xref: /netbsd-src/sys/dev/ic/athn.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: athn.c,v 1.18 2018/06/26 06:48:00 msaitoh Exp $	*/
2 /*	$OpenBSD: athn.c,v 1.83 2014/07/22 13:12:11 mpi Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2010 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.18 2018/06/26 06:48:00 msaitoh Exp $");
27 
28 #ifndef _MODULE
29 #include "athn_usb.h"		/* for NATHN_USB */
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75 
76 #define Static static
77 
78 #define IS_UP_AND_RUNNING(ifp) \
79 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80 
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84 
85 Static int	athn_clock_rate(struct athn_softc *);
86 Static const char *
87 		athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 		athn_get_rf_name(struct athn_softc *);
90 Static int	athn_init(struct ifnet *);
91 Static int	athn_init_calib(struct athn_softc *,
92 		    struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int	athn_ioctl(struct ifnet *, u_long, void *);
94 Static int	athn_media_change(struct ifnet *);
95 Static int	athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 		    int);
97 Static struct ieee80211_node *
98 		athn_node_alloc(struct ieee80211_node_table *);
99 Static int	athn_reset_power_on(struct athn_softc *);
100 Static int	athn_stop_rx_dma(struct athn_softc *);
101 Static int	athn_switch_chan(struct athn_softc *,
102 		    struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void	athn_calib_to(void *);
104 Static void	athn_disable_interrupts(struct athn_softc *);
105 Static void	athn_enable_interrupts(struct athn_softc *);
106 Static void	athn_get_chanlist(struct athn_softc *);
107 Static void	athn_get_chipid(struct athn_softc *);
108 Static void	athn_init_dma(struct athn_softc *);
109 Static void	athn_init_qos(struct athn_softc *);
110 Static void	athn_init_tx_queues(struct athn_softc *);
111 Static void	athn_iter_func(void *, struct ieee80211_node *);
112 Static void	athn_newassoc(struct ieee80211_node *, int);
113 Static void	athn_next_scan(void *);
114 Static void	athn_pmf_wlan_off(device_t self);
115 Static void	athn_radiotap_attach(struct athn_softc *);
116 Static void	athn_start(struct ifnet *);
117 Static void	athn_tx_reclaim(struct athn_softc *, int);
118 Static void	athn_watchdog(struct ifnet *);
119 Static void	athn_write_serdes(struct athn_softc *,
120 		    const struct athn_serdes *);
121 Static void	athn_softintr(void *);
122 
123 #ifdef ATHN_BT_COEXISTENCE
124 Static void	athn_btcoex_disable(struct athn_softc *);
125 Static void	athn_btcoex_enable(struct athn_softc *);
126 #endif
127 
128 #ifdef unused
129 Static int32_t	athn_ani_get_rssi(struct athn_softc *);
130 Static int	athn_rx_abort(struct athn_softc *);
131 #endif
132 
133 #ifdef notyet
134 Static void	athn_ani_cck_err_trigger(struct athn_softc *);
135 Static void	athn_ani_lower_immunity(struct athn_softc *);
136 Static void	athn_ani_monitor(struct athn_softc *);
137 Static void	athn_ani_ofdm_err_trigger(struct athn_softc *);
138 Static void	athn_ani_restart(struct athn_softc *);
139 Static void	athn_set_multi(struct athn_softc *);
140 #endif /* notyet */
141 
142 PUBLIC int
143 athn_attach(struct athn_softc *sc)
144 {
145 	struct ieee80211com *ic = &sc->sc_ic;
146 	struct ifnet *ifp = &sc->sc_if;
147 	size_t max_nnodes;
148 	int error;
149 
150 	/* Read hardware revision. */
151 	athn_get_chipid(sc);
152 
153 	if ((error = athn_reset_power_on(sc)) != 0) {
154 		aprint_error_dev(sc->sc_dev, "could not reset chip\n");
155 		return error;
156 	}
157 
158 	if ((error = athn_set_power_awake(sc)) != 0) {
159 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
160 		return error;
161 	}
162 
163 	if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
164 		error = ar5416_attach(sc);
165 	else if (AR_SREV_9280(sc))
166 		error = ar9280_attach(sc);
167 	else if (AR_SREV_9285(sc))
168 		error = ar9285_attach(sc);
169 #if NATHN_USB > 0
170 	else if (AR_SREV_9271(sc))
171 		error = ar9285_attach(sc);
172 #endif
173 	else if (AR_SREV_9287(sc))
174 		error = ar9287_attach(sc);
175 	else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
176 		error = ar9380_attach(sc);
177 	else
178 		error = ENOTSUP;
179 	if (error != 0) {
180 		aprint_error_dev(sc->sc_dev, "could not attach chip\n");
181 		return error;
182 	}
183 
184 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
185 	pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
186 	    false);
187 
188 	/* We can put the chip in sleep state now. */
189 	athn_set_power_sleep(sc);
190 
191 	if (!(sc->sc_flags & ATHN_FLAG_USB)) {
192 		sc->sc_soft_ih = softint_establish(SOFTINT_NET, athn_softintr,
193 		    sc);
194 		if (sc->sc_soft_ih == NULL) {
195 			aprint_error_dev(sc->sc_dev,
196 			    "could not establish softint\n");
197 			return EINVAL;
198 		}
199 
200 		error = sc->sc_ops.dma_alloc(sc);
201 		if (error != 0) {
202 			aprint_error_dev(sc->sc_dev,
203 			    "could not allocate DMA resources\n");
204 			return error;
205 		}
206 		/* Steal one Tx buffer for beacons. */
207 		sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
208 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
209 	}
210 
211 	if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
212 		DPRINTFN(DBG_INIT, sc,
213 		    "found RF switch connected to GPIO pin %d\n",
214 		    sc->sc_rfsilent_pin);
215 	}
216 	DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
217 
218 	/*
219 	 * In HostAP mode, the number of STAs that we can handle is
220 	 * limited by the number of entries in the HW key cache.
221 	 * TKIP keys consume 2 entries in the cache.
222 	 */
223 	KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
224 	max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
225 	if (sc->sc_max_aid != 0)	/* we have an override */
226 		ic->ic_max_aid = sc->sc_max_aid;
227 	if (ic->ic_max_aid > max_nnodes)
228 		ic->ic_max_aid = max_nnodes;
229 
230 	DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
231 	    (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
232 	DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
233 	    sc->sc_txchainmask, sc->sc_rxchainmask);
234 
235 	/* Count the number of bits set (in lowest 3 bits). */
236 	sc->sc_ntxchains =
237 	    ((sc->sc_txchainmask >> 2) & 1) +
238 	    ((sc->sc_txchainmask >> 1) & 1) +
239 	    ((sc->sc_txchainmask >> 0) & 1);
240 	sc->sc_nrxchains =
241 	    ((sc->sc_rxchainmask >> 2) & 1) +
242 	    ((sc->sc_rxchainmask >> 1) & 1) +
243 	    ((sc->sc_rxchainmask >> 0) & 1);
244 
245 	if (AR_SINGLE_CHIP(sc)) {
246 		aprint_normal(": Atheros %s\n", athn_get_mac_name(sc));
247 		aprint_verbose_dev(sc->sc_dev,
248 		    "rev %d (%dT%dR), ROM rev %d, address %s\n",
249 		    sc->sc_mac_rev,
250 		    sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
251 		    ether_sprintf(ic->ic_myaddr));
252 	}
253 	else {
254 		aprint_normal(": Atheros %s, RF %s\n", athn_get_mac_name(sc),
255 		    athn_get_rf_name(sc));
256 		aprint_verbose_dev(sc->sc_dev,
257 		    "rev %d (%dT%dR), ROM rev %d, address %s\n",
258 		    sc->sc_mac_rev,
259 		    sc->sc_ntxchains, sc->sc_nrxchains,
260 		    sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
261 	}
262 
263 	callout_init(&sc->sc_scan_to, 0);
264 	callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
265 	callout_init(&sc->sc_calib_to, 0);
266 	callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
267 
268 	sc->sc_amrr.amrr_min_success_threshold = 1;
269 	sc->sc_amrr.amrr_max_success_threshold = 15;
270 
271 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
272 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
273 	ic->ic_state = IEEE80211_S_INIT;
274 
275 	/* Set device capabilities. */
276 	ic->ic_caps =
277 	    IEEE80211_C_WPA |		/* 802.11i */
278 #ifndef IEEE80211_STA_ONLY
279 	    IEEE80211_C_HOSTAP |	/* Host AP mode supported. */
280 // XXX?	    IEEE80211_C_APPMGT |	/* Host AP power saving supported. */
281 #endif
282 	    IEEE80211_C_MONITOR |	/* Monitor mode supported. */
283 	    IEEE80211_C_SHSLOT |	/* Short slot time supported. */
284 	    IEEE80211_C_SHPREAMBLE |	/* Short preamble supported. */
285 	    IEEE80211_C_PMGT;		/* Power saving supported. */
286 
287 #ifndef IEEE80211_NO_HT
288 	if (sc->sc_flags & ATHN_FLAG_11N) {
289 		int i, ntxstreams, nrxstreams;
290 
291 		/* Set HT capabilities. */
292 		ic->ic_htcaps =
293 		    IEEE80211_HTCAP_SMPS_DIS |
294 		    IEEE80211_HTCAP_CBW20_40 |
295 		    IEEE80211_HTCAP_SGI40 |
296 		    IEEE80211_HTCAP_DSSSCCK40;
297 		if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
298 			ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
299 		if (AR_SREV_9380_10_OR_LATER(sc))
300 			ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
301 		if (AR_SREV_9280_10_OR_LATER(sc)) {
302 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
303 			ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
304 		}
305 		ntxstreams = sc->sc_ntxchains;
306 		nrxstreams = sc->sc_nrxchains;
307 		if (!AR_SREV_9380_10_OR_LATER(sc)) {
308 			ntxstreams = MIN(ntxstreams, 2);
309 			nrxstreams = MIN(nrxstreams, 2);
310 		}
311 		/* Set supported HT rates. */
312 		for (i = 0; i < nrxstreams; i++)
313 			ic->ic_sup_mcs[i] = 0xff;
314 		/* Set the "Tx MCS Set Defined" bit. */
315 		ic->ic_sup_mcs[12] |= 0x01;
316 		if (ntxstreams != nrxstreams) {
317 			/* Set "Tx Rx MCS Set Not Equal" bit. */
318 			ic->ic_sup_mcs[12] |= 0x02;
319 			ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
320 		}
321 	}
322 #endif
323 
324 	/* Set supported rates. */
325 	if (sc->sc_flags & ATHN_FLAG_11G) {
326 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
327 		    ieee80211_std_rateset_11b;
328 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
329 		    ieee80211_std_rateset_11g;
330 	}
331 	if (sc->sc_flags & ATHN_FLAG_11A) {
332 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
333 		    ieee80211_std_rateset_11a;
334 	}
335 
336 	/* Get the list of authorized/supported channels. */
337 	athn_get_chanlist(sc);
338 
339 	ifp->if_softc = sc;
340 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
341 	if (!ifp->if_init)
342 		ifp->if_init = athn_init;
343 	if (!ifp->if_ioctl)
344 		ifp->if_ioctl = athn_ioctl;
345 	if (!ifp->if_start)
346 		ifp->if_start = athn_start;
347 	if (!ifp->if_watchdog)
348 		ifp->if_watchdog = athn_watchdog;
349 	IFQ_SET_READY(&ifp->if_snd);
350 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
351 
352 	error = if_initialize(ifp);
353 	if (error != 0) {
354 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
355 		    error);
356 		pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF,
357 		    athn_pmf_wlan_off, false);
358 		callout_destroy(&sc->sc_scan_to);
359 		callout_destroy(&sc->sc_calib_to);
360 		return error;
361 	}
362 	ieee80211_ifattach(ic);
363 	/* Use common softint-based if_input */
364 	ifp->if_percpuq = if_percpuq_create(ifp);
365 	if_register(ifp);
366 
367 	ic->ic_node_alloc = athn_node_alloc;
368 	ic->ic_newassoc = athn_newassoc;
369 	if (ic->ic_updateslot == NULL)
370 		ic->ic_updateslot = athn_updateslot;
371 #ifdef notyet_edca
372 	ic->ic_updateedca = athn_updateedca;
373 #endif
374 #ifdef notyet
375 	ic->ic_set_key = athn_set_key;
376 	ic->ic_delete_key = athn_delete_key;
377 #endif
378 
379 	/* Override 802.11 state transition machine. */
380 	sc->sc_newstate = ic->ic_newstate;
381 	ic->ic_newstate = athn_newstate;
382 
383 	if (sc->sc_media_change == NULL)
384 		sc->sc_media_change = athn_media_change;
385 	ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
386 
387 	athn_radiotap_attach(sc);
388 	return 0;
389 }
390 
391 PUBLIC void
392 athn_detach(struct athn_softc *sc)
393 {
394 	struct ifnet *ifp = &sc->sc_if;
395 	int qid;
396 
397 	callout_halt(&sc->sc_scan_to, NULL);
398 	callout_halt(&sc->sc_calib_to, NULL);
399 
400 	if (!(sc->sc_flags & ATHN_FLAG_USB)) {
401 		for (qid = 0; qid < ATHN_QID_COUNT; qid++)
402 			athn_tx_reclaim(sc, qid);
403 
404 		/* Free Tx/Rx DMA resources. */
405 		sc->sc_ops.dma_free(sc);
406 
407 		if (sc->sc_soft_ih != NULL) {
408 			softint_disestablish(sc->sc_soft_ih);
409 			sc->sc_soft_ih = NULL;
410 		}
411 	}
412 	/* Free ROM copy. */
413 	if (sc->sc_eep != NULL) {
414 		free(sc->sc_eep, M_DEVBUF);
415 		sc->sc_eep = NULL;
416 	}
417 
418 	bpf_detach(ifp);
419 	ieee80211_ifdetach(&sc->sc_ic);
420 	if_detach(ifp);
421 
422 	callout_destroy(&sc->sc_scan_to);
423 	callout_destroy(&sc->sc_calib_to);
424 
425 	pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
426 	    false);
427 }
428 
429 /*
430  * Attach the interface to 802.11 radiotap.
431  */
432 Static void
433 athn_radiotap_attach(struct athn_softc *sc)
434 {
435 
436 	bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
437 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
438 	    &sc->sc_drvbpf);
439 
440 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
441 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
442 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
443 
444 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
445 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
446 	sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
447 }
448 
449 Static void
450 athn_get_chanlist(struct athn_softc *sc)
451 {
452 	struct ieee80211com *ic = &sc->sc_ic;
453 	uint8_t chan;
454 	size_t i;
455 
456 	if (sc->sc_flags & ATHN_FLAG_11G) {
457 		for (i = 1; i <= 14; i++) {
458 			chan = i;
459 			ic->ic_channels[chan].ic_freq =
460 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
461 			ic->ic_channels[chan].ic_flags =
462 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
463 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
464 		}
465 	}
466 	if (sc->sc_flags & ATHN_FLAG_11A) {
467 		for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
468 			chan = athn_5ghz_chans[i];
469 			ic->ic_channels[chan].ic_freq =
470 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
471 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
472 		}
473 	}
474 }
475 
476 PUBLIC void
477 athn_rx_start(struct athn_softc *sc)
478 {
479 	struct ieee80211com *ic = &sc->sc_ic;
480 	uint32_t rfilt;
481 
482 	/* Setup Rx DMA descriptors. */
483 	sc->sc_ops.rx_enable(sc);
484 
485 	/* Set Rx filter. */
486 	rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
487 #ifndef IEEE80211_NO_HT
488 	/* Want Compressed Block Ack Requests. */
489 	rfilt |= AR_RX_FILTER_COMPR_BAR;
490 #endif
491 	rfilt |= AR_RX_FILTER_BEACON;
492 	if (ic->ic_opmode != IEEE80211_M_STA) {
493 		rfilt |= AR_RX_FILTER_PROBEREQ;
494 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
495 			rfilt |= AR_RX_FILTER_PROM;
496 #ifndef IEEE80211_STA_ONLY
497 		if (AR_SREV_9280_10_OR_LATER(sc) &&
498 		    ic->ic_opmode == IEEE80211_M_HOSTAP)
499 			rfilt |= AR_RX_FILTER_PSPOLL;
500 #endif
501 	}
502 	athn_set_rxfilter(sc, rfilt);
503 
504 	/* Set BSSID mask. */
505 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
506 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
507 
508 	athn_set_opmode(sc);
509 
510 	/* Set multicast filter. */
511 	AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
512 	AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
513 
514 	AR_WRITE(sc, AR_FILT_OFDM, 0);
515 	AR_WRITE(sc, AR_FILT_CCK, 0);
516 	AR_WRITE(sc, AR_MIBC, 0);
517 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
518 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
519 
520 	/* XXX ANI. */
521 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
522 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
523 
524 	/* Disable HW crypto for now. */
525 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
526 
527 	/* Start PCU Rx. */
528 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
529 	AR_WRITE_BARRIER(sc);
530 }
531 
532 PUBLIC void
533 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
534 {
535 
536 	AR_WRITE(sc, AR_RX_FILTER, rfilt);
537 #ifdef notyet
538 	reg = AR_READ(sc, AR_PHY_ERR);
539 	reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
540 	    AR_PHY_ERR_CCK_TIMING);
541 	AR_WRITE(sc, AR_PHY_ERR, reg);
542 	if (reg != 0)
543 		AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
544 	else
545 		AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
546 #else
547 	AR_WRITE(sc, AR_PHY_ERR, 0);
548 	AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
549 #endif
550 	AR_WRITE_BARRIER(sc);
551 }
552 
553 PUBLIC int
554 athn_intr(void *xsc)
555 {
556 	struct athn_softc *sc = xsc;
557 	struct ifnet *ifp = &sc->sc_if;
558 
559 	if (!IS_UP_AND_RUNNING(ifp))
560 		return 0;
561 
562 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
563 		/*
564 		 * The hardware is not ready/present, don't touch anything.
565 		 * Note this can happen early on if the IRQ is shared.
566 		 */
567 		return 0;
568 
569 	if (!sc->sc_ops.intr_status(sc))
570 		return 0;
571 
572 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, 0);
573 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
574 	AR_WRITE_BARRIER(sc);
575 
576 	softint_schedule(sc->sc_soft_ih);
577 
578 	return 1;
579 }
580 
581 Static void
582 athn_softintr(void *xsc)
583 {
584 	struct athn_softc *sc = xsc;
585 	struct ifnet *ifp = &sc->sc_if;
586 
587 	if (!IS_UP_AND_RUNNING(ifp))
588 		return;
589 
590 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
591 		/*
592 		 * The hardware is not ready/present, don't touch anything.
593 		 * Note this can happen early on if the IRQ is shared.
594 		 */
595 		return;
596 
597 	sc->sc_ops.intr(sc);
598 
599 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
600 	AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
601 	AR_WRITE_BARRIER(sc);
602 }
603 
604 Static void
605 athn_get_chipid(struct athn_softc *sc)
606 {
607 	uint32_t reg;
608 
609 	reg = AR_READ(sc, AR_SREV);
610 	if (MS(reg, AR_SREV_ID) == 0xff) {
611 		sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
612 		sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
613 		if (!(reg & AR_SREV_TYPE2_HOST_MODE))
614 			sc->sc_flags |= ATHN_FLAG_PCIE;
615 	}
616 	else {
617 		sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
618 		sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
619 		if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
620 			sc->sc_flags |= ATHN_FLAG_PCIE;
621 	}
622 }
623 
624 Static const char *
625 athn_get_mac_name(struct athn_softc *sc)
626 {
627 
628 	switch (sc->sc_mac_ver) {
629 	case AR_SREV_VERSION_5416_PCI:
630 		return "AR5416";
631 	case AR_SREV_VERSION_5416_PCIE:
632 		return "AR5418";
633 	case AR_SREV_VERSION_9160:
634 		return "AR9160";
635 	case AR_SREV_VERSION_9280:
636 		return "AR9280";
637 	case AR_SREV_VERSION_9285:
638 		return "AR9285";
639 	case AR_SREV_VERSION_9271:
640 		return "AR9271";
641 	case AR_SREV_VERSION_9287:
642 		return "AR9287";
643 	case AR_SREV_VERSION_9380:
644 		return "AR9380";
645 	case AR_SREV_VERSION_9485:
646 		return "AR9485";
647 	default:
648 		return "unknown";
649 	}
650 }
651 
652 /*
653  * Return RF chip name (not for single-chip solutions).
654  */
655 Static const char *
656 athn_get_rf_name(struct athn_softc *sc)
657 {
658 
659 	KASSERT(!AR_SINGLE_CHIP(sc));
660 
661 	switch (sc->sc_rf_rev) {
662 	case AR_RAD5133_SREV_MAJOR:	/* Dual-band 3T3R. */
663 		return "AR5133";
664 	case AR_RAD2133_SREV_MAJOR:	/* Single-band 3T3R. */
665 		return "AR2133";
666 	case AR_RAD5122_SREV_MAJOR:	/* Dual-band 2T2R. */
667 		return "AR5122";
668 	case AR_RAD2122_SREV_MAJOR:	/* Single-band 2T2R. */
669 		return "AR2122";
670 	default:
671 		return "unknown";
672 	}
673 }
674 
675 PUBLIC int
676 athn_reset_power_on(struct athn_softc *sc)
677 {
678 	int ntries;
679 
680 	/* Set force wake. */
681 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
682 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
683 
684 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
685 		/* Make sure no DMA is active by doing an AHB reset. */
686 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
687 	}
688 	/* RTC reset and clear. */
689 	AR_WRITE(sc, AR_RTC_RESET, 0);
690 	AR_WRITE_BARRIER(sc);
691 	DELAY(2);
692 	if (!AR_SREV_9380_10_OR_LATER(sc))
693 		AR_WRITE(sc, AR_RC, 0);
694 	AR_WRITE(sc, AR_RTC_RESET, 1);
695 
696 	/* Poll until RTC is ON. */
697 	for (ntries = 0; ntries < 1000; ntries++) {
698 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
699 		    AR_RTC_STATUS_ON)
700 			break;
701 		DELAY(10);
702 	}
703 	if (ntries == 1000) {
704 		DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
705 		return ETIMEDOUT;
706 	}
707 	return athn_reset(sc, 0);
708 }
709 
710 PUBLIC int
711 athn_reset(struct athn_softc *sc, int cold_reset)
712 {
713 	int ntries;
714 
715 	/* Set force wake. */
716 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
717 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
718 
719 	if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
720 	    (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
721 		AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
722 		AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
723 		    (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
724 	}
725 	else if (!AR_SREV_9380_10_OR_LATER(sc))
726 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
727 
728 	AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
729 	    (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
730 	AR_WRITE_BARRIER(sc);
731 	DELAY(50);
732 	AR_WRITE(sc, AR_RTC_RC, 0);
733 	for (ntries = 0; ntries < 1000; ntries++) {
734 		if (!(AR_READ(sc, AR_RTC_RC) &
735 		      (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
736 			break;
737 		DELAY(10);
738 	}
739 	if (ntries == 1000) {
740 		DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
741 		return ETIMEDOUT;
742 	}
743 	AR_WRITE(sc, AR_RC, 0);
744 	AR_WRITE_BARRIER(sc);
745 	return 0;
746 }
747 
748 PUBLIC int
749 athn_set_power_awake(struct athn_softc *sc)
750 {
751 	int ntries, error;
752 
753 	/* Do a Power-On-Reset if shutdown. */
754 	if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
755 	    AR_RTC_STATUS_SHUTDOWN) {
756 		if ((error = athn_reset_power_on(sc)) != 0)
757 			return error;
758 		if (!AR_SREV_9380_10_OR_LATER(sc))
759 			athn_init_pll(sc, NULL);
760 	}
761 	AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
762 	AR_WRITE_BARRIER(sc);
763 	DELAY(50);	/* Give chip the chance to awake. */
764 
765 	/* Poll until RTC is ON. */
766 	for (ntries = 0; ntries < 4000; ntries++) {
767 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
768 		    AR_RTC_STATUS_ON)
769 			break;
770 		DELAY(50);
771 		AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
772 	}
773 	if (ntries == 4000) {
774 		DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
775 		return ETIMEDOUT;
776 	}
777 
778 	AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
779 	AR_WRITE_BARRIER(sc);
780 	return 0;
781 }
782 
783 PUBLIC void
784 athn_set_power_sleep(struct athn_softc *sc)
785 {
786 
787 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
788 	/* Allow the MAC to go to sleep. */
789 	AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
790 	if (!AR_SREV_9380_10_OR_LATER(sc))
791 		AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
792 	/*
793 	 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
794 	 * results in high power consumption on AR5416 chipsets.
795 	 */
796 	if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
797 		AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
798 	AR_WRITE_BARRIER(sc);
799 }
800 
801 PUBLIC void
802 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
803 {
804 	uint32_t pll;
805 
806 	if (AR_SREV_9380_10_OR_LATER(sc)) {
807 		if (AR_SREV_9485(sc))
808 			AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
809 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
810 		pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
811 	}
812 	else if (AR_SREV_9280_10_OR_LATER(sc)) {
813 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
814 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
815 			if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
816 				pll = 0x142c;
817 			else if (AR_SREV_9280_20(sc))
818 		 		pll = 0x2850;
819 			else
820 				pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
821 		}
822 		else
823 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
824 	}
825 	else if (AR_SREV_9160_10_OR_LATER(sc)) {
826 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
827 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
828 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
829 		else
830 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
831 	}
832 	else {
833 		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
834 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
835 			pll |= SM(AR_RTC_PLL_DIV, 0x0a);
836 		else
837 			pll |= SM(AR_RTC_PLL_DIV, 0x0b);
838 	}
839 	DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
840 	AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
841 	if (AR_SREV_9271(sc)) {
842 		/* Switch core clock to 117MHz. */
843 		AR_WRITE_BARRIER(sc);
844 		DELAY(500);
845 		AR_WRITE(sc, 0x50050, 0x304);
846 	}
847 	AR_WRITE_BARRIER(sc);
848 	DELAY(100);
849 	AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
850 	AR_WRITE_BARRIER(sc);
851 }
852 
853 Static void
854 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
855 {
856 	int i;
857 
858 	/* Write sequence to Serializer/Deserializer. */
859 	for (i = 0; i < serdes->nvals; i++)
860 		AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
861 	AR_WRITE_BARRIER(sc);
862 }
863 
864 PUBLIC void
865 athn_config_pcie(struct athn_softc *sc)
866 {
867 
868 	/* Disable PLL when in L0s as well as receiver clock when in L1. */
869 	athn_write_serdes(sc, sc->sc_serdes);
870 
871 	DELAY(1000);
872 	/* Allow forcing of PCIe core into L1 state. */
873 	AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
874 
875 #ifndef ATHN_PCIE_WAEN
876 	AR_WRITE(sc, AR_WA, sc->sc_workaround);
877 #else
878 	AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
879 #endif
880 	AR_WRITE_BARRIER(sc);
881 }
882 
883 /*
884  * Serializer/Deserializer programming for non-PCIe devices.
885  */
886 static const uint32_t ar_nonpcie_serdes_regs[] = {
887 	AR_PCIE_SERDES,
888 	AR_PCIE_SERDES,
889 	AR_PCIE_SERDES,
890 	AR_PCIE_SERDES,
891 	AR_PCIE_SERDES,
892 	AR_PCIE_SERDES,
893 	AR_PCIE_SERDES,
894 	AR_PCIE_SERDES,
895 	AR_PCIE_SERDES,
896 	AR_PCIE_SERDES2,
897 };
898 
899 static const uint32_t ar_nonpcie_serdes_vals[] = {
900 	0x9248fc00,
901 	0x24924924,
902 	0x28000029,
903 	0x57160824,
904 	0x25980579,
905 	0x00000000,
906 	0x1aaabe40,
907 	0xbe105554,
908 	0x000e1007,
909 	0x00000000
910 };
911 
912 static const struct athn_serdes ar_nonpcie_serdes = {
913 	__arraycount(ar_nonpcie_serdes_vals),
914 	ar_nonpcie_serdes_regs,
915 	ar_nonpcie_serdes_vals
916 };
917 
918 PUBLIC void
919 athn_config_nonpcie(struct athn_softc *sc)
920 {
921 
922 	athn_write_serdes(sc, &ar_nonpcie_serdes);
923 }
924 
925 PUBLIC int
926 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
927     struct ieee80211_channel *extchan)
928 {
929 	struct athn_ops *ops = &sc->sc_ops;
930 	int error, qid;
931 
932 	/* Check that Tx is stopped, otherwise RF Bus grant will not work. */
933 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
934 		if (athn_tx_pending(sc, qid))
935 			return EBUSY;
936 
937 	/* Request RF Bus grant. */
938 	if ((error = ops->rf_bus_request(sc)) != 0)
939 		return error;
940 
941 	ops->set_phy(sc, curchan, extchan);
942 
943 	/* Change the synthesizer. */
944 	if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
945 		return error;
946 
947 	sc->sc_curchan = curchan;
948 	sc->sc_curchanext = extchan;
949 
950 	/* Set transmit power values for new channel. */
951 	ops->set_txpower(sc, curchan, extchan);
952 
953 	/* Release the RF Bus grant. */
954 	ops->rf_bus_release(sc);
955 
956 	/* Write delta slope coeffs for modes where OFDM may be used. */
957 	if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
958 		ops->set_delta_slope(sc, curchan, extchan);
959 
960 	ops->spur_mitigate(sc, curchan, extchan);
961 	/* XXX Load noisefloor values and start calibration. */
962 
963 	return 0;
964 }
965 
966 Static int
967 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
968     struct ieee80211_channel *extchan)
969 {
970 	int error, qid;
971 
972 	/* Disable interrupts. */
973 	athn_disable_interrupts(sc);
974 
975 	/* Stop all Tx queues. */
976 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
977 		athn_stop_tx_dma(sc, qid);
978 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
979 		athn_tx_reclaim(sc, qid);
980 
981 	/* Stop Rx. */
982 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
983 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
984 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
985 	AR_WRITE(sc, AR_FILT_OFDM, 0);
986 	AR_WRITE(sc, AR_FILT_CCK, 0);
987 	athn_set_rxfilter(sc, 0);
988 	error = athn_stop_rx_dma(sc);
989 	if (error != 0)
990 		goto reset;
991 
992 #ifdef notyet
993 	/* AR9280 needs a full reset. */
994 	if (AR_SREV_9280(sc))
995 #endif
996 		goto reset;
997 
998 	/* If band or bandwidth changes, we need to do a full reset. */
999 	if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
1000 	    ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
1001 		DPRINTFN(DBG_RF, sc, "channel band switch\n");
1002 		goto reset;
1003 	}
1004 	error = athn_set_power_awake(sc);
1005 	if (error != 0)
1006 		goto reset;
1007 
1008 	error = athn_set_chan(sc, curchan, extchan);
1009 	if (error != 0) {
1010  reset:		/* Error found, try a full reset. */
1011 		DPRINTFN(DBG_RF, sc, "needs a full reset\n");
1012 		error = athn_hw_reset(sc, curchan, extchan, 0);
1013 		if (error != 0)	/* Hopeless case. */
1014 			return error;
1015 	}
1016 	athn_rx_start(sc);
1017 
1018 	/* Re-enable interrupts. */
1019 	athn_enable_interrupts(sc);
1020 	return 0;
1021 }
1022 
1023 PUBLIC void
1024 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1025 {
1026 #define COEFF_SCALE_SHIFT	24
1027 	uint32_t exp, man;
1028 
1029 	/* exponent = 14 - floor(log2(coeff)) */
1030 	for (exp = 31; exp > 0; exp--)
1031 		if (coeff & (1 << exp))
1032 			break;
1033 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1034 
1035 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1036 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1037 
1038 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1039 	*exponent = exp - 16;
1040 #undef COEFF_SCALE_SHIFT
1041 }
1042 
1043 PUBLIC void
1044 athn_reset_key(struct athn_softc *sc, int entry)
1045 {
1046 
1047 	/*
1048 	 * NB: Key cache registers access special memory area that requires
1049 	 * two 32-bit writes to actually update the values in the internal
1050 	 * memory.  Consequently, writes must be grouped by pair.
1051 	 */
1052 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
1053 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
1054 
1055 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
1056 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
1057 
1058 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
1059 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1060 
1061 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
1062 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
1063 
1064 	AR_WRITE_BARRIER(sc);
1065 }
1066 
1067 #ifdef notyet
1068 Static int
1069 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1070     struct ieee80211_key *k)
1071 {
1072 	struct athn_softc *sc = ic->ic_ifp->if_softc;
1073 	const uint8_t *txmic, *rxmic, *key, *addr;
1074 	uintptr_t entry, micentry;
1075 	uint32_t type, lo, hi;
1076 
1077 	switch (k->k_cipher) {
1078 	case IEEE80211_CIPHER_WEP40:
1079 		type = AR_KEYTABLE_TYPE_40;
1080 		break;
1081 	case IEEE80211_CIPHER_WEP104:
1082 		type = AR_KEYTABLE_TYPE_104;
1083 		break;
1084 	case IEEE80211_CIPHER_TKIP:
1085 		type = AR_KEYTABLE_TYPE_TKIP;
1086 		break;
1087 	case IEEE80211_CIPHER_CCMP:
1088 		type = AR_KEYTABLE_TYPE_CCM;
1089 		break;
1090 	default:
1091 		/* Fallback to software crypto for other ciphers. */
1092 		return ieee80211_set_key(ic, ni, k);
1093 	}
1094 
1095 	if (!(k->k_flags & IEEE80211_KEY_GROUP))
1096 		entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1097 	else
1098 		entry = k->k_id;
1099 	k->k_priv = (void *)entry;
1100 
1101 	/* NB: See note about key cache registers access above. */
1102 	key = k->k_key;
1103 	if (type == AR_KEYTABLE_TYPE_TKIP) {
1104 #ifndef IEEE80211_STA_ONLY
1105 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1106 			txmic = &key[16];
1107 			rxmic = &key[24];
1108 		}
1109 		else
1110 #endif
1111 		{
1112 			rxmic = &key[16];
1113 			txmic = &key[24];
1114 		}
1115 		/* Tx+Rx MIC key is at entry + 64. */
1116 		micentry = entry + 64;
1117 		AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1118 		AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1119 
1120 		AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1121 		AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1122 
1123 		AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1124 		AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1125 	}
1126 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1127 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1128 
1129 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1130 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1131 
1132 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1133 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1134 
1135 	if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1136 		addr = ni->ni_macaddr;
1137 		lo = LE_READ_4(&addr[0]);
1138 		hi = LE_READ_2(&addr[4]);
1139 		lo = lo >> 1 | hi << 31;
1140 		hi = hi >> 1;
1141 	}
1142 	else
1143 		lo = hi = 0;
1144 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1145 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1146 	AR_WRITE_BARRIER(sc);
1147 	return 0;
1148 }
1149 
1150 Static void
1151 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1152     struct ieee80211_key *k)
1153 {
1154 	struct athn_softc *sc = ic->ic_ifp->if_softc;
1155 	uintptr_t entry;
1156 
1157 	switch (k->k_cipher) {
1158 	case IEEE80211_CIPHER_WEP40:
1159 	case IEEE80211_CIPHER_WEP104:
1160 	case IEEE80211_CIPHER_CCMP:
1161 		entry = (uintptr_t)k->k_priv;
1162 		athn_reset_key(sc, entry);
1163 		break;
1164 	case IEEE80211_CIPHER_TKIP:
1165 		entry = (uintptr_t)k->k_priv;
1166 		athn_reset_key(sc, entry);
1167 		athn_reset_key(sc, entry + 64);
1168 		break;
1169 	default:
1170 		/* Fallback to software crypto for other ciphers. */
1171 		ieee80211_delete_key(ic, ni, k);
1172 	}
1173 }
1174 #endif /* notyet */
1175 
1176 PUBLIC void
1177 athn_led_init(struct athn_softc *sc)
1178 {
1179 	struct athn_ops *ops = &sc->sc_ops;
1180 
1181 	ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1182 	/* LED off, active low. */
1183 	athn_set_led(sc, 0);
1184 }
1185 
1186 PUBLIC void
1187 athn_set_led(struct athn_softc *sc, int on)
1188 {
1189 	struct athn_ops *ops = &sc->sc_ops;
1190 
1191 	sc->sc_led_state = on;
1192 	ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1193 }
1194 
1195 #ifdef ATHN_BT_COEXISTENCE
1196 Static void
1197 athn_btcoex_init(struct athn_softc *sc)
1198 {
1199 	struct athn_ops *ops = &sc->sc_ops;
1200 	uint32_t reg;
1201 
1202 	if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1203 		/* Connect bt_active to baseband. */
1204 		AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1205 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1206 		    AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1207 		AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1208 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1209 
1210 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1211 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1212 		    AR_GPIO_BTACTIVE_PIN);
1213 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1214 		AR_WRITE_BARRIER(sc);
1215 
1216 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1217 	}
1218 	else {	/* 3-wire. */
1219 		AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1220 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1221 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1222 
1223 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1224 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1225 		    AR_GPIO_BTACTIVE_PIN);
1226 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1227 		    AR_GPIO_BTPRIORITY_PIN);
1228 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1229 		AR_WRITE_BARRIER(sc);
1230 
1231 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1232 		ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1233 	}
1234 }
1235 
1236 Static void
1237 athn_btcoex_enable(struct athn_softc *sc)
1238 {
1239 	struct athn_ops *ops = &sc->sc_ops;
1240 	uint32_t reg;
1241 
1242 	if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1243 		AR_WRITE(sc, AR_BT_COEX_MODE,
1244 		    SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1245 		    SM(AR_BT_PRIORITY_TIME, 2) |
1246 		    SM(AR_BT_FIRST_SLOT_TIME, 5) |
1247 		    SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1248 		    AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1249 		    AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1250 		AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1251 		    SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1252 		    SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1253 		AR_WRITE(sc, AR_BT_COEX_MODE2,
1254 		    SM(AR_BT_BCN_MISS_THRESH, 50) |
1255 		    AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1256 
1257 		AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1258 		AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1259 		AR_WRITE_BARRIER(sc);
1260 
1261 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1262 		    AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1263 
1264 	}
1265 	else {	/* 2-wire. */
1266 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1267 		    AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1268 	}
1269 	reg = AR_READ(sc, AR_GPIO_PDPU);
1270 	reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1271 	reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1272 	AR_WRITE(sc, AR_GPIO_PDPU, reg);
1273 	AR_WRITE_BARRIER(sc);
1274 
1275 	/* Disable PCIe Active State Power Management (ASPM). */
1276 	if (sc->sc_disable_aspm != NULL)
1277 		sc->sc_disable_aspm(sc);
1278 
1279 	/* XXX Start periodic timer. */
1280 }
1281 
1282 Static void
1283 athn_btcoex_disable(struct athn_softc *sc)
1284 {
1285 	struct athn_ops *ops = &sc->sc_ops;
1286 
1287 	ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1288 
1289 	ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1290 	    AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1291 
1292 	if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1293 		AR_WRITE(sc, AR_BT_COEX_MODE,
1294 		    SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1295 		AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1296 		AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1297 		/* XXX Stop periodic timer. */
1298 	}
1299 	AR_WRITE_BARRIER(sc);
1300 	/* XXX Restore ASPM setting? */
1301 }
1302 #endif
1303 
1304 Static void
1305 athn_iter_func(void *arg, struct ieee80211_node *ni)
1306 {
1307 	struct athn_softc *sc = arg;
1308 	struct athn_node *an = (struct athn_node *)ni;
1309 
1310 	ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1311 }
1312 
1313 Static void
1314 athn_calib_to(void *arg)
1315 {
1316 	extern int ticks;
1317 	struct athn_softc *sc = arg;
1318 	struct athn_ops *ops = &sc->sc_ops;
1319 	struct ieee80211com *ic = &sc->sc_ic;
1320 	int s;
1321 
1322 	s = splnet();
1323 
1324 	/* Do periodic (every 4 minutes) PA calibration. */
1325 	if (AR_SREV_9285_11_OR_LATER(sc) &&
1326 	    !AR_SREV_9380_10_OR_LATER(sc) &&
1327 	    (ticks - (sc->sc_pa_calib_ticks + 240 * hz)) >= 0) {
1328 		sc->sc_pa_calib_ticks = ticks;
1329 		if (AR_SREV_9271(sc))
1330 			ar9271_pa_calib(sc);
1331 		else
1332 			ar9285_pa_calib(sc);
1333 	}
1334 
1335 	/* Do periodic (every 30 seconds) temperature compensation. */
1336 	if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1337 	    ticks >= sc->sc_olpc_ticks + 30 * hz) {
1338 		sc->sc_olpc_ticks = ticks;
1339 		ops->olpc_temp_compensation(sc);
1340 	}
1341 
1342 #ifdef notyet
1343 	/* XXX ANI. */
1344 	athn_ani_monitor(sc);
1345 
1346 	ops->next_calib(sc);
1347 #endif
1348 	if (ic->ic_fixed_rate == -1) {
1349 		if (ic->ic_opmode == IEEE80211_M_STA)
1350 			athn_iter_func(sc, ic->ic_bss);
1351 		else
1352 			ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1353 	}
1354 	callout_schedule(&sc->sc_calib_to, hz / 2);
1355 	splx(s);
1356 }
1357 
1358 Static int
1359 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1360     struct ieee80211_channel *extchan)
1361 {
1362 	struct athn_ops *ops = &sc->sc_ops;
1363 	int error;
1364 
1365 	if (AR_SREV_9380_10_OR_LATER(sc))
1366 		error = ar9003_init_calib(sc);
1367 	else if (AR_SREV_9285_10_OR_LATER(sc))
1368 		error = ar9285_init_calib(sc, curchan, extchan);
1369 	else
1370 		error = ar5416_init_calib(sc, curchan, extchan);
1371 	if (error != 0)
1372 		return error;
1373 
1374 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1375 		/* Do PA calibration. */
1376 		if (AR_SREV_9285_11_OR_LATER(sc)) {
1377 			extern int ticks;
1378 			sc->sc_pa_calib_ticks = ticks;
1379 			if (AR_SREV_9271(sc))
1380 				ar9271_pa_calib(sc);
1381 			else
1382 				ar9285_pa_calib(sc);
1383 		}
1384 		/* Do noisefloor calibration. */
1385 		ops->noisefloor_calib(sc);
1386 	}
1387 	if (AR_SREV_9160_10_OR_LATER(sc)) {
1388 		/* Support IQ calibration. */
1389 		sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1390 		if (AR_SREV_9380_10_OR_LATER(sc)) {
1391 			/* Support temperature compensation calibration. */
1392 			sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1393 		}
1394 		else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1395 			/*
1396 			 * ADC gain calibration causes uplink throughput
1397 			 * drops in HT40 mode on AR9287.
1398 			 */
1399 			if (!AR_SREV_9287(sc)) {
1400 				/* Support ADC gain calibration. */
1401 				sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1402 			}
1403 			/* Support ADC DC offset calibration. */
1404 			sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1405 		}
1406 	}
1407 	return 0;
1408 }
1409 
1410 /*
1411  * Adaptive noise immunity.
1412  */
1413 #ifdef notyet
1414 Static int32_t
1415 athn_ani_get_rssi(struct athn_softc *sc)
1416 {
1417 
1418 	return 0;	/* XXX */
1419 }
1420 #endif /* notyet */
1421 
1422 #ifdef notyet
1423 Static void
1424 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1425 {
1426 	struct athn_ani *ani = &sc->sc_ani;
1427 	struct athn_ops *ops = &sc->sc_ops;
1428 	int32_t rssi;
1429 
1430 	/* First, raise noise immunity level, up to max. */
1431 	if (ani->noise_immunity_level < 4) {
1432 		ani->noise_immunity_level++;
1433 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1434 		return;
1435 	}
1436 
1437 	/* Then, raise our spur immunity level, up to max. */
1438 	if (ani->spur_immunity_level < 7) {
1439 		ani->spur_immunity_level++;
1440 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1441 		return;
1442 	}
1443 
1444 #ifndef IEEE80211_STA_ONLY
1445 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1446 		if (ani->firstep_level < 2) {
1447 			ani->firstep_level++;
1448 			ops->set_firstep_level(sc, ani->firstep_level);
1449 		}
1450 		return;
1451 	}
1452 #endif
1453 	rssi = athn_ani_get_rssi(sc);
1454 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1455 		/*
1456 		 * Beacon RSSI is high, turn off OFDM weak signal detection
1457 		 * or raise first step level as last resort.
1458 		 */
1459 		if (ani->ofdm_weak_signal) {
1460 			ani->ofdm_weak_signal = 0;
1461 			ops->disable_ofdm_weak_signal(sc);
1462 			ani->spur_immunity_level = 0;
1463 			ops->set_spur_immunity_level(sc, 0);
1464 		}
1465 		else if (ani->firstep_level < 2) {
1466 			ani->firstep_level++;
1467 			ops->set_firstep_level(sc, ani->firstep_level);
1468 		}
1469 	}
1470 	else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1471 		/*
1472 		 * Beacon RSSI is in mid range, we need OFDM weak signal
1473 		 * detection but we can raise first step level.
1474 		 */
1475 		if (!ani->ofdm_weak_signal) {
1476 			ani->ofdm_weak_signal = 1;
1477 			ops->enable_ofdm_weak_signal(sc);
1478 		}
1479 		if (ani->firstep_level < 2) {
1480 			ani->firstep_level++;
1481 			ops->set_firstep_level(sc, ani->firstep_level);
1482 		}
1483 	}
1484 	else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1485 		/*
1486 		 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1487 		 * signal detection and zero first step level to maximize
1488 		 * CCK sensitivity.
1489 		 */
1490 		if (ani->ofdm_weak_signal) {
1491 			ani->ofdm_weak_signal = 0;
1492 			ops->disable_ofdm_weak_signal(sc);
1493 		}
1494 		if (ani->firstep_level > 0) {
1495 			ani->firstep_level = 0;
1496 			ops->set_firstep_level(sc, 0);
1497 		}
1498 	}
1499 }
1500 #endif /* notyet */
1501 
1502 #ifdef notyet
1503 Static void
1504 athn_ani_cck_err_trigger(struct athn_softc *sc)
1505 {
1506 	struct athn_ani *ani = &sc->sc_ani;
1507 	struct athn_ops *ops = &sc->sc_ops;
1508 	int32_t rssi;
1509 
1510 	/* Raise noise immunity level, up to max. */
1511 	if (ani->noise_immunity_level < 4) {
1512 		ani->noise_immunity_level++;
1513 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1514 		return;
1515 	}
1516 
1517 #ifndef IEEE80211_STA_ONLY
1518 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1519 		if (ani->firstep_level < 2) {
1520 			ani->firstep_level++;
1521 			ops->set_firstep_level(sc, ani->firstep_level);
1522 		}
1523 		return;
1524 	}
1525 #endif
1526 	rssi = athn_ani_get_rssi(sc);
1527 	if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1528 		/*
1529 		 * Beacon RSSI is in mid or high range, raise first step
1530 		 * level.
1531 		 */
1532 		if (ani->firstep_level < 2) {
1533 			ani->firstep_level++;
1534 			ops->set_firstep_level(sc, ani->firstep_level);
1535 		}
1536 	}
1537 	else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1538 		/*
1539 		 * Beacon RSSI is low, zero first step level to maximize
1540 		 * CCK sensitivity.
1541 		 */
1542 		if (ani->firstep_level > 0) {
1543 			ani->firstep_level = 0;
1544 			ops->set_firstep_level(sc, 0);
1545 		}
1546 	}
1547 }
1548 #endif /* notyet */
1549 
1550 #ifdef notyet
1551 Static void
1552 athn_ani_lower_immunity(struct athn_softc *sc)
1553 {
1554 	struct athn_ani *ani = &sc->sc_ani;
1555 	struct athn_ops *ops = &sc->sc_ops;
1556 	int32_t rssi;
1557 
1558 #ifndef IEEE80211_STA_ONLY
1559 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1560 		if (ani->firstep_level > 0) {
1561 			ani->firstep_level--;
1562 			ops->set_firstep_level(sc, ani->firstep_level);
1563 		}
1564 		return;
1565 	}
1566 #endif
1567 	rssi = athn_ani_get_rssi(sc);
1568 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1569 		/*
1570 		 * Beacon RSSI is high, leave OFDM weak signal detection
1571 		 * off or it may oscillate.
1572 		 */
1573 	}
1574 	else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1575 		/*
1576 		 * Beacon RSSI is in mid range, turn on OFDM weak signal
1577 		 * detection or lower first step level.
1578 		 */
1579 		if (!ani->ofdm_weak_signal) {
1580 			ani->ofdm_weak_signal = 1;
1581 			ops->enable_ofdm_weak_signal(sc);
1582 			return;
1583 		}
1584 		if (ani->firstep_level > 0) {
1585 			ani->firstep_level--;
1586 			ops->set_firstep_level(sc, ani->firstep_level);
1587 			return;
1588 		}
1589 	}
1590 	else {
1591 		/* Beacon RSSI is low, lower first step level. */
1592 		if (ani->firstep_level > 0) {
1593 			ani->firstep_level--;
1594 			ops->set_firstep_level(sc, ani->firstep_level);
1595 			return;
1596 		}
1597 	}
1598 	/*
1599 	 * Lower spur immunity level down to zero, or if all else fails,
1600 	 * lower noise immunity level down to zero.
1601 	 */
1602 	if (ani->spur_immunity_level > 0) {
1603 		ani->spur_immunity_level--;
1604 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1605 	}
1606 	else if (ani->noise_immunity_level > 0) {
1607 		ani->noise_immunity_level--;
1608 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1609 	}
1610 }
1611 #endif /* notyet */
1612 
1613 #ifdef notyet
1614 Static void
1615 athn_ani_restart(struct athn_softc *sc)
1616 {
1617 	struct athn_ani *ani = &sc->sc_ani;
1618 
1619 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
1620 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
1621 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1622 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1623 	AR_WRITE_BARRIER(sc);
1624 
1625 	ani->listen_time = 0;
1626 	ani->ofdm_phy_err_count = 0;
1627 	ani->cck_phy_err_count = 0;
1628 }
1629 #endif /* notyet */
1630 
1631 #ifdef notyet
1632 Static void
1633 athn_ani_monitor(struct athn_softc *sc)
1634 {
1635 	struct athn_ani *ani = &sc->sc_ani;
1636 	uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1637 	int32_t cycdelta, txfdelta, rxfdelta;
1638 	int32_t listen_time;
1639 
1640 	txfcnt = AR_READ(sc, AR_TFCNT);	/* Tx frame count. */
1641 	rxfcnt = AR_READ(sc, AR_RFCNT);	/* Rx frame count. */
1642 	cyccnt = AR_READ(sc, AR_CCCNT);	/* Cycle count. */
1643 
1644 	if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1645 		cycdelta = cyccnt - ani->cyccnt;
1646 		txfdelta = txfcnt - ani->txfcnt;
1647 		rxfdelta = rxfcnt - ani->rxfcnt;
1648 
1649 		listen_time = (cycdelta - txfdelta - rxfdelta) /
1650 		    (athn_clock_rate(sc) * 1000);
1651 	}
1652 	else
1653 		listen_time = 0;
1654 
1655 	ani->cyccnt = cyccnt;
1656 	ani->txfcnt = txfcnt;
1657 	ani->rxfcnt = rxfcnt;
1658 
1659 	if (listen_time < 0) {
1660 		athn_ani_restart(sc);
1661 		return;
1662 	}
1663 	ani->listen_time += listen_time;
1664 
1665 	phy1 = AR_READ(sc, AR_PHY_ERR_1);
1666 	phy2 = AR_READ(sc, AR_PHY_ERR_2);
1667 
1668 	if (phy1 < ani->ofdm_phy_err_base) {
1669 		AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1670 		AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1671 	}
1672 	if (phy2 < ani->cck_phy_err_base) {
1673 		AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1674 		AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1675 	}
1676 	if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1677 		AR_WRITE_BARRIER(sc);
1678 		return;
1679 	}
1680 	ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1681 	ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1682 
1683 	if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1684 		/* Check to see if we need to lower immunity. */
1685 		if (ani->ofdm_phy_err_count <=
1686 		    ani->listen_time * ani->ofdm_trig_low / 1000 &&
1687 		    ani->cck_phy_err_count <=
1688 		    ani->listen_time * ani->cck_trig_low / 1000)
1689 			athn_ani_lower_immunity(sc);
1690 		athn_ani_restart(sc);
1691 
1692 	}
1693 	else if (ani->listen_time > ATHN_ANI_PERIOD) {
1694 		/* Check to see if we need to raise immunity. */
1695 		if (ani->ofdm_phy_err_count >
1696 		    ani->listen_time * ani->ofdm_trig_high / 1000) {
1697 			athn_ani_ofdm_err_trigger(sc);
1698 			athn_ani_restart(sc);
1699 		}
1700 		else if (ani->cck_phy_err_count >
1701 		    ani->listen_time * ani->cck_trig_high / 1000) {
1702 			athn_ani_cck_err_trigger(sc);
1703 			athn_ani_restart(sc);
1704 		}
1705 	}
1706 }
1707 #endif /* notyet */
1708 
1709 PUBLIC uint8_t
1710 athn_chan2fbin(struct ieee80211_channel *c)
1711 {
1712 
1713 	if (IEEE80211_IS_CHAN_2GHZ(c))
1714 		return c->ic_freq - 2300;
1715 	else
1716 		return (c->ic_freq - 4800) / 5;
1717 }
1718 
1719 PUBLIC int
1720 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1721 {
1722 
1723 	if (x1 == x2)	/* Prevents division by zero. */
1724 		return y1;
1725 	/* Linear interpolation. */
1726 	return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1727 }
1728 
1729 PUBLIC void
1730 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1731     int *lo, int *hi)
1732 {
1733 	int i;
1734 
1735 	for (i = 0; i < npiers; i++)
1736 		if (pierfreq[i] == AR_BCHAN_UNUSED ||
1737 		    pierfreq[i] > fbin)
1738 			break;
1739 	*hi = i;
1740 	*lo = *hi - 1;
1741 	if (*lo == -1)
1742 		*lo = *hi;
1743 	else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1744 		*hi = *lo;
1745 }
1746 
1747 Static void
1748 athn_init_dma(struct athn_softc *sc)
1749 {
1750 	uint32_t reg;
1751 
1752 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1753 		/* Set AHB not to do cacheline prefetches. */
1754 		AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1755 	}
1756 	reg = AR_READ(sc, AR_TXCFG);
1757 	/* Let MAC DMA reads be in 128-byte chunks. */
1758 	reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1759 
1760 	/* Set initial Tx trigger level. */
1761 	if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1762 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1763 	else if (!AR_SREV_9380_10_OR_LATER(sc))
1764 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1765 	AR_WRITE(sc, AR_TXCFG, reg);
1766 
1767 	/* Let MAC DMA writes be in 128-byte chunks. */
1768 	reg = AR_READ(sc, AR_RXCFG);
1769 	reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1770 	AR_WRITE(sc, AR_RXCFG, reg);
1771 
1772 	/* Setup Rx FIFO threshold to hold off Tx activities. */
1773 	AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1774 
1775 	/* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1776 	if (AR_SREV_9285(sc)) {
1777 		AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1778 		    AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1779 	}
1780 	else if (!AR_SREV_9271(sc)) {
1781 		AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1782 		    AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1783 	}
1784 	AR_WRITE_BARRIER(sc);
1785 
1786 	/* Reset Tx status ring. */
1787 	if (AR_SREV_9380_10_OR_LATER(sc))
1788 		ar9003_reset_txsring(sc);
1789 }
1790 
1791 PUBLIC void
1792 athn_inc_tx_trigger_level(struct athn_softc *sc)
1793 {
1794 	uint32_t reg, ftrig;
1795 
1796 	reg = AR_READ(sc, AR_TXCFG);
1797 	ftrig = MS(reg, AR_TXCFG_FTRIG);
1798 	/*
1799 	 * NB: The AR9285 and all single-stream parts have an issue that
1800 	 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1801 	 */
1802 	if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1803 		return;		/* Already at max. */
1804 	reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1805 	AR_WRITE(sc, AR_TXCFG, reg);
1806 	AR_WRITE_BARRIER(sc);
1807 }
1808 
1809 PUBLIC int
1810 athn_stop_rx_dma(struct athn_softc *sc)
1811 {
1812 	int ntries;
1813 
1814 	AR_WRITE(sc, AR_CR, AR_CR_RXD);
1815 	/* Wait for Rx enable bit to go low. */
1816 	for (ntries = 0; ntries < 100; ntries++) {
1817 		if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1818 			return 0;
1819 		DELAY(100);
1820 	}
1821 	DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1822 	return ETIMEDOUT;
1823 }
1824 
1825 #ifdef unused
1826 Static int
1827 athn_rx_abort(struct athn_softc *sc)
1828 {
1829 	int ntries;
1830 
1831 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1832 	for (ntries = 0; ntries < 1000; ntries++) {
1833 		if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1834 			return 0;
1835 		DELAY(10);
1836 	}
1837 	DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1838 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1839 	AR_WRITE_BARRIER(sc);
1840 	return ETIMEDOUT;
1841 }
1842 #endif /* unused */
1843 
1844 Static void
1845 athn_tx_reclaim(struct athn_softc *sc, int qid)
1846 {
1847 	struct athn_txq *txq = &sc->sc_txq[qid];
1848 	struct athn_tx_buf *bf;
1849 
1850 	/* Reclaim all buffers queued in the specified Tx queue. */
1851 	/* NB: Tx DMA must be stopped. */
1852 	while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1853 		SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1854 
1855 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1856 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1857 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1858 		m_freem(bf->bf_m);
1859 		bf->bf_m = NULL;
1860 		bf->bf_ni = NULL;	/* Nodes already freed! */
1861 
1862 		/* Link Tx buffer back to global free list. */
1863 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1864 	}
1865 }
1866 
1867 PUBLIC int
1868 athn_tx_pending(struct athn_softc *sc, int qid)
1869 {
1870 
1871 	return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1872 	    (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1873 }
1874 
1875 PUBLIC void
1876 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1877 {
1878 	uint32_t tsflo;
1879 	int ntries, i;
1880 
1881 	AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1882 	for (ntries = 0; ntries < 40; ntries++) {
1883 		if (!athn_tx_pending(sc, qid))
1884 			break;
1885 		DELAY(100);
1886 	}
1887 	if (ntries == 40) {
1888 		for (i = 0; i < 2; i++) {
1889 			tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1890 			AR_WRITE(sc, AR_QUIET2,
1891 			    SM(AR_QUIET2_QUIET_DUR, 10));
1892 			AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1893 			AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1894 			AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1895 			if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1896 				break;
1897 		}
1898 		AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1899 		AR_WRITE_BARRIER(sc);
1900 		DELAY(200);
1901 		AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1902 		AR_WRITE_BARRIER(sc);
1903 
1904 		for (ntries = 0; ntries < 40; ntries++) {
1905 			if (!athn_tx_pending(sc, qid))
1906 				break;
1907 			DELAY(100);
1908 		}
1909 
1910 		AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1911 	}
1912 	AR_WRITE(sc, AR_Q_TXD, 0);
1913 	AR_WRITE_BARRIER(sc);
1914 }
1915 
1916 PUBLIC int
1917 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1918 {
1919 #define divround(a, b)	(((a) + (b) - 1) / (b))
1920 	int txtime;
1921 
1922 	/* XXX HT. */
1923 	if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1924 		txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1925 		/* SIFS is 10us for 11g but Signal Extension adds 6us. */
1926 		txtime = 16 + 4 + 4 * txtime + 16;
1927 	}
1928 	else {
1929 		txtime = divround(16 * len, athn_rates[ridx].rate);
1930 		if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1931 			txtime +=  72 + 24;
1932 		else
1933 			txtime += 144 + 48;
1934 		txtime += 10;	/* 10us SIFS. */
1935 	}
1936 	return txtime;
1937 #undef divround
1938 }
1939 
1940 PUBLIC void
1941 athn_init_tx_queues(struct athn_softc *sc)
1942 {
1943 	int qid;
1944 
1945 	for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1946 		SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1947 		sc->sc_txq[qid].lastds = NULL;
1948 		sc->sc_txq[qid].wait = NULL;
1949 		sc->sc_txq[qid].queued = 0;
1950 
1951 		AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1952 		    SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1953 		    SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1954 		    SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1955 		AR_WRITE(sc, AR_QMISC(qid),
1956 		    AR_Q_MISC_DCU_EARLY_TERM_REQ);
1957 		AR_WRITE(sc, AR_DMISC(qid),
1958 		    SM(AR_D_MISC_BKOFF_THRESH, 2) |
1959 		    AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1960 	}
1961 
1962 	/* Init beacon queue. */
1963 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1964 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1965 	    AR_Q_MISC_CBR_INCR_DIS1);
1966 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1967 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1968 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1969 	    AR_D_MISC_BEACON_USE |
1970 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1971 	AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1972 	    SM(AR_D_LCL_IFS_CWMIN, 0) |
1973 	    SM(AR_D_LCL_IFS_CWMAX, 0) |
1974 	    SM(AR_D_LCL_IFS_AIFS,  1));
1975 
1976 	/* Init CAB (Content After Beacon) queue. */
1977 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1978 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1979 	    AR_Q_MISC_CBR_INCR_DIS0);
1980 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1981 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1982 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1983 
1984 	/* Init PS-Poll queue. */
1985 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1986 	    AR_Q_MISC_CBR_INCR_DIS1);
1987 
1988 	/* Init UAPSD queue. */
1989 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1990 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1991 
1992 	if (AR_SREV_9380_10_OR_LATER(sc)) {
1993 		/* Enable MAC descriptor CRC check. */
1994 		AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1995 	}
1996 	/* Enable DESC interrupts for all Tx queues. */
1997 	AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1998 	/* Enable EOL interrupts for all Tx queues except UAPSD. */
1999 	AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
2000 	AR_WRITE_BARRIER(sc);
2001 }
2002 
2003 PUBLIC void
2004 athn_set_sta_timers(struct athn_softc *sc)
2005 {
2006 	struct ieee80211com *ic = &sc->sc_ic;
2007 	uint32_t tsfhi, tsflo, tsftu, reg;
2008 	uint32_t intval, next_tbtt, next_dtim;
2009 	int dtim_period, rem_dtim_count;
2010 
2011 	tsfhi = AR_READ(sc, AR_TSF_U32);
2012 	tsflo = AR_READ(sc, AR_TSF_L32);
2013 	tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
2014 
2015 	/* Beacon interval in TU. */
2016 	intval = ic->ic_bss->ni_intval;
2017 
2018 	next_tbtt = roundup(tsftu, intval);
2019 #ifdef notyet
2020 	dtim_period = ic->ic_dtim_period;
2021 	if (dtim_period <= 0)
2022 #endif
2023 		dtim_period = 1;	/* Assume all TIMs are DTIMs. */
2024 
2025 #ifdef notyet
2026 	int dtim_count = ic->ic_dtim_count;
2027 	if (dtim_count >= dtim_period)	/* Should not happen. */
2028 		dtim_count = 0;	/* Assume last TIM was a DTIM. */
2029 #endif
2030 
2031 	/* Compute number of remaining TIMs until next DTIM. */
2032 	rem_dtim_count = 0;	/* XXX */
2033 	next_dtim = next_tbtt + rem_dtim_count * intval;
2034 
2035 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2036 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2037 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2038 
2039 	/*
2040 	 * Set the number of consecutive beacons to miss before raising
2041 	 * a BMISS interrupt to 10.
2042 	 */
2043 	reg = AR_READ(sc, AR_RSSI_THR);
2044 	reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
2045 	AR_WRITE(sc, AR_RSSI_THR, reg);
2046 
2047 	AR_WRITE(sc, AR_NEXT_DTIM,
2048 	    (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2049 	AR_WRITE(sc, AR_NEXT_TIM,
2050 	    (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2051 
2052 	/* CAB timeout is in 1/8 TU. */
2053 	AR_WRITE(sc, AR_SLEEP1,
2054 	    SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
2055 	    AR_SLEEP1_ASSUME_DTIM);
2056 	AR_WRITE(sc, AR_SLEEP2,
2057 	    SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
2058 
2059 	AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
2060 	AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
2061 
2062 	AR_SETBITS(sc, AR_TIMER_MODE,
2063 	    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2064 
2065 	/* Set TSF out-of-range threshold (fixed at 16k us). */
2066 	AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2067 
2068 	AR_WRITE_BARRIER(sc);
2069 }
2070 
2071 #ifndef IEEE80211_STA_ONLY
2072 PUBLIC void
2073 athn_set_hostap_timers(struct athn_softc *sc)
2074 {
2075 	struct ieee80211com *ic = &sc->sc_ic;
2076 	uint32_t intval, next_tbtt;
2077 
2078 	/* Beacon interval in TU. */
2079 	intval = ic->ic_bss->ni_intval;
2080 	next_tbtt = intval;
2081 
2082 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2083 	AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2084 	    (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2085 	AR_WRITE(sc, AR_NEXT_CFP,
2086 	    (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2087 
2088 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2089 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2090 	AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2091 	AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2092 
2093 	AR_WRITE(sc, AR_TIMER_MODE,
2094 	    AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2095 
2096 	AR_WRITE_BARRIER(sc);
2097 }
2098 #endif
2099 
2100 PUBLIC void
2101 athn_set_opmode(struct athn_softc *sc)
2102 {
2103 	uint32_t reg;
2104 
2105 	switch (sc->sc_ic.ic_opmode) {
2106 #ifndef IEEE80211_STA_ONLY
2107 	case IEEE80211_M_HOSTAP:
2108 		reg = AR_READ(sc, AR_STA_ID1);
2109 		reg &= ~AR_STA_ID1_ADHOC;
2110 		reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2111 		AR_WRITE(sc, AR_STA_ID1, reg);
2112 
2113 		AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2114 		break;
2115 	case IEEE80211_M_IBSS:
2116 	case IEEE80211_M_AHDEMO:
2117 		reg = AR_READ(sc, AR_STA_ID1);
2118 		reg &= ~AR_STA_ID1_STA_AP;
2119 		reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2120 		AR_WRITE(sc, AR_STA_ID1, reg);
2121 
2122 		AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2123 		break;
2124 #endif
2125 	default:
2126 		reg = AR_READ(sc, AR_STA_ID1);
2127 		reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2128 		reg |= AR_STA_ID1_KSRCH_MODE;
2129 		AR_WRITE(sc, AR_STA_ID1, reg);
2130 		break;
2131 	}
2132 	AR_WRITE_BARRIER(sc);
2133 }
2134 
2135 PUBLIC void
2136 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2137 {
2138 	const uint8_t *bssid = ni->ni_bssid;
2139 
2140 	AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2141 	AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2142 	    SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2143 	AR_WRITE_BARRIER(sc);
2144 }
2145 
2146 Static void
2147 athn_enable_interrupts(struct athn_softc *sc)
2148 {
2149 	uint32_t mask2;
2150 
2151 	athn_disable_interrupts(sc);	/* XXX */
2152 
2153 	AR_WRITE(sc, AR_IMR, sc->sc_imask);
2154 
2155 	mask2 = AR_READ(sc, AR_IMR_S2);
2156 	mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2157 	    AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2158 	mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2159 	AR_WRITE(sc, AR_IMR_S2, mask2);
2160 
2161 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2162 
2163 	AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2164 
2165 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2166 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2167 
2168 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2169 	AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2170 	AR_WRITE_BARRIER(sc);
2171 }
2172 
2173 Static void
2174 athn_disable_interrupts(struct athn_softc *sc)
2175 {
2176 
2177 	AR_WRITE(sc, AR_IER, 0);
2178 	(void)AR_READ(sc, AR_IER);
2179 
2180 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2181 	(void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2182 
2183 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2184 	(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2185 
2186 	AR_WRITE(sc, AR_IMR, 0);
2187 
2188 	AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2189 	    AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2190 	    AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2191 
2192 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2193 	AR_WRITE_BARRIER(sc);
2194 }
2195 
2196 Static void
2197 athn_init_qos(struct athn_softc *sc)
2198 {
2199 
2200 	/* Initialize QoS settings. */
2201 	AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2202 	AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2203 	AR_WRITE(sc, AR_QOS_NO_ACK,
2204 	    SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2205 	    SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2206 	    SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2207 	AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2208 	/* Initialize TXOP for all TIDs. */
2209 	AR_WRITE(sc, AR_TXOP_0_3,   0xffffffff);
2210 	AR_WRITE(sc, AR_TXOP_4_7,   0xffffffff);
2211 	AR_WRITE(sc, AR_TXOP_8_11,  0xffffffff);
2212 	AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2213 	AR_WRITE_BARRIER(sc);
2214 }
2215 
2216 PUBLIC int
2217 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2218     struct ieee80211_channel *extchan, int init)
2219 {
2220 	struct ieee80211com *ic = &sc->sc_ic;
2221 	struct athn_ops *ops = &sc->sc_ops;
2222 	uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2223 	int i, error;
2224 
2225 	/* XXX not if already awake */
2226 	if ((error = athn_set_power_awake(sc)) != 0) {
2227 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2228 		return error;
2229 	}
2230 
2231 	/* Preserve the antenna on a channel switch. */
2232 	if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2233 		def_ant = 1;
2234 	/* Preserve other registers. */
2235 	sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2236 	cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2237 	    AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2238 	    AR_CFG_LED_BLINK_SLOW);
2239 
2240 	/* Mark PHY as inactive. */
2241 	ops->disable_phy(sc);
2242 
2243 	if (init && AR_SREV_9271(sc)) {
2244 		AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2245 		    AR9271_RADIO_RF_RST);
2246 		DELAY(50);
2247 	}
2248 	if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2249 		/* Save TSF before it gets cleared. */
2250 		tsfhi = AR_READ(sc, AR_TSF_U32);
2251 		tsflo = AR_READ(sc, AR_TSF_L32);
2252 
2253 		/* NB: RTC reset clears TSF. */
2254 		error = athn_reset_power_on(sc);
2255 	}
2256 	else {
2257 		tsfhi = tsflo = 0;	/* XXX: gcc */
2258 		error = athn_reset(sc, 0);
2259 	}
2260 	if (error != 0) {
2261 		aprint_error_dev(sc->sc_dev,
2262 		    "could not reset chip (error=%d)\n", error);
2263 		return error;
2264 	}
2265 
2266 	/* XXX not if already awake */
2267 	if ((error = athn_set_power_awake(sc)) != 0) {
2268 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2269 		return error;
2270 	}
2271 
2272 	athn_init_pll(sc, curchan);
2273 	ops->set_rf_mode(sc, curchan);
2274 
2275 	if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2276 		/* Check that the radio is not disabled by hardware switch. */
2277 		reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2278 		if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2279 			reg = !reg;
2280 		if (!reg) {
2281 			aprint_error_dev(sc->sc_dev,
2282 			    "radio is disabled by hardware switch\n");
2283 			return EPERM;
2284 		}
2285 	}
2286 	if (init && AR_SREV_9271(sc)) {
2287 		AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2288 		    AR9271_GATE_MAC_CTL);
2289 		DELAY(50);
2290 	}
2291 	if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2292 		/* Restore TSF if it got cleared. */
2293 		AR_WRITE(sc, AR_TSF_L32, tsflo);
2294 		AR_WRITE(sc, AR_TSF_U32, tsfhi);
2295 	}
2296 
2297 	if (AR_SREV_9280_10_OR_LATER(sc))
2298 		AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2299 
2300 	if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2301 		ar9287_1_3_enable_async_fifo(sc);
2302 
2303 	/* Write init values to hardware. */
2304 	ops->hw_init(sc, curchan, extchan);
2305 
2306 	/*
2307 	 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2308 	 * management frames using CCMP.
2309 	 */
2310 	if (AR_SREV_9280_20_OR_LATER(sc)) {
2311 		reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2312 		/* Do not mask the subtype field in management frames. */
2313 		reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2314 		reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2315 		    (uint32_t)~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2316 		      IEEE80211_FC1_MORE_DATA));
2317 		AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2318 	}
2319 	else if (AR_SREV_9160_10_OR_LATER(sc)) {
2320 		/* Disable hardware crypto for management frames. */
2321 		AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2322 		    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2323 		AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2324 		    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2325 	}
2326 
2327 	if (ic->ic_curmode != IEEE80211_MODE_11B)
2328 		ops->set_delta_slope(sc, curchan, extchan);
2329 
2330 	ops->spur_mitigate(sc, curchan, extchan);
2331 	ops->init_from_rom(sc, curchan, extchan);
2332 
2333 	/* XXX */
2334 	AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2335 	AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2336 	    sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2337 
2338 	athn_set_opmode(sc);
2339 
2340 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2341 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2342 
2343 	/* Restore previous antenna. */
2344 	AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2345 
2346 	AR_WRITE(sc, AR_BSS_ID0, 0);
2347 	AR_WRITE(sc, AR_BSS_ID1, 0);
2348 
2349 	AR_WRITE(sc, AR_ISR, 0xffffffff);
2350 
2351 	AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2352 
2353 	if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2354 		aprint_error_dev(sc->sc_dev, "could not set channel\n");
2355 		return error;
2356 	}
2357 	sc->sc_curchan = curchan;
2358 	sc->sc_curchanext = extchan;
2359 
2360 	for (i = 0; i < AR_NUM_DCU; i++)
2361 		AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2362 
2363 	athn_init_tx_queues(sc);
2364 
2365 	/* Initialize interrupt mask. */
2366 	sc->sc_imask =
2367 	    AR_IMR_TXDESC | AR_IMR_TXEOL |
2368 	    AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2369 	    AR_IMR_RXMINTR | AR_IMR_RXINTM |
2370 	    AR_IMR_GENTMR | AR_IMR_BCNMISC;
2371 	if (AR_SREV_9380_10_OR_LATER(sc))
2372 		sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2373 #ifndef IEEE80211_STA_ONLY
2374 	if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2375 		sc->sc_imask |= AR_IMR_MIB;
2376 #endif
2377 	AR_WRITE(sc, AR_IMR, sc->sc_imask);
2378 	AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2379 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2380 	sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2381 	if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2382 		sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2383 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2384 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2385 	if (AR_SREV_9380_10_OR_LATER(sc)) {
2386 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2387 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2388 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2389 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2390 	}
2391 
2392 	athn_init_qos(sc);
2393 
2394 	AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2395 
2396 	if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2397 		ar9287_1_3_setup_async_fifo(sc);
2398 
2399 	/* Disable sequence number generation in hardware. */
2400 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2401 
2402 	athn_init_dma(sc);
2403 
2404 	/* Program observation bus to see MAC interrupts. */
2405 	AR_WRITE(sc, sc->sc_obs_off, 8);
2406 
2407 	/* Setup Rx interrupt mitigation. */
2408 	AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2409 
2410 	ops->init_baseband(sc);
2411 
2412 	if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2413 		aprint_error_dev(sc->sc_dev,
2414 		    "could not initialize calibration\n");
2415 		return error;
2416 	}
2417 
2418 	ops->set_rxchains(sc);
2419 
2420 	AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2421 
2422 	if (sc->sc_flags & ATHN_FLAG_USB) {
2423 		if (AR_SREV_9271(sc))
2424 			AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2425 		else
2426 			AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2427 	}
2428 #if BYTE_ORDER == BIG_ENDIAN
2429 	else {
2430 		/* Default is LE, turn on swapping for BE. */
2431 		AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2432 	}
2433 #endif
2434 	AR_WRITE_BARRIER(sc);
2435 
2436 	return 0;
2437 }
2438 
2439 Static struct ieee80211_node *
2440 athn_node_alloc(struct ieee80211_node_table *ntp)
2441 {
2442 
2443 	return malloc(sizeof(struct athn_node), M_DEVBUF,
2444 	    M_NOWAIT | M_ZERO);
2445 }
2446 
2447 Static void
2448 athn_newassoc(struct ieee80211_node *ni, int isnew)
2449 {
2450 	struct ieee80211com *ic = ni->ni_ic;
2451 	struct athn_softc *sc = ic->ic_ifp->if_softc;
2452 	struct athn_node *an = (void *)ni;
2453 	struct ieee80211_rateset *rs = &ni->ni_rates;
2454 	uint8_t rate;
2455 	int ridx, i, j;
2456 
2457 	ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2458 	/* Start at lowest available bit-rate, AMRR will raise. */
2459 	ni->ni_txrate = 0;
2460 
2461 	for (i = 0; i < rs->rs_nrates; i++) {
2462 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2463 
2464 		/* Map 802.11 rate to HW rate index. */
2465 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2466 			if (athn_rates[ridx].rate == rate)
2467 				break;
2468 		an->ridx[i] = ridx;
2469 		DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2470 
2471 		/* Compute fallback rate for retries. */
2472 		an->fallback[i] = i;
2473 		for (j = i - 1; j >= 0; j--) {
2474 			if (athn_rates[an->ridx[j]].phy ==
2475 			    athn_rates[an->ridx[i]].phy) {
2476 				an->fallback[i] = j;
2477 				break;
2478 			}
2479 		}
2480 		DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2481 		    i, an->fallback[i]);
2482 	}
2483 }
2484 
2485 Static int
2486 athn_media_change(struct ifnet *ifp)
2487 {
2488 	struct athn_softc *sc = ifp->if_softc;
2489 	struct ieee80211com *ic = &sc->sc_ic;
2490 	uint8_t rate, ridx;
2491 	int error;
2492 
2493 	error = ieee80211_media_change(ifp);
2494 	if (error != ENETRESET)
2495 		return error;
2496 
2497 	if (ic->ic_fixed_rate != -1) {
2498 		rate = ic->ic_sup_rates[ic->ic_curmode].
2499 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2500 		/* Map 802.11 rate to HW rate index. */
2501 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2502 			if (athn_rates[ridx].rate == rate)
2503 				break;
2504 		sc->sc_fixed_ridx = ridx;
2505 	}
2506 	if (IS_UP_AND_RUNNING(ifp)) {
2507 		athn_stop(ifp, 0);
2508 		error = athn_init(ifp);
2509 	}
2510 	return error;
2511 }
2512 
2513 Static void
2514 athn_next_scan(void *arg)
2515 {
2516 	struct athn_softc *sc = arg;
2517 	struct ieee80211com *ic = &sc->sc_ic;
2518 	int s;
2519 
2520 	s = splnet();
2521 	if (ic->ic_state == IEEE80211_S_SCAN)
2522 		ieee80211_next_scan(ic);
2523 	splx(s);
2524 }
2525 
2526 Static int
2527 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2528 {
2529 	struct ifnet *ifp = ic->ic_ifp;
2530 	struct athn_softc *sc = ifp->if_softc;
2531 	uint32_t reg;
2532 	int error;
2533 
2534 	callout_stop(&sc->sc_calib_to);
2535 
2536 	switch (nstate) {
2537 	case IEEE80211_S_INIT:
2538 		athn_set_led(sc, 0);
2539 		break;
2540 	case IEEE80211_S_SCAN:
2541 		/* Make the LED blink while scanning. */
2542 		athn_set_led(sc, !sc->sc_led_state);
2543 		error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2544 		if (error != 0)
2545 			return error;
2546 		callout_schedule(&sc->sc_scan_to, hz / 5);
2547 		break;
2548 	case IEEE80211_S_AUTH:
2549 		athn_set_led(sc, 0);
2550 		error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2551 		if (error != 0)
2552 			return error;
2553 		break;
2554 	case IEEE80211_S_ASSOC:
2555 		break;
2556 	case IEEE80211_S_RUN:
2557 		athn_set_led(sc, 1);
2558 
2559 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
2560 			break;
2561 
2562 		/* Fake a join to initialize the Tx rate. */
2563 		athn_newassoc(ic->ic_bss, 1);
2564 
2565 		athn_set_bss(sc, ic->ic_bss);
2566 		athn_disable_interrupts(sc);
2567 #ifndef IEEE80211_STA_ONLY
2568 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2569 			athn_set_hostap_timers(sc);
2570 			/* Enable software beacon alert interrupts. */
2571 			sc->sc_imask |= AR_IMR_SWBA;
2572 		}
2573 		else
2574 #endif
2575 		{
2576 			athn_set_sta_timers(sc);
2577 			/* Enable beacon miss interrupts. */
2578 			sc->sc_imask |= AR_IMR_BMISS;
2579 
2580 			/* Stop receiving beacons from other BSS. */
2581 			reg = AR_READ(sc, AR_RX_FILTER);
2582 			reg = (reg & ~AR_RX_FILTER_BEACON) |
2583 			    AR_RX_FILTER_MYBEACON;
2584 			AR_WRITE(sc, AR_RX_FILTER, reg);
2585 			AR_WRITE_BARRIER(sc);
2586 		}
2587 		athn_enable_interrupts(sc);
2588 
2589 		if (sc->sc_sup_calib_mask != 0) {
2590 			memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2591 			sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2592 			/* ops->do_calib(sc); */
2593 		}
2594 		/* XXX Start ANI. */
2595 
2596 		callout_schedule(&sc->sc_calib_to, hz / 2);
2597 		break;
2598 	}
2599 
2600 	return sc->sc_newstate(ic, nstate, arg);
2601 }
2602 
2603 #ifdef notyet_edca
2604 PUBLIC void
2605 athn_updateedca(struct ieee80211com *ic)
2606 {
2607 #define ATHN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2608 	struct athn_softc *sc = ic->ic_ifp->if_softc;
2609 	const struct ieee80211_edca_ac_params *ac;
2610 	int aci, qid;
2611 
2612 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2613 		ac = &ic->ic_edca_ac[aci];
2614 		qid = athn_ac2qid[aci];
2615 
2616 		AR_WRITE(sc, AR_DLCL_IFS(qid),
2617 		    SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2618 		    SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2619 		    SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2620 		if (ac->ac_txoplimit != 0) {
2621 			AR_WRITE(sc, AR_DCHNTIME(qid),
2622 			    SM(AR_D_CHNTIME_DUR,
2623 			       IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2624 			    AR_D_CHNTIME_EN);
2625 		}
2626 		else
2627 			AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2628 	}
2629 	AR_WRITE_BARRIER(sc);
2630 #undef ATHN_EXP2
2631 }
2632 #endif /* notyet_edca */
2633 
2634 Static int
2635 athn_clock_rate(struct athn_softc *sc)
2636 {
2637 	struct ieee80211com *ic = &sc->sc_ic;
2638 	int clockrate;	/* MHz. */
2639 
2640 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2641 		if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2642 			clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2643 		else
2644 			clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2645 	}
2646 	else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2647 		clockrate = AR_CLOCK_RATE_CCK;
2648 	}
2649 	else
2650 		clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2651 #ifndef IEEE80211_NO_HT
2652 	if (sc->sc_curchanext != NULL)
2653 		clockrate *= 2;
2654 #endif
2655 	return clockrate;
2656 }
2657 
2658 PUBLIC void
2659 athn_updateslot(struct ifnet *ifp)
2660 {
2661 	struct athn_softc *sc = ifp->if_softc;
2662 	struct ieee80211com *ic = &sc->sc_ic;
2663 	int slot;
2664 
2665 	slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2666 	AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2667 	AR_WRITE_BARRIER(sc);
2668 }
2669 
2670 Static void
2671 athn_start(struct ifnet *ifp)
2672 {
2673 	struct athn_softc *sc = ifp->if_softc;
2674 	struct ieee80211com *ic = &sc->sc_ic;
2675 	struct ether_header *eh;
2676 	struct ieee80211_node *ni;
2677 	struct mbuf *m;
2678 
2679 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2680 	    || !device_is_active(sc->sc_dev))
2681 		return;
2682 
2683 	for (;;) {
2684 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2685 			ifp->if_flags |= IFF_OACTIVE;
2686 			break;
2687 		}
2688 		/* Send pending management frames first. */
2689 		IF_DEQUEUE(&ic->ic_mgtq, m);
2690 		if (m != NULL) {
2691 			ni = M_GETCTX(m, struct ieee80211_node *);
2692 			goto sendit;
2693 		}
2694 		if (ic->ic_state != IEEE80211_S_RUN)
2695 			break;
2696 
2697 		/* Encapsulate and send data frames. */
2698 		IFQ_DEQUEUE(&ifp->if_snd, m);
2699 		if (m == NULL)
2700 			break;
2701 
2702 		if (m->m_len < (int)sizeof(*eh) &&
2703 		    (m = m_pullup(m, sizeof(*eh))) == NULL) {
2704 			ifp->if_oerrors++;
2705 			continue;
2706 		}
2707 		eh = mtod(m, struct ether_header *);
2708 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2709 		if (ni == NULL) {
2710 			m_freem(m);
2711 			ifp->if_oerrors++;
2712 			continue;
2713 		}
2714 
2715 		bpf_mtap(ifp, m, BPF_D_OUT);
2716 
2717 		if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2718 			continue;
2719  sendit:
2720 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
2721 
2722 		if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2723 			ieee80211_free_node(ni);
2724 			ifp->if_oerrors++;
2725 			continue;
2726 		}
2727 
2728 		sc->sc_tx_timer = 5;
2729 		ifp->if_timer = 1;
2730 	}
2731 }
2732 
2733 Static void
2734 athn_watchdog(struct ifnet *ifp)
2735 {
2736 	struct athn_softc *sc = ifp->if_softc;
2737 
2738 	ifp->if_timer = 0;
2739 
2740 	if (sc->sc_tx_timer > 0) {
2741 		if (--sc->sc_tx_timer == 0) {
2742 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2743 			/* see athn_init, no need to call athn_stop here */
2744 			/* athn_stop(ifp, 0); */
2745 			(void)athn_init(ifp);
2746 			ifp->if_oerrors++;
2747 			return;
2748 		}
2749 		ifp->if_timer = 1;
2750 	}
2751 	ieee80211_watchdog(&sc->sc_ic);
2752 }
2753 
2754 #ifdef notyet
2755 Static void
2756 athn_set_multi(struct athn_softc *sc)
2757 {
2758 	struct arpcom *ac = &sc->sc_ic.ic_ac;
2759 	struct ifnet *ifp = &ac->ac_if;
2760 	struct ether_multi *enm;
2761 	struct ether_multistep step;
2762 	const uint8_t *addr;
2763 	uint32_t val, lo, hi;
2764 	uint8_t bit;
2765 
2766 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2767 		lo = hi = 0xffffffff;
2768 		goto done;
2769 	}
2770 	lo = hi = 0;
2771 	ETHER_FIRST_MULTI(step, ac, enm);
2772 	while (enm != NULL) {
2773 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2774 			ifp->if_flags |= IFF_ALLMULTI;
2775 			lo = hi = 0xffffffff;
2776 			goto done;
2777 		}
2778 		addr = enm->enm_addrlo;
2779 		/* Calculate the XOR value of all eight 6-bit words. */
2780 		val = addr[0] | addr[1] << 8 | addr[2] << 16;
2781 		bit  = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2782 		val = addr[3] | addr[4] << 8 | addr[5] << 16;
2783 		bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2784 		bit &= 0x3f;
2785 		if (bit < 32)
2786 			lo |= 1 << bit;
2787 		else
2788 			hi |= 1 << (bit - 32);
2789 		ETHER_NEXT_MULTI(step, enm);
2790 	}
2791  done:
2792 	AR_WRITE(sc, AR_MCAST_FIL0, lo);
2793 	AR_WRITE(sc, AR_MCAST_FIL1, hi);
2794 	AR_WRITE_BARRIER(sc);
2795 }
2796 #endif /* notyet */
2797 
2798 Static int
2799 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2800 {
2801 	struct athn_softc *sc = ifp->if_softc;
2802 	struct ieee80211com *ic = &sc->sc_ic;
2803 	int s, error = 0;
2804 
2805 	s = splnet();
2806 
2807 	switch (cmd) {
2808 	case SIOCSIFFLAGS:
2809 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2810 			break;
2811 
2812 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2813 		case IFF_UP | IFF_RUNNING:
2814 #ifdef notyet
2815 			if (((ifp->if_flags ^ sc->sc_if_flags) &
2816 				(IFF_ALLMULTI | IFF_PROMISC)) != 0)
2817 				/* XXX: setup multi */
2818 #endif
2819 			break;
2820 		case IFF_UP:
2821 			athn_init(ifp);
2822 			break;
2823 
2824 		case IFF_RUNNING:
2825 			athn_stop(ifp, 1);
2826 			break;
2827 		case 0:
2828 		default:
2829 			break;
2830 		}
2831 		sc->sc_if_flags = ifp->if_flags;
2832 		break;
2833 
2834 	case SIOCADDMULTI:
2835 	case SIOCDELMULTI:
2836 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2837 			/* setup multicast filter, etc */
2838 #ifdef notyet
2839 			athn_set_multi(sc);
2840 #endif
2841 			error = 0;
2842 		}
2843 		break;
2844 
2845 	case SIOCS80211CHANNEL:
2846 		error = ieee80211_ioctl(ic, cmd, data);
2847 		if (error == ENETRESET &&
2848 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2849 			if (IS_UP_AND_RUNNING(ifp))
2850 				athn_switch_chan(sc, ic->ic_curchan, NULL);
2851 			error = 0;
2852 		}
2853 		break;
2854 
2855 	default:
2856 		error = ieee80211_ioctl(ic, cmd, data);
2857 	}
2858 
2859 	if (error == ENETRESET) {
2860 		error = 0;
2861 		if (IS_UP_AND_RUNNING(ifp) &&
2862 		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2863 			athn_stop(ifp, 0);
2864 			error = athn_init(ifp);
2865 		}
2866 	}
2867 
2868 	splx(s);
2869 	return error;
2870 }
2871 
2872 Static int
2873 athn_init(struct ifnet *ifp)
2874 {
2875 	struct athn_softc *sc = ifp->if_softc;
2876 	struct athn_ops *ops = &sc->sc_ops;
2877 	struct ieee80211com *ic = &sc->sc_ic;
2878 	struct ieee80211_channel *curchan, *extchan;
2879 	size_t i;
2880 	int error;
2881 
2882 	KASSERT(!cpu_intr_p());
2883 
2884 	if (device_is_active(sc->sc_dev)) {
2885 		athn_stop(ifp, 0);	/* see athn_watchdog() */
2886 	} else {
2887 		short flags = ifp->if_flags;
2888 		ifp->if_flags &= ~IFF_UP;
2889 		/* avoid recursion in athn_resume */
2890 		if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2891 		    !device_is_active(sc->sc_dev)) {
2892 			printf("%s: failed to power up device\n",
2893 			    device_xname(sc->sc_dev));
2894 			return 0;
2895 		}
2896 		ifp->if_flags = flags;
2897 	}
2898 
2899 	curchan = ic->ic_curchan;
2900 	extchan = NULL;
2901 
2902 	/* In case a new MAC address has been configured. */
2903 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2904 
2905 #ifdef openbsd_power_management
2906 	/* For CardBus, power on the socket. */
2907 	if (sc->sc_enable != NULL) {
2908 		if ((error = sc->sc_enable(sc)) != 0) {
2909 			aprint_error_dev(sc->sc_dev,
2910 			    "could not enable device\n");
2911 			goto fail;
2912 		}
2913 		if ((error = athn_reset_power_on(sc)) != 0) {
2914 			aprint_error_dev(sc->sc_dev,
2915 			    "could not power on device\n");
2916 			goto fail;
2917 		}
2918 	}
2919 #endif
2920 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2921 		athn_config_nonpcie(sc);
2922 	else
2923 		athn_config_pcie(sc);
2924 
2925 	/* Reset HW key cache entries. */
2926 	for (i = 0; i < sc->sc_kc_entries; i++)
2927 		athn_reset_key(sc, i);
2928 
2929 	ops->enable_antenna_diversity(sc);
2930 
2931 #ifdef ATHN_BT_COEXISTENCE
2932 	/* Configure bluetooth coexistence for combo chips. */
2933 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2934 		athn_btcoex_init(sc);
2935 #endif
2936 
2937 	/* Configure LED. */
2938 	athn_led_init(sc);
2939 
2940 	/* Configure hardware radio switch. */
2941 	if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2942 		ops->rfsilent_init(sc);
2943 
2944 	if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2945 		aprint_error_dev(sc->sc_dev,
2946 		    "unable to reset hardware; reset status %d\n", error);
2947 		goto fail;
2948 	}
2949 
2950 	/* Enable Rx. */
2951 	athn_rx_start(sc);
2952 
2953 	/* Enable interrupts. */
2954 	athn_enable_interrupts(sc);
2955 
2956 #ifdef ATHN_BT_COEXISTENCE
2957 	/* Enable bluetooth coexistence for combo chips. */
2958 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2959 		athn_btcoex_enable(sc);
2960 #endif
2961 
2962 	ifp->if_flags &= ~IFF_OACTIVE;
2963 	ifp->if_flags |= IFF_RUNNING;
2964 
2965 #ifdef notyet
2966 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2967 		/* Configure WEP keys. */
2968 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2969 			athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2970 	}
2971 #endif
2972 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2973 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2974 	else
2975 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2976 
2977 	return 0;
2978  fail:
2979 	athn_stop(ifp, 1);
2980 	return error;
2981 }
2982 
2983 PUBLIC void
2984 athn_stop(struct ifnet *ifp, int disable)
2985 {
2986 	struct athn_softc *sc = ifp->if_softc;
2987 	struct ieee80211com *ic = &sc->sc_ic;
2988 	int qid;
2989 
2990 	ifp->if_timer = sc->sc_tx_timer = 0;
2991 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2992 
2993 	callout_stop(&sc->sc_scan_to);
2994 	/* In case we were scanning, release the scan "lock". */
2995 //	ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED;	/* XXX:??? */
2996 
2997 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2998 
2999 #ifdef ATHN_BT_COEXISTENCE
3000 	/* Disable bluetooth coexistence for combo chips. */
3001 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
3002 		athn_btcoex_disable(sc);
3003 #endif
3004 
3005 	/* Disable interrupts. */
3006 	athn_disable_interrupts(sc);
3007 	/* Acknowledge interrupts (avoids interrupt storms). */
3008 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
3009 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
3010 
3011 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
3012 		athn_stop_tx_dma(sc, qid);
3013 	/* XXX call athn_hw_reset if Tx still pending? */
3014 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
3015 		athn_tx_reclaim(sc, qid);
3016 
3017 	/* Stop Rx. */
3018 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
3019 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
3020 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
3021 	AR_WRITE(sc, AR_FILT_OFDM, 0);
3022 	AR_WRITE(sc, AR_FILT_CCK, 0);
3023 	AR_WRITE_BARRIER(sc);
3024 	athn_set_rxfilter(sc, 0);
3025 	athn_stop_rx_dma(sc);
3026 
3027 	athn_reset(sc, 0);
3028 	athn_init_pll(sc, NULL);
3029 	athn_set_power_awake(sc);
3030 	athn_reset(sc, 1);
3031 	athn_init_pll(sc, NULL);
3032 
3033 	athn_set_power_sleep(sc);
3034 
3035 #if 0	/* XXX: shouldn't the pmf stuff take care of this? */
3036 	/* For CardBus, power down the socket. */
3037 	if (disable && sc->sc_disable != NULL)
3038 		sc->sc_disable(sc);
3039 #endif
3040 	if (disable)
3041 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
3042 }
3043 
3044 Static void
3045 athn_pmf_wlan_off(device_t self)
3046 {
3047 	struct athn_softc *sc = device_private(self);
3048 	struct ifnet *ifp = &sc->sc_if;
3049 
3050 	/* Turn the interface down. */
3051 	ifp->if_flags &= ~IFF_UP;
3052 	athn_stop(ifp, 1);
3053 }
3054 
3055 PUBLIC void
3056 athn_suspend(struct athn_softc *sc)
3057 {
3058 	struct ifnet *ifp = &sc->sc_if;
3059 
3060 	if (ifp->if_flags & IFF_RUNNING)
3061 		athn_stop(ifp, 1);
3062 }
3063 
3064 PUBLIC bool
3065 athn_resume(struct athn_softc *sc)
3066 {
3067 	struct ifnet *ifp = &sc->sc_if;
3068 
3069 	if (ifp->if_flags & IFF_UP)
3070 		athn_init(ifp);
3071 
3072 	return true;
3073 }
3074