xref: /netbsd-src/sys/dev/ic/athn.c (revision 122b5006ee1bd67145794b4cde92f4fe4781a5ec)
1 /*	$NetBSD: athn.c,v 1.25 2021/06/16 00:21:18 riastradh Exp $	*/
2 /*	$OpenBSD: athn.c,v 1.83 2014/07/22 13:12:11 mpi Exp $	*/
3 
4 /*-
5  * Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2008-2010 Atheros Communications Inc.
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 /*
22  * Driver for Atheros 802.11a/g/n chipsets.
23  */
24 
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: athn.c,v 1.25 2021/06/16 00:21:18 riastradh Exp $");
27 
28 #ifndef _MODULE
29 #include "athn_usb.h"		/* for NATHN_USB */
30 #endif
31 
32 #include <sys/param.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/kernel.h>
36 #include <sys/socket.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/queue.h>
40 #include <sys/callout.h>
41 #include <sys/conf.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 
45 #include <sys/bus.h>
46 #include <sys/endian.h>
47 #include <sys/intr.h>
48 
49 #include <net/bpf.h>
50 #include <net/if.h>
51 #include <net/if_arp.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_types.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 
62 #include <net80211/ieee80211_var.h>
63 #include <net80211/ieee80211_amrr.h>
64 #include <net80211/ieee80211_radiotap.h>
65 
66 #include <dev/ic/athnreg.h>
67 #include <dev/ic/athnvar.h>
68 #include <dev/ic/arn5008.h>
69 #include <dev/ic/arn5416.h>
70 #include <dev/ic/arn9003.h>
71 #include <dev/ic/arn9280.h>
72 #include <dev/ic/arn9285.h>
73 #include <dev/ic/arn9287.h>
74 #include <dev/ic/arn9380.h>
75 
76 #define Static static
77 
78 #define IS_UP_AND_RUNNING(ifp) \
79 	(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
80 
81 #ifdef ATHN_DEBUG
82 int athn_debug = 0;
83 #endif
84 
85 Static int	athn_clock_rate(struct athn_softc *);
86 Static const char *
87 		athn_get_mac_name(struct athn_softc *);
88 Static const char *
89 		athn_get_rf_name(struct athn_softc *);
90 Static int	athn_init(struct ifnet *);
91 Static int	athn_init_calib(struct athn_softc *,
92 		    struct ieee80211_channel *, struct ieee80211_channel *);
93 Static int	athn_ioctl(struct ifnet *, u_long, void *);
94 Static int	athn_media_change(struct ifnet *);
95 Static int	athn_newstate(struct ieee80211com *, enum ieee80211_state,
96 		    int);
97 Static struct ieee80211_node *
98 		athn_node_alloc(struct ieee80211_node_table *);
99 Static int	athn_reset_power_on(struct athn_softc *);
100 Static int	athn_stop_rx_dma(struct athn_softc *);
101 Static int	athn_switch_chan(struct athn_softc *,
102 		    struct ieee80211_channel *, struct ieee80211_channel *);
103 Static void	athn_calib_to(void *);
104 Static void	athn_disable_interrupts(struct athn_softc *);
105 Static void	athn_enable_interrupts(struct athn_softc *);
106 Static void	athn_get_chanlist(struct athn_softc *);
107 Static void	athn_get_chipid(struct athn_softc *);
108 Static void	athn_init_dma(struct athn_softc *);
109 Static void	athn_init_qos(struct athn_softc *);
110 Static void	athn_init_tx_queues(struct athn_softc *);
111 Static void	athn_iter_func(void *, struct ieee80211_node *);
112 Static void	athn_newassoc(struct ieee80211_node *, int);
113 Static void	athn_next_scan(void *);
114 Static void	athn_pmf_wlan_off(device_t self);
115 Static void	athn_radiotap_attach(struct athn_softc *);
116 Static void	athn_start(struct ifnet *);
117 Static void	athn_tx_reclaim(struct athn_softc *, int);
118 Static void	athn_watchdog(struct ifnet *);
119 Static void	athn_write_serdes(struct athn_softc *,
120 		    const struct athn_serdes *);
121 Static void	athn_softintr(void *);
122 
123 #ifdef ATHN_BT_COEXISTENCE
124 Static void	athn_btcoex_disable(struct athn_softc *);
125 Static void	athn_btcoex_enable(struct athn_softc *);
126 #endif
127 
128 #ifdef unused
129 Static int32_t	athn_ani_get_rssi(struct athn_softc *);
130 Static int	athn_rx_abort(struct athn_softc *);
131 #endif
132 
133 #ifdef notyet
134 Static void	athn_ani_cck_err_trigger(struct athn_softc *);
135 Static void	athn_ani_lower_immunity(struct athn_softc *);
136 Static void	athn_ani_monitor(struct athn_softc *);
137 Static void	athn_ani_ofdm_err_trigger(struct athn_softc *);
138 Static void	athn_ani_restart(struct athn_softc *);
139 #endif /* notyet */
140 Static void	athn_set_multi(struct athn_softc *);
141 
142 PUBLIC int
143 athn_attach(struct athn_softc *sc)
144 {
145 	struct ieee80211com *ic = &sc->sc_ic;
146 	struct ifnet *ifp = &sc->sc_if;
147 	size_t max_nnodes;
148 	int error;
149 
150 	/* Read hardware revision. */
151 	athn_get_chipid(sc);
152 
153 	if ((error = athn_reset_power_on(sc)) != 0) {
154 		aprint_error_dev(sc->sc_dev, "could not reset chip\n");
155 		return error;
156 	}
157 
158 	if ((error = athn_set_power_awake(sc)) != 0) {
159 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
160 		return error;
161 	}
162 
163 	if (AR_SREV_5416(sc) || AR_SREV_9160(sc))
164 		error = ar5416_attach(sc);
165 	else if (AR_SREV_9280(sc))
166 		error = ar9280_attach(sc);
167 	else if (AR_SREV_9285(sc))
168 		error = ar9285_attach(sc);
169 #if NATHN_USB > 0
170 	else if (AR_SREV_9271(sc))
171 		error = ar9285_attach(sc);
172 #endif
173 	else if (AR_SREV_9287(sc))
174 		error = ar9287_attach(sc);
175 	else if (AR_SREV_9380(sc) || AR_SREV_9485(sc))
176 		error = ar9380_attach(sc);
177 	else
178 		error = ENOTSUP;
179 	if (error != 0) {
180 		aprint_error_dev(sc->sc_dev, "could not attach chip\n");
181 		return error;
182 	}
183 
184 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
185 	pmf_event_register(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
186 	    false);
187 
188 	/* We can put the chip in sleep state now. */
189 	athn_set_power_sleep(sc);
190 
191 	if (!(sc->sc_flags & ATHN_FLAG_USB)) {
192 		sc->sc_soft_ih = softint_establish(SOFTINT_NET, athn_softintr,
193 		    sc);
194 		if (sc->sc_soft_ih == NULL) {
195 			aprint_error_dev(sc->sc_dev,
196 			    "could not establish softint\n");
197 			return EINVAL;
198 		}
199 
200 		error = sc->sc_ops.dma_alloc(sc);
201 		if (error != 0) {
202 			aprint_error_dev(sc->sc_dev,
203 			    "could not allocate DMA resources\n");
204 			return error;
205 		}
206 		/* Steal one Tx buffer for beacons. */
207 		sc->sc_bcnbuf = SIMPLEQ_FIRST(&sc->sc_txbufs);
208 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
209 	}
210 
211 	if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
212 		DPRINTFN(DBG_INIT, sc,
213 		    "found RF switch connected to GPIO pin %d\n",
214 		    sc->sc_rfsilent_pin);
215 	}
216 	DPRINTFN(DBG_INIT, sc, "%zd key cache entries\n", sc->sc_kc_entries);
217 
218 	/*
219 	 * In HostAP mode, the number of STAs that we can handle is
220 	 * limited by the number of entries in the HW key cache.
221 	 * TKIP keys consume 2 entries in the cache.
222 	 */
223 	KASSERT(sc->sc_kc_entries / 2 > IEEE80211_WEP_NKID);
224 	max_nnodes = (sc->sc_kc_entries / 2) - IEEE80211_WEP_NKID;
225 	if (sc->sc_max_aid != 0)	/* we have an override */
226 		ic->ic_max_aid = sc->sc_max_aid;
227 	if (ic->ic_max_aid > max_nnodes)
228 		ic->ic_max_aid = max_nnodes;
229 
230 	DPRINTFN(DBG_INIT, sc, "using %s loop power control\n",
231 	    (sc->sc_flags & ATHN_FLAG_OLPC) ? "open" : "closed");
232 	DPRINTFN(DBG_INIT, sc, "txchainmask=0x%x rxchainmask=0x%x\n",
233 	    sc->sc_txchainmask, sc->sc_rxchainmask);
234 
235 	/* Count the number of bits set (in lowest 3 bits). */
236 	sc->sc_ntxchains =
237 	    ((sc->sc_txchainmask >> 2) & 1) +
238 	    ((sc->sc_txchainmask >> 1) & 1) +
239 	    ((sc->sc_txchainmask >> 0) & 1);
240 	sc->sc_nrxchains =
241 	    ((sc->sc_rxchainmask >> 2) & 1) +
242 	    ((sc->sc_rxchainmask >> 1) & 1) +
243 	    ((sc->sc_rxchainmask >> 0) & 1);
244 
245 	if (AR_SINGLE_CHIP(sc)) {
246 		aprint_normal(": Atheros %s\n", athn_get_mac_name(sc));
247 		aprint_verbose_dev(sc->sc_dev,
248 		    "rev %d (%dT%dR), ROM rev %d, address %s\n",
249 		    sc->sc_mac_rev,
250 		    sc->sc_ntxchains, sc->sc_nrxchains, sc->sc_eep_rev,
251 		    ether_sprintf(ic->ic_myaddr));
252 	} else {
253 		aprint_normal(": Atheros %s, RF %s\n", athn_get_mac_name(sc),
254 		    athn_get_rf_name(sc));
255 		aprint_verbose_dev(sc->sc_dev,
256 		    "rev %d (%dT%dR), ROM rev %d, address %s\n",
257 		    sc->sc_mac_rev,
258 		    sc->sc_ntxchains, sc->sc_nrxchains,
259 		    sc->sc_eep_rev, ether_sprintf(ic->ic_myaddr));
260 	}
261 
262 	callout_init(&sc->sc_scan_to, 0);
263 	callout_setfunc(&sc->sc_scan_to, athn_next_scan, sc);
264 	callout_init(&sc->sc_calib_to, 0);
265 	callout_setfunc(&sc->sc_calib_to, athn_calib_to, sc);
266 
267 	sc->sc_amrr.amrr_min_success_threshold = 1;
268 	sc->sc_amrr.amrr_max_success_threshold = 15;
269 
270 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
271 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
272 	ic->ic_state = IEEE80211_S_INIT;
273 
274 	/* Set device capabilities. */
275 	ic->ic_caps =
276 	    IEEE80211_C_WPA |		/* 802.11i */
277 #ifndef IEEE80211_STA_ONLY
278 	    IEEE80211_C_HOSTAP |	/* Host AP mode supported. */
279 // XXX?	    IEEE80211_C_APPMGT |	/* Host AP power saving supported. */
280 #endif
281 	    IEEE80211_C_MONITOR |	/* Monitor mode supported. */
282 	    IEEE80211_C_SHSLOT |	/* Short slot time supported. */
283 	    IEEE80211_C_SHPREAMBLE |	/* Short preamble supported. */
284 	    IEEE80211_C_PMGT;		/* Power saving supported. */
285 
286 #ifndef IEEE80211_NO_HT
287 	if (sc->sc_flags & ATHN_FLAG_11N) {
288 		int i, ntxstreams, nrxstreams;
289 
290 		/* Set HT capabilities. */
291 		ic->ic_htcaps =
292 		    IEEE80211_HTCAP_SMPS_DIS |
293 		    IEEE80211_HTCAP_CBW20_40 |
294 		    IEEE80211_HTCAP_SGI40 |
295 		    IEEE80211_HTCAP_DSSSCCK40;
296 		if (AR_SREV_9271(sc) || AR_SREV_9287_10_OR_LATER(sc))
297 			ic->ic_htcaps |= IEEE80211_HTCAP_SGI20;
298 		if (AR_SREV_9380_10_OR_LATER(sc))
299 			ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
300 		if (AR_SREV_9280_10_OR_LATER(sc)) {
301 			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
302 			ic->ic_htcaps |= 1 << IEEE80211_HTCAP_RXSTBC_SHIFT;
303 		}
304 		ntxstreams = sc->sc_ntxchains;
305 		nrxstreams = sc->sc_nrxchains;
306 		if (!AR_SREV_9380_10_OR_LATER(sc)) {
307 			ntxstreams = MIN(ntxstreams, 2);
308 			nrxstreams = MIN(nrxstreams, 2);
309 		}
310 		/* Set supported HT rates. */
311 		for (i = 0; i < nrxstreams; i++)
312 			ic->ic_sup_mcs[i] = 0xff;
313 		/* Set the "Tx MCS Set Defined" bit. */
314 		ic->ic_sup_mcs[12] |= 0x01;
315 		if (ntxstreams != nrxstreams) {
316 			/* Set "Tx Rx MCS Set Not Equal" bit. */
317 			ic->ic_sup_mcs[12] |= 0x02;
318 			ic->ic_sup_mcs[12] |= (ntxstreams - 1) << 2;
319 		}
320 	}
321 #endif
322 
323 	/* Set supported rates. */
324 	if (sc->sc_flags & ATHN_FLAG_11G) {
325 		ic->ic_sup_rates[IEEE80211_MODE_11B] =
326 		    ieee80211_std_rateset_11b;
327 		ic->ic_sup_rates[IEEE80211_MODE_11G] =
328 		    ieee80211_std_rateset_11g;
329 	}
330 	if (sc->sc_flags & ATHN_FLAG_11A) {
331 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
332 		    ieee80211_std_rateset_11a;
333 	}
334 
335 	/* Get the list of authorized/supported channels. */
336 	athn_get_chanlist(sc);
337 
338 	ifp->if_softc = sc;
339 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
340 	if (!ifp->if_init)
341 		ifp->if_init = athn_init;
342 	if (!ifp->if_ioctl)
343 		ifp->if_ioctl = athn_ioctl;
344 	if (!ifp->if_start)
345 		ifp->if_start = athn_start;
346 	if (!ifp->if_watchdog)
347 		ifp->if_watchdog = athn_watchdog;
348 	IFQ_SET_READY(&ifp->if_snd);
349 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
350 
351 	if_initialize(ifp);
352 	ieee80211_ifattach(ic);
353 	/* Use common softint-based if_input */
354 	ifp->if_percpuq = if_percpuq_create(ifp);
355 	if_register(ifp);
356 
357 	ic->ic_node_alloc = athn_node_alloc;
358 	ic->ic_newassoc = athn_newassoc;
359 	if (ic->ic_updateslot == NULL)
360 		ic->ic_updateslot = athn_updateslot;
361 #ifdef notyet_edca
362 	ic->ic_updateedca = athn_updateedca;
363 #endif
364 #ifdef notyet
365 	ic->ic_set_key = athn_set_key;
366 	ic->ic_delete_key = athn_delete_key;
367 #endif
368 
369 	/* Override 802.11 state transition machine. */
370 	sc->sc_newstate = ic->ic_newstate;
371 	ic->ic_newstate = athn_newstate;
372 
373 	if (sc->sc_media_change == NULL)
374 		sc->sc_media_change = athn_media_change;
375 	ieee80211_media_init(ic, sc->sc_media_change, ieee80211_media_status);
376 
377 	athn_radiotap_attach(sc);
378 	return 0;
379 }
380 
381 PUBLIC void
382 athn_detach(struct athn_softc *sc)
383 {
384 	struct ifnet *ifp = &sc->sc_if;
385 	int qid;
386 
387 	callout_halt(&sc->sc_scan_to, NULL);
388 	callout_halt(&sc->sc_calib_to, NULL);
389 
390 	if (!(sc->sc_flags & ATHN_FLAG_USB)) {
391 		for (qid = 0; qid < ATHN_QID_COUNT; qid++)
392 			athn_tx_reclaim(sc, qid);
393 
394 		/* Free Tx/Rx DMA resources. */
395 		sc->sc_ops.dma_free(sc);
396 
397 		if (sc->sc_soft_ih != NULL) {
398 			softint_disestablish(sc->sc_soft_ih);
399 			sc->sc_soft_ih = NULL;
400 		}
401 	}
402 	/* Free ROM copy. */
403 	if (sc->sc_eep != NULL) {
404 		free(sc->sc_eep, M_DEVBUF);
405 		sc->sc_eep = NULL;
406 	}
407 
408 	bpf_detach(ifp);
409 	ieee80211_ifdetach(&sc->sc_ic);
410 	if_detach(ifp);
411 
412 	callout_destroy(&sc->sc_scan_to);
413 	callout_destroy(&sc->sc_calib_to);
414 
415 	pmf_event_deregister(sc->sc_dev, PMFE_RADIO_OFF, athn_pmf_wlan_off,
416 	    false);
417 }
418 
419 /*
420  * Attach the interface to 802.11 radiotap.
421  */
422 Static void
423 athn_radiotap_attach(struct athn_softc *sc)
424 {
425 
426 	bpf_attach2(&sc->sc_if, DLT_IEEE802_11_RADIO,
427 	    sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
428 	    &sc->sc_drvbpf);
429 
430 	sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
431 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
432 	sc->sc_rxtap.wr_ihdr.it_present = htole32(ATHN_RX_RADIOTAP_PRESENT);
433 
434 	sc->sc_txtap_len = sizeof(sc->sc_txtapu);
435 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
436 	sc->sc_txtap.wt_ihdr.it_present = htole32(ATHN_TX_RADIOTAP_PRESENT);
437 }
438 
439 Static void
440 athn_get_chanlist(struct athn_softc *sc)
441 {
442 	struct ieee80211com *ic = &sc->sc_ic;
443 	uint8_t chan;
444 	size_t i;
445 
446 	if (sc->sc_flags & ATHN_FLAG_11G) {
447 		for (i = 1; i <= 14; i++) {
448 			chan = i;
449 			ic->ic_channels[chan].ic_freq =
450 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
451 			ic->ic_channels[chan].ic_flags =
452 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
453 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
454 		}
455 	}
456 	if (sc->sc_flags & ATHN_FLAG_11A) {
457 		for (i = 0; i < __arraycount(athn_5ghz_chans); i++) {
458 			chan = athn_5ghz_chans[i];
459 			ic->ic_channels[chan].ic_freq =
460 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
461 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
462 		}
463 	}
464 }
465 
466 PUBLIC void
467 athn_rx_start(struct athn_softc *sc)
468 {
469 	struct ieee80211com *ic = &sc->sc_ic;
470 	uint32_t rfilt;
471 
472 	/* Setup Rx DMA descriptors. */
473 	sc->sc_ops.rx_enable(sc);
474 
475 	/* Set Rx filter. */
476 	rfilt = AR_RX_FILTER_UCAST | AR_RX_FILTER_BCAST | AR_RX_FILTER_MCAST;
477 #ifndef IEEE80211_NO_HT
478 	/* Want Compressed Block Ack Requests. */
479 	rfilt |= AR_RX_FILTER_COMPR_BAR;
480 #endif
481 	rfilt |= AR_RX_FILTER_BEACON;
482 	if (ic->ic_opmode != IEEE80211_M_STA) {
483 		rfilt |= AR_RX_FILTER_PROBEREQ;
484 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
485 			rfilt |= AR_RX_FILTER_PROM;
486 #ifndef IEEE80211_STA_ONLY
487 		if (AR_SREV_9280_10_OR_LATER(sc) &&
488 		    ic->ic_opmode == IEEE80211_M_HOSTAP)
489 			rfilt |= AR_RX_FILTER_PSPOLL;
490 #endif
491 	}
492 	athn_set_rxfilter(sc, rfilt);
493 
494 	/* Set BSSID mask. */
495 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
496 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
497 
498 	athn_set_opmode(sc);
499 
500 	/* Set multicast filter. */
501 	AR_WRITE(sc, AR_MCAST_FIL0, 0xffffffff);
502 	AR_WRITE(sc, AR_MCAST_FIL1, 0xffffffff);
503 
504 	AR_WRITE(sc, AR_FILT_OFDM, 0);
505 	AR_WRITE(sc, AR_FILT_CCK, 0);
506 	AR_WRITE(sc, AR_MIBC, 0);
507 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
508 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
509 
510 	/* XXX ANI. */
511 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
512 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
513 
514 	/* Disable HW crypto for now. */
515 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_ENCRYPT_DIS | AR_DIAG_DECRYPT_DIS);
516 
517 	/* Start PCU Rx. */
518 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
519 	AR_WRITE_BARRIER(sc);
520 }
521 
522 PUBLIC void
523 athn_set_rxfilter(struct athn_softc *sc, uint32_t rfilt)
524 {
525 
526 	AR_WRITE(sc, AR_RX_FILTER, rfilt);
527 #ifdef notyet
528 	reg = AR_READ(sc, AR_PHY_ERR);
529 	reg &= (AR_PHY_ERR_RADAR | AR_PHY_ERR_OFDM_TIMING |
530 	    AR_PHY_ERR_CCK_TIMING);
531 	AR_WRITE(sc, AR_PHY_ERR, reg);
532 	if (reg != 0)
533 		AR_SETBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
534 	else
535 		AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
536 #else
537 	AR_WRITE(sc, AR_PHY_ERR, 0);
538 	AR_CLRBITS(sc, AR_RXCFG, AR_RXCFG_ZLFDMA);
539 #endif
540 	AR_WRITE_BARRIER(sc);
541 }
542 
543 PUBLIC int
544 athn_intr(void *xsc)
545 {
546 	struct athn_softc *sc = xsc;
547 	struct ifnet *ifp = &sc->sc_if;
548 
549 	if (!IS_UP_AND_RUNNING(ifp))
550 		return 0;
551 
552 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
553 		/*
554 		 * The hardware is not ready/present, don't touch anything.
555 		 * Note this can happen early on if the IRQ is shared.
556 		 */
557 		return 0;
558 
559 	if (!sc->sc_ops.intr_status(sc))
560 		return 0;
561 
562 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, 0);
563 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
564 	AR_WRITE_BARRIER(sc);
565 
566 	softint_schedule(sc->sc_soft_ih);
567 
568 	return 1;
569 }
570 
571 Static void
572 athn_softintr(void *xsc)
573 {
574 	struct athn_softc *sc = xsc;
575 	struct ifnet *ifp = &sc->sc_if;
576 
577 	if (!IS_UP_AND_RUNNING(ifp))
578 		return;
579 
580 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
581 		/*
582 		 * The hardware is not ready/present, don't touch anything.
583 		 * Note this can happen early on if the IRQ is shared.
584 		 */
585 		return;
586 
587 	sc->sc_ops.intr(sc);
588 
589 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
590 	AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
591 	AR_WRITE_BARRIER(sc);
592 }
593 
594 Static void
595 athn_get_chipid(struct athn_softc *sc)
596 {
597 	uint32_t reg;
598 
599 	reg = AR_READ(sc, AR_SREV);
600 	if (MS(reg, AR_SREV_ID) == 0xff) {
601 		sc->sc_mac_ver = MS(reg, AR_SREV_VERSION2);
602 		sc->sc_mac_rev = MS(reg, AR_SREV_REVISION2);
603 		if (!(reg & AR_SREV_TYPE2_HOST_MODE))
604 			sc->sc_flags |= ATHN_FLAG_PCIE;
605 	} else {
606 		sc->sc_mac_ver = MS(reg, AR_SREV_VERSION);
607 		sc->sc_mac_rev = MS(reg, AR_SREV_REVISION);
608 		if (sc->sc_mac_ver == AR_SREV_VERSION_5416_PCIE)
609 			sc->sc_flags |= ATHN_FLAG_PCIE;
610 	}
611 }
612 
613 Static const char *
614 athn_get_mac_name(struct athn_softc *sc)
615 {
616 
617 	switch (sc->sc_mac_ver) {
618 	case AR_SREV_VERSION_5416_PCI:
619 		return "AR5416";
620 	case AR_SREV_VERSION_5416_PCIE:
621 		return "AR5418";
622 	case AR_SREV_VERSION_9160:
623 		return "AR9160";
624 	case AR_SREV_VERSION_9280:
625 		return "AR9280";
626 	case AR_SREV_VERSION_9285:
627 		return "AR9285";
628 	case AR_SREV_VERSION_9271:
629 		return "AR9271";
630 	case AR_SREV_VERSION_9287:
631 		return "AR9287";
632 	case AR_SREV_VERSION_9380:
633 		return "AR9380";
634 	case AR_SREV_VERSION_9485:
635 		return "AR9485";
636 	default:
637 		return "unknown";
638 	}
639 }
640 
641 /*
642  * Return RF chip name (not for single-chip solutions).
643  */
644 Static const char *
645 athn_get_rf_name(struct athn_softc *sc)
646 {
647 
648 	KASSERT(!AR_SINGLE_CHIP(sc));
649 
650 	switch (sc->sc_rf_rev) {
651 	case AR_RAD5133_SREV_MAJOR:	/* Dual-band 3T3R. */
652 		return "AR5133";
653 	case AR_RAD2133_SREV_MAJOR:	/* Single-band 3T3R. */
654 		return "AR2133";
655 	case AR_RAD5122_SREV_MAJOR:	/* Dual-band 2T2R. */
656 		return "AR5122";
657 	case AR_RAD2122_SREV_MAJOR:	/* Single-band 2T2R. */
658 		return "AR2122";
659 	default:
660 		return "unknown";
661 	}
662 }
663 
664 PUBLIC int
665 athn_reset_power_on(struct athn_softc *sc)
666 {
667 	int ntries;
668 
669 	/* Set force wake. */
670 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
671 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
672 
673 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
674 		/* Make sure no DMA is active by doing an AHB reset. */
675 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
676 	}
677 	/* RTC reset and clear. */
678 	AR_WRITE(sc, AR_RTC_RESET, 0);
679 	AR_WRITE_BARRIER(sc);
680 	DELAY(2);
681 	if (!AR_SREV_9380_10_OR_LATER(sc))
682 		AR_WRITE(sc, AR_RC, 0);
683 	AR_WRITE(sc, AR_RTC_RESET, 1);
684 
685 	/* Poll until RTC is ON. */
686 	for (ntries = 0; ntries < 1000; ntries++) {
687 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
688 		    AR_RTC_STATUS_ON)
689 			break;
690 		DELAY(10);
691 	}
692 	if (ntries == 1000) {
693 		DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
694 		return ETIMEDOUT;
695 	}
696 	return athn_reset(sc, 0);
697 }
698 
699 PUBLIC int
700 athn_reset(struct athn_softc *sc, int cold_reset)
701 {
702 	int ntries;
703 
704 	/* Set force wake. */
705 	AR_WRITE(sc, AR_RTC_FORCE_WAKE,
706 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
707 
708 	if (AR_READ(sc, AR_INTR_SYNC_CAUSE) &
709 	    (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
710 		AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
711 		AR_WRITE(sc, AR_RC, AR_RC_HOSTIF |
712 		    (!AR_SREV_9380_10_OR_LATER(sc) ? AR_RC_AHB : 0));
713 	} else if (!AR_SREV_9380_10_OR_LATER(sc))
714 		AR_WRITE(sc, AR_RC, AR_RC_AHB);
715 
716 	AR_WRITE(sc, AR_RTC_RC, AR_RTC_RC_MAC_WARM |
717 	    (cold_reset ? AR_RTC_RC_MAC_COLD : 0));
718 	AR_WRITE_BARRIER(sc);
719 	DELAY(50);
720 	AR_WRITE(sc, AR_RTC_RC, 0);
721 	for (ntries = 0; ntries < 1000; ntries++) {
722 		if (!(AR_READ(sc, AR_RTC_RC) &
723 		      (AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD)))
724 			break;
725 		DELAY(10);
726 	}
727 	if (ntries == 1000) {
728 		DPRINTFN(DBG_INIT, sc, "RTC stuck in MAC reset\n");
729 		return ETIMEDOUT;
730 	}
731 	AR_WRITE(sc, AR_RC, 0);
732 	AR_WRITE_BARRIER(sc);
733 	return 0;
734 }
735 
736 PUBLIC int
737 athn_set_power_awake(struct athn_softc *sc)
738 {
739 	int ntries, error;
740 
741 	/* Do a Power-On-Reset if shutdown. */
742 	if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
743 	    AR_RTC_STATUS_SHUTDOWN) {
744 		if ((error = athn_reset_power_on(sc)) != 0)
745 			return error;
746 		if (!AR_SREV_9380_10_OR_LATER(sc))
747 			athn_init_pll(sc, NULL);
748 	}
749 	AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
750 	AR_WRITE_BARRIER(sc);
751 	DELAY(50);	/* Give chip the chance to awake. */
752 
753 	/* Poll until RTC is ON. */
754 	for (ntries = 0; ntries < 4000; ntries++) {
755 		if ((AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) ==
756 		    AR_RTC_STATUS_ON)
757 			break;
758 		DELAY(50);
759 		AR_SETBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
760 	}
761 	if (ntries == 4000) {
762 		DPRINTFN(DBG_INIT, sc, "RTC not waking up\n");
763 		return ETIMEDOUT;
764 	}
765 
766 	AR_CLRBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
767 	AR_WRITE_BARRIER(sc);
768 	return 0;
769 }
770 
771 PUBLIC void
772 athn_set_power_sleep(struct athn_softc *sc)
773 {
774 
775 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
776 	/* Allow the MAC to go to sleep. */
777 	AR_CLRBITS(sc, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
778 	if (!AR_SREV_9380_10_OR_LATER(sc))
779 		AR_WRITE(sc, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
780 	/*
781 	 * NB: Clearing RTC_RESET_EN when setting the chip to sleep mode
782 	 * results in high power consumption on AR5416 chipsets.
783 	 */
784 	if (!AR_SREV_5416(sc) && !AR_SREV_9271(sc))
785 		AR_CLRBITS(sc, AR_RTC_RESET, AR_RTC_RESET_EN);
786 	AR_WRITE_BARRIER(sc);
787 }
788 
789 PUBLIC void
790 athn_init_pll(struct athn_softc *sc, const struct ieee80211_channel *c)
791 {
792 	uint32_t pll;
793 
794 	if (AR_SREV_9380_10_OR_LATER(sc)) {
795 		if (AR_SREV_9485(sc))
796 			AR_WRITE(sc, AR_RTC_PLL_CONTROL2, 0x886666);
797 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x5);
798 		pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
799 	} else if (AR_SREV_9280_10_OR_LATER(sc)) {
800 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
801 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c)) {
802 			if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
803 				pll = 0x142c;
804 			else if (AR_SREV_9280_20(sc))
805 		 		pll = 0x2850;
806 			else
807 				pll |= SM(AR_RTC_9160_PLL_DIV, 0x28);
808 		} else
809 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x2c);
810 	} else if (AR_SREV_9160_10_OR_LATER(sc)) {
811 		pll = SM(AR_RTC_9160_PLL_REFDIV, 0x05);
812 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
813 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x50);
814 		else
815 			pll |= SM(AR_RTC_9160_PLL_DIV, 0x58);
816 	} else {
817 		pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
818 		if (c != NULL && IEEE80211_IS_CHAN_5GHZ(c))
819 			pll |= SM(AR_RTC_PLL_DIV, 0x0a);
820 		else
821 			pll |= SM(AR_RTC_PLL_DIV, 0x0b);
822 	}
823 	DPRINTFN(DBG_INIT, sc, "AR_RTC_PLL_CONTROL=0x%08x\n", pll);
824 	AR_WRITE(sc, AR_RTC_PLL_CONTROL, pll);
825 	if (AR_SREV_9271(sc)) {
826 		/* Switch core clock to 117MHz. */
827 		AR_WRITE_BARRIER(sc);
828 		DELAY(500);
829 		AR_WRITE(sc, 0x50050, 0x304);
830 	}
831 	AR_WRITE_BARRIER(sc);
832 	DELAY(100);
833 	AR_WRITE(sc, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
834 	AR_WRITE_BARRIER(sc);
835 }
836 
837 Static void
838 athn_write_serdes(struct athn_softc *sc, const struct athn_serdes *serdes)
839 {
840 	int i;
841 
842 	/* Write sequence to Serializer/Deserializer. */
843 	for (i = 0; i < serdes->nvals; i++)
844 		AR_WRITE(sc, serdes->regs[i], serdes->vals[i]);
845 	AR_WRITE_BARRIER(sc);
846 }
847 
848 PUBLIC void
849 athn_config_pcie(struct athn_softc *sc)
850 {
851 
852 	/* Disable PLL when in L0s as well as receiver clock when in L1. */
853 	athn_write_serdes(sc, sc->sc_serdes);
854 
855 	DELAY(1000);
856 	/* Allow forcing of PCIe core into L1 state. */
857 	AR_SETBITS(sc, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
858 
859 #ifndef ATHN_PCIE_WAEN
860 	AR_WRITE(sc, AR_WA, sc->sc_workaround);
861 #else
862 	AR_WRITE(sc, AR_WA, ATHN_PCIE_WAEN);
863 #endif
864 	AR_WRITE_BARRIER(sc);
865 }
866 
867 /*
868  * Serializer/Deserializer programming for non-PCIe devices.
869  */
870 static const uint32_t ar_nonpcie_serdes_regs[] = {
871 	AR_PCIE_SERDES,
872 	AR_PCIE_SERDES,
873 	AR_PCIE_SERDES,
874 	AR_PCIE_SERDES,
875 	AR_PCIE_SERDES,
876 	AR_PCIE_SERDES,
877 	AR_PCIE_SERDES,
878 	AR_PCIE_SERDES,
879 	AR_PCIE_SERDES,
880 	AR_PCIE_SERDES2,
881 };
882 
883 static const uint32_t ar_nonpcie_serdes_vals[] = {
884 	0x9248fc00,
885 	0x24924924,
886 	0x28000029,
887 	0x57160824,
888 	0x25980579,
889 	0x00000000,
890 	0x1aaabe40,
891 	0xbe105554,
892 	0x000e1007,
893 	0x00000000
894 };
895 
896 static const struct athn_serdes ar_nonpcie_serdes = {
897 	__arraycount(ar_nonpcie_serdes_vals),
898 	ar_nonpcie_serdes_regs,
899 	ar_nonpcie_serdes_vals
900 };
901 
902 PUBLIC void
903 athn_config_nonpcie(struct athn_softc *sc)
904 {
905 
906 	athn_write_serdes(sc, &ar_nonpcie_serdes);
907 }
908 
909 PUBLIC int
910 athn_set_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
911     struct ieee80211_channel *extchan)
912 {
913 	struct athn_ops *ops = &sc->sc_ops;
914 	int error, qid;
915 
916 	/* Check that Tx is stopped, otherwise RF Bus grant will not work. */
917 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
918 		if (athn_tx_pending(sc, qid))
919 			return EBUSY;
920 
921 	/* Request RF Bus grant. */
922 	if ((error = ops->rf_bus_request(sc)) != 0)
923 		return error;
924 
925 	ops->set_phy(sc, curchan, extchan);
926 
927 	/* Change the synthesizer. */
928 	if ((error = ops->set_synth(sc, curchan, extchan)) != 0)
929 		return error;
930 
931 	sc->sc_curchan = curchan;
932 	sc->sc_curchanext = extchan;
933 
934 	/* Set transmit power values for new channel. */
935 	ops->set_txpower(sc, curchan, extchan);
936 
937 	/* Release the RF Bus grant. */
938 	ops->rf_bus_release(sc);
939 
940 	/* Write delta slope coeffs for modes where OFDM may be used. */
941 	if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11B)
942 		ops->set_delta_slope(sc, curchan, extchan);
943 
944 	ops->spur_mitigate(sc, curchan, extchan);
945 	/* XXX Load noisefloor values and start calibration. */
946 
947 	return 0;
948 }
949 
950 Static int
951 athn_switch_chan(struct athn_softc *sc, struct ieee80211_channel *curchan,
952     struct ieee80211_channel *extchan)
953 {
954 	int error, qid;
955 
956 	/* Disable interrupts. */
957 	athn_disable_interrupts(sc);
958 
959 	/* Stop all Tx queues. */
960 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
961 		athn_stop_tx_dma(sc, qid);
962 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
963 		athn_tx_reclaim(sc, qid);
964 
965 	/* Stop Rx. */
966 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
967 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
968 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
969 	AR_WRITE(sc, AR_FILT_OFDM, 0);
970 	AR_WRITE(sc, AR_FILT_CCK, 0);
971 	athn_set_rxfilter(sc, 0);
972 	error = athn_stop_rx_dma(sc);
973 	if (error != 0)
974 		goto reset;
975 
976 #ifdef notyet
977 	/* AR9280 needs a full reset. */
978 	if (AR_SREV_9280(sc))
979 #endif
980 		goto reset;
981 
982 	/* If band or bandwidth changes, we need to do a full reset. */
983 	if (curchan->ic_flags != sc->sc_curchan->ic_flags ||
984 	    ((extchan != NULL) ^ (sc->sc_curchanext != NULL))) {
985 		DPRINTFN(DBG_RF, sc, "channel band switch\n");
986 		goto reset;
987 	}
988 	error = athn_set_power_awake(sc);
989 	if (error != 0)
990 		goto reset;
991 
992 	error = athn_set_chan(sc, curchan, extchan);
993 	if (error != 0) {
994  reset:		/* Error found, try a full reset. */
995 		DPRINTFN(DBG_RF, sc, "needs a full reset\n");
996 		error = athn_hw_reset(sc, curchan, extchan, 0);
997 		if (error != 0)	/* Hopeless case. */
998 			return error;
999 	}
1000 	athn_rx_start(sc);
1001 
1002 	/* Re-enable interrupts. */
1003 	athn_enable_interrupts(sc);
1004 	return 0;
1005 }
1006 
1007 PUBLIC void
1008 athn_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
1009 {
1010 #define COEFF_SCALE_SHIFT	24
1011 	uint32_t exp, man;
1012 
1013 	/* exponent = 14 - floor(log2(coeff)) */
1014 	for (exp = 31; exp > 0; exp--)
1015 		if (coeff & (1U << exp))
1016 			break;
1017 	exp = 14 - (exp - COEFF_SCALE_SHIFT);
1018 
1019 	/* mantissa = floor(coeff * 2^exponent + 0.5) */
1020 	man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
1021 
1022 	*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
1023 	*exponent = exp - 16;
1024 #undef COEFF_SCALE_SHIFT
1025 }
1026 
1027 PUBLIC void
1028 athn_reset_key(struct athn_softc *sc, int entry)
1029 {
1030 
1031 	/*
1032 	 * NB: Key cache registers access special memory area that requires
1033 	 * two 32-bit writes to actually update the values in the internal
1034 	 * memory.  Consequently, writes must be grouped by pair.
1035 	 */
1036 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), 0);
1037 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), 0);
1038 
1039 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), 0);
1040 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), 0);
1041 
1042 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), 0);
1043 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1044 
1045 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), 0);
1046 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), 0);
1047 
1048 	AR_WRITE_BARRIER(sc);
1049 }
1050 
1051 #ifdef notyet
1052 Static int
1053 athn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1054     struct ieee80211_key *k)
1055 {
1056 	struct athn_softc *sc = ic->ic_ifp->if_softc;
1057 	const uint8_t *txmic, *rxmic, *key, *addr;
1058 	uintptr_t entry, micentry;
1059 	uint32_t type, lo, hi;
1060 
1061 	switch (k->k_cipher) {
1062 	case IEEE80211_CIPHER_WEP40:
1063 		type = AR_KEYTABLE_TYPE_40;
1064 		break;
1065 	case IEEE80211_CIPHER_WEP104:
1066 		type = AR_KEYTABLE_TYPE_104;
1067 		break;
1068 	case IEEE80211_CIPHER_TKIP:
1069 		type = AR_KEYTABLE_TYPE_TKIP;
1070 		break;
1071 	case IEEE80211_CIPHER_CCMP:
1072 		type = AR_KEYTABLE_TYPE_CCM;
1073 		break;
1074 	default:
1075 		/* Fallback to software crypto for other ciphers. */
1076 		return ieee80211_set_key(ic, ni, k);
1077 	}
1078 
1079 	if (!(k->k_flags & IEEE80211_KEY_GROUP))
1080 		entry = IEEE80211_WEP_NKID + IEEE80211_AID(ni->ni_associd);
1081 	else
1082 		entry = k->k_id;
1083 	k->k_priv = (void *)entry;
1084 
1085 	/* NB: See note about key cache registers access above. */
1086 	key = k->k_key;
1087 	if (type == AR_KEYTABLE_TYPE_TKIP) {
1088 #ifndef IEEE80211_STA_ONLY
1089 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1090 			txmic = &key[16];
1091 			rxmic = &key[24];
1092 		} else
1093 #endif
1094 		{
1095 			rxmic = &key[16];
1096 			txmic = &key[24];
1097 		}
1098 		/* Tx+Rx MIC key is at entry + 64. */
1099 		micentry = entry + 64;
1100 		AR_WRITE(sc, AR_KEYTABLE_KEY0(micentry), LE_READ_4(&rxmic[0]));
1101 		AR_WRITE(sc, AR_KEYTABLE_KEY1(micentry), LE_READ_2(&txmic[2]));
1102 
1103 		AR_WRITE(sc, AR_KEYTABLE_KEY2(micentry), LE_READ_4(&rxmic[4]));
1104 		AR_WRITE(sc, AR_KEYTABLE_KEY3(micentry), LE_READ_2(&txmic[0]));
1105 
1106 		AR_WRITE(sc, AR_KEYTABLE_KEY4(micentry), LE_READ_4(&txmic[4]));
1107 		AR_WRITE(sc, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR);
1108 	}
1109 	AR_WRITE(sc, AR_KEYTABLE_KEY0(entry), LE_READ_4(&key[ 0]));
1110 	AR_WRITE(sc, AR_KEYTABLE_KEY1(entry), LE_READ_2(&key[ 4]));
1111 
1112 	AR_WRITE(sc, AR_KEYTABLE_KEY2(entry), LE_READ_4(&key[ 6]));
1113 	AR_WRITE(sc, AR_KEYTABLE_KEY3(entry), LE_READ_2(&key[10]));
1114 
1115 	AR_WRITE(sc, AR_KEYTABLE_KEY4(entry), LE_READ_4(&key[12]));
1116 	AR_WRITE(sc, AR_KEYTABLE_TYPE(entry), type);
1117 
1118 	if (!(k->k_flags & IEEE80211_KEY_GROUP)) {
1119 		addr = ni->ni_macaddr;
1120 		lo = LE_READ_4(&addr[0]);
1121 		hi = LE_READ_2(&addr[4]);
1122 		lo = lo >> 1 | hi << 31;
1123 		hi = hi >> 1;
1124 	} else
1125 		lo = hi = 0;
1126 	AR_WRITE(sc, AR_KEYTABLE_MAC0(entry), lo);
1127 	AR_WRITE(sc, AR_KEYTABLE_MAC1(entry), hi | AR_KEYTABLE_VALID);
1128 	AR_WRITE_BARRIER(sc);
1129 	return 0;
1130 }
1131 
1132 Static void
1133 athn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
1134     struct ieee80211_key *k)
1135 {
1136 	struct athn_softc *sc = ic->ic_ifp->if_softc;
1137 	uintptr_t entry;
1138 
1139 	switch (k->k_cipher) {
1140 	case IEEE80211_CIPHER_WEP40:
1141 	case IEEE80211_CIPHER_WEP104:
1142 	case IEEE80211_CIPHER_CCMP:
1143 		entry = (uintptr_t)k->k_priv;
1144 		athn_reset_key(sc, entry);
1145 		break;
1146 	case IEEE80211_CIPHER_TKIP:
1147 		entry = (uintptr_t)k->k_priv;
1148 		athn_reset_key(sc, entry);
1149 		athn_reset_key(sc, entry + 64);
1150 		break;
1151 	default:
1152 		/* Fallback to software crypto for other ciphers. */
1153 		ieee80211_delete_key(ic, ni, k);
1154 	}
1155 }
1156 #endif /* notyet */
1157 
1158 PUBLIC void
1159 athn_led_init(struct athn_softc *sc)
1160 {
1161 	struct athn_ops *ops = &sc->sc_ops;
1162 
1163 	ops->gpio_config_output(sc, sc->sc_led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1164 	/* LED off, active low. */
1165 	athn_set_led(sc, 0);
1166 }
1167 
1168 PUBLIC void
1169 athn_set_led(struct athn_softc *sc, int on)
1170 {
1171 	struct athn_ops *ops = &sc->sc_ops;
1172 
1173 	sc->sc_led_state = on;
1174 	ops->gpio_write(sc, sc->sc_led_pin, !sc->sc_led_state);
1175 }
1176 
1177 #ifdef ATHN_BT_COEXISTENCE
1178 Static void
1179 athn_btcoex_init(struct athn_softc *sc)
1180 {
1181 	struct athn_ops *ops = &sc->sc_ops;
1182 	uint32_t reg;
1183 
1184 	if (sc->sc_flags & ATHN_FLAG_BTCOEX2WIRE) {
1185 		/* Connect bt_active to baseband. */
1186 		AR_CLRBITS(sc, sc->sc_gpio_input_en_off,
1187 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
1188 		    AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF);
1189 		AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1190 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1191 
1192 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1193 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1194 		    AR_GPIO_BTACTIVE_PIN);
1195 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1196 		AR_WRITE_BARRIER(sc);
1197 
1198 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1199 	} else {	/* 3-wire. */
1200 		AR_SETBITS(sc, sc->sc_gpio_input_en_off,
1201 		    AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
1202 		    AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
1203 
1204 		reg = AR_READ(sc, AR_GPIO_INPUT_MUX1);
1205 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_ACTIVE,
1206 		    AR_GPIO_BTACTIVE_PIN);
1207 		reg = RW(reg, AR_GPIO_INPUT_MUX1_BT_PRIORITY,
1208 		    AR_GPIO_BTPRIORITY_PIN);
1209 		AR_WRITE(sc, AR_GPIO_INPUT_MUX1, reg);
1210 		AR_WRITE_BARRIER(sc);
1211 
1212 		ops->gpio_config_input(sc, AR_GPIO_BTACTIVE_PIN);
1213 		ops->gpio_config_input(sc, AR_GPIO_BTPRIORITY_PIN);
1214 	}
1215 }
1216 
1217 Static void
1218 athn_btcoex_enable(struct athn_softc *sc)
1219 {
1220 	struct athn_ops *ops = &sc->sc_ops;
1221 	uint32_t reg;
1222 
1223 	if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1224 		AR_WRITE(sc, AR_BT_COEX_MODE,
1225 		    SM(AR_BT_MODE, AR_BT_MODE_SLOTTED) |
1226 		    SM(AR_BT_PRIORITY_TIME, 2) |
1227 		    SM(AR_BT_FIRST_SLOT_TIME, 5) |
1228 		    SM(AR_BT_QCU_THRESH, ATHN_QID_AC_BE) |
1229 		    AR_BT_TXSTATE_EXTEND | AR_BT_TX_FRAME_EXTEND |
1230 		    AR_BT_QUIET | AR_BT_RX_CLEAR_POLARITY);
1231 		AR_WRITE(sc, AR_BT_COEX_WEIGHT,
1232 		    SM(AR_BTCOEX_BT_WGHT, AR_STOMP_LOW_BT_WGHT) |
1233 		    SM(AR_BTCOEX_WL_WGHT, AR_STOMP_LOW_WL_WGHT));
1234 		AR_WRITE(sc, AR_BT_COEX_MODE2,
1235 		    SM(AR_BT_BCN_MISS_THRESH, 50) |
1236 		    AR_BT_HOLD_RX_CLEAR | AR_BT_DISABLE_BT_ANT);
1237 
1238 		AR_SETBITS(sc, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE);
1239 		AR_CLRBITS(sc, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX);
1240 		AR_WRITE_BARRIER(sc);
1241 
1242 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1243 		    AR_GPIO_OUTPUT_MUX_AS_RX_CLEAR_EXTERNAL);
1244 
1245 	} else {	/* 2-wire. */
1246 		ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1247 		    AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
1248 	}
1249 	reg = AR_READ(sc, AR_GPIO_PDPU);
1250 	reg &= ~(0x3 << (AR_GPIO_WLANACTIVE_PIN * 2));
1251 	reg |= 0x2 << (AR_GPIO_WLANACTIVE_PIN * 2);
1252 	AR_WRITE(sc, AR_GPIO_PDPU, reg);
1253 	AR_WRITE_BARRIER(sc);
1254 
1255 	/* Disable PCIe Active State Power Management (ASPM). */
1256 	if (sc->sc_disable_aspm != NULL)
1257 		sc->sc_disable_aspm(sc);
1258 
1259 	/* XXX Start periodic timer. */
1260 }
1261 
1262 Static void
1263 athn_btcoex_disable(struct athn_softc *sc)
1264 {
1265 	struct athn_ops *ops = &sc->sc_ops;
1266 
1267 	ops->gpio_write(sc, AR_GPIO_WLANACTIVE_PIN, 0);
1268 
1269 	ops->gpio_config_output(sc, AR_GPIO_WLANACTIVE_PIN,
1270 	    AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1271 
1272 	if (sc->sc_flags & ATHN_FLAG_BTCOEX3WIRE) {
1273 		AR_WRITE(sc, AR_BT_COEX_MODE,
1274 		    SM(AR_BT_MODE, AR_BT_MODE_DISABLED) | AR_BT_QUIET);
1275 		AR_WRITE(sc, AR_BT_COEX_WEIGHT, 0);
1276 		AR_WRITE(sc, AR_BT_COEX_MODE2, 0);
1277 		/* XXX Stop periodic timer. */
1278 	}
1279 	AR_WRITE_BARRIER(sc);
1280 	/* XXX Restore ASPM setting? */
1281 }
1282 #endif
1283 
1284 Static void
1285 athn_iter_func(void *arg, struct ieee80211_node *ni)
1286 {
1287 	struct athn_softc *sc = arg;
1288 	struct athn_node *an = (struct athn_node *)ni;
1289 
1290 	ieee80211_amrr_choose(&sc->sc_amrr, ni, &an->amn);
1291 }
1292 
1293 Static void
1294 athn_calib_to(void *arg)
1295 {
1296 	extern int ticks;
1297 	struct athn_softc *sc = arg;
1298 	struct athn_ops *ops = &sc->sc_ops;
1299 	struct ieee80211com *ic = &sc->sc_ic;
1300 	int s;
1301 
1302 	s = splnet();
1303 
1304 	/* Do periodic (every 4 minutes) PA calibration. */
1305 	if (AR_SREV_9285_11_OR_LATER(sc) &&
1306 	    !AR_SREV_9380_10_OR_LATER(sc) &&
1307 	    (ticks - (sc->sc_pa_calib_ticks + 240 * hz)) >= 0) {
1308 		sc->sc_pa_calib_ticks = ticks;
1309 		if (AR_SREV_9271(sc))
1310 			ar9271_pa_calib(sc);
1311 		else
1312 			ar9285_pa_calib(sc);
1313 	}
1314 
1315 	/* Do periodic (every 30 seconds) temperature compensation. */
1316 	if ((sc->sc_flags & ATHN_FLAG_OLPC) &&
1317 	    ticks >= sc->sc_olpc_ticks + 30 * hz) {
1318 		sc->sc_olpc_ticks = ticks;
1319 		ops->olpc_temp_compensation(sc);
1320 	}
1321 
1322 #ifdef notyet
1323 	/* XXX ANI. */
1324 	athn_ani_monitor(sc);
1325 
1326 	ops->next_calib(sc);
1327 #endif
1328 	if (ic->ic_fixed_rate == -1) {
1329 		if (ic->ic_opmode == IEEE80211_M_STA)
1330 			athn_iter_func(sc, ic->ic_bss);
1331 		else
1332 			ieee80211_iterate_nodes(&ic->ic_sta, athn_iter_func, sc);
1333 	}
1334 	callout_schedule(&sc->sc_calib_to, hz / 2);
1335 	splx(s);
1336 }
1337 
1338 Static int
1339 athn_init_calib(struct athn_softc *sc, struct ieee80211_channel *curchan,
1340     struct ieee80211_channel *extchan)
1341 {
1342 	struct athn_ops *ops = &sc->sc_ops;
1343 	int error;
1344 
1345 	if (AR_SREV_9380_10_OR_LATER(sc))
1346 		error = ar9003_init_calib(sc);
1347 	else if (AR_SREV_9285_10_OR_LATER(sc))
1348 		error = ar9285_init_calib(sc, curchan, extchan);
1349 	else
1350 		error = ar5416_init_calib(sc, curchan, extchan);
1351 	if (error != 0)
1352 		return error;
1353 
1354 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1355 		/* Do PA calibration. */
1356 		if (AR_SREV_9285_11_OR_LATER(sc)) {
1357 			extern int ticks;
1358 			sc->sc_pa_calib_ticks = ticks;
1359 			if (AR_SREV_9271(sc))
1360 				ar9271_pa_calib(sc);
1361 			else
1362 				ar9285_pa_calib(sc);
1363 		}
1364 		/* Do noisefloor calibration. */
1365 		ops->noisefloor_calib(sc);
1366 	}
1367 	if (AR_SREV_9160_10_OR_LATER(sc)) {
1368 		/* Support IQ calibration. */
1369 		sc->sc_sup_calib_mask = ATHN_CAL_IQ;
1370 		if (AR_SREV_9380_10_OR_LATER(sc)) {
1371 			/* Support temperature compensation calibration. */
1372 			sc->sc_sup_calib_mask |= ATHN_CAL_TEMP;
1373 		} else if (IEEE80211_IS_CHAN_5GHZ(curchan) || extchan != NULL) {
1374 			/*
1375 			 * ADC gain calibration causes uplink throughput
1376 			 * drops in HT40 mode on AR9287.
1377 			 */
1378 			if (!AR_SREV_9287(sc)) {
1379 				/* Support ADC gain calibration. */
1380 				sc->sc_sup_calib_mask |= ATHN_CAL_ADC_GAIN;
1381 			}
1382 			/* Support ADC DC offset calibration. */
1383 			sc->sc_sup_calib_mask |= ATHN_CAL_ADC_DC;
1384 		}
1385 	}
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Adaptive noise immunity.
1391  */
1392 #ifdef notyet
1393 Static int32_t
1394 athn_ani_get_rssi(struct athn_softc *sc)
1395 {
1396 
1397 	return 0;	/* XXX */
1398 }
1399 #endif /* notyet */
1400 
1401 #ifdef notyet
1402 Static void
1403 athn_ani_ofdm_err_trigger(struct athn_softc *sc)
1404 {
1405 	struct athn_ani *ani = &sc->sc_ani;
1406 	struct athn_ops *ops = &sc->sc_ops;
1407 	int32_t rssi;
1408 
1409 	/* First, raise noise immunity level, up to max. */
1410 	if (ani->noise_immunity_level < 4) {
1411 		ani->noise_immunity_level++;
1412 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1413 		return;
1414 	}
1415 
1416 	/* Then, raise our spur immunity level, up to max. */
1417 	if (ani->spur_immunity_level < 7) {
1418 		ani->spur_immunity_level++;
1419 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1420 		return;
1421 	}
1422 
1423 #ifndef IEEE80211_STA_ONLY
1424 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1425 		if (ani->firstep_level < 2) {
1426 			ani->firstep_level++;
1427 			ops->set_firstep_level(sc, ani->firstep_level);
1428 		}
1429 		return;
1430 	}
1431 #endif
1432 	rssi = athn_ani_get_rssi(sc);
1433 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1434 		/*
1435 		 * Beacon RSSI is high, turn off OFDM weak signal detection
1436 		 * or raise first step level as last resort.
1437 		 */
1438 		if (ani->ofdm_weak_signal) {
1439 			ani->ofdm_weak_signal = 0;
1440 			ops->disable_ofdm_weak_signal(sc);
1441 			ani->spur_immunity_level = 0;
1442 			ops->set_spur_immunity_level(sc, 0);
1443 		} else if (ani->firstep_level < 2) {
1444 			ani->firstep_level++;
1445 			ops->set_firstep_level(sc, ani->firstep_level);
1446 		}
1447 	} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1448 		/*
1449 		 * Beacon RSSI is in mid range, we need OFDM weak signal
1450 		 * detection but we can raise first step level.
1451 		 */
1452 		if (!ani->ofdm_weak_signal) {
1453 			ani->ofdm_weak_signal = 1;
1454 			ops->enable_ofdm_weak_signal(sc);
1455 		}
1456 		if (ani->firstep_level < 2) {
1457 			ani->firstep_level++;
1458 			ops->set_firstep_level(sc, ani->firstep_level);
1459 		}
1460 	} else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1461 		/*
1462 		 * Beacon RSSI is low, if in b/g mode, turn off OFDM weak
1463 		 * signal detection and zero first step level to maximize
1464 		 * CCK sensitivity.
1465 		 */
1466 		if (ani->ofdm_weak_signal) {
1467 			ani->ofdm_weak_signal = 0;
1468 			ops->disable_ofdm_weak_signal(sc);
1469 		}
1470 		if (ani->firstep_level > 0) {
1471 			ani->firstep_level = 0;
1472 			ops->set_firstep_level(sc, 0);
1473 		}
1474 	}
1475 }
1476 #endif /* notyet */
1477 
1478 #ifdef notyet
1479 Static void
1480 athn_ani_cck_err_trigger(struct athn_softc *sc)
1481 {
1482 	struct athn_ani *ani = &sc->sc_ani;
1483 	struct athn_ops *ops = &sc->sc_ops;
1484 	int32_t rssi;
1485 
1486 	/* Raise noise immunity level, up to max. */
1487 	if (ani->noise_immunity_level < 4) {
1488 		ani->noise_immunity_level++;
1489 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1490 		return;
1491 	}
1492 
1493 #ifndef IEEE80211_STA_ONLY
1494 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1495 		if (ani->firstep_level < 2) {
1496 			ani->firstep_level++;
1497 			ops->set_firstep_level(sc, ani->firstep_level);
1498 		}
1499 		return;
1500 	}
1501 #endif
1502 	rssi = athn_ani_get_rssi(sc);
1503 	if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1504 		/*
1505 		 * Beacon RSSI is in mid or high range, raise first step
1506 		 * level.
1507 		 */
1508 		if (ani->firstep_level < 2) {
1509 			ani->firstep_level++;
1510 			ops->set_firstep_level(sc, ani->firstep_level);
1511 		}
1512 	} else if (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) {
1513 		/*
1514 		 * Beacon RSSI is low, zero first step level to maximize
1515 		 * CCK sensitivity.
1516 		 */
1517 		if (ani->firstep_level > 0) {
1518 			ani->firstep_level = 0;
1519 			ops->set_firstep_level(sc, 0);
1520 		}
1521 	}
1522 }
1523 #endif /* notyet */
1524 
1525 #ifdef notyet
1526 Static void
1527 athn_ani_lower_immunity(struct athn_softc *sc)
1528 {
1529 	struct athn_ani *ani = &sc->sc_ani;
1530 	struct athn_ops *ops = &sc->sc_ops;
1531 	int32_t rssi;
1532 
1533 #ifndef IEEE80211_STA_ONLY
1534 	if (sc->sc_ic.ic_opmode == IEEE80211_M_HOSTAP) {
1535 		if (ani->firstep_level > 0) {
1536 			ani->firstep_level--;
1537 			ops->set_firstep_level(sc, ani->firstep_level);
1538 		}
1539 		return;
1540 	}
1541 #endif
1542 	rssi = athn_ani_get_rssi(sc);
1543 	if (rssi > ATHN_ANI_RSSI_THR_HIGH) {
1544 		/*
1545 		 * Beacon RSSI is high, leave OFDM weak signal detection
1546 		 * off or it may oscillate.
1547 		 */
1548 	} else if (rssi > ATHN_ANI_RSSI_THR_LOW) {
1549 		/*
1550 		 * Beacon RSSI is in mid range, turn on OFDM weak signal
1551 		 * detection or lower first step level.
1552 		 */
1553 		if (!ani->ofdm_weak_signal) {
1554 			ani->ofdm_weak_signal = 1;
1555 			ops->enable_ofdm_weak_signal(sc);
1556 			return;
1557 		}
1558 		if (ani->firstep_level > 0) {
1559 			ani->firstep_level--;
1560 			ops->set_firstep_level(sc, ani->firstep_level);
1561 			return;
1562 		}
1563 	} else {
1564 		/* Beacon RSSI is low, lower first step level. */
1565 		if (ani->firstep_level > 0) {
1566 			ani->firstep_level--;
1567 			ops->set_firstep_level(sc, ani->firstep_level);
1568 			return;
1569 		}
1570 	}
1571 	/*
1572 	 * Lower spur immunity level down to zero, or if all else fails,
1573 	 * lower noise immunity level down to zero.
1574 	 */
1575 	if (ani->spur_immunity_level > 0) {
1576 		ani->spur_immunity_level--;
1577 		ops->set_spur_immunity_level(sc, ani->spur_immunity_level);
1578 	} else if (ani->noise_immunity_level > 0) {
1579 		ani->noise_immunity_level--;
1580 		ops->set_noise_immunity_level(sc, ani->noise_immunity_level);
1581 	}
1582 }
1583 #endif /* notyet */
1584 
1585 #ifdef notyet
1586 Static void
1587 athn_ani_restart(struct athn_softc *sc)
1588 {
1589 	struct athn_ani *ani = &sc->sc_ani;
1590 
1591 	AR_WRITE(sc, AR_PHY_ERR_1, 0);
1592 	AR_WRITE(sc, AR_PHY_ERR_2, 0);
1593 	AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1594 	AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1595 	AR_WRITE_BARRIER(sc);
1596 
1597 	ani->listen_time = 0;
1598 	ani->ofdm_phy_err_count = 0;
1599 	ani->cck_phy_err_count = 0;
1600 }
1601 #endif /* notyet */
1602 
1603 #ifdef notyet
1604 Static void
1605 athn_ani_monitor(struct athn_softc *sc)
1606 {
1607 	struct athn_ani *ani = &sc->sc_ani;
1608 	uint32_t cyccnt, txfcnt, rxfcnt, phy1, phy2;
1609 	int32_t cycdelta, txfdelta, rxfdelta;
1610 	int32_t listen_time;
1611 
1612 	txfcnt = AR_READ(sc, AR_TFCNT);	/* Tx frame count. */
1613 	rxfcnt = AR_READ(sc, AR_RFCNT);	/* Rx frame count. */
1614 	cyccnt = AR_READ(sc, AR_CCCNT);	/* Cycle count. */
1615 
1616 	if (ani->cyccnt != 0 && ani->cyccnt <= cyccnt) {
1617 		cycdelta = cyccnt - ani->cyccnt;
1618 		txfdelta = txfcnt - ani->txfcnt;
1619 		rxfdelta = rxfcnt - ani->rxfcnt;
1620 
1621 		listen_time = (cycdelta - txfdelta - rxfdelta) /
1622 		    (athn_clock_rate(sc) * 1000);
1623 	} else
1624 		listen_time = 0;
1625 
1626 	ani->cyccnt = cyccnt;
1627 	ani->txfcnt = txfcnt;
1628 	ani->rxfcnt = rxfcnt;
1629 
1630 	if (listen_time < 0) {
1631 		athn_ani_restart(sc);
1632 		return;
1633 	}
1634 	ani->listen_time += listen_time;
1635 
1636 	phy1 = AR_READ(sc, AR_PHY_ERR_1);
1637 	phy2 = AR_READ(sc, AR_PHY_ERR_2);
1638 
1639 	if (phy1 < ani->ofdm_phy_err_base) {
1640 		AR_WRITE(sc, AR_PHY_ERR_1, ani->ofdm_phy_err_base);
1641 		AR_WRITE(sc, AR_PHY_ERR_MASK_1, AR_PHY_ERR_OFDM_TIMING);
1642 	}
1643 	if (phy2 < ani->cck_phy_err_base) {
1644 		AR_WRITE(sc, AR_PHY_ERR_2, ani->cck_phy_err_base);
1645 		AR_WRITE(sc, AR_PHY_ERR_MASK_2, AR_PHY_ERR_CCK_TIMING);
1646 	}
1647 	if (phy1 < ani->ofdm_phy_err_base || phy2 < ani->cck_phy_err_base) {
1648 		AR_WRITE_BARRIER(sc);
1649 		return;
1650 	}
1651 	ani->ofdm_phy_err_count = phy1 - ani->ofdm_phy_err_base;
1652 	ani->cck_phy_err_count = phy2 - ani->cck_phy_err_base;
1653 
1654 	if (ani->listen_time > 5 * ATHN_ANI_PERIOD) {
1655 		/* Check to see if we need to lower immunity. */
1656 		if (ani->ofdm_phy_err_count <=
1657 		    ani->listen_time * ani->ofdm_trig_low / 1000 &&
1658 		    ani->cck_phy_err_count <=
1659 		    ani->listen_time * ani->cck_trig_low / 1000)
1660 			athn_ani_lower_immunity(sc);
1661 		athn_ani_restart(sc);
1662 
1663 	} else if (ani->listen_time > ATHN_ANI_PERIOD) {
1664 		/* Check to see if we need to raise immunity. */
1665 		if (ani->ofdm_phy_err_count >
1666 		    ani->listen_time * ani->ofdm_trig_high / 1000) {
1667 			athn_ani_ofdm_err_trigger(sc);
1668 			athn_ani_restart(sc);
1669 		} else if (ani->cck_phy_err_count >
1670 		    ani->listen_time * ani->cck_trig_high / 1000) {
1671 			athn_ani_cck_err_trigger(sc);
1672 			athn_ani_restart(sc);
1673 		}
1674 	}
1675 }
1676 #endif /* notyet */
1677 
1678 PUBLIC uint8_t
1679 athn_chan2fbin(struct ieee80211_channel *c)
1680 {
1681 
1682 	if (IEEE80211_IS_CHAN_2GHZ(c))
1683 		return c->ic_freq - 2300;
1684 	else
1685 		return (c->ic_freq - 4800) / 5;
1686 }
1687 
1688 PUBLIC int
1689 athn_interpolate(int x, int x1, int y1, int x2, int y2)
1690 {
1691 
1692 	if (x1 == x2)	/* Prevents division by zero. */
1693 		return y1;
1694 	/* Linear interpolation. */
1695 	return y1 + ((x - x1) * (y2 - y1)) / (x2 - x1);
1696 }
1697 
1698 PUBLIC void
1699 athn_get_pier_ival(uint8_t fbin, const uint8_t *pierfreq, int npiers,
1700     int *lo, int *hi)
1701 {
1702 	int i;
1703 
1704 	for (i = 0; i < npiers; i++)
1705 		if (pierfreq[i] == AR_BCHAN_UNUSED ||
1706 		    pierfreq[i] > fbin)
1707 			break;
1708 	*hi = i;
1709 	*lo = *hi - 1;
1710 	if (*lo == -1)
1711 		*lo = *hi;
1712 	else if (*hi == npiers || pierfreq[*hi] == AR_BCHAN_UNUSED)
1713 		*hi = *lo;
1714 }
1715 
1716 Static void
1717 athn_init_dma(struct athn_softc *sc)
1718 {
1719 	uint32_t reg;
1720 
1721 	if (!AR_SREV_9380_10_OR_LATER(sc)) {
1722 		/* Set AHB not to do cacheline prefetches. */
1723 		AR_SETBITS(sc, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1724 	}
1725 	reg = AR_READ(sc, AR_TXCFG);
1726 	/* Let MAC DMA reads be in 128-byte chunks. */
1727 	reg = RW(reg, AR_TXCFG_DMASZ, AR_DMASZ_128B);
1728 
1729 	/* Set initial Tx trigger level. */
1730 	if (AR_SREV_9285(sc) || AR_SREV_9271(sc))
1731 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_256B);
1732 	else if (!AR_SREV_9380_10_OR_LATER(sc))
1733 		reg = RW(reg, AR_TXCFG_FTRIG, AR_TXCFG_FTRIG_512B);
1734 	AR_WRITE(sc, AR_TXCFG, reg);
1735 
1736 	/* Let MAC DMA writes be in 128-byte chunks. */
1737 	reg = AR_READ(sc, AR_RXCFG);
1738 	reg = RW(reg, AR_RXCFG_DMASZ, AR_DMASZ_128B);
1739 	AR_WRITE(sc, AR_RXCFG, reg);
1740 
1741 	/* Setup Rx FIFO threshold to hold off Tx activities. */
1742 	AR_WRITE(sc, AR_RXFIFO_CFG, 512);
1743 
1744 	/* Reduce the number of entries in PCU TXBUF to avoid wrap around. */
1745 	if (AR_SREV_9285(sc)) {
1746 		AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1747 		    AR9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1748 	} else if (!AR_SREV_9271(sc)) {
1749 		AR_WRITE(sc, AR_PCU_TXBUF_CTRL,
1750 		    AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1751 	}
1752 	AR_WRITE_BARRIER(sc);
1753 
1754 	/* Reset Tx status ring. */
1755 	if (AR_SREV_9380_10_OR_LATER(sc))
1756 		ar9003_reset_txsring(sc);
1757 }
1758 
1759 PUBLIC void
1760 athn_inc_tx_trigger_level(struct athn_softc *sc)
1761 {
1762 	uint32_t reg, ftrig;
1763 
1764 	reg = AR_READ(sc, AR_TXCFG);
1765 	ftrig = MS(reg, AR_TXCFG_FTRIG);
1766 	/*
1767 	 * NB: The AR9285 and all single-stream parts have an issue that
1768 	 * limits the size of the PCU Tx FIFO to 2KB instead of 4KB.
1769 	 */
1770 	if (ftrig == ((AR_SREV_9285(sc) || AR_SREV_9271(sc)) ? 0x1f : 0x3f))
1771 		return;		/* Already at max. */
1772 	reg = RW(reg, AR_TXCFG_FTRIG, ftrig + 1);
1773 	AR_WRITE(sc, AR_TXCFG, reg);
1774 	AR_WRITE_BARRIER(sc);
1775 }
1776 
1777 PUBLIC int
1778 athn_stop_rx_dma(struct athn_softc *sc)
1779 {
1780 	int ntries;
1781 
1782 	AR_WRITE(sc, AR_CR, AR_CR_RXD);
1783 	/* Wait for Rx enable bit to go low. */
1784 	for (ntries = 0; ntries < 100; ntries++) {
1785 		if (!(AR_READ(sc, AR_CR) & AR_CR_RXE))
1786 			return 0;
1787 		DELAY(100);
1788 	}
1789 	DPRINTFN(DBG_RX, sc, "Rx DMA failed to stop\n");
1790 	return ETIMEDOUT;
1791 }
1792 
1793 #ifdef unused
1794 Static int
1795 athn_rx_abort(struct athn_softc *sc)
1796 {
1797 	int ntries;
1798 
1799 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1800 	for (ntries = 0; ntries < 1000; ntries++) {
1801 		if (MS(AR_READ(sc, AR_OBS_BUS_1), AR_OBS_BUS_1_RX_STATE) == 0)
1802 			return 0;
1803 		DELAY(10);
1804 	}
1805 	DPRINTFN(DBG_RX, sc, "Rx failed to go idle in 10ms\n");
1806 	AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
1807 	AR_WRITE_BARRIER(sc);
1808 	return ETIMEDOUT;
1809 }
1810 #endif /* unused */
1811 
1812 Static void
1813 athn_tx_reclaim(struct athn_softc *sc, int qid)
1814 {
1815 	struct athn_txq *txq = &sc->sc_txq[qid];
1816 	struct athn_tx_buf *bf;
1817 
1818 	/* Reclaim all buffers queued in the specified Tx queue. */
1819 	/* NB: Tx DMA must be stopped. */
1820 	while ((bf = SIMPLEQ_FIRST(&txq->head)) != NULL) {
1821 		SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1822 
1823 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1824 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1825 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1826 		m_freem(bf->bf_m);
1827 		bf->bf_m = NULL;
1828 		bf->bf_ni = NULL;	/* Nodes already freed! */
1829 
1830 		/* Link Tx buffer back to global free list. */
1831 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1832 	}
1833 }
1834 
1835 PUBLIC int
1836 athn_tx_pending(struct athn_softc *sc, int qid)
1837 {
1838 
1839 	return MS(AR_READ(sc, AR_QSTS(qid)), AR_Q_STS_PEND_FR_CNT) != 0 ||
1840 	    (AR_READ(sc, AR_Q_TXE) & (1 << qid)) != 0;
1841 }
1842 
1843 PUBLIC void
1844 athn_stop_tx_dma(struct athn_softc *sc, int qid)
1845 {
1846 	uint32_t tsflo;
1847 	int ntries, i;
1848 
1849 	AR_WRITE(sc, AR_Q_TXD, 1 << qid);
1850 	for (ntries = 0; ntries < 40; ntries++) {
1851 		if (!athn_tx_pending(sc, qid))
1852 			break;
1853 		DELAY(100);
1854 	}
1855 	if (ntries == 40) {
1856 		for (i = 0; i < 2; i++) {
1857 			tsflo = AR_READ(sc, AR_TSF_L32) / 1024;
1858 			AR_WRITE(sc, AR_QUIET2,
1859 			    SM(AR_QUIET2_QUIET_DUR, 10));
1860 			AR_WRITE(sc, AR_QUIET_PERIOD, 100);
1861 			AR_WRITE(sc, AR_NEXT_QUIET_TIMER, tsflo);
1862 			AR_SETBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1863 			if (AR_READ(sc, AR_TSF_L32) / 1024 == tsflo)
1864 				break;
1865 		}
1866 		AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1867 		AR_WRITE_BARRIER(sc);
1868 		DELAY(200);
1869 		AR_CLRBITS(sc, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
1870 		AR_WRITE_BARRIER(sc);
1871 
1872 		for (ntries = 0; ntries < 40; ntries++) {
1873 			if (!athn_tx_pending(sc, qid))
1874 				break;
1875 			DELAY(100);
1876 		}
1877 
1878 		AR_CLRBITS(sc, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
1879 	}
1880 	AR_WRITE(sc, AR_Q_TXD, 0);
1881 	AR_WRITE_BARRIER(sc);
1882 }
1883 
1884 PUBLIC int
1885 athn_txtime(struct athn_softc *sc, int len, int ridx, u_int flags)
1886 {
1887 #define divround(a, b)	(((a) + (b) - 1) / (b))
1888 	int txtime;
1889 
1890 	/* XXX HT. */
1891 	if (athn_rates[ridx].phy == IEEE80211_T_OFDM) {
1892 		txtime = divround(8 + 4 * len + 3, athn_rates[ridx].rate);
1893 		/* SIFS is 10us for 11g but Signal Extension adds 6us. */
1894 		txtime = 16 + 4 + 4 * txtime + 16;
1895 	} else {
1896 		txtime = divround(16 * len, athn_rates[ridx].rate);
1897 		if (ridx != ATHN_RIDX_CCK1 && (flags & IEEE80211_F_SHPREAMBLE))
1898 			txtime +=  72 + 24;
1899 		else
1900 			txtime += 144 + 48;
1901 		txtime += 10;	/* 10us SIFS. */
1902 	}
1903 	return txtime;
1904 #undef divround
1905 }
1906 
1907 PUBLIC void
1908 athn_init_tx_queues(struct athn_softc *sc)
1909 {
1910 	int qid;
1911 
1912 	for (qid = 0; qid < ATHN_QID_COUNT; qid++) {
1913 		SIMPLEQ_INIT(&sc->sc_txq[qid].head);
1914 		sc->sc_txq[qid].lastds = NULL;
1915 		sc->sc_txq[qid].wait = NULL;
1916 		sc->sc_txq[qid].queued = 0;
1917 
1918 		AR_WRITE(sc, AR_DRETRY_LIMIT(qid),
1919 		    SM(AR_D_RETRY_LIMIT_STA_SH, 32) |
1920 		    SM(AR_D_RETRY_LIMIT_STA_LG, 32) |
1921 		    SM(AR_D_RETRY_LIMIT_FR_SH, 10));
1922 		AR_WRITE(sc, AR_QMISC(qid),
1923 		    AR_Q_MISC_DCU_EARLY_TERM_REQ);
1924 		AR_WRITE(sc, AR_DMISC(qid),
1925 		    SM(AR_D_MISC_BKOFF_THRESH, 2) |
1926 		    AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN);
1927 	}
1928 
1929 	/* Init beacon queue. */
1930 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_BEACON),
1931 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE |
1932 	    AR_Q_MISC_CBR_INCR_DIS1);
1933 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_BEACON),
1934 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1935 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL) |
1936 	    AR_D_MISC_BEACON_USE |
1937 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1938 	AR_WRITE(sc, AR_DLCL_IFS(ATHN_QID_BEACON),
1939 	    SM(AR_D_LCL_IFS_CWMIN, 0) |
1940 	    SM(AR_D_LCL_IFS_CWMAX, 0) |
1941 	    SM(AR_D_LCL_IFS_AIFS,  1));
1942 
1943 	/* Init CAB (Content After Beacon) queue. */
1944 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_CAB),
1945 	    AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 |
1946 	    AR_Q_MISC_CBR_INCR_DIS0);
1947 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_CAB),
1948 	    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL,
1949 	       AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL));
1950 
1951 	/* Init PS-Poll queue. */
1952 	AR_SETBITS(sc, AR_QMISC(ATHN_QID_PSPOLL),
1953 	    AR_Q_MISC_CBR_INCR_DIS1);
1954 
1955 	/* Init UAPSD queue. */
1956 	AR_SETBITS(sc, AR_DMISC(ATHN_QID_UAPSD),
1957 	    AR_D_MISC_POST_FR_BKOFF_DIS);
1958 
1959 	if (AR_SREV_9380_10_OR_LATER(sc)) {
1960 		/* Enable MAC descriptor CRC check. */
1961 		AR_WRITE(sc, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
1962 	}
1963 	/* Enable DESC interrupts for all Tx queues. */
1964 	AR_WRITE(sc, AR_IMR_S0, 0x00ff0000);
1965 	/* Enable EOL interrupts for all Tx queues except UAPSD. */
1966 	AR_WRITE(sc, AR_IMR_S1, 0x00df0000);
1967 	AR_WRITE_BARRIER(sc);
1968 }
1969 
1970 PUBLIC void
1971 athn_set_sta_timers(struct athn_softc *sc)
1972 {
1973 	struct ieee80211com *ic = &sc->sc_ic;
1974 	uint32_t tsfhi, tsflo, tsftu, reg;
1975 	uint32_t intval, next_tbtt, next_dtim;
1976 	int dtim_period, rem_dtim_count;
1977 
1978 	tsfhi = AR_READ(sc, AR_TSF_U32);
1979 	tsflo = AR_READ(sc, AR_TSF_L32);
1980 	tsftu = AR_TSF_TO_TU(tsfhi, tsflo) + AR_FUDGE;
1981 
1982 	/* Beacon interval in TU. */
1983 	intval = ic->ic_bss->ni_intval;
1984 
1985 	next_tbtt = roundup(tsftu, intval);
1986 #ifdef notyet
1987 	dtim_period = ic->ic_dtim_period;
1988 	if (dtim_period <= 0)
1989 #endif
1990 		dtim_period = 1;	/* Assume all TIMs are DTIMs. */
1991 
1992 #ifdef notyet
1993 	int dtim_count = ic->ic_dtim_count;
1994 	if (dtim_count >= dtim_period)	/* Should not happen. */
1995 		dtim_count = 0;	/* Assume last TIM was a DTIM. */
1996 #endif
1997 
1998 	/* Compute number of remaining TIMs until next DTIM. */
1999 	rem_dtim_count = 0;	/* XXX */
2000 	next_dtim = next_tbtt + rem_dtim_count * intval;
2001 
2002 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2003 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2004 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2005 
2006 	/*
2007 	 * Set the number of consecutive beacons to miss before raising
2008 	 * a BMISS interrupt to 10.
2009 	 */
2010 	reg = AR_READ(sc, AR_RSSI_THR);
2011 	reg = RW(reg, AR_RSSI_THR_BM_THR, 10);
2012 	AR_WRITE(sc, AR_RSSI_THR, reg);
2013 
2014 	AR_WRITE(sc, AR_NEXT_DTIM,
2015 	    (next_dtim - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2016 	AR_WRITE(sc, AR_NEXT_TIM,
2017 	    (next_tbtt - AR_SLEEP_SLOP) * IEEE80211_DUR_TU);
2018 
2019 	/* CAB timeout is in 1/8 TU. */
2020 	AR_WRITE(sc, AR_SLEEP1,
2021 	    SM(AR_SLEEP1_CAB_TIMEOUT, AR_CAB_TIMEOUT_VAL * 8) |
2022 	    AR_SLEEP1_ASSUME_DTIM);
2023 	AR_WRITE(sc, AR_SLEEP2,
2024 	    SM(AR_SLEEP2_BEACON_TIMEOUT, AR_MIN_BEACON_TIMEOUT_VAL));
2025 
2026 	AR_WRITE(sc, AR_TIM_PERIOD, intval * IEEE80211_DUR_TU);
2027 	AR_WRITE(sc, AR_DTIM_PERIOD, dtim_period * intval * IEEE80211_DUR_TU);
2028 
2029 	AR_SETBITS(sc, AR_TIMER_MODE,
2030 	    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN);
2031 
2032 	/* Set TSF out-of-range threshold (fixed at 16k us). */
2033 	AR_WRITE(sc, AR_TSFOOR_THRESHOLD, 0x4240);
2034 
2035 	AR_WRITE_BARRIER(sc);
2036 }
2037 
2038 #ifndef IEEE80211_STA_ONLY
2039 PUBLIC void
2040 athn_set_hostap_timers(struct athn_softc *sc)
2041 {
2042 	struct ieee80211com *ic = &sc->sc_ic;
2043 	uint32_t intval, next_tbtt;
2044 
2045 	/* Beacon interval in TU. */
2046 	intval = ic->ic_bss->ni_intval;
2047 	next_tbtt = intval;
2048 
2049 	AR_WRITE(sc, AR_NEXT_TBTT_TIMER, next_tbtt * IEEE80211_DUR_TU);
2050 	AR_WRITE(sc, AR_NEXT_DMA_BEACON_ALERT,
2051 	    (next_tbtt - AR_BEACON_DMA_DELAY) * IEEE80211_DUR_TU);
2052 	AR_WRITE(sc, AR_NEXT_CFP,
2053 	    (next_tbtt - AR_SWBA_DELAY) * IEEE80211_DUR_TU);
2054 
2055 	AR_WRITE(sc, AR_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2056 	AR_WRITE(sc, AR_DMA_BEACON_PERIOD, intval * IEEE80211_DUR_TU);
2057 	AR_WRITE(sc, AR_SWBA_PERIOD, intval * IEEE80211_DUR_TU);
2058 	AR_WRITE(sc, AR_NDP_PERIOD, intval * IEEE80211_DUR_TU);
2059 
2060 	AR_WRITE(sc, AR_TIMER_MODE,
2061 	    AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN);
2062 
2063 	AR_WRITE_BARRIER(sc);
2064 }
2065 #endif
2066 
2067 PUBLIC void
2068 athn_set_opmode(struct athn_softc *sc)
2069 {
2070 	uint32_t reg;
2071 
2072 	switch (sc->sc_ic.ic_opmode) {
2073 #ifndef IEEE80211_STA_ONLY
2074 	case IEEE80211_M_HOSTAP:
2075 		reg = AR_READ(sc, AR_STA_ID1);
2076 		reg &= ~AR_STA_ID1_ADHOC;
2077 		reg |= AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE;
2078 		AR_WRITE(sc, AR_STA_ID1, reg);
2079 
2080 		AR_CLRBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2081 		break;
2082 	case IEEE80211_M_IBSS:
2083 	case IEEE80211_M_AHDEMO:
2084 		reg = AR_READ(sc, AR_STA_ID1);
2085 		reg &= ~AR_STA_ID1_STA_AP;
2086 		reg |= AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE;
2087 		AR_WRITE(sc, AR_STA_ID1, reg);
2088 
2089 		AR_SETBITS(sc, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
2090 		break;
2091 #endif
2092 	default:
2093 		reg = AR_READ(sc, AR_STA_ID1);
2094 		reg &= ~(AR_STA_ID1_ADHOC | AR_STA_ID1_STA_AP);
2095 		reg |= AR_STA_ID1_KSRCH_MODE;
2096 		AR_WRITE(sc, AR_STA_ID1, reg);
2097 		break;
2098 	}
2099 	AR_WRITE_BARRIER(sc);
2100 }
2101 
2102 PUBLIC void
2103 athn_set_bss(struct athn_softc *sc, struct ieee80211_node *ni)
2104 {
2105 	const uint8_t *bssid = ni->ni_bssid;
2106 
2107 	AR_WRITE(sc, AR_BSS_ID0, LE_READ_4(&bssid[0]));
2108 	AR_WRITE(sc, AR_BSS_ID1, LE_READ_2(&bssid[4]) |
2109 	    SM(AR_BSS_ID1_AID, IEEE80211_AID(ni->ni_associd)));
2110 	AR_WRITE_BARRIER(sc);
2111 }
2112 
2113 Static void
2114 athn_enable_interrupts(struct athn_softc *sc)
2115 {
2116 	uint32_t mask2;
2117 
2118 	athn_disable_interrupts(sc);	/* XXX */
2119 
2120 	AR_WRITE(sc, AR_IMR, sc->sc_imask);
2121 
2122 	mask2 = AR_READ(sc, AR_IMR_S2);
2123 	mask2 &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2124 	    AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR);
2125 	mask2 |= AR_IMR_S2_GTT | AR_IMR_S2_CST;
2126 	AR_WRITE(sc, AR_IMR_S2, mask2);
2127 
2128 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2129 
2130 	AR_WRITE(sc, AR_IER, AR_IER_ENABLE);
2131 
2132 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ);
2133 	AR_WRITE(sc, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2134 
2135 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2136 	AR_WRITE(sc, AR_INTR_SYNC_MASK, sc->sc_isync);
2137 	AR_WRITE_BARRIER(sc);
2138 }
2139 
2140 Static void
2141 athn_disable_interrupts(struct athn_softc *sc)
2142 {
2143 
2144 	AR_WRITE(sc, AR_IER, 0);
2145 	(void)AR_READ(sc, AR_IER);
2146 
2147 	AR_WRITE(sc, AR_INTR_ASYNC_ENABLE, 0);
2148 	(void)AR_READ(sc, AR_INTR_ASYNC_ENABLE);
2149 
2150 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, 0);
2151 	(void)AR_READ(sc, AR_INTR_SYNC_ENABLE);
2152 
2153 	AR_WRITE(sc, AR_IMR, 0);
2154 
2155 	AR_CLRBITS(sc, AR_IMR_S2, AR_IMR_S2_TIM | AR_IMR_S2_DTIM |
2156 	    AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2157 	    AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2158 
2159 	AR_CLRBITS(sc, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2160 	AR_WRITE_BARRIER(sc);
2161 }
2162 
2163 Static void
2164 athn_init_qos(struct athn_softc *sc)
2165 {
2166 
2167 	/* Initialize QoS settings. */
2168 	AR_WRITE(sc, AR_MIC_QOS_CONTROL, 0x100aa);
2169 	AR_WRITE(sc, AR_MIC_QOS_SELECT, 0x3210);
2170 	AR_WRITE(sc, AR_QOS_NO_ACK,
2171 	    SM(AR_QOS_NO_ACK_TWO_BIT, 2) |
2172 	    SM(AR_QOS_NO_ACK_BIT_OFF, 5) |
2173 	    SM(AR_QOS_NO_ACK_BYTE_OFF, 0));
2174 	AR_WRITE(sc, AR_TXOP_X, AR_TXOP_X_VAL);
2175 	/* Initialize TXOP for all TIDs. */
2176 	AR_WRITE(sc, AR_TXOP_0_3,   0xffffffff);
2177 	AR_WRITE(sc, AR_TXOP_4_7,   0xffffffff);
2178 	AR_WRITE(sc, AR_TXOP_8_11,  0xffffffff);
2179 	AR_WRITE(sc, AR_TXOP_12_15, 0xffffffff);
2180 	AR_WRITE_BARRIER(sc);
2181 }
2182 
2183 PUBLIC int
2184 athn_hw_reset(struct athn_softc *sc, struct ieee80211_channel *curchan,
2185     struct ieee80211_channel *extchan, int init)
2186 {
2187 	struct ieee80211com *ic = &sc->sc_ic;
2188 	struct athn_ops *ops = &sc->sc_ops;
2189 	uint32_t reg, def_ant, sta_id1, cfg_led, tsflo, tsfhi;
2190 	int i, error;
2191 
2192 	/* XXX not if already awake */
2193 	if ((error = athn_set_power_awake(sc)) != 0) {
2194 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2195 		return error;
2196 	}
2197 
2198 	/* Preserve the antenna on a channel switch. */
2199 	if ((def_ant = AR_READ(sc, AR_DEF_ANTENNA)) == 0)
2200 		def_ant = 1;
2201 	/* Preserve other registers. */
2202 	sta_id1 = AR_READ(sc, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2203 	cfg_led = AR_READ(sc, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL_M |
2204 	    AR_CFG_LED_MODE_SEL_M | AR_CFG_LED_BLINK_THRESH_SEL_M |
2205 	    AR_CFG_LED_BLINK_SLOW);
2206 
2207 	/* Mark PHY as inactive. */
2208 	ops->disable_phy(sc);
2209 
2210 	if (init && AR_SREV_9271(sc)) {
2211 		AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2212 		    AR9271_RADIO_RF_RST);
2213 		DELAY(50);
2214 	}
2215 	if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2216 		/* Save TSF before it gets cleared. */
2217 		tsfhi = AR_READ(sc, AR_TSF_U32);
2218 		tsflo = AR_READ(sc, AR_TSF_L32);
2219 
2220 		/* NB: RTC reset clears TSF. */
2221 		error = athn_reset_power_on(sc);
2222 	} else {
2223 		tsfhi = tsflo = 0;	/* XXX: gcc */
2224 		error = athn_reset(sc, 0);
2225 	}
2226 	if (error != 0) {
2227 		aprint_error_dev(sc->sc_dev,
2228 		    "could not reset chip (error=%d)\n", error);
2229 		return error;
2230 	}
2231 
2232 	/* XXX not if already awake */
2233 	if ((error = athn_set_power_awake(sc)) != 0) {
2234 		aprint_error_dev(sc->sc_dev, "could not wakeup chip\n");
2235 		return error;
2236 	}
2237 
2238 	athn_init_pll(sc, curchan);
2239 	ops->set_rf_mode(sc, curchan);
2240 
2241 	if (sc->sc_flags & ATHN_FLAG_RFSILENT) {
2242 		/* Check that the radio is not disabled by hardware switch. */
2243 		reg = ops->gpio_read(sc, sc->sc_rfsilent_pin);
2244 		if (sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)
2245 			reg = !reg;
2246 		if (!reg) {
2247 			aprint_error_dev(sc->sc_dev,
2248 			    "radio is disabled by hardware switch\n");
2249 			return EPERM;
2250 		}
2251 	}
2252 	if (init && AR_SREV_9271(sc)) {
2253 		AR_WRITE(sc, AR9271_RESET_POWER_DOWN_CONTROL,
2254 		    AR9271_GATE_MAC_CTL);
2255 		DELAY(50);
2256 	}
2257 	if (AR_SREV_9280(sc) && (sc->sc_flags & ATHN_FLAG_OLPC)) {
2258 		/* Restore TSF if it got cleared. */
2259 		AR_WRITE(sc, AR_TSF_L32, tsflo);
2260 		AR_WRITE(sc, AR_TSF_U32, tsfhi);
2261 	}
2262 
2263 	if (AR_SREV_9280_10_OR_LATER(sc))
2264 		AR_SETBITS(sc, sc->sc_gpio_input_en_off, AR_GPIO_JTAG_DISABLE);
2265 
2266 	if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2267 		ar9287_1_3_enable_async_fifo(sc);
2268 
2269 	/* Write init values to hardware. */
2270 	ops->hw_init(sc, curchan, extchan);
2271 
2272 	/*
2273 	 * Only >=AR9280 2.0 parts are capable of encrypting unicast
2274 	 * management frames using CCMP.
2275 	 */
2276 	if (AR_SREV_9280_20_OR_LATER(sc)) {
2277 		reg = AR_READ(sc, AR_AES_MUTE_MASK1);
2278 		/* Do not mask the subtype field in management frames. */
2279 		reg = RW(reg, AR_AES_MUTE_MASK1_FC0_MGMT, 0xff);
2280 		reg = RW(reg, AR_AES_MUTE_MASK1_FC1_MGMT,
2281 		    (uint32_t)~(IEEE80211_FC1_RETRY | IEEE80211_FC1_PWR_MGT |
2282 		      IEEE80211_FC1_MORE_DATA));
2283 		AR_WRITE(sc, AR_AES_MUTE_MASK1, reg);
2284 	} else if (AR_SREV_9160_10_OR_LATER(sc)) {
2285 		/* Disable hardware crypto for management frames. */
2286 		AR_CLRBITS(sc, AR_PCU_MISC_MODE2,
2287 		    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2288 		AR_SETBITS(sc, AR_PCU_MISC_MODE2,
2289 		    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2290 	}
2291 
2292 	if (ic->ic_curmode != IEEE80211_MODE_11B)
2293 		ops->set_delta_slope(sc, curchan, extchan);
2294 
2295 	ops->spur_mitigate(sc, curchan, extchan);
2296 	ops->init_from_rom(sc, curchan, extchan);
2297 
2298 	/* XXX */
2299 	AR_WRITE(sc, AR_STA_ID0, LE_READ_4(&ic->ic_myaddr[0]));
2300 	AR_WRITE(sc, AR_STA_ID1, LE_READ_2(&ic->ic_myaddr[4]) |
2301 	    sta_id1 | AR_STA_ID1_RTS_USE_DEF | AR_STA_ID1_CRPT_MIC_ENABLE);
2302 
2303 	athn_set_opmode(sc);
2304 
2305 	AR_WRITE(sc, AR_BSSMSKL, 0xffffffff);
2306 	AR_WRITE(sc, AR_BSSMSKU, 0xffff);
2307 
2308 	/* Restore previous antenna. */
2309 	AR_WRITE(sc, AR_DEF_ANTENNA, def_ant);
2310 
2311 	AR_WRITE(sc, AR_BSS_ID0, 0);
2312 	AR_WRITE(sc, AR_BSS_ID1, 0);
2313 
2314 	AR_WRITE(sc, AR_ISR, 0xffffffff);
2315 
2316 	AR_WRITE(sc, AR_RSSI_THR, SM(AR_RSSI_THR_BM_THR, 7));
2317 
2318 	if ((error = ops->set_synth(sc, curchan, extchan)) != 0) {
2319 		aprint_error_dev(sc->sc_dev, "could not set channel\n");
2320 		return error;
2321 	}
2322 	sc->sc_curchan = curchan;
2323 	sc->sc_curchanext = extchan;
2324 
2325 	for (i = 0; i < AR_NUM_DCU; i++)
2326 		AR_WRITE(sc, AR_DQCUMASK(i), 1 << i);
2327 
2328 	athn_init_tx_queues(sc);
2329 
2330 	/* Initialize interrupt mask. */
2331 	sc->sc_imask =
2332 	    AR_IMR_TXDESC | AR_IMR_TXEOL |
2333 	    AR_IMR_RXERR | AR_IMR_RXEOL | AR_IMR_RXORN |
2334 	    AR_IMR_RXMINTR | AR_IMR_RXINTM |
2335 	    AR_IMR_GENTMR | AR_IMR_BCNMISC;
2336 	if (AR_SREV_9380_10_OR_LATER(sc))
2337 		sc->sc_imask |= AR_IMR_RXERR | AR_IMR_HP_RXOK;
2338 #ifndef IEEE80211_STA_ONLY
2339 	if (0 && ic->ic_opmode == IEEE80211_M_HOSTAP)
2340 		sc->sc_imask |= AR_IMR_MIB;
2341 #endif
2342 	AR_WRITE(sc, AR_IMR, sc->sc_imask);
2343 	AR_SETBITS(sc, AR_IMR_S2, AR_IMR_S2_GTT);
2344 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2345 	sc->sc_isync = AR_INTR_SYNC_DEFAULT;
2346 	if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2347 		sc->sc_isync |= AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin);
2348 	AR_WRITE(sc, AR_INTR_SYNC_ENABLE, sc->sc_isync);
2349 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2350 	if (AR_SREV_9380_10_OR_LATER(sc)) {
2351 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_ENABLE, 0);
2352 		AR_WRITE(sc, AR_INTR_PRIO_ASYNC_MASK, 0);
2353 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_ENABLE, 0);
2354 		AR_WRITE(sc, AR_INTR_PRIO_SYNC_MASK, 0);
2355 	}
2356 
2357 	athn_init_qos(sc);
2358 
2359 	AR_SETBITS(sc, AR_PCU_MISC, AR_PCU_MIC_NEW_LOC_ENA);
2360 
2361 	if (AR_SREV_9287_13_OR_LATER(sc) && !AR_SREV_9380_10_OR_LATER(sc))
2362 		ar9287_1_3_setup_async_fifo(sc);
2363 
2364 	/* Disable sequence number generation in hardware. */
2365 	AR_SETBITS(sc, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2366 
2367 	athn_init_dma(sc);
2368 
2369 	/* Program observation bus to see MAC interrupts. */
2370 	AR_WRITE(sc, sc->sc_obs_off, 8);
2371 
2372 	/* Setup Rx interrupt mitigation. */
2373 	AR_WRITE(sc, AR_RIMT, SM(AR_RIMT_FIRST, 2000) | SM(AR_RIMT_LAST, 500));
2374 
2375 	ops->init_baseband(sc);
2376 
2377 	if ((error = athn_init_calib(sc, curchan, extchan)) != 0) {
2378 		aprint_error_dev(sc->sc_dev,
2379 		    "could not initialize calibration\n");
2380 		return error;
2381 	}
2382 
2383 	ops->set_rxchains(sc);
2384 
2385 	AR_WRITE(sc, AR_CFG_LED, cfg_led | AR_CFG_SCLK_32KHZ);
2386 
2387 	if (sc->sc_flags & ATHN_FLAG_USB) {
2388 		if (AR_SREV_9271(sc))
2389 			AR_WRITE(sc, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2390 		else
2391 			AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2392 	}
2393 #if BYTE_ORDER == BIG_ENDIAN
2394 	else {
2395 		/* Default is LE, turn on swapping for BE. */
2396 		AR_WRITE(sc, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2397 	}
2398 #endif
2399 	AR_WRITE_BARRIER(sc);
2400 
2401 	return 0;
2402 }
2403 
2404 Static struct ieee80211_node *
2405 athn_node_alloc(struct ieee80211_node_table *ntp)
2406 {
2407 
2408 	return malloc(sizeof(struct athn_node), M_DEVBUF,
2409 	    M_NOWAIT | M_ZERO);
2410 }
2411 
2412 Static void
2413 athn_newassoc(struct ieee80211_node *ni, int isnew)
2414 {
2415 	struct ieee80211com *ic = ni->ni_ic;
2416 	struct athn_softc *sc = ic->ic_ifp->if_softc;
2417 	struct athn_node *an = (void *)ni;
2418 	struct ieee80211_rateset *rs = &ni->ni_rates;
2419 	uint8_t rate;
2420 	int ridx, i, j;
2421 
2422 	ieee80211_amrr_node_init(&sc->sc_amrr, &an->amn);
2423 	/* Start at lowest available bit-rate, AMRR will raise. */
2424 	ni->ni_txrate = 0;
2425 
2426 	for (i = 0; i < rs->rs_nrates; i++) {
2427 		rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
2428 
2429 		/* Map 802.11 rate to HW rate index. */
2430 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2431 			if (athn_rates[ridx].rate == rate)
2432 				break;
2433 		an->ridx[i] = ridx;
2434 		DPRINTFN(DBG_STM, sc, "rate %d index %d\n", rate, ridx);
2435 
2436 		/* Compute fallback rate for retries. */
2437 		an->fallback[i] = i;
2438 		for (j = i - 1; j >= 0; j--) {
2439 			if (athn_rates[an->ridx[j]].phy ==
2440 			    athn_rates[an->ridx[i]].phy) {
2441 				an->fallback[i] = j;
2442 				break;
2443 			}
2444 		}
2445 		DPRINTFN(DBG_STM, sc, "%d fallbacks to %d\n",
2446 		    i, an->fallback[i]);
2447 	}
2448 }
2449 
2450 Static int
2451 athn_media_change(struct ifnet *ifp)
2452 {
2453 	struct athn_softc *sc = ifp->if_softc;
2454 	struct ieee80211com *ic = &sc->sc_ic;
2455 	uint8_t rate, ridx;
2456 	int error;
2457 
2458 	error = ieee80211_media_change(ifp);
2459 	if (error != ENETRESET)
2460 		return error;
2461 
2462 	if (ic->ic_fixed_rate != -1) {
2463 		rate = ic->ic_sup_rates[ic->ic_curmode].
2464 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
2465 		/* Map 802.11 rate to HW rate index. */
2466 		for (ridx = 0; ridx <= ATHN_RIDX_MAX; ridx++)
2467 			if (athn_rates[ridx].rate == rate)
2468 				break;
2469 		sc->sc_fixed_ridx = ridx;
2470 	}
2471 	if (IS_UP_AND_RUNNING(ifp)) {
2472 		athn_stop(ifp, 0);
2473 		error = athn_init(ifp);
2474 	}
2475 	return error;
2476 }
2477 
2478 Static void
2479 athn_next_scan(void *arg)
2480 {
2481 	struct athn_softc *sc = arg;
2482 	struct ieee80211com *ic = &sc->sc_ic;
2483 	int s;
2484 
2485 	s = splnet();
2486 	if (ic->ic_state == IEEE80211_S_SCAN)
2487 		ieee80211_next_scan(ic);
2488 	splx(s);
2489 }
2490 
2491 Static int
2492 athn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2493 {
2494 	struct ifnet *ifp = ic->ic_ifp;
2495 	struct athn_softc *sc = ifp->if_softc;
2496 	uint32_t reg;
2497 	int error;
2498 
2499 	callout_stop(&sc->sc_calib_to);
2500 
2501 	switch (nstate) {
2502 	case IEEE80211_S_INIT:
2503 		athn_set_led(sc, 0);
2504 		break;
2505 	case IEEE80211_S_SCAN:
2506 		/* Make the LED blink while scanning. */
2507 		athn_set_led(sc, !sc->sc_led_state);
2508 		error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2509 		if (error != 0)
2510 			return error;
2511 		callout_schedule(&sc->sc_scan_to, hz / 5);
2512 		break;
2513 	case IEEE80211_S_AUTH:
2514 		athn_set_led(sc, 0);
2515 		error = athn_switch_chan(sc, ic->ic_curchan, NULL);
2516 		if (error != 0)
2517 			return error;
2518 		break;
2519 	case IEEE80211_S_ASSOC:
2520 		break;
2521 	case IEEE80211_S_RUN:
2522 		athn_set_led(sc, 1);
2523 
2524 		if (ic->ic_opmode == IEEE80211_M_MONITOR)
2525 			break;
2526 
2527 		/* Fake a join to initialize the Tx rate. */
2528 		athn_newassoc(ic->ic_bss, 1);
2529 
2530 		athn_set_bss(sc, ic->ic_bss);
2531 		athn_disable_interrupts(sc);
2532 #ifndef IEEE80211_STA_ONLY
2533 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2534 			athn_set_hostap_timers(sc);
2535 			/* Enable software beacon alert interrupts. */
2536 			sc->sc_imask |= AR_IMR_SWBA;
2537 		} else
2538 #endif
2539 		{
2540 			athn_set_sta_timers(sc);
2541 			/* Enable beacon miss interrupts. */
2542 			sc->sc_imask |= AR_IMR_BMISS;
2543 
2544 			/* Stop receiving beacons from other BSS. */
2545 			reg = AR_READ(sc, AR_RX_FILTER);
2546 			reg = (reg & ~AR_RX_FILTER_BEACON) |
2547 			    AR_RX_FILTER_MYBEACON;
2548 			AR_WRITE(sc, AR_RX_FILTER, reg);
2549 			AR_WRITE_BARRIER(sc);
2550 		}
2551 		athn_enable_interrupts(sc);
2552 
2553 		if (sc->sc_sup_calib_mask != 0) {
2554 			memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2555 			sc->sc_cur_calib_mask = sc->sc_sup_calib_mask;
2556 			/* ops->do_calib(sc); */
2557 		}
2558 		/* XXX Start ANI. */
2559 
2560 		callout_schedule(&sc->sc_calib_to, hz / 2);
2561 		break;
2562 	}
2563 
2564 	return sc->sc_newstate(ic, nstate, arg);
2565 }
2566 
2567 #ifdef notyet_edca
2568 PUBLIC void
2569 athn_updateedca(struct ieee80211com *ic)
2570 {
2571 #define ATHN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
2572 	struct athn_softc *sc = ic->ic_ifp->if_softc;
2573 	const struct ieee80211_edca_ac_params *ac;
2574 	int aci, qid;
2575 
2576 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
2577 		ac = &ic->ic_edca_ac[aci];
2578 		qid = athn_ac2qid[aci];
2579 
2580 		AR_WRITE(sc, AR_DLCL_IFS(qid),
2581 		    SM(AR_D_LCL_IFS_CWMIN, ATHN_EXP2(ac->ac_ecwmin)) |
2582 		    SM(AR_D_LCL_IFS_CWMAX, ATHN_EXP2(ac->ac_ecwmax)) |
2583 		    SM(AR_D_LCL_IFS_AIFS, ac->ac_aifsn));
2584 		if (ac->ac_txoplimit != 0) {
2585 			AR_WRITE(sc, AR_DCHNTIME(qid),
2586 			    SM(AR_D_CHNTIME_DUR,
2587 			       IEEE80211_TXOP_TO_US(ac->ac_txoplimit)) |
2588 			    AR_D_CHNTIME_EN);
2589 		} else
2590 			AR_WRITE(sc, AR_DCHNTIME(qid), 0);
2591 	}
2592 	AR_WRITE_BARRIER(sc);
2593 #undef ATHN_EXP2
2594 }
2595 #endif /* notyet_edca */
2596 
2597 Static int
2598 athn_clock_rate(struct athn_softc *sc)
2599 {
2600 	struct ieee80211com *ic = &sc->sc_ic;
2601 	int clockrate;	/* MHz. */
2602 
2603 	if (ic->ic_curmode == IEEE80211_MODE_11A) {
2604 		if (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)
2605 			clockrate = AR_CLOCK_RATE_FAST_5GHZ_OFDM;
2606 		else
2607 			clockrate = AR_CLOCK_RATE_5GHZ_OFDM;
2608 	} else if (ic->ic_curmode == IEEE80211_MODE_11B) {
2609 		clockrate = AR_CLOCK_RATE_CCK;
2610 	} else
2611 		clockrate = AR_CLOCK_RATE_2GHZ_OFDM;
2612 #ifndef IEEE80211_NO_HT
2613 	if (sc->sc_curchanext != NULL)
2614 		clockrate *= 2;
2615 #endif
2616 	return clockrate;
2617 }
2618 
2619 PUBLIC void
2620 athn_updateslot(struct ifnet *ifp)
2621 {
2622 	struct athn_softc *sc = ifp->if_softc;
2623 	struct ieee80211com *ic = &sc->sc_ic;
2624 	int slot;
2625 
2626 	slot = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2627 	AR_WRITE(sc, AR_D_GBL_IFS_SLOT, slot * athn_clock_rate(sc));
2628 	AR_WRITE_BARRIER(sc);
2629 }
2630 
2631 Static void
2632 athn_start(struct ifnet *ifp)
2633 {
2634 	struct athn_softc *sc = ifp->if_softc;
2635 	struct ieee80211com *ic = &sc->sc_ic;
2636 	struct ether_header *eh;
2637 	struct ieee80211_node *ni;
2638 	struct mbuf *m;
2639 
2640 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING
2641 	    || !device_is_active(sc->sc_dev))
2642 		return;
2643 
2644 	for (;;) {
2645 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
2646 			ifp->if_flags |= IFF_OACTIVE;
2647 			break;
2648 		}
2649 		/* Send pending management frames first. */
2650 		IF_DEQUEUE(&ic->ic_mgtq, m);
2651 		if (m != NULL) {
2652 			ni = M_GETCTX(m, struct ieee80211_node *);
2653 			goto sendit;
2654 		}
2655 		if (ic->ic_state != IEEE80211_S_RUN)
2656 			break;
2657 
2658 		/* Encapsulate and send data frames. */
2659 		IFQ_DEQUEUE(&ifp->if_snd, m);
2660 		if (m == NULL)
2661 			break;
2662 
2663 		if (m->m_len < (int)sizeof(*eh) &&
2664 		    (m = m_pullup(m, sizeof(*eh))) == NULL) {
2665 			if_statinc(ifp, if_oerrors);
2666 			continue;
2667 		}
2668 		eh = mtod(m, struct ether_header *);
2669 		ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2670 		if (ni == NULL) {
2671 			m_freem(m);
2672 			if_statinc(ifp, if_oerrors);
2673 			continue;
2674 		}
2675 
2676 		bpf_mtap(ifp, m, BPF_D_OUT);
2677 
2678 		if ((m = ieee80211_encap(ic, m, ni)) == NULL)
2679 			continue;
2680  sendit:
2681 		bpf_mtap3(ic->ic_rawbpf, m, BPF_D_OUT);
2682 
2683 		if (sc->sc_ops.tx(sc, m, ni, 0) != 0) {
2684 			ieee80211_free_node(ni);
2685 			if_statinc(ifp, if_oerrors);
2686 			continue;
2687 		}
2688 
2689 		sc->sc_tx_timer = 5;
2690 		ifp->if_timer = 1;
2691 	}
2692 }
2693 
2694 Static void
2695 athn_watchdog(struct ifnet *ifp)
2696 {
2697 	struct athn_softc *sc = ifp->if_softc;
2698 
2699 	ifp->if_timer = 0;
2700 
2701 	if (sc->sc_tx_timer > 0) {
2702 		if (--sc->sc_tx_timer == 0) {
2703 			aprint_error_dev(sc->sc_dev, "device timeout\n");
2704 			/* see athn_init, no need to call athn_stop here */
2705 			/* athn_stop(ifp, 0); */
2706 			(void)athn_init(ifp);
2707 			if_statinc(ifp, if_oerrors);
2708 			return;
2709 		}
2710 		ifp->if_timer = 1;
2711 	}
2712 	ieee80211_watchdog(&sc->sc_ic);
2713 }
2714 
2715 Static void
2716 athn_set_multi(struct athn_softc *sc)
2717 {
2718 	struct ethercom *ec = &sc->sc_ec;
2719 	struct ifnet *ifp = &ec->ec_if;
2720 	struct ether_multi *enm;
2721 	struct ether_multistep step;
2722 	const uint8_t *addr;
2723 	uint32_t val, lo, hi;
2724 	uint8_t bit;
2725 
2726 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
2727 		lo = hi = 0xffffffff;
2728 		goto done2;
2729 	}
2730 	lo = hi = 0;
2731 	ETHER_LOCK(ec);
2732 	ETHER_FIRST_MULTI(step, ec, enm);
2733 	while (enm != NULL) {
2734 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) {
2735 			ifp->if_flags |= IFF_ALLMULTI;
2736 			lo = hi = 0xffffffff;
2737 			goto done;
2738 		}
2739 		addr = enm->enm_addrlo;
2740 		/* Calculate the XOR value of all eight 6-bit words. */
2741 		val = addr[0] | addr[1] << 8 | addr[2] << 16;
2742 		bit  = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2743 		val = addr[3] | addr[4] << 8 | addr[5] << 16;
2744 		bit ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2745 		bit &= 0x3f;
2746 		if (bit < 32)
2747 			lo |= 1 << bit;
2748 		else
2749 			hi |= 1 << (bit - 32);
2750 		ETHER_NEXT_MULTI(step, enm);
2751 	}
2752  done:
2753 	ETHER_UNLOCK(ec);
2754  done2:
2755 	AR_WRITE(sc, AR_MCAST_FIL0, lo);
2756 	AR_WRITE(sc, AR_MCAST_FIL1, hi);
2757 	AR_WRITE_BARRIER(sc);
2758 }
2759 
2760 Static int
2761 athn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2762 {
2763 	struct athn_softc *sc = ifp->if_softc;
2764 	struct ieee80211com *ic = &sc->sc_ic;
2765 	int s, error = 0;
2766 
2767 	s = splnet();
2768 
2769 	switch (cmd) {
2770 	case SIOCSIFFLAGS:
2771 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2772 			break;
2773 
2774 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
2775 		case IFF_UP | IFF_RUNNING:
2776 #ifdef notyet
2777 			if (((ifp->if_flags ^ sc->sc_if_flags) &
2778 				(IFF_ALLMULTI | IFF_PROMISC)) != 0)
2779 				/* XXX: setup multi */
2780 #endif
2781 			break;
2782 		case IFF_UP:
2783 			athn_init(ifp);
2784 			break;
2785 
2786 		case IFF_RUNNING:
2787 			athn_stop(ifp, 1);
2788 			break;
2789 		case 0:
2790 		default:
2791 			break;
2792 		}
2793 		sc->sc_if_flags = ifp->if_flags;
2794 		break;
2795 
2796 	case SIOCADDMULTI:
2797 	case SIOCDELMULTI:
2798 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2799 			/* setup multicast filter, etc */
2800 			athn_set_multi(sc);
2801 			error = 0;
2802 		}
2803 		break;
2804 
2805 	case SIOCS80211CHANNEL:
2806 		error = ieee80211_ioctl(ic, cmd, data);
2807 		if (error == ENETRESET &&
2808 		    ic->ic_opmode == IEEE80211_M_MONITOR) {
2809 			if (IS_UP_AND_RUNNING(ifp))
2810 				athn_switch_chan(sc, ic->ic_curchan, NULL);
2811 			error = 0;
2812 		}
2813 		break;
2814 
2815 	default:
2816 		error = ieee80211_ioctl(ic, cmd, data);
2817 	}
2818 
2819 	if (error == ENETRESET) {
2820 		error = 0;
2821 		if (IS_UP_AND_RUNNING(ifp) &&
2822 		    ic->ic_roaming != IEEE80211_ROAMING_MANUAL) {
2823 			athn_stop(ifp, 0);
2824 			error = athn_init(ifp);
2825 		}
2826 	}
2827 
2828 	splx(s);
2829 	return error;
2830 }
2831 
2832 Static int
2833 athn_init(struct ifnet *ifp)
2834 {
2835 	struct athn_softc *sc = ifp->if_softc;
2836 	struct athn_ops *ops = &sc->sc_ops;
2837 	struct ieee80211com *ic = &sc->sc_ic;
2838 	struct ieee80211_channel *curchan, *extchan;
2839 	size_t i;
2840 	int error;
2841 
2842 	KASSERT(!cpu_intr_p());
2843 
2844 	if (device_is_active(sc->sc_dev)) {
2845 		athn_stop(ifp, 0);	/* see athn_watchdog() */
2846 	} else {
2847 		short flags = ifp->if_flags;
2848 		ifp->if_flags &= ~IFF_UP;
2849 		/* avoid recursion in athn_resume */
2850 		if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
2851 		    !device_is_active(sc->sc_dev)) {
2852 			printf("%s: failed to power up device\n",
2853 			    device_xname(sc->sc_dev));
2854 			return 0;
2855 		}
2856 		ifp->if_flags = flags;
2857 	}
2858 
2859 	curchan = ic->ic_curchan;
2860 	extchan = NULL;
2861 
2862 	/* In case a new MAC address has been configured. */
2863 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
2864 
2865 #ifdef openbsd_power_management
2866 	/* For CardBus, power on the socket. */
2867 	if (sc->sc_enable != NULL) {
2868 		if ((error = sc->sc_enable(sc)) != 0) {
2869 			aprint_error_dev(sc->sc_dev,
2870 			    "could not enable device\n");
2871 			goto fail;
2872 		}
2873 		if ((error = athn_reset_power_on(sc)) != 0) {
2874 			aprint_error_dev(sc->sc_dev,
2875 			    "could not power on device\n");
2876 			goto fail;
2877 		}
2878 	}
2879 #endif
2880 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
2881 		athn_config_nonpcie(sc);
2882 	else
2883 		athn_config_pcie(sc);
2884 
2885 	/* Reset HW key cache entries. */
2886 	for (i = 0; i < sc->sc_kc_entries; i++)
2887 		athn_reset_key(sc, i);
2888 
2889 	ops->enable_antenna_diversity(sc);
2890 
2891 #ifdef ATHN_BT_COEXISTENCE
2892 	/* Configure bluetooth coexistence for combo chips. */
2893 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2894 		athn_btcoex_init(sc);
2895 #endif
2896 
2897 	/* Configure LED. */
2898 	athn_led_init(sc);
2899 
2900 	/* Configure hardware radio switch. */
2901 	if (sc->sc_flags & ATHN_FLAG_RFSILENT)
2902 		ops->rfsilent_init(sc);
2903 
2904 	if ((error = athn_hw_reset(sc, curchan, extchan, 1)) != 0) {
2905 		aprint_error_dev(sc->sc_dev,
2906 		    "unable to reset hardware; reset status %d\n", error);
2907 		goto fail;
2908 	}
2909 
2910 	/* Enable Rx. */
2911 	athn_rx_start(sc);
2912 
2913 	/* Enable interrupts. */
2914 	athn_enable_interrupts(sc);
2915 
2916 #ifdef ATHN_BT_COEXISTENCE
2917 	/* Enable bluetooth coexistence for combo chips. */
2918 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2919 		athn_btcoex_enable(sc);
2920 #endif
2921 
2922 	ifp->if_flags &= ~IFF_OACTIVE;
2923 	ifp->if_flags |= IFF_RUNNING;
2924 
2925 #ifdef notyet
2926 	if (ic->ic_flags & IEEE80211_F_WEPON) {
2927 		/* Configure WEP keys. */
2928 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2929 			athn_set_key(ic, NULL, &ic->ic_nw_keys[i]);
2930 	}
2931 #endif
2932 	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2933 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2934 	else
2935 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2936 
2937 	return 0;
2938  fail:
2939 	athn_stop(ifp, 1);
2940 	return error;
2941 }
2942 
2943 PUBLIC void
2944 athn_stop(struct ifnet *ifp, int disable)
2945 {
2946 	struct athn_softc *sc = ifp->if_softc;
2947 	struct ieee80211com *ic = &sc->sc_ic;
2948 	int qid;
2949 
2950 	ifp->if_timer = sc->sc_tx_timer = 0;
2951 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2952 
2953 	callout_stop(&sc->sc_scan_to);
2954 	/* In case we were scanning, release the scan "lock". */
2955 //	ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED;	/* XXX:??? */
2956 
2957 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2958 
2959 #ifdef ATHN_BT_COEXISTENCE
2960 	/* Disable bluetooth coexistence for combo chips. */
2961 	if (sc->sc_flags & ATHN_FLAG_BTCOEX)
2962 		athn_btcoex_disable(sc);
2963 #endif
2964 
2965 	/* Disable interrupts. */
2966 	athn_disable_interrupts(sc);
2967 	/* Acknowledge interrupts (avoids interrupt storms). */
2968 	AR_WRITE(sc, AR_INTR_SYNC_CAUSE, 0xffffffff);
2969 	AR_WRITE(sc, AR_INTR_SYNC_MASK, 0);
2970 
2971 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2972 		athn_stop_tx_dma(sc, qid);
2973 	/* XXX call athn_hw_reset if Tx still pending? */
2974 	for (qid = 0; qid < ATHN_QID_COUNT; qid++)
2975 		athn_tx_reclaim(sc, qid);
2976 
2977 	/* Stop Rx. */
2978 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
2979 	AR_WRITE(sc, AR_MIBC, AR_MIBC_FMC);
2980 	AR_WRITE(sc, AR_MIBC, AR_MIBC_CMC);
2981 	AR_WRITE(sc, AR_FILT_OFDM, 0);
2982 	AR_WRITE(sc, AR_FILT_CCK, 0);
2983 	AR_WRITE_BARRIER(sc);
2984 	athn_set_rxfilter(sc, 0);
2985 	athn_stop_rx_dma(sc);
2986 
2987 	athn_reset(sc, 0);
2988 	athn_init_pll(sc, NULL);
2989 	athn_set_power_awake(sc);
2990 	athn_reset(sc, 1);
2991 	athn_init_pll(sc, NULL);
2992 
2993 	athn_set_power_sleep(sc);
2994 
2995 #if 0	/* XXX: shouldn't the pmf stuff take care of this? */
2996 	/* For CardBus, power down the socket. */
2997 	if (disable && sc->sc_disable != NULL)
2998 		sc->sc_disable(sc);
2999 #endif
3000 	if (disable)
3001 		pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
3002 }
3003 
3004 Static void
3005 athn_pmf_wlan_off(device_t self)
3006 {
3007 	struct athn_softc *sc = device_private(self);
3008 	struct ifnet *ifp = &sc->sc_if;
3009 
3010 	/* Turn the interface down. */
3011 	ifp->if_flags &= ~IFF_UP;
3012 	athn_stop(ifp, 1);
3013 }
3014 
3015 PUBLIC void
3016 athn_suspend(struct athn_softc *sc)
3017 {
3018 	struct ifnet *ifp = &sc->sc_if;
3019 
3020 	if (ifp->if_flags & IFF_RUNNING)
3021 		athn_stop(ifp, 1);
3022 }
3023 
3024 PUBLIC bool
3025 athn_resume(struct athn_softc *sc)
3026 {
3027 	struct ifnet *ifp = &sc->sc_if;
3028 
3029 	if (ifp->if_flags & IFF_UP)
3030 		athn_init(ifp);
3031 
3032 	return true;
3033 }
3034