xref: /netbsd-src/sys/dev/ic/athn.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: athn.c,v 1.8 2014/02/23 15:29:12 christos Exp $	*/
2 /*	$OpenBSD: athn.c,v 1.75 2013/01/14 09:50:31 jsing Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2010 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.8 2014/02/23 15:29:12 christos Exp $");
27 
28 #ifndef _MODULE
29 #include "athn_usb.h"		/* for NATHN_USB */
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75 
76 #define Static static
77 
78 #define IS_UP_AND_RUNNING(ifp) \
79 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80 
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84 
85 Static int	athn_clock_rate(struct athn_softc *);
86 Static const char *
87 		athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 		athn_get_rf_name(struct athn_softc *);
90 Static int	athn_init(struct ifnet *);
91 Static int	athn_init_calib(struct athn_softc *,
92 		    struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int	athn_ioctl(struct ifnet *, u_long, void *);
94 Static int	athn_media_change(struct ifnet *);
95 Static int	athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 		    int);
97 Static struct ieee80211_node *
98 		athn_node_alloc(struct ieee80211_node_table *);
99 Static int	athn_reset_power_on(struct athn_softc *);
100 Static int	athn_stop_rx_dma(struct athn_softc *);
101 Static int	athn_switch_chan(struct athn_softc *,
102 		    struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void	athn_calib_to(void *);
104 Static void	athn_disable_interrupts(struct athn_softc *);
105 Static void	athn_enable_interrupts(struct athn_softc *);
106 Static void	athn_get_chanlist(struct athn_softc *);
107 Static void	athn_get_chipid(struct athn_softc *);
108 Static void	athn_init_dma(struct athn_softc *);
109 Static void	athn_init_qos(struct athn_softc *);
110 Static void	athn_init_tx_queues(struct athn_softc *);
111 Static void	athn_iter_func(void *, struct ieee80211_node *);
112 Static void	athn_newassoc(struct ieee80211_node *, int);
113 Static void	athn_next_scan(void *);
114 Static void	athn_pmf_wlan_off(device_t self);
115 Static void	athn_radiotap_attach(struct athn_softc *);
116 Static void	athn_start(struct ifnet *);
117 Static void	athn_tx_reclaim(struct athn_softc *, int);
118 Static void	athn_watchdog(struct ifnet *);
119 Static void	athn_write_serdes(struct athn_softc *,
120 		    const struct athn_serdes *);
121 
122 #ifdef ATHN_BT_COEXISTENCE
123 Static void	athn_btcoex_disable(struct athn_softc *);
124 Static void	athn_btcoex_enable(struct athn_softc *);
125 #endif
126 
127 #ifdef unused
128 Static int32_t	athn_ani_get_rssi(struct athn_softc *);
129 Static int	athn_rx_abort(struct athn_softc *);
130 #endif
131 
132 #ifdef notyet
133 Static void	athn_ani_cck_err_trigger(struct athn_softc *);
134 Static void	athn_ani_lower_immunity(struct athn_softc *);
135 Static void	athn_ani_monitor(struct athn_softc *);
136 Static void	athn_ani_ofdm_err_trigger(struct athn_softc *);
137 Static void	athn_ani_restart(struct athn_softc *);
138 Static void	athn_set_multi(struct athn_softc *);
139 #endif /* notyet */
140 
141 PUBLIC int
142 athn_attach(struct athn_softc *sc)
143 {
144 	struct ieee80211com *ic = &sc->sc_ic;
145 	struct ifnet *ifp = &sc->sc_if;
146 	size_t max_nnodes;
147 	int error;
148 
149 	/* Read hardware revision. */
150 	athn_get_chipid(sc);
151 
152 	if ((error = athn_reset_power_on(sc)) != 0) {
153 		aprint_error_dev(sc->sc_dev, "could not reset chip\n");
154 		return error;
155 	}
156 
157 	if ((error = athn_set_power_awake(sc)) != 0) {
158 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
159 		return error;
160 	}
161 
162 	if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
163 		error = ar5416_attach(sc);
164 	else if (AR_SREV_9280(sc))
165 		error = ar9280_attach(sc);
166 	else if (AR_SREV_9285(sc))
167 		error = ar9285_attach(sc);
168 #if NATHN_USB > 0
169 	else if (AR_SREV_9271(sc))
170 		error = ar9285_attach(sc);
171 #endif
172 	else if (AR_SREV_9287(sc))
173 		error = ar9287_attach(sc);
174 	else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
175 		error = ar9380_attach(sc);
176 	else
177 		error = ENOTSUP;
178 	if (error != 0) {
179 		aprint_error_dev(sc->sc_dev, "could not attach chip\n");
180 		return error;
181 	}
182 
183 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
184 	pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
185 	    false);
186 
187 	/* We can put the chip in sleep state now. */
188 	athn_set_power_sleep(sc);
189 
190 	if (!(sc->sc_flags & ATHN_FLAG_USB)) {
191 		error = sc->sc_ops.dma_alloc(sc);
192 		if (error != 0) {
193 			aprint_error_dev(sc->sc_dev,
194 			    "could not allocate DMA resources\n");
195 			return error;
196 		}
197 		/* Steal one Tx buffer for beacons. */
198 		sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
199 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
200 	}
201 
202 	if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
203 		DPRINTFN(DBG_INIT, sc,
204 		    "found RF switch connected to GPIO pin %d\n",
205 		    sc->sc_rfsilent_pin);
206 	}
207 	DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
208 
209 	/*
210 	 * In HostAP mode, the number of STAs that we can handle is
211 	 * limited by the number of entries in the HW key cache.
212 	 * TKIP keys consume 2 entries in the cache.
213 	 */
214 	KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
215 	max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
216 	if (sc->sc_max_aid != 0)	/* we have an override */
217 		ic->ic_max_aid = sc->sc_max_aid;
218 	if (ic->ic_max_aid > max_nnodes)
219 		ic->ic_max_aid = max_nnodes;
220 
221 	DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
222 	    (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
223 	DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
224 	    sc->sc_txchainmask, sc->sc_rxchainmask);
225 
226 	/* Count the number of bits set (in lowest 3 bits). */
227 	sc->sc_ntxchains =
228 	    ((sc->sc_txchainmask >> 2) & 1) +
229 	    ((sc->sc_txchainmask >> 1) & 1) +
230 	    ((sc->sc_txchainmask >> 0) & 1);
231 	sc->sc_nrxchains =
232 	    ((sc->sc_rxchainmask >> 2) & 1) +
233 	    ((sc->sc_rxchainmask >> 1) & 1) +
234 	    ((sc->sc_rxchainmask >> 0) & 1);
235 
236 	if (AR_SINGLE_CHIP(sc)) {
237 		aprint_normal_dev(sc->sc_dev,
238 		    "Atheros %s\n", athn_get_mac_name(sc));
239 		aprint_verbose_dev(sc->sc_dev,
240 		    "rev %d (%dT%dR), ROM rev %d, address %s\n",
241 		    sc->sc_mac_rev,
242 		    sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
243 		    ether_sprintf(ic->ic_myaddr));
244 	} else {
245 		aprint_normal_dev(sc->sc_dev,
246 		    "Atheros %s, RF %s\n", athn_get_mac_name(sc),
247 		    athn_get_rf_name(sc));
248 		aprint_verbose_dev(sc->sc_dev,
249 		    "rev %d (%dT%dR), ROM rev %d, address %s\n",
250 		    sc->sc_mac_rev,
251 		    sc->sc_ntxchains, sc->sc_nrxchains,
252 		    sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
253 	}
254 
255 	callout_init(&sc->sc_scan_to, 0);
256 	callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
257 	callout_init(&sc->sc_calib_to, 0);
258 	callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
259 
260 	sc->sc_amrr.amrr_min_success_threshold = 1;
261 	sc->sc_amrr.amrr_max_success_threshold = 15;
262 
263 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
264 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
265 	ic->ic_state = IEEE80211_S_INIT;
266 
267 	/* Set device capabilities. */
268 	ic->ic_caps =
269 	    IEEE80211_C_WPA |		/* 802.11i */
270 #ifndef IEEE80211_STA_ONLY
271 	    IEEE80211_C_HOSTAP |	/* Host AP mode supported. */
272 // XXX?	    IEEE80211_C_APPMGT |	/* Host AP power saving supported. */
273 #endif
274 	    IEEE80211_C_MONITOR |	/* Monitor mode supported. */
275 	    IEEE80211_C_SHSLOT |	/* Short slot time supported. */
276 	    IEEE80211_C_SHPREAMBLE |	/* Short preamble supported. */
277 	    IEEE80211_C_PMGT;		/* Power saving supported. */
278 
279 #ifndef IEEE80211_NO_HT
280 	if (sc->sc_flags & ATHN_FLAG_11N) {
281 		int i, ntxstreams, nrxstreams;
282 
283 		/* Set HT capabilities. */
284 		ic->ic_htcaps =
285 		    IEEE80211_HTCAP_SMPS_DIS |
286 		    IEEE80211_HTCAP_CBW20_40 |
287 		    IEEE80211_HTCAP_SGI40 |
288 		    IEEE80211_HTCAP_DSSSCCK40;
289 		if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
290 			ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
291 		if (AR_SREV_9380_10_OR_LATER(sc))
292 			ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
293 		if (AR_SREV_9280_10_OR_LATER(sc)) {
294 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
295 			ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
296 		}
297 		ntxstreams = sc->sc_ntxchains;
298 		nrxstreams = sc->sc_nrxchains;
299 		if (!AR_SREV_9380_10_OR_LATER(sc)) {
300 			ntxstreams = MIN(ntxstreams, 2);
301 			nrxstreams = MIN(nrxstreams, 2);
302 		}
303 		/* Set supported HT rates. */
304 		for (i = 0; i < nrxstreams; i++)
305 			ic->ic_sup_mcs[i] = 0xff;
306 		/* Set the "Tx MCS Set Defined" bit. */
307 		ic->ic_sup_mcs[12] |= 0x01;
308 		if (ntxstreams != nrxstreams) {
309 			/* Set "Tx Rx MCS Set Not Equal" bit. */
310 			ic->ic_sup_mcs[12] |= 0x02;
311 			ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
312 		}
313 	}
314 #endif
315 
316 	/* Set supported rates. */
317 	if (sc->sc_flags & ATHN_FLAG_11G) {
318 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
319 		    ieee80211_std_rateset_11b;
320 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
321 		    ieee80211_std_rateset_11g;
322 	}
323 	if (sc->sc_flags & ATHN_FLAG_11A) {
324 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
325 		    ieee80211_std_rateset_11a;
326 	}
327 
328 	/* Get the list of authorized/supported channels. */
329 	athn_get_chanlist(sc);
330 
331 	ifp->if_softc = sc;
332 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
333 	ifp->if_init = athn_init;
334 	ifp->if_ioctl = athn_ioctl;
335 	ifp->if_start = athn_start;
336 	ifp->if_watchdog = athn_watchdog;
337 	IFQ_SET_READY(&ifp->if_snd);
338 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
339 
340 	if_attach(ifp);
341 	ieee80211_ifattach(ic);
342 
343 	ic->ic_node_alloc = athn_node_alloc;
344 	ic->ic_newassoc = athn_newassoc;
345 	if (ic->ic_updateslot == NULL)
346 		ic->ic_updateslot = athn_updateslot;
347 #ifdef notyet_edca
348 	ic->ic_updateedca = athn_updateedca;
349 #endif
350 #ifdef notyet
351 	ic->ic_set_key = athn_set_key;
352 	ic->ic_delete_key = athn_delete_key;
353 #endif
354 
355 	/* Override 802.11 state transition machine. */
356 	sc->sc_newstate = ic->ic_newstate;
357 	ic->ic_newstate = athn_newstate;
358 
359 	if (sc->sc_media_change == NULL)
360 		sc->sc_media_change = athn_media_change;
361 	ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
362 
363 	athn_radiotap_attach(sc);
364 	return 0;
365 }
366 
367 PUBLIC void
368 athn_detach(struct athn_softc *sc)
369 {
370 	struct ifnet *ifp = &sc->sc_if;
371 	int qid;
372 
373 	callout_halt(&sc->sc_scan_to, NULL);
374 	callout_halt(&sc->sc_calib_to, NULL);
375 
376 	if (!(sc->sc_flags & ATHN_FLAG_USB)) {
377 		for (qid = 0; qid < ATHN_QID_COUNT; qid++)
378 			athn_tx_reclaim(sc, qid);
379 
380 		/* Free Tx/Rx DMA resources. */
381 		sc->sc_ops.dma_free(sc);
382 	}
383 	/* Free ROM copy. */
384 	if (sc->sc_eep != NULL) {
385 		free(sc->sc_eep, M_DEVBUF);
386 		sc->sc_eep = NULL;
387 	}
388 
389 	bpf_detach(ifp);
390 	ieee80211_ifdetach(&sc->sc_ic);
391 	if_detach(ifp);
392 
393 	callout_destroy(&sc->sc_scan_to);
394 	callout_destroy(&sc->sc_calib_to);
395 }
396 
397 /*
398  * Attach the interface to 802.11 radiotap.
399  */
400 Static void
401 athn_radiotap_attach(struct athn_softc *sc)
402 {
403 
404 	bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
405 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
406 	    &sc->sc_drvbpf);
407 
408 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
409 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
410 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
411 
412 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
413 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
414 	sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
415 }
416 
417 Static void
418 athn_get_chanlist(struct athn_softc *sc)
419 {
420 	struct ieee80211com *ic = &sc->sc_ic;
421 	uint8_t chan;
422 	size_t i;
423 
424 	if (sc->sc_flags & ATHN_FLAG_11G) {
425 		for (i = 1; i <= 14; i++) {
426 			chan = i;
427 			ic->ic_channels[chan].ic_freq =
428 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
429 			ic->ic_channels[chan].ic_flags =
430 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
431 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
432 		}
433 	}
434 	if (sc->sc_flags & ATHN_FLAG_11A) {
435 		for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
436 			chan = athn_5ghz_chans[i];
437 			ic->ic_channels[chan].ic_freq =
438 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
439 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
440 		}
441 	}
442 }
443 
444 PUBLIC void
445 athn_rx_start(struct athn_softc *sc)
446 {
447 	struct ieee80211com *ic = &sc->sc_ic;
448 	uint32_t rfilt;
449 
450 	/* Setup Rx DMA descriptors. */
451 	sc->sc_ops.rx_enable(sc);
452 
453 	/* Set Rx filter. */
454 	rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
455 #ifndef IEEE80211_NO_HT
456 	/* Want Compressed Block Ack Requests. */
457 	rfilt |= AR_RX_FILTER_COMPR_BAR;
458 #endif
459 	rfilt |= AR_RX_FILTER_BEACON;
460 	if (ic->ic_opmode != IEEE80211_M_STA) {
461 		rfilt |= AR_RX_FILTER_PROBEREQ;
462 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
463 			rfilt |= AR_RX_FILTER_PROM;
464 #ifndef IEEE80211_STA_ONLY
465 		if (AR_SREV_9280_10_OR_LATER(sc) &&
466 		    ic->ic_opmode == IEEE80211_M_HOSTAP)
467 			rfilt |= AR_RX_FILTER_PSPOLL;
468 #endif
469 	}
470 	athn_set_rxfilter(sc, rfilt);
471 
472 	/* Set BSSID mask. */
473 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
474 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
475 
476 	athn_set_opmode(sc);
477 
478 	/* Set multicast filter. */
479 	AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
480 	AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
481 
482 	AR_WRITE(sc, AR_FILT_OFDM, 0);
483 	AR_WRITE(sc, AR_FILT_CCK, 0);
484 	AR_WRITE(sc, AR_MIBC, 0);
485 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
486 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
487 
488 	/* XXX ANI. */
489 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
490 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
491 
492 	/* Disable HW crypto for now. */
493 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
494 
495 	/* Start PCU Rx. */
496 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
497 	AR_WRITE_BARRIER(sc);
498 }
499 
500 PUBLIC void
501 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
502 {
503 
504 	AR_WRITE(sc, AR_RX_FILTER, rfilt);
505 #ifdef notyet
506 	reg = AR_READ(sc, AR_PHY_ERR);
507 	reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
508 	    AR_PHY_ERR_CCK_TIMING);
509 	AR_WRITE(sc, AR_PHY_ERR, reg);
510 	if (reg != 0)
511 		AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
512 	else
513 		AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
514 #else
515 	AR_WRITE(sc, AR_PHY_ERR, 0);
516 	AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
517 #endif
518 	AR_WRITE_BARRIER(sc);
519 }
520 
521 PUBLIC int
522 athn_intr(void *xsc)
523 {
524 	struct athn_softc *sc = xsc;
525 	struct ifnet *ifp = &sc->sc_if;
526 
527 	if (!IS_UP_AND_RUNNING(ifp))
528 		return 0;
529 
530 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
531 		/*
532 		 * The hardware is not ready/present, don't touch anything.
533 		 * Note this can happen early on if the IRQ is shared.
534 		 */
535 		return 0;
536 
537 	return sc->sc_ops.intr(sc);
538 }
539 
540 Static void
541 athn_get_chipid(struct athn_softc *sc)
542 {
543 	uint32_t reg;
544 
545 	reg = AR_READ(sc, AR_SREV);
546 	if (MS(reg, AR_SREV_ID) == 0xff) {
547 		sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
548 		sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
549 		if (!(reg & AR_SREV_TYPE2_HOST_MODE))
550 			sc->sc_flags |= ATHN_FLAG_PCIE;
551 	}
552 	else {
553 		sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
554 		sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
555 		if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
556 			sc->sc_flags |= ATHN_FLAG_PCIE;
557 	}
558 }
559 
560 Static const char *
561 athn_get_mac_name(struct athn_softc *sc)
562 {
563 
564 	switch (sc->sc_mac_ver) {
565 	case AR_SREV_VERSION_5416_PCI:
566 		return "AR5416";
567 	case AR_SREV_VERSION_5416_PCIE:
568 		return "AR5418";
569 	case AR_SREV_VERSION_9160:
570 		return "AR9160";
571 	case AR_SREV_VERSION_9280:
572 		return "AR9280";
573 	case AR_SREV_VERSION_9285:
574 		return "AR9285";
575 	case AR_SREV_VERSION_9271:
576 		return "AR9271";
577 	case AR_SREV_VERSION_9287:
578 		return "AR9287";
579 	case AR_SREV_VERSION_9380:
580 		return "AR9380";
581 	case AR_SREV_VERSION_9485:
582 		return "AR9485";
583 	default:
584 		return "unknown";
585 	}
586 }
587 
588 /*
589  * Return RF chip name (not for single-chip solutions).
590  */
591 Static const char *
592 athn_get_rf_name(struct athn_softc *sc)
593 {
594 
595 	KASSERT(!AR_SINGLE_CHIP(sc));
596 
597 	switch (sc->sc_rf_rev) {
598 	case AR_RAD5133_SREV_MAJOR:	/* Dual-band 3T3R. */
599 		return "AR5133";
600 	case AR_RAD2133_SREV_MAJOR:	/* Single-band 3T3R. */
601 		return "AR2133";
602 	case AR_RAD5122_SREV_MAJOR:	/* Dual-band 2T2R. */
603 		return "AR5122";
604 	case AR_RAD2122_SREV_MAJOR:	/* Single-band 2T2R. */
605 		return "AR2122";
606 	default:
607 		return "unknown";
608 	}
609 }
610 
611 PUBLIC int
612 athn_reset_power_on(struct athn_softc *sc)
613 {
614 	int ntries;
615 
616 	/* Set force wake. */
617 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
618 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
619 
620 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
621 		/* Make sure no DMA is active by doing an AHB reset. */
622 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
623 	}
624 	/* RTC reset and clear. */
625 	AR_WRITE(sc, AR_RTC_RESET, 0);
626 	AR_WRITE_BARRIER(sc);
627 	DELAY(2);
628 	if (!AR_SREV_9380_10_OR_LATER(sc))
629 		AR_WRITE(sc, AR_RC, 0);
630 	AR_WRITE(sc, AR_RTC_RESET, 1);
631 
632 	/* Poll until RTC is ON. */
633 	for (ntries = 0; ntries < 1000; ntries++) {
634 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
635 		    AR_RTC_STATUS_ON)
636 			break;
637 		DELAY(10);
638 	}
639 	if (ntries == 1000) {
640 		DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
641 		return ETIMEDOUT;
642 	}
643 	return athn_reset(sc, 0);
644 }
645 
646 PUBLIC int
647 athn_reset(struct athn_softc *sc, int cold_reset)
648 {
649 	int ntries;
650 
651 	/* Set force wake. */
652 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
653 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
654 
655 	if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
656 	    (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
657 		AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
658 		AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
659 		    (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
660 	}
661 	else if (!AR_SREV_9380_10_OR_LATER(sc))
662 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
663 
664 	AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
665 	    (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
666 	AR_WRITE_BARRIER(sc);
667 	DELAY(50);
668 	AR_WRITE(sc, AR_RTC_RC, 0);
669 	for (ntries = 0; ntries < 1000; ntries++) {
670 		if (!(AR_READ(sc, AR_RTC_RC) &
671 		      (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
672 			break;
673 		DELAY(10);
674 	}
675 	if (ntries == 1000) {
676 		DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
677 		return ETIMEDOUT;
678 	}
679 	AR_WRITE(sc, AR_RC, 0);
680 	AR_WRITE_BARRIER(sc);
681 	return 0;
682 }
683 
684 PUBLIC int
685 athn_set_power_awake(struct athn_softc *sc)
686 {
687 	int ntries, error;
688 
689 	/* Do a Power-On-Reset if shutdown. */
690 	if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
691 	    AR_RTC_STATUS_SHUTDOWN) {
692 		if ((error = athn_reset_power_on(sc)) != 0)
693 			return error;
694 		if (!AR_SREV_9380_10_OR_LATER(sc))
695 			athn_init_pll(sc, NULL);
696 	}
697 	AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
698 	AR_WRITE_BARRIER(sc);
699 	DELAY(50);	/* Give chip the chance to awake. */
700 
701 	/* Poll until RTC is ON. */
702 	for (ntries = 0; ntries < 4000; ntries++) {
703 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
704 		    AR_RTC_STATUS_ON)
705 			break;
706 		DELAY(50);
707 		AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
708 	}
709 	if (ntries == 4000) {
710 		DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
711 		return ETIMEDOUT;
712 	}
713 
714 	AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
715 	AR_WRITE_BARRIER(sc);
716 	return 0;
717 }
718 
719 PUBLIC void
720 athn_set_power_sleep(struct athn_softc *sc)
721 {
722 
723 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
724 	/* Allow the MAC to go to sleep. */
725 	AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
726 	if (!AR_SREV_9380_10_OR_LATER(sc))
727 		AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
728 	/*
729 	 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
730 	 * results in high power consumption on AR5416 chipsets.
731 	 */
732 	if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
733 		AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
734 	AR_WRITE_BARRIER(sc);
735 }
736 
737 PUBLIC void
738 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
739 {
740 	uint32_t pll;
741 
742 	if (AR_SREV_9380_10_OR_LATER(sc)) {
743 		if (AR_SREV_9485(sc))
744 			AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
745 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
746 		pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
747 	}
748 	else if (AR_SREV_9280_10_OR_LATER(sc)) {
749 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
750 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
751 			if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
752 				pll = 0x142c;
753 			else if (AR_SREV_9280_20(sc))
754 		 		pll = 0x2850;
755 			else
756 				pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
757 		}
758 		else
759 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
760 	}
761 	else if (AR_SREV_9160_10_OR_LATER(sc)) {
762 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
763 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
764 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
765 		else
766 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
767 	}
768 	else {
769 		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
770 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
771 			pll |= SM(AR_RTC_PLL_DIV, 0x0a);
772 		else
773 			pll |= SM(AR_RTC_PLL_DIV, 0x0b);
774 	}
775 	DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
776 	AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
777 	if (AR_SREV_9271(sc)) {
778 		/* Switch core clock to 117MHz. */
779 		AR_WRITE_BARRIER(sc);
780 		DELAY(500);
781 		AR_WRITE(sc, 0x50050, 0x304);
782 	}
783 	AR_WRITE_BARRIER(sc);
784 	DELAY(100);
785 	AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
786 	AR_WRITE_BARRIER(sc);
787 }
788 
789 Static void
790 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
791 {
792 	int i;
793 
794 	/* Write sequence to Serializer/Deserializer. */
795 	for (i = 0; i < serdes->nvals; i++)
796 		AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
797 	AR_WRITE_BARRIER(sc);
798 }
799 
800 PUBLIC void
801 athn_config_pcie(struct athn_softc *sc)
802 {
803 
804 	/* Disable PLL when in L0s as well as receiver clock when in L1. */
805 	athn_write_serdes(sc, sc->sc_serdes);
806 
807 	DELAY(1000);
808 	/* Allow forcing of PCIe core into L1 state. */
809 	AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
810 
811 #ifndef ATHN_PCIE_WAEN
812 	AR_WRITE(sc, AR_WA, sc->sc_workaround);
813 #else
814 	AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
815 #endif
816 	AR_WRITE_BARRIER(sc);
817 }
818 
819 /*
820  * Serializer/Deserializer programming for non-PCIe devices.
821  */
822 static const uint32_t ar_nonpcie_serdes_regs[] = {
823 	AR_PCIE_SERDES,
824 	AR_PCIE_SERDES,
825 	AR_PCIE_SERDES,
826 	AR_PCIE_SERDES,
827 	AR_PCIE_SERDES,
828 	AR_PCIE_SERDES,
829 	AR_PCIE_SERDES,
830 	AR_PCIE_SERDES,
831 	AR_PCIE_SERDES,
832 	AR_PCIE_SERDES2,
833 };
834 
835 static const uint32_t ar_nonpcie_serdes_vals[] = {
836 	0x9248fc00,
837 	0x24924924,
838 	0x28000029,
839 	0x57160824,
840 	0x25980579,
841 	0x00000000,
842 	0x1aaabe40,
843 	0xbe105554,
844 	0x000e1007,
845 	0x00000000
846 };
847 
848 static const struct athn_serdes ar_nonpcie_serdes = {
849 	__arraycount(ar_nonpcie_serdes_vals),
850 	ar_nonpcie_serdes_regs,
851 	ar_nonpcie_serdes_vals
852 };
853 
854 PUBLIC void
855 athn_config_nonpcie(struct athn_softc *sc)
856 {
857 
858 	athn_write_serdes(sc, &ar_nonpcie_serdes);
859 }
860 
861 PUBLIC int
862 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
863     struct ieee80211_channel *extchan)
864 {
865 	struct athn_ops *ops = &sc->sc_ops;
866 	int error, qid;
867 
868 	/* Check that Tx is stopped, otherwise RF Bus grant will not work. */
869 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
870 		if (athn_tx_pending(sc, qid))
871 			return EBUSY;
872 
873 	/* Request RF Bus grant. */
874 	if ((error = ops->rf_bus_request(sc)) != 0)
875 		return error;
876 
877 	ops->set_phy(sc, curchan, extchan);
878 
879 	/* Change the synthesizer. */
880 	if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
881 		return error;
882 
883 	sc->sc_curchan = curchan;
884 	sc->sc_curchanext = extchan;
885 
886 	/* Set transmit power values for new channel. */
887 	ops->set_txpower(sc, curchan, extchan);
888 
889 	/* Release the RF Bus grant. */
890 	ops->rf_bus_release(sc);
891 
892 	/* Write delta slope coeffs for modes where OFDM may be used. */
893 	if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
894 		ops->set_delta_slope(sc, curchan, extchan);
895 
896 	ops->spur_mitigate(sc, curchan, extchan);
897 	/* XXX Load noisefloor values and start calibration. */
898 
899 	return 0;
900 }
901 
902 Static int
903 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
904     struct ieee80211_channel *extchan)
905 {
906 	int error, qid;
907 
908 	/* Disable interrupts. */
909 	athn_disable_interrupts(sc);
910 
911 	/* Stop all Tx queues. */
912 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
913 		athn_stop_tx_dma(sc, qid);
914 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
915 		athn_tx_reclaim(sc, qid);
916 
917 	/* Stop Rx. */
918 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
919 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
920 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
921 	AR_WRITE(sc, AR_FILT_OFDM, 0);
922 	AR_WRITE(sc, AR_FILT_CCK, 0);
923 	athn_set_rxfilter(sc, 0);
924 	error = athn_stop_rx_dma(sc);
925 	if (error != 0)
926 		goto reset;
927 
928 #ifdef notyet
929 	/* AR9280 needs a full reset. */
930 	if (AR_SREV_9280(sc))
931 #endif
932 		goto reset;
933 
934 	/* If band or bandwidth changes, we need to do a full reset. */
935 	if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
936 	    ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
937 		DPRINTFN(DBG_RF, sc, "channel band switch\n");
938 		goto reset;
939 	}
940 	error = athn_set_power_awake(sc);
941 	if (error != 0)
942 		goto reset;
943 
944 	error = athn_set_chan(sc, curchan, extchan);
945 	if (error != 0) {
946  reset:		/* Error found, try a full reset. */
947 		DPRINTFN(DBG_RF, sc, "needs a full reset\n");
948 		error = athn_hw_reset(sc, curchan, extchan, 0);
949 		if (error != 0)	/* Hopeless case. */
950 			return error;
951 	}
952 	athn_rx_start(sc);
953 
954 	/* Re-enable interrupts. */
955 	athn_enable_interrupts(sc);
956 	return 0;
957 }
958 
959 PUBLIC void
960 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
961 {
962 #define COEFF_SCALE_SHIFT	24
963 	uint32_t exp, man;
964 
965 	/* exponent = 14 - floor(log2(coeff)) */
966 	for (exp = 31; exp > 0; exp--)
967 		if (coeff & (1 << exp))
968 			break;
969 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
970 
971 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
972 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
973 
974 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
975 	*exponent = exp - 16;
976 #undef COEFF_SCALE_SHIFT
977 }
978 
979 PUBLIC void
980 athn_reset_key(struct athn_softc *sc, int entry)
981 {
982 
983 	/*
984 	 * NB: Key cache registers access special memory area that requires
985 	 * two 32-bit writes to actually update the values in the internal
986 	 * memory.  Consequently, writes must be grouped by pair.
987 	 */
988 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
989 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
990 
991 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
992 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
993 
994 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
995 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
996 
997 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
998 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
999 
1000 	AR_WRITE_BARRIER(sc);
1001 }
1002 
1003 #ifdef notyet
1004 Static int
1005 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1006     struct ieee80211_key *k)
1007 {
1008 	struct athn_softc *sc = ic->ic_ifp->if_softc;
1009 	const uint8_t *txmic, *rxmic, *key, *addr;
1010 	uintptr_t entry, micentry;
1011 	uint32_t type, lo, hi;
1012 
1013 	switch (k->k_cipher) {
1014 	case IEEE80211_CIPHER_WEP40:
1015 		type = AR_KEYTABLE_TYPE_40;
1016 		break;
1017 	case IEEE80211_CIPHER_WEP104:
1018 		type = AR_KEYTABLE_TYPE_104;
1019 		break;
1020 	case IEEE80211_CIPHER_TKIP:
1021 		type = AR_KEYTABLE_TYPE_TKIP;
1022 		break;
1023 	case IEEE80211_CIPHER_CCMP:
1024 		type = AR_KEYTABLE_TYPE_CCM;
1025 		break;
1026 	default:
1027 		/* Fallback to software crypto for other ciphers. */
1028 		return ieee80211_set_key(ic, ni, k);
1029 	}
1030 
1031 	if (!(k->k_flags & IEEE80211_KEY_GROUP))
1032 		entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1033 	else
1034 		entry = k->k_id;
1035 	k->k_priv = (void *)entry;
1036 
1037 	/* NB: See note about key cache registers access above. */
1038 	key = k->k_key;
1039 	if (type == AR_KEYTABLE_TYPE_TKIP) {
1040 #ifndef IEEE80211_STA_ONLY
1041 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1042 			txmic = &key[16];
1043 			rxmic = &key[24];
1044 		}
1045 		else
1046 #endif
1047 		{
1048 			rxmic = &key[16];
1049 			txmic = &key[24];
1050 		}
1051 		/* Tx+Rx MIC key is at entry + 64. */
1052 		micentry = entry + 64;
1053 		AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1054 		AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1055 
1056 		AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1057 		AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1058 
1059 		AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1060 		AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1061 	}
1062 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1063 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1064 
1065 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1066 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1067 
1068 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1069 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1070 
1071 	if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1072 		addr = ni->ni_macaddr;
1073 		lo = LE_READ_4(&addr[0]);
1074 		hi = LE_READ_2(&addr[4]);
1075 		lo = lo >> 1 | hi << 31;
1076 		hi = hi >> 1;
1077 	}
1078 	else
1079 		lo = hi = 0;
1080 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1081 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1082 	AR_WRITE_BARRIER(sc);
1083 	return 0;
1084 }
1085 
1086 Static void
1087 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1088     struct ieee80211_key *k)
1089 {
1090 	struct athn_softc *sc = ic->ic_ifp->if_softc;
1091 	uintptr_t entry;
1092 
1093 	switch (k->k_cipher) {
1094 	case IEEE80211_CIPHER_WEP40:
1095 	case IEEE80211_CIPHER_WEP104:
1096 	case IEEE80211_CIPHER_CCMP:
1097 		entry = (uintptr_t)k->k_priv;
1098 		athn_reset_key(sc, entry);
1099 		break;
1100 	case IEEE80211_CIPHER_TKIP:
1101 		entry = (uintptr_t)k->k_priv;
1102 		athn_reset_key(sc, entry);
1103 		athn_reset_key(sc, entry + 64);
1104 		break;
1105 	default:
1106 		/* Fallback to software crypto for other ciphers. */
1107 		ieee80211_delete_key(ic, ni, k);
1108 	}
1109 }
1110 #endif /* notyet */
1111 
1112 PUBLIC void
1113 athn_led_init(struct athn_softc *sc)
1114 {
1115 	struct athn_ops *ops = &sc->sc_ops;
1116 
1117 	ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1118 	/* LED off, active low. */
1119 	athn_set_led(sc, 0);
1120 }
1121 
1122 PUBLIC void
1123 athn_set_led(struct athn_softc *sc, int on)
1124 {
1125 	struct athn_ops *ops = &sc->sc_ops;
1126 
1127 	sc->sc_led_state = on;
1128 	ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1129 }
1130 
1131 #ifdef ATHN_BT_COEXISTENCE
1132 Static void
1133 athn_btcoex_init(struct athn_softc *sc)
1134 {
1135 	struct athn_ops *ops = &sc->sc_ops;
1136 	uint32_t reg;
1137 
1138 	if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1139 		/* Connect bt_active to baseband. */
1140 		AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1141 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1142 		    AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1143 		AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1144 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1145 
1146 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1147 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1148 		    AR_GPIO_BTACTIVE_PIN);
1149 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1150 		AR_WRITE_BARRIER(sc);
1151 
1152 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1153 	}
1154 	else {	/* 3-wire. */
1155 		AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1156 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1157 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1158 
1159 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1160 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1161 		    AR_GPIO_BTACTIVE_PIN);
1162 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1163 		    AR_GPIO_BTPRIORITY_PIN);
1164 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1165 		AR_WRITE_BARRIER(sc);
1166 
1167 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1168 		ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1169 	}
1170 }
1171 
1172 Static void
1173 athn_btcoex_enable(struct athn_softc *sc)
1174 {
1175 	struct athn_ops *ops = &sc->sc_ops;
1176 	uint32_t reg;
1177 
1178 	if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1179 		AR_WRITE(sc, AR_BT_COEX_MODE,
1180 		    SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1181 		    SM(AR_BT_PRIORITY_TIME, 2) |
1182 		    SM(AR_BT_FIRST_SLOT_TIME, 5) |
1183 		    SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1184 		    AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1185 		    AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1186 		AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1187 		    SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1188 		    SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1189 		AR_WRITE(sc, AR_BT_COEX_MODE2,
1190 		    SM(AR_BT_BCN_MISS_THRESH, 50) |
1191 		    AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1192 
1193 		AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1194 		AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1195 		AR_WRITE_BARRIER(sc);
1196 
1197 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1198 		    AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1199 
1200 	}
1201 	else {	/* 2-wire. */
1202 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1203 		    AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1204 	}
1205 	reg = AR_READ(sc, AR_GPIO_PDPU);
1206 	reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1207 	reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1208 	AR_WRITE(sc, AR_GPIO_PDPU, reg);
1209 	AR_WRITE_BARRIER(sc);
1210 
1211 	/* Disable PCIe Active State Power Management (ASPM). */
1212 	if (sc->sc_disable_aspm != NULL)
1213 		sc->sc_disable_aspm(sc);
1214 
1215 	/* XXX Start periodic timer. */
1216 }
1217 
1218 Static void
1219 athn_btcoex_disable(struct athn_softc *sc)
1220 {
1221 	struct athn_ops *ops = &sc->sc_ops;
1222 
1223 	ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1224 
1225 	ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1226 	    AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1227 
1228 	if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1229 		AR_WRITE(sc, AR_BT_COEX_MODE,
1230 		    SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1231 		AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1232 		AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1233 		/* XXX Stop periodic timer. */
1234 	}
1235 	AR_WRITE_BARRIER(sc);
1236 	/* XXX Restore ASPM setting? */
1237 }
1238 #endif
1239 
1240 Static void
1241 athn_iter_func(void *arg, struct ieee80211_node *ni)
1242 {
1243 	struct athn_softc *sc = arg;
1244 	struct athn_node *an = (struct athn_node *)ni;
1245 
1246 	ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1247 }
1248 
1249 Static void
1250 athn_calib_to(void *arg)
1251 {
1252 	extern int ticks;
1253 	struct athn_softc *sc = arg;
1254 	struct athn_ops *ops = &sc->sc_ops;
1255 	struct ieee80211com *ic = &sc->sc_ic;
1256 	int s;
1257 
1258 	s = splnet();
1259 
1260 	/* Do periodic (every 4 minutes) PA calibration. */
1261 	if (AR_SREV_9285_11_OR_LATER(sc) &&
1262 	    !AR_SREV_9380_10_OR_LATER(sc) &&
1263 	    ticks >= sc->sc_pa_calib_ticks + 240 * hz) {
1264 		sc->sc_pa_calib_ticks = ticks;
1265 		if (AR_SREV_9271(sc))
1266 			ar9271_pa_calib(sc);
1267 		else
1268 			ar9285_pa_calib(sc);
1269 	}
1270 
1271 	/* Do periodic (every 30 seconds) temperature compensation. */
1272 	if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1273 	    ticks >= sc->sc_olpc_ticks + 30 * hz) {
1274 		sc->sc_olpc_ticks = ticks;
1275 		ops->olpc_temp_compensation(sc);
1276 	}
1277 
1278 #ifdef notyet
1279 	/* XXX ANI. */
1280 	athn_ani_monitor(sc);
1281 
1282 	ops->next_calib(sc);
1283 #endif
1284 	if (ic->ic_fixed_rate == -1) {
1285 		if (ic->ic_opmode == IEEE80211_M_STA)
1286 			athn_iter_func(sc, ic->ic_bss);
1287 		else
1288 			ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1289 	}
1290 	callout_schedule(&sc->sc_calib_to, hz / 2);
1291 	splx(s);
1292 }
1293 
1294 Static int
1295 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1296     struct ieee80211_channel *extchan)
1297 {
1298 	struct athn_ops *ops = &sc->sc_ops;
1299 	int error;
1300 
1301 	if (AR_SREV_9380_10_OR_LATER(sc))
1302 		error = ar9003_init_calib(sc);
1303 	else if (AR_SREV_9285_10_OR_LATER(sc))
1304 		error = ar9285_init_calib(sc, curchan, extchan);
1305 	else
1306 		error = ar5416_init_calib(sc, curchan, extchan);
1307 	if (error != 0)
1308 		return error;
1309 
1310 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1311 		/* Do PA calibration. */
1312 		if (AR_SREV_9285_11_OR_LATER(sc)) {
1313 			extern int ticks;
1314 			sc->sc_pa_calib_ticks = ticks;
1315 			if (AR_SREV_9271(sc))
1316 				ar9271_pa_calib(sc);
1317 			else
1318 				ar9285_pa_calib(sc);
1319 		}
1320 		/* Do noisefloor calibration. */
1321 		ops->noisefloor_calib(sc);
1322 	}
1323 	if (AR_SREV_9160_10_OR_LATER(sc)) {
1324 		/* Support IQ calibration. */
1325 		sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1326 		if (AR_SREV_9380_10_OR_LATER(sc)) {
1327 			/* Support temperature compensation calibration. */
1328 			sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1329 		}
1330 		else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1331 			/*
1332 			 * ADC gain calibration causes uplink throughput
1333 			 * drops in HT40 mode on AR9287.
1334 			 */
1335 			if (!AR_SREV_9287(sc)) {
1336 				/* Support ADC gain calibration. */
1337 				sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1338 			}
1339 			/* Support ADC DC offset calibration. */
1340 			sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1341 		}
1342 	}
1343 	return 0;
1344 }
1345 
1346 /*
1347  * Adaptive noise immunity.
1348  */
1349 #ifdef notyet
1350 Static int32_t
1351 athn_ani_get_rssi(struct athn_softc *sc)
1352 {
1353 
1354 	return 0;	/* XXX */
1355 }
1356 #endif /* notyet */
1357 
1358 #ifdef notyet
1359 Static void
1360 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1361 {
1362 	struct athn_ani *ani = &sc->sc_ani;
1363 	struct athn_ops *ops = &sc->sc_ops;
1364 	int32_t rssi;
1365 
1366 	/* First, raise noise immunity level, up to max. */
1367 	if (ani->noise_immunity_level < 4) {
1368 		ani->noise_immunity_level++;
1369 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1370 		return;
1371 	}
1372 
1373 	/* Then, raise our spur immunity level, up to max. */
1374 	if (ani->spur_immunity_level < 7) {
1375 		ani->spur_immunity_level++;
1376 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1377 		return;
1378 	}
1379 
1380 #ifndef IEEE80211_STA_ONLY
1381 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1382 		if (ani->firstep_level < 2) {
1383 			ani->firstep_level++;
1384 			ops->set_firstep_level(sc, ani->firstep_level);
1385 		}
1386 		return;
1387 	}
1388 #endif
1389 	rssi = athn_ani_get_rssi(sc);
1390 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1391 		/*
1392 		 * Beacon RSSI is high, turn off OFDM weak signal detection
1393 		 * or raise first step level as last resort.
1394 		 */
1395 		if (ani->ofdm_weak_signal) {
1396 			ani->ofdm_weak_signal = 0;
1397 			ops->disable_ofdm_weak_signal(sc);
1398 			ani->spur_immunity_level = 0;
1399 			ops->set_spur_immunity_level(sc, 0);
1400 		}
1401 		else if (ani->firstep_level < 2) {
1402 			ani->firstep_level++;
1403 			ops->set_firstep_level(sc, ani->firstep_level);
1404 		}
1405 	}
1406 	else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1407 		/*
1408 		 * Beacon RSSI is in mid range, we need OFDM weak signal
1409 		 * detection but we can raise first step level.
1410 		 */
1411 		if (!ani->ofdm_weak_signal) {
1412 			ani->ofdm_weak_signal = 1;
1413 			ops->enable_ofdm_weak_signal(sc);
1414 		}
1415 		if (ani->firstep_level < 2) {
1416 			ani->firstep_level++;
1417 			ops->set_firstep_level(sc, ani->firstep_level);
1418 		}
1419 	}
1420 	else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1421 		/*
1422 		 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1423 		 * signal detection and zero first step level to maximize
1424 		 * CCK sensitivity.
1425 		 */
1426 		if (ani->ofdm_weak_signal) {
1427 			ani->ofdm_weak_signal = 0;
1428 			ops->disable_ofdm_weak_signal(sc);
1429 		}
1430 		if (ani->firstep_level > 0) {
1431 			ani->firstep_level = 0;
1432 			ops->set_firstep_level(sc, 0);
1433 		}
1434 	}
1435 }
1436 #endif /* notyet */
1437 
1438 #ifdef notyet
1439 Static void
1440 athn_ani_cck_err_trigger(struct athn_softc *sc)
1441 {
1442 	struct athn_ani *ani = &sc->sc_ani;
1443 	struct athn_ops *ops = &sc->sc_ops;
1444 	int32_t rssi;
1445 
1446 	/* Raise noise immunity level, up to max. */
1447 	if (ani->noise_immunity_level < 4) {
1448 		ani->noise_immunity_level++;
1449 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1450 		return;
1451 	}
1452 
1453 #ifndef IEEE80211_STA_ONLY
1454 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1455 		if (ani->firstep_level < 2) {
1456 			ani->firstep_level++;
1457 			ops->set_firstep_level(sc, ani->firstep_level);
1458 		}
1459 		return;
1460 	}
1461 #endif
1462 	rssi = athn_ani_get_rssi(sc);
1463 	if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1464 		/*
1465 		 * Beacon RSSI is in mid or high range, raise first step
1466 		 * level.
1467 		 */
1468 		if (ani->firstep_level < 2) {
1469 			ani->firstep_level++;
1470 			ops->set_firstep_level(sc, ani->firstep_level);
1471 		}
1472 	}
1473 	else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1474 		/*
1475 		 * Beacon RSSI is low, zero first step level to maximize
1476 		 * CCK sensitivity.
1477 		 */
1478 		if (ani->firstep_level > 0) {
1479 			ani->firstep_level = 0;
1480 			ops->set_firstep_level(sc, 0);
1481 		}
1482 	}
1483 }
1484 #endif /* notyet */
1485 
1486 #ifdef notyet
1487 Static void
1488 athn_ani_lower_immunity(struct athn_softc *sc)
1489 {
1490 	struct athn_ani *ani = &sc->sc_ani;
1491 	struct athn_ops *ops = &sc->sc_ops;
1492 	int32_t rssi;
1493 
1494 #ifndef IEEE80211_STA_ONLY
1495 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1496 		if (ani->firstep_level > 0) {
1497 			ani->firstep_level--;
1498 			ops->set_firstep_level(sc, ani->firstep_level);
1499 		}
1500 		return;
1501 	}
1502 #endif
1503 	rssi = athn_ani_get_rssi(sc);
1504 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1505 		/*
1506 		 * Beacon RSSI is high, leave OFDM weak signal detection
1507 		 * off or it may oscillate.
1508 		 */
1509 	}
1510 	else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1511 		/*
1512 		 * Beacon RSSI is in mid range, turn on OFDM weak signal
1513 		 * detection or lower first step level.
1514 		 */
1515 		if (!ani->ofdm_weak_signal) {
1516 			ani->ofdm_weak_signal = 1;
1517 			ops->enable_ofdm_weak_signal(sc);
1518 			return;
1519 		}
1520 		if (ani->firstep_level > 0) {
1521 			ani->firstep_level--;
1522 			ops->set_firstep_level(sc, ani->firstep_level);
1523 			return;
1524 		}
1525 	}
1526 	else {
1527 		/* Beacon RSSI is low, lower first step level. */
1528 		if (ani->firstep_level > 0) {
1529 			ani->firstep_level--;
1530 			ops->set_firstep_level(sc, ani->firstep_level);
1531 			return;
1532 		}
1533 	}
1534 	/*
1535 	 * Lower spur immunity level down to zero, or if all else fails,
1536 	 * lower noise immunity level down to zero.
1537 	 */
1538 	if (ani->spur_immunity_level > 0) {
1539 		ani->spur_immunity_level--;
1540 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1541 	}
1542 	else if (ani->noise_immunity_level > 0) {
1543 		ani->noise_immunity_level--;
1544 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1545 	}
1546 }
1547 #endif /* notyet */
1548 
1549 #ifdef notyet
1550 Static void
1551 athn_ani_restart(struct athn_softc *sc)
1552 {
1553 	struct athn_ani *ani = &sc->sc_ani;
1554 
1555 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
1556 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
1557 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1558 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1559 	AR_WRITE_BARRIER(sc);
1560 
1561 	ani->listen_time = 0;
1562 	ani->ofdm_phy_err_count = 0;
1563 	ani->cck_phy_err_count = 0;
1564 }
1565 #endif /* notyet */
1566 
1567 #ifdef notyet
1568 Static void
1569 athn_ani_monitor(struct athn_softc *sc)
1570 {
1571 	struct athn_ani *ani = &sc->sc_ani;
1572 	uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1573 	int32_t cycdelta, txfdelta, rxfdelta;
1574 	int32_t listen_time;
1575 
1576 	txfcnt = AR_READ(sc, AR_TFCNT);	/* Tx frame count. */
1577 	rxfcnt = AR_READ(sc, AR_RFCNT);	/* Rx frame count. */
1578 	cyccnt = AR_READ(sc, AR_CCCNT);	/* Cycle count. */
1579 
1580 	if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1581 		cycdelta = cyccnt - ani->cyccnt;
1582 		txfdelta = txfcnt - ani->txfcnt;
1583 		rxfdelta = rxfcnt - ani->rxfcnt;
1584 
1585 		listen_time = (cycdelta - txfdelta - rxfdelta) /
1586 		    (athn_clock_rate(sc) * 1000);
1587 	}
1588 	else
1589 		listen_time = 0;
1590 
1591 	ani->cyccnt = cyccnt;
1592 	ani->txfcnt = txfcnt;
1593 	ani->rxfcnt = rxfcnt;
1594 
1595 	if (listen_time < 0) {
1596 		athn_ani_restart(sc);
1597 		return;
1598 	}
1599 	ani->listen_time += listen_time;
1600 
1601 	phy1 = AR_READ(sc, AR_PHY_ERR_1);
1602 	phy2 = AR_READ(sc, AR_PHY_ERR_2);
1603 
1604 	if (phy1 < ani->ofdm_phy_err_base) {
1605 		AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1606 		AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1607 	}
1608 	if (phy2 < ani->cck_phy_err_base) {
1609 		AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1610 		AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1611 	}
1612 	if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1613 		AR_WRITE_BARRIER(sc);
1614 		return;
1615 	}
1616 	ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1617 	ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1618 
1619 	if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1620 		/* Check to see if we need to lower immunity. */
1621 		if (ani->ofdm_phy_err_count <=
1622 		    ani->listen_time * ani->ofdm_trig_low / 1000 &&
1623 		    ani->cck_phy_err_count <=
1624 		    ani->listen_time * ani->cck_trig_low / 1000)
1625 			athn_ani_lower_immunity(sc);
1626 		athn_ani_restart(sc);
1627 
1628 	}
1629 	else if (ani->listen_time > ATHN_ANI_PERIOD) {
1630 		/* Check to see if we need to raise immunity. */
1631 		if (ani->ofdm_phy_err_count >
1632 		    ani->listen_time * ani->ofdm_trig_high / 1000) {
1633 			athn_ani_ofdm_err_trigger(sc);
1634 			athn_ani_restart(sc);
1635 		}
1636 		else if (ani->cck_phy_err_count >
1637 		    ani->listen_time * ani->cck_trig_high / 1000) {
1638 			athn_ani_cck_err_trigger(sc);
1639 			athn_ani_restart(sc);
1640 		}
1641 	}
1642 }
1643 #endif /* notyet */
1644 
1645 PUBLIC uint8_t
1646 athn_chan2fbin(struct ieee80211_channel *c)
1647 {
1648 
1649 	if (IEEE80211_IS_CHAN_2GHZ(c))
1650 		return c->ic_freq - 2300;
1651 	else
1652 		return (c->ic_freq - 4800) / 5;
1653 }
1654 
1655 PUBLIC int
1656 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1657 {
1658 
1659 	if (x1 == x2)	/* Prevents division by zero. */
1660 		return y1;
1661 	/* Linear interpolation. */
1662 	return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1663 }
1664 
1665 PUBLIC void
1666 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1667     int *lo, int *hi)
1668 {
1669 	int i;
1670 
1671 	for (i = 0; i < npiers; i++)
1672 		if (pierfreq[i] == AR_BCHAN_UNUSED ||
1673 		    pierfreq[i] > fbin)
1674 			break;
1675 	*hi = i;
1676 	*lo = *hi - 1;
1677 	if (*lo == -1)
1678 		*lo = *hi;
1679 	else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1680 		*hi = *lo;
1681 }
1682 
1683 Static void
1684 athn_init_dma(struct athn_softc *sc)
1685 {
1686 	uint32_t reg;
1687 
1688 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1689 		/* Set AHB not to do cacheline prefetches. */
1690 		AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1691 	}
1692 	reg = AR_READ(sc, AR_TXCFG);
1693 	/* Let MAC DMA reads be in 128-byte chunks. */
1694 	reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1695 
1696 	/* Set initial Tx trigger level. */
1697 	if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1698 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1699 	else if (!AR_SREV_9380_10_OR_LATER(sc))
1700 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1701 	AR_WRITE(sc, AR_TXCFG, reg);
1702 
1703 	/* Let MAC DMA writes be in 128-byte chunks. */
1704 	reg = AR_READ(sc, AR_RXCFG);
1705 	reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1706 	AR_WRITE(sc, AR_RXCFG, reg);
1707 
1708 	/* Setup Rx FIFO threshold to hold off Tx activities. */
1709 	AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1710 
1711 	/* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1712 	if (AR_SREV_9285(sc)) {
1713 		AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1714 		    AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1715 	}
1716 	else if (!AR_SREV_9271(sc)) {
1717 		AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1718 		    AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1719 	}
1720 	AR_WRITE_BARRIER(sc);
1721 
1722 	/* Reset Tx status ring. */
1723 	if (AR_SREV_9380_10_OR_LATER(sc))
1724 		ar9003_reset_txsring(sc);
1725 }
1726 
1727 PUBLIC void
1728 athn_inc_tx_trigger_level(struct athn_softc *sc)
1729 {
1730 	uint32_t reg, ftrig;
1731 
1732 	reg = AR_READ(sc, AR_TXCFG);
1733 	ftrig = MS(reg, AR_TXCFG_FTRIG);
1734 	/*
1735 	 * NB: The AR9285 and all single-stream parts have an issue that
1736 	 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1737 	 */
1738 	if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1739 		return;		/* Already at max. */
1740 	reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1741 	AR_WRITE(sc, AR_TXCFG, reg);
1742 	AR_WRITE_BARRIER(sc);
1743 }
1744 
1745 PUBLIC int
1746 athn_stop_rx_dma(struct athn_softc *sc)
1747 {
1748 	int ntries;
1749 
1750 	AR_WRITE(sc, AR_CR, AR_CR_RXD);
1751 	/* Wait for Rx enable bit to go low. */
1752 	for (ntries = 0; ntries < 100; ntries++) {
1753 		if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1754 			return 0;
1755 		DELAY(100);
1756 	}
1757 	DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1758 	return ETIMEDOUT;
1759 }
1760 
1761 #ifdef unused
1762 Static int
1763 athn_rx_abort(struct athn_softc *sc)
1764 {
1765 	int ntries;
1766 
1767 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1768 	for (ntries = 0; ntries < 1000; ntries++) {
1769 		if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1770 			return 0;
1771 		DELAY(10);
1772 	}
1773 	DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1774 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1775 	AR_WRITE_BARRIER(sc);
1776 	return ETIMEDOUT;
1777 }
1778 #endif /* unused */
1779 
1780 Static void
1781 athn_tx_reclaim(struct athn_softc *sc, int qid)
1782 {
1783 	struct athn_txq *txq = &sc->sc_txq[qid];
1784 	struct athn_tx_buf *bf;
1785 
1786 	/* Reclaim all buffers queued in the specified Tx queue. */
1787 	/* NB: Tx DMA must be stopped. */
1788 	while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1789 		SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1790 
1791 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1792 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1793 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1794 		m_freem(bf->bf_m);
1795 		bf->bf_m = NULL;
1796 		bf->bf_ni = NULL;	/* Nodes already freed! */
1797 
1798 		/* Link Tx buffer back to global free list. */
1799 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1800 	}
1801 }
1802 
1803 PUBLIC int
1804 athn_tx_pending(struct athn_softc *sc, int qid)
1805 {
1806 
1807 	return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1808 	    (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1809 }
1810 
1811 PUBLIC void
1812 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1813 {
1814 	uint32_t tsflo;
1815 	int ntries, i;
1816 
1817 	AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1818 	for (ntries = 0; ntries < 40; ntries++) {
1819 		if (!athn_tx_pending(sc, qid))
1820 			break;
1821 		DELAY(100);
1822 	}
1823 	if (ntries == 40) {
1824 		for (i = 0; i < 2; i++) {
1825 			tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1826 			AR_WRITE(sc, AR_QUIET2,
1827 			    SM(AR_QUIET2_QUIET_DUR, 10));
1828 			AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1829 			AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1830 			AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1831 			if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1832 				break;
1833 		}
1834 		AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1835 		AR_WRITE_BARRIER(sc);
1836 		DELAY(200);
1837 		AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1838 		AR_WRITE_BARRIER(sc);
1839 
1840 		for (ntries = 0; ntries < 40; ntries++) {
1841 			if (!athn_tx_pending(sc, qid))
1842 				break;
1843 			DELAY(100);
1844 		}
1845 
1846 		AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1847 	}
1848 	AR_WRITE(sc, AR_Q_TXD, 0);
1849 	AR_WRITE_BARRIER(sc);
1850 }
1851 
1852 PUBLIC int
1853 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1854 {
1855 #define divround(a, b)	(((a) + (b) - 1) / (b))
1856 	int txtime;
1857 
1858 	/* XXX HT. */
1859 	if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1860 		txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1861 		/* SIFS is 10us for 11g but Signal Extension adds 6us. */
1862 		txtime = 16 + 4 + 4 * txtime + 16;
1863 	}
1864 	else {
1865 		txtime = divround(16 * len, athn_rates[ridx].rate);
1866 		if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1867 			txtime +=  72 + 24;
1868 		else
1869 			txtime += 144 + 48;
1870 		txtime += 10;	/* 10us SIFS. */
1871 	}
1872 	return txtime;
1873 #undef divround
1874 }
1875 
1876 PUBLIC void
1877 athn_init_tx_queues(struct athn_softc *sc)
1878 {
1879 	int qid;
1880 
1881 	for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1882 		SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1883 		sc->sc_txq[qid].lastds = NULL;
1884 		sc->sc_txq[qid].wait = NULL;
1885 		sc->sc_txq[qid].queued = 0;
1886 
1887 		AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1888 		    SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1889 		    SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1890 		    SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1891 		AR_WRITE(sc, AR_QMISC(qid),
1892 		    AR_Q_MISC_DCU_EARLY_TERM_REQ);
1893 		AR_WRITE(sc, AR_DMISC(qid),
1894 		    SM(AR_D_MISC_BKOFF_THRESH, 2) |
1895 		    AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1896 	}
1897 
1898 	/* Init beacon queue. */
1899 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1900 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1901 	    AR_Q_MISC_CBR_INCR_DIS1);
1902 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1903 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1904 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1905 	    AR_D_MISC_BEACON_USE |
1906 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1907 	AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1908 	    SM(AR_D_LCL_IFS_CWMIN, 0) |
1909 	    SM(AR_D_LCL_IFS_CWMAX, 0) |
1910 	    SM(AR_D_LCL_IFS_AIFS,  1));
1911 
1912 	/* Init CAB (Content After Beacon) queue. */
1913 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1914 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1915 	    AR_Q_MISC_CBR_INCR_DIS0);
1916 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1917 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1918 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1919 
1920 	/* Init PS-Poll queue. */
1921 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1922 	    AR_Q_MISC_CBR_INCR_DIS1);
1923 
1924 	/* Init UAPSD queue. */
1925 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1926 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1927 
1928 	if (AR_SREV_9380_10_OR_LATER(sc)) {
1929 		/* Enable MAC descriptor CRC check. */
1930 		AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1931 	}
1932 	/* Enable DESC interrupts for all Tx queues. */
1933 	AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1934 	/* Enable EOL interrupts for all Tx queues except UAPSD. */
1935 	AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1936 	AR_WRITE_BARRIER(sc);
1937 }
1938 
1939 PUBLIC void
1940 athn_set_sta_timers(struct athn_softc *sc)
1941 {
1942 	struct ieee80211com *ic = &sc->sc_ic;
1943 	uint32_t tsfhi, tsflo, tsftu, reg;
1944 	uint32_t intval, next_tbtt, next_dtim;
1945 	int dtim_period, rem_dtim_count;
1946 
1947 	tsfhi = AR_READ(sc, AR_TSF_U32);
1948 	tsflo = AR_READ(sc, AR_TSF_L32);
1949 	tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
1950 
1951 	/* Beacon interval in TU. */
1952 	intval = ic->ic_bss->ni_intval;
1953 
1954 	next_tbtt = roundup(tsftu, intval);
1955 #ifdef notyet
1956 	dtim_period = ic->ic_dtim_period;
1957 	if (dtim_period <= 0)
1958 #endif
1959 		dtim_period = 1;	/* Assume all TIMs are DTIMs. */
1960 
1961 #ifdef notyet
1962 	int dtim_count = ic->ic_dtim_count;
1963 	if (dtim_count >= dtim_period)	/* Should not happen. */
1964 		dtim_count = 0;	/* Assume last TIM was a DTIM. */
1965 #endif
1966 
1967 	/* Compute number of remaining TIMs until next DTIM. */
1968 	rem_dtim_count = 0;	/* XXX */
1969 	next_dtim = next_tbtt + rem_dtim_count * intval;
1970 
1971 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
1972 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
1973 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
1974 
1975 	/*
1976 	 * Set the number of consecutive beacons to miss before raising
1977 	 * a BMISS interrupt to 10.
1978 	 */
1979 	reg = AR_READ(sc, AR_RSSI_THR);
1980 	reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
1981 	AR_WRITE(sc, AR_RSSI_THR, reg);
1982 
1983 	AR_WRITE(sc, AR_NEXT_DTIM,
1984 	    (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
1985 	AR_WRITE(sc, AR_NEXT_TIM,
1986 	    (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
1987 
1988 	/* CAB timeout is in 1/8 TU. */
1989 	AR_WRITE(sc, AR_SLEEP1,
1990 	    SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
1991 	    AR_SLEEP1_ASSUME_DTIM);
1992 	AR_WRITE(sc, AR_SLEEP2,
1993 	    SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
1994 
1995 	AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
1996 	AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
1997 
1998 	AR_SETBITS(sc, AR_TIMER_MODE,
1999 	    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2000 
2001 	/* Set TSF out-of-range threshold (fixed at 16k us). */
2002 	AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2003 
2004 	AR_WRITE_BARRIER(sc);
2005 }
2006 
2007 #ifndef IEEE80211_STA_ONLY
2008 PUBLIC void
2009 athn_set_hostap_timers(struct athn_softc *sc)
2010 {
2011 	struct ieee80211com *ic = &sc->sc_ic;
2012 	uint32_t intval, next_tbtt;
2013 
2014 	/* Beacon interval in TU. */
2015 	intval = ic->ic_bss->ni_intval;
2016 	next_tbtt = intval;
2017 
2018 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2019 	AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2020 	    (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2021 	AR_WRITE(sc, AR_NEXT_CFP,
2022 	    (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2023 
2024 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2025 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2026 	AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2027 	AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2028 
2029 	AR_WRITE(sc, AR_TIMER_MODE,
2030 	    AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2031 
2032 	AR_WRITE_BARRIER(sc);
2033 }
2034 #endif
2035 
2036 PUBLIC void
2037 athn_set_opmode(struct athn_softc *sc)
2038 {
2039 	uint32_t reg;
2040 
2041 	switch (sc->sc_ic.ic_opmode) {
2042 #ifndef IEEE80211_STA_ONLY
2043 	case IEEE80211_M_HOSTAP:
2044 		reg = AR_READ(sc, AR_STA_ID1);
2045 		reg &= ~AR_STA_ID1_ADHOC;
2046 		reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2047 		AR_WRITE(sc, AR_STA_ID1, reg);
2048 
2049 		AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2050 		break;
2051 	case IEEE80211_M_IBSS:
2052 	case IEEE80211_M_AHDEMO:
2053 		reg = AR_READ(sc, AR_STA_ID1);
2054 		reg &= ~AR_STA_ID1_STA_AP;
2055 		reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2056 		AR_WRITE(sc, AR_STA_ID1, reg);
2057 
2058 		AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2059 		break;
2060 #endif
2061 	default:
2062 		reg = AR_READ(sc, AR_STA_ID1);
2063 		reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2064 		reg |= AR_STA_ID1_KSRCH_MODE;
2065 		AR_WRITE(sc, AR_STA_ID1, reg);
2066 		break;
2067 	}
2068 	AR_WRITE_BARRIER(sc);
2069 }
2070 
2071 PUBLIC void
2072 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2073 {
2074 	const uint8_t *bssid = ni->ni_bssid;
2075 
2076 	AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2077 	AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2078 	    SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2079 	AR_WRITE_BARRIER(sc);
2080 }
2081 
2082 Static void
2083 athn_enable_interrupts(struct athn_softc *sc)
2084 {
2085 	uint32_t mask2;
2086 
2087 	athn_disable_interrupts(sc);	/* XXX */
2088 
2089 	AR_WRITE(sc, AR_IMR, sc->sc_imask);
2090 
2091 	mask2 = AR_READ(sc, AR_IMR_S2);
2092 	mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2093 	    AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2094 	mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2095 	AR_WRITE(sc, AR_IMR_S2, mask2);
2096 
2097 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2098 
2099 	AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2100 
2101 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2102 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2103 
2104 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2105 	AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2106 	AR_WRITE_BARRIER(sc);
2107 }
2108 
2109 Static void
2110 athn_disable_interrupts(struct athn_softc *sc)
2111 {
2112 
2113 	AR_WRITE(sc, AR_IER, 0);
2114 	(void)AR_READ(sc, AR_IER);
2115 
2116 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2117 	(void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2118 
2119 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2120 	(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2121 
2122 	AR_WRITE(sc, AR_IMR, 0);
2123 
2124 	AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2125 	    AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2126 	    AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2127 
2128 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2129 	AR_WRITE_BARRIER(sc);
2130 }
2131 
2132 Static void
2133 athn_init_qos(struct athn_softc *sc)
2134 {
2135 
2136 	/* Initialize QoS settings. */
2137 	AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2138 	AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2139 	AR_WRITE(sc, AR_QOS_NO_ACK,
2140 	    SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2141 	    SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2142 	    SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2143 	AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2144 	/* Initialize TXOP for all TIDs. */
2145 	AR_WRITE(sc, AR_TXOP_0_3,   0xffffffff);
2146 	AR_WRITE(sc, AR_TXOP_4_7,   0xffffffff);
2147 	AR_WRITE(sc, AR_TXOP_8_11,  0xffffffff);
2148 	AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2149 	AR_WRITE_BARRIER(sc);
2150 }
2151 
2152 PUBLIC int
2153 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2154     struct ieee80211_channel *extchan, int init)
2155 {
2156 	struct ieee80211com *ic = &sc->sc_ic;
2157 	struct athn_ops *ops = &sc->sc_ops;
2158 	uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2159 	int i, error;
2160 
2161 	/* XXX not if already awake */
2162 	if ((error = athn_set_power_awake(sc)) != 0) {
2163 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2164 		return error;
2165 	}
2166 
2167 	/* Preserve the antenna on a channel switch. */
2168 	if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2169 		def_ant = 1;
2170 	/* Preserve other registers. */
2171 	sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2172 	cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2173 	    AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2174 	    AR_CFG_LED_BLINK_SLOW);
2175 
2176 	/* Mark PHY as inactive. */
2177 	ops->disable_phy(sc);
2178 
2179 	if (init && AR_SREV_9271(sc)) {
2180 		AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2181 		    AR9271_RADIO_RF_RST);
2182 		DELAY(50);
2183 	}
2184 	if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2185 		/* Save TSF before it gets cleared. */
2186 		tsfhi = AR_READ(sc, AR_TSF_U32);
2187 		tsflo = AR_READ(sc, AR_TSF_L32);
2188 
2189 		/* NB: RTC reset clears TSF. */
2190 		error = athn_reset_power_on(sc);
2191 	}
2192 	else {
2193 		tsfhi = tsflo = 0;	/* XXX: gcc */
2194 		error = athn_reset(sc, 0);
2195 	}
2196 	if (error != 0) {
2197 		aprint_error_dev(sc->sc_dev,
2198 		    "could not reset chip (error=%d)\n", error);
2199 		return error;
2200 	}
2201 
2202 	/* XXX not if already awake */
2203 	if ((error = athn_set_power_awake(sc)) != 0) {
2204 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2205 		return error;
2206 	}
2207 
2208 	athn_init_pll(sc, curchan);
2209 	ops->set_rf_mode(sc, curchan);
2210 
2211 	if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2212 		/* Check that the radio is not disabled by hardware switch. */
2213 		reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2214 		if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2215 			reg = !reg;
2216 		if (!reg) {
2217 			aprint_error_dev(sc->sc_dev,
2218 			    "radio is disabled by hardware switch\n");
2219 			return EPERM;
2220 		}
2221 	}
2222 	if (init && AR_SREV_9271(sc)) {
2223 		AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2224 		    AR9271_GATE_MAC_CTL);
2225 		DELAY(50);
2226 	}
2227 	if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2228 		/* Restore TSF if it got cleared. */
2229 		AR_WRITE(sc, AR_TSF_L32, tsflo);
2230 		AR_WRITE(sc, AR_TSF_U32, tsfhi);
2231 	}
2232 
2233 	if (AR_SREV_9280_10_OR_LATER(sc))
2234 		AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2235 
2236 	if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2237 		ar9287_1_3_enable_async_fifo(sc);
2238 
2239 	/* Write init values to hardware. */
2240 	ops->hw_init(sc, curchan, extchan);
2241 
2242 	/*
2243 	 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2244 	 * management frames using CCMP.
2245 	 */
2246 	if (AR_SREV_9280_20_OR_LATER(sc)) {
2247 		reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2248 		/* Do not mask the subtype field in management frames. */
2249 		reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2250 		reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2251 		    ~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2252 		      IEEE80211_FC1_MORE_DATA));
2253 		AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2254 	}
2255 	else if (AR_SREV_9160_10_OR_LATER(sc)) {
2256 		/* Disable hardware crypto for management frames. */
2257 		AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2258 		    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2259 		AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2260 		    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2261 	}
2262 
2263 	if (ic->ic_curmode != IEEE80211_MODE_11B)
2264 		ops->set_delta_slope(sc, curchan, extchan);
2265 
2266 	ops->spur_mitigate(sc, curchan, extchan);
2267 	ops->init_from_rom(sc, curchan, extchan);
2268 
2269 	/* XXX */
2270 	AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2271 	AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2272 	    sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2273 
2274 	athn_set_opmode(sc);
2275 
2276 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2277 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2278 
2279 	/* Restore previous antenna. */
2280 	AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2281 
2282 	AR_WRITE(sc, AR_BSS_ID0, 0);
2283 	AR_WRITE(sc, AR_BSS_ID1, 0);
2284 
2285 	AR_WRITE(sc, AR_ISR, 0xffffffff);
2286 
2287 	AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2288 
2289 	if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2290 		aprint_error_dev(sc->sc_dev, "could not set channel\n");
2291 		return error;
2292 	}
2293 	sc->sc_curchan = curchan;
2294 	sc->sc_curchanext = extchan;
2295 
2296 	for (i = 0; i < AR_NUM_DCU; i++)
2297 		AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2298 
2299 	athn_init_tx_queues(sc);
2300 
2301 	/* Initialize interrupt mask. */
2302 	sc->sc_imask =
2303 	    AR_IMR_TXDESC | AR_IMR_TXEOL |
2304 	    AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2305 	    AR_IMR_RXMINTR | AR_IMR_RXINTM |
2306 	    AR_IMR_GENTMR | AR_IMR_BCNMISC;
2307 	if (AR_SREV_9380_10_OR_LATER(sc))
2308 		sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2309 #ifndef IEEE80211_STA_ONLY
2310 	if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2311 		sc->sc_imask |= AR_IMR_MIB;
2312 #endif
2313 	AR_WRITE(sc, AR_IMR, sc->sc_imask);
2314 	AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2315 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2316 	sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2317 	if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2318 		sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2319 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2320 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2321 	if (AR_SREV_9380_10_OR_LATER(sc)) {
2322 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2323 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2324 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2325 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2326 	}
2327 
2328 	athn_init_qos(sc);
2329 
2330 	AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2331 
2332 	if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2333 		ar9287_1_3_setup_async_fifo(sc);
2334 
2335 	/* Disable sequence number generation in hardware. */
2336 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2337 
2338 	athn_init_dma(sc);
2339 
2340 	/* Program observation bus to see MAC interrupts. */
2341 	AR_WRITE(sc, sc->sc_obs_off, 8);
2342 
2343 	/* Setup Rx interrupt mitigation. */
2344 	AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2345 
2346 	ops->init_baseband(sc);
2347 
2348 	if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2349 		aprint_error_dev(sc->sc_dev,
2350 		    "could not initialize calibration\n");
2351 		return error;
2352 	}
2353 
2354 	ops->set_rxchains(sc);
2355 
2356 	AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2357 
2358 	if (sc->sc_flags & ATHN_FLAG_USB) {
2359 		if (AR_SREV_9271(sc))
2360 			AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2361 		else
2362 			AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2363 	}
2364 #if BYTE_ORDER == BIG_ENDIAN
2365 	else {
2366 		/* Default is LE, turn on swapping for BE. */
2367 		AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2368 	}
2369 #endif
2370 	AR_WRITE_BARRIER(sc);
2371 
2372 	return 0;
2373 }
2374 
2375 Static struct ieee80211_node *
2376 athn_node_alloc(struct ieee80211_node_table *ntp)
2377 {
2378 
2379 	return malloc(sizeof(struct athn_node), M_DEVBUF,
2380 	    M_NOWAIT | M_ZERO);
2381 }
2382 
2383 Static void
2384 athn_newassoc(struct ieee80211_node *ni, int isnew)
2385 {
2386 	struct ieee80211com *ic = ni->ni_ic;
2387 	struct athn_softc *sc = ic->ic_ifp->if_softc;
2388 	struct athn_node *an = (void *)ni;
2389 	struct ieee80211_rateset *rs = &ni->ni_rates;
2390 	uint8_t rate;
2391 	int ridx, i, j;
2392 
2393 	ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2394 	/* Start at lowest available bit-rate, AMRR will raise. */
2395 	ni->ni_txrate = 0;
2396 
2397 	for (i = 0; i < rs->rs_nrates; i++) {
2398 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2399 
2400 		/* Map 802.11 rate to HW rate index. */
2401 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2402 			if (athn_rates[ridx].rate == rate)
2403 				break;
2404 		an->ridx[i] = ridx;
2405 		DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2406 
2407 		/* Compute fallback rate for retries. */
2408 		an->fallback[i] = i;
2409 		for (j = i - 1; j >= 0; j--) {
2410 			if (athn_rates[an->ridx[j]].phy ==
2411 			    athn_rates[an->ridx[i]].phy) {
2412 				an->fallback[i] = j;
2413 				break;
2414 			}
2415 		}
2416 		DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2417 		    i, an->fallback[i]);
2418 	}
2419 }
2420 
2421 Static int
2422 athn_media_change(struct ifnet *ifp)
2423 {
2424 	struct athn_softc *sc = ifp->if_softc;
2425 	struct ieee80211com *ic = &sc->sc_ic;
2426 	uint8_t rate, ridx;
2427 	int error;
2428 
2429 	error = ieee80211_media_change(ifp);
2430 	if (error != ENETRESET)
2431 		return error;
2432 
2433 	if (ic->ic_fixed_rate != -1) {
2434 		rate = ic->ic_sup_rates[ic->ic_curmode].
2435 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2436 		/* Map 802.11 rate to HW rate index. */
2437 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2438 			if (athn_rates[ridx].rate == rate)
2439 				break;
2440 		sc->sc_fixed_ridx = ridx;
2441 	}
2442 	if (IS_UP_AND_RUNNING(ifp)) {
2443 		athn_stop(ifp, 0);
2444 		error = athn_init(ifp);
2445 	}
2446 	return error;
2447 }
2448 
2449 Static void
2450 athn_next_scan(void *arg)
2451 {
2452 	struct athn_softc *sc = arg;
2453 	struct ieee80211com *ic = &sc->sc_ic;
2454 	int s;
2455 
2456 	s = splnet();
2457 	if (ic->ic_state == IEEE80211_S_SCAN)
2458 		ieee80211_next_scan(ic);
2459 	splx(s);
2460 }
2461 
2462 Static int
2463 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2464 {
2465 	struct ifnet *ifp = ic->ic_ifp;
2466 	struct athn_softc *sc = ifp->if_softc;
2467 	uint32_t reg;
2468 	int error;
2469 
2470 	callout_stop(&sc->sc_calib_to);
2471 
2472 	switch (nstate) {
2473 	case IEEE80211_S_INIT:
2474 		athn_set_led(sc, 0);
2475 		break;
2476 	case IEEE80211_S_SCAN:
2477 		/* Make the LED blink while scanning. */
2478 		athn_set_led(sc, !sc->sc_led_state);
2479 		error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2480 		if (error != 0)
2481 			return error;
2482 		callout_schedule(&sc->sc_scan_to, hz / 5);
2483 		break;
2484 	case IEEE80211_S_AUTH:
2485 		athn_set_led(sc, 0);
2486 		error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2487 		if (error != 0)
2488 			return error;
2489 		break;
2490 	case IEEE80211_S_ASSOC:
2491 		break;
2492 	case IEEE80211_S_RUN:
2493 		athn_set_led(sc, 1);
2494 
2495 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
2496 			break;
2497 
2498 		/* Fake a join to initialize the Tx rate. */
2499 		athn_newassoc(ic->ic_bss, 1);
2500 
2501 		athn_set_bss(sc, ic->ic_bss);
2502 		athn_disable_interrupts(sc);
2503 #ifndef IEEE80211_STA_ONLY
2504 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2505 			athn_set_hostap_timers(sc);
2506 			/* Enable software beacon alert interrupts. */
2507 			sc->sc_imask |= AR_IMR_SWBA;
2508 		}
2509 		else
2510 #endif
2511 		{
2512 			athn_set_sta_timers(sc);
2513 			/* Enable beacon miss interrupts. */
2514 			sc->sc_imask |= AR_IMR_BMISS;
2515 
2516 			/* Stop receiving beacons from other BSS. */
2517 			reg = AR_READ(sc, AR_RX_FILTER);
2518 			reg = (reg & ~AR_RX_FILTER_BEACON) |
2519 			    AR_RX_FILTER_MYBEACON;
2520 			AR_WRITE(sc, AR_RX_FILTER, reg);
2521 			AR_WRITE_BARRIER(sc);
2522 		}
2523 		athn_enable_interrupts(sc);
2524 
2525 		if (sc->sc_sup_calib_mask != 0) {
2526 			memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2527 			sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2528 			/* ops->do_calib(sc); */
2529 		}
2530 		/* XXX Start ANI. */
2531 
2532 		callout_schedule(&sc->sc_calib_to, hz / 2);
2533 		break;
2534 	}
2535 
2536 	return sc->sc_newstate(ic, nstate, arg);
2537 }
2538 
2539 #ifdef notyet_edca
2540 PUBLIC void
2541 athn_updateedca(struct ieee80211com *ic)
2542 {
2543 #define ATHN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2544 	struct athn_softc *sc = ic->ic_ifp->if_softc;
2545 	const struct ieee80211_edca_ac_params *ac;
2546 	int aci, qid;
2547 
2548 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2549 		ac = &ic->ic_edca_ac[aci];
2550 		qid = athn_ac2qid[aci];
2551 
2552 		AR_WRITE(sc, AR_DLCL_IFS(qid),
2553 		    SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2554 		    SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2555 		    SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2556 		if (ac->ac_txoplimit != 0) {
2557 			AR_WRITE(sc, AR_DCHNTIME(qid),
2558 			    SM(AR_D_CHNTIME_DUR,
2559 			       IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2560 			    AR_D_CHNTIME_EN);
2561 		}
2562 		else
2563 			AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2564 	}
2565 	AR_WRITE_BARRIER(sc);
2566 #undef ATHN_EXP2
2567 }
2568 #endif /* notyet_edca */
2569 
2570 Static int
2571 athn_clock_rate(struct athn_softc *sc)
2572 {
2573 	struct ieee80211com *ic = &sc->sc_ic;
2574 	int clockrate;	/* MHz. */
2575 
2576 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2577 		if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2578 			clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2579 		else
2580 			clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2581 	}
2582 	else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2583 		clockrate = AR_CLOCK_RATE_CCK;
2584 	}
2585 	else
2586 		clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2587 #ifndef IEEE80211_NO_HT
2588 	if (sc->sc_curchanext != NULL)
2589 		clockrate *= 2;
2590 #endif
2591 	return clockrate;
2592 }
2593 
2594 PUBLIC void
2595 athn_updateslot(struct ifnet *ifp)
2596 {
2597 	struct athn_softc *sc = ifp->if_softc;
2598 	struct ieee80211com *ic = &sc->sc_ic;
2599 	int slot;
2600 
2601 	slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2602 	AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2603 	AR_WRITE_BARRIER(sc);
2604 }
2605 
2606 Static void
2607 athn_start(struct ifnet *ifp)
2608 {
2609 	struct athn_softc *sc = ifp->if_softc;
2610 	struct ieee80211com *ic = &sc->sc_ic;
2611 	struct ether_header *eh;
2612 	struct ieee80211_node *ni;
2613 	struct mbuf *m;
2614 
2615 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2616 	    || !device_is_active(sc->sc_dev))
2617 		return;
2618 
2619 	for (;;) {
2620 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2621 			ifp->if_flags |= IFF_OACTIVE;
2622 			break;
2623 		}
2624 		/* Send pending management frames first. */
2625 		IF_DEQUEUE(&ic->ic_mgtq, m);
2626 		if (m != NULL) {
2627 			ni = (void *)m->m_pkthdr.rcvif;
2628 			goto sendit;
2629 		}
2630 		if (ic->ic_state != IEEE80211_S_RUN)
2631 			break;
2632 
2633 		/* Encapsulate and send data frames. */
2634 		IFQ_DEQUEUE(&ifp->if_snd, m);
2635 		if (m == NULL)
2636 			break;
2637 
2638 		if (m->m_len < (int)sizeof(*eh) &&
2639 		    (m = m_pullup(m, sizeof(*eh))) == NULL) {
2640 			ifp->if_oerrors++;
2641 			continue;
2642 		}
2643 		eh = mtod(m, struct ether_header *);
2644 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2645 		if (ni == NULL) {
2646 			m_freem(m);
2647 			ifp->if_oerrors++;
2648 			continue;
2649 		}
2650 
2651 		bpf_mtap(ifp, m);
2652 
2653 		if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2654 			continue;
2655  sendit:
2656 		bpf_mtap3(ic->ic_rawbpf, m);
2657 
2658 		if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2659 			ieee80211_free_node(ni);
2660 			ifp->if_oerrors++;
2661 			continue;
2662 		}
2663 
2664 		sc->sc_tx_timer = 5;
2665 		ifp->if_timer = 1;
2666 	}
2667 }
2668 
2669 Static void
2670 athn_watchdog(struct ifnet *ifp)
2671 {
2672 	struct athn_softc *sc = ifp->if_softc;
2673 
2674 	ifp->if_timer = 0;
2675 
2676 	if (sc->sc_tx_timer > 0) {
2677 		if (--sc->sc_tx_timer == 0) {
2678 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2679 			/* see athn_init, no need to call athn_stop here */
2680 			/* athn_stop(ifp, 0); */
2681 			(void)athn_init(ifp);
2682 			ifp->if_oerrors++;
2683 			return;
2684 		}
2685 		ifp->if_timer = 1;
2686 	}
2687 	ieee80211_watchdog(&sc->sc_ic);
2688 }
2689 
2690 #ifdef notyet
2691 Static void
2692 athn_set_multi(struct athn_softc *sc)
2693 {
2694 	struct arpcom *ac = &sc->sc_ic.ic_ac;
2695 	struct ifnet *ifp = &ac->ac_if;
2696 	struct ether_multi *enm;
2697 	struct ether_multistep step;
2698 	const uint8_t *addr;
2699 	uint32_t val, lo, hi;
2700 	uint8_t bit;
2701 
2702 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2703 		lo = hi = 0xffffffff;
2704 		goto done;
2705 	}
2706 	lo = hi = 0;
2707 	ETHER_FIRST_MULTI(step, ac, enm);
2708 	while (enm != NULL) {
2709 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2710 			ifp->if_flags |= IFF_ALLMULTI;
2711 			lo = hi = 0xffffffff;
2712 			goto done;
2713 		}
2714 		addr = enm->enm_addrlo;
2715 		/* Calculate the XOR value of all eight 6-bit words. */
2716 		val = addr[0] | addr[1] << 8 | addr[2] << 16;
2717 		bit  = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2718 		val = addr[3] | addr[4] << 8 | addr[5] << 16;
2719 		bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2720 		bit &= 0x3f;
2721 		if (bit < 32)
2722 			lo |= 1 << bit;
2723 		else
2724 			hi |= 1 << (bit - 32);
2725 		ETHER_NEXT_MULTI(step, enm);
2726 	}
2727  done:
2728 	AR_WRITE(sc, AR_MCAST_FIL0, lo);
2729 	AR_WRITE(sc, AR_MCAST_FIL1, hi);
2730 	AR_WRITE_BARRIER(sc);
2731 }
2732 #endif /* notyet */
2733 
2734 Static int
2735 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2736 {
2737 	struct athn_softc *sc = ifp->if_softc;
2738 	struct ieee80211com *ic = &sc->sc_ic;
2739 	int s, error = 0;
2740 
2741 	s = splnet();
2742 
2743 	switch (cmd) {
2744 	case SIOCSIFFLAGS:
2745 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2746 			break;
2747 
2748 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2749 		case IFF_UP | IFF_RUNNING:
2750 #ifdef notyet
2751 			if (((ifp->if_flags ^ sc->sc_if_flags) &
2752 				(IFF_ALLMULTI | IFF_PROMISC)) != 0)
2753 				/* XXX: setup multi */
2754 #endif
2755 			break;
2756 		case IFF_UP:
2757 			athn_init(ifp);
2758 			break;
2759 
2760 		case IFF_RUNNING:
2761 			athn_stop(ifp, 1);
2762 			break;
2763 		case 0:
2764 		default:
2765 			break;
2766 		}
2767 		sc->sc_if_flags = ifp->if_flags;
2768 		break;
2769 
2770 	case SIOCADDMULTI:
2771 	case SIOCDELMULTI:
2772 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2773 			/* setup multicast filter, etc */
2774 #ifdef notyet
2775 			athn_set_multi(sc);
2776 #endif
2777 			error = 0;
2778 		}
2779 		break;
2780 
2781 	case SIOCS80211CHANNEL:
2782 		error = ieee80211_ioctl(ic, cmd, data);
2783 		if (error == ENETRESET &&
2784 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2785 			if (IS_UP_AND_RUNNING(ifp))
2786 				athn_switch_chan(sc, ic->ic_curchan, NULL);
2787 			error = 0;
2788 		}
2789 		break;
2790 
2791 	default:
2792 		error = ieee80211_ioctl(ic, cmd, data);
2793 	}
2794 
2795 	if (error == ENETRESET) {
2796 		error = 0;
2797 		if (IS_UP_AND_RUNNING(ifp) &&
2798 		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2799 			athn_stop(ifp, 0);
2800 			error = athn_init(ifp);
2801 		}
2802 	}
2803 
2804 	splx(s);
2805 	return error;
2806 }
2807 
2808 Static int
2809 athn_init(struct ifnet *ifp)
2810 {
2811 	struct athn_softc *sc = ifp->if_softc;
2812 	struct athn_ops *ops = &sc->sc_ops;
2813 	struct ieee80211com *ic = &sc->sc_ic;
2814 	struct ieee80211_channel *curchan, *extchan;
2815 	size_t i;
2816 	int error;
2817 
2818 	KASSERT(!cpu_intr_p());
2819 
2820 	if (device_is_active(sc->sc_dev)) {
2821 		athn_stop(ifp, 0);	/* see athn_watchdog() */
2822 	} else {
2823 		short flags = ifp->if_flags;
2824 		ifp->if_flags &= ~IFF_UP;
2825 		/* avoid recursion in athn_resume */
2826 		if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2827 		    !device_is_active(sc->sc_dev)) {
2828 			aprint_error_dev(sc->sc_dev,
2829 			    "failed to power up device\n");
2830 			return 0;
2831 		}
2832 		ifp->if_flags = flags;
2833 	}
2834 
2835 	curchan = ic->ic_curchan;
2836 	extchan = NULL;
2837 
2838 	/* In case a new MAC address has been configured. */
2839 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2840 
2841 #ifdef openbsd_power_management
2842 	/* For CardBus, power on the socket. */
2843 	if (sc->sc_enable != NULL) {
2844 		if ((error = sc->sc_enable(sc)) != 0) {
2845 			aprint_error_dev(sc->sc_dev,
2846 			    "could not enable device\n");
2847 			goto fail;
2848 		}
2849 		if ((error = athn_reset_power_on(sc)) != 0) {
2850 			aprint_error_dev(sc->sc_dev,
2851 			    "could not power on device\n");
2852 			goto fail;
2853 		}
2854 	}
2855 #endif
2856 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2857 		athn_config_nonpcie(sc);
2858 	else
2859 		athn_config_pcie(sc);
2860 
2861 	/* Reset HW key cache entries. */
2862 	for (i = 0; i < sc->sc_kc_entries; i++)
2863 		athn_reset_key(sc, i);
2864 
2865 	ops->enable_antenna_diversity(sc);
2866 
2867 #ifdef ATHN_BT_COEXISTENCE
2868 	/* Configure bluetooth coexistence for combo chips. */
2869 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2870 		athn_btcoex_init(sc);
2871 #endif
2872 
2873 	/* Configure LED. */
2874 	athn_led_init(sc);
2875 
2876 	/* Configure hardware radio switch. */
2877 	if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2878 		ops->rfsilent_init(sc);
2879 
2880 	if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2881 		aprint_error_dev(sc->sc_dev,
2882 		    "unable to reset hardware; reset status %d\n", error);
2883 		goto fail;
2884 	}
2885 
2886 	/* Enable Rx. */
2887 	athn_rx_start(sc);
2888 
2889 	/* Enable interrupts. */
2890 	athn_enable_interrupts(sc);
2891 
2892 #ifdef ATHN_BT_COEXISTENCE
2893 	/* Enable bluetooth coexistence for combo chips. */
2894 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2895 		athn_btcoex_enable(sc);
2896 #endif
2897 
2898 	ifp->if_flags &= ~IFF_OACTIVE;
2899 	ifp->if_flags |= IFF_RUNNING;
2900 
2901 #ifdef notyet
2902 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2903 		/* Configure WEP keys. */
2904 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2905 			athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2906 	}
2907 #endif
2908 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2909 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2910 	else
2911 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2912 
2913 	return 0;
2914  fail:
2915 	athn_stop(ifp, 1);
2916 	return error;
2917 }
2918 
2919 PUBLIC void
2920 athn_stop(struct ifnet *ifp, int disable)
2921 {
2922 	struct athn_softc *sc = ifp->if_softc;
2923 	struct ieee80211com *ic = &sc->sc_ic;
2924 	int qid;
2925 
2926 	ifp->if_timer = sc->sc_tx_timer = 0;
2927 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2928 
2929 	callout_stop(&sc->sc_scan_to);
2930 	/* In case we were scanning, release the scan "lock". */
2931 //	ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED;	/* XXX:??? */
2932 
2933 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2934 
2935 #ifdef ATHN_BT_COEXISTENCE
2936 	/* Disable bluetooth coexistence for combo chips. */
2937 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2938 		athn_btcoex_disable(sc);
2939 #endif
2940 
2941 	/* Disable interrupts. */
2942 	athn_disable_interrupts(sc);
2943 	/* Acknowledge interrupts (avoids interrupt storms). */
2944 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2945 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2946 
2947 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2948 		athn_stop_tx_dma(sc, qid);
2949 	/* XXX call athn_hw_reset if Tx still pending? */
2950 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2951 		athn_tx_reclaim(sc, qid);
2952 
2953 	/* Stop Rx. */
2954 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2955 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
2956 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
2957 	AR_WRITE(sc, AR_FILT_OFDM, 0);
2958 	AR_WRITE(sc, AR_FILT_CCK, 0);
2959 	AR_WRITE_BARRIER(sc);
2960 	athn_set_rxfilter(sc, 0);
2961 	athn_stop_rx_dma(sc);
2962 
2963 	athn_reset(sc, 0);
2964 	athn_init_pll(sc, NULL);
2965 	athn_set_power_awake(sc);
2966 	athn_reset(sc, 1);
2967 	athn_init_pll(sc, NULL);
2968 
2969 	athn_set_power_sleep(sc);
2970 
2971 #if 0	/* XXX: shouldn't the pmf stuff take care of this? */
2972 	/* For CardBus, power down the socket. */
2973 	if (disable && sc->sc_disable != NULL)
2974 		sc->sc_disable(sc);
2975 #endif
2976 	if (disable)
2977 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
2978 }
2979 
2980 Static void
2981 athn_pmf_wlan_off(device_t self)
2982 {
2983 	struct athn_softc *sc = device_private(self);
2984 	struct ifnet *ifp = &sc->sc_if;
2985 
2986 	/* Turn the interface down. */
2987 	ifp->if_flags &= ~IFF_UP;
2988 	athn_stop(ifp, 1);
2989 }
2990 
2991 PUBLIC void
2992 athn_suspend(struct athn_softc *sc)
2993 {
2994 	struct ifnet *ifp = &sc->sc_if;
2995 
2996 	if (ifp->if_flags & IFF_RUNNING)
2997 		athn_stop(ifp, 1);
2998 }
2999 
3000 PUBLIC bool
3001 athn_resume(struct athn_softc *sc)
3002 {
3003 	struct ifnet *ifp = &sc->sc_if;
3004 
3005 	if (ifp->if_flags & IFF_UP)
3006 		athn_init(ifp);
3007 
3008 	return true;
3009 }
3010