xref: /netbsd-src/sys/dev/ic/athn.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: athn.c,v 1.23 2020/01/29 14:09:58 thorpej Exp $	*/
2 /*	$OpenBSD: athn.c,v 1.83 2014/07/22 13:12:11 mpi Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2010 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.23 2020/01/29 14:09:58 thorpej Exp $");
27 
28 #ifndef _MODULE
29 #include "athn_usb.h"		/* for NATHN_USB */
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75 
76 #define Static static
77 
78 #define IS_UP_AND_RUNNING(ifp) \
79 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80 
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84 
85 Static int	athn_clock_rate(struct athn_softc *);
86 Static const char *
87 		athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 		athn_get_rf_name(struct athn_softc *);
90 Static int	athn_init(struct ifnet *);
91 Static int	athn_init_calib(struct athn_softc *,
92 		    struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int	athn_ioctl(struct ifnet *, u_long, void *);
94 Static int	athn_media_change(struct ifnet *);
95 Static int	athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 		    int);
97 Static struct ieee80211_node *
98 		athn_node_alloc(struct ieee80211_node_table *);
99 Static int	athn_reset_power_on(struct athn_softc *);
100 Static int	athn_stop_rx_dma(struct athn_softc *);
101 Static int	athn_switch_chan(struct athn_softc *,
102 		    struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void	athn_calib_to(void *);
104 Static void	athn_disable_interrupts(struct athn_softc *);
105 Static void	athn_enable_interrupts(struct athn_softc *);
106 Static void	athn_get_chanlist(struct athn_softc *);
107 Static void	athn_get_chipid(struct athn_softc *);
108 Static void	athn_init_dma(struct athn_softc *);
109 Static void	athn_init_qos(struct athn_softc *);
110 Static void	athn_init_tx_queues(struct athn_softc *);
111 Static void	athn_iter_func(void *, struct ieee80211_node *);
112 Static void	athn_newassoc(struct ieee80211_node *, int);
113 Static void	athn_next_scan(void *);
114 Static void	athn_pmf_wlan_off(device_t self);
115 Static void	athn_radiotap_attach(struct athn_softc *);
116 Static void	athn_start(struct ifnet *);
117 Static void	athn_tx_reclaim(struct athn_softc *, int);
118 Static void	athn_watchdog(struct ifnet *);
119 Static void	athn_write_serdes(struct athn_softc *,
120 		    const struct athn_serdes *);
121 Static void	athn_softintr(void *);
122 
123 #ifdef ATHN_BT_COEXISTENCE
124 Static void	athn_btcoex_disable(struct athn_softc *);
125 Static void	athn_btcoex_enable(struct athn_softc *);
126 #endif
127 
128 #ifdef unused
129 Static int32_t	athn_ani_get_rssi(struct athn_softc *);
130 Static int	athn_rx_abort(struct athn_softc *);
131 #endif
132 
133 #ifdef notyet
134 Static void	athn_ani_cck_err_trigger(struct athn_softc *);
135 Static void	athn_ani_lower_immunity(struct athn_softc *);
136 Static void	athn_ani_monitor(struct athn_softc *);
137 Static void	athn_ani_ofdm_err_trigger(struct athn_softc *);
138 Static void	athn_ani_restart(struct athn_softc *);
139 #endif /* notyet */
140 Static void	athn_set_multi(struct athn_softc *);
141 
142 PUBLIC int
143 athn_attach(struct athn_softc *sc)
144 {
145 	struct ieee80211com *ic = &sc->sc_ic;
146 	struct ifnet *ifp = &sc->sc_if;
147 	size_t max_nnodes;
148 	int error;
149 
150 	/* Read hardware revision. */
151 	athn_get_chipid(sc);
152 
153 	if ((error = athn_reset_power_on(sc)) != 0) {
154 		aprint_error_dev(sc->sc_dev, "could not reset chip\n");
155 		return error;
156 	}
157 
158 	if ((error = athn_set_power_awake(sc)) != 0) {
159 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
160 		return error;
161 	}
162 
163 	if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
164 		error = ar5416_attach(sc);
165 	else if (AR_SREV_9280(sc))
166 		error = ar9280_attach(sc);
167 	else if (AR_SREV_9285(sc))
168 		error = ar9285_attach(sc);
169 #if NATHN_USB > 0
170 	else if (AR_SREV_9271(sc))
171 		error = ar9285_attach(sc);
172 #endif
173 	else if (AR_SREV_9287(sc))
174 		error = ar9287_attach(sc);
175 	else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
176 		error = ar9380_attach(sc);
177 	else
178 		error = ENOTSUP;
179 	if (error != 0) {
180 		aprint_error_dev(sc->sc_dev, "could not attach chip\n");
181 		return error;
182 	}
183 
184 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
185 	pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
186 	    false);
187 
188 	/* We can put the chip in sleep state now. */
189 	athn_set_power_sleep(sc);
190 
191 	if (!(sc->sc_flags & ATHN_FLAG_USB)) {
192 		sc->sc_soft_ih = softint_establish(SOFTINT_NET, athn_softintr,
193 		    sc);
194 		if (sc->sc_soft_ih == NULL) {
195 			aprint_error_dev(sc->sc_dev,
196 			    "could not establish softint\n");
197 			return EINVAL;
198 		}
199 
200 		error = sc->sc_ops.dma_alloc(sc);
201 		if (error != 0) {
202 			aprint_error_dev(sc->sc_dev,
203 			    "could not allocate DMA resources\n");
204 			return error;
205 		}
206 		/* Steal one Tx buffer for beacons. */
207 		sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
208 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
209 	}
210 
211 	if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
212 		DPRINTFN(DBG_INIT, sc,
213 		    "found RF switch connected to GPIO pin %d\n",
214 		    sc->sc_rfsilent_pin);
215 	}
216 	DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
217 
218 	/*
219 	 * In HostAP mode, the number of STAs that we can handle is
220 	 * limited by the number of entries in the HW key cache.
221 	 * TKIP keys consume 2 entries in the cache.
222 	 */
223 	KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
224 	max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
225 	if (sc->sc_max_aid != 0)	/* we have an override */
226 		ic->ic_max_aid = sc->sc_max_aid;
227 	if (ic->ic_max_aid > max_nnodes)
228 		ic->ic_max_aid = max_nnodes;
229 
230 	DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
231 	    (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
232 	DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
233 	    sc->sc_txchainmask, sc->sc_rxchainmask);
234 
235 	/* Count the number of bits set (in lowest 3 bits). */
236 	sc->sc_ntxchains =
237 	    ((sc->sc_txchainmask >> 2) & 1) +
238 	    ((sc->sc_txchainmask >> 1) & 1) +
239 	    ((sc->sc_txchainmask >> 0) & 1);
240 	sc->sc_nrxchains =
241 	    ((sc->sc_rxchainmask >> 2) & 1) +
242 	    ((sc->sc_rxchainmask >> 1) & 1) +
243 	    ((sc->sc_rxchainmask >> 0) & 1);
244 
245 	if (AR_SINGLE_CHIP(sc)) {
246 		aprint_normal(": Atheros %s\n", athn_get_mac_name(sc));
247 		aprint_verbose_dev(sc->sc_dev,
248 		    "rev %d (%dT%dR), ROM rev %d, address %s\n",
249 		    sc->sc_mac_rev,
250 		    sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
251 		    ether_sprintf(ic->ic_myaddr));
252 	} else {
253 		aprint_normal(": Atheros %s, RF %s\n", athn_get_mac_name(sc),
254 		    athn_get_rf_name(sc));
255 		aprint_verbose_dev(sc->sc_dev,
256 		    "rev %d (%dT%dR), ROM rev %d, address %s\n",
257 		    sc->sc_mac_rev,
258 		    sc->sc_ntxchains, sc->sc_nrxchains,
259 		    sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
260 	}
261 
262 	callout_init(&sc->sc_scan_to, 0);
263 	callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
264 	callout_init(&sc->sc_calib_to, 0);
265 	callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
266 
267 	sc->sc_amrr.amrr_min_success_threshold = 1;
268 	sc->sc_amrr.amrr_max_success_threshold = 15;
269 
270 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
271 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
272 	ic->ic_state = IEEE80211_S_INIT;
273 
274 	/* Set device capabilities. */
275 	ic->ic_caps =
276 	    IEEE80211_C_WPA |		/* 802.11i */
277 #ifndef IEEE80211_STA_ONLY
278 	    IEEE80211_C_HOSTAP |	/* Host AP mode supported. */
279 // XXX?	    IEEE80211_C_APPMGT |	/* Host AP power saving supported. */
280 #endif
281 	    IEEE80211_C_MONITOR |	/* Monitor mode supported. */
282 	    IEEE80211_C_SHSLOT |	/* Short slot time supported. */
283 	    IEEE80211_C_SHPREAMBLE |	/* Short preamble supported. */
284 	    IEEE80211_C_PMGT;		/* Power saving supported. */
285 
286 #ifndef IEEE80211_NO_HT
287 	if (sc->sc_flags & ATHN_FLAG_11N) {
288 		int i, ntxstreams, nrxstreams;
289 
290 		/* Set HT capabilities. */
291 		ic->ic_htcaps =
292 		    IEEE80211_HTCAP_SMPS_DIS |
293 		    IEEE80211_HTCAP_CBW20_40 |
294 		    IEEE80211_HTCAP_SGI40 |
295 		    IEEE80211_HTCAP_DSSSCCK40;
296 		if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
297 			ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
298 		if (AR_SREV_9380_10_OR_LATER(sc))
299 			ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
300 		if (AR_SREV_9280_10_OR_LATER(sc)) {
301 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
302 			ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
303 		}
304 		ntxstreams = sc->sc_ntxchains;
305 		nrxstreams = sc->sc_nrxchains;
306 		if (!AR_SREV_9380_10_OR_LATER(sc)) {
307 			ntxstreams = MIN(ntxstreams, 2);
308 			nrxstreams = MIN(nrxstreams, 2);
309 		}
310 		/* Set supported HT rates. */
311 		for (i = 0; i < nrxstreams; i++)
312 			ic->ic_sup_mcs[i] = 0xff;
313 		/* Set the "Tx MCS Set Defined" bit. */
314 		ic->ic_sup_mcs[12] |= 0x01;
315 		if (ntxstreams != nrxstreams) {
316 			/* Set "Tx Rx MCS Set Not Equal" bit. */
317 			ic->ic_sup_mcs[12] |= 0x02;
318 			ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
319 		}
320 	}
321 #endif
322 
323 	/* Set supported rates. */
324 	if (sc->sc_flags & ATHN_FLAG_11G) {
325 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
326 		    ieee80211_std_rateset_11b;
327 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
328 		    ieee80211_std_rateset_11g;
329 	}
330 	if (sc->sc_flags & ATHN_FLAG_11A) {
331 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
332 		    ieee80211_std_rateset_11a;
333 	}
334 
335 	/* Get the list of authorized/supported channels. */
336 	athn_get_chanlist(sc);
337 
338 	ifp->if_softc = sc;
339 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
340 	if (!ifp->if_init)
341 		ifp->if_init = athn_init;
342 	if (!ifp->if_ioctl)
343 		ifp->if_ioctl = athn_ioctl;
344 	if (!ifp->if_start)
345 		ifp->if_start = athn_start;
346 	if (!ifp->if_watchdog)
347 		ifp->if_watchdog = athn_watchdog;
348 	IFQ_SET_READY(&ifp->if_snd);
349 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
350 
351 	error = if_initialize(ifp);
352 	if (error != 0) {
353 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
354 		    error);
355 		pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF,
356 		    athn_pmf_wlan_off, false);
357 		callout_destroy(&sc->sc_scan_to);
358 		callout_destroy(&sc->sc_calib_to);
359 		return error;
360 	}
361 	ieee80211_ifattach(ic);
362 	/* Use common softint-based if_input */
363 	ifp->if_percpuq = if_percpuq_create(ifp);
364 	if_register(ifp);
365 
366 	ic->ic_node_alloc = athn_node_alloc;
367 	ic->ic_newassoc = athn_newassoc;
368 	if (ic->ic_updateslot == NULL)
369 		ic->ic_updateslot = athn_updateslot;
370 #ifdef notyet_edca
371 	ic->ic_updateedca = athn_updateedca;
372 #endif
373 #ifdef notyet
374 	ic->ic_set_key = athn_set_key;
375 	ic->ic_delete_key = athn_delete_key;
376 #endif
377 
378 	/* Override 802.11 state transition machine. */
379 	sc->sc_newstate = ic->ic_newstate;
380 	ic->ic_newstate = athn_newstate;
381 
382 	if (sc->sc_media_change == NULL)
383 		sc->sc_media_change = athn_media_change;
384 	ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
385 
386 	athn_radiotap_attach(sc);
387 	return 0;
388 }
389 
390 PUBLIC void
391 athn_detach(struct athn_softc *sc)
392 {
393 	struct ifnet *ifp = &sc->sc_if;
394 	int qid;
395 
396 	callout_halt(&sc->sc_scan_to, NULL);
397 	callout_halt(&sc->sc_calib_to, NULL);
398 
399 	if (!(sc->sc_flags & ATHN_FLAG_USB)) {
400 		for (qid = 0; qid < ATHN_QID_COUNT; qid++)
401 			athn_tx_reclaim(sc, qid);
402 
403 		/* Free Tx/Rx DMA resources. */
404 		sc->sc_ops.dma_free(sc);
405 
406 		if (sc->sc_soft_ih != NULL) {
407 			softint_disestablish(sc->sc_soft_ih);
408 			sc->sc_soft_ih = NULL;
409 		}
410 	}
411 	/* Free ROM copy. */
412 	if (sc->sc_eep != NULL) {
413 		free(sc->sc_eep, M_DEVBUF);
414 		sc->sc_eep = NULL;
415 	}
416 
417 	bpf_detach(ifp);
418 	ieee80211_ifdetach(&sc->sc_ic);
419 	if_detach(ifp);
420 
421 	callout_destroy(&sc->sc_scan_to);
422 	callout_destroy(&sc->sc_calib_to);
423 
424 	pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
425 	    false);
426 }
427 
428 /*
429  * Attach the interface to 802.11 radiotap.
430  */
431 Static void
432 athn_radiotap_attach(struct athn_softc *sc)
433 {
434 
435 	bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
436 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
437 	    &sc->sc_drvbpf);
438 
439 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
440 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
441 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
442 
443 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
444 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
445 	sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
446 }
447 
448 Static void
449 athn_get_chanlist(struct athn_softc *sc)
450 {
451 	struct ieee80211com *ic = &sc->sc_ic;
452 	uint8_t chan;
453 	size_t i;
454 
455 	if (sc->sc_flags & ATHN_FLAG_11G) {
456 		for (i = 1; i <= 14; i++) {
457 			chan = i;
458 			ic->ic_channels[chan].ic_freq =
459 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
460 			ic->ic_channels[chan].ic_flags =
461 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
462 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
463 		}
464 	}
465 	if (sc->sc_flags & ATHN_FLAG_11A) {
466 		for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
467 			chan = athn_5ghz_chans[i];
468 			ic->ic_channels[chan].ic_freq =
469 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
470 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
471 		}
472 	}
473 }
474 
475 PUBLIC void
476 athn_rx_start(struct athn_softc *sc)
477 {
478 	struct ieee80211com *ic = &sc->sc_ic;
479 	uint32_t rfilt;
480 
481 	/* Setup Rx DMA descriptors. */
482 	sc->sc_ops.rx_enable(sc);
483 
484 	/* Set Rx filter. */
485 	rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
486 #ifndef IEEE80211_NO_HT
487 	/* Want Compressed Block Ack Requests. */
488 	rfilt |= AR_RX_FILTER_COMPR_BAR;
489 #endif
490 	rfilt |= AR_RX_FILTER_BEACON;
491 	if (ic->ic_opmode != IEEE80211_M_STA) {
492 		rfilt |= AR_RX_FILTER_PROBEREQ;
493 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
494 			rfilt |= AR_RX_FILTER_PROM;
495 #ifndef IEEE80211_STA_ONLY
496 		if (AR_SREV_9280_10_OR_LATER(sc) &&
497 		    ic->ic_opmode == IEEE80211_M_HOSTAP)
498 			rfilt |= AR_RX_FILTER_PSPOLL;
499 #endif
500 	}
501 	athn_set_rxfilter(sc, rfilt);
502 
503 	/* Set BSSID mask. */
504 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
505 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
506 
507 	athn_set_opmode(sc);
508 
509 	/* Set multicast filter. */
510 	AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
511 	AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
512 
513 	AR_WRITE(sc, AR_FILT_OFDM, 0);
514 	AR_WRITE(sc, AR_FILT_CCK, 0);
515 	AR_WRITE(sc, AR_MIBC, 0);
516 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
517 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
518 
519 	/* XXX ANI. */
520 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
521 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
522 
523 	/* Disable HW crypto for now. */
524 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
525 
526 	/* Start PCU Rx. */
527 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
528 	AR_WRITE_BARRIER(sc);
529 }
530 
531 PUBLIC void
532 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
533 {
534 
535 	AR_WRITE(sc, AR_RX_FILTER, rfilt);
536 #ifdef notyet
537 	reg = AR_READ(sc, AR_PHY_ERR);
538 	reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
539 	    AR_PHY_ERR_CCK_TIMING);
540 	AR_WRITE(sc, AR_PHY_ERR, reg);
541 	if (reg != 0)
542 		AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
543 	else
544 		AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
545 #else
546 	AR_WRITE(sc, AR_PHY_ERR, 0);
547 	AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
548 #endif
549 	AR_WRITE_BARRIER(sc);
550 }
551 
552 PUBLIC int
553 athn_intr(void *xsc)
554 {
555 	struct athn_softc *sc = xsc;
556 	struct ifnet *ifp = &sc->sc_if;
557 
558 	if (!IS_UP_AND_RUNNING(ifp))
559 		return 0;
560 
561 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
562 		/*
563 		 * The hardware is not ready/present, don't touch anything.
564 		 * Note this can happen early on if the IRQ is shared.
565 		 */
566 		return 0;
567 
568 	if (!sc->sc_ops.intr_status(sc))
569 		return 0;
570 
571 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, 0);
572 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
573 	AR_WRITE_BARRIER(sc);
574 
575 	softint_schedule(sc->sc_soft_ih);
576 
577 	return 1;
578 }
579 
580 Static void
581 athn_softintr(void *xsc)
582 {
583 	struct athn_softc *sc = xsc;
584 	struct ifnet *ifp = &sc->sc_if;
585 
586 	if (!IS_UP_AND_RUNNING(ifp))
587 		return;
588 
589 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
590 		/*
591 		 * The hardware is not ready/present, don't touch anything.
592 		 * Note this can happen early on if the IRQ is shared.
593 		 */
594 		return;
595 
596 	sc->sc_ops.intr(sc);
597 
598 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
599 	AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
600 	AR_WRITE_BARRIER(sc);
601 }
602 
603 Static void
604 athn_get_chipid(struct athn_softc *sc)
605 {
606 	uint32_t reg;
607 
608 	reg = AR_READ(sc, AR_SREV);
609 	if (MS(reg, AR_SREV_ID) == 0xff) {
610 		sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
611 		sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
612 		if (!(reg & AR_SREV_TYPE2_HOST_MODE))
613 			sc->sc_flags |= ATHN_FLAG_PCIE;
614 	} else {
615 		sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
616 		sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
617 		if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
618 			sc->sc_flags |= ATHN_FLAG_PCIE;
619 	}
620 }
621 
622 Static const char *
623 athn_get_mac_name(struct athn_softc *sc)
624 {
625 
626 	switch (sc->sc_mac_ver) {
627 	case AR_SREV_VERSION_5416_PCI:
628 		return "AR5416";
629 	case AR_SREV_VERSION_5416_PCIE:
630 		return "AR5418";
631 	case AR_SREV_VERSION_9160:
632 		return "AR9160";
633 	case AR_SREV_VERSION_9280:
634 		return "AR9280";
635 	case AR_SREV_VERSION_9285:
636 		return "AR9285";
637 	case AR_SREV_VERSION_9271:
638 		return "AR9271";
639 	case AR_SREV_VERSION_9287:
640 		return "AR9287";
641 	case AR_SREV_VERSION_9380:
642 		return "AR9380";
643 	case AR_SREV_VERSION_9485:
644 		return "AR9485";
645 	default:
646 		return "unknown";
647 	}
648 }
649 
650 /*
651  * Return RF chip name (not for single-chip solutions).
652  */
653 Static const char *
654 athn_get_rf_name(struct athn_softc *sc)
655 {
656 
657 	KASSERT(!AR_SINGLE_CHIP(sc));
658 
659 	switch (sc->sc_rf_rev) {
660 	case AR_RAD5133_SREV_MAJOR:	/* Dual-band 3T3R. */
661 		return "AR5133";
662 	case AR_RAD2133_SREV_MAJOR:	/* Single-band 3T3R. */
663 		return "AR2133";
664 	case AR_RAD5122_SREV_MAJOR:	/* Dual-band 2T2R. */
665 		return "AR5122";
666 	case AR_RAD2122_SREV_MAJOR:	/* Single-band 2T2R. */
667 		return "AR2122";
668 	default:
669 		return "unknown";
670 	}
671 }
672 
673 PUBLIC int
674 athn_reset_power_on(struct athn_softc *sc)
675 {
676 	int ntries;
677 
678 	/* Set force wake. */
679 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
680 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
681 
682 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
683 		/* Make sure no DMA is active by doing an AHB reset. */
684 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
685 	}
686 	/* RTC reset and clear. */
687 	AR_WRITE(sc, AR_RTC_RESET, 0);
688 	AR_WRITE_BARRIER(sc);
689 	DELAY(2);
690 	if (!AR_SREV_9380_10_OR_LATER(sc))
691 		AR_WRITE(sc, AR_RC, 0);
692 	AR_WRITE(sc, AR_RTC_RESET, 1);
693 
694 	/* Poll until RTC is ON. */
695 	for (ntries = 0; ntries < 1000; ntries++) {
696 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
697 		    AR_RTC_STATUS_ON)
698 			break;
699 		DELAY(10);
700 	}
701 	if (ntries == 1000) {
702 		DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
703 		return ETIMEDOUT;
704 	}
705 	return athn_reset(sc, 0);
706 }
707 
708 PUBLIC int
709 athn_reset(struct athn_softc *sc, int cold_reset)
710 {
711 	int ntries;
712 
713 	/* Set force wake. */
714 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
715 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
716 
717 	if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
718 	    (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
719 		AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
720 		AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
721 		    (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
722 	} else if (!AR_SREV_9380_10_OR_LATER(sc))
723 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
724 
725 	AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
726 	    (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
727 	AR_WRITE_BARRIER(sc);
728 	DELAY(50);
729 	AR_WRITE(sc, AR_RTC_RC, 0);
730 	for (ntries = 0; ntries < 1000; ntries++) {
731 		if (!(AR_READ(sc, AR_RTC_RC) &
732 		      (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
733 			break;
734 		DELAY(10);
735 	}
736 	if (ntries == 1000) {
737 		DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
738 		return ETIMEDOUT;
739 	}
740 	AR_WRITE(sc, AR_RC, 0);
741 	AR_WRITE_BARRIER(sc);
742 	return 0;
743 }
744 
745 PUBLIC int
746 athn_set_power_awake(struct athn_softc *sc)
747 {
748 	int ntries, error;
749 
750 	/* Do a Power-On-Reset if shutdown. */
751 	if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
752 	    AR_RTC_STATUS_SHUTDOWN) {
753 		if ((error = athn_reset_power_on(sc)) != 0)
754 			return error;
755 		if (!AR_SREV_9380_10_OR_LATER(sc))
756 			athn_init_pll(sc, NULL);
757 	}
758 	AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
759 	AR_WRITE_BARRIER(sc);
760 	DELAY(50);	/* Give chip the chance to awake. */
761 
762 	/* Poll until RTC is ON. */
763 	for (ntries = 0; ntries < 4000; ntries++) {
764 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
765 		    AR_RTC_STATUS_ON)
766 			break;
767 		DELAY(50);
768 		AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
769 	}
770 	if (ntries == 4000) {
771 		DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
772 		return ETIMEDOUT;
773 	}
774 
775 	AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
776 	AR_WRITE_BARRIER(sc);
777 	return 0;
778 }
779 
780 PUBLIC void
781 athn_set_power_sleep(struct athn_softc *sc)
782 {
783 
784 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
785 	/* Allow the MAC to go to sleep. */
786 	AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
787 	if (!AR_SREV_9380_10_OR_LATER(sc))
788 		AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
789 	/*
790 	 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
791 	 * results in high power consumption on AR5416 chipsets.
792 	 */
793 	if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
794 		AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
795 	AR_WRITE_BARRIER(sc);
796 }
797 
798 PUBLIC void
799 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
800 {
801 	uint32_t pll;
802 
803 	if (AR_SREV_9380_10_OR_LATER(sc)) {
804 		if (AR_SREV_9485(sc))
805 			AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
806 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
807 		pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
808 	} else if (AR_SREV_9280_10_OR_LATER(sc)) {
809 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
810 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
811 			if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
812 				pll = 0x142c;
813 			else if (AR_SREV_9280_20(sc))
814 		 		pll = 0x2850;
815 			else
816 				pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
817 		} else
818 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
819 	} else if (AR_SREV_9160_10_OR_LATER(sc)) {
820 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
821 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
822 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
823 		else
824 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
825 	} else {
826 		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
827 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
828 			pll |= SM(AR_RTC_PLL_DIV, 0x0a);
829 		else
830 			pll |= SM(AR_RTC_PLL_DIV, 0x0b);
831 	}
832 	DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
833 	AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
834 	if (AR_SREV_9271(sc)) {
835 		/* Switch core clock to 117MHz. */
836 		AR_WRITE_BARRIER(sc);
837 		DELAY(500);
838 		AR_WRITE(sc, 0x50050, 0x304);
839 	}
840 	AR_WRITE_BARRIER(sc);
841 	DELAY(100);
842 	AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
843 	AR_WRITE_BARRIER(sc);
844 }
845 
846 Static void
847 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
848 {
849 	int i;
850 
851 	/* Write sequence to Serializer/Deserializer. */
852 	for (i = 0; i < serdes->nvals; i++)
853 		AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
854 	AR_WRITE_BARRIER(sc);
855 }
856 
857 PUBLIC void
858 athn_config_pcie(struct athn_softc *sc)
859 {
860 
861 	/* Disable PLL when in L0s as well as receiver clock when in L1. */
862 	athn_write_serdes(sc, sc->sc_serdes);
863 
864 	DELAY(1000);
865 	/* Allow forcing of PCIe core into L1 state. */
866 	AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
867 
868 #ifndef ATHN_PCIE_WAEN
869 	AR_WRITE(sc, AR_WA, sc->sc_workaround);
870 #else
871 	AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
872 #endif
873 	AR_WRITE_BARRIER(sc);
874 }
875 
876 /*
877  * Serializer/Deserializer programming for non-PCIe devices.
878  */
879 static const uint32_t ar_nonpcie_serdes_regs[] = {
880 	AR_PCIE_SERDES,
881 	AR_PCIE_SERDES,
882 	AR_PCIE_SERDES,
883 	AR_PCIE_SERDES,
884 	AR_PCIE_SERDES,
885 	AR_PCIE_SERDES,
886 	AR_PCIE_SERDES,
887 	AR_PCIE_SERDES,
888 	AR_PCIE_SERDES,
889 	AR_PCIE_SERDES2,
890 };
891 
892 static const uint32_t ar_nonpcie_serdes_vals[] = {
893 	0x9248fc00,
894 	0x24924924,
895 	0x28000029,
896 	0x57160824,
897 	0x25980579,
898 	0x00000000,
899 	0x1aaabe40,
900 	0xbe105554,
901 	0x000e1007,
902 	0x00000000
903 };
904 
905 static const struct athn_serdes ar_nonpcie_serdes = {
906 	__arraycount(ar_nonpcie_serdes_vals),
907 	ar_nonpcie_serdes_regs,
908 	ar_nonpcie_serdes_vals
909 };
910 
911 PUBLIC void
912 athn_config_nonpcie(struct athn_softc *sc)
913 {
914 
915 	athn_write_serdes(sc, &ar_nonpcie_serdes);
916 }
917 
918 PUBLIC int
919 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
920     struct ieee80211_channel *extchan)
921 {
922 	struct athn_ops *ops = &sc->sc_ops;
923 	int error, qid;
924 
925 	/* Check that Tx is stopped, otherwise RF Bus grant will not work. */
926 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
927 		if (athn_tx_pending(sc, qid))
928 			return EBUSY;
929 
930 	/* Request RF Bus grant. */
931 	if ((error = ops->rf_bus_request(sc)) != 0)
932 		return error;
933 
934 	ops->set_phy(sc, curchan, extchan);
935 
936 	/* Change the synthesizer. */
937 	if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
938 		return error;
939 
940 	sc->sc_curchan = curchan;
941 	sc->sc_curchanext = extchan;
942 
943 	/* Set transmit power values for new channel. */
944 	ops->set_txpower(sc, curchan, extchan);
945 
946 	/* Release the RF Bus grant. */
947 	ops->rf_bus_release(sc);
948 
949 	/* Write delta slope coeffs for modes where OFDM may be used. */
950 	if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
951 		ops->set_delta_slope(sc, curchan, extchan);
952 
953 	ops->spur_mitigate(sc, curchan, extchan);
954 	/* XXX Load noisefloor values and start calibration. */
955 
956 	return 0;
957 }
958 
959 Static int
960 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
961     struct ieee80211_channel *extchan)
962 {
963 	int error, qid;
964 
965 	/* Disable interrupts. */
966 	athn_disable_interrupts(sc);
967 
968 	/* Stop all Tx queues. */
969 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
970 		athn_stop_tx_dma(sc, qid);
971 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
972 		athn_tx_reclaim(sc, qid);
973 
974 	/* Stop Rx. */
975 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
976 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
977 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
978 	AR_WRITE(sc, AR_FILT_OFDM, 0);
979 	AR_WRITE(sc, AR_FILT_CCK, 0);
980 	athn_set_rxfilter(sc, 0);
981 	error = athn_stop_rx_dma(sc);
982 	if (error != 0)
983 		goto reset;
984 
985 #ifdef notyet
986 	/* AR9280 needs a full reset. */
987 	if (AR_SREV_9280(sc))
988 #endif
989 		goto reset;
990 
991 	/* If band or bandwidth changes, we need to do a full reset. */
992 	if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
993 	    ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
994 		DPRINTFN(DBG_RF, sc, "channel band switch\n");
995 		goto reset;
996 	}
997 	error = athn_set_power_awake(sc);
998 	if (error != 0)
999 		goto reset;
1000 
1001 	error = athn_set_chan(sc, curchan, extchan);
1002 	if (error != 0) {
1003  reset:		/* Error found, try a full reset. */
1004 		DPRINTFN(DBG_RF, sc, "needs a full reset\n");
1005 		error = athn_hw_reset(sc, curchan, extchan, 0);
1006 		if (error != 0)	/* Hopeless case. */
1007 			return error;
1008 	}
1009 	athn_rx_start(sc);
1010 
1011 	/* Re-enable interrupts. */
1012 	athn_enable_interrupts(sc);
1013 	return 0;
1014 }
1015 
1016 PUBLIC void
1017 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1018 {
1019 #define COEFF_SCALE_SHIFT	24
1020 	uint32_t exp, man;
1021 
1022 	/* exponent = 14 - floor(log2(coeff)) */
1023 	for (exp = 31; exp > 0; exp--)
1024 		if (coeff & (1U << exp))
1025 			break;
1026 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1027 
1028 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1029 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1030 
1031 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1032 	*exponent = exp - 16;
1033 #undef COEFF_SCALE_SHIFT
1034 }
1035 
1036 PUBLIC void
1037 athn_reset_key(struct athn_softc *sc, int entry)
1038 {
1039 
1040 	/*
1041 	 * NB: Key cache registers access special memory area that requires
1042 	 * two 32-bit writes to actually update the values in the internal
1043 	 * memory.  Consequently, writes must be grouped by pair.
1044 	 */
1045 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
1046 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
1047 
1048 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
1049 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
1050 
1051 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
1052 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1053 
1054 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
1055 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
1056 
1057 	AR_WRITE_BARRIER(sc);
1058 }
1059 
1060 #ifdef notyet
1061 Static int
1062 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1063     struct ieee80211_key *k)
1064 {
1065 	struct athn_softc *sc = ic->ic_ifp->if_softc;
1066 	const uint8_t *txmic, *rxmic, *key, *addr;
1067 	uintptr_t entry, micentry;
1068 	uint32_t type, lo, hi;
1069 
1070 	switch (k->k_cipher) {
1071 	case IEEE80211_CIPHER_WEP40:
1072 		type = AR_KEYTABLE_TYPE_40;
1073 		break;
1074 	case IEEE80211_CIPHER_WEP104:
1075 		type = AR_KEYTABLE_TYPE_104;
1076 		break;
1077 	case IEEE80211_CIPHER_TKIP:
1078 		type = AR_KEYTABLE_TYPE_TKIP;
1079 		break;
1080 	case IEEE80211_CIPHER_CCMP:
1081 		type = AR_KEYTABLE_TYPE_CCM;
1082 		break;
1083 	default:
1084 		/* Fallback to software crypto for other ciphers. */
1085 		return ieee80211_set_key(ic, ni, k);
1086 	}
1087 
1088 	if (!(k->k_flags & IEEE80211_KEY_GROUP))
1089 		entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1090 	else
1091 		entry = k->k_id;
1092 	k->k_priv = (void *)entry;
1093 
1094 	/* NB: See note about key cache registers access above. */
1095 	key = k->k_key;
1096 	if (type == AR_KEYTABLE_TYPE_TKIP) {
1097 #ifndef IEEE80211_STA_ONLY
1098 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1099 			txmic = &key[16];
1100 			rxmic = &key[24];
1101 		} else
1102 #endif
1103 		{
1104 			rxmic = &key[16];
1105 			txmic = &key[24];
1106 		}
1107 		/* Tx+Rx MIC key is at entry + 64. */
1108 		micentry = entry + 64;
1109 		AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1110 		AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1111 
1112 		AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1113 		AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1114 
1115 		AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1116 		AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1117 	}
1118 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1119 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1120 
1121 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1122 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1123 
1124 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1125 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1126 
1127 	if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1128 		addr = ni->ni_macaddr;
1129 		lo = LE_READ_4(&addr[0]);
1130 		hi = LE_READ_2(&addr[4]);
1131 		lo = lo >> 1 | hi << 31;
1132 		hi = hi >> 1;
1133 	} else
1134 		lo = hi = 0;
1135 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1136 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1137 	AR_WRITE_BARRIER(sc);
1138 	return 0;
1139 }
1140 
1141 Static void
1142 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1143     struct ieee80211_key *k)
1144 {
1145 	struct athn_softc *sc = ic->ic_ifp->if_softc;
1146 	uintptr_t entry;
1147 
1148 	switch (k->k_cipher) {
1149 	case IEEE80211_CIPHER_WEP40:
1150 	case IEEE80211_CIPHER_WEP104:
1151 	case IEEE80211_CIPHER_CCMP:
1152 		entry = (uintptr_t)k->k_priv;
1153 		athn_reset_key(sc, entry);
1154 		break;
1155 	case IEEE80211_CIPHER_TKIP:
1156 		entry = (uintptr_t)k->k_priv;
1157 		athn_reset_key(sc, entry);
1158 		athn_reset_key(sc, entry + 64);
1159 		break;
1160 	default:
1161 		/* Fallback to software crypto for other ciphers. */
1162 		ieee80211_delete_key(ic, ni, k);
1163 	}
1164 }
1165 #endif /* notyet */
1166 
1167 PUBLIC void
1168 athn_led_init(struct athn_softc *sc)
1169 {
1170 	struct athn_ops *ops = &sc->sc_ops;
1171 
1172 	ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1173 	/* LED off, active low. */
1174 	athn_set_led(sc, 0);
1175 }
1176 
1177 PUBLIC void
1178 athn_set_led(struct athn_softc *sc, int on)
1179 {
1180 	struct athn_ops *ops = &sc->sc_ops;
1181 
1182 	sc->sc_led_state = on;
1183 	ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1184 }
1185 
1186 #ifdef ATHN_BT_COEXISTENCE
1187 Static void
1188 athn_btcoex_init(struct athn_softc *sc)
1189 {
1190 	struct athn_ops *ops = &sc->sc_ops;
1191 	uint32_t reg;
1192 
1193 	if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1194 		/* Connect bt_active to baseband. */
1195 		AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1196 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1197 		    AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1198 		AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1199 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1200 
1201 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1202 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1203 		    AR_GPIO_BTACTIVE_PIN);
1204 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1205 		AR_WRITE_BARRIER(sc);
1206 
1207 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1208 	} else {	/* 3-wire. */
1209 		AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1210 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1211 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1212 
1213 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1214 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1215 		    AR_GPIO_BTACTIVE_PIN);
1216 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1217 		    AR_GPIO_BTPRIORITY_PIN);
1218 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1219 		AR_WRITE_BARRIER(sc);
1220 
1221 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1222 		ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1223 	}
1224 }
1225 
1226 Static void
1227 athn_btcoex_enable(struct athn_softc *sc)
1228 {
1229 	struct athn_ops *ops = &sc->sc_ops;
1230 	uint32_t reg;
1231 
1232 	if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1233 		AR_WRITE(sc, AR_BT_COEX_MODE,
1234 		    SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1235 		    SM(AR_BT_PRIORITY_TIME, 2) |
1236 		    SM(AR_BT_FIRST_SLOT_TIME, 5) |
1237 		    SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1238 		    AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1239 		    AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1240 		AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1241 		    SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1242 		    SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1243 		AR_WRITE(sc, AR_BT_COEX_MODE2,
1244 		    SM(AR_BT_BCN_MISS_THRESH, 50) |
1245 		    AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1246 
1247 		AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1248 		AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1249 		AR_WRITE_BARRIER(sc);
1250 
1251 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1252 		    AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1253 
1254 	} else {	/* 2-wire. */
1255 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1256 		    AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1257 	}
1258 	reg = AR_READ(sc, AR_GPIO_PDPU);
1259 	reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1260 	reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1261 	AR_WRITE(sc, AR_GPIO_PDPU, reg);
1262 	AR_WRITE_BARRIER(sc);
1263 
1264 	/* Disable PCIe Active State Power Management (ASPM). */
1265 	if (sc->sc_disable_aspm != NULL)
1266 		sc->sc_disable_aspm(sc);
1267 
1268 	/* XXX Start periodic timer. */
1269 }
1270 
1271 Static void
1272 athn_btcoex_disable(struct athn_softc *sc)
1273 {
1274 	struct athn_ops *ops = &sc->sc_ops;
1275 
1276 	ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1277 
1278 	ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1279 	    AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1280 
1281 	if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1282 		AR_WRITE(sc, AR_BT_COEX_MODE,
1283 		    SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1284 		AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1285 		AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1286 		/* XXX Stop periodic timer. */
1287 	}
1288 	AR_WRITE_BARRIER(sc);
1289 	/* XXX Restore ASPM setting? */
1290 }
1291 #endif
1292 
1293 Static void
1294 athn_iter_func(void *arg, struct ieee80211_node *ni)
1295 {
1296 	struct athn_softc *sc = arg;
1297 	struct athn_node *an = (struct athn_node *)ni;
1298 
1299 	ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1300 }
1301 
1302 Static void
1303 athn_calib_to(void *arg)
1304 {
1305 	extern int ticks;
1306 	struct athn_softc *sc = arg;
1307 	struct athn_ops *ops = &sc->sc_ops;
1308 	struct ieee80211com *ic = &sc->sc_ic;
1309 	int s;
1310 
1311 	s = splnet();
1312 
1313 	/* Do periodic (every 4 minutes) PA calibration. */
1314 	if (AR_SREV_9285_11_OR_LATER(sc) &&
1315 	    !AR_SREV_9380_10_OR_LATER(sc) &&
1316 	    (ticks - (sc->sc_pa_calib_ticks + 240 * hz)) >= 0) {
1317 		sc->sc_pa_calib_ticks = ticks;
1318 		if (AR_SREV_9271(sc))
1319 			ar9271_pa_calib(sc);
1320 		else
1321 			ar9285_pa_calib(sc);
1322 	}
1323 
1324 	/* Do periodic (every 30 seconds) temperature compensation. */
1325 	if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1326 	    ticks >= sc->sc_olpc_ticks + 30 * hz) {
1327 		sc->sc_olpc_ticks = ticks;
1328 		ops->olpc_temp_compensation(sc);
1329 	}
1330 
1331 #ifdef notyet
1332 	/* XXX ANI. */
1333 	athn_ani_monitor(sc);
1334 
1335 	ops->next_calib(sc);
1336 #endif
1337 	if (ic->ic_fixed_rate == -1) {
1338 		if (ic->ic_opmode == IEEE80211_M_STA)
1339 			athn_iter_func(sc, ic->ic_bss);
1340 		else
1341 			ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1342 	}
1343 	callout_schedule(&sc->sc_calib_to, hz / 2);
1344 	splx(s);
1345 }
1346 
1347 Static int
1348 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1349     struct ieee80211_channel *extchan)
1350 {
1351 	struct athn_ops *ops = &sc->sc_ops;
1352 	int error;
1353 
1354 	if (AR_SREV_9380_10_OR_LATER(sc))
1355 		error = ar9003_init_calib(sc);
1356 	else if (AR_SREV_9285_10_OR_LATER(sc))
1357 		error = ar9285_init_calib(sc, curchan, extchan);
1358 	else
1359 		error = ar5416_init_calib(sc, curchan, extchan);
1360 	if (error != 0)
1361 		return error;
1362 
1363 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1364 		/* Do PA calibration. */
1365 		if (AR_SREV_9285_11_OR_LATER(sc)) {
1366 			extern int ticks;
1367 			sc->sc_pa_calib_ticks = ticks;
1368 			if (AR_SREV_9271(sc))
1369 				ar9271_pa_calib(sc);
1370 			else
1371 				ar9285_pa_calib(sc);
1372 		}
1373 		/* Do noisefloor calibration. */
1374 		ops->noisefloor_calib(sc);
1375 	}
1376 	if (AR_SREV_9160_10_OR_LATER(sc)) {
1377 		/* Support IQ calibration. */
1378 		sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1379 		if (AR_SREV_9380_10_OR_LATER(sc)) {
1380 			/* Support temperature compensation calibration. */
1381 			sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1382 		} else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1383 			/*
1384 			 * ADC gain calibration causes uplink throughput
1385 			 * drops in HT40 mode on AR9287.
1386 			 */
1387 			if (!AR_SREV_9287(sc)) {
1388 				/* Support ADC gain calibration. */
1389 				sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1390 			}
1391 			/* Support ADC DC offset calibration. */
1392 			sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1393 		}
1394 	}
1395 	return 0;
1396 }
1397 
1398 /*
1399  * Adaptive noise immunity.
1400  */
1401 #ifdef notyet
1402 Static int32_t
1403 athn_ani_get_rssi(struct athn_softc *sc)
1404 {
1405 
1406 	return 0;	/* XXX */
1407 }
1408 #endif /* notyet */
1409 
1410 #ifdef notyet
1411 Static void
1412 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1413 {
1414 	struct athn_ani *ani = &sc->sc_ani;
1415 	struct athn_ops *ops = &sc->sc_ops;
1416 	int32_t rssi;
1417 
1418 	/* First, raise noise immunity level, up to max. */
1419 	if (ani->noise_immunity_level < 4) {
1420 		ani->noise_immunity_level++;
1421 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1422 		return;
1423 	}
1424 
1425 	/* Then, raise our spur immunity level, up to max. */
1426 	if (ani->spur_immunity_level < 7) {
1427 		ani->spur_immunity_level++;
1428 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1429 		return;
1430 	}
1431 
1432 #ifndef IEEE80211_STA_ONLY
1433 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1434 		if (ani->firstep_level < 2) {
1435 			ani->firstep_level++;
1436 			ops->set_firstep_level(sc, ani->firstep_level);
1437 		}
1438 		return;
1439 	}
1440 #endif
1441 	rssi = athn_ani_get_rssi(sc);
1442 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1443 		/*
1444 		 * Beacon RSSI is high, turn off OFDM weak signal detection
1445 		 * or raise first step level as last resort.
1446 		 */
1447 		if (ani->ofdm_weak_signal) {
1448 			ani->ofdm_weak_signal = 0;
1449 			ops->disable_ofdm_weak_signal(sc);
1450 			ani->spur_immunity_level = 0;
1451 			ops->set_spur_immunity_level(sc, 0);
1452 		} else if (ani->firstep_level < 2) {
1453 			ani->firstep_level++;
1454 			ops->set_firstep_level(sc, ani->firstep_level);
1455 		}
1456 	} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1457 		/*
1458 		 * Beacon RSSI is in mid range, we need OFDM weak signal
1459 		 * detection but we can raise first step level.
1460 		 */
1461 		if (!ani->ofdm_weak_signal) {
1462 			ani->ofdm_weak_signal = 1;
1463 			ops->enable_ofdm_weak_signal(sc);
1464 		}
1465 		if (ani->firstep_level < 2) {
1466 			ani->firstep_level++;
1467 			ops->set_firstep_level(sc, ani->firstep_level);
1468 		}
1469 	} else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1470 		/*
1471 		 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1472 		 * signal detection and zero first step level to maximize
1473 		 * CCK sensitivity.
1474 		 */
1475 		if (ani->ofdm_weak_signal) {
1476 			ani->ofdm_weak_signal = 0;
1477 			ops->disable_ofdm_weak_signal(sc);
1478 		}
1479 		if (ani->firstep_level > 0) {
1480 			ani->firstep_level = 0;
1481 			ops->set_firstep_level(sc, 0);
1482 		}
1483 	}
1484 }
1485 #endif /* notyet */
1486 
1487 #ifdef notyet
1488 Static void
1489 athn_ani_cck_err_trigger(struct athn_softc *sc)
1490 {
1491 	struct athn_ani *ani = &sc->sc_ani;
1492 	struct athn_ops *ops = &sc->sc_ops;
1493 	int32_t rssi;
1494 
1495 	/* Raise noise immunity level, up to max. */
1496 	if (ani->noise_immunity_level < 4) {
1497 		ani->noise_immunity_level++;
1498 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1499 		return;
1500 	}
1501 
1502 #ifndef IEEE80211_STA_ONLY
1503 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1504 		if (ani->firstep_level < 2) {
1505 			ani->firstep_level++;
1506 			ops->set_firstep_level(sc, ani->firstep_level);
1507 		}
1508 		return;
1509 	}
1510 #endif
1511 	rssi = athn_ani_get_rssi(sc);
1512 	if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1513 		/*
1514 		 * Beacon RSSI is in mid or high range, raise first step
1515 		 * level.
1516 		 */
1517 		if (ani->firstep_level < 2) {
1518 			ani->firstep_level++;
1519 			ops->set_firstep_level(sc, ani->firstep_level);
1520 		}
1521 	} else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1522 		/*
1523 		 * Beacon RSSI is low, zero first step level to maximize
1524 		 * CCK sensitivity.
1525 		 */
1526 		if (ani->firstep_level > 0) {
1527 			ani->firstep_level = 0;
1528 			ops->set_firstep_level(sc, 0);
1529 		}
1530 	}
1531 }
1532 #endif /* notyet */
1533 
1534 #ifdef notyet
1535 Static void
1536 athn_ani_lower_immunity(struct athn_softc *sc)
1537 {
1538 	struct athn_ani *ani = &sc->sc_ani;
1539 	struct athn_ops *ops = &sc->sc_ops;
1540 	int32_t rssi;
1541 
1542 #ifndef IEEE80211_STA_ONLY
1543 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1544 		if (ani->firstep_level > 0) {
1545 			ani->firstep_level--;
1546 			ops->set_firstep_level(sc, ani->firstep_level);
1547 		}
1548 		return;
1549 	}
1550 #endif
1551 	rssi = athn_ani_get_rssi(sc);
1552 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1553 		/*
1554 		 * Beacon RSSI is high, leave OFDM weak signal detection
1555 		 * off or it may oscillate.
1556 		 */
1557 	} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1558 		/*
1559 		 * Beacon RSSI is in mid range, turn on OFDM weak signal
1560 		 * detection or lower first step level.
1561 		 */
1562 		if (!ani->ofdm_weak_signal) {
1563 			ani->ofdm_weak_signal = 1;
1564 			ops->enable_ofdm_weak_signal(sc);
1565 			return;
1566 		}
1567 		if (ani->firstep_level > 0) {
1568 			ani->firstep_level--;
1569 			ops->set_firstep_level(sc, ani->firstep_level);
1570 			return;
1571 		}
1572 	} else {
1573 		/* Beacon RSSI is low, lower first step level. */
1574 		if (ani->firstep_level > 0) {
1575 			ani->firstep_level--;
1576 			ops->set_firstep_level(sc, ani->firstep_level);
1577 			return;
1578 		}
1579 	}
1580 	/*
1581 	 * Lower spur immunity level down to zero, or if all else fails,
1582 	 * lower noise immunity level down to zero.
1583 	 */
1584 	if (ani->spur_immunity_level > 0) {
1585 		ani->spur_immunity_level--;
1586 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1587 	} else if (ani->noise_immunity_level > 0) {
1588 		ani->noise_immunity_level--;
1589 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1590 	}
1591 }
1592 #endif /* notyet */
1593 
1594 #ifdef notyet
1595 Static void
1596 athn_ani_restart(struct athn_softc *sc)
1597 {
1598 	struct athn_ani *ani = &sc->sc_ani;
1599 
1600 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
1601 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
1602 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1603 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1604 	AR_WRITE_BARRIER(sc);
1605 
1606 	ani->listen_time = 0;
1607 	ani->ofdm_phy_err_count = 0;
1608 	ani->cck_phy_err_count = 0;
1609 }
1610 #endif /* notyet */
1611 
1612 #ifdef notyet
1613 Static void
1614 athn_ani_monitor(struct athn_softc *sc)
1615 {
1616 	struct athn_ani *ani = &sc->sc_ani;
1617 	uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1618 	int32_t cycdelta, txfdelta, rxfdelta;
1619 	int32_t listen_time;
1620 
1621 	txfcnt = AR_READ(sc, AR_TFCNT);	/* Tx frame count. */
1622 	rxfcnt = AR_READ(sc, AR_RFCNT);	/* Rx frame count. */
1623 	cyccnt = AR_READ(sc, AR_CCCNT);	/* Cycle count. */
1624 
1625 	if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1626 		cycdelta = cyccnt - ani->cyccnt;
1627 		txfdelta = txfcnt - ani->txfcnt;
1628 		rxfdelta = rxfcnt - ani->rxfcnt;
1629 
1630 		listen_time = (cycdelta - txfdelta - rxfdelta) /
1631 		    (athn_clock_rate(sc) * 1000);
1632 	} else
1633 		listen_time = 0;
1634 
1635 	ani->cyccnt = cyccnt;
1636 	ani->txfcnt = txfcnt;
1637 	ani->rxfcnt = rxfcnt;
1638 
1639 	if (listen_time < 0) {
1640 		athn_ani_restart(sc);
1641 		return;
1642 	}
1643 	ani->listen_time += listen_time;
1644 
1645 	phy1 = AR_READ(sc, AR_PHY_ERR_1);
1646 	phy2 = AR_READ(sc, AR_PHY_ERR_2);
1647 
1648 	if (phy1 < ani->ofdm_phy_err_base) {
1649 		AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1650 		AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1651 	}
1652 	if (phy2 < ani->cck_phy_err_base) {
1653 		AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1654 		AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1655 	}
1656 	if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1657 		AR_WRITE_BARRIER(sc);
1658 		return;
1659 	}
1660 	ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1661 	ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1662 
1663 	if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1664 		/* Check to see if we need to lower immunity. */
1665 		if (ani->ofdm_phy_err_count <=
1666 		    ani->listen_time * ani->ofdm_trig_low / 1000 &&
1667 		    ani->cck_phy_err_count <=
1668 		    ani->listen_time * ani->cck_trig_low / 1000)
1669 			athn_ani_lower_immunity(sc);
1670 		athn_ani_restart(sc);
1671 
1672 	} else if (ani->listen_time > ATHN_ANI_PERIOD) {
1673 		/* Check to see if we need to raise immunity. */
1674 		if (ani->ofdm_phy_err_count >
1675 		    ani->listen_time * ani->ofdm_trig_high / 1000) {
1676 			athn_ani_ofdm_err_trigger(sc);
1677 			athn_ani_restart(sc);
1678 		} else if (ani->cck_phy_err_count >
1679 		    ani->listen_time * ani->cck_trig_high / 1000) {
1680 			athn_ani_cck_err_trigger(sc);
1681 			athn_ani_restart(sc);
1682 		}
1683 	}
1684 }
1685 #endif /* notyet */
1686 
1687 PUBLIC uint8_t
1688 athn_chan2fbin(struct ieee80211_channel *c)
1689 {
1690 
1691 	if (IEEE80211_IS_CHAN_2GHZ(c))
1692 		return c->ic_freq - 2300;
1693 	else
1694 		return (c->ic_freq - 4800) / 5;
1695 }
1696 
1697 PUBLIC int
1698 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1699 {
1700 
1701 	if (x1 == x2)	/* Prevents division by zero. */
1702 		return y1;
1703 	/* Linear interpolation. */
1704 	return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1705 }
1706 
1707 PUBLIC void
1708 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1709     int *lo, int *hi)
1710 {
1711 	int i;
1712 
1713 	for (i = 0; i < npiers; i++)
1714 		if (pierfreq[i] == AR_BCHAN_UNUSED ||
1715 		    pierfreq[i] > fbin)
1716 			break;
1717 	*hi = i;
1718 	*lo = *hi - 1;
1719 	if (*lo == -1)
1720 		*lo = *hi;
1721 	else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1722 		*hi = *lo;
1723 }
1724 
1725 Static void
1726 athn_init_dma(struct athn_softc *sc)
1727 {
1728 	uint32_t reg;
1729 
1730 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1731 		/* Set AHB not to do cacheline prefetches. */
1732 		AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1733 	}
1734 	reg = AR_READ(sc, AR_TXCFG);
1735 	/* Let MAC DMA reads be in 128-byte chunks. */
1736 	reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1737 
1738 	/* Set initial Tx trigger level. */
1739 	if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1740 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1741 	else if (!AR_SREV_9380_10_OR_LATER(sc))
1742 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1743 	AR_WRITE(sc, AR_TXCFG, reg);
1744 
1745 	/* Let MAC DMA writes be in 128-byte chunks. */
1746 	reg = AR_READ(sc, AR_RXCFG);
1747 	reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1748 	AR_WRITE(sc, AR_RXCFG, reg);
1749 
1750 	/* Setup Rx FIFO threshold to hold off Tx activities. */
1751 	AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1752 
1753 	/* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1754 	if (AR_SREV_9285(sc)) {
1755 		AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1756 		    AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1757 	} else if (!AR_SREV_9271(sc)) {
1758 		AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1759 		    AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1760 	}
1761 	AR_WRITE_BARRIER(sc);
1762 
1763 	/* Reset Tx status ring. */
1764 	if (AR_SREV_9380_10_OR_LATER(sc))
1765 		ar9003_reset_txsring(sc);
1766 }
1767 
1768 PUBLIC void
1769 athn_inc_tx_trigger_level(struct athn_softc *sc)
1770 {
1771 	uint32_t reg, ftrig;
1772 
1773 	reg = AR_READ(sc, AR_TXCFG);
1774 	ftrig = MS(reg, AR_TXCFG_FTRIG);
1775 	/*
1776 	 * NB: The AR9285 and all single-stream parts have an issue that
1777 	 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1778 	 */
1779 	if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1780 		return;		/* Already at max. */
1781 	reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1782 	AR_WRITE(sc, AR_TXCFG, reg);
1783 	AR_WRITE_BARRIER(sc);
1784 }
1785 
1786 PUBLIC int
1787 athn_stop_rx_dma(struct athn_softc *sc)
1788 {
1789 	int ntries;
1790 
1791 	AR_WRITE(sc, AR_CR, AR_CR_RXD);
1792 	/* Wait for Rx enable bit to go low. */
1793 	for (ntries = 0; ntries < 100; ntries++) {
1794 		if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1795 			return 0;
1796 		DELAY(100);
1797 	}
1798 	DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1799 	return ETIMEDOUT;
1800 }
1801 
1802 #ifdef unused
1803 Static int
1804 athn_rx_abort(struct athn_softc *sc)
1805 {
1806 	int ntries;
1807 
1808 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1809 	for (ntries = 0; ntries < 1000; ntries++) {
1810 		if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1811 			return 0;
1812 		DELAY(10);
1813 	}
1814 	DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1815 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1816 	AR_WRITE_BARRIER(sc);
1817 	return ETIMEDOUT;
1818 }
1819 #endif /* unused */
1820 
1821 Static void
1822 athn_tx_reclaim(struct athn_softc *sc, int qid)
1823 {
1824 	struct athn_txq *txq = &sc->sc_txq[qid];
1825 	struct athn_tx_buf *bf;
1826 
1827 	/* Reclaim all buffers queued in the specified Tx queue. */
1828 	/* NB: Tx DMA must be stopped. */
1829 	while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1830 		SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1831 
1832 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1833 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1834 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1835 		m_freem(bf->bf_m);
1836 		bf->bf_m = NULL;
1837 		bf->bf_ni = NULL;	/* Nodes already freed! */
1838 
1839 		/* Link Tx buffer back to global free list. */
1840 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1841 	}
1842 }
1843 
1844 PUBLIC int
1845 athn_tx_pending(struct athn_softc *sc, int qid)
1846 {
1847 
1848 	return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1849 	    (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1850 }
1851 
1852 PUBLIC void
1853 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1854 {
1855 	uint32_t tsflo;
1856 	int ntries, i;
1857 
1858 	AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1859 	for (ntries = 0; ntries < 40; ntries++) {
1860 		if (!athn_tx_pending(sc, qid))
1861 			break;
1862 		DELAY(100);
1863 	}
1864 	if (ntries == 40) {
1865 		for (i = 0; i < 2; i++) {
1866 			tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1867 			AR_WRITE(sc, AR_QUIET2,
1868 			    SM(AR_QUIET2_QUIET_DUR, 10));
1869 			AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1870 			AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1871 			AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1872 			if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1873 				break;
1874 		}
1875 		AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1876 		AR_WRITE_BARRIER(sc);
1877 		DELAY(200);
1878 		AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1879 		AR_WRITE_BARRIER(sc);
1880 
1881 		for (ntries = 0; ntries < 40; ntries++) {
1882 			if (!athn_tx_pending(sc, qid))
1883 				break;
1884 			DELAY(100);
1885 		}
1886 
1887 		AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1888 	}
1889 	AR_WRITE(sc, AR_Q_TXD, 0);
1890 	AR_WRITE_BARRIER(sc);
1891 }
1892 
1893 PUBLIC int
1894 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1895 {
1896 #define divround(a, b)	(((a) + (b) - 1) / (b))
1897 	int txtime;
1898 
1899 	/* XXX HT. */
1900 	if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1901 		txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1902 		/* SIFS is 10us for 11g but Signal Extension adds 6us. */
1903 		txtime = 16 + 4 + 4 * txtime + 16;
1904 	} else {
1905 		txtime = divround(16 * len, athn_rates[ridx].rate);
1906 		if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1907 			txtime +=  72 + 24;
1908 		else
1909 			txtime += 144 + 48;
1910 		txtime += 10;	/* 10us SIFS. */
1911 	}
1912 	return txtime;
1913 #undef divround
1914 }
1915 
1916 PUBLIC void
1917 athn_init_tx_queues(struct athn_softc *sc)
1918 {
1919 	int qid;
1920 
1921 	for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1922 		SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1923 		sc->sc_txq[qid].lastds = NULL;
1924 		sc->sc_txq[qid].wait = NULL;
1925 		sc->sc_txq[qid].queued = 0;
1926 
1927 		AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1928 		    SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1929 		    SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1930 		    SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1931 		AR_WRITE(sc, AR_QMISC(qid),
1932 		    AR_Q_MISC_DCU_EARLY_TERM_REQ);
1933 		AR_WRITE(sc, AR_DMISC(qid),
1934 		    SM(AR_D_MISC_BKOFF_THRESH, 2) |
1935 		    AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1936 	}
1937 
1938 	/* Init beacon queue. */
1939 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1940 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1941 	    AR_Q_MISC_CBR_INCR_DIS1);
1942 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1943 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1944 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1945 	    AR_D_MISC_BEACON_USE |
1946 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1947 	AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1948 	    SM(AR_D_LCL_IFS_CWMIN, 0) |
1949 	    SM(AR_D_LCL_IFS_CWMAX, 0) |
1950 	    SM(AR_D_LCL_IFS_AIFS,  1));
1951 
1952 	/* Init CAB (Content After Beacon) queue. */
1953 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1954 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1955 	    AR_Q_MISC_CBR_INCR_DIS0);
1956 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1957 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1958 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1959 
1960 	/* Init PS-Poll queue. */
1961 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1962 	    AR_Q_MISC_CBR_INCR_DIS1);
1963 
1964 	/* Init UAPSD queue. */
1965 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1966 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1967 
1968 	if (AR_SREV_9380_10_OR_LATER(sc)) {
1969 		/* Enable MAC descriptor CRC check. */
1970 		AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1971 	}
1972 	/* Enable DESC interrupts for all Tx queues. */
1973 	AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1974 	/* Enable EOL interrupts for all Tx queues except UAPSD. */
1975 	AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1976 	AR_WRITE_BARRIER(sc);
1977 }
1978 
1979 PUBLIC void
1980 athn_set_sta_timers(struct athn_softc *sc)
1981 {
1982 	struct ieee80211com *ic = &sc->sc_ic;
1983 	uint32_t tsfhi, tsflo, tsftu, reg;
1984 	uint32_t intval, next_tbtt, next_dtim;
1985 	int dtim_period, rem_dtim_count;
1986 
1987 	tsfhi = AR_READ(sc, AR_TSF_U32);
1988 	tsflo = AR_READ(sc, AR_TSF_L32);
1989 	tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
1990 
1991 	/* Beacon interval in TU. */
1992 	intval = ic->ic_bss->ni_intval;
1993 
1994 	next_tbtt = roundup(tsftu, intval);
1995 #ifdef notyet
1996 	dtim_period = ic->ic_dtim_period;
1997 	if (dtim_period <= 0)
1998 #endif
1999 		dtim_period = 1;	/* Assume all TIMs are DTIMs. */
2000 
2001 #ifdef notyet
2002 	int dtim_count = ic->ic_dtim_count;
2003 	if (dtim_count >= dtim_period)	/* Should not happen. */
2004 		dtim_count = 0;	/* Assume last TIM was a DTIM. */
2005 #endif
2006 
2007 	/* Compute number of remaining TIMs until next DTIM. */
2008 	rem_dtim_count = 0;	/* XXX */
2009 	next_dtim = next_tbtt + rem_dtim_count * intval;
2010 
2011 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2012 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2013 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2014 
2015 	/*
2016 	 * Set the number of consecutive beacons to miss before raising
2017 	 * a BMISS interrupt to 10.
2018 	 */
2019 	reg = AR_READ(sc, AR_RSSI_THR);
2020 	reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
2021 	AR_WRITE(sc, AR_RSSI_THR, reg);
2022 
2023 	AR_WRITE(sc, AR_NEXT_DTIM,
2024 	    (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2025 	AR_WRITE(sc, AR_NEXT_TIM,
2026 	    (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2027 
2028 	/* CAB timeout is in 1/8 TU. */
2029 	AR_WRITE(sc, AR_SLEEP1,
2030 	    SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
2031 	    AR_SLEEP1_ASSUME_DTIM);
2032 	AR_WRITE(sc, AR_SLEEP2,
2033 	    SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
2034 
2035 	AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
2036 	AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
2037 
2038 	AR_SETBITS(sc, AR_TIMER_MODE,
2039 	    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2040 
2041 	/* Set TSF out-of-range threshold (fixed at 16k us). */
2042 	AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2043 
2044 	AR_WRITE_BARRIER(sc);
2045 }
2046 
2047 #ifndef IEEE80211_STA_ONLY
2048 PUBLIC void
2049 athn_set_hostap_timers(struct athn_softc *sc)
2050 {
2051 	struct ieee80211com *ic = &sc->sc_ic;
2052 	uint32_t intval, next_tbtt;
2053 
2054 	/* Beacon interval in TU. */
2055 	intval = ic->ic_bss->ni_intval;
2056 	next_tbtt = intval;
2057 
2058 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2059 	AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2060 	    (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2061 	AR_WRITE(sc, AR_NEXT_CFP,
2062 	    (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2063 
2064 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2065 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2066 	AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2067 	AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2068 
2069 	AR_WRITE(sc, AR_TIMER_MODE,
2070 	    AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2071 
2072 	AR_WRITE_BARRIER(sc);
2073 }
2074 #endif
2075 
2076 PUBLIC void
2077 athn_set_opmode(struct athn_softc *sc)
2078 {
2079 	uint32_t reg;
2080 
2081 	switch (sc->sc_ic.ic_opmode) {
2082 #ifndef IEEE80211_STA_ONLY
2083 	case IEEE80211_M_HOSTAP:
2084 		reg = AR_READ(sc, AR_STA_ID1);
2085 		reg &= ~AR_STA_ID1_ADHOC;
2086 		reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2087 		AR_WRITE(sc, AR_STA_ID1, reg);
2088 
2089 		AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2090 		break;
2091 	case IEEE80211_M_IBSS:
2092 	case IEEE80211_M_AHDEMO:
2093 		reg = AR_READ(sc, AR_STA_ID1);
2094 		reg &= ~AR_STA_ID1_STA_AP;
2095 		reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2096 		AR_WRITE(sc, AR_STA_ID1, reg);
2097 
2098 		AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2099 		break;
2100 #endif
2101 	default:
2102 		reg = AR_READ(sc, AR_STA_ID1);
2103 		reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2104 		reg |= AR_STA_ID1_KSRCH_MODE;
2105 		AR_WRITE(sc, AR_STA_ID1, reg);
2106 		break;
2107 	}
2108 	AR_WRITE_BARRIER(sc);
2109 }
2110 
2111 PUBLIC void
2112 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2113 {
2114 	const uint8_t *bssid = ni->ni_bssid;
2115 
2116 	AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2117 	AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2118 	    SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2119 	AR_WRITE_BARRIER(sc);
2120 }
2121 
2122 Static void
2123 athn_enable_interrupts(struct athn_softc *sc)
2124 {
2125 	uint32_t mask2;
2126 
2127 	athn_disable_interrupts(sc);	/* XXX */
2128 
2129 	AR_WRITE(sc, AR_IMR, sc->sc_imask);
2130 
2131 	mask2 = AR_READ(sc, AR_IMR_S2);
2132 	mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2133 	    AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2134 	mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2135 	AR_WRITE(sc, AR_IMR_S2, mask2);
2136 
2137 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2138 
2139 	AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2140 
2141 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2142 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2143 
2144 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2145 	AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2146 	AR_WRITE_BARRIER(sc);
2147 }
2148 
2149 Static void
2150 athn_disable_interrupts(struct athn_softc *sc)
2151 {
2152 
2153 	AR_WRITE(sc, AR_IER, 0);
2154 	(void)AR_READ(sc, AR_IER);
2155 
2156 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2157 	(void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2158 
2159 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2160 	(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2161 
2162 	AR_WRITE(sc, AR_IMR, 0);
2163 
2164 	AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2165 	    AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2166 	    AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2167 
2168 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2169 	AR_WRITE_BARRIER(sc);
2170 }
2171 
2172 Static void
2173 athn_init_qos(struct athn_softc *sc)
2174 {
2175 
2176 	/* Initialize QoS settings. */
2177 	AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2178 	AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2179 	AR_WRITE(sc, AR_QOS_NO_ACK,
2180 	    SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2181 	    SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2182 	    SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2183 	AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2184 	/* Initialize TXOP for all TIDs. */
2185 	AR_WRITE(sc, AR_TXOP_0_3,   0xffffffff);
2186 	AR_WRITE(sc, AR_TXOP_4_7,   0xffffffff);
2187 	AR_WRITE(sc, AR_TXOP_8_11,  0xffffffff);
2188 	AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2189 	AR_WRITE_BARRIER(sc);
2190 }
2191 
2192 PUBLIC int
2193 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2194     struct ieee80211_channel *extchan, int init)
2195 {
2196 	struct ieee80211com *ic = &sc->sc_ic;
2197 	struct athn_ops *ops = &sc->sc_ops;
2198 	uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2199 	int i, error;
2200 
2201 	/* XXX not if already awake */
2202 	if ((error = athn_set_power_awake(sc)) != 0) {
2203 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2204 		return error;
2205 	}
2206 
2207 	/* Preserve the antenna on a channel switch. */
2208 	if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2209 		def_ant = 1;
2210 	/* Preserve other registers. */
2211 	sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2212 	cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2213 	    AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2214 	    AR_CFG_LED_BLINK_SLOW);
2215 
2216 	/* Mark PHY as inactive. */
2217 	ops->disable_phy(sc);
2218 
2219 	if (init && AR_SREV_9271(sc)) {
2220 		AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2221 		    AR9271_RADIO_RF_RST);
2222 		DELAY(50);
2223 	}
2224 	if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2225 		/* Save TSF before it gets cleared. */
2226 		tsfhi = AR_READ(sc, AR_TSF_U32);
2227 		tsflo = AR_READ(sc, AR_TSF_L32);
2228 
2229 		/* NB: RTC reset clears TSF. */
2230 		error = athn_reset_power_on(sc);
2231 	} else {
2232 		tsfhi = tsflo = 0;	/* XXX: gcc */
2233 		error = athn_reset(sc, 0);
2234 	}
2235 	if (error != 0) {
2236 		aprint_error_dev(sc->sc_dev,
2237 		    "could not reset chip (error=%d)\n", error);
2238 		return error;
2239 	}
2240 
2241 	/* XXX not if already awake */
2242 	if ((error = athn_set_power_awake(sc)) != 0) {
2243 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2244 		return error;
2245 	}
2246 
2247 	athn_init_pll(sc, curchan);
2248 	ops->set_rf_mode(sc, curchan);
2249 
2250 	if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2251 		/* Check that the radio is not disabled by hardware switch. */
2252 		reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2253 		if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2254 			reg = !reg;
2255 		if (!reg) {
2256 			aprint_error_dev(sc->sc_dev,
2257 			    "radio is disabled by hardware switch\n");
2258 			return EPERM;
2259 		}
2260 	}
2261 	if (init && AR_SREV_9271(sc)) {
2262 		AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2263 		    AR9271_GATE_MAC_CTL);
2264 		DELAY(50);
2265 	}
2266 	if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2267 		/* Restore TSF if it got cleared. */
2268 		AR_WRITE(sc, AR_TSF_L32, tsflo);
2269 		AR_WRITE(sc, AR_TSF_U32, tsfhi);
2270 	}
2271 
2272 	if (AR_SREV_9280_10_OR_LATER(sc))
2273 		AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2274 
2275 	if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2276 		ar9287_1_3_enable_async_fifo(sc);
2277 
2278 	/* Write init values to hardware. */
2279 	ops->hw_init(sc, curchan, extchan);
2280 
2281 	/*
2282 	 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2283 	 * management frames using CCMP.
2284 	 */
2285 	if (AR_SREV_9280_20_OR_LATER(sc)) {
2286 		reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2287 		/* Do not mask the subtype field in management frames. */
2288 		reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2289 		reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2290 		    (uint32_t)~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2291 		      IEEE80211_FC1_MORE_DATA));
2292 		AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2293 	} else if (AR_SREV_9160_10_OR_LATER(sc)) {
2294 		/* Disable hardware crypto for management frames. */
2295 		AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2296 		    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2297 		AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2298 		    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2299 	}
2300 
2301 	if (ic->ic_curmode != IEEE80211_MODE_11B)
2302 		ops->set_delta_slope(sc, curchan, extchan);
2303 
2304 	ops->spur_mitigate(sc, curchan, extchan);
2305 	ops->init_from_rom(sc, curchan, extchan);
2306 
2307 	/* XXX */
2308 	AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2309 	AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2310 	    sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2311 
2312 	athn_set_opmode(sc);
2313 
2314 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2315 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2316 
2317 	/* Restore previous antenna. */
2318 	AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2319 
2320 	AR_WRITE(sc, AR_BSS_ID0, 0);
2321 	AR_WRITE(sc, AR_BSS_ID1, 0);
2322 
2323 	AR_WRITE(sc, AR_ISR, 0xffffffff);
2324 
2325 	AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2326 
2327 	if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2328 		aprint_error_dev(sc->sc_dev, "could not set channel\n");
2329 		return error;
2330 	}
2331 	sc->sc_curchan = curchan;
2332 	sc->sc_curchanext = extchan;
2333 
2334 	for (i = 0; i < AR_NUM_DCU; i++)
2335 		AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2336 
2337 	athn_init_tx_queues(sc);
2338 
2339 	/* Initialize interrupt mask. */
2340 	sc->sc_imask =
2341 	    AR_IMR_TXDESC | AR_IMR_TXEOL |
2342 	    AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2343 	    AR_IMR_RXMINTR | AR_IMR_RXINTM |
2344 	    AR_IMR_GENTMR | AR_IMR_BCNMISC;
2345 	if (AR_SREV_9380_10_OR_LATER(sc))
2346 		sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2347 #ifndef IEEE80211_STA_ONLY
2348 	if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2349 		sc->sc_imask |= AR_IMR_MIB;
2350 #endif
2351 	AR_WRITE(sc, AR_IMR, sc->sc_imask);
2352 	AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2353 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2354 	sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2355 	if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2356 		sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2357 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2358 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2359 	if (AR_SREV_9380_10_OR_LATER(sc)) {
2360 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2361 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2362 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2363 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2364 	}
2365 
2366 	athn_init_qos(sc);
2367 
2368 	AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2369 
2370 	if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2371 		ar9287_1_3_setup_async_fifo(sc);
2372 
2373 	/* Disable sequence number generation in hardware. */
2374 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2375 
2376 	athn_init_dma(sc);
2377 
2378 	/* Program observation bus to see MAC interrupts. */
2379 	AR_WRITE(sc, sc->sc_obs_off, 8);
2380 
2381 	/* Setup Rx interrupt mitigation. */
2382 	AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2383 
2384 	ops->init_baseband(sc);
2385 
2386 	if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2387 		aprint_error_dev(sc->sc_dev,
2388 		    "could not initialize calibration\n");
2389 		return error;
2390 	}
2391 
2392 	ops->set_rxchains(sc);
2393 
2394 	AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2395 
2396 	if (sc->sc_flags & ATHN_FLAG_USB) {
2397 		if (AR_SREV_9271(sc))
2398 			AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2399 		else
2400 			AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2401 	}
2402 #if BYTE_ORDER == BIG_ENDIAN
2403 	else {
2404 		/* Default is LE, turn on swapping for BE. */
2405 		AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2406 	}
2407 #endif
2408 	AR_WRITE_BARRIER(sc);
2409 
2410 	return 0;
2411 }
2412 
2413 Static struct ieee80211_node *
2414 athn_node_alloc(struct ieee80211_node_table *ntp)
2415 {
2416 
2417 	return malloc(sizeof(struct athn_node), M_DEVBUF,
2418 	    M_NOWAIT | M_ZERO);
2419 }
2420 
2421 Static void
2422 athn_newassoc(struct ieee80211_node *ni, int isnew)
2423 {
2424 	struct ieee80211com *ic = ni->ni_ic;
2425 	struct athn_softc *sc = ic->ic_ifp->if_softc;
2426 	struct athn_node *an = (void *)ni;
2427 	struct ieee80211_rateset *rs = &ni->ni_rates;
2428 	uint8_t rate;
2429 	int ridx, i, j;
2430 
2431 	ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2432 	/* Start at lowest available bit-rate, AMRR will raise. */
2433 	ni->ni_txrate = 0;
2434 
2435 	for (i = 0; i < rs->rs_nrates; i++) {
2436 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2437 
2438 		/* Map 802.11 rate to HW rate index. */
2439 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2440 			if (athn_rates[ridx].rate == rate)
2441 				break;
2442 		an->ridx[i] = ridx;
2443 		DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2444 
2445 		/* Compute fallback rate for retries. */
2446 		an->fallback[i] = i;
2447 		for (j = i - 1; j >= 0; j--) {
2448 			if (athn_rates[an->ridx[j]].phy ==
2449 			    athn_rates[an->ridx[i]].phy) {
2450 				an->fallback[i] = j;
2451 				break;
2452 			}
2453 		}
2454 		DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2455 		    i, an->fallback[i]);
2456 	}
2457 }
2458 
2459 Static int
2460 athn_media_change(struct ifnet *ifp)
2461 {
2462 	struct athn_softc *sc = ifp->if_softc;
2463 	struct ieee80211com *ic = &sc->sc_ic;
2464 	uint8_t rate, ridx;
2465 	int error;
2466 
2467 	error = ieee80211_media_change(ifp);
2468 	if (error != ENETRESET)
2469 		return error;
2470 
2471 	if (ic->ic_fixed_rate != -1) {
2472 		rate = ic->ic_sup_rates[ic->ic_curmode].
2473 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2474 		/* Map 802.11 rate to HW rate index. */
2475 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2476 			if (athn_rates[ridx].rate == rate)
2477 				break;
2478 		sc->sc_fixed_ridx = ridx;
2479 	}
2480 	if (IS_UP_AND_RUNNING(ifp)) {
2481 		athn_stop(ifp, 0);
2482 		error = athn_init(ifp);
2483 	}
2484 	return error;
2485 }
2486 
2487 Static void
2488 athn_next_scan(void *arg)
2489 {
2490 	struct athn_softc *sc = arg;
2491 	struct ieee80211com *ic = &sc->sc_ic;
2492 	int s;
2493 
2494 	s = splnet();
2495 	if (ic->ic_state == IEEE80211_S_SCAN)
2496 		ieee80211_next_scan(ic);
2497 	splx(s);
2498 }
2499 
2500 Static int
2501 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2502 {
2503 	struct ifnet *ifp = ic->ic_ifp;
2504 	struct athn_softc *sc = ifp->if_softc;
2505 	uint32_t reg;
2506 	int error;
2507 
2508 	callout_stop(&sc->sc_calib_to);
2509 
2510 	switch (nstate) {
2511 	case IEEE80211_S_INIT:
2512 		athn_set_led(sc, 0);
2513 		break;
2514 	case IEEE80211_S_SCAN:
2515 		/* Make the LED blink while scanning. */
2516 		athn_set_led(sc, !sc->sc_led_state);
2517 		error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2518 		if (error != 0)
2519 			return error;
2520 		callout_schedule(&sc->sc_scan_to, hz / 5);
2521 		break;
2522 	case IEEE80211_S_AUTH:
2523 		athn_set_led(sc, 0);
2524 		error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2525 		if (error != 0)
2526 			return error;
2527 		break;
2528 	case IEEE80211_S_ASSOC:
2529 		break;
2530 	case IEEE80211_S_RUN:
2531 		athn_set_led(sc, 1);
2532 
2533 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
2534 			break;
2535 
2536 		/* Fake a join to initialize the Tx rate. */
2537 		athn_newassoc(ic->ic_bss, 1);
2538 
2539 		athn_set_bss(sc, ic->ic_bss);
2540 		athn_disable_interrupts(sc);
2541 #ifndef IEEE80211_STA_ONLY
2542 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2543 			athn_set_hostap_timers(sc);
2544 			/* Enable software beacon alert interrupts. */
2545 			sc->sc_imask |= AR_IMR_SWBA;
2546 		} else
2547 #endif
2548 		{
2549 			athn_set_sta_timers(sc);
2550 			/* Enable beacon miss interrupts. */
2551 			sc->sc_imask |= AR_IMR_BMISS;
2552 
2553 			/* Stop receiving beacons from other BSS. */
2554 			reg = AR_READ(sc, AR_RX_FILTER);
2555 			reg = (reg & ~AR_RX_FILTER_BEACON) |
2556 			    AR_RX_FILTER_MYBEACON;
2557 			AR_WRITE(sc, AR_RX_FILTER, reg);
2558 			AR_WRITE_BARRIER(sc);
2559 		}
2560 		athn_enable_interrupts(sc);
2561 
2562 		if (sc->sc_sup_calib_mask != 0) {
2563 			memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2564 			sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2565 			/* ops->do_calib(sc); */
2566 		}
2567 		/* XXX Start ANI. */
2568 
2569 		callout_schedule(&sc->sc_calib_to, hz / 2);
2570 		break;
2571 	}
2572 
2573 	return sc->sc_newstate(ic, nstate, arg);
2574 }
2575 
2576 #ifdef notyet_edca
2577 PUBLIC void
2578 athn_updateedca(struct ieee80211com *ic)
2579 {
2580 #define ATHN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2581 	struct athn_softc *sc = ic->ic_ifp->if_softc;
2582 	const struct ieee80211_edca_ac_params *ac;
2583 	int aci, qid;
2584 
2585 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2586 		ac = &ic->ic_edca_ac[aci];
2587 		qid = athn_ac2qid[aci];
2588 
2589 		AR_WRITE(sc, AR_DLCL_IFS(qid),
2590 		    SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2591 		    SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2592 		    SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2593 		if (ac->ac_txoplimit != 0) {
2594 			AR_WRITE(sc, AR_DCHNTIME(qid),
2595 			    SM(AR_D_CHNTIME_DUR,
2596 			       IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2597 			    AR_D_CHNTIME_EN);
2598 		} else
2599 			AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2600 	}
2601 	AR_WRITE_BARRIER(sc);
2602 #undef ATHN_EXP2
2603 }
2604 #endif /* notyet_edca */
2605 
2606 Static int
2607 athn_clock_rate(struct athn_softc *sc)
2608 {
2609 	struct ieee80211com *ic = &sc->sc_ic;
2610 	int clockrate;	/* MHz. */
2611 
2612 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2613 		if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2614 			clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2615 		else
2616 			clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2617 	} else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2618 		clockrate = AR_CLOCK_RATE_CCK;
2619 	} else
2620 		clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2621 #ifndef IEEE80211_NO_HT
2622 	if (sc->sc_curchanext != NULL)
2623 		clockrate *= 2;
2624 #endif
2625 	return clockrate;
2626 }
2627 
2628 PUBLIC void
2629 athn_updateslot(struct ifnet *ifp)
2630 {
2631 	struct athn_softc *sc = ifp->if_softc;
2632 	struct ieee80211com *ic = &sc->sc_ic;
2633 	int slot;
2634 
2635 	slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2636 	AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2637 	AR_WRITE_BARRIER(sc);
2638 }
2639 
2640 Static void
2641 athn_start(struct ifnet *ifp)
2642 {
2643 	struct athn_softc *sc = ifp->if_softc;
2644 	struct ieee80211com *ic = &sc->sc_ic;
2645 	struct ether_header *eh;
2646 	struct ieee80211_node *ni;
2647 	struct mbuf *m;
2648 
2649 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2650 	    || !device_is_active(sc->sc_dev))
2651 		return;
2652 
2653 	for (;;) {
2654 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2655 			ifp->if_flags |= IFF_OACTIVE;
2656 			break;
2657 		}
2658 		/* Send pending management frames first. */
2659 		IF_DEQUEUE(&ic->ic_mgtq, m);
2660 		if (m != NULL) {
2661 			ni = M_GETCTX(m, struct ieee80211_node *);
2662 			goto sendit;
2663 		}
2664 		if (ic->ic_state != IEEE80211_S_RUN)
2665 			break;
2666 
2667 		/* Encapsulate and send data frames. */
2668 		IFQ_DEQUEUE(&ifp->if_snd, m);
2669 		if (m == NULL)
2670 			break;
2671 
2672 		if (m->m_len < (int)sizeof(*eh) &&
2673 		    (m = m_pullup(m, sizeof(*eh))) == NULL) {
2674 			if_statinc(ifp, if_oerrors);
2675 			continue;
2676 		}
2677 		eh = mtod(m, struct ether_header *);
2678 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2679 		if (ni == NULL) {
2680 			m_freem(m);
2681 			if_statinc(ifp, if_oerrors);
2682 			continue;
2683 		}
2684 
2685 		bpf_mtap(ifp, m, BPF_D_OUT);
2686 
2687 		if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2688 			continue;
2689  sendit:
2690 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
2691 
2692 		if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2693 			ieee80211_free_node(ni);
2694 			if_statinc(ifp, if_oerrors);
2695 			continue;
2696 		}
2697 
2698 		sc->sc_tx_timer = 5;
2699 		ifp->if_timer = 1;
2700 	}
2701 }
2702 
2703 Static void
2704 athn_watchdog(struct ifnet *ifp)
2705 {
2706 	struct athn_softc *sc = ifp->if_softc;
2707 
2708 	ifp->if_timer = 0;
2709 
2710 	if (sc->sc_tx_timer > 0) {
2711 		if (--sc->sc_tx_timer == 0) {
2712 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2713 			/* see athn_init, no need to call athn_stop here */
2714 			/* athn_stop(ifp, 0); */
2715 			(void)athn_init(ifp);
2716 			if_statinc(ifp, if_oerrors);
2717 			return;
2718 		}
2719 		ifp->if_timer = 1;
2720 	}
2721 	ieee80211_watchdog(&sc->sc_ic);
2722 }
2723 
2724 Static void
2725 athn_set_multi(struct athn_softc *sc)
2726 {
2727 	struct ethercom *ec = &sc->sc_ec;
2728 	struct ifnet *ifp = &ec->ec_if;
2729 	struct ether_multi *enm;
2730 	struct ether_multistep step;
2731 	const uint8_t *addr;
2732 	uint32_t val, lo, hi;
2733 	uint8_t bit;
2734 
2735 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2736 		lo = hi = 0xffffffff;
2737 		goto done;
2738 	}
2739 	lo = hi = 0;
2740 	ETHER_LOCK(ec);
2741 	ETHER_FIRST_MULTI(step, ec, enm);
2742 	while (enm != NULL) {
2743 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2744 			ifp->if_flags |= IFF_ALLMULTI;
2745 			lo = hi = 0xffffffff;
2746 			goto done;
2747 		}
2748 		addr = enm->enm_addrlo;
2749 		/* Calculate the XOR value of all eight 6-bit words. */
2750 		val = addr[0] | addr[1] << 8 | addr[2] << 16;
2751 		bit  = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2752 		val = addr[3] | addr[4] << 8 | addr[5] << 16;
2753 		bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2754 		bit &= 0x3f;
2755 		if (bit < 32)
2756 			lo |= 1 << bit;
2757 		else
2758 			hi |= 1 << (bit - 32);
2759 		ETHER_NEXT_MULTI(step, enm);
2760 	}
2761  done:
2762 	ETHER_UNLOCK(ec);
2763 	AR_WRITE(sc, AR_MCAST_FIL0, lo);
2764 	AR_WRITE(sc, AR_MCAST_FIL1, hi);
2765 	AR_WRITE_BARRIER(sc);
2766 }
2767 
2768 Static int
2769 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2770 {
2771 	struct athn_softc *sc = ifp->if_softc;
2772 	struct ieee80211com *ic = &sc->sc_ic;
2773 	int s, error = 0;
2774 
2775 	s = splnet();
2776 
2777 	switch (cmd) {
2778 	case SIOCSIFFLAGS:
2779 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2780 			break;
2781 
2782 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2783 		case IFF_UP | IFF_RUNNING:
2784 #ifdef notyet
2785 			if (((ifp->if_flags ^ sc->sc_if_flags) &
2786 				(IFF_ALLMULTI | IFF_PROMISC)) != 0)
2787 				/* XXX: setup multi */
2788 #endif
2789 			break;
2790 		case IFF_UP:
2791 			athn_init(ifp);
2792 			break;
2793 
2794 		case IFF_RUNNING:
2795 			athn_stop(ifp, 1);
2796 			break;
2797 		case 0:
2798 		default:
2799 			break;
2800 		}
2801 		sc->sc_if_flags = ifp->if_flags;
2802 		break;
2803 
2804 	case SIOCADDMULTI:
2805 	case SIOCDELMULTI:
2806 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2807 			/* setup multicast filter, etc */
2808 			athn_set_multi(sc);
2809 			error = 0;
2810 		}
2811 		break;
2812 
2813 	case SIOCS80211CHANNEL:
2814 		error = ieee80211_ioctl(ic, cmd, data);
2815 		if (error == ENETRESET &&
2816 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2817 			if (IS_UP_AND_RUNNING(ifp))
2818 				athn_switch_chan(sc, ic->ic_curchan, NULL);
2819 			error = 0;
2820 		}
2821 		break;
2822 
2823 	default:
2824 		error = ieee80211_ioctl(ic, cmd, data);
2825 	}
2826 
2827 	if (error == ENETRESET) {
2828 		error = 0;
2829 		if (IS_UP_AND_RUNNING(ifp) &&
2830 		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2831 			athn_stop(ifp, 0);
2832 			error = athn_init(ifp);
2833 		}
2834 	}
2835 
2836 	splx(s);
2837 	return error;
2838 }
2839 
2840 Static int
2841 athn_init(struct ifnet *ifp)
2842 {
2843 	struct athn_softc *sc = ifp->if_softc;
2844 	struct athn_ops *ops = &sc->sc_ops;
2845 	struct ieee80211com *ic = &sc->sc_ic;
2846 	struct ieee80211_channel *curchan, *extchan;
2847 	size_t i;
2848 	int error;
2849 
2850 	KASSERT(!cpu_intr_p());
2851 
2852 	if (device_is_active(sc->sc_dev)) {
2853 		athn_stop(ifp, 0);	/* see athn_watchdog() */
2854 	} else {
2855 		short flags = ifp->if_flags;
2856 		ifp->if_flags &= ~IFF_UP;
2857 		/* avoid recursion in athn_resume */
2858 		if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2859 		    !device_is_active(sc->sc_dev)) {
2860 			printf("%s: failed to power up device\n",
2861 			    device_xname(sc->sc_dev));
2862 			return 0;
2863 		}
2864 		ifp->if_flags = flags;
2865 	}
2866 
2867 	curchan = ic->ic_curchan;
2868 	extchan = NULL;
2869 
2870 	/* In case a new MAC address has been configured. */
2871 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2872 
2873 #ifdef openbsd_power_management
2874 	/* For CardBus, power on the socket. */
2875 	if (sc->sc_enable != NULL) {
2876 		if ((error = sc->sc_enable(sc)) != 0) {
2877 			aprint_error_dev(sc->sc_dev,
2878 			    "could not enable device\n");
2879 			goto fail;
2880 		}
2881 		if ((error = athn_reset_power_on(sc)) != 0) {
2882 			aprint_error_dev(sc->sc_dev,
2883 			    "could not power on device\n");
2884 			goto fail;
2885 		}
2886 	}
2887 #endif
2888 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2889 		athn_config_nonpcie(sc);
2890 	else
2891 		athn_config_pcie(sc);
2892 
2893 	/* Reset HW key cache entries. */
2894 	for (i = 0; i < sc->sc_kc_entries; i++)
2895 		athn_reset_key(sc, i);
2896 
2897 	ops->enable_antenna_diversity(sc);
2898 
2899 #ifdef ATHN_BT_COEXISTENCE
2900 	/* Configure bluetooth coexistence for combo chips. */
2901 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2902 		athn_btcoex_init(sc);
2903 #endif
2904 
2905 	/* Configure LED. */
2906 	athn_led_init(sc);
2907 
2908 	/* Configure hardware radio switch. */
2909 	if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2910 		ops->rfsilent_init(sc);
2911 
2912 	if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2913 		aprint_error_dev(sc->sc_dev,
2914 		    "unable to reset hardware; reset status %d\n", error);
2915 		goto fail;
2916 	}
2917 
2918 	/* Enable Rx. */
2919 	athn_rx_start(sc);
2920 
2921 	/* Enable interrupts. */
2922 	athn_enable_interrupts(sc);
2923 
2924 #ifdef ATHN_BT_COEXISTENCE
2925 	/* Enable bluetooth coexistence for combo chips. */
2926 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2927 		athn_btcoex_enable(sc);
2928 #endif
2929 
2930 	ifp->if_flags &= ~IFF_OACTIVE;
2931 	ifp->if_flags |= IFF_RUNNING;
2932 
2933 #ifdef notyet
2934 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2935 		/* Configure WEP keys. */
2936 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2937 			athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2938 	}
2939 #endif
2940 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2941 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2942 	else
2943 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2944 
2945 	return 0;
2946  fail:
2947 	athn_stop(ifp, 1);
2948 	return error;
2949 }
2950 
2951 PUBLIC void
2952 athn_stop(struct ifnet *ifp, int disable)
2953 {
2954 	struct athn_softc *sc = ifp->if_softc;
2955 	struct ieee80211com *ic = &sc->sc_ic;
2956 	int qid;
2957 
2958 	ifp->if_timer = sc->sc_tx_timer = 0;
2959 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2960 
2961 	callout_stop(&sc->sc_scan_to);
2962 	/* In case we were scanning, release the scan "lock". */
2963 //	ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED;	/* XXX:??? */
2964 
2965 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2966 
2967 #ifdef ATHN_BT_COEXISTENCE
2968 	/* Disable bluetooth coexistence for combo chips. */
2969 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2970 		athn_btcoex_disable(sc);
2971 #endif
2972 
2973 	/* Disable interrupts. */
2974 	athn_disable_interrupts(sc);
2975 	/* Acknowledge interrupts (avoids interrupt storms). */
2976 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2977 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2978 
2979 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2980 		athn_stop_tx_dma(sc, qid);
2981 	/* XXX call athn_hw_reset if Tx still pending? */
2982 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2983 		athn_tx_reclaim(sc, qid);
2984 
2985 	/* Stop Rx. */
2986 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2987 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
2988 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
2989 	AR_WRITE(sc, AR_FILT_OFDM, 0);
2990 	AR_WRITE(sc, AR_FILT_CCK, 0);
2991 	AR_WRITE_BARRIER(sc);
2992 	athn_set_rxfilter(sc, 0);
2993 	athn_stop_rx_dma(sc);
2994 
2995 	athn_reset(sc, 0);
2996 	athn_init_pll(sc, NULL);
2997 	athn_set_power_awake(sc);
2998 	athn_reset(sc, 1);
2999 	athn_init_pll(sc, NULL);
3000 
3001 	athn_set_power_sleep(sc);
3002 
3003 #if 0	/* XXX: shouldn't the pmf stuff take care of this? */
3004 	/* For CardBus, power down the socket. */
3005 	if (disable && sc->sc_disable != NULL)
3006 		sc->sc_disable(sc);
3007 #endif
3008 	if (disable)
3009 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
3010 }
3011 
3012 Static void
3013 athn_pmf_wlan_off(device_t self)
3014 {
3015 	struct athn_softc *sc = device_private(self);
3016 	struct ifnet *ifp = &sc->sc_if;
3017 
3018 	/* Turn the interface down. */
3019 	ifp->if_flags &= ~IFF_UP;
3020 	athn_stop(ifp, 1);
3021 }
3022 
3023 PUBLIC void
3024 athn_suspend(struct athn_softc *sc)
3025 {
3026 	struct ifnet *ifp = &sc->sc_if;
3027 
3028 	if (ifp->if_flags & IFF_RUNNING)
3029 		athn_stop(ifp, 1);
3030 }
3031 
3032 PUBLIC bool
3033 athn_resume(struct athn_softc *sc)
3034 {
3035 	struct ifnet *ifp = &sc->sc_if;
3036 
3037 	if (ifp->if_flags & IFF_UP)
3038 		athn_init(ifp);
3039 
3040 	return true;
3041 }
3042