }
1139 
1140 /* Set up the MMI read/write addresses for the baseband. The Tx/Rx
1141  * engines read and write baseband registers after Rx and before
1142  * Tx, respectively.
1143  */
1144 static void
1145 atw_bbp_io_init(struct atw_softc *sc)
1146 {
1147 	uint32_t mmiraddr2;
1148 
1149 	/* XXX The reference driver does this, but is it *really*
1150 	 * necessary?
1151 	 */
1152 	switch (sc->sc_rev) {
1153 	case ATW_REVISION_AB:
1154 	case ATW_REVISION_AF:
1155 		mmiraddr2 = 0x0;
1156 		break;
1157 	default:
1158 		mmiraddr2 = ATW_READ(sc, ATW_MMIRADDR2);
1159 		mmiraddr2 &=
1160 		    ~(ATW_MMIRADDR2_PROREXT|ATW_MMIRADDR2_PRORLEN_MASK);
1161 		break;
1162 	}
1163 
1164 	switch (sc->sc_bbptype) {
1165 	case ATW_BBPTYPE_INTERSIL:
1166 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_INTERSIL);
1167 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_INTERSIL);
1168 		mmiraddr2 |= ATW_MMIRADDR2_INTERSIL;
1169 		break;
1170 	case ATW_BBPTYPE_MARVEL:
1171 		/* TBD find out the Marvel settings. */
1172 		break;
1173 	case ATW_BBPTYPE_RFMD:
1174 	default:
1175 		ATW_WRITE(sc, ATW_MMIWADDR, ATW_MMIWADDR_RFMD);
1176 		ATW_WRITE(sc, ATW_MMIRADDR1, ATW_MMIRADDR1_RFMD);
1177 		mmiraddr2 |= ATW_MMIRADDR2_RFMD;
1178 		break;
1179 	}
1180 	ATW_WRITE(sc, ATW_MMIRADDR2, mmiraddr2);
1181 	ATW_WRITE(sc, ATW_MACTEST, ATW_MACTEST_MMI_USETXCLK);
1182 }
1183 
1184 /*
1185  * atw_init:		[ ifnet interface function ]
1186  *
1187  *	Initialize the interface.  Must be called at splnet().
1188  */
1189 int
1190 atw_init(struct ifnet *ifp)
1191 {
1192 	struct atw_softc *sc = ifp->if_softc;
1193 	struct ieee80211com *ic = &sc->sc_ic;
1194 	struct atw_txsoft *txs;
1195 	struct atw_rxsoft *rxs;
1196 	int i, error = 0;
1197 
1198 	if (device_is_active(sc->sc_dev)) {
1199 		/*
1200 		 * Cancel any pending I/O.
1201 		 */
1202 		atw_stop(ifp, 0);
1203 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1204 	           !device_is_active(sc->sc_dev))
1205 		return 0;
1206 
1207 	/*
1208 	 * Reset the chip to a known state.
1209 	 */
1210 	atw_reset(sc);
1211 
1212 	DPRINTF(sc, ("%s: channel %d freq %d flags 0x%04x\n",
1213 	    __func__, ieee80211_chan2ieee(ic, ic->ic_curchan),
1214 	    ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags));
1215 
1216 	atw_wcsr_init(sc);
1217 
1218 	atw_cmdr_init(sc);
1219 
1220 	/* Set data rate for PLCP Signal field, 1Mbps = 10 x 100Kb/s.
1221 	 *
1222 	 * XXX Set transmit power for ATIM, RTS, Beacon.
1223 	 */
1224 	ATW_WRITE(sc, ATW_PLCPHD, __SHIFTIN(10, ATW_PLCPHD_SIGNAL_MASK) |
1225 	    __SHIFTIN(0xb0, ATW_PLCPHD_SERVICE_MASK));
1226 
1227 	atw_tofs2_init(sc);
1228 
1229 	atw_nar_init(sc);
1230 
1231 	atw_txlmt_init(sc);
1232 
1233 	atw_test1_init(sc);
1234 
1235 	atw_rf_reset(sc);
1236 
1237 	atw_cfp_init(sc);
1238 
1239 	atw_tofs0_init(sc);
1240 
1241 	atw_ifs_init(sc);
1242 
1243 	/* XXX Fall asleep after one second of inactivity.
1244 	 * XXX A frame may only dribble in for 65536us.
1245 	 */
1246 	ATW_WRITE(sc, ATW_RMD,
1247 	    __SHIFTIN(1, ATW_RMD_PCNT) | __SHIFTIN(0xffff, ATW_RMD_RMRD_MASK));
1248 
1249 	atw_response_times_init(sc);
1250 
1251 	atw_bbp_io_init(sc);
1252 
1253 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1254 
1255 	if ((error = atw_rf3000_init(sc)) != 0)
1256 		goto out;
1257 
1258 	ATW_WRITE(sc, ATW_PAR, sc->sc_busmode);
1259 	DPRINTF(sc, ("%s: ATW_PAR %08x busmode %08x\n", device_xname(sc->sc_dev),
1260 	    ATW_READ(sc, ATW_PAR), sc->sc_busmode));
1261 
1262 	/*
1263 	 * Initialize the transmit descriptor ring.
1264 	 */
1265 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1266 	for (i = 0; i < ATW_NTXDESC; i++) {
1267 		sc->sc_txdescs[i].at_ctl = 0;
1268 		/* no transmit chaining */
1269 		sc->sc_txdescs[i].at_flags = 0 /* ATW_TXFLAG_TCH */;
1270 		sc->sc_txdescs[i].at_buf2 =
1271 		    htole32(ATW_CDTXADDR(sc, ATW_NEXTTX(i)));
1272 	}
1273 	/* use ring mode */
1274 	sc->sc_txdescs[ATW_NTXDESC - 1].at_flags |= htole32(ATW_TXFLAG_TER);
1275 	ATW_CDTXSYNC(sc, 0, ATW_NTXDESC,
1276 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1277 	sc->sc_txfree = ATW_NTXDESC;
1278 	sc->sc_txnext = 0;
1279 
1280 	/*
1281 	 * Initialize the transmit job descriptors.
1282 	 */
1283 	SIMPLEQ_INIT(&sc->sc_txfreeq);
1284 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
1285 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
1286 		txs = &sc->sc_txsoft[i];
1287 		txs->txs_mbuf = NULL;
1288 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1289 	}
1290 
1291 	/*
1292 	 * Initialize the receive descriptor and receive job
1293 	 * descriptor rings.
1294 	 */
1295 	for (i = 0; i < ATW_NRXDESC; i++) {
1296 		rxs = &sc->sc_rxsoft[i];
1297 		if (rxs->rxs_mbuf == NULL) {
1298 			if ((error = atw_add_rxbuf(sc, i)) != 0) {
1299 				aprint_error_dev(sc->sc_dev,
1300 				    "unable to allocate or map rx buffer %d, "
1301 				    "error = %d\n", i, error);
1302 				/*
1303 				 * XXX Should attempt to run with fewer receive
1304 				 * XXX buffers instead of just failing.
1305 				 */
1306 				atw_rxdrain(sc);
1307 				goto out;
1308 			}
1309 		} else
1310 			atw_init_rxdesc(sc, i);
1311 	}
1312 	sc->sc_rxptr = 0;
1313 
1314 	/*
1315 	 * Initialize the interrupt mask and enable interrupts.
1316 	 */
1317 	/* normal interrupts */
1318 	sc->sc_inten =  ATW_INTR_TCI | ATW_INTR_TDU | ATW_INTR_RCI |
1319 	    ATW_INTR_NISS | ATW_INTR_LINKON | ATW_INTR_BCNTC;
1320 
1321 	/* abnormal interrupts */
1322 	sc->sc_inten |= ATW_INTR_TPS | ATW_INTR_TLT | ATW_INTR_TRT |
1323 	    ATW_INTR_TUF | ATW_INTR_RDU | ATW_INTR_RPS | ATW_INTR_AISS |
1324 	    ATW_INTR_FBE | ATW_INTR_LINKOFF | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1325 
1326 	sc->sc_linkint_mask = ATW_INTR_LINKON | ATW_INTR_LINKOFF |
1327 	    ATW_INTR_BCNTC | ATW_INTR_TSFTF | ATW_INTR_TSCZ;
1328 	sc->sc_rxint_mask = ATW_INTR_RCI | ATW_INTR_RDU;
1329 	sc->sc_txint_mask = ATW_INTR_TCI | ATW_INTR_TUF | ATW_INTR_TLT |
1330 	    ATW_INTR_TRT;
1331 
1332 	sc->sc_linkint_mask &= sc->sc_inten;
1333 	sc->sc_rxint_mask &= sc->sc_inten;
1334 	sc->sc_txint_mask &= sc->sc_inten;
1335 
1336 	ATW_WRITE(sc, ATW_IER, sc->sc_inten);
1337 	ATW_WRITE(sc, ATW_STSR, 0xffffffff);
1338 
1339 	DPRINTF(sc, ("%s: ATW_IER %08x, inten %08x\n",
1340 	    device_xname(sc->sc_dev), ATW_READ(sc, ATW_IER), sc->sc_inten));
1341 
1342 	/*
1343 	 * Give the transmit and receive rings to the ADM8211.
1344 	 */
1345 	ATW_WRITE(sc, ATW_RDB, ATW_CDRXADDR(sc, sc->sc_rxptr));
1346 	ATW_WRITE(sc, ATW_TDBD, ATW_CDTXADDR(sc, sc->sc_txnext));
1347 
1348 	sc->sc_txthresh = 0;
1349 	sc->sc_opmode = ATW_NAR_SR | ATW_NAR_ST |
1350 	    sc->sc_txth[sc->sc_txthresh].txth_opmode;
1351 
1352 	/* common 802.11 configuration */
1353 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
1354 	switch (ic->ic_opmode) {
1355 	case IEEE80211_M_STA:
1356 		break;
1357 	case IEEE80211_M_AHDEMO: /* XXX */
1358 	case IEEE80211_M_IBSS:
1359 		ic->ic_flags |= IEEE80211_F_IBSSON;
1360 		/*FALLTHROUGH*/
1361 	case IEEE80211_M_HOSTAP: /* XXX */
1362 		break;
1363 	case IEEE80211_M_MONITOR: /* XXX */
1364 		break;
1365 	}
1366 
1367 	switch (ic->ic_opmode) {
1368 	case IEEE80211_M_AHDEMO:
1369 	case IEEE80211_M_HOSTAP:
1370 #ifndef IEEE80211_NO_HOSTAP
1371 		ic->ic_bss->ni_intval = ic->ic_lintval;
1372 		ic->ic_bss->ni_rssi = 0;
1373 		ic->ic_bss->ni_rstamp = 0;
1374 #endif /* !IEEE80211_NO_HOSTAP */
1375 		break;
1376 	default:					/* XXX */
1377 		break;
1378 	}
1379 
1380 	sc->sc_wepctl = 0;
1381 
1382 	atw_write_ssid(sc);
1383 	atw_write_sup_rates(sc);
1384 	atw_write_wep(sc);
1385 
1386 	ic->ic_state = IEEE80211_S_INIT;
1387 
1388 	/*
1389 	 * Set the receive filter.  This will start the transmit and
1390 	 * receive processes.
1391 	 */
1392 	atw_filter_setup(sc);
1393 
1394 	/*
1395 	 * Start the receive process.
1396 	 */
1397 	ATW_WRITE(sc, ATW_RDR, 0x1);
1398 
1399 	/*
1400 	 * Note that the interface is now running.
1401 	 */
1402 	ifp->if_flags |= IFF_RUNNING;
1403 
1404 	/* send no beacons, yet. */
1405 	atw_start_beacon(sc, 0);
1406 
1407 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1408 		error = ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1409 	else
1410 		error = ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1411  out:
1412 	if (error) {
1413 		ifp->if_flags &= ~IFF_RUNNING;
1414 		sc->sc_tx_timer = 0;
1415 		ifp->if_timer = 0;
1416 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
1417 	}
1418 #ifdef ATW_DEBUG
1419 	atw_print_regs(sc, "end of init");
1420 #endif /* ATW_DEBUG */
1421 
1422 	return (error);
1423 }
1424 
1425 /* enable == 1: host control of RF3000/Si4126 through ATW_SYNCTL.
1426  *           0: MAC control of RF3000/Si4126.
1427  *
1428  * Applies power, or selects RF front-end? Sets reset condition.
1429  *
1430  * TBD support non-RFMD BBP, non-SiLabs synth.
1431  */
1432 static void
1433 atw_bbp_io_enable(struct atw_softc *sc, int enable)
1434 {
1435 	if (enable) {
1436 		ATW_WRITE(sc, ATW_SYNRF,
1437 		    ATW_SYNRF_SELRF|ATW_SYNRF_PE1|ATW_SYNRF_PHYRST);
1438 		DELAY(atw_bbp_io_enable_delay);
1439 	} else {
1440 		ATW_WRITE(sc, ATW_SYNRF, 0);
1441 		DELAY(atw_bbp_io_disable_delay); /* shorter for some reason */
1442 	}
1443 }
1444 
1445 static int
1446 atw_tune(struct atw_softc *sc)
1447 {
1448 	int rc;
1449 	u_int chan;
1450 	struct ieee80211com *ic = &sc->sc_ic;
1451 
1452 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
1453 	if (chan == IEEE80211_CHAN_ANY)
1454 		panic("%s: chan == IEEE80211_CHAN_ANY\n", __func__);
1455 
1456 	if (chan == sc->sc_cur_chan)
1457 		return 0;
1458 
1459 	DPRINTF(sc, ("%s: chan %d -> %d\n", device_xname(sc->sc_dev),
1460 	    sc->sc_cur_chan, chan));
1461 
1462 	atw_idle(sc, ATW_NAR_SR|ATW_NAR_ST);
1463 
1464 	atw_si4126_tune(sc, chan);
1465 	if ((rc = atw_rf3000_tune(sc, chan)) != 0)
1466 		printf("%s: failed to tune channel %d\n", device_xname(sc->sc_dev),
1467 		    chan);
1468 
1469 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
1470 	DELAY(atw_nar_delay);
1471 	ATW_WRITE(sc, ATW_RDR, 0x1);
1472 
1473 	if (rc == 0) {
1474 		sc->sc_cur_chan = chan;
1475 		sc->sc_rxtap.ar_chan_freq = sc->sc_txtap.at_chan_freq =
1476 		    htole16(ic->ic_curchan->ic_freq);
1477 		sc->sc_rxtap.ar_chan_flags = sc->sc_txtap.at_chan_flags =
1478 		    htole16(ic->ic_curchan->ic_flags);
1479 	}
1480 
1481 	return rc;
1482 }
1483 
1484 #ifdef ATW_SYNDEBUG
1485 static void
1486 atw_si4126_print(struct atw_softc *sc)
1487 {
1488 	struct ifnet *ifp = &sc->sc_if;
1489 	u_int addr, val;
1490 
1491 	val = 0;
1492 
1493 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1494 		return;
1495 
1496 	for (addr = 0; addr <= 8; addr++) {
1497 		printf("%s: synth[%d] = ", device_xname(sc->sc_dev), addr);
1498 		if (atw_si4126_read(sc, addr, &val) == 0) {
1499 			printf("<unknown> (quitting print-out)\n");
1500 			break;
1501 		}
1502 		printf("%05x\n", val);
1503 	}
1504 }
1505 #endif /* ATW_SYNDEBUG */
1506 
1507 /* Tune to channel chan by adjusting the Si4126 RF/IF synthesizer.
1508  *
1509  * The RF/IF synthesizer produces two reference frequencies for
1510  * the RF2948B transceiver.  The first frequency the RF2948B requires
1511  * is two times the so-called "intermediate frequency" (IF). Since
1512  * a SAW filter on the radio fixes the IF at 374 MHz, I program the
1513  * Si4126 to generate IF LO = 374 MHz x 2 = 748 MHz.  The second
1514  * frequency required by the transceiver is the radio frequency
1515  * (RF). This is a superheterodyne transceiver; for f(chan) the
1516  * center frequency of the channel we are tuning, RF = f(chan) -
1517  * IF.
1518  *
1519  * XXX I am told by SiLabs that the Si4126 will accept a broader range
1520  * of XIN than the 2-25 MHz mentioned by the datasheet, even *without*
1521  * XINDIV2 = 1.  I've tried this (it is necessary to double R) and it
1522  * works, but I have still programmed for XINDIV2 = 1 to be safe.
1523  */
1524 static void
1525 atw_si4126_tune(struct atw_softc *sc, u_int chan)
1526 {
1527 	u_int mhz;
1528 	u_int R;
1529 	u_int32_t gpio;
1530 	u_int16_t gain;
1531 
1532 #ifdef ATW_SYNDEBUG
1533 	atw_si4126_print(sc);
1534 #endif /* ATW_SYNDEBUG */
1535 
1536 	if (chan == 14)
1537 		mhz = 2484;
1538 	else
1539 		mhz = 2412 + 5 * (chan - 1);
1540 
1541 	/* Tune IF to 748 MHz to suit the IF LO input of the
1542 	 * RF2494B, which is 2 x IF. No need to set an IF divider
1543          * because an IF in 526 MHz - 952 MHz is allowed.
1544 	 *
1545 	 * XIN is 44.000 MHz, so divide it by two to get allowable
1546 	 * range of 2-25 MHz. SiLabs tells me that this is not
1547 	 * strictly necessary.
1548 	 */
1549 
1550 	if (atw_xindiv2)
1551 		R = 44;
1552 	else
1553 		R = 88;
1554 
1555 	/* Power-up RF, IF synthesizers. */
1556 	atw_si4126_write(sc, SI4126_POWER,
1557 	    SI4126_POWER_PDIB|SI4126_POWER_PDRB);
1558 
1559 	/* set LPWR, too? */
1560 	atw_si4126_write(sc, SI4126_MAIN,
1561 	    (atw_xindiv2) ? SI4126_MAIN_XINDIV2 : 0);
1562 
1563 	/* Set the phase-locked loop gain.  If RF2 N > 2047, then
1564 	 * set KP2 to 1.
1565 	 *
1566 	 * REFDIF This is different from the reference driver, which
1567 	 * always sets SI4126_GAIN to 0.
1568 	 */
1569 	gain = __SHIFTIN(((mhz - 374) > 2047) ? 1 : 0, SI4126_GAIN_KP2_MASK);
1570 
1571 	atw_si4126_write(sc, SI4126_GAIN, gain);
1572 
1573 	/* XIN = 44 MHz.
1574 	 *
1575 	 * If XINDIV2 = 1, IF = N/(2 * R) * XIN.  I choose N = 1496,
1576 	 * R = 44 so that 1496/(2 * 44) * 44 MHz = 748 MHz.
1577 	 *
1578 	 * If XINDIV2 = 0, IF = N/R * XIN.  I choose N = 1496, R = 88
1579 	 * so that 1496/88 * 44 MHz = 748 MHz.
1580 	 */
1581 	atw_si4126_write(sc, SI4126_IFN, 1496);
1582 
1583 	atw_si4126_write(sc, SI4126_IFR, R);
1584 
1585 #ifndef ATW_REFSLAVE
1586 	/* Set RF1 arbitrarily. DO NOT configure RF1 after RF2, because
1587 	 * then RF1 becomes the active RF synthesizer, even on the Si4126,
1588 	 * which has no RF1!
1589 	 */
1590 	atw_si4126_write(sc, SI4126_RF1R, R);
1591 
1592 	atw_si4126_write(sc, SI4126_RF1N, mhz - 374);
1593 #endif
1594 
1595 	/* N/R * XIN = RF. XIN = 44 MHz. We desire RF = mhz - IF,
1596 	 * where IF = 374 MHz.  Let's divide XIN to 1 MHz. So R = 44.
1597 	 * Now let's multiply it to mhz. So mhz - IF = N.
1598 	 */
1599 	atw_si4126_write(sc, SI4126_RF2R, R);
1600 
1601 	atw_si4126_write(sc, SI4126_RF2N, mhz - 374);
1602 
1603 	/* wait 100us from power-up for RF, IF to settle */
1604 	DELAY(100);
1605 
1606 	gpio = ATW_READ(sc, ATW_GPIO);
1607 	gpio &= ~(ATW_GPIO_EN_MASK|ATW_GPIO_O_MASK|ATW_GPIO_I_MASK);
1608 	gpio |= __SHIFTIN(1, ATW_GPIO_EN_MASK);
1609 
1610 	if ((sc->sc_if.if_flags & IFF_LINK1) != 0 && chan != 14) {
1611 		/* Set a Prism RF front-end to a special mode for channel 14?
1612 		 *
1613 		 * Apparently the SMC2635W needs this, although I don't think
1614 		 * it has a Prism RF.
1615 		 */
1616 		gpio |= __SHIFTIN(1, ATW_GPIO_O_MASK);
1617 	}
1618 	ATW_WRITE(sc, ATW_GPIO, gpio);
1619 
1620 #ifdef ATW_SYNDEBUG
1621 	atw_si4126_print(sc);
1622 #endif /* ATW_SYNDEBUG */
1623 }
1624 
1625 /* Baseline initialization of RF3000 BBP: set CCA mode and enable antenna
1626  * diversity.
1627  *
1628  * !!!
1629  * !!! Call this w/ Tx/Rx suspended, atw_idle(, ATW_NAR_ST|ATW_NAR_SR).
1630  * !!!
1631  */
1632 static int
1633 atw_rf3000_init(struct atw_softc *sc)
1634 {
1635 	int rc = 0;
1636 
1637 	atw_bbp_io_enable(sc, 1);
1638 
1639 	/* CCA is acquisition sensitive */
1640 	rc = atw_rf3000_write(sc, RF3000_CCACTL,
1641 	    __SHIFTIN(RF3000_CCACTL_MODE_BOTH, RF3000_CCACTL_MODE_MASK));
1642 
1643 	if (rc != 0)
1644 		goto out;
1645 
1646 	/* enable diversity */
1647 	rc = atw_rf3000_write(sc, RF3000_DIVCTL, RF3000_DIVCTL_ENABLE);
1648 
1649 	if (rc != 0)
1650 		goto out;
1651 
1652 	/* sensible setting from a binary-only driver */
1653 	rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1654 	    __SHIFTIN(0x1d, RF3000_GAINCTL_TXVGC_MASK));
1655 
1656 	if (rc != 0)
1657 		goto out;
1658 
1659 	/* magic from a binary-only driver */
1660 	rc = atw_rf3000_write(sc, RF3000_LOGAINCAL,
1661 	    __SHIFTIN(0x38, RF3000_LOGAINCAL_CAL_MASK));
1662 
1663 	if (rc != 0)
1664 		goto out;
1665 
1666 	rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, RF3000_HIGAINCAL_DSSSPAD);
1667 
1668 	if (rc != 0)
1669 		goto out;
1670 
1671 	/* XXX Reference driver remarks that Abocom sets this to 50.
1672 	 * Meaning 0x50, I think....  50 = 0x32, which would set a bit
1673 	 * in the "reserved" area of register RF3000_OPTIONS1.
1674 	 */
1675 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, sc->sc_rf3000_options1);
1676 
1677 	if (rc != 0)
1678 		goto out;
1679 
1680 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, sc->sc_rf3000_options2);
1681 
1682 	if (rc != 0)
1683 		goto out;
1684 
1685 out:
1686 	atw_bbp_io_enable(sc, 0);
1687 	return rc;
1688 }
1689 
1690 #ifdef ATW_BBPDEBUG
1691 static void
1692 atw_rf3000_print(struct atw_softc *sc)
1693 {
1694 	struct ifnet *ifp = &sc->sc_if;
1695 	u_int addr, val;
1696 
1697 	if (atw_debug < 3 || (ifp->if_flags & IFF_DEBUG) == 0)
1698 		return;
1699 
1700 	for (addr = 0x01; addr <= 0x15; addr++) {
1701 		printf("%s: bbp[%d] = \n", device_xname(sc->sc_dev), addr);
1702 		if (atw_rf3000_read(sc, addr, &val) != 0) {
1703 			printf("<unknown> (quitting print-out)\n");
1704 			break;
1705 		}
1706 		printf("%08x\n", val);
1707 	}
1708 }
1709 #endif /* ATW_BBPDEBUG */
1710 
1711 /* Set the power settings on the BBP for channel `chan'. */
1712 static int
1713 atw_rf3000_tune(struct atw_softc *sc, u_int chan)
1714 {
1715 	int rc = 0;
1716 	u_int32_t reg;
1717 	u_int16_t txpower, lpf_cutoff, lna_gs_thresh;
1718 
1719 	txpower = sc->sc_srom[ATW_SR_TXPOWER(chan)];
1720 	lpf_cutoff = sc->sc_srom[ATW_SR_LPF_CUTOFF(chan)];
1721 	lna_gs_thresh = sc->sc_srom[ATW_SR_LNA_GS_THRESH(chan)];
1722 
1723 	/* odd channels: LSB, even channels: MSB */
1724 	if (chan % 2 == 1) {
1725 		txpower &= 0xFF;
1726 		lpf_cutoff &= 0xFF;
1727 		lna_gs_thresh &= 0xFF;
1728 	} else {
1729 		txpower >>= 8;
1730 		lpf_cutoff >>= 8;
1731 		lna_gs_thresh >>= 8;
1732 	}
1733 
1734 #ifdef ATW_BBPDEBUG
1735 	atw_rf3000_print(sc);
1736 #endif /* ATW_BBPDEBUG */
1737 
1738 	DPRINTF(sc, ("%s: chan %d txpower %02x, lpf_cutoff %02x, "
1739 	    "lna_gs_thresh %02x\n",
1740 	    device_xname(sc->sc_dev), chan, txpower, lpf_cutoff, lna_gs_thresh));
1741 
1742 	atw_bbp_io_enable(sc, 1);
1743 
1744 	if ((rc = atw_rf3000_write(sc, RF3000_GAINCTL,
1745 	    __SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK))) != 0)
1746 		goto out;
1747 
1748 	if ((rc = atw_rf3000_write(sc, RF3000_LOGAINCAL, lpf_cutoff)) != 0)
1749 		goto out;
1750 
1751 	if ((rc = atw_rf3000_write(sc, RF3000_HIGAINCAL, lna_gs_thresh)) != 0)
1752 		goto out;
1753 
1754 	rc = atw_rf3000_write(sc, RF3000_OPTIONS1, 0x0);
1755 
1756 	if (rc != 0)
1757 		goto out;
1758 
1759 	rc = atw_rf3000_write(sc, RF3000_OPTIONS2, RF3000_OPTIONS2_LNAGS_DELAY);
1760 
1761 	if (rc != 0)
1762 		goto out;
1763 
1764 #ifdef ATW_BBPDEBUG
1765 	atw_rf3000_print(sc);
1766 #endif /* ATW_BBPDEBUG */
1767 
1768 out:
1769 	atw_bbp_io_enable(sc, 0);
1770 
1771 	/* set beacon, rts, atim transmit power */
1772 	reg = ATW_READ(sc, ATW_PLCPHD);
1773 	reg &= ~ATW_PLCPHD_SERVICE_MASK;
1774 	reg |= __SHIFTIN(__SHIFTIN(txpower, RF3000_GAINCTL_TXVGC_MASK),
1775 	    ATW_PLCPHD_SERVICE_MASK);
1776 	ATW_WRITE(sc, ATW_PLCPHD, reg);
1777 	DELAY(atw_plcphd_delay);
1778 
1779 	return rc;
1780 }
1781 
1782 /* Write a register on the RF3000 baseband processor using the
1783  * registers provided by the ADM8211 for this purpose.
1784  *
1785  * Return 0 on success.
1786  */
1787 static int
1788 atw_rf3000_write(struct atw_softc *sc, u_int addr, u_int val)
1789 {
1790 	u_int32_t reg;
1791 	int i;
1792 
1793 	reg = sc->sc_bbpctl_wr |
1794 	     __SHIFTIN(val & 0xff, ATW_BBPCTL_DATA_MASK) |
1795 	     __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1796 
1797 	for (i = 20000 / atw_pseudo_milli; --i >= 0; ) {
1798 		ATW_WRITE(sc, ATW_BBPCTL, reg);
1799 		DELAY(2 * atw_pseudo_milli);
1800 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_WR) == 0)
1801 			break;
1802 	}
1803 
1804 	if (i < 0) {
1805 		printf("%s: BBPCTL still busy\n", device_xname(sc->sc_dev));
1806 		return ETIMEDOUT;
1807 	}
1808 	return 0;
1809 }
1810 
1811 /* Read a register on the RF3000 baseband processor using the registers
1812  * the ADM8211 provides for this purpose.
1813  *
1814  * The 7-bit register address is addr.  Record the 8-bit data in the register
1815  * in *val.
1816  *
1817  * Return 0 on success.
1818  *
1819  * XXX This does not seem to work. The ADM8211 must require more or
1820  * different magic to read the chip than to write it. Possibly some
1821  * of the magic I have derived from a binary-only driver concerns
1822  * the "chip address" (see the RF3000 manual).
1823  */
1824 #ifdef ATW_BBPDEBUG
1825 static int
1826 atw_rf3000_read(struct atw_softc *sc, u_int addr, u_int *val)
1827 {
1828 	u_int32_t reg;
1829 	int i;
1830 
1831 	for (i = 1000; --i >= 0; ) {
1832 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD|ATW_BBPCTL_WR) == 0)
1833 			break;
1834 		DELAY(100);
1835 	}
1836 
1837 	if (i < 0) {
1838 		printf("%s: start atw_rf3000_read, BBPCTL busy\n",
1839 		    device_xname(sc->sc_dev));
1840 		return ETIMEDOUT;
1841 	}
1842 
1843 	reg = sc->sc_bbpctl_rd | __SHIFTIN(addr & 0x7f, ATW_BBPCTL_ADDR_MASK);
1844 
1845 	ATW_WRITE(sc, ATW_BBPCTL, reg);
1846 
1847 	for (i = 1000; --i >= 0; ) {
1848 		DELAY(100);
1849 		if (ATW_ISSET(sc, ATW_BBPCTL, ATW_BBPCTL_RD) == 0)
1850 			break;
1851 	}
1852 
1853 	ATW_CLR(sc, ATW_BBPCTL, ATW_BBPCTL_RD);
1854 
1855 	if (i < 0) {
1856 		printf("%s: atw_rf3000_read wrote %08x; BBPCTL still busy\n",
1857 		    device_xname(sc->sc_dev), reg);
1858 		return ETIMEDOUT;
1859 	}
1860 	if (val != NULL)
1861 		*val = __SHIFTOUT(reg, ATW_BBPCTL_DATA_MASK);
1862 	return 0;
1863 }
1864 #endif /* ATW_BBPDEBUG */
1865 
1866 /* Write a register on the Si4126 RF/IF synthesizer using the registers
1867  * provided by the ADM8211 for that purpose.
1868  *
1869  * val is 18 bits of data, and val is the 4-bit address of the register.
1870  *
1871  * Return 0 on success.
1872  */
1873 static void
1874 atw_si4126_write(struct atw_softc *sc, u_int addr, u_int val)
1875 {
1876 	uint32_t bits, mask, reg;
1877 	const int nbits = 22;
1878 
1879 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1880 	KASSERT((val & ~__SHIFTOUT_MASK(SI4126_TWI_DATA_MASK)) == 0);
1881 
1882 	bits = __SHIFTIN(val, SI4126_TWI_DATA_MASK) |
1883 	       __SHIFTIN(addr, SI4126_TWI_ADDR_MASK);
1884 
1885 	reg = ATW_SYNRF_SELSYN;
1886 	/* reference driver: reset Si4126 serial bus to initial
1887 	 * conditions?
1888 	 */
1889 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1890 	ATW_WRITE(sc, ATW_SYNRF, reg);
1891 
1892 	for (mask = __BIT(nbits - 1); mask != 0; mask >>= 1) {
1893 		if ((bits & mask) != 0)
1894 			reg |= ATW_SYNRF_SYNDATA;
1895 		else
1896 			reg &= ~ATW_SYNRF_SYNDATA;
1897 		ATW_WRITE(sc, ATW_SYNRF, reg);
1898 		ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_SYNCLK);
1899 		ATW_WRITE(sc, ATW_SYNRF, reg);
1900 	}
1901 	ATW_WRITE(sc, ATW_SYNRF, reg | ATW_SYNRF_LEIF);
1902 	ATW_WRITE(sc, ATW_SYNRF, 0x0);
1903 }
1904 
1905 /* Read 18-bit data from the 4-bit address addr in Si4126
1906  * RF synthesizer and write the data to *val. Return 0 on success.
1907  *
1908  * XXX This does not seem to work. The ADM8211 must require more or
1909  * different magic to read the chip than to write it.
1910  */
1911 #ifdef ATW_SYNDEBUG
1912 static int
1913 atw_si4126_read(struct atw_softc *sc, u_int addr, u_int *val)
1914 {
1915 	u_int32_t reg;
1916 	int i;
1917 
1918 	KASSERT((addr & ~__SHIFTOUT_MASK(SI4126_TWI_ADDR_MASK)) == 0);
1919 
1920 	for (i = 1000; --i >= 0; ) {
1921 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD|ATW_SYNCTL_WR) == 0)
1922 			break;
1923 		DELAY(100);
1924 	}
1925 
1926 	if (i < 0) {
1927 		printf("%s: start atw_si4126_read, SYNCTL busy\n",
1928 		    device_xname(sc->sc_dev));
1929 		return ETIMEDOUT;
1930 	}
1931 
1932 	reg = sc->sc_synctl_rd | __SHIFTIN(addr, ATW_SYNCTL_DATA_MASK);
1933 
1934 	ATW_WRITE(sc, ATW_SYNCTL, reg);
1935 
1936 	for (i = 1000; --i >= 0; ) {
1937 		DELAY(100);
1938 		if (ATW_ISSET(sc, ATW_SYNCTL, ATW_SYNCTL_RD) == 0)
1939 			break;
1940 	}
1941 
1942 	ATW_CLR(sc, ATW_SYNCTL, ATW_SYNCTL_RD);
1943 
1944 	if (i < 0) {
1945 		printf("%s: atw_si4126_read wrote %#08x, SYNCTL still busy\n",
1946 		    device_xname(sc->sc_dev), reg);
1947 		return ETIMEDOUT;
1948 	}
1949 	if (val != NULL)
1950 		*val = __SHIFTOUT(ATW_READ(sc, ATW_SYNCTL),
1951 		                       ATW_SYNCTL_DATA_MASK);
1952 	return 0;
1953 }
1954 #endif /* ATW_SYNDEBUG */
1955 
1956 /* XXX is the endianness correct? test. */
1957 #define	atw_calchash(addr) \
1958 	(ether_crc32_le((addr), IEEE80211_ADDR_LEN) & __BITS(5, 0))
1959 
1960 /*
1961  * atw_filter_setup:
1962  *
1963  *	Set the ADM8211's receive filter.
1964  */
1965 static void
1966 atw_filter_setup(struct atw_softc *sc)
1967 {
1968 	struct ieee80211com *ic = &sc->sc_ic;
1969 	struct ethercom *ec = &sc->sc_ec;
1970 	struct ifnet *ifp = &sc->sc_if;
1971 	int hash;
1972 	u_int32_t hashes[2];
1973 	struct ether_multi *enm;
1974 	struct ether_multistep step;
1975 
1976 	/* According to comments in tlp_al981_filter_setup
1977 	 * (dev/ic/tulip.c) the ADMtek AL981 does not like for its
1978 	 * multicast filter to be set while it is running.  Hopefully
1979 	 * the ADM8211 is not the same!
1980 	 */
1981 	if ((ifp->if_flags & IFF_RUNNING) != 0)
1982 		atw_idle(sc, ATW_NAR_SR);
1983 
1984 	sc->sc_opmode &= ~(ATW_NAR_PB|ATW_NAR_PR|ATW_NAR_MM);
1985 	ifp->if_flags &= ~IFF_ALLMULTI;
1986 
1987 	/* XXX in scan mode, do not filter packets.  Maybe this is
1988 	 * unnecessary.
1989 	 */
1990 	if (ic->ic_state == IEEE80211_S_SCAN ||
1991 	    (ifp->if_flags & IFF_PROMISC) != 0) {
1992 		sc->sc_opmode |= ATW_NAR_PR | ATW_NAR_PB;
1993 		goto allmulti;
1994 	}
1995 
1996 	hashes[0] = hashes[1] = 0x0;
1997 
1998 	/*
1999 	 * Program the 64-bit multicast hash filter.
2000 	 */
2001 	ETHER_FIRST_MULTI(step, ec, enm);
2002 	while (enm != NULL) {
2003 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2004 		    ETHER_ADDR_LEN) != 0)
2005 			goto allmulti;
2006 
2007 		hash = atw_calchash(enm->enm_addrlo);
2008 		hashes[hash >> 5] |= 1 << (hash & 0x1f);
2009 		ETHER_NEXT_MULTI(step, enm);
2010 		sc->sc_opmode |= ATW_NAR_MM;
2011 	}
2012 	ifp->if_flags &= ~IFF_ALLMULTI;
2013 	goto setit;
2014 
2015 allmulti:
2016 	sc->sc_opmode |= ATW_NAR_MM;
2017 	ifp->if_flags |= IFF_ALLMULTI;
2018 	hashes[0] = hashes[1] = 0xffffffff;
2019 
2020 setit:
2021 	ATW_WRITE(sc, ATW_MAR0, hashes[0]);
2022 	ATW_WRITE(sc, ATW_MAR1, hashes[1]);
2023 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2024 	DELAY(atw_nar_delay);
2025 	ATW_WRITE(sc, ATW_RDR, 0x1);
2026 
2027 	DPRINTF(sc, ("%s: ATW_NAR %08x opmode %08x\n", device_xname(sc->sc_dev),
2028 	    ATW_READ(sc, ATW_NAR), sc->sc_opmode));
2029 }
2030 
2031 /* Tell the ADM8211 our preferred BSSID. The ADM8211 must match
2032  * a beacon's BSSID and SSID against the preferred BSSID and SSID
2033  * before it will raise ATW_INTR_LINKON. When the ADM8211 receives
2034  * no beacon with the preferred BSSID and SSID in the number of
2035  * beacon intervals given in ATW_BPLI, then it raises ATW_INTR_LINKOFF.
2036  */
2037 static void
2038 atw_write_bssid(struct atw_softc *sc)
2039 {
2040 	struct ieee80211com *ic = &sc->sc_ic;
2041 	u_int8_t *bssid;
2042 
2043 	bssid = ic->ic_bss->ni_bssid;
2044 
2045 	ATW_WRITE(sc, ATW_BSSID0,
2046 	    __SHIFTIN(bssid[0], ATW_BSSID0_BSSIDB0_MASK) |
2047 	    __SHIFTIN(bssid[1], ATW_BSSID0_BSSIDB1_MASK) |
2048 	    __SHIFTIN(bssid[2], ATW_BSSID0_BSSIDB2_MASK) |
2049 	    __SHIFTIN(bssid[3], ATW_BSSID0_BSSIDB3_MASK));
2050 
2051 	ATW_WRITE(sc, ATW_ABDA1,
2052 	    (ATW_READ(sc, ATW_ABDA1) &
2053 	    ~(ATW_ABDA1_BSSIDB4_MASK|ATW_ABDA1_BSSIDB5_MASK)) |
2054 	    __SHIFTIN(bssid[4], ATW_ABDA1_BSSIDB4_MASK) |
2055 	    __SHIFTIN(bssid[5], ATW_ABDA1_BSSIDB5_MASK));
2056 
2057 	DPRINTF(sc, ("%s: BSSID %s -> ", device_xname(sc->sc_dev),
2058 	    ether_sprintf(sc->sc_bssid)));
2059 	DPRINTF(sc, ("%s\n", ether_sprintf(bssid)));
2060 
2061 	memcpy(sc->sc_bssid, bssid, sizeof(sc->sc_bssid));
2062 }
2063 
2064 /* Write buflen bytes from buf to SRAM starting at the SRAM's ofs'th
2065  * 16-bit word.
2066  */
2067 static void
2068 atw_write_sram(struct atw_softc *sc, u_int ofs, u_int8_t *buf, u_int buflen)
2069 {
2070 	u_int i;
2071 	u_int8_t *ptr;
2072 
2073 	memcpy(&sc->sc_sram[ofs], buf, buflen);
2074 
2075 	KASSERT(ofs % 2 == 0 && buflen % 2 == 0);
2076 
2077 	KASSERT(buflen + ofs <= sc->sc_sramlen);
2078 
2079 	ptr = &sc->sc_sram[ofs];
2080 
2081 	for (i = 0; i < buflen; i += 2) {
2082 		ATW_WRITE(sc, ATW_WEPCTL, ATW_WEPCTL_WR |
2083 		    __SHIFTIN((ofs + i) / 2, ATW_WEPCTL_TBLADD_MASK));
2084 		DELAY(atw_writewep_delay);
2085 
2086 		ATW_WRITE(sc, ATW_WESK,
2087 		    __SHIFTIN((ptr[i + 1] << 8) | ptr[i], ATW_WESK_DATA_MASK));
2088 		DELAY(atw_writewep_delay);
2089 	}
2090 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl); /* restore WEP condition */
2091 
2092 	if (sc->sc_if.if_flags & IFF_DEBUG) {
2093 		int n_octets = 0;
2094 		printf("%s: wrote %d bytes at 0x%x wepctl 0x%08x\n",
2095 		    device_xname(sc->sc_dev), buflen, ofs, sc->sc_wepctl);
2096 		for (i = 0; i < buflen; i++) {
2097 			printf(" %02x", ptr[i]);
2098 			if (++n_octets % 24 == 0)
2099 				printf("\n");
2100 		}
2101 		if (n_octets % 24 != 0)
2102 			printf("\n");
2103 	}
2104 }
2105 
2106 static int
2107 atw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2108 {
2109 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2110 	u_int keyix = k->wk_keyix;
2111 
2112 	DPRINTF(sc, ("%s: delete key %u\n", __func__, keyix));
2113 
2114 	if (keyix >= IEEE80211_WEP_NKID)
2115 		return 0;
2116 	if (k->wk_keylen != 0)
2117 		sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2118 
2119 	return 1;
2120 }
2121 
2122 static int
2123 atw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2124 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2125 {
2126 	struct atw_softc *sc = ic->ic_ifp->if_softc;
2127 
2128 	DPRINTF(sc, ("%s: set key %u\n", __func__, k->wk_keyix));
2129 
2130 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2131 		return 0;
2132 
2133 	sc->sc_flags &= ~ATWF_WEP_SRAM_VALID;
2134 
2135 	return 1;
2136 }
2137 
2138 static void
2139 atw_key_update_begin(struct ieee80211com *ic)
2140 {
2141 #ifdef ATW_DEBUG
2142 	struct ifnet *ifp = ic->ic_ifp;
2143 	struct atw_softc *sc = ifp->if_softc;
2144 #endif
2145 
2146 	DPRINTF(sc, ("%s:\n", __func__));
2147 }
2148 
2149 static void
2150 atw_key_update_end(struct ieee80211com *ic)
2151 {
2152 	struct ifnet *ifp = ic->ic_ifp;
2153 	struct atw_softc *sc = ifp->if_softc;
2154 
2155 	DPRINTF(sc, ("%s:\n", __func__));
2156 
2157 	if ((sc->sc_flags & ATWF_WEP_SRAM_VALID) != 0)
2158 		return;
2159 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2160 		return;
2161 	atw_idle(sc, ATW_NAR_SR | ATW_NAR_ST);
2162 	atw_write_wep(sc);
2163 	ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2164 	DELAY(atw_nar_delay);
2165 	ATW_WRITE(sc, ATW_RDR, 0x1);
2166 }
2167 
2168 /* Write WEP keys from the ieee80211com to the ADM8211's SRAM. */
2169 static void
2170 atw_write_wep(struct atw_softc *sc)
2171 {
2172 #if 0
2173 	struct ieee80211com *ic = &sc->sc_ic;
2174 	u_int32_t reg;
2175 	int i;
2176 #endif
2177 	/* SRAM shared-key record format: key0 flags key1 ... key12 */
2178 	u_int8_t buf[IEEE80211_WEP_NKID]
2179 	            [1 /* key[0] */ + 1 /* flags */ + 12 /* key[1 .. 12] */];
2180 
2181 	sc->sc_wepctl = 0;
2182 	ATW_WRITE(sc, ATW_WEPCTL, sc->sc_wepctl);
2183 
2184 	memset(&buf[0][0], 0, sizeof(buf));
2185 
2186 #if 0
2187 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2188 		if (ic->ic_nw_keys[i].wk_keylen > 5) {
2189 			buf[i][1] = ATW_WEP_ENABLED | ATW_WEP_104BIT;
2190 		} else if (ic->ic_nw_keys[i].wk_keylen != 0) {
2191 			buf[i][1] = ATW_WEP_ENABLED;
2192 		} else {
2193 			buf[i][1] = 0;
2194 			continue;
2195 		}
2196 		buf[i][0] = ic->ic_nw_keys[i].wk_key[0];
2197 		memcpy(&buf[i][2], &ic->ic_nw_keys[i].wk_key[1],
2198 		    ic->ic_nw_keys[i].wk_keylen - 1);
2199 	}
2200 
2201 	reg = ATW_READ(sc, ATW_MACTEST);
2202 	reg |= ATW_MACTEST_MMI_USETXCLK | ATW_MACTEST_FORCE_KEYID;
2203 	reg &= ~ATW_MACTEST_KEYID_MASK;
2204 	reg |= __SHIFTIN(ic->ic_def_txkey, ATW_MACTEST_KEYID_MASK);
2205 	ATW_WRITE(sc, ATW_MACTEST, reg);
2206 
2207 	if ((ic->ic_flags & IEEE80211_F_PRIVACY) != 0)
2208 		sc->sc_wepctl |= ATW_WEPCTL_WEPENABLE;
2209 
2210 	switch (sc->sc_rev) {
2211 	case ATW_REVISION_AB:
2212 	case ATW_REVISION_AF:
2213 		/* Bypass WEP on Rx. */
2214 		sc->sc_wepctl |= ATW_WEPCTL_WEPRXBYP;
2215 		break;
2216 	default:
2217 		break;
2218 	}
2219 #endif
2220 
2221 	atw_write_sram(sc, ATW_SRAM_ADDR_SHARED_KEY, (u_int8_t*)&buf[0][0],
2222 	    sizeof(buf));
2223 
2224 	sc->sc_flags |= ATWF_WEP_SRAM_VALID;
2225 }
2226 
2227 static void
2228 atw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2229     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
2230 {
2231 	struct atw_softc *sc = (struct atw_softc *)ic->ic_ifp->if_softc;
2232 
2233 	/* The ADM8211A answers probe requests. TBD ADM8211B/C. */
2234 	if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_REQ)
2235 		return;
2236 
2237 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
2238 
2239 	switch (subtype) {
2240 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2241 	case IEEE80211_FC0_SUBTYPE_BEACON:
2242 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2243 		    ic->ic_state == IEEE80211_S_RUN) {
2244 			if (le64toh(ni->ni_tstamp.tsf) >= atw_get_tsft(sc))
2245 				(void)ieee80211_ibss_merge(ni);
2246 		}
2247 		break;
2248 	default:
2249 		break;
2250 	}
2251 	return;
2252 }
2253 
2254 /* Write the SSID in the ieee80211com to the SRAM on the ADM8211.
2255  * In ad hoc mode, the SSID is written to the beacons sent by the
2256  * ADM8211. In both ad hoc and infrastructure mode, beacons received
2257  * with matching SSID affect ATW_INTR_LINKON/ATW_INTR_LINKOFF
2258  * indications.
2259  */
2260 static void
2261 atw_write_ssid(struct atw_softc *sc)
2262 {
2263 	struct ieee80211com *ic = &sc->sc_ic;
2264 	/* 34 bytes are reserved in ADM8211 SRAM for the SSID, but
2265 	 * it only expects the element length, not its ID.
2266 	 */
2267 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_NWID_LEN, 2)];
2268 
2269 	memset(buf, 0, sizeof(buf));
2270 	buf[0] = ic->ic_bss->ni_esslen;
2271 	memcpy(&buf[1], ic->ic_bss->ni_essid, ic->ic_bss->ni_esslen);
2272 
2273 	atw_write_sram(sc, ATW_SRAM_ADDR_SSID, buf,
2274 	    roundup(1 + ic->ic_bss->ni_esslen, 2));
2275 }
2276 
2277 /* Write the supported rates in the ieee80211com to the SRAM of the ADM8211.
2278  * In ad hoc mode, the supported rates are written to beacons sent by the
2279  * ADM8211.
2280  */
2281 static void
2282 atw_write_sup_rates(struct atw_softc *sc)
2283 {
2284 	struct ieee80211com *ic = &sc->sc_ic;
2285 	/* 14 bytes are probably (XXX) reserved in the ADM8211 SRAM for
2286 	 * supported rates
2287 	 */
2288 	u_int8_t buf[roundup(1 /* length */ + IEEE80211_RATE_SIZE, 2)];
2289 
2290 	memset(buf, 0, sizeof(buf));
2291 
2292 	buf[0] = ic->ic_bss->ni_rates.rs_nrates;
2293 
2294 	memcpy(&buf[1], ic->ic_bss->ni_rates.rs_rates,
2295 	    ic->ic_bss->ni_rates.rs_nrates);
2296 
2297 	atw_write_sram(sc, ATW_SRAM_ADDR_SUPRATES, buf, sizeof(buf));
2298 }
2299 
2300 /* Start/stop sending beacons. */
2301 void
2302 atw_start_beacon(struct atw_softc *sc, int start)
2303 {
2304 	struct ieee80211com *ic = &sc->sc_ic;
2305 	uint16_t chan;
2306 	uint32_t bcnt, bpli, cap0, cap1, capinfo;
2307 	size_t len;
2308 
2309 	if (!device_is_active(sc->sc_dev))
2310 		return;
2311 
2312 	/* start beacons */
2313 	len = sizeof(struct ieee80211_frame) +
2314 	    8 /* timestamp */ + 2 /* beacon interval */ +
2315 	    2 /* capability info */ +
2316 	    2 + ic->ic_bss->ni_esslen /* SSID element */ +
2317 	    2 + ic->ic_bss->ni_rates.rs_nrates /* rates element */ +
2318 	    3 /* DS parameters */ +
2319 	    IEEE80211_CRC_LEN;
2320 
2321 	bcnt = ATW_READ(sc, ATW_BCNT) & ~ATW_BCNT_BCNT_MASK;
2322 	cap0 = ATW_READ(sc, ATW_CAP0) & ~ATW_CAP0_CHN_MASK;
2323 	cap1 = ATW_READ(sc, ATW_CAP1) & ~ATW_CAP1_CAPI_MASK;
2324 
2325 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2326 	ATW_WRITE(sc, ATW_CAP1, cap1);
2327 
2328 	if (!start)
2329 		return;
2330 
2331 	/* TBD use ni_capinfo */
2332 
2333 	capinfo = 0;
2334 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2335 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2336 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
2337 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2338 
2339 	switch (ic->ic_opmode) {
2340 	case IEEE80211_M_IBSS:
2341 		len += 4; /* IBSS parameters */
2342 		capinfo |= IEEE80211_CAPINFO_IBSS;
2343 		break;
2344 	case IEEE80211_M_HOSTAP:
2345 		/* XXX 6-byte minimum TIM */
2346 		len += atw_beacon_len_adjust;
2347 		capinfo |= IEEE80211_CAPINFO_ESS;
2348 		break;
2349 	default:
2350 		return;
2351 	}
2352 
2353 	/* set listen interval
2354 	 * XXX do software units agree w/ hardware?
2355 	 */
2356 	bpli = __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2357 	    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval, ATW_BPLI_LI_MASK);
2358 
2359 	chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
2360 
2361 	bcnt |= __SHIFTIN(len, ATW_BCNT_BCNT_MASK);
2362 	cap0 |= __SHIFTIN(chan, ATW_CAP0_CHN_MASK);
2363 	cap1 |= __SHIFTIN(capinfo, ATW_CAP1_CAPI_MASK);
2364 
2365 	ATW_WRITE(sc, ATW_BCNT, bcnt);
2366 	ATW_WRITE(sc, ATW_BPLI, bpli);
2367 	ATW_WRITE(sc, ATW_CAP0, cap0);
2368 	ATW_WRITE(sc, ATW_CAP1, cap1);
2369 
2370 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_BCNT] = %08x\n",
2371 	    device_xname(sc->sc_dev), bcnt));
2372 
2373 	DPRINTF(sc, ("%s: atw_start_beacon reg[ATW_CAP1] = %08x\n",
2374 	    device_xname(sc->sc_dev), cap1));
2375 }
2376 
2377 /* Return the 32 lsb of the last TSFT divisible by ival. */
2378 static inline uint32_t
2379 atw_last_even_tsft(uint32_t tsfth, uint32_t tsftl, uint32_t ival)
2380 {
2381 	/* Following the reference driver's lead, I compute
2382 	 *
2383 	 *   (uint32_t)((((uint64_t)tsfth << 32) | tsftl) % ival)
2384 	 *
2385 	 * without using 64-bit arithmetic, using the following
2386 	 * relationship:
2387 	 *
2388 	 *     (0x100000000 * H + L) % m
2389 	 *   = ((0x100000000 % m) * H + L) % m
2390 	 *   = (((0xffffffff + 1) % m) * H + L) % m
2391 	 *   = ((0xffffffff % m + 1 % m) * H + L) % m
2392 	 *   = ((0xffffffff % m + 1) * H + L) % m
2393 	 */
2394 	return ((0xFFFFFFFF % ival + 1) * tsfth + tsftl) % ival;
2395 }
2396 
2397 static uint64_t
2398 atw_get_tsft(struct atw_softc *sc)
2399 {
2400 	int i;
2401 	uint32_t tsfth, tsftl;
2402 	for (i = 0; i < 2; i++) {
2403 		tsfth = ATW_READ(sc, ATW_TSFTH);
2404 		tsftl = ATW_READ(sc, ATW_TSFTL);
2405 		if (ATW_READ(sc, ATW_TSFTH) == tsfth)
2406 			break;
2407 	}
2408 	return ((uint64_t)tsfth << 32) | tsftl;
2409 }
2410 
2411 /* If we've created an IBSS, write the TSF time in the ADM8211 to
2412  * the ieee80211com.
2413  *
2414  * Predict the next target beacon transmission time (TBTT) and
2415  * write it to the ADM8211.
2416  */
2417 static void
2418 atw_predict_beacon(struct atw_softc *sc)
2419 {
2420 #define TBTTOFS 20 /* TU */
2421 
2422 	struct ieee80211com *ic = &sc->sc_ic;
2423 	uint64_t tsft;
2424 	uint32_t ival, past_even, tbtt, tsfth, tsftl;
2425 	union {
2426 		uint64_t	word;
2427 		uint8_t		tstamp[8];
2428 	} u;
2429 
2430 	if ((ic->ic_opmode == IEEE80211_M_HOSTAP) ||
2431 	    ((ic->ic_opmode == IEEE80211_M_IBSS) &&
2432 	     (ic->ic_flags & IEEE80211_F_SIBSS))) {
2433 		tsft = atw_get_tsft(sc);
2434 		u.word = htole64(tsft);
2435 		(void)memcpy(&ic->ic_bss->ni_tstamp, &u.tstamp[0],
2436 		    sizeof(ic->ic_bss->ni_tstamp));
2437 	} else
2438 		tsft = le64toh(ic->ic_bss->ni_tstamp.tsf);
2439 
2440 	ival = ic->ic_bss->ni_intval * IEEE80211_DUR_TU;
2441 
2442 	tsftl = tsft & 0xFFFFFFFF;
2443 	tsfth = tsft >> 32;
2444 
2445 	/* We sent/received the last beacon `past' microseconds
2446 	 * after the interval divided the TSF timer.
2447 	 */
2448 	past_even = tsftl - atw_last_even_tsft(tsfth, tsftl, ival);
2449 
2450 	/* Skip ten beacons so that the TBTT cannot pass before
2451 	 * we've programmed it.  Ten is an arbitrary number.
2452 	 */
2453 	tbtt = past_even + ival * 10;
2454 
2455 	ATW_WRITE(sc, ATW_TOFS1,
2456 	    __SHIFTIN(1, ATW_TOFS1_TSFTOFSR_MASK) |
2457 	    __SHIFTIN(TBTTOFS, ATW_TOFS1_TBTTOFS_MASK) |
2458 	    __SHIFTIN(__SHIFTOUT(tbtt - TBTTOFS * IEEE80211_DUR_TU,
2459 	        ATW_TBTTPRE_MASK), ATW_TOFS1_TBTTPRE_MASK));
2460 #undef TBTTOFS
2461 }
2462 
2463 static void
2464 atw_next_scan(void *arg)
2465 {
2466 	struct atw_softc *sc = arg;
2467 	struct ieee80211com *ic = &sc->sc_ic;
2468 	int s;
2469 
2470 	/* don't call atw_start w/o network interrupts blocked */
2471 	s = splnet();
2472 	if (ic->ic_state == IEEE80211_S_SCAN)
2473 		ieee80211_next_scan(ic);
2474 	splx(s);
2475 }
2476 
2477 /* Synchronize the hardware state with the software state. */
2478 static int
2479 atw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2480 {
2481 	struct ifnet *ifp = ic->ic_ifp;
2482 	struct atw_softc *sc = ifp->if_softc;
2483 	enum ieee80211_state ostate;
2484 	int error = 0;
2485 
2486 	ostate = ic->ic_state;
2487 	callout_stop(&sc->sc_scan_ch);
2488 
2489 	switch (nstate) {
2490 	case IEEE80211_S_AUTH:
2491 	case IEEE80211_S_ASSOC:
2492 		atw_write_bssid(sc);
2493 		error = atw_tune(sc);
2494 		break;
2495 	case IEEE80211_S_INIT:
2496 		callout_stop(&sc->sc_scan_ch);
2497 		sc->sc_cur_chan = IEEE80211_CHAN_ANY;
2498 		atw_start_beacon(sc, 0);
2499 		break;
2500 	case IEEE80211_S_SCAN:
2501 		error = atw_tune(sc);
2502 		callout_reset(&sc->sc_scan_ch, atw_dwelltime * hz / 1000,
2503 		    atw_next_scan, sc);
2504 		break;
2505 	case IEEE80211_S_RUN:
2506 		error = atw_tune(sc);
2507 		atw_write_bssid(sc);
2508 		atw_write_ssid(sc);
2509 		atw_write_sup_rates(sc);
2510 
2511 		if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
2512 		    ic->ic_opmode == IEEE80211_M_MONITOR)
2513 			break;
2514 
2515 		/* set listen interval
2516 		 * XXX do software units agree w/ hardware?
2517 		 */
2518 		ATW_WRITE(sc, ATW_BPLI,
2519 		    __SHIFTIN(ic->ic_bss->ni_intval, ATW_BPLI_BP_MASK) |
2520 		    __SHIFTIN(ic->ic_lintval / ic->ic_bss->ni_intval,
2521 			   ATW_BPLI_LI_MASK));
2522 
2523 		DPRINTF(sc, ("%s: reg[ATW_BPLI] = %08x\n", device_xname(sc->sc_dev),
2524 		    ATW_READ(sc, ATW_BPLI)));
2525 
2526 		atw_predict_beacon(sc);
2527 
2528 		switch (ic->ic_opmode) {
2529 		case IEEE80211_M_AHDEMO:
2530 		case IEEE80211_M_HOSTAP:
2531 		case IEEE80211_M_IBSS:
2532 			atw_start_beacon(sc, 1);
2533 			break;
2534 		case IEEE80211_M_MONITOR:
2535 		case IEEE80211_M_STA:
2536 			break;
2537 		}
2538 
2539 		break;
2540 	}
2541 	return (error != 0) ? error : (*sc->sc_newstate)(ic, nstate, arg);
2542 }
2543 
2544 /*
2545  * atw_add_rxbuf:
2546  *
2547  *	Add a receive buffer to the indicated descriptor.
2548  */
2549 int
2550 atw_add_rxbuf(struct atw_softc *sc, int idx)
2551 {
2552 	struct atw_rxsoft *rxs = &sc->sc_rxsoft[idx];
2553 	struct mbuf *m;
2554 	int error;
2555 
2556 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2557 	if (m == NULL)
2558 		return (ENOBUFS);
2559 
2560 	MCLGET(m, M_DONTWAIT);
2561 	if ((m->m_flags & M_EXT) == 0) {
2562 		m_freem(m);
2563 		return (ENOBUFS);
2564 	}
2565 
2566 	if (rxs->rxs_mbuf != NULL)
2567 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2568 
2569 	rxs->rxs_mbuf = m;
2570 
2571 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
2572 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2573 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2574 	if (error) {
2575 		aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, error = %d\n",
2576 		    idx, error);
2577 		panic("atw_add_rxbuf");	/* XXX */
2578 	}
2579 
2580 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2581 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2582 
2583 	atw_init_rxdesc(sc, idx);
2584 
2585 	return (0);
2586 }
2587 
2588 /*
2589  * Release any queued transmit buffers.
2590  */
2591 void
2592 atw_txdrain(struct atw_softc *sc)
2593 {
2594 	struct atw_txsoft *txs;
2595 
2596 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
2597 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
2598 		if (txs->txs_mbuf != NULL) {
2599 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2600 			m_freem(txs->txs_mbuf);
2601 			txs->txs_mbuf = NULL;
2602 		}
2603 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
2604 		sc->sc_txfree += txs->txs_ndescs;
2605 	}
2606 
2607 	KASSERT((sc->sc_if.if_flags & IFF_RUNNING) == 0 ||
2608 	        !(SIMPLEQ_EMPTY(&sc->sc_txfreeq) ||
2609 		  sc->sc_txfree != ATW_NTXDESC));
2610 	sc->sc_if.if_flags &= ~IFF_OACTIVE;
2611 	sc->sc_tx_timer = 0;
2612 }
2613 
2614 /*
2615  * atw_stop:		[ ifnet interface function ]
2616  *
2617  *	Stop transmission on the interface.
2618  */
2619 void
2620 atw_stop(struct ifnet *ifp, int disable)
2621 {
2622 	struct atw_softc *sc = ifp->if_softc;
2623 	struct ieee80211com *ic = &sc->sc_ic;
2624 
2625 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2626 
2627 	if (device_is_active(sc->sc_dev)) {
2628 		/* Disable interrupts. */
2629 		ATW_WRITE(sc, ATW_IER, 0);
2630 
2631 		/* Stop the transmit and receive processes. */
2632 		ATW_WRITE(sc, ATW_NAR, 0);
2633 		DELAY(atw_nar_delay);
2634 		ATW_WRITE(sc, ATW_TDBD, 0);
2635 		ATW_WRITE(sc, ATW_TDBP, 0);
2636 		ATW_WRITE(sc, ATW_RDB, 0);
2637 	}
2638 
2639 	sc->sc_opmode = 0;
2640 
2641 	atw_txdrain(sc);
2642 
2643 	/*
2644 	 * Mark the interface down and cancel the watchdog timer.
2645 	 */
2646 	ifp->if_flags &= ~IFF_RUNNING;
2647 	ifp->if_timer = 0;
2648 
2649 	if (disable)
2650 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
2651 }
2652 
2653 /*
2654  * atw_rxdrain:
2655  *
2656  *	Drain the receive queue.
2657  */
2658 void
2659 atw_rxdrain(struct atw_softc *sc)
2660 {
2661 	struct atw_rxsoft *rxs;
2662 	int i;
2663 
2664 	for (i = 0; i < ATW_NRXDESC; i++) {
2665 		rxs = &sc->sc_rxsoft[i];
2666 		if (rxs->rxs_mbuf == NULL)
2667 			continue;
2668 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2669 		m_freem(rxs->rxs_mbuf);
2670 		rxs->rxs_mbuf = NULL;
2671 	}
2672 }
2673 
2674 /*
2675  * atw_detach:
2676  *
2677  *	Detach an ADM8211 interface.
2678  */
2679 int
2680 atw_detach(struct atw_softc *sc)
2681 {
2682 	struct ifnet *ifp = &sc->sc_if;
2683 	struct atw_rxsoft *rxs;
2684 	struct atw_txsoft *txs;
2685 	int i;
2686 
2687 	/*
2688 	 * Succeed now if there isn't any work to do.
2689 	 */
2690 	if ((sc->sc_flags & ATWF_ATTACHED) == 0)
2691 		return (0);
2692 
2693 	pmf_device_deregister(sc->sc_dev);
2694 
2695 	callout_stop(&sc->sc_scan_ch);
2696 
2697 	ieee80211_ifdetach(&sc->sc_ic);
2698 	if_detach(ifp);
2699 
2700 	for (i = 0; i < ATW_NRXDESC; i++) {
2701 		rxs = &sc->sc_rxsoft[i];
2702 		if (rxs->rxs_mbuf != NULL) {
2703 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2704 			m_freem(rxs->rxs_mbuf);
2705 			rxs->rxs_mbuf = NULL;
2706 		}
2707 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
2708 	}
2709 	for (i = 0; i < ATW_TXQUEUELEN; i++) {
2710 		txs = &sc->sc_txsoft[i];
2711 		if (txs->txs_mbuf != NULL) {
2712 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2713 			m_freem(txs->txs_mbuf);
2714 			txs->txs_mbuf = NULL;
2715 		}
2716 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
2717 	}
2718 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
2719 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
2720 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
2721 	    sizeof(struct atw_control_data));
2722 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
2723 
2724 	if (sc->sc_srom)
2725 		free(sc->sc_srom, M_DEVBUF);
2726 
2727 	atw_evcnt_detach(sc);
2728 
2729 	return (0);
2730 }
2731 
2732 /* atw_shutdown: make sure the interface is stopped at reboot time. */
2733 bool
2734 atw_shutdown(device_t self, int flags)
2735 {
2736 	struct atw_softc *sc = device_private(self);
2737 
2738 	atw_stop(&sc->sc_if, 1);
2739 	return true;
2740 }
2741 
2742 #if 0
2743 static void
2744 atw_workaround1(struct atw_softc *sc)
2745 {
2746 	uint32_t test1;
2747 
2748 	test1 = ATW_READ(sc, ATW_TEST1);
2749 
2750 	sc->sc_misc_ev.ev_count++;
2751 
2752 	if ((test1 & ATW_TEST1_RXPKT1IN) != 0) {
2753 		sc->sc_rxpkt1in_ev.ev_count++;
2754 		return;
2755 	}
2756 	if (__SHIFTOUT(test1, ATW_TEST1_RRA_MASK) ==
2757 	    __SHIFTOUT(test1, ATW_TEST1_RWA_MASK)) {
2758 		sc->sc_rxamatch_ev.ev_count++;
2759 		return;
2760 	}
2761 	sc->sc_workaround1_ev.ev_count++;
2762 	(void)atw_init(&sc->sc_if);
2763 }
2764 #endif
2765 
2766 int
2767 atw_intr(void *arg)
2768 {
2769 	struct atw_softc *sc = arg;
2770 	struct ifnet *ifp = &sc->sc_if;
2771 	u_int32_t status, rxstatus, txstatus, linkstatus;
2772 	int handled = 0, txthresh;
2773 
2774 #ifdef DEBUG
2775 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2776 		panic("%s: atw_intr: not enabled", device_xname(sc->sc_dev));
2777 #endif
2778 
2779 	/*
2780 	 * If the interface isn't running, the interrupt couldn't
2781 	 * possibly have come from us.
2782 	 */
2783 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
2784 	    !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
2785 		return (0);
2786 
2787 	for (;;) {
2788 		status = ATW_READ(sc, ATW_STSR);
2789 
2790 		if (status)
2791 			ATW_WRITE(sc, ATW_STSR, status);
2792 
2793 #ifdef ATW_DEBUG
2794 #define PRINTINTR(flag) do { \
2795 	if ((status & flag) != 0) { \
2796 		printf("%s" #flag, delim); \
2797 		delim = ","; \
2798 	} \
2799 } while (0)
2800 
2801 		if (atw_debug > 1 && status) {
2802 			const char *delim = "<";
2803 
2804 			printf("%s: reg[STSR] = %x",
2805 			    device_xname(sc->sc_dev), status);
2806 
2807 			PRINTINTR(ATW_INTR_FBE);
2808 			PRINTINTR(ATW_INTR_LINKOFF);
2809 			PRINTINTR(ATW_INTR_LINKON);
2810 			PRINTINTR(ATW_INTR_RCI);
2811 			PRINTINTR(ATW_INTR_RDU);
2812 			PRINTINTR(ATW_INTR_REIS);
2813 			PRINTINTR(ATW_INTR_RPS);
2814 			PRINTINTR(ATW_INTR_TCI);
2815 			PRINTINTR(ATW_INTR_TDU);
2816 			PRINTINTR(ATW_INTR_TLT);
2817 			PRINTINTR(ATW_INTR_TPS);
2818 			PRINTINTR(ATW_INTR_TRT);
2819 			PRINTINTR(ATW_INTR_TUF);
2820 			PRINTINTR(ATW_INTR_BCNTC);
2821 			PRINTINTR(ATW_INTR_ATIME);
2822 			PRINTINTR(ATW_INTR_TBTT);
2823 			PRINTINTR(ATW_INTR_TSCZ);
2824 			PRINTINTR(ATW_INTR_TSFTF);
2825 			printf(">\n");
2826 		}
2827 #undef PRINTINTR
2828 #endif /* ATW_DEBUG */
2829 
2830 		if ((status & sc->sc_inten) == 0)
2831 			break;
2832 
2833 		handled = 1;
2834 
2835 		rxstatus = status & sc->sc_rxint_mask;
2836 		txstatus = status & sc->sc_txint_mask;
2837 		linkstatus = status & sc->sc_linkint_mask;
2838 
2839 		if (linkstatus) {
2840 			atw_linkintr(sc, linkstatus);
2841 		}
2842 
2843 		if (rxstatus) {
2844 			/* Grab any new packets. */
2845 			atw_rxintr(sc);
2846 
2847 			if (rxstatus & ATW_INTR_RDU) {
2848 				printf("%s: receive ring overrun\n",
2849 				    device_xname(sc->sc_dev));
2850 				/* Get the receive process going again. */
2851 				ATW_WRITE(sc, ATW_RDR, 0x1);
2852 			}
2853 		}
2854 
2855 		if (txstatus) {
2856 			/* Sweep up transmit descriptors. */
2857 			atw_txintr(sc, txstatus);
2858 
2859 			if (txstatus & ATW_INTR_TLT) {
2860 				DPRINTF(sc, ("%s: tx lifetime exceeded\n",
2861 				    device_xname(sc->sc_dev)));
2862 				(void)atw_init(&sc->sc_if);
2863 			}
2864 
2865 			if (txstatus & ATW_INTR_TRT) {
2866 				DPRINTF(sc, ("%s: tx retry limit exceeded\n",
2867 				    device_xname(sc->sc_dev)));
2868 			}
2869 
2870 			/* If Tx under-run, increase our transmit threshold
2871 			 * if another is available.
2872 			 */
2873 			txthresh = sc->sc_txthresh + 1;
2874 			if ((txstatus & ATW_INTR_TUF) &&
2875 			    sc->sc_txth[txthresh].txth_name != NULL) {
2876 				/* Idle the transmit process. */
2877 				atw_idle(sc, ATW_NAR_ST);
2878 
2879 				sc->sc_txthresh = txthresh;
2880 				sc->sc_opmode &= ~(ATW_NAR_TR_MASK|ATW_NAR_SF);
2881 				sc->sc_opmode |=
2882 				    sc->sc_txth[txthresh].txth_opmode;
2883 				printf("%s: transmit underrun; new "
2884 				    "threshold: %s\n", device_xname(sc->sc_dev),
2885 				    sc->sc_txth[txthresh].txth_name);
2886 
2887 				/* Set the new threshold and restart
2888 				 * the transmit process.
2889 				 */
2890 				ATW_WRITE(sc, ATW_NAR, sc->sc_opmode);
2891 				DELAY(atw_nar_delay);
2892 				ATW_WRITE(sc, ATW_TDR, 0x1);
2893 				/* XXX Log every Nth underrun from
2894 				 * XXX now on?
2895 				 */
2896 			}
2897 		}
2898 
2899 		if (status & (ATW_INTR_TPS|ATW_INTR_RPS)) {
2900 			if (status & ATW_INTR_TPS)
2901 				printf("%s: transmit process stopped\n",
2902 				    device_xname(sc->sc_dev));
2903 			if (status & ATW_INTR_RPS)
2904 				printf("%s: receive process stopped\n",
2905 				    device_xname(sc->sc_dev));
2906 			(void)atw_init(ifp);
2907 			break;
2908 		}
2909 
2910 		if (status & ATW_INTR_FBE) {
2911 			aprint_error_dev(sc->sc_dev, "fatal bus error\n");
2912 			(void)atw_init(ifp);
2913 			break;
2914 		}
2915 
2916 		/*
2917 		 * Not handled:
2918 		 *
2919 		 *	Transmit buffer unavailable -- normal
2920 		 *	condition, nothing to do, really.
2921 		 *
2922 		 *	Early receive interrupt -- not available on
2923 		 *	all chips, we just use RI.  We also only
2924 		 *	use single-segment receive DMA, so this
2925 		 *	is mostly useless.
2926 		 *
2927 		 *      TBD others
2928 		 */
2929 	}
2930 
2931 	/* Try to get more packets going. */
2932 	atw_start(ifp);
2933 
2934 	return (handled);
2935 }
2936 
2937 /*
2938  * atw_idle:
2939  *
2940  *	Cause the transmit and/or receive processes to go idle.
2941  *
2942  *      XXX It seems that the ADM8211 will not signal the end of the Rx/Tx
2943  *	process in STSR if I clear SR or ST after the process has already
2944  *	ceased. Fair enough. But the Rx process status bits in ATW_TEST0
2945  *      do not seem to be too reliable. Perhaps I have the sense of the
2946  *	Rx bits switched with the Tx bits?
2947  */
2948 void
2949 atw_idle(struct atw_softc *sc, u_int32_t bits)
2950 {
2951 	u_int32_t ackmask = 0, opmode, stsr, test0;
2952 	int i, s;
2953 
2954 	s = splnet();
2955 
2956 	opmode = sc->sc_opmode & ~bits;
2957 
2958 	if (bits & ATW_NAR_SR)
2959 		ackmask |= ATW_INTR_RPS;
2960 
2961 	if (bits & ATW_NAR_ST) {
2962 		ackmask |= ATW_INTR_TPS;
2963 		/* set ATW_NAR_HF to flush TX FIFO. */
2964 		opmode |= ATW_NAR_HF;
2965 	}
2966 
2967 	ATW_WRITE(sc, ATW_NAR, opmode);
2968 	DELAY(atw_nar_delay);
2969 
2970 	for (i = 0; i < 1000; i++) {
2971 		stsr = ATW_READ(sc, ATW_STSR);
2972 		if ((stsr & ackmask) == ackmask)
2973 			break;
2974 		DELAY(10);
2975 	}
2976 
2977 	ATW_WRITE(sc, ATW_STSR, stsr & ackmask);
2978 
2979 	if ((stsr & ackmask) == ackmask)
2980 		goto out;
2981 
2982 	test0 = ATW_READ(sc, ATW_TEST0);
2983 
2984 	if ((bits & ATW_NAR_ST) != 0 && (stsr & ATW_INTR_TPS) == 0 &&
2985 	    (test0 & ATW_TEST0_TS_MASK) != ATW_TEST0_TS_STOPPED) {
2986 		printf("%s: transmit process not idle [%s]\n",
2987 		    device_xname(sc->sc_dev),
2988 		    atw_tx_state[__SHIFTOUT(test0, ATW_TEST0_TS_MASK)]);
2989 		printf("%s: bits %08x test0 %08x stsr %08x\n",
2990 		    device_xname(sc->sc_dev), bits, test0, stsr);
2991 	}
2992 
2993 	if ((bits & ATW_NAR_SR) != 0 && (stsr & ATW_INTR_RPS) == 0 &&
2994 	    (test0 & ATW_TEST0_RS_MASK) != ATW_TEST0_RS_STOPPED) {
2995 		DPRINTF2(sc, ("%s: receive process not idle [%s]\n",
2996 		    device_xname(sc->sc_dev),
2997 		    atw_rx_state[__SHIFTOUT(test0, ATW_TEST0_RS_MASK)]));
2998 		DPRINTF2(sc, ("%s: bits %08x test0 %08x stsr %08x\n",
2999 		    device_xname(sc->sc_dev), bits, test0, stsr));
3000 	}
3001 out:
3002 	if ((bits & ATW_NAR_ST) != 0)
3003 		atw_txdrain(sc);
3004 	splx(s);
3005 	return;
3006 }
3007 
3008 /*
3009  * atw_linkintr:
3010  *
3011  *	Helper; handle link-status interrupts.
3012  */
3013 void
3014 atw_linkintr(struct atw_softc *sc, u_int32_t linkstatus)
3015 {
3016 	struct ieee80211com *ic = &sc->sc_ic;
3017 
3018 	if (ic->ic_state != IEEE80211_S_RUN)
3019 		return;
3020 
3021 	if (linkstatus & ATW_INTR_LINKON) {
3022 		DPRINTF(sc, ("%s: link on\n", device_xname(sc->sc_dev)));
3023 		sc->sc_rescan_timer = 0;
3024 	} else if (linkstatus & ATW_INTR_LINKOFF) {
3025 		DPRINTF(sc, ("%s: link off\n", device_xname(sc->sc_dev)));
3026 		if (ic->ic_opmode != IEEE80211_M_STA)
3027 			return;
3028 		sc->sc_rescan_timer = 3;
3029 		sc->sc_if.if_timer = 1;
3030 	}
3031 }
3032 
3033 static inline int
3034 atw_hw_decrypted(struct atw_softc *sc, struct ieee80211_frame_min *wh)
3035 {
3036 	if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0)
3037 		return 0;
3038 	if ((wh->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3039 		return 0;
3040 	return (sc->sc_wepctl & ATW_WEPCTL_WEPRXBYP) == 0;
3041 }
3042 
3043 /*
3044  * atw_rxintr:
3045  *
3046  *	Helper; handle receive interrupts.
3047  */
3048 void
3049 atw_rxintr(struct atw_softc *sc)
3050 {
3051 	static int rate_tbl[] = {2, 4, 11, 22, 44};
3052 	struct ieee80211com *ic = &sc->sc_ic;
3053 	struct ieee80211_node *ni;
3054 	struct ieee80211_frame_min *wh;
3055 	struct ifnet *ifp = &sc->sc_if;
3056 	struct atw_rxsoft *rxs;
3057 	struct mbuf *m;
3058 	u_int32_t rxstat;
3059 	int i, len, rate, rate0;
3060 	u_int32_t rssi, ctlrssi;
3061 
3062 	for (i = sc->sc_rxptr;; i = sc->sc_rxptr) {
3063 		rxs = &sc->sc_rxsoft[i];
3064 
3065 		ATW_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3066 
3067 		rxstat = le32toh(sc->sc_rxdescs[i].ar_stat);
3068 		ctlrssi = le32toh(sc->sc_rxdescs[i].ar_ctlrssi);
3069 		rate0 = __SHIFTOUT(rxstat, ATW_RXSTAT_RXDR_MASK);
3070 
3071 		if (rxstat & ATW_RXSTAT_OWN) {
3072 			ATW_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
3073 			break;
3074 		}
3075 
3076 		sc->sc_rxptr = ATW_NEXTRX(i);
3077 
3078 		DPRINTF3(sc,
3079 		    ("%s: rx stat %08x ctlrssi %08x buf1 %08x buf2 %08x\n",
3080 		    device_xname(sc->sc_dev),
3081 		    rxstat, ctlrssi,
3082 		    le32toh(sc->sc_rxdescs[i].ar_buf1),
3083 		    le32toh(sc->sc_rxdescs[i].ar_buf2)));
3084 
3085 		/*
3086 		 * Make sure the packet fits in one buffer.  This should
3087 		 * always be the case.
3088 		 */
3089 		if ((rxstat & (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) !=
3090 		    (ATW_RXSTAT_FS|ATW_RXSTAT_LS)) {
3091 			printf("%s: incoming packet spilled, resetting\n",
3092 			    device_xname(sc->sc_dev));
3093 			(void)atw_init(ifp);
3094 			return;
3095 		}
3096 
3097 		/*
3098 		 * If an error occurred, update stats, clear the status
3099 		 * word, and leave the packet buffer in place.  It will
3100 		 * simply be reused the next time the ring comes around.
3101 		 */
3102 		if ((rxstat & (ATW_RXSTAT_DE | ATW_RXSTAT_RXTOE)) != 0) {
3103 #define	PRINTERR(bit, str)						\
3104 			if (rxstat & (bit))				\
3105 				aprint_error_dev(sc->sc_dev, "receive error: %s\n",	\
3106 				    str)
3107 			ifp->if_ierrors++;
3108 			PRINTERR(ATW_RXSTAT_DE, "descriptor error");
3109 			PRINTERR(ATW_RXSTAT_RXTOE, "time-out");
3110 #if 0
3111 			PRINTERR(ATW_RXSTAT_SFDE, "PLCP SFD error");
3112 			PRINTERR(ATW_RXSTAT_SIGE, "PLCP signal error");
3113 			PRINTERR(ATW_RXSTAT_CRC16E, "PLCP CRC16 error");
3114 			PRINTERR(ATW_RXSTAT_ICVE, "WEP ICV error");
3115 #endif
3116 #undef PRINTERR
3117 			atw_init_rxdesc(sc, i);
3118 			continue;
3119 		}
3120 
3121 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3122 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3123 
3124 		/*
3125 		 * No errors; receive the packet.  Note the ADM8211
3126 		 * includes the CRC in promiscuous mode.
3127 		 */
3128 		len = __SHIFTOUT(rxstat, ATW_RXSTAT_FL_MASK);
3129 
3130 		/*
3131 		 * Allocate a new mbuf cluster.  If that fails, we are
3132 		 * out of memory, and must drop the packet and recycle
3133 		 * the buffer that's already attached to this descriptor.
3134 		 */
3135 		m = rxs->rxs_mbuf;
3136 		if (atw_add_rxbuf(sc, i) != 0) {
3137 			ifp->if_ierrors++;
3138 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
3139 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3140 			atw_init_rxdesc(sc, i);
3141 			continue;
3142 		}
3143 
3144 		ifp->if_ipackets++;
3145 		m->m_pkthdr.rcvif = ifp;
3146 		m->m_pkthdr.len = m->m_len = MIN(m->m_ext.ext_size, len);
3147 
3148 		rate = (rate0 < __arraycount(rate_tbl)) ? rate_tbl[rate0] : 0;
3149 
3150 		/* The RSSI comes straight from a register in the
3151 		 * baseband processor.  I know that for the RF3000,
3152 		 * the RSSI register also contains the antenna-selection
3153 		 * bits.  Mask those off.
3154 		 *
3155 		 * TBD Treat other basebands.
3156 		 * TBD Use short-preamble bit and such in RF3000_RXSTAT.
3157 		 */
3158 		if (sc->sc_bbptype == ATW_BBPTYPE_RFMD)
3159 			rssi = ctlrssi & RF3000_RSSI_MASK;
3160 		else
3161 			rssi = ctlrssi;
3162 
3163  #if NBPFILTER > 0
3164 		/* Pass this up to any BPF listeners. */
3165 		if (sc->sc_radiobpf != NULL) {
3166 			struct atw_rx_radiotap_header *tap = &sc->sc_rxtap;
3167 
3168 			tap->ar_rate = rate;
3169 
3170 			/* TBD verify units are dB */
3171 			tap->ar_antsignal = (int)rssi;
3172 			if (sc->sc_opmode & ATW_NAR_PR)
3173 				tap->ar_flags = IEEE80211_RADIOTAP_F_FCS;
3174 			else
3175 				tap->ar_flags = 0;
3176 
3177 			if ((rxstat & ATW_RXSTAT_CRC32E) != 0)
3178 				tap->ar_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3179 
3180 			bpf_mtap2(sc->sc_radiobpf, tap,
3181 			    sizeof(sc->sc_rxtapu), m);
3182  		}
3183 #endif /* NBPFILTER > 0 */
3184 
3185 		sc->sc_recv_ev.ev_count++;
3186 
3187 		if ((rxstat & (ATW_RXSTAT_CRC16E|ATW_RXSTAT_CRC32E|ATW_RXSTAT_ICVE|ATW_RXSTAT_SFDE|ATW_RXSTAT_SIGE)) != 0) {
3188 			if (rxstat & ATW_RXSTAT_CRC16E)
3189 				sc->sc_crc16e_ev.ev_count++;
3190 			if (rxstat & ATW_RXSTAT_CRC32E)
3191 				sc->sc_crc32e_ev.ev_count++;
3192 			if (rxstat & ATW_RXSTAT_ICVE)
3193 				sc->sc_icve_ev.ev_count++;
3194 			if (rxstat & ATW_RXSTAT_SFDE)
3195 				sc->sc_sfde_ev.ev_count++;
3196 			if (rxstat & ATW_RXSTAT_SIGE)
3197 				sc->sc_sige_ev.ev_count++;
3198 			ifp->if_ierrors++;
3199 			m_freem(m);
3200 			continue;
3201 		}
3202 
3203 		if (sc->sc_opmode & ATW_NAR_PR)
3204 			m_adj(m, -IEEE80211_CRC_LEN);
3205 
3206 		wh = mtod(m, struct ieee80211_frame_min *);
3207 		ni = ieee80211_find_rxnode(ic, wh);
3208 #if 0
3209 		if (atw_hw_decrypted(sc, wh)) {
3210 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
3211 			DPRINTF(sc, ("%s: hw decrypted\n", __func__));
3212 		}
3213 #endif
3214 		ieee80211_input(ic, m, ni, (int)rssi, 0);
3215 		ieee80211_free_node(ni);
3216 	}
3217 }
3218 
3219 /*
3220  * atw_txintr:
3221  *
3222  *	Helper; handle transmit interrupts.
3223  */
3224 void
3225 atw_txintr(struct atw_softc *sc, uint32_t status)
3226 {
3227 	static char txstat_buf[sizeof("ffffffff<>" ATW_TXSTAT_FMT)];
3228 	struct ifnet *ifp = &sc->sc_if;
3229 	struct atw_txsoft *txs;
3230 	u_int32_t txstat;
3231 
3232 	DPRINTF3(sc, ("%s: atw_txintr: sc_flags 0x%08x\n",
3233 	    device_xname(sc->sc_dev), sc->sc_flags));
3234 
3235 	/*
3236 	 * Go through our Tx list and free mbufs for those
3237 	 * frames that have been transmitted.
3238 	 */
3239 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
3240 		ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3241 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3242 
3243 #ifdef ATW_DEBUG
3244 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3245 			int i;
3246 			printf("    txsoft %p transmit chain:\n", txs);
3247 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3248 			    txs->txs_ndescs - 1,
3249 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3250 			for (i = txs->txs_firstdesc;; i = ATW_NEXTTX(i)) {
3251 				printf("     descriptor %d:\n", i);
3252 				printf("       at_status:   0x%08x\n",
3253 				    le32toh(sc->sc_txdescs[i].at_stat));
3254 				printf("       at_flags:      0x%08x\n",
3255 				    le32toh(sc->sc_txdescs[i].at_flags));
3256 				printf("       at_buf1: 0x%08x\n",
3257 				    le32toh(sc->sc_txdescs[i].at_buf1));
3258 				printf("       at_buf2: 0x%08x\n",
3259 				    le32toh(sc->sc_txdescs[i].at_buf2));
3260 				if (i == txs->txs_lastdesc)
3261 					break;
3262 			}
3263 			ATW_CDTXSYNC(sc, txs->txs_firstdesc,
3264 			    txs->txs_ndescs - 1, BUS_DMASYNC_PREREAD);
3265 		}
3266 #endif
3267 
3268 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].at_stat);
3269 		if (txstat & ATW_TXSTAT_OWN) {
3270 			ATW_CDTXSYNC(sc, txs->txs_lastdesc, 1,
3271 			    BUS_DMASYNC_PREREAD);
3272 			break;
3273 		}
3274 
3275 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
3276 
3277 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
3278 		    0, txs->txs_dmamap->dm_mapsize,
3279 		    BUS_DMASYNC_POSTWRITE);
3280 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
3281 		m_freem(txs->txs_mbuf);
3282 		txs->txs_mbuf = NULL;
3283 
3284 		sc->sc_txfree += txs->txs_ndescs;
3285 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
3286 
3287 		KASSERT(!SIMPLEQ_EMPTY(&sc->sc_txfreeq) && sc->sc_txfree != 0);
3288 		sc->sc_tx_timer = 0;
3289 		ifp->if_flags &= ~IFF_OACTIVE;
3290 
3291 		if ((ifp->if_flags & IFF_DEBUG) != 0 &&
3292 		    (txstat & ATW_TXSTAT_ERRMASK) != 0) {
3293 			snprintb(txstat_buf, sizeof(txstat_buf),
3294 			    ATW_TXSTAT_FMT, txstat & ATW_TXSTAT_ERRMASK);
3295 			printf("%s: txstat %s %" __PRIuBITS "\n",
3296 			    device_xname(sc->sc_dev), txstat_buf,
3297 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK));
3298 		}
3299 
3300 		sc->sc_xmit_ev.ev_count++;
3301 
3302 		/*
3303 		 * Check for errors and collisions.
3304 		 */
3305 		if (txstat & ATW_TXSTAT_TUF)
3306 			sc->sc_tuf_ev.ev_count++;
3307 		if (txstat & ATW_TXSTAT_TLT)
3308 			sc->sc_tlt_ev.ev_count++;
3309 		if (txstat & ATW_TXSTAT_TRT)
3310 			sc->sc_trt_ev.ev_count++;
3311 		if (txstat & ATW_TXSTAT_TRO)
3312 			sc->sc_tro_ev.ev_count++;
3313 		if (txstat & ATW_TXSTAT_SOFBR)
3314 			sc->sc_sofbr_ev.ev_count++;
3315 
3316 		if ((txstat & ATW_TXSTAT_ES) == 0)
3317 			ifp->if_collisions +=
3318 			    __SHIFTOUT(txstat, ATW_TXSTAT_ARC_MASK);
3319 		else
3320 			ifp->if_oerrors++;
3321 
3322 		ifp->if_opackets++;
3323 	}
3324 
3325 	KASSERT(txs != NULL || (ifp->if_flags & IFF_OACTIVE) == 0);
3326 }
3327 
3328 /*
3329  * atw_watchdog:	[ifnet interface function]
3330  *
3331  *	Watchdog timer handler.
3332  */
3333 void
3334 atw_watchdog(struct ifnet *ifp)
3335 {
3336 	struct atw_softc *sc = ifp->if_softc;
3337 	struct ieee80211com *ic = &sc->sc_ic;
3338 
3339 	ifp->if_timer = 0;
3340 	if (!device_is_active(sc->sc_dev))
3341 		return;
3342 
3343 	if (sc->sc_rescan_timer != 0 && --sc->sc_rescan_timer == 0)
3344 		(void)ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
3345 	if (sc->sc_tx_timer != 0 && --sc->sc_tx_timer == 0 &&
3346 	    !SIMPLEQ_EMPTY(&sc->sc_txdirtyq)) {
3347 		printf("%s: transmit timeout\n", ifp->if_xname);
3348 		ifp->if_oerrors++;
3349 		(void)atw_init(ifp);
3350 		atw_start(ifp);
3351 	}
3352 	if (sc->sc_tx_timer != 0 || sc->sc_rescan_timer != 0)
3353 		ifp->if_timer = 1;
3354 	ieee80211_watchdog(ic);
3355 }
3356 
3357 static void
3358 atw_evcnt_detach(struct atw_softc *sc)
3359 {
3360 	evcnt_detach(&sc->sc_sige_ev);
3361 	evcnt_detach(&sc->sc_sfde_ev);
3362 	evcnt_detach(&sc->sc_icve_ev);
3363 	evcnt_detach(&sc->sc_crc32e_ev);
3364 	evcnt_detach(&sc->sc_crc16e_ev);
3365 	evcnt_detach(&sc->sc_recv_ev);
3366 
3367 	evcnt_detach(&sc->sc_tuf_ev);
3368 	evcnt_detach(&sc->sc_tro_ev);
3369 	evcnt_detach(&sc->sc_trt_ev);
3370 	evcnt_detach(&sc->sc_tlt_ev);
3371 	evcnt_detach(&sc->sc_sofbr_ev);
3372 	evcnt_detach(&sc->sc_xmit_ev);
3373 
3374 	evcnt_detach(&sc->sc_rxpkt1in_ev);
3375 	evcnt_detach(&sc->sc_rxamatch_ev);
3376 	evcnt_detach(&sc->sc_workaround1_ev);
3377 	evcnt_detach(&sc->sc_misc_ev);
3378 }
3379 
3380 static void
3381 atw_evcnt_attach(struct atw_softc *sc)
3382 {
3383 	evcnt_attach_dynamic(&sc->sc_recv_ev, EVCNT_TYPE_MISC,
3384 	    NULL, sc->sc_if.if_xname, "recv");
3385 	evcnt_attach_dynamic(&sc->sc_crc16e_ev, EVCNT_TYPE_MISC,
3386 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC16 error");
3387 	evcnt_attach_dynamic(&sc->sc_crc32e_ev, EVCNT_TYPE_MISC,
3388 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "CRC32 error");
3389 	evcnt_attach_dynamic(&sc->sc_icve_ev, EVCNT_TYPE_MISC,
3390 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "ICV error");
3391 	evcnt_attach_dynamic(&sc->sc_sfde_ev, EVCNT_TYPE_MISC,
3392 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP SFD error");
3393 	evcnt_attach_dynamic(&sc->sc_sige_ev, EVCNT_TYPE_MISC,
3394 	    &sc->sc_recv_ev, sc->sc_if.if_xname, "PLCP Signal Field error");
3395 
3396 	evcnt_attach_dynamic(&sc->sc_xmit_ev, EVCNT_TYPE_MISC,
3397 	    NULL, sc->sc_if.if_xname, "xmit");
3398 	evcnt_attach_dynamic(&sc->sc_tuf_ev, EVCNT_TYPE_MISC,
3399 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit underflow");
3400 	evcnt_attach_dynamic(&sc->sc_tro_ev, EVCNT_TYPE_MISC,
3401 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "transmit overrun");
3402 	evcnt_attach_dynamic(&sc->sc_trt_ev, EVCNT_TYPE_MISC,
3403 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "retry count exceeded");
3404 	evcnt_attach_dynamic(&sc->sc_tlt_ev, EVCNT_TYPE_MISC,
3405 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "lifetime exceeded");
3406 	evcnt_attach_dynamic(&sc->sc_sofbr_ev, EVCNT_TYPE_MISC,
3407 	    &sc->sc_xmit_ev, sc->sc_if.if_xname, "packet size mismatch");
3408 
3409 	evcnt_attach_dynamic(&sc->sc_misc_ev, EVCNT_TYPE_MISC,
3410 	    NULL, sc->sc_if.if_xname, "misc");
3411 	evcnt_attach_dynamic(&sc->sc_workaround1_ev, EVCNT_TYPE_MISC,
3412 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "workaround #1");
3413 	evcnt_attach_dynamic(&sc->sc_rxamatch_ev, EVCNT_TYPE_MISC,
3414 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rra equals rwa");
3415 	evcnt_attach_dynamic(&sc->sc_rxpkt1in_ev, EVCNT_TYPE_MISC,
3416 	    &sc->sc_misc_ev, sc->sc_if.if_xname, "rxpkt1in set");
3417 }
3418 
3419 #ifdef ATW_DEBUG
3420 static void
3421 atw_dump_pkt(struct ifnet *ifp, struct mbuf *m0)
3422 {
3423 	struct atw_softc *sc = ifp->if_softc;
3424 	struct mbuf *m;
3425 	int i, noctets = 0;
3426 
3427 	printf("%s: %d-byte packet\n", device_xname(sc->sc_dev),
3428 	    m0->m_pkthdr.len);
3429 
3430 	for (m = m0; m; m = m->m_next) {
3431 		if (m->m_len == 0)
3432 			continue;
3433 		for (i = 0; i < m->m_len; i++) {
3434 			printf(" %02x", ((u_int8_t*)m->m_data)[i]);
3435 			if (++noctets % 24 == 0)
3436 				printf("\n");
3437 		}
3438 	}
3439 	printf("%s%s: %d bytes emitted\n",
3440 	    (noctets % 24 != 0) ? "\n" : "", device_xname(sc->sc_dev), noctets);
3441 }
3442 #endif /* ATW_DEBUG */
3443 
3444 /*
3445  * atw_start:		[ifnet interface function]
3446  *
3447  *	Start packet transmission on the interface.
3448  */
3449 void
3450 atw_start(struct ifnet *ifp)
3451 {
3452 	struct atw_softc *sc = ifp->if_softc;
3453 	struct ieee80211_key *k;
3454 	struct ieee80211com *ic = &sc->sc_ic;
3455 	struct ieee80211_node *ni;
3456 	struct ieee80211_frame_min *whm;
3457 	struct ieee80211_frame *wh;
3458 	struct atw_frame *hh;
3459 	uint16_t hdrctl;
3460 	struct mbuf *m0, *m;
3461 	struct atw_txsoft *txs, *last_txs;
3462 	struct atw_txdesc *txd;
3463 	int npkt, rate;
3464 	bus_dmamap_t dmamap;
3465 	int ctl, error, firsttx, nexttx, lasttx, first, ofree, seg;
3466 
3467 	DPRINTF2(sc, ("%s: atw_start: sc_flags 0x%08x, if_flags 0x%08x\n",
3468 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
3469 
3470 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3471 		return;
3472 
3473 	/*
3474 	 * Remember the previous number of free descriptors and
3475 	 * the first descriptor we'll use.
3476 	 */
3477 	ofree = sc->sc_txfree;
3478 	firsttx = lasttx = sc->sc_txnext;
3479 
3480 	DPRINTF2(sc, ("%s: atw_start: txfree %d, txnext %d\n",
3481 	    device_xname(sc->sc_dev), ofree, firsttx));
3482 
3483 	/*
3484 	 * Loop through the send queue, setting up transmit descriptors
3485 	 * until we drain the queue, or use up all available transmit
3486 	 * descriptors.
3487 	 */
3488 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
3489 	       sc->sc_txfree != 0) {
3490 
3491 		hdrctl = htole16(ATW_HDRCTL_UNKNOWN1);
3492 
3493 		/*
3494 		 * Grab a packet off the management queue, if it
3495 		 * is not empty. Otherwise, from the data queue.
3496 		 */
3497 		IF_DEQUEUE(&ic->ic_mgtq, m0);
3498 		if (m0 != NULL) {
3499 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
3500 			m0->m_pkthdr.rcvif = NULL;
3501 		} else if (ic->ic_state != IEEE80211_S_RUN)
3502 			break; /* send no data until associated */
3503 		else {
3504 			IFQ_DEQUEUE(&ifp->if_snd, m0);
3505 			if (m0 == NULL)
3506 				break;
3507 #if NBPFILTER > 0
3508 			if (ifp->if_bpf != NULL)
3509 				bpf_mtap(ifp->if_bpf, m0);
3510 #endif /* NBPFILTER > 0 */
3511 			ni = ieee80211_find_txnode(ic,
3512 			    mtod(m0, struct ether_header *)->ether_dhost);
3513 			if (ni == NULL) {
3514 				ifp->if_oerrors++;
3515 				break;
3516 			}
3517 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
3518 				ieee80211_free_node(ni);
3519 				ifp->if_oerrors++;
3520 				break;
3521 			}
3522 		}
3523 
3524 		rate = MAX(ieee80211_get_rate(ni), 2);
3525 
3526 		whm = mtod(m0, struct ieee80211_frame_min *);
3527 
3528 		if ((whm->i_fc[1] & IEEE80211_FC1_WEP) == 0)
3529 			k = NULL;
3530 		else if ((k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) {
3531 			m_freem(m0);
3532 			ieee80211_free_node(ni);
3533 			ifp->if_oerrors++;
3534 			break;
3535 		}
3536 #if 0
3537 		if (IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3538 		    m0->m_pkthdr.len > ic->ic_fragthreshold)
3539 			hdrctl |= htole16(ATW_HDRCTL_MORE_FRAG);
3540 #endif
3541 
3542 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
3543 			hdrctl |= htole16(ATW_HDRCTL_RTSCTS);
3544 
3545 		if (ieee80211_compute_duration(whm, k, m0->m_pkthdr.len,
3546 		    ic->ic_flags, ic->ic_fragthreshold, rate,
3547 		    &txs->txs_d0, &txs->txs_dn, &npkt, 0) == -1) {
3548 			DPRINTF2(sc, ("%s: fail compute duration\n", __func__));
3549 			m_freem(m0);
3550 			break;
3551 		}
3552 
3553 		/* XXX Misleading if fragmentation is enabled.  Better
3554 		 * to fragment in software?
3555 		 */
3556 		*(uint16_t *)whm->i_dur = htole16(txs->txs_d0.d_rts_dur);
3557 
3558 #if NBPFILTER > 0
3559 		/*
3560 		 * Pass the packet to any BPF listeners.
3561 		 */
3562 		if (ic->ic_rawbpf != NULL)
3563 			bpf_mtap((void *)ic->ic_rawbpf, m0);
3564 
3565 		if (sc->sc_radiobpf != NULL) {
3566 			struct atw_tx_radiotap_header *tap = &sc->sc_txtap;
3567 
3568 			tap->at_rate = rate;
3569 
3570 			bpf_mtap2(sc->sc_radiobpf, tap,
3571 			    sizeof(sc->sc_txtapu), m0);
3572 		}
3573 #endif /* NBPFILTER > 0 */
3574 
3575 		M_PREPEND(m0, offsetof(struct atw_frame, atw_ihdr), M_DONTWAIT);
3576 
3577 		if (ni != NULL)
3578 			ieee80211_free_node(ni);
3579 
3580 		if (m0 == NULL) {
3581 			ifp->if_oerrors++;
3582 			break;
3583 		}
3584 
3585 		/* just to make sure. */
3586 		m0 = m_pullup(m0, sizeof(struct atw_frame));
3587 
3588 		if (m0 == NULL) {
3589 			ifp->if_oerrors++;
3590 			break;
3591 		}
3592 
3593 		hh = mtod(m0, struct atw_frame *);
3594 		wh = &hh->atw_ihdr;
3595 
3596 		/* Copy everything we need from the 802.11 header:
3597 		 * Frame Control; address 1, address 3, or addresses
3598 		 * 3 and 4. NIC fills in BSSID, SA.
3599 		 */
3600 		if (wh->i_fc[1] & IEEE80211_FC1_DIR_TODS) {
3601 			if (wh->i_fc[1] & IEEE80211_FC1_DIR_FROMDS)
3602 				panic("%s: illegal WDS frame",
3603 				    device_xname(sc->sc_dev));
3604 			memcpy(hh->atw_dst, wh->i_addr3, IEEE80211_ADDR_LEN);
3605 		} else
3606 			memcpy(hh->atw_dst, wh->i_addr1, IEEE80211_ADDR_LEN);
3607 
3608 		*(u_int16_t*)hh->atw_fc = *(u_int16_t*)wh->i_fc;
3609 
3610 		/* initialize remaining Tx parameters */
3611 		memset(&hh->u, 0, sizeof(hh->u));
3612 
3613 		hh->atw_rate = rate * 5;
3614 		/* XXX this could be incorrect if M_FCS. _encap should
3615 		 * probably strip FCS just in case it sticks around in
3616 		 * bridged packets.
3617 		 */
3618 		hh->atw_service = 0x00; /* XXX guess */
3619 		hh->atw_paylen = htole16(m0->m_pkthdr.len -
3620 		    sizeof(struct atw_frame));
3621 
3622 		/* never fragment multicast frames */
3623 		if (IEEE80211_IS_MULTICAST(hh->atw_dst))
3624 			hh->atw_fragthr = htole16(IEEE80211_FRAG_MAX);
3625 		else {
3626 			if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3627 			    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE))
3628 				hdrctl |= htole16(ATW_HDRCTL_SHORT_PREAMBLE);
3629 			hh->atw_fragthr = htole16(ic->ic_fragthreshold);
3630 		}
3631 
3632 		hh->atw_rtylmt = 3;
3633 #if 0
3634 		if (do_encrypt) {
3635 			hdrctl |= htole16(ATW_HDRCTL_WEP);
3636 			hh->atw_keyid = ic->ic_def_txkey;
3637 		}
3638 #endif
3639 
3640 		hh->atw_head_plcplen = htole16(txs->txs_d0.d_plcp_len);
3641 		hh->atw_tail_plcplen = htole16(txs->txs_dn.d_plcp_len);
3642 		if (txs->txs_d0.d_residue)
3643 			hh->atw_head_plcplen |= htole16(0x8000);
3644 		if (txs->txs_dn.d_residue)
3645 			hh->atw_tail_plcplen |= htole16(0x8000);
3646 		hh->atw_head_dur = htole16(txs->txs_d0.d_rts_dur);
3647 		hh->atw_tail_dur = htole16(txs->txs_dn.d_rts_dur);
3648 
3649 		hh->atw_hdrctl = hdrctl;
3650 		hh->atw_fragnum = npkt << 4;
3651 #ifdef ATW_DEBUG
3652 
3653 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3654 			printf("%s: dst = %s, rate = 0x%02x, "
3655 			    "service = 0x%02x, paylen = 0x%04x\n",
3656 			    device_xname(sc->sc_dev), ether_sprintf(hh->atw_dst),
3657 			    hh->atw_rate, hh->atw_service, hh->atw_paylen);
3658 
3659 			printf("%s: fc[0] = 0x%02x, fc[1] = 0x%02x, "
3660 			    "dur1 = 0x%04x, dur2 = 0x%04x, "
3661 			    "dur3 = 0x%04x, rts_dur = 0x%04x\n",
3662 			    device_xname(sc->sc_dev), hh->atw_fc[0], hh->atw_fc[1],
3663 			    hh->atw_tail_plcplen, hh->atw_head_plcplen,
3664 			    hh->atw_tail_dur, hh->atw_head_dur);
3665 
3666 			printf("%s: hdrctl = 0x%04x, fragthr = 0x%04x, "
3667 			    "fragnum = 0x%02x, rtylmt = 0x%04x\n",
3668 			    device_xname(sc->sc_dev), hh->atw_hdrctl,
3669 			    hh->atw_fragthr, hh->atw_fragnum, hh->atw_rtylmt);
3670 
3671 			printf("%s: keyid = %d\n",
3672 			    device_xname(sc->sc_dev), hh->atw_keyid);
3673 
3674 			atw_dump_pkt(ifp, m0);
3675 		}
3676 #endif /* ATW_DEBUG */
3677 
3678 		dmamap = txs->txs_dmamap;
3679 
3680 		/*
3681 		 * Load the DMA map.  Copy and try (once) again if the packet
3682 		 * didn't fit in the alloted number of segments.
3683 		 */
3684 		for (first = 1;
3685 		     (error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
3686 		                  BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 && first;
3687 		     first = 0) {
3688 			MGETHDR(m, M_DONTWAIT, MT_DATA);
3689 			if (m == NULL) {
3690 				aprint_error_dev(sc->sc_dev, "unable to allocate Tx mbuf\n");
3691 				break;
3692 			}
3693 			if (m0->m_pkthdr.len > MHLEN) {
3694 				MCLGET(m, M_DONTWAIT);
3695 				if ((m->m_flags & M_EXT) == 0) {
3696 					aprint_error_dev(sc->sc_dev, "unable to allocate Tx "
3697 					    "cluster\n");
3698 					m_freem(m);
3699 					break;
3700 				}
3701 			}
3702 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
3703 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
3704 			m_freem(m0);
3705 			m0 = m;
3706 			m = NULL;
3707 		}
3708 		if (error != 0) {
3709 			aprint_error_dev(sc->sc_dev, "unable to load Tx buffer, "
3710 			    "error = %d\n", error);
3711 			m_freem(m0);
3712 			break;
3713 		}
3714 
3715 		/*
3716 		 * Ensure we have enough descriptors free to describe
3717 		 * the packet.
3718 		 */
3719 		if (dmamap->dm_nsegs > sc->sc_txfree) {
3720 			/*
3721 			 * Not enough free descriptors to transmit
3722 			 * this packet.  Unload the DMA map and
3723 			 * drop the packet.  Notify the upper layer
3724 			 * that there are no more slots left.
3725 			 *
3726 			 * XXX We could allocate an mbuf and copy, but
3727 			 * XXX it is worth it?
3728 			 */
3729 			bus_dmamap_unload(sc->sc_dmat, dmamap);
3730 			m_freem(m0);
3731 			break;
3732 		}
3733 
3734 		/*
3735 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
3736 		 */
3737 
3738 		/* Sync the DMA map. */
3739 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
3740 		    BUS_DMASYNC_PREWRITE);
3741 
3742 		/* XXX arbitrary retry limit; 8 because I have seen it in
3743 		 * use already and maybe 0 means "no tries" !
3744 		 */
3745 		ctl = htole32(__SHIFTIN(8, ATW_TXCTL_TL_MASK));
3746 
3747 		DPRINTF2(sc, ("%s: TXDR <- max(10, %d)\n",
3748 		    device_xname(sc->sc_dev), rate * 5));
3749 		ctl |= htole32(__SHIFTIN(MAX(10, rate * 5), ATW_TXCTL_TXDR_MASK));
3750 
3751 		/*
3752 		 * Initialize the transmit descriptors.
3753 		 */
3754 		for (nexttx = sc->sc_txnext, seg = 0;
3755 		     seg < dmamap->dm_nsegs;
3756 		     seg++, nexttx = ATW_NEXTTX(nexttx)) {
3757 			/*
3758 			 * If this is the first descriptor we're
3759 			 * enqueueing, don't set the OWN bit just
3760 			 * yet.  That could cause a race condition.
3761 			 * We'll do it below.
3762 			 */
3763 			txd = &sc->sc_txdescs[nexttx];
3764 			txd->at_ctl = ctl |
3765 			    ((nexttx == firsttx) ? 0 : htole32(ATW_TXCTL_OWN));
3766 
3767 			txd->at_buf1 = htole32(dmamap->dm_segs[seg].ds_addr);
3768 			txd->at_flags =
3769 			    htole32(__SHIFTIN(dmamap->dm_segs[seg].ds_len,
3770 			                   ATW_TXFLAG_TBS1_MASK)) |
3771 			    ((nexttx == (ATW_NTXDESC - 1))
3772 			        ? htole32(ATW_TXFLAG_TER) : 0);
3773 			lasttx = nexttx;
3774 		}
3775 
3776 		/* Set `first segment' and `last segment' appropriately. */
3777 		sc->sc_txdescs[sc->sc_txnext].at_flags |=
3778 		    htole32(ATW_TXFLAG_FS);
3779 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_LS);
3780 
3781 #ifdef ATW_DEBUG
3782 		if ((ifp->if_flags & IFF_DEBUG) != 0 && atw_debug > 2) {
3783 			printf("     txsoft %p transmit chain:\n", txs);
3784 			for (seg = sc->sc_txnext;; seg = ATW_NEXTTX(seg)) {
3785 				printf("     descriptor %d:\n", seg);
3786 				printf("       at_ctl:   0x%08x\n",
3787 				    le32toh(sc->sc_txdescs[seg].at_ctl));
3788 				printf("       at_flags:      0x%08x\n",
3789 				    le32toh(sc->sc_txdescs[seg].at_flags));
3790 				printf("       at_buf1: 0x%08x\n",
3791 				    le32toh(sc->sc_txdescs[seg].at_buf1));
3792 				printf("       at_buf2: 0x%08x\n",
3793 				    le32toh(sc->sc_txdescs[seg].at_buf2));
3794 				if (seg == lasttx)
3795 					break;
3796 			}
3797 		}
3798 #endif
3799 
3800 		/* Sync the descriptors we're using. */
3801 		ATW_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
3802 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3803 
3804 		/*
3805 		 * Store a pointer to the packet so we can free it later,
3806 		 * and remember what txdirty will be once the packet is
3807 		 * done.
3808 		 */
3809 		txs->txs_mbuf = m0;
3810 		txs->txs_firstdesc = sc->sc_txnext;
3811 		txs->txs_lastdesc = lasttx;
3812 		txs->txs_ndescs = dmamap->dm_nsegs;
3813 
3814 		/* Advance the tx pointer. */
3815 		sc->sc_txfree -= dmamap->dm_nsegs;
3816 		sc->sc_txnext = nexttx;
3817 
3818 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
3819 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
3820 
3821 		last_txs = txs;
3822 	}
3823 
3824 	if (sc->sc_txfree != ofree) {
3825 		DPRINTF2(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
3826 		    device_xname(sc->sc_dev), lasttx, firsttx));
3827 		/*
3828 		 * Cause a transmit interrupt to happen on the
3829 		 * last packet we enqueued.
3830 		 */
3831 		sc->sc_txdescs[lasttx].at_flags |= htole32(ATW_TXFLAG_IC);
3832 		ATW_CDTXSYNC(sc, lasttx, 1,
3833 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3834 
3835 		/*
3836 		 * The entire packet chain is set up.  Give the
3837 		 * first descriptor to the chip now.
3838 		 */
3839 		sc->sc_txdescs[firsttx].at_ctl |= htole32(ATW_TXCTL_OWN);
3840 		ATW_CDTXSYNC(sc, firsttx, 1,
3841 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
3842 
3843 		/* Wake up the transmitter. */
3844 		ATW_WRITE(sc, ATW_TDR, 0x1);
3845 
3846 		if (txs == NULL || sc->sc_txfree == 0)
3847 			ifp->if_flags |= IFF_OACTIVE;
3848 
3849 		/* Set a watchdog timer in case the chip flakes out. */
3850 		sc->sc_tx_timer = 5;
3851 		ifp->if_timer = 1;
3852 	}
3853 }
3854 
3855 /*
3856  * atw_ioctl:		[ifnet interface function]
3857  *
3858  *	Handle control requests from the operator.
3859  */
3860 int
3861 atw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
3862 {
3863 	struct atw_softc *sc = ifp->if_softc;
3864 	struct ieee80211req *ireq;
3865 	int s, error = 0;
3866 
3867 	s = splnet();
3868 
3869 	switch (cmd) {
3870 	case SIOCSIFFLAGS:
3871 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
3872 			break;
3873 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
3874 		case IFF_UP|IFF_RUNNING:
3875 			/*
3876 			 * To avoid rescanning another access point,
3877 			 * do not call atw_init() here.  Instead,
3878 			 * only reflect media settings.
3879 			 */
3880 			if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
3881 				atw_filter_setup(sc);
3882 			break;
3883 		case IFF_UP:
3884 			error = atw_init(ifp);
3885 			break;
3886 		case IFF_RUNNING:
3887 			atw_stop(ifp, 1);
3888 			break;
3889 		case 0:
3890 			break;
3891 		}
3892 		break;
3893 	case SIOCADDMULTI:
3894 	case SIOCDELMULTI:
3895 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
3896 			if (ifp->if_flags & IFF_RUNNING)
3897 				atw_filter_setup(sc); /* do not rescan */
3898 			error = 0;
3899 		}
3900 		break;
3901 	case SIOCS80211:
3902 		ireq = data;
3903 		if (ireq->i_type == IEEE80211_IOC_FRAGTHRESHOLD) {
3904 			if ((error = kauth_authorize_network(curlwp->l_cred,
3905 			    KAUTH_NETWORK_INTERFACE,
3906 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3907 			    (void *)cmd, NULL) != 0))
3908 				break;
3909 			if (!(IEEE80211_FRAG_MIN <= ireq->i_val &&
3910 			      ireq->i_val <= IEEE80211_FRAG_MAX))
3911 				error = EINVAL;
3912 			else
3913 				sc->sc_ic.ic_fragthreshold = ireq->i_val;
3914 			break;
3915 		}
3916 		/*FALLTHROUGH*/
3917 	default:
3918 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
3919 		if (error == ENETRESET || error == ERESTART) {
3920 			if (is_running(ifp))
3921 				error = atw_init(ifp);
3922 			else
3923 				error = 0;
3924 		}
3925 		break;
3926 	}
3927 
3928 	/* Try to get more packets going. */
3929 	if (device_is_active(sc->sc_dev))
3930 		atw_start(ifp);
3931 
3932 	splx(s);
3933 	return (error);
3934 }
3935 
3936 static int
3937 atw_media_change(struct ifnet *ifp)
3938 {
3939 	int error;
3940 
3941 	error = ieee80211_media_change(ifp);
3942 	if (error == ENETRESET) {
3943 		if (is_running(ifp))
3944 			error = atw_init(ifp);
3945 		else
3946 			error = 0;
3947 	}
3948 	return error;
3949 }
3950