1 /* $NetBSD: ath.c,v 1.44 2005/01/19 04:56:42 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.54 2004/04/05 04:42:42 sam Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.44 2005/01/19 04:56:42 dyoung Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #include "opt_inet.h" 55 56 #ifdef __NetBSD__ 57 #include "bpfilter.h" 58 #endif /* __NetBSD__ */ 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/types.h> 63 #include <sys/sysctl.h> 64 #include <sys/mbuf.h> 65 #include <sys/malloc.h> 66 #include <sys/lock.h> 67 #ifdef __FreeBSD__ 68 #include <sys/mutex.h> 69 #endif 70 #include <sys/kernel.h> 71 #include <sys/socket.h> 72 #include <sys/sockio.h> 73 #include <sys/errno.h> 74 #include <sys/callout.h> 75 #ifdef __FreeBSD__ 76 #include <sys/bus.h> 77 #else 78 #include <machine/bus.h> 79 #endif 80 #include <sys/endian.h> 81 82 #include <machine/bus.h> 83 84 #include <net/if.h> 85 #include <net/if_dl.h> 86 #include <net/if_media.h> 87 #include <net/if_arp.h> 88 #ifdef __FreeBSD__ 89 #include <net/ethernet.h> 90 #else 91 #include <net/if_ether.h> 92 #endif 93 #include <net/if_llc.h> 94 95 #include <net80211/ieee80211_var.h> 96 #include <net80211/ieee80211_compat.h> 97 98 #if NBPFILTER > 0 99 #include <net/bpf.h> 100 #endif 101 102 #ifdef INET 103 #include <netinet/in.h> 104 #endif 105 106 #include <dev/ic/athcompat.h> 107 108 #define AR_DEBUG 109 #ifdef __FreeBSD__ 110 #include <dev/ath/if_athvar.h> 111 #include <contrib/dev/ath/ah_desc.h> 112 #else 113 #include <dev/ic/athvar.h> 114 #include <../contrib/sys/dev/ic/athhal_desc.h> 115 #endif 116 117 /* unaligned little endian access */ 118 #define LE_READ_2(p) \ 119 ((u_int16_t) \ 120 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 121 #define LE_READ_4(p) \ 122 ((u_int32_t) \ 123 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 124 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 125 126 #ifdef __FreeBSD__ 127 static void ath_init(void *); 128 #else 129 static int ath_init(struct ifnet *); 130 #endif 131 static int ath_init1(struct ath_softc *); 132 static int ath_intr1(struct ath_softc *); 133 static void ath_stop(struct ifnet *, int); 134 static void ath_start(struct ifnet *); 135 static void ath_reset(struct ath_softc *); 136 static int ath_media_change(struct ifnet *); 137 static void ath_watchdog(struct ifnet *); 138 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 139 static void ath_fatal_proc(void *, int); 140 static void ath_rxorn_proc(void *, int); 141 static void ath_bmiss_proc(void *, int); 142 static void ath_initkeytable(struct ath_softc *); 143 static void ath_mode_init(struct ath_softc *); 144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 145 static void ath_beacon_proc(struct ath_softc *, int); 146 static void ath_beacon_free(struct ath_softc *); 147 static void ath_beacon_config(struct ath_softc *); 148 static int ath_desc_alloc(struct ath_softc *); 149 static void ath_desc_free(struct ath_softc *); 150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *); 151 static void ath_node_free(struct ieee80211com *, struct ieee80211_node *); 152 static void ath_node_copy(struct ieee80211com *, 153 struct ieee80211_node *, const struct ieee80211_node *); 154 static u_int8_t ath_node_getrssi(struct ieee80211com *, 155 struct ieee80211_node *); 156 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 157 static void ath_rx_proc(void *, int); 158 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 159 struct ath_buf *, struct mbuf *); 160 static void ath_tx_proc(void *, int); 161 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 162 static void ath_draintxq(struct ath_softc *); 163 static void ath_stoprecv(struct ath_softc *); 164 static int ath_startrecv(struct ath_softc *); 165 static void ath_next_scan(void *); 166 static void ath_calibrate(void *); 167 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 168 static void ath_newassoc(struct ieee80211com *, 169 struct ieee80211_node *, int); 170 static int ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor, 171 HAL_BOOL xchanmode); 172 173 static int ath_rate_setup(struct ath_softc *sc, u_int mode); 174 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 175 static void ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state); 176 static void ath_rate_ctl(void *, struct ieee80211_node *); 177 static void ath_recv_mgmt(struct ieee80211com *, struct mbuf *, 178 struct ieee80211_node *, int, int, u_int32_t); 179 180 #ifdef __NetBSD__ 181 int ath_enable(struct ath_softc *); 182 void ath_disable(struct ath_softc *); 183 void ath_power(int, void *); 184 #endif 185 186 #ifdef __FreeBSD__ 187 SYSCTL_DECL(_hw_ath); 188 /* XXX validate sysctl values */ 189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime, 190 0, "channel dwell time (ms) for AP/station scanning"); 191 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval, 192 0, "chip calibration interval (secs)"); 193 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor, 194 0, "enable/disable outdoor operation"); 195 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor); 196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode, 197 0, "country code"); 198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode); 199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain, 200 0, "regulatory domain"); 201 #endif /* __FreeBSD__ */ 202 203 #ifdef __NetBSD__ 204 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum, 205 ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum; 206 #endif /* __NetBSD__ */ 207 208 static int ath_dwelltime = 200; /* 5 channels/second */ 209 static int ath_calinterval = 30; /* calibrate every 30 secs */ 210 static int ath_outdoor = AH_TRUE; /* outdoor operation */ 211 static int ath_xchanmode = AH_TRUE; /* enable extended channels */ 212 static int ath_countrycode = CTRY_DEFAULT; /* country code */ 213 static int ath_regdomain = 0; /* regulatory domain */ 214 215 #ifdef AR_DEBUG 216 int ath_debug = 0; 217 #ifdef __FreeBSD__ 218 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug, 219 0, "control debugging printfs"); 220 TUNABLE_INT("hw.ath.debug", &ath_debug); 221 #endif /* __FreeBSD__ */ 222 #define IFF_DUMPPKTS(_ifp, _m) \ 223 ((ath_debug & _m) || \ 224 ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 225 static void ath_printrxbuf(struct ath_buf *bf, int); 226 static void ath_printtxbuf(struct ath_buf *bf, int); 227 enum { 228 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 229 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 230 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 231 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 232 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 233 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 234 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 235 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 236 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 237 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 238 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 239 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 240 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 241 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 242 ATH_DEBUG_ANY = 0xffffffff 243 }; 244 #define DPRINTF(_m,X) if (ath_debug & (_m)) printf X 245 #else 246 #define IFF_DUMPPKTS(_ifp, _m) \ 247 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 248 #define DPRINTF(_m, X) 249 #endif 250 251 #ifdef __NetBSD__ 252 int 253 ath_activate(struct device *self, enum devact act) 254 { 255 struct ath_softc *sc = (struct ath_softc *)self; 256 int rv = 0, s; 257 258 s = splnet(); 259 switch (act) { 260 case DVACT_ACTIVATE: 261 rv = EOPNOTSUPP; 262 break; 263 case DVACT_DEACTIVATE: 264 if_deactivate(&sc->sc_ic.ic_if); 265 break; 266 } 267 splx(s); 268 return rv; 269 } 270 271 int 272 ath_enable(struct ath_softc *sc) 273 { 274 if (ATH_IS_ENABLED(sc) == 0) { 275 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 276 printf("%s: device enable failed\n", 277 sc->sc_dev.dv_xname); 278 return (EIO); 279 } 280 sc->sc_flags |= ATH_ENABLED; 281 } 282 return (0); 283 } 284 285 void 286 ath_disable(struct ath_softc *sc) 287 { 288 if (!ATH_IS_ENABLED(sc)) 289 return; 290 if (sc->sc_disable != NULL) 291 (*sc->sc_disable)(sc); 292 sc->sc_flags &= ~ATH_ENABLED; 293 } 294 295 static int 296 sysctl_ath_verify(SYSCTLFN_ARGS) 297 { 298 int error, t; 299 struct sysctlnode node; 300 301 node = *rnode; 302 t = *(int*)rnode->sysctl_data; 303 node.sysctl_data = &t; 304 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 305 if (error || newp == NULL) 306 return (error); 307 308 DPRINTF(ATH_DEBUG_ANY, ("%s: t = %d, nodenum = %d, rnodenum = %d\n", 309 __func__, t, node.sysctl_num, rnode->sysctl_num)); 310 311 if (node.sysctl_num == ath_dwelltime_nodenum) { 312 if (t <= 0) 313 return (EINVAL); 314 } else if (node.sysctl_num == ath_calibrate_nodenum) { 315 if (t <= 0) 316 return (EINVAL); 317 #ifdef AR_DEBUG 318 } else if (node.sysctl_num == ath_debug_nodenum) { 319 ; /* Accept any vaule */ 320 #endif /* AR_DEBUG */ 321 } else 322 return (EINVAL); 323 324 *(int*)rnode->sysctl_data = t; 325 326 return (0); 327 } 328 329 /* 330 * Setup sysctl(3) MIB, ath.*. 331 * 332 * TBD condition CTLFLAG_PERMANENT on being an LKM or not 333 */ 334 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup") 335 { 336 int rc, ath_node_num; 337 struct sysctlnode *node; 338 339 if ((rc = sysctl_createv(clog, 0, NULL, NULL, 340 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 341 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) 342 goto err; 343 344 if ((rc = sysctl_createv(clog, 0, NULL, &node, 345 CTLFLAG_PERMANENT, CTLTYPE_NODE, "ath", 346 SYSCTL_DESCR("ath information and options"), 347 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) 348 goto err; 349 350 ath_node_num = node->sysctl_num; 351 352 /* channel dwell time (ms) for AP/station scanning */ 353 if ((rc = sysctl_createv(clog, 0, NULL, &node, 354 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 355 CTLTYPE_INT, "dwell", 356 SYSCTL_DESCR("Channel dwell time (ms) for AP/station scanning"), 357 sysctl_ath_verify, 0, &ath_dwelltime, 358 0, CTL_HW, ath_node_num, CTL_CREATE, 359 CTL_EOL)) != 0) 360 goto err; 361 362 ath_dwelltime_nodenum = node->sysctl_num; 363 364 /* chip calibration interval (secs) */ 365 if ((rc = sysctl_createv(clog, 0, NULL, &node, 366 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 367 CTLTYPE_INT, "calibrate", 368 SYSCTL_DESCR("Chip calibration interval (secs)"), sysctl_ath_verify, 369 0, &ath_calinterval, 0, CTL_HW, 370 ath_node_num, CTL_CREATE, CTL_EOL)) != 0) 371 goto err; 372 373 ath_calibrate_nodenum = node->sysctl_num; 374 375 /* enable/disable outdoor operation */ 376 if ((rc = sysctl_createv(clog, 0, NULL, &node, 377 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 378 "outdoor", SYSCTL_DESCR("Enable/disable outdoor operation"), 379 NULL, 0, &ath_outdoor, 0, 380 CTL_HW, ath_node_num, CTL_CREATE, 381 CTL_EOL)) != 0) 382 goto err; 383 384 ath_outdoor_nodenum = node->sysctl_num; 385 386 /* country code */ 387 if ((rc = sysctl_createv(clog, 0, NULL, &node, 388 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 389 "countrycode", SYSCTL_DESCR("Country code"), 390 NULL, 0, &ath_countrycode, 0, 391 CTL_HW, ath_node_num, CTL_CREATE, 392 CTL_EOL)) != 0) 393 goto err; 394 395 ath_countrycode_nodenum = node->sysctl_num; 396 397 /* regulatory domain */ 398 if ((rc = sysctl_createv(clog, 0, NULL, &node, 399 CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, 400 "regdomain", SYSCTL_DESCR("Regulatory domain"), 401 NULL, 0, &ath_regdomain, 0, 402 CTL_HW, ath_node_num, CTL_CREATE, 403 CTL_EOL)) != 0) 404 goto err; 405 406 ath_regdomain_nodenum = node->sysctl_num; 407 408 #ifdef AR_DEBUG 409 410 /* control debugging printfs */ 411 if ((rc = sysctl_createv(clog, 0, NULL, &node, 412 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 413 "debug", SYSCTL_DESCR("Enable/disable ath debugging output"), 414 sysctl_ath_verify, 0, &ath_debug, 0, 415 CTL_HW, ath_node_num, CTL_CREATE, 416 CTL_EOL)) != 0) 417 goto err; 418 419 ath_debug_nodenum = node->sysctl_num; 420 421 #endif /* AR_DEBUG */ 422 return; 423 err: 424 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 425 } 426 #endif /* __NetBSD__ */ 427 428 int 429 ath_attach(u_int16_t devid, struct ath_softc *sc) 430 { 431 struct ieee80211com *ic = &sc->sc_ic; 432 struct ifnet *ifp = &ic->ic_if; 433 struct ath_hal *ah; 434 HAL_STATUS status; 435 HAL_TXQ_INFO qinfo; 436 int error = 0; 437 438 DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid)); 439 440 #ifdef __FreeBSD__ 441 /* set these up early for if_printf use */ 442 if_initname(ifp, device_get_name(sc->sc_dev), 443 device_get_unit(sc->sc_dev)); 444 #else 445 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 446 #endif 447 448 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 449 if (ah == NULL) { 450 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 451 status); 452 error = ENXIO; 453 goto bad; 454 } 455 if (ah->ah_abi != HAL_ABI_VERSION) { 456 if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n", 457 ah->ah_abi, HAL_ABI_VERSION); 458 error = ENXIO; 459 goto bad; 460 } 461 if_printf(ifp, "mac %d.%d phy %d.%d", 462 ah->ah_macVersion, ah->ah_macRev, 463 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 464 if (ah->ah_analog5GhzRev) 465 printf(" 5ghz radio %d.%d", 466 ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf); 467 if (ah->ah_analog2GhzRev) 468 printf(" 2ghz radio %d.%d", 469 ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf); 470 printf("\n"); 471 sc->sc_ah = ah; 472 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 473 474 /* 475 * Collect the channel list using the default country 476 * code and including outdoor channels. The 802.11 layer 477 * is resposible for filtering this list based on settings 478 * like the phy mode. 479 */ 480 error = ath_getchannels(sc, ath_countrycode, ath_outdoor, 481 ath_xchanmode); 482 if (error != 0) 483 goto bad; 484 /* 485 * Copy these back; they are set as a side effect 486 * of constructing the channel list. 487 */ 488 ath_hal_getregdomain(ah, &ath_regdomain); 489 ath_hal_getcountrycode(ah, &ath_countrycode); 490 491 /* 492 * Setup rate tables for all potential media types. 493 */ 494 ath_rate_setup(sc, IEEE80211_MODE_11A); 495 ath_rate_setup(sc, IEEE80211_MODE_11B); 496 ath_rate_setup(sc, IEEE80211_MODE_11G); 497 ath_rate_setup(sc, IEEE80211_MODE_TURBO); 498 499 error = ath_desc_alloc(sc); 500 if (error != 0) { 501 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 502 goto bad; 503 } 504 ATH_CALLOUT_INIT(&sc->sc_scan_ch); 505 ATH_CALLOUT_INIT(&sc->sc_cal_ch); 506 507 #ifdef __FreeBSD__ 508 ATH_TXBUF_LOCK_INIT(sc); 509 ATH_TXQ_LOCK_INIT(sc); 510 #endif 511 512 ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc); 513 ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc); 514 ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc); 515 ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc); 516 ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc); 517 518 /* 519 * For now just pre-allocate one data queue and one 520 * beacon queue. Note that the HAL handles resetting 521 * them at the needed time. Eventually we'll want to 522 * allocate more tx queues for splitting management 523 * frames and for QOS support. 524 */ 525 sc->sc_bhalq = ath_hal_setuptxqueue(ah,HAL_TX_QUEUE_BEACON,NULL); 526 if (sc->sc_bhalq == (u_int) -1) { 527 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 528 goto bad2; 529 } 530 531 memset(&qinfo, 0, sizeof(qinfo)); 532 qinfo.tqi_subtype = HAL_WME_AC_BE; 533 sc->sc_txhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_DATA, &qinfo); 534 if (sc->sc_txhalq == (u_int) -1) { 535 if_printf(ifp, "unable to setup a data xmit queue!\n"); 536 goto bad2; 537 } 538 539 ifp->if_softc = sc; 540 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 541 ifp->if_start = ath_start; 542 ifp->if_watchdog = ath_watchdog; 543 ifp->if_ioctl = ath_ioctl; 544 ifp->if_init = ath_init; 545 #ifdef __FreeBSD__ 546 ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; 547 #else 548 #if 0 549 ifp->if_stop = ath_stop; /* XXX */ 550 #endif 551 IFQ_SET_READY(&ifp->if_snd); 552 #endif 553 554 ic->ic_softc = sc; 555 ic->ic_newassoc = ath_newassoc; 556 /* XXX not right but it's not used anywhere important */ 557 ic->ic_phytype = IEEE80211_T_OFDM; 558 ic->ic_opmode = IEEE80211_M_STA; 559 ic->ic_caps = IEEE80211_C_WEP /* wep supported */ 560 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 561 | IEEE80211_C_HOSTAP /* hostap mode */ 562 | IEEE80211_C_MONITOR /* monitor mode */ 563 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 564 ; 565 566 /* get mac address from hardware */ 567 ath_hal_getmac(ah, ic->ic_myaddr); 568 569 #ifdef __NetBSD__ 570 if_attach(ifp); 571 #endif 572 /* call MI attach routine. */ 573 ieee80211_ifattach(ifp); 574 /* override default methods */ 575 ic->ic_node_alloc = ath_node_alloc; 576 sc->sc_node_free = ic->ic_node_free; 577 ic->ic_node_free = ath_node_free; 578 sc->sc_node_copy = ic->ic_node_copy; 579 ic->ic_node_copy = ath_node_copy; 580 ic->ic_node_getrssi = ath_node_getrssi; 581 sc->sc_newstate = ic->ic_newstate; 582 ic->ic_newstate = ath_newstate; 583 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 584 ic->ic_recv_mgmt = ath_recv_mgmt; 585 586 /* complete initialization */ 587 ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status); 588 589 #if NBPFILTER > 0 590 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 591 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 592 &sc->sc_drvbpf); 593 #endif 594 /* 595 * Initialize constant fields. 596 * XXX make header lengths a multiple of 32-bits so subsequent 597 * headers are properly aligned; this is a kludge to keep 598 * certain applications happy. 599 * 600 * NB: the channel is setup each time we transition to the 601 * RUN state to avoid filling it in for each frame. 602 */ 603 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 604 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 605 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 606 607 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 608 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 609 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 610 611 #ifdef __NetBSD__ 612 sc->sc_flags |= ATH_ATTACHED; 613 /* 614 * Make sure the interface is shutdown during reboot. 615 */ 616 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc); 617 if (sc->sc_sdhook == NULL) 618 printf("%s: WARNING: unable to establish shutdown hook\n", 619 sc->sc_dev.dv_xname); 620 sc->sc_powerhook = powerhook_establish(ath_power, sc); 621 if (sc->sc_powerhook == NULL) 622 printf("%s: WARNING: unable to establish power hook\n", 623 sc->sc_dev.dv_xname); 624 #endif 625 return 0; 626 bad2: 627 ath_desc_free(sc); 628 bad: 629 if (ah) 630 ath_hal_detach(ah); 631 sc->sc_invalid = 1; 632 return error; 633 } 634 635 int 636 ath_detach(struct ath_softc *sc) 637 { 638 struct ifnet *ifp = &sc->sc_ic.ic_if; 639 ath_softc_critsect_decl(s); 640 641 if ((sc->sc_flags & ATH_ATTACHED) == 0) 642 return (0); 643 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 644 645 ath_softc_critsect_begin(sc, s); 646 ath_stop(ifp, 1); 647 #if NBPFILTER > 0 648 bpfdetach(ifp); 649 #endif 650 ath_desc_free(sc); 651 ath_hal_detach(sc->sc_ah); 652 ieee80211_ifdetach(ifp); 653 #ifdef __NetBSD__ 654 if_detach(ifp); 655 #endif /* __NetBSD__ */ 656 ath_softc_critsect_end(sc, s); 657 #ifdef __NetBSD__ 658 powerhook_disestablish(sc->sc_powerhook); 659 shutdownhook_disestablish(sc->sc_sdhook); 660 #endif /* __NetBSD__ */ 661 #ifdef __FreeBSD__ 662 663 ATH_TXBUF_LOCK_DESTROY(sc); 664 ATH_TXQ_LOCK_DESTROY(sc); 665 666 #endif /* __FreeBSD__ */ 667 return 0; 668 } 669 670 #ifdef __NetBSD__ 671 void 672 ath_power(int why, void *arg) 673 { 674 struct ath_softc *sc = arg; 675 int s; 676 677 DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why)); 678 679 s = splnet(); 680 switch (why) { 681 case PWR_SUSPEND: 682 case PWR_STANDBY: 683 ath_suspend(sc, why); 684 break; 685 case PWR_RESUME: 686 ath_resume(sc, why); 687 break; 688 case PWR_SOFTSUSPEND: 689 case PWR_SOFTSTANDBY: 690 case PWR_SOFTRESUME: 691 break; 692 } 693 splx(s); 694 } 695 #endif 696 697 void 698 ath_suspend(struct ath_softc *sc, int why) 699 { 700 struct ifnet *ifp = &sc->sc_ic.ic_if; 701 702 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 703 704 ath_stop(ifp, 1); 705 if (sc->sc_power != NULL) 706 (*sc->sc_power)(sc, why); 707 } 708 709 void 710 ath_resume(struct ath_softc *sc, int why) 711 { 712 struct ifnet *ifp = &sc->sc_ic.ic_if; 713 714 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 715 716 if (ifp->if_flags & IFF_UP) { 717 ath_init(ifp); 718 #if 0 719 (void)ath_intr(sc); 720 #endif 721 if (sc->sc_power != NULL) 722 (*sc->sc_power)(sc, why); 723 if (ifp->if_flags & IFF_RUNNING) 724 ath_start(ifp); 725 } 726 } 727 728 #ifdef __NetBSD__ 729 void 730 ath_shutdown(void *arg) 731 { 732 struct ath_softc *sc = arg; 733 734 ath_stop(&sc->sc_ic.ic_if, 1); 735 } 736 #else 737 void 738 ath_shutdown(struct ath_softc *sc) 739 { 740 #if 1 741 return; 742 #else 743 struct ifnet *ifp = &sc->sc_ic.ic_if; 744 745 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags)); 746 747 ath_stop(ifp, 1); 748 #endif 749 } 750 #endif 751 752 #ifdef __NetBSD__ 753 int 754 ath_intr(void *arg) 755 { 756 return ath_intr1((struct ath_softc *)arg); 757 } 758 #else 759 void 760 ath_intr(void *arg) 761 { 762 (void)ath_intr1((struct ath_softc *)arg); 763 } 764 #endif 765 766 static int 767 ath_intr1(struct ath_softc *sc) 768 { 769 struct ieee80211com *ic = &sc->sc_ic; 770 struct ifnet *ifp = &ic->ic_if; 771 struct ath_hal *ah = sc->sc_ah; 772 HAL_INT status; 773 774 if (sc->sc_invalid) { 775 /* 776 * The hardware is not ready/present, don't touch anything. 777 * Note this can happen early on if the IRQ is shared. 778 */ 779 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__)); 780 return 0; 781 } 782 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 783 return 0; 784 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 785 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 786 __func__, ifp->if_flags)); 787 ath_hal_getisr(ah, &status); /* clear ISR */ 788 ath_hal_intrset(ah, 0); /* disable further intr's */ 789 return 1; /* XXX */ 790 } 791 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 792 DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status)); 793 status &= sc->sc_imask; /* discard unasked for bits */ 794 if (status & HAL_INT_FATAL) { 795 sc->sc_stats.ast_hardware++; 796 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 797 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 798 } else if (status & HAL_INT_RXORN) { 799 sc->sc_stats.ast_rxorn++; 800 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 801 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 802 } else { 803 if (status & HAL_INT_RXEOL) { 804 /* 805 * NB: the hardware should re-read the link when 806 * RXE bit is written, but it doesn't work at 807 * least on older hardware revs. 808 */ 809 sc->sc_stats.ast_rxeol++; 810 sc->sc_rxlink = NULL; 811 } 812 if (status & HAL_INT_TXURN) { 813 sc->sc_stats.ast_txurn++; 814 /* bump tx trigger level */ 815 ath_hal_updatetxtriglevel(ah, AH_TRUE); 816 } 817 if (status & HAL_INT_RX) 818 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 819 if (status & HAL_INT_TX) 820 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 821 if (status & HAL_INT_SWBA) { 822 /* 823 * Handle beacon transmission directly; deferring 824 * this is too slow to meet timing constraints 825 * under load. 826 */ 827 ath_beacon_proc(sc, 0); 828 } 829 if (status & HAL_INT_BMISS) { 830 sc->sc_stats.ast_bmiss++; 831 ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 832 } 833 } 834 return 1; 835 } 836 837 static void 838 ath_fatal_proc(void *arg, int pending) 839 { 840 struct ath_softc *sc = arg; 841 842 device_printf(sc->sc_dev, "hardware error; resetting\n"); 843 ath_reset(sc); 844 } 845 846 static void 847 ath_rxorn_proc(void *arg, int pending) 848 { 849 struct ath_softc *sc = arg; 850 851 device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n"); 852 ath_reset(sc); 853 } 854 855 static void 856 ath_bmiss_proc(void *arg, int pending) 857 { 858 struct ath_softc *sc = arg; 859 struct ieee80211com *ic = &sc->sc_ic; 860 861 DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending)); 862 if (ic->ic_opmode != IEEE80211_M_STA) 863 return; 864 if (ic->ic_state == IEEE80211_S_RUN) { 865 /* 866 * Rather than go directly to scan state, try to 867 * reassociate first. If that fails then the state 868 * machine will drop us into scanning after timing 869 * out waiting for a probe response. 870 */ 871 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 872 } 873 } 874 875 static u_int 876 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 877 { 878 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 879 880 switch (mode) { 881 case IEEE80211_MODE_AUTO: 882 return 0; 883 case IEEE80211_MODE_11A: 884 return CHANNEL_A; 885 case IEEE80211_MODE_11B: 886 return CHANNEL_B; 887 case IEEE80211_MODE_11G: 888 return CHANNEL_PUREG; 889 case IEEE80211_MODE_TURBO: 890 return CHANNEL_T; 891 default: 892 panic("%s: unsupported mode %d\n", __func__, mode); 893 return 0; 894 } 895 } 896 897 #ifdef __NetBSD__ 898 static int 899 ath_init(struct ifnet *ifp) 900 { 901 return ath_init1((struct ath_softc *)ifp->if_softc); 902 } 903 #else 904 static void 905 ath_init(void *arg) 906 { 907 (void)ath_init1((struct ath_softc *)arg); 908 } 909 #endif 910 911 static int 912 ath_init1(struct ath_softc *sc) 913 { 914 struct ieee80211com *ic = &sc->sc_ic; 915 struct ifnet *ifp = &ic->ic_if; 916 struct ieee80211_node *ni; 917 enum ieee80211_phymode mode; 918 struct ath_hal *ah = sc->sc_ah; 919 HAL_STATUS status; 920 HAL_CHANNEL hchan; 921 int error = 0; 922 ath_softc_critsect_decl(s); 923 924 DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n", 925 __func__, ifp->if_flags)); 926 927 #ifdef __NetBSD__ 928 if ((error = ath_enable(sc)) != 0) 929 return error; 930 #endif 931 932 ath_softc_critsect_begin(sc, s); 933 /* 934 * Stop anything previously setup. This is safe 935 * whether this is the first time through or not. 936 */ 937 ath_stop(ifp, 0); 938 939 /* 940 * The basic interface to setting the hardware in a good 941 * state is ``reset''. On return the hardware is known to 942 * be powered up and with interrupts disabled. This must 943 * be followed by initialization of the appropriate bits 944 * and then setup of the interrupt mask. 945 */ 946 hchan.channel = ic->ic_ibss_chan->ic_freq; 947 hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan); 948 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) { 949 if_printf(ifp, "unable to reset hardware; hal status %u\n", 950 status); 951 error = EIO; 952 goto done; 953 } 954 955 /* 956 * Setup the hardware after reset: the key cache 957 * is filled as needed and the receive engine is 958 * set going. Frame transmit is handled entirely 959 * in the frame output path; there's nothing to do 960 * here except setup the interrupt mask. 961 */ 962 if (ic->ic_flags & IEEE80211_F_PRIVACY) 963 ath_initkeytable(sc); 964 if ((error = ath_startrecv(sc)) != 0) { 965 if_printf(ifp, "unable to start recv logic\n"); 966 goto done; 967 } 968 969 /* 970 * Enable interrupts. 971 */ 972 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 973 | HAL_INT_RXEOL | HAL_INT_RXORN 974 | HAL_INT_FATAL | HAL_INT_GLOBAL; 975 ath_hal_intrset(ah, sc->sc_imask); 976 977 ifp->if_flags |= IFF_RUNNING; 978 ic->ic_state = IEEE80211_S_INIT; 979 980 /* 981 * The hardware should be ready to go now so it's safe 982 * to kick the 802.11 state machine as it's likely to 983 * immediately call back to us to send mgmt frames. 984 */ 985 ni = ic->ic_bss; 986 ni->ni_chan = ic->ic_ibss_chan; 987 mode = ieee80211_chan2mode(ic, ni->ni_chan); 988 if (mode != sc->sc_curmode) 989 ath_setcurmode(sc, mode); 990 if (ic->ic_opmode != IEEE80211_M_MONITOR) 991 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 992 else 993 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 994 done: 995 ath_softc_critsect_end(sc, s); 996 return error; 997 } 998 999 static void 1000 ath_stop(struct ifnet *ifp, int disable) 1001 { 1002 struct ieee80211com *ic = (struct ieee80211com *) ifp; 1003 struct ath_softc *sc = ifp->if_softc; 1004 struct ath_hal *ah = sc->sc_ah; 1005 ath_softc_critsect_decl(s); 1006 1007 DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n", 1008 __func__, sc->sc_invalid, ifp->if_flags)); 1009 1010 ath_softc_critsect_begin(sc, s); 1011 if (ifp->if_flags & IFF_RUNNING) { 1012 /* 1013 * Shutdown the hardware and driver: 1014 * disable interrupts 1015 * turn off timers 1016 * clear transmit machinery 1017 * clear receive machinery 1018 * drain and release tx queues 1019 * reclaim beacon resources 1020 * reset 802.11 state machine 1021 * power down hardware 1022 * 1023 * Note that some of this work is not possible if the 1024 * hardware is gone (invalid). 1025 */ 1026 ifp->if_flags &= ~IFF_RUNNING; 1027 ifp->if_timer = 0; 1028 if (!sc->sc_invalid) 1029 ath_hal_intrset(ah, 0); 1030 ath_draintxq(sc); 1031 if (!sc->sc_invalid) 1032 ath_stoprecv(sc); 1033 else 1034 sc->sc_rxlink = NULL; 1035 #ifdef __FreeBSD__ 1036 IF_DRAIN(&ifp->if_snd); 1037 #else 1038 IF_PURGE(&ifp->if_snd); 1039 #endif 1040 ath_beacon_free(sc); 1041 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1042 if (!sc->sc_invalid) { 1043 ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0); 1044 } 1045 #ifdef __NetBSD__ 1046 if (disable) 1047 ath_disable(sc); 1048 #endif 1049 } 1050 ath_softc_critsect_end(sc, s); 1051 } 1052 1053 /* 1054 * Reset the hardware w/o losing operational state. This is 1055 * basically a more efficient way of doing ath_stop, ath_init, 1056 * followed by state transitions to the current 802.11 1057 * operational state. Used to recover from errors rx overrun 1058 * and to reset the hardware when rf gain settings must be reset. 1059 */ 1060 static void 1061 ath_reset(struct ath_softc *sc) 1062 { 1063 struct ieee80211com *ic = &sc->sc_ic; 1064 struct ifnet *ifp = &ic->ic_if; 1065 struct ath_hal *ah = sc->sc_ah; 1066 struct ieee80211_channel *c; 1067 HAL_STATUS status; 1068 HAL_CHANNEL hchan; 1069 1070 /* 1071 * Convert to a HAL channel description with the flags 1072 * constrained to reflect the current operating mode. 1073 */ 1074 c = ic->ic_ibss_chan; 1075 hchan.channel = c->ic_freq; 1076 hchan.channelFlags = ath_chan2flags(ic, c); 1077 1078 ath_hal_intrset(ah, 0); /* disable interrupts */ 1079 ath_draintxq(sc); /* stop xmit side */ 1080 ath_stoprecv(sc); /* stop recv side */ 1081 /* NB: indicate channel change so we do a full reset */ 1082 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) 1083 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1084 __func__, status); 1085 ath_hal_intrset(ah, sc->sc_imask); 1086 if (ath_startrecv(sc) != 0) /* restart recv */ 1087 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1088 ath_start(ifp); /* restart xmit */ 1089 if (ic->ic_state == IEEE80211_S_RUN) 1090 ath_beacon_config(sc); /* restart beacons */ 1091 } 1092 1093 static void 1094 ath_start(struct ifnet *ifp) 1095 { 1096 struct ath_softc *sc = ifp->if_softc; 1097 struct ath_hal *ah = sc->sc_ah; 1098 struct ieee80211com *ic = &sc->sc_ic; 1099 struct ieee80211_node *ni; 1100 struct ath_buf *bf; 1101 struct mbuf *m; 1102 struct ieee80211_frame *wh; 1103 ath_txbuf_critsect_decl(s); 1104 1105 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1106 return; 1107 for (;;) { 1108 /* 1109 * Grab a TX buffer and associated resources. 1110 */ 1111 ath_txbuf_critsect_begin(sc, s); 1112 bf = TAILQ_FIRST(&sc->sc_txbuf); 1113 if (bf != NULL) 1114 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 1115 ath_txbuf_critsect_end(sc, s); 1116 if (bf == NULL) { 1117 DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n", 1118 __func__)); 1119 sc->sc_stats.ast_tx_qstop++; 1120 ifp->if_flags |= IFF_OACTIVE; 1121 break; 1122 } 1123 /* 1124 * Poll the management queue for frames; they 1125 * have priority over normal data frames. 1126 */ 1127 IF_DEQUEUE(&ic->ic_mgtq, m); 1128 if (m == NULL) { 1129 /* 1130 * No data frames go out unless we're associated. 1131 */ 1132 if (ic->ic_state != IEEE80211_S_RUN) { 1133 DPRINTF(ATH_DEBUG_ANY, 1134 ("%s: ignore data packet, state %u\n", 1135 __func__, ic->ic_state)); 1136 sc->sc_stats.ast_tx_discard++; 1137 ath_txbuf_critsect_begin(sc, s); 1138 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1139 ath_txbuf_critsect_end(sc, s); 1140 break; 1141 } 1142 IF_DEQUEUE(&ifp->if_snd, m); 1143 if (m == NULL) { 1144 ath_txbuf_critsect_begin(sc, s); 1145 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1146 ath_txbuf_critsect_end(sc, s); 1147 break; 1148 } 1149 ifp->if_opackets++; 1150 1151 #ifdef __NetBSD__ 1152 #if NBPFILTER > 0 1153 if (ifp->if_bpf) 1154 bpf_mtap(ifp->if_bpf, m); 1155 #endif 1156 #endif 1157 #ifdef __FreeBSD__ 1158 BPF_MTAP(ifp, m); 1159 #endif 1160 /* 1161 * Encapsulate the packet in prep for transmission. 1162 */ 1163 m = ieee80211_encap(ifp, m, &ni); 1164 if (m == NULL) { 1165 DPRINTF(ATH_DEBUG_ANY, 1166 ("%s: encapsulation failure\n", 1167 __func__)); 1168 sc->sc_stats.ast_tx_encap++; 1169 goto bad; 1170 } 1171 wh = mtod(m, struct ieee80211_frame *); 1172 } else { 1173 /* 1174 * Hack! The referenced node pointer is in the 1175 * rcvif field of the packet header. This is 1176 * placed there by ieee80211_mgmt_output because 1177 * we need to hold the reference with the frame 1178 * and there's no other way (other than packet 1179 * tags which we consider too expensive to use) 1180 * to pass it along. 1181 */ 1182 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1183 m->m_pkthdr.rcvif = NULL; 1184 1185 wh = mtod(m, struct ieee80211_frame *); 1186 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1187 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1188 /* fill time stamp */ 1189 u_int64_t tsf; 1190 u_int32_t *tstamp; 1191 1192 tsf = ath_hal_gettsf64(ah); 1193 /* XXX: adjust 100us delay to xmit */ 1194 tsf += 100; 1195 tstamp = (u_int32_t *)&wh[1]; 1196 tstamp[0] = htole32(tsf & 0xffffffff); 1197 tstamp[1] = htole32(tsf >> 32); 1198 } 1199 sc->sc_stats.ast_tx_mgmt++; 1200 } 1201 1202 if (ath_tx_start(sc, ni, bf, m)) { 1203 bad: 1204 ath_txbuf_critsect_begin(sc, s); 1205 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1206 ath_txbuf_critsect_end(sc, s); 1207 ifp->if_oerrors++; 1208 if (ni != NULL) 1209 ieee80211_release_node(ic, ni); 1210 continue; 1211 } 1212 1213 sc->sc_tx_timer = 5; 1214 ifp->if_timer = 1; 1215 } 1216 } 1217 1218 static int 1219 ath_media_change(struct ifnet *ifp) 1220 { 1221 int error; 1222 1223 error = ieee80211_media_change(ifp); 1224 if (error == ENETRESET) { 1225 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 1226 (IFF_RUNNING|IFF_UP)) 1227 ath_init(ifp); /* XXX lose error */ 1228 error = 0; 1229 } 1230 return error; 1231 } 1232 1233 static void 1234 ath_watchdog(struct ifnet *ifp) 1235 { 1236 struct ath_softc *sc = ifp->if_softc; 1237 struct ieee80211com *ic = &sc->sc_ic; 1238 1239 ifp->if_timer = 0; 1240 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1241 return; 1242 if (sc->sc_tx_timer) { 1243 if (--sc->sc_tx_timer == 0) { 1244 if_printf(ifp, "device timeout\n"); 1245 ath_reset(sc); 1246 ifp->if_oerrors++; 1247 sc->sc_stats.ast_watchdog++; 1248 return; 1249 } 1250 ifp->if_timer = 1; 1251 } 1252 if (ic->ic_fixed_rate == -1) { 1253 /* 1254 * Run the rate control algorithm if we're not 1255 * locked at a fixed rate. 1256 */ 1257 if (ic->ic_opmode == IEEE80211_M_STA) 1258 ath_rate_ctl(sc, ic->ic_bss); 1259 else 1260 ieee80211_iterate_nodes(ic, ath_rate_ctl, sc); 1261 } 1262 ieee80211_watchdog(ifp); 1263 } 1264 1265 static int 1266 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1267 { 1268 struct ath_softc *sc = ifp->if_softc; 1269 struct ifreq *ifr = (struct ifreq *)data; 1270 int error = 0; 1271 ath_softc_critsect_decl(s); 1272 1273 ath_softc_critsect_begin(sc, s); 1274 switch (cmd) { 1275 case SIOCSIFFLAGS: 1276 if (ifp->if_flags & IFF_UP) { 1277 if (ifp->if_flags & IFF_RUNNING) { 1278 /* 1279 * To avoid rescanning another access point, 1280 * do not call ath_init() here. Instead, 1281 * only reflect promisc mode settings. 1282 */ 1283 ath_mode_init(sc); 1284 } else { 1285 /* 1286 * Beware of being called during detach to 1287 * reset promiscuous mode. In that case we 1288 * will still be marked UP but not RUNNING. 1289 * However trying to re-init the interface 1290 * is the wrong thing to do as we've already 1291 * torn down much of our state. There's 1292 * probably a better way to deal with this. 1293 */ 1294 if (!sc->sc_invalid) 1295 ath_init(ifp); /* XXX lose error */ 1296 } 1297 } else 1298 ath_stop(ifp, 1); 1299 break; 1300 case SIOCADDMULTI: 1301 case SIOCDELMULTI: 1302 #ifdef __FreeBSD__ 1303 /* 1304 * The upper layer has already installed/removed 1305 * the multicast address(es), just recalculate the 1306 * multicast filter for the card. 1307 */ 1308 if (ifp->if_flags & IFF_RUNNING) 1309 ath_mode_init(sc); 1310 #endif 1311 #ifdef __NetBSD__ 1312 error = (cmd == SIOCADDMULTI) ? 1313 ether_addmulti(ifr, &sc->sc_ic.ic_ec) : 1314 ether_delmulti(ifr, &sc->sc_ic.ic_ec); 1315 if (error == ENETRESET) { 1316 if (ifp->if_flags & IFF_RUNNING) 1317 ath_mode_init(sc); 1318 error = 0; 1319 } 1320 #endif 1321 break; 1322 case SIOCGATHSTATS: 1323 error = copyout(&sc->sc_stats, 1324 ifr->ifr_data, sizeof (sc->sc_stats)); 1325 break; 1326 case SIOCGATHDIAG: { 1327 #if 0 /* XXX punt */ 1328 struct ath_diag *ad = (struct ath_diag *)data; 1329 struct ath_hal *ah = sc->sc_ah; 1330 void *data; 1331 u_int size; 1332 1333 if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) { 1334 if (size < ad->ad_size) 1335 ad->ad_size = size; 1336 if (data) 1337 error = copyout(data, ad->ad_data, ad->ad_size); 1338 } else 1339 error = EINVAL; 1340 #else 1341 error = EINVAL; 1342 #endif 1343 break; 1344 } 1345 default: 1346 error = ieee80211_ioctl(ifp, cmd, data); 1347 if (error == ENETRESET) { 1348 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == 1349 (IFF_RUNNING|IFF_UP)) 1350 ath_init(ifp); /* XXX lose error */ 1351 error = 0; 1352 } 1353 break; 1354 } 1355 ath_softc_critsect_end(sc, s); 1356 return error; 1357 } 1358 1359 /* 1360 * Fill the hardware key cache with key entries. 1361 */ 1362 static void 1363 ath_initkeytable(struct ath_softc *sc) 1364 { 1365 struct ieee80211com *ic = &sc->sc_ic; 1366 struct ath_hal *ah = sc->sc_ah; 1367 int i; 1368 1369 /* XXX maybe should reset all keys when !WEPON */ 1370 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1371 struct ieee80211_wepkey *k = &ic->ic_nw_keys[i]; 1372 if (k->wk_len == 0) 1373 ath_hal_keyreset(ah, i); 1374 else { 1375 HAL_KEYVAL hk; 1376 1377 memset(&hk, 0, sizeof(hk)); 1378 hk.kv_type = HAL_CIPHER_WEP; 1379 hk.kv_len = k->wk_len; 1380 memcpy(hk.kv_val, k->wk_key, k->wk_len); 1381 /* XXX return value */ 1382 ath_hal_keyset(ah, i, &hk); 1383 } 1384 } 1385 } 1386 1387 static void 1388 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2]) 1389 { 1390 u_int32_t val; 1391 u_int8_t pos; 1392 1393 val = LE_READ_4(dl + 0); 1394 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1395 val = LE_READ_4(dl + 3); 1396 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1397 pos &= 0x3f; 1398 (*mfilt)[pos / 32] |= (1 << (pos % 32)); 1399 } 1400 1401 #ifdef __FreeBSD__ 1402 static void 1403 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2]) 1404 { 1405 struct ieee80211com *ic = &sc->sc_ic; 1406 struct ifnet *ifp = &ic->ic_if; 1407 struct ifmultiaddr *ifma; 1408 1409 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1410 caddr_t dl; 1411 1412 /* calculate XOR of eight 6bit values */ 1413 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1414 ath_mcastfilter_accum(dl, &mfilt); 1415 } 1416 } 1417 #else 1418 static void 1419 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2]) 1420 { 1421 struct ifnet *ifp = &sc->sc_ic.ic_if; 1422 struct ether_multi *enm; 1423 struct ether_multistep estep; 1424 1425 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm); 1426 while (enm != NULL) { 1427 /* XXX Punt on ranges. */ 1428 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1429 (*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0); 1430 ifp->if_flags |= IFF_ALLMULTI; 1431 return; 1432 } 1433 ath_mcastfilter_accum(enm->enm_addrlo, mfilt); 1434 ETHER_NEXT_MULTI(estep, enm); 1435 } 1436 ifp->if_flags &= ~IFF_ALLMULTI; 1437 } 1438 #endif 1439 1440 /* 1441 * Calculate the receive filter according to the 1442 * operating mode and state: 1443 * 1444 * o always accept unicast, broadcast, and multicast traffic 1445 * o maintain current state of phy error reception 1446 * o probe request frames are accepted only when operating in 1447 * hostap, adhoc, or monitor modes 1448 * o enable promiscuous mode according to the interface state 1449 * o accept beacons: 1450 * - when operating in adhoc mode so the 802.11 layer creates 1451 * node table entries for peers, 1452 * - when operating in station mode for collecting rssi data when 1453 * the station is otherwise quiet, or 1454 * - when scanning 1455 */ 1456 static u_int32_t 1457 ath_calcrxfilter(struct ath_softc *sc) 1458 { 1459 struct ieee80211com *ic = &sc->sc_ic; 1460 struct ath_hal *ah = sc->sc_ah; 1461 struct ifnet *ifp = &ic->ic_if; 1462 u_int32_t rfilt; 1463 1464 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1465 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1466 if (ic->ic_opmode != IEEE80211_M_STA) 1467 rfilt |= HAL_RX_FILTER_PROBEREQ; 1468 if (ic->ic_opmode != IEEE80211_M_AHDEMO) 1469 rfilt |= HAL_RX_FILTER_BEACON; 1470 if (ifp->if_flags & IFF_PROMISC) 1471 rfilt |= HAL_RX_FILTER_PROM; 1472 return rfilt; 1473 } 1474 1475 static void 1476 ath_mode_init(struct ath_softc *sc) 1477 { 1478 #ifdef __FreeBSD__ 1479 struct ieee80211com *ic = &sc->sc_ic; 1480 #endif 1481 struct ath_hal *ah = sc->sc_ah; 1482 u_int32_t rfilt, mfilt[2]; 1483 1484 /* configure rx filter */ 1485 rfilt = ath_calcrxfilter(sc); 1486 ath_hal_setrxfilter(ah, rfilt); 1487 1488 /* configure operational mode */ 1489 ath_hal_setopmode(ah); 1490 1491 /* calculate and install multicast filter */ 1492 #ifdef __FreeBSD__ 1493 if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) { 1494 mfilt[0] = mfilt[1] = 0; 1495 ath_mcastfilter_compute(sc, &mfilt); 1496 } else { 1497 mfilt[0] = mfilt[1] = ~0; 1498 } 1499 #endif 1500 #ifdef __NetBSD__ 1501 mfilt[0] = mfilt[1] = 0; 1502 ath_mcastfilter_compute(sc, &mfilt); 1503 #endif 1504 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1505 DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n", 1506 __func__, rfilt, mfilt[0], mfilt[1])); 1507 } 1508 1509 #ifdef __FreeBSD__ 1510 static void 1511 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error) 1512 { 1513 struct ath_buf *bf = arg; 1514 1515 KASSERT(nseg <= ATH_MAX_SCATTER, 1516 ("ath_mbuf_load_cb: too many DMA segments %u", nseg)); 1517 bf->bf_mapsize = mapsize; 1518 bf->bf_nseg = nseg; 1519 bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0])); 1520 } 1521 #endif /* __FreeBSD__ */ 1522 1523 static struct mbuf * 1524 ath_getmbuf(int flags, int type, u_int pktlen) 1525 { 1526 struct mbuf *m; 1527 1528 KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen)); 1529 #ifdef __FreeBSD__ 1530 if (pktlen <= MHLEN) 1531 MGETHDR(m, flags, type); 1532 else 1533 m = m_getcl(flags, type, M_PKTHDR); 1534 #else 1535 MGETHDR(m, flags, type); 1536 if (m != NULL && pktlen > MHLEN) { 1537 MCLGET(m, flags); 1538 if ((m->m_flags & M_EXT) == 0) { 1539 m_free(m); 1540 m = NULL; 1541 } 1542 } 1543 #endif 1544 return m; 1545 } 1546 1547 static int 1548 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1549 { 1550 struct ieee80211com *ic = &sc->sc_ic; 1551 struct ifnet *ifp = &ic->ic_if; 1552 struct ath_hal *ah = sc->sc_ah; 1553 struct ieee80211_frame *wh; 1554 struct ath_buf *bf; 1555 struct ath_desc *ds; 1556 struct mbuf *m; 1557 int error, pktlen; 1558 u_int8_t *frm, rate; 1559 u_int16_t capinfo; 1560 struct ieee80211_rateset *rs; 1561 const HAL_RATE_TABLE *rt; 1562 u_int flags; 1563 1564 bf = sc->sc_bcbuf; 1565 if (bf->bf_m != NULL) { 1566 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1567 m_freem(bf->bf_m); 1568 bf->bf_m = NULL; 1569 bf->bf_node = NULL; 1570 } 1571 /* 1572 * NB: the beacon data buffer must be 32-bit aligned; 1573 * we assume the mbuf routines will return us something 1574 * with this alignment (perhaps should assert). 1575 */ 1576 rs = &ni->ni_rates; 1577 pktlen = sizeof (struct ieee80211_frame) 1578 + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6; 1579 if (rs->rs_nrates > IEEE80211_RATE_SIZE) 1580 pktlen += 2; 1581 m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen); 1582 if (m == NULL) { 1583 DPRINTF(ATH_DEBUG_BEACON, 1584 ("%s: cannot get mbuf/cluster; size %u\n", 1585 __func__, pktlen)); 1586 sc->sc_stats.ast_be_nombuf++; 1587 return ENOMEM; 1588 } 1589 1590 wh = mtod(m, struct ieee80211_frame *); 1591 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1592 IEEE80211_FC0_SUBTYPE_BEACON; 1593 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1594 *(u_int16_t *)wh->i_dur = 0; 1595 memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN); 1596 memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN); 1597 memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN); 1598 *(u_int16_t *)wh->i_seq = 0; 1599 1600 /* 1601 * beacon frame format 1602 * [8] time stamp 1603 * [2] beacon interval 1604 * [2] cabability information 1605 * [tlv] ssid 1606 * [tlv] supported rates 1607 * [tlv] parameter set (IBSS) 1608 * [tlv] extended supported rates 1609 */ 1610 frm = (u_int8_t *)&wh[1]; 1611 memset(frm, 0, 8); /* timestamp is set by hardware */ 1612 frm += 8; 1613 *(u_int16_t *)frm = htole16(ni->ni_intval); 1614 frm += 2; 1615 if (ic->ic_opmode == IEEE80211_M_IBSS) 1616 capinfo = IEEE80211_CAPINFO_IBSS; 1617 else 1618 capinfo = IEEE80211_CAPINFO_ESS; 1619 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1620 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1621 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1622 IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) 1623 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1624 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1625 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1626 *(u_int16_t *)frm = htole16(capinfo); 1627 frm += 2; 1628 *frm++ = IEEE80211_ELEMID_SSID; 1629 *frm++ = ni->ni_esslen; 1630 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1631 frm += ni->ni_esslen; 1632 frm = ieee80211_add_rates(frm, rs); 1633 *frm++ = IEEE80211_ELEMID_DSPARMS; 1634 *frm++ = 1; 1635 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1636 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1637 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1638 *frm++ = 2; 1639 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1640 } else { 1641 /* TODO: TIM */ 1642 *frm++ = IEEE80211_ELEMID_TIM; 1643 *frm++ = 4; /* length */ 1644 *frm++ = 0; /* DTIM count */ 1645 *frm++ = 1; /* DTIM period */ 1646 *frm++ = 0; /* bitmap control */ 1647 *frm++ = 0; /* Partial Virtual Bitmap (variable length) */ 1648 } 1649 frm = ieee80211_add_xrates(frm, rs); 1650 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1651 KASSERT(m->m_pkthdr.len <= pktlen, 1652 ("beacon bigger than expected, len %u calculated %u", 1653 m->m_pkthdr.len, pktlen)); 1654 1655 DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len)); 1656 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT); 1657 if (error != 0) { 1658 m_freem(m); 1659 return error; 1660 } 1661 KASSERT(bf->bf_nseg == 1, 1662 ("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg)); 1663 bf->bf_m = m; 1664 1665 /* setup descriptors */ 1666 ds = bf->bf_desc; 1667 1668 if (ic->ic_opmode == IEEE80211_M_IBSS) 1669 ds->ds_link = bf->bf_daddr; /* link to self */ 1670 else 1671 ds->ds_link = 0; 1672 ds->ds_data = bf->bf_segs[0].ds_addr; 1673 1674 DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__, 1675 (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len)); 1676 1677 /* 1678 * Calculate rate code. 1679 * XXX everything at min xmit rate 1680 */ 1681 rt = sc->sc_currates; 1682 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 1683 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 1684 rate = rt->info[0].rateCode | rt->info[0].shortPreamble; 1685 else 1686 rate = rt->info[0].rateCode; 1687 1688 flags = HAL_TXDESC_NOACK; 1689 if (ic->ic_opmode == IEEE80211_M_IBSS) 1690 flags |= HAL_TXDESC_VEOL; 1691 1692 if (!ath_hal_setuptxdesc(ah, ds 1693 , m->m_pkthdr.len + IEEE80211_CRC_LEN /* packet length */ 1694 , sizeof(struct ieee80211_frame) /* header length */ 1695 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 1696 , 0x20 /* txpower XXX */ 1697 , rate, 1 /* series 0 rate/tries */ 1698 , HAL_TXKEYIX_INVALID /* no encryption */ 1699 , 0 /* antenna mode */ 1700 , flags /* no ack for beacons */ 1701 , 0 /* rts/cts rate */ 1702 , 0 /* rts/cts duration */ 1703 )) { 1704 printf("%s: ath_hal_setuptxdesc failed\n", __func__); 1705 return -1; 1706 } 1707 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 1708 /* XXX verify mbuf data area covers this roundup */ 1709 if (!ath_hal_filltxdesc(ah, ds 1710 , roundup(bf->bf_segs[0].ds_len, 4) /* buffer length */ 1711 , AH_TRUE /* first segment */ 1712 , AH_TRUE /* last segment */ 1713 )) { 1714 printf("%s: ath_hal_filltxdesc failed\n", __func__); 1715 return -1; 1716 } 1717 1718 /* XXX it is not appropriate to bus_dmamap_sync? -dcy */ 1719 1720 return 0; 1721 } 1722 1723 static void 1724 ath_beacon_proc(struct ath_softc *sc, int pending) 1725 { 1726 struct ieee80211com *ic = &sc->sc_ic; 1727 struct ath_buf *bf = sc->sc_bcbuf; 1728 struct ath_hal *ah = sc->sc_ah; 1729 1730 DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending)); 1731 if (ic->ic_opmode == IEEE80211_M_STA || 1732 bf == NULL || bf->bf_m == NULL) { 1733 DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n", 1734 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL)); 1735 return; 1736 } 1737 /* TODO: update beacon to reflect PS poll state */ 1738 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 1739 DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n", 1740 __func__, sc->sc_bhalq)); 1741 /* NB: the HAL still stops DMA, so proceed */ 1742 } 1743 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE); 1744 1745 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 1746 ath_hal_txstart(ah, sc->sc_bhalq); 1747 DPRINTF(ATH_DEBUG_BEACON_PROC, 1748 ("%s: TXDP%u = %p (%p)\n", __func__, 1749 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc)); 1750 } 1751 1752 static void 1753 ath_beacon_free(struct ath_softc *sc) 1754 { 1755 struct ath_buf *bf = sc->sc_bcbuf; 1756 1757 if (bf->bf_m != NULL) { 1758 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 1759 m_freem(bf->bf_m); 1760 bf->bf_m = NULL; 1761 bf->bf_node = NULL; 1762 } 1763 } 1764 1765 /* 1766 * Configure the beacon and sleep timers. 1767 * 1768 * When operating as an AP this resets the TSF and sets 1769 * up the hardware to notify us when we need to issue beacons. 1770 * 1771 * When operating in station mode this sets up the beacon 1772 * timers according to the timestamp of the last received 1773 * beacon and the current TSF, configures PCF and DTIM 1774 * handling, programs the sleep registers so the hardware 1775 * will wakeup in time to receive beacons, and configures 1776 * the beacon miss handling so we'll receive a BMISS 1777 * interrupt when we stop seeing beacons from the AP 1778 * we've associated with. 1779 */ 1780 static void 1781 ath_beacon_config(struct ath_softc *sc) 1782 { 1783 struct ath_hal *ah = sc->sc_ah; 1784 struct ieee80211com *ic = &sc->sc_ic; 1785 struct ieee80211_node *ni = ic->ic_bss; 1786 u_int32_t nexttbtt, intval; 1787 1788 nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) | 1789 (LE_READ_4(ni->ni_tstamp) >> 10); 1790 DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt)); 1791 nexttbtt += ni->ni_intval; 1792 intval = ni->ni_intval & HAL_BEACON_PERIOD; 1793 if (ic->ic_opmode == IEEE80211_M_STA) { 1794 HAL_BEACON_STATE bs; 1795 u_int32_t bmisstime; 1796 1797 /* NB: no PCF support right now */ 1798 memset(&bs, 0, sizeof(bs)); 1799 /* 1800 * Reset our tsf so the hardware will update the 1801 * tsf register to reflect timestamps found in 1802 * received beacons. 1803 */ 1804 bs.bs_intval = intval | HAL_BEACON_RESET_TSF; 1805 bs.bs_nexttbtt = nexttbtt; 1806 bs.bs_dtimperiod = bs.bs_intval; 1807 bs.bs_nextdtim = nexttbtt; 1808 /* 1809 * Calculate the number of consecutive beacons to miss 1810 * before taking a BMISS interrupt. The configuration 1811 * is specified in ms, so we need to convert that to 1812 * TU's and then calculate based on the beacon interval. 1813 * Note that we clamp the result to at most 10 beacons. 1814 */ 1815 bmisstime = (ic->ic_bmisstimeout * 1000) / 1024; 1816 bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval); 1817 if (bs.bs_bmissthreshold > 10) 1818 bs.bs_bmissthreshold = 10; 1819 else if (bs.bs_bmissthreshold <= 0) 1820 bs.bs_bmissthreshold = 1; 1821 1822 /* 1823 * Calculate sleep duration. The configuration is 1824 * given in ms. We insure a multiple of the beacon 1825 * period is used. Also, if the sleep duration is 1826 * greater than the DTIM period then it makes senses 1827 * to make it a multiple of that. 1828 * 1829 * XXX fixed at 100ms 1830 */ 1831 bs.bs_sleepduration = 1832 roundup((100 * 1000) / 1024, bs.bs_intval); 1833 if (bs.bs_sleepduration > bs.bs_dtimperiod) 1834 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 1835 1836 DPRINTF(ATH_DEBUG_BEACON, 1837 ("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n" 1838 , __func__ 1839 , bs.bs_intval 1840 , bs.bs_nexttbtt 1841 , bs.bs_dtimperiod 1842 , bs.bs_nextdtim 1843 , bs.bs_bmissthreshold 1844 , bs.bs_sleepduration 1845 )); 1846 ath_hal_intrset(ah, 0); 1847 ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0); 1848 sc->sc_imask |= HAL_INT_BMISS; 1849 ath_hal_intrset(ah, sc->sc_imask); 1850 } else { 1851 ath_hal_intrset(ah, 0); 1852 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 1853 intval |= HAL_BEACON_ENA; 1854 switch (ic->ic_opmode) { 1855 /* No beacons in monitor, ad hoc-demo modes. */ 1856 case IEEE80211_M_MONITOR: 1857 case IEEE80211_M_AHDEMO: 1858 intval &= ~HAL_BEACON_ENA; 1859 /*FALLTHROUGH*/ 1860 /* In IBSS mode, I am uncertain how SWBA interrupts 1861 * work, so I just turn them off and use a self-linked 1862 * descriptor. 1863 */ 1864 case IEEE80211_M_IBSS: 1865 sc->sc_imask &= ~HAL_INT_SWBA; 1866 nexttbtt = ni->ni_intval; 1867 /*FALLTHROUGH*/ 1868 case IEEE80211_M_HOSTAP: 1869 default: 1870 if (nexttbtt == ni->ni_intval) 1871 intval |= HAL_BEACON_RESET_TSF; 1872 break; 1873 } 1874 DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n", 1875 __func__, ni->ni_intval, nexttbtt)); 1876 ath_hal_beaconinit(ah, nexttbtt, intval); 1877 ath_hal_intrset(ah, sc->sc_imask); 1878 if (ic->ic_opmode == IEEE80211_M_IBSS) 1879 ath_beacon_proc(sc, 0); 1880 } 1881 } 1882 1883 #ifdef __FreeBSD__ 1884 static void 1885 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 1886 { 1887 bus_addr_t *paddr = (bus_addr_t*) arg; 1888 *paddr = segs->ds_addr; 1889 } 1890 #endif 1891 1892 #ifdef __FreeBSD__ 1893 static int 1894 ath_desc_alloc(struct ath_softc *sc) 1895 { 1896 int i, bsize, error; 1897 struct ath_desc *ds; 1898 struct ath_buf *bf; 1899 1900 /* allocate descriptors */ 1901 sc->sc_desc_len = sizeof(struct ath_desc) * 1902 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1); 1903 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap); 1904 if (error != 0) 1905 return error; 1906 1907 error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc, 1908 BUS_DMA_NOWAIT, &sc->sc_ddmamap); 1909 1910 if (error != 0) 1911 goto fail0; 1912 1913 error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, 1914 sc->sc_desc, sc->sc_desc_len, 1915 ath_load_cb, &sc->sc_desc_paddr, 1916 BUS_DMA_NOWAIT); 1917 if (error != 0) 1918 goto fail1; 1919 1920 ds = sc->sc_desc; 1921 DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n", 1922 __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr, 1923 /*XXX*/ (u_long) sc->sc_desc_len)); 1924 1925 /* allocate buffers */ 1926 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1); 1927 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO); 1928 if (bf == NULL) { 1929 printf("%s: unable to allocate Tx/Rx buffers\n", 1930 sc->sc_dev.dv_xname); 1931 error = -1; 1932 goto fail2; 1933 } 1934 sc->sc_bufptr = bf; 1935 1936 TAILQ_INIT(&sc->sc_rxbuf); 1937 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) { 1938 bf->bf_desc = ds; 1939 bf->bf_daddr = sc->sc_desc_paddr + 1940 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1941 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 1942 &bf->bf_dmamap); 1943 if (error != 0) 1944 break; 1945 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 1946 } 1947 1948 TAILQ_INIT(&sc->sc_txbuf); 1949 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) { 1950 bf->bf_desc = ds; 1951 bf->bf_daddr = sc->sc_desc_paddr + 1952 ((caddr_t)ds - (caddr_t)sc->sc_desc); 1953 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 1954 &bf->bf_dmamap); 1955 if (error != 0) 1956 break; 1957 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1958 } 1959 TAILQ_INIT(&sc->sc_txq); 1960 1961 /* beacon buffer */ 1962 bf->bf_desc = ds; 1963 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); 1964 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap); 1965 if (error != 0) 1966 return error; 1967 sc->sc_bcbuf = bf; 1968 return 0; 1969 1970 fail2: 1971 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 1972 fail1: 1973 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap); 1974 fail0: 1975 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 1976 sc->sc_ddmamap = NULL; 1977 return error; 1978 } 1979 #else 1980 static int 1981 ath_desc_alloc(struct ath_softc *sc) 1982 { 1983 int i, bsize, error = -1; 1984 struct ath_desc *ds; 1985 struct ath_buf *bf; 1986 1987 /* allocate descriptors */ 1988 sc->sc_desc_len = sizeof(struct ath_desc) * 1989 (ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1); 1990 if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE, 1991 0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) { 1992 printf("%s: unable to allocate control data, error = %d\n", 1993 sc->sc_dev.dv_xname, error); 1994 goto fail0; 1995 } 1996 1997 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg, 1998 sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) { 1999 printf("%s: unable to map control data, error = %d\n", 2000 sc->sc_dev.dv_xname, error); 2001 goto fail1; 2002 } 2003 2004 if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1, 2005 sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) { 2006 printf("%s: unable to create control data DMA map, " 2007 "error = %d\n", sc->sc_dev.dv_xname, error); 2008 goto fail2; 2009 } 2010 2011 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc, 2012 sc->sc_desc_len, NULL, 0)) != 0) { 2013 printf("%s: unable to load control data DMA map, error = %d\n", 2014 sc->sc_dev.dv_xname, error); 2015 goto fail3; 2016 } 2017 2018 ds = sc->sc_desc; 2019 sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr; 2020 2021 DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC, 2022 ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n", 2023 ds, (u_long)sc->sc_desc_len, 2024 (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len)); 2025 2026 /* allocate buffers */ 2027 bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1); 2028 bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO); 2029 if (bf == NULL) { 2030 printf("%s: unable to allocate Tx/Rx buffers\n", 2031 sc->sc_dev.dv_xname); 2032 error = ENOMEM; 2033 goto fail3; 2034 } 2035 sc->sc_bufptr = bf; 2036 2037 TAILQ_INIT(&sc->sc_rxbuf); 2038 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) { 2039 bf->bf_desc = ds; 2040 bf->bf_daddr = sc->sc_desc_paddr + 2041 ((caddr_t)ds - (caddr_t)sc->sc_desc); 2042 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 2043 MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { 2044 printf("%s: unable to create Rx dmamap, error = %d\n", 2045 sc->sc_dev.dv_xname, error); 2046 goto fail4; 2047 } 2048 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2049 } 2050 2051 TAILQ_INIT(&sc->sc_txbuf); 2052 for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) { 2053 bf->bf_desc = ds; 2054 bf->bf_daddr = sc->sc_desc_paddr + 2055 ((caddr_t)ds - (caddr_t)sc->sc_desc); 2056 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 2057 ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) { 2058 printf("%s: unable to create Tx dmamap, error = %d\n", 2059 sc->sc_dev.dv_xname, error); 2060 goto fail5; 2061 } 2062 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2063 } 2064 TAILQ_INIT(&sc->sc_txq); 2065 2066 /* beacon buffer */ 2067 bf->bf_desc = ds; 2068 bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc); 2069 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 2070 &bf->bf_dmamap)) != 0) { 2071 printf("%s: unable to create beacon dmamap, error = %d\n", 2072 sc->sc_dev.dv_xname, error); 2073 goto fail5; 2074 } 2075 sc->sc_bcbuf = bf; 2076 return 0; 2077 2078 fail5: 2079 for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) { 2080 if (sc->sc_bufptr[i].bf_dmamap == NULL) 2081 continue; 2082 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap); 2083 } 2084 fail4: 2085 for (i = 0; i < ATH_RXBUF; i++) { 2086 if (sc->sc_bufptr[i].bf_dmamap == NULL) 2087 continue; 2088 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap); 2089 } 2090 fail3: 2091 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 2092 fail2: 2093 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 2094 sc->sc_ddmamap = NULL; 2095 fail1: 2096 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len); 2097 fail0: 2098 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg); 2099 return error; 2100 } 2101 #endif 2102 2103 static void 2104 ath_desc_free(struct ath_softc *sc) 2105 { 2106 struct ath_buf *bf; 2107 2108 #ifdef __FreeBSD__ 2109 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 2110 bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap); 2111 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 2112 #else 2113 bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap); 2114 bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap); 2115 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg); 2116 #endif 2117 2118 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 2119 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2120 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2121 m_freem(bf->bf_m); 2122 } 2123 TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list) 2124 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2125 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 2126 if (bf->bf_m) { 2127 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2128 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2129 m_freem(bf->bf_m); 2130 bf->bf_m = NULL; 2131 } 2132 } 2133 if (sc->sc_bcbuf != NULL) { 2134 bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 2135 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap); 2136 sc->sc_bcbuf = NULL; 2137 } 2138 2139 TAILQ_INIT(&sc->sc_rxbuf); 2140 TAILQ_INIT(&sc->sc_txbuf); 2141 TAILQ_INIT(&sc->sc_txq); 2142 free(sc->sc_bufptr, M_DEVBUF); 2143 sc->sc_bufptr = NULL; 2144 } 2145 2146 static struct ieee80211_node * 2147 ath_node_alloc(struct ieee80211com *ic) 2148 { 2149 struct ath_node *an = 2150 malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO); 2151 if (an) { 2152 int i; 2153 for (i = 0; i < ATH_RHIST_SIZE; i++) 2154 an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME; 2155 an->an_rx_hist_next = ATH_RHIST_SIZE-1; 2156 return &an->an_node; 2157 } else 2158 return NULL; 2159 } 2160 2161 static void 2162 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) 2163 { 2164 struct ath_softc *sc = ic->ic_if.if_softc; 2165 struct ath_buf *bf; 2166 2167 TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) { 2168 if (bf->bf_node == ni) 2169 bf->bf_node = NULL; 2170 } 2171 (*sc->sc_node_free)(ic, ni); 2172 } 2173 2174 static void 2175 ath_node_copy(struct ieee80211com *ic, 2176 struct ieee80211_node *dst, const struct ieee80211_node *src) 2177 { 2178 struct ath_softc *sc = ic->ic_if.if_softc; 2179 2180 memcpy(&dst[1], &src[1], 2181 sizeof(struct ath_node) - sizeof(struct ieee80211_node)); 2182 (*sc->sc_node_copy)(ic, dst, src); 2183 } 2184 2185 static u_int8_t 2186 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni) 2187 { 2188 struct ath_node *an = ATH_NODE(ni); 2189 int i, now, nsamples, rssi; 2190 2191 /* 2192 * Calculate the average over the last second of sampled data. 2193 */ 2194 now = ATH_TICKS(); 2195 nsamples = 0; 2196 rssi = 0; 2197 i = an->an_rx_hist_next; 2198 do { 2199 struct ath_recv_hist *rh = &an->an_rx_hist[i]; 2200 if (rh->arh_ticks == ATH_RHIST_NOTIME) 2201 goto done; 2202 if (now - rh->arh_ticks > hz) 2203 goto done; 2204 rssi += rh->arh_rssi; 2205 nsamples++; 2206 if (i == 0) 2207 i = ATH_RHIST_SIZE-1; 2208 else 2209 i--; 2210 } while (i != an->an_rx_hist_next); 2211 done: 2212 /* 2213 * Return either the average or the last known 2214 * value if there is no recent data. 2215 */ 2216 return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi); 2217 } 2218 2219 static int 2220 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2221 { 2222 struct ath_hal *ah = sc->sc_ah; 2223 int error; 2224 struct mbuf *m; 2225 struct ath_desc *ds; 2226 2227 m = bf->bf_m; 2228 if (m == NULL) { 2229 /* 2230 * NB: by assigning a page to the rx dma buffer we 2231 * implicitly satisfy the Atheros requirement that 2232 * this buffer be cache-line-aligned and sized to be 2233 * multiple of the cache line size. Not doing this 2234 * causes weird stuff to happen (for the 5210 at least). 2235 */ 2236 m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES); 2237 if (m == NULL) { 2238 DPRINTF(ATH_DEBUG_ANY, 2239 ("%s: no mbuf/cluster\n", __func__)); 2240 sc->sc_stats.ast_rx_nombuf++; 2241 return ENOMEM; 2242 } 2243 bf->bf_m = m; 2244 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2245 2246 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, 2247 BUS_DMA_NOWAIT); 2248 if (error != 0) { 2249 DPRINTF(ATH_DEBUG_ANY, 2250 ("%s: ath_buf_dmamap_load_mbuf failed;" 2251 " error %d\n", __func__, error)); 2252 sc->sc_stats.ast_rx_busdma++; 2253 return error; 2254 } 2255 KASSERT(bf->bf_nseg == 1, 2256 ("ath_rxbuf_init: multi-segment packet; nseg %u", 2257 bf->bf_nseg)); 2258 } 2259 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD); 2260 2261 /* 2262 * Setup descriptors. For receive we always terminate 2263 * the descriptor list with a self-linked entry so we'll 2264 * not get overrun under high load (as can happen with a 2265 * 5212 when ANI processing enables PHY errors). 2266 * 2267 * To insure the last descriptor is self-linked we create 2268 * each descriptor as self-linked and add it to the end. As 2269 * each additional descriptor is added the previous self-linked 2270 * entry is ``fixed'' naturally. This should be safe even 2271 * if DMA is happening. When processing RX interrupts we 2272 * never remove/process the last, self-linked, entry on the 2273 * descriptor list. This insures the hardware always has 2274 * someplace to write a new frame. 2275 */ 2276 ds = bf->bf_desc; 2277 ds->ds_link = bf->bf_daddr; /* link to self */ 2278 ds->ds_data = bf->bf_segs[0].ds_addr; 2279 ath_hal_setuprxdesc(ah, ds 2280 , m->m_len /* buffer size */ 2281 , 0 2282 ); 2283 2284 if (sc->sc_rxlink != NULL) 2285 *sc->sc_rxlink = bf->bf_daddr; 2286 sc->sc_rxlink = &ds->ds_link; 2287 return 0; 2288 } 2289 2290 static void 2291 ath_rx_proc(void *arg, int npending) 2292 { 2293 #define PA2DESC(_sc, _pa) \ 2294 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 2295 ((_pa) - (_sc)->sc_desc_paddr))) 2296 struct ath_softc *sc = arg; 2297 struct ath_buf *bf; 2298 struct ieee80211com *ic = &sc->sc_ic; 2299 struct ifnet *ifp = &ic->ic_if; 2300 struct ath_hal *ah = sc->sc_ah; 2301 struct ath_desc *ds; 2302 struct mbuf *m; 2303 struct ieee80211_frame *wh, whbuf; 2304 struct ieee80211_node *ni; 2305 struct ath_node *an; 2306 struct ath_recv_hist *rh; 2307 int len; 2308 u_int phyerr; 2309 HAL_STATUS status; 2310 2311 DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending)); 2312 do { 2313 bf = TAILQ_FIRST(&sc->sc_rxbuf); 2314 if (bf == NULL) { /* NB: shouldn't happen */ 2315 if_printf(ifp, "ath_rx_proc: no buffer!\n"); 2316 break; 2317 } 2318 ds = bf->bf_desc; 2319 if (ds->ds_link == bf->bf_daddr) { 2320 /* NB: never process the self-linked entry at the end */ 2321 break; 2322 } 2323 m = bf->bf_m; 2324 if (m == NULL) { /* NB: shouldn't happen */ 2325 if_printf(ifp, "ath_rx_proc: no mbuf!\n"); 2326 continue; 2327 } 2328 /* XXX sync descriptor memory */ 2329 /* 2330 * Must provide the virtual address of the current 2331 * descriptor, the physical address, and the virtual 2332 * address of the next descriptor in the h/w chain. 2333 * This allows the HAL to look ahead to see if the 2334 * hardware is done with a descriptor by checking the 2335 * done bit in the following descriptor and the address 2336 * of the current descriptor the DMA engine is working 2337 * on. All this is necessary because of our use of 2338 * a self-linked list to avoid rx overruns. 2339 */ 2340 status = ath_hal_rxprocdesc(ah, ds, 2341 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2342 #ifdef AR_DEBUG 2343 if (ath_debug & ATH_DEBUG_RECV_DESC) 2344 ath_printrxbuf(bf, status == HAL_OK); 2345 #endif 2346 if (status == HAL_EINPROGRESS) 2347 break; 2348 TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list); 2349 2350 if (ds->ds_rxstat.rs_more) { 2351 /* 2352 * Frame spans multiple descriptors; this 2353 * cannot happen yet as we don't support 2354 * jumbograms. If not in monitor mode, 2355 * discard the frame. 2356 */ 2357 2358 /* enable this if you want to see error frames in Monitor mode */ 2359 #ifdef ERROR_FRAMES 2360 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2361 /* XXX statistic */ 2362 goto rx_next; 2363 } 2364 #endif 2365 /* fall thru for monitor mode handling... */ 2366 2367 } else if (ds->ds_rxstat.rs_status != 0) { 2368 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2369 sc->sc_stats.ast_rx_crcerr++; 2370 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2371 sc->sc_stats.ast_rx_fifoerr++; 2372 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) 2373 sc->sc_stats.ast_rx_badcrypt++; 2374 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2375 sc->sc_stats.ast_rx_phyerr++; 2376 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2377 sc->sc_stats.ast_rx_phy[phyerr]++; 2378 } 2379 2380 /* 2381 * reject error frames, we normally don't want 2382 * to see them in monitor mode. 2383 */ 2384 if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) || 2385 (ds->ds_rxstat.rs_status & HAL_RXERR_PHY)) 2386 goto rx_next; 2387 2388 /* 2389 * In monitor mode, allow through packets that 2390 * cannot be decrypted 2391 */ 2392 if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) || 2393 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 2394 goto rx_next; 2395 } 2396 2397 len = ds->ds_rxstat.rs_datalen; 2398 if (len < IEEE80211_MIN_LEN) { 2399 DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n", 2400 __func__, len)); 2401 sc->sc_stats.ast_rx_tooshort++; 2402 goto rx_next; 2403 } 2404 2405 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD); 2406 2407 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2408 bf->bf_m = NULL; 2409 m->m_pkthdr.rcvif = ifp; 2410 m->m_pkthdr.len = m->m_len = len; 2411 2412 #if NBPFILTER > 0 2413 if (sc->sc_drvbpf) { 2414 sc->sc_rx_th.wr_rate = 2415 sc->sc_hwmap[ds->ds_rxstat.rs_rate]; 2416 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 2417 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 2418 /* XXX TSF */ 2419 bpf_mtap2(sc->sc_drvbpf, 2420 &sc->sc_rx_th, sc->sc_rx_th_len, m); 2421 } 2422 #endif 2423 2424 m_adj(m, -IEEE80211_CRC_LEN); 2425 wh = mtod(m, struct ieee80211_frame *); 2426 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2427 /* 2428 * WEP is decrypted by hardware. Clear WEP bit 2429 * and trim WEP header for ieee80211_input(). 2430 */ 2431 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 2432 memcpy(&whbuf, wh, sizeof(whbuf)); 2433 m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN); 2434 wh = mtod(m, struct ieee80211_frame *); 2435 memcpy(wh, &whbuf, sizeof(whbuf)); 2436 /* 2437 * Also trim WEP ICV from the tail. 2438 */ 2439 m_adj(m, -IEEE80211_WEP_CRCLEN); 2440 /* 2441 * The header has probably moved. 2442 */ 2443 wh = mtod(m, struct ieee80211_frame *); 2444 } 2445 2446 /* 2447 * Locate the node for sender, track state, and 2448 * then pass this node (referenced) up to the 802.11 2449 * layer for its use. 2450 */ 2451 ni = ieee80211_find_rxnode(ic, wh); 2452 2453 /* 2454 * Record driver-specific state. 2455 */ 2456 an = ATH_NODE(ni); 2457 if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE) 2458 an->an_rx_hist_next = 0; 2459 rh = &an->an_rx_hist[an->an_rx_hist_next]; 2460 rh->arh_ticks = ATH_TICKS(); 2461 rh->arh_rssi = ds->ds_rxstat.rs_rssi; 2462 rh->arh_antenna = ds->ds_rxstat.rs_antenna; 2463 2464 /* 2465 * Send frame up for processing. 2466 */ 2467 ieee80211_input(ifp, m, ni, 2468 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2469 2470 /* 2471 * The frame may have caused the node to be marked for 2472 * reclamation (e.g. in response to a DEAUTH message) 2473 * so use release_node here instead of unref_node. 2474 */ 2475 ieee80211_release_node(ic, ni); 2476 rx_next: 2477 TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 2478 } while (ath_rxbuf_init(sc, bf) == 0); 2479 2480 ath_hal_rxmonitor(ah); /* rx signal state monitoring */ 2481 ath_hal_rxena(ah); /* in case of RXEOL */ 2482 2483 #ifdef __NetBSD__ 2484 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 2485 ath_start(ifp); 2486 #endif /* __NetBSD__ */ 2487 #undef PA2DESC 2488 } 2489 2490 /* 2491 * XXX Size of an ACK control frame in bytes. 2492 */ 2493 #define IEEE80211_ACK_SIZE (2+2+IEEE80211_ADDR_LEN+4) 2494 2495 static int 2496 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 2497 struct mbuf *m0) 2498 { 2499 struct ieee80211com *ic = &sc->sc_ic; 2500 struct ath_hal *ah = sc->sc_ah; 2501 struct ifnet *ifp = &sc->sc_ic.ic_if; 2502 int i, error, iswep, hdrlen, pktlen; 2503 u_int8_t rix, cix, txrate, ctsrate; 2504 struct ath_desc *ds; 2505 struct mbuf *m; 2506 struct ieee80211_frame *wh; 2507 u_int32_t iv; 2508 u_int8_t *ivp; 2509 u_int8_t hdrbuf[sizeof(struct ieee80211_frame) + 2510 IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN]; 2511 u_int subtype, flags, ctsduration, antenna; 2512 HAL_PKT_TYPE atype; 2513 const HAL_RATE_TABLE *rt; 2514 HAL_BOOL shortPreamble; 2515 struct ath_node *an; 2516 ath_txq_critsect_decl(s); 2517 2518 wh = mtod(m0, struct ieee80211_frame *); 2519 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 2520 hdrlen = sizeof(struct ieee80211_frame); 2521 pktlen = m0->m_pkthdr.len; 2522 2523 if (iswep) { 2524 memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen); 2525 m_adj(m0, hdrlen); 2526 M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT); 2527 if (m0 == NULL) { 2528 sc->sc_stats.ast_tx_nombuf++; 2529 return ENOMEM; 2530 } 2531 ivp = hdrbuf + hdrlen; 2532 wh = mtod(m0, struct ieee80211_frame *); 2533 /* 2534 * XXX 2535 * IV must not duplicate during the lifetime of the key. 2536 * But no mechanism to renew keys is defined in IEEE 802.11 2537 * for WEP. And the IV may be duplicated at other stations 2538 * because the session key itself is shared. So we use a 2539 * pseudo random IV for now, though it is not the right way. 2540 * 2541 * NB: Rather than use a strictly random IV we select a 2542 * random one to start and then increment the value for 2543 * each frame. This is an explicit tradeoff between 2544 * overhead and security. Given the basic insecurity of 2545 * WEP this seems worthwhile. 2546 */ 2547 2548 /* 2549 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: 2550 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255 2551 */ 2552 iv = ic->ic_iv; 2553 if ((iv & 0xff00) == 0xff00) { 2554 int B = (iv & 0xff0000) >> 16; 2555 if (3 <= B && B < 16) 2556 iv = (B+1) << 16; 2557 } 2558 ic->ic_iv = iv + 1; 2559 2560 /* 2561 * NB: Preserve byte order of IV for packet 2562 * sniffers; it doesn't matter otherwise. 2563 */ 2564 #if AH_BYTE_ORDER == AH_BIG_ENDIAN 2565 ivp[0] = iv >> 0; 2566 ivp[1] = iv >> 8; 2567 ivp[2] = iv >> 16; 2568 #else 2569 ivp[2] = iv >> 0; 2570 ivp[1] = iv >> 8; 2571 ivp[0] = iv >> 16; 2572 #endif 2573 ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */ 2574 memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf)); 2575 /* 2576 * The ICV length must be included into hdrlen and pktlen. 2577 */ 2578 hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN; 2579 pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN; 2580 } 2581 pktlen += IEEE80211_CRC_LEN; 2582 2583 /* 2584 * Load the DMA map so any coalescing is done. This 2585 * also calculates the number of descriptors we need. 2586 */ 2587 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT); 2588 /* 2589 * Discard null packets and check for packets that 2590 * require too many TX descriptors. We try to convert 2591 * the latter to a cluster. 2592 */ 2593 if (error == EFBIG) { /* too many desc's, linearize */ 2594 sc->sc_stats.ast_tx_linear++; 2595 MGETHDR(m, M_DONTWAIT, MT_DATA); 2596 if (m == NULL) { 2597 sc->sc_stats.ast_tx_nombuf++; 2598 m_freem(m0); 2599 return ENOMEM; 2600 } 2601 #ifdef __FreeBSD__ 2602 M_MOVE_PKTHDR(m, m0); 2603 #else 2604 M_COPY_PKTHDR(m, m0); 2605 #endif 2606 MCLGET(m, M_DONTWAIT); 2607 if ((m->m_flags & M_EXT) == 0) { 2608 sc->sc_stats.ast_tx_nomcl++; 2609 m_freem(m0); 2610 m_free(m); 2611 return ENOMEM; 2612 } 2613 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); 2614 m_freem(m0); 2615 m->m_len = m->m_pkthdr.len; 2616 m0 = m; 2617 error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, 2618 BUS_DMA_NOWAIT); 2619 if (error != 0) { 2620 sc->sc_stats.ast_tx_busdma++; 2621 m_freem(m0); 2622 return error; 2623 } 2624 KASSERT(bf->bf_nseg == 1, 2625 ("ath_tx_start: packet not one segment; nseg %u", 2626 bf->bf_nseg)); 2627 } else if (error != 0) { 2628 sc->sc_stats.ast_tx_busdma++; 2629 m_freem(m0); 2630 return error; 2631 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 2632 sc->sc_stats.ast_tx_nodata++; 2633 m_freem(m0); 2634 return EIO; 2635 } 2636 DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen)); 2637 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE); 2638 bf->bf_m = m0; 2639 bf->bf_node = ni; /* NB: held reference */ 2640 2641 /* setup descriptors */ 2642 ds = bf->bf_desc; 2643 rt = sc->sc_currates; 2644 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 2645 2646 /* 2647 * Calculate Atheros packet type from IEEE80211 packet header 2648 * and setup for rate calculations. 2649 */ 2650 atype = HAL_PKT_TYPE_NORMAL; /* default */ 2651 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 2652 case IEEE80211_FC0_TYPE_MGT: 2653 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2654 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 2655 atype = HAL_PKT_TYPE_BEACON; 2656 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 2657 atype = HAL_PKT_TYPE_PROBE_RESP; 2658 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 2659 atype = HAL_PKT_TYPE_ATIM; 2660 rix = 0; /* XXX lowest rate */ 2661 break; 2662 case IEEE80211_FC0_TYPE_CTL: 2663 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 2664 if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL) 2665 atype = HAL_PKT_TYPE_PSPOLL; 2666 rix = 0; /* XXX lowest rate */ 2667 break; 2668 default: 2669 rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] & 2670 IEEE80211_RATE_VAL]; 2671 if (rix == 0xff) { 2672 if_printf(ifp, "bogus xmit rate 0x%x\n", 2673 ni->ni_rates.rs_rates[ni->ni_txrate]); 2674 sc->sc_stats.ast_tx_badrate++; 2675 m_freem(m0); 2676 return EIO; 2677 } 2678 break; 2679 } 2680 /* 2681 * NB: the 802.11 layer marks whether or not we should 2682 * use short preamble based on the current mode and 2683 * negotiated parameters. 2684 */ 2685 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2686 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { 2687 txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble; 2688 shortPreamble = AH_TRUE; 2689 sc->sc_stats.ast_tx_shortpre++; 2690 } else { 2691 txrate = rt->info[rix].rateCode; 2692 shortPreamble = AH_FALSE; 2693 } 2694 2695 /* 2696 * Calculate miscellaneous flags. 2697 */ 2698 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for wep errors */ 2699 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2700 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 2701 sc->sc_stats.ast_tx_noack++; 2702 } else if (pktlen > ic->ic_rtsthreshold) { 2703 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 2704 sc->sc_stats.ast_tx_rts++; 2705 } 2706 2707 /* 2708 * Calculate duration. This logically belongs in the 802.11 2709 * layer but it lacks sufficient information to calculate it. 2710 */ 2711 if ((flags & HAL_TXDESC_NOACK) == 0 && 2712 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 2713 u_int16_t dur; 2714 /* 2715 * XXX not right with fragmentation. 2716 */ 2717 dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE, 2718 rix, shortPreamble); 2719 *((u_int16_t*) wh->i_dur) = htole16(dur); 2720 } 2721 2722 /* 2723 * Calculate RTS/CTS rate and duration if needed. 2724 */ 2725 ctsduration = 0; 2726 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 2727 /* 2728 * CTS transmit rate is derived from the transmit rate 2729 * by looking in the h/w rate table. We must also factor 2730 * in whether or not a short preamble is to be used. 2731 */ 2732 cix = rt->info[rix].controlRate; 2733 ctsrate = rt->info[cix].rateCode; 2734 if (shortPreamble) 2735 ctsrate |= rt->info[cix].shortPreamble; 2736 /* 2737 * Compute the transmit duration based on the size 2738 * of an ACK frame. We call into the HAL to do the 2739 * computation since it depends on the characteristics 2740 * of the actual PHY being used. 2741 */ 2742 if (flags & HAL_TXDESC_RTSENA) { /* SIFS + CTS */ 2743 ctsduration += ath_hal_computetxtime(ah, 2744 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2745 } 2746 /* SIFS + data */ 2747 ctsduration += ath_hal_computetxtime(ah, 2748 rt, pktlen, rix, shortPreamble); 2749 if ((flags & HAL_TXDESC_NOACK) == 0) { /* SIFS + ACK */ 2750 ctsduration += ath_hal_computetxtime(ah, 2751 rt, IEEE80211_ACK_SIZE, cix, shortPreamble); 2752 } 2753 } else 2754 ctsrate = 0; 2755 2756 /* 2757 * For now use the antenna on which the last good 2758 * frame was received on. We assume this field is 2759 * initialized to 0 which gives us ``auto'' or the 2760 * ``default'' antenna. 2761 */ 2762 an = (struct ath_node *) ni; 2763 if (an->an_tx_antenna) 2764 antenna = an->an_tx_antenna; 2765 else 2766 antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna; 2767 2768 if (ic->ic_rawbpf) 2769 bpf_mtap(ic->ic_rawbpf, m0); 2770 if (sc->sc_drvbpf) { 2771 sc->sc_tx_th.wt_flags = 0; 2772 if (shortPreamble) 2773 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2774 if (iswep) 2775 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 2776 sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2777 sc->sc_tx_th.wt_txpower = 60/2; /* XXX */ 2778 sc->sc_tx_th.wt_antenna = antenna; 2779 2780 bpf_mtap2(sc->sc_drvbpf, 2781 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 2782 } 2783 2784 /* 2785 * Formulate first tx descriptor with tx controls. 2786 */ 2787 /* XXX check return value? */ 2788 ath_hal_setuptxdesc(ah, ds 2789 , pktlen /* packet length */ 2790 , hdrlen /* header length */ 2791 , atype /* Atheros packet type */ 2792 , 60 /* txpower XXX */ 2793 , txrate, 1+10 /* series 0 rate/tries */ 2794 , iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID 2795 , antenna /* antenna mode */ 2796 , flags /* flags */ 2797 , ctsrate /* rts/cts rate */ 2798 , ctsduration /* rts/cts duration */ 2799 ); 2800 #ifdef notyet 2801 ath_hal_setupxtxdesc(ah, ds 2802 , AH_FALSE /* short preamble */ 2803 , 0, 0 /* series 1 rate/tries */ 2804 , 0, 0 /* series 2 rate/tries */ 2805 , 0, 0 /* series 3 rate/tries */ 2806 ); 2807 #endif 2808 /* 2809 * Fillin the remainder of the descriptor info. 2810 */ 2811 for (i = 0; i < bf->bf_nseg; i++, ds++) { 2812 ds->ds_data = bf->bf_segs[i].ds_addr; 2813 if (i == bf->bf_nseg - 1) 2814 ds->ds_link = 0; 2815 else 2816 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 2817 ath_hal_filltxdesc(ah, ds 2818 , bf->bf_segs[i].ds_len /* segment length */ 2819 , i == 0 /* first segment */ 2820 , i == bf->bf_nseg - 1 /* last segment */ 2821 ); 2822 DPRINTF(ATH_DEBUG_XMIT, 2823 ("%s: %d: %08x %08x %08x %08x %08x %08x\n", 2824 __func__, i, ds->ds_link, ds->ds_data, 2825 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1])); 2826 } 2827 2828 /* 2829 * Insert the frame on the outbound list and 2830 * pass it on to the hardware. 2831 */ 2832 ath_txq_critsect_begin(sc, s); 2833 TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list); 2834 if (sc->sc_txlink == NULL) { 2835 ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr); 2836 DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__, 2837 (caddr_t)bf->bf_daddr, bf->bf_desc)); 2838 } else { 2839 *sc->sc_txlink = bf->bf_daddr; 2840 DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__, 2841 sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc)); 2842 } 2843 sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 2844 ath_txq_critsect_end(sc, s); 2845 2846 ath_hal_txstart(ah, sc->sc_txhalq); 2847 return 0; 2848 } 2849 2850 static void 2851 ath_tx_proc(void *arg, int npending) 2852 { 2853 struct ath_softc *sc = arg; 2854 struct ath_hal *ah = sc->sc_ah; 2855 struct ath_buf *bf; 2856 struct ieee80211com *ic = &sc->sc_ic; 2857 struct ifnet *ifp = &ic->ic_if; 2858 struct ath_desc *ds; 2859 struct ieee80211_node *ni; 2860 struct ath_node *an; 2861 int sr, lr; 2862 HAL_STATUS status; 2863 ath_txq_critsect_decl(s); 2864 ath_txbuf_critsect_decl(s2); 2865 2866 DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n", 2867 __func__, npending, 2868 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq), 2869 sc->sc_txlink)); 2870 for (;;) { 2871 ath_txq_critsect_begin(sc, s); 2872 bf = TAILQ_FIRST(&sc->sc_txq); 2873 if (bf == NULL) { 2874 sc->sc_txlink = NULL; 2875 ath_txq_critsect_end(sc, s); 2876 break; 2877 } 2878 /* only the last descriptor is needed */ 2879 ds = &bf->bf_desc[bf->bf_nseg - 1]; 2880 status = ath_hal_txprocdesc(ah, ds); 2881 #ifdef AR_DEBUG 2882 if (ath_debug & ATH_DEBUG_XMIT_DESC) 2883 ath_printtxbuf(bf, status == HAL_OK); 2884 #endif 2885 if (status == HAL_EINPROGRESS) { 2886 ath_txq_critsect_end(sc, s); 2887 break; 2888 } 2889 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2890 ath_txq_critsect_end(sc, s); 2891 2892 ni = bf->bf_node; 2893 if (ni != NULL) { 2894 an = (struct ath_node *) ni; 2895 if (ds->ds_txstat.ts_status == 0) { 2896 an->an_tx_ok++; 2897 an->an_tx_antenna = ds->ds_txstat.ts_antenna; 2898 } else { 2899 an->an_tx_err++; 2900 ifp->if_oerrors++; 2901 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 2902 sc->sc_stats.ast_tx_xretries++; 2903 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 2904 sc->sc_stats.ast_tx_fifoerr++; 2905 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 2906 sc->sc_stats.ast_tx_filtered++; 2907 an->an_tx_antenna = 0; /* invalidate */ 2908 } 2909 sr = ds->ds_txstat.ts_shortretry; 2910 lr = ds->ds_txstat.ts_longretry; 2911 sc->sc_stats.ast_tx_shortretry += sr; 2912 sc->sc_stats.ast_tx_longretry += lr; 2913 if (sr + lr) 2914 an->an_tx_retr++; 2915 /* 2916 * Reclaim reference to node. 2917 * 2918 * NB: the node may be reclaimed here if, for example 2919 * this is a DEAUTH message that was sent and the 2920 * node was timed out due to inactivity. 2921 */ 2922 ieee80211_release_node(ic, ni); 2923 } 2924 ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE); 2925 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2926 m_freem(bf->bf_m); 2927 bf->bf_m = NULL; 2928 bf->bf_node = NULL; 2929 2930 ath_txbuf_critsect_begin(sc, s2); 2931 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2932 ath_txbuf_critsect_end(sc, s2); 2933 } 2934 ifp->if_flags &= ~IFF_OACTIVE; 2935 sc->sc_tx_timer = 0; 2936 2937 ath_start(ifp); 2938 } 2939 2940 /* 2941 * Drain the transmit queue and reclaim resources. 2942 */ 2943 static void 2944 ath_draintxq(struct ath_softc *sc) 2945 { 2946 struct ath_hal *ah = sc->sc_ah; 2947 struct ieee80211com *ic = &sc->sc_ic; 2948 struct ifnet *ifp = &ic->ic_if; 2949 struct ieee80211_node *ni; 2950 struct ath_buf *bf; 2951 ath_txq_critsect_decl(s); 2952 ath_txbuf_critsect_decl(s2); 2953 2954 /* XXX return value */ 2955 if (!sc->sc_invalid) { 2956 /* don't touch the hardware if marked invalid */ 2957 (void) ath_hal_stoptxdma(ah, sc->sc_txhalq); 2958 DPRINTF(ATH_DEBUG_RESET, 2959 ("%s: tx queue %p, link %p\n", __func__, 2960 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq), 2961 sc->sc_txlink)); 2962 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 2963 DPRINTF(ATH_DEBUG_RESET, 2964 ("%s: beacon queue %p\n", __func__, 2965 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq))); 2966 } 2967 for (;;) { 2968 ath_txq_critsect_begin(sc, s); 2969 bf = TAILQ_FIRST(&sc->sc_txq); 2970 if (bf == NULL) { 2971 sc->sc_txlink = NULL; 2972 ath_txq_critsect_end(sc, s); 2973 break; 2974 } 2975 TAILQ_REMOVE(&sc->sc_txq, bf, bf_list); 2976 ath_txq_critsect_end(sc, s); 2977 #ifdef AR_DEBUG 2978 if (ath_debug & ATH_DEBUG_RESET) 2979 ath_printtxbuf(bf, 2980 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 2981 #endif /* AR_DEBUG */ 2982 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2983 m_freem(bf->bf_m); 2984 bf->bf_m = NULL; 2985 ni = bf->bf_node; 2986 bf->bf_node = NULL; 2987 ath_txbuf_critsect_begin(sc, s2); 2988 if (ni != NULL) { 2989 /* 2990 * Reclaim node reference. 2991 */ 2992 ieee80211_release_node(ic, ni); 2993 } 2994 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 2995 ath_txbuf_critsect_end(sc, s2); 2996 } 2997 ifp->if_flags &= ~IFF_OACTIVE; 2998 sc->sc_tx_timer = 0; 2999 } 3000 3001 /* 3002 * Disable the receive h/w in preparation for a reset. 3003 */ 3004 static void 3005 ath_stoprecv(struct ath_softc *sc) 3006 { 3007 #define PA2DESC(_sc, _pa) \ 3008 ((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \ 3009 ((_pa) - (_sc)->sc_desc_paddr))) 3010 struct ath_hal *ah = sc->sc_ah; 3011 3012 ath_hal_stoppcurecv(ah); /* disable PCU */ 3013 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 3014 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 3015 DELAY(3000); /* long enough for 1 frame */ 3016 #ifdef AR_DEBUG 3017 if (ath_debug & ATH_DEBUG_RESET) { 3018 struct ath_buf *bf; 3019 3020 printf("%s: rx queue %p, link %p\n", __func__, 3021 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 3022 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3023 struct ath_desc *ds = bf->bf_desc; 3024 if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr, 3025 PA2DESC(sc, ds->ds_link)) == HAL_OK) 3026 ath_printrxbuf(bf, 1); 3027 } 3028 } 3029 #endif 3030 sc->sc_rxlink = NULL; /* just in case */ 3031 #undef PA2DESC 3032 } 3033 3034 /* 3035 * Enable the receive h/w following a reset. 3036 */ 3037 static int 3038 ath_startrecv(struct ath_softc *sc) 3039 { 3040 struct ath_hal *ah = sc->sc_ah; 3041 struct ath_buf *bf; 3042 3043 sc->sc_rxlink = NULL; 3044 TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 3045 int error = ath_rxbuf_init(sc, bf); 3046 if (error != 0) { 3047 DPRINTF(ATH_DEBUG_RECV, 3048 ("%s: ath_rxbuf_init failed %d\n", 3049 __func__, error)); 3050 return error; 3051 } 3052 } 3053 3054 bf = TAILQ_FIRST(&sc->sc_rxbuf); 3055 ath_hal_putrxbuf(ah, bf->bf_daddr); 3056 ath_hal_rxena(ah); /* enable recv descriptors */ 3057 ath_mode_init(sc); /* set filters, etc. */ 3058 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 3059 return 0; 3060 } 3061 3062 /* 3063 * Set/change channels. If the channel is really being changed, 3064 * it's done by resetting the chip. To accomplish this we must 3065 * first cleanup any pending DMA, then restart stuff after a la 3066 * ath_init. 3067 */ 3068 static int 3069 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 3070 { 3071 struct ath_hal *ah = sc->sc_ah; 3072 struct ieee80211com *ic = &sc->sc_ic; 3073 3074 DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__, 3075 ieee80211_chan2ieee(ic, ic->ic_ibss_chan), 3076 ic->ic_ibss_chan->ic_freq, 3077 ieee80211_chan2ieee(ic, chan), chan->ic_freq)); 3078 if (chan != ic->ic_ibss_chan) { 3079 HAL_STATUS status; 3080 HAL_CHANNEL hchan; 3081 enum ieee80211_phymode mode; 3082 3083 /* 3084 * To switch channels clear any pending DMA operations; 3085 * wait long enough for the RX fifo to drain, reset the 3086 * hardware at the new frequency, and then re-enable 3087 * the relevant bits of the h/w. 3088 */ 3089 ath_hal_intrset(ah, 0); /* disable interrupts */ 3090 ath_draintxq(sc); /* clear pending tx frames */ 3091 ath_stoprecv(sc); /* turn off frame recv */ 3092 /* 3093 * Convert to a HAL channel description with 3094 * the flags constrained to reflect the current 3095 * operating mode. 3096 */ 3097 hchan.channel = chan->ic_freq; 3098 hchan.channelFlags = ath_chan2flags(ic, chan); 3099 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 3100 if_printf(&ic->ic_if, "ath_chan_set: unable to reset " 3101 "channel %u (%u Mhz)\n", 3102 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 3103 return EIO; 3104 } 3105 /* 3106 * Re-enable rx framework. 3107 */ 3108 if (ath_startrecv(sc) != 0) { 3109 if_printf(&ic->ic_if, 3110 "ath_chan_set: unable to restart recv logic\n"); 3111 return EIO; 3112 } 3113 3114 /* 3115 * Update BPF state. 3116 */ 3117 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 3118 htole16(chan->ic_freq); 3119 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 3120 htole16(chan->ic_flags); 3121 3122 /* 3123 * Change channels and update the h/w rate map 3124 * if we're switching; e.g. 11a to 11b/g. 3125 */ 3126 ic->ic_ibss_chan = chan; 3127 mode = ieee80211_chan2mode(ic, chan); 3128 if (mode != sc->sc_curmode) 3129 ath_setcurmode(sc, mode); 3130 3131 /* 3132 * Re-enable interrupts. 3133 */ 3134 ath_hal_intrset(ah, sc->sc_imask); 3135 } 3136 return 0; 3137 } 3138 3139 static void 3140 ath_next_scan(void *arg) 3141 { 3142 struct ath_softc *sc = arg; 3143 struct ieee80211com *ic = &sc->sc_ic; 3144 int s; 3145 3146 /* don't call ath_start w/o network interrupts blocked */ 3147 s = splnet(); 3148 3149 if (ic->ic_state == IEEE80211_S_SCAN) 3150 ieee80211_next_scan(ic); 3151 splx(s); 3152 } 3153 3154 /* 3155 * Periodically recalibrate the PHY to account 3156 * for temperature/environment changes. 3157 */ 3158 static void 3159 ath_calibrate(void *arg) 3160 { 3161 struct ath_softc *sc = arg; 3162 struct ath_hal *ah = sc->sc_ah; 3163 struct ieee80211com *ic = &sc->sc_ic; 3164 struct ieee80211_channel *c; 3165 HAL_CHANNEL hchan; 3166 3167 sc->sc_stats.ast_per_cal++; 3168 3169 /* 3170 * Convert to a HAL channel description with the flags 3171 * constrained to reflect the current operating mode. 3172 */ 3173 c = ic->ic_ibss_chan; 3174 hchan.channel = c->ic_freq; 3175 hchan.channelFlags = ath_chan2flags(ic, c); 3176 3177 DPRINTF(ATH_DEBUG_CALIBRATE, 3178 ("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags)); 3179 3180 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 3181 /* 3182 * Rfgain is out of bounds, reset the chip 3183 * to load new gain values. 3184 */ 3185 sc->sc_stats.ast_per_rfgain++; 3186 ath_reset(sc); 3187 } 3188 if (!ath_hal_calibrate(ah, &hchan)) { 3189 DPRINTF(ATH_DEBUG_ANY, 3190 ("%s: calibration of channel %u failed\n", 3191 __func__, c->ic_freq)); 3192 sc->sc_stats.ast_per_calfail++; 3193 } 3194 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc); 3195 } 3196 3197 static HAL_LED_STATE 3198 ath_state_to_led(enum ieee80211_state state) 3199 { 3200 switch (state) { 3201 case IEEE80211_S_INIT: 3202 return HAL_LED_INIT; 3203 case IEEE80211_S_SCAN: 3204 return HAL_LED_SCAN; 3205 case IEEE80211_S_AUTH: 3206 return HAL_LED_AUTH; 3207 case IEEE80211_S_ASSOC: 3208 return HAL_LED_ASSOC; 3209 case IEEE80211_S_RUN: 3210 return HAL_LED_RUN; 3211 default: 3212 panic("%s: unknown 802.11 state %d\n", __func__, state); 3213 return HAL_LED_INIT; 3214 } 3215 } 3216 3217 static int 3218 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 3219 { 3220 struct ifnet *ifp = &ic->ic_if; 3221 struct ath_softc *sc = ifp->if_softc; 3222 struct ath_hal *ah = sc->sc_ah; 3223 struct ieee80211_node *ni; 3224 int i, error; 3225 const u_int8_t *bssid; 3226 u_int32_t rfilt; 3227 3228 DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__, 3229 ieee80211_state_name[ic->ic_state], 3230 ieee80211_state_name[nstate])); 3231 3232 ath_hal_setledstate(ah, ath_state_to_led(nstate)); /* set LED */ 3233 3234 if (nstate == IEEE80211_S_INIT) { 3235 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 3236 ath_hal_intrset(ah, sc->sc_imask); 3237 callout_stop(&sc->sc_scan_ch); 3238 callout_stop(&sc->sc_cal_ch); 3239 return (*sc->sc_newstate)(ic, nstate, arg); 3240 } 3241 ni = ic->ic_bss; 3242 error = ath_chan_set(sc, ni->ni_chan); 3243 if (error != 0) 3244 goto bad; 3245 rfilt = ath_calcrxfilter(sc); 3246 if (nstate == IEEE80211_S_SCAN) { 3247 callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000, 3248 ath_next_scan, sc); 3249 bssid = ifp->if_broadcastaddr; 3250 } else { 3251 callout_stop(&sc->sc_scan_ch); 3252 bssid = ni->ni_bssid; 3253 } 3254 ath_hal_setrxfilter(ah, rfilt); 3255 DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n", 3256 __func__, rfilt, ether_sprintf(bssid))); 3257 3258 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 3259 ath_hal_setassocid(ah, bssid, ni->ni_associd); 3260 else 3261 ath_hal_setassocid(ah, bssid, 0); 3262 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 3263 for (i = 0; i < IEEE80211_WEP_NKID; i++) 3264 if (ath_hal_keyisvalid(ah, i)) 3265 ath_hal_keysetmac(ah, i, bssid); 3266 } 3267 3268 if (nstate == IEEE80211_S_RUN) { 3269 DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 3270 "capinfo=0x%04x chan=%d\n" 3271 , __func__ 3272 , ic->ic_flags 3273 , ni->ni_intval 3274 , ether_sprintf(ni->ni_bssid) 3275 , ni->ni_capinfo 3276 , ieee80211_chan2ieee(ic, ni->ni_chan))); 3277 3278 /* 3279 * Allocate and setup the beacon frame for AP or adhoc mode. 3280 */ 3281 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 3282 ic->ic_opmode == IEEE80211_M_IBSS) { 3283 error = ath_beacon_alloc(sc, ni); 3284 if (error != 0) 3285 goto bad; 3286 } 3287 3288 /* 3289 * Configure the beacon and sleep timers. 3290 */ 3291 ath_beacon_config(sc); 3292 3293 /* start periodic recalibration timer */ 3294 callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, 3295 ath_calibrate, sc); 3296 } else { 3297 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 3298 ath_hal_intrset(ah, sc->sc_imask); 3299 callout_stop(&sc->sc_cal_ch); /* no calibration */ 3300 } 3301 /* 3302 * Reset the rate control state. 3303 */ 3304 ath_rate_ctl_reset(sc, nstate); 3305 /* 3306 * Invoke the parent method to complete the work. 3307 */ 3308 return (*sc->sc_newstate)(ic, nstate, arg); 3309 bad: 3310 callout_stop(&sc->sc_scan_ch); 3311 callout_stop(&sc->sc_cal_ch); 3312 /* NB: do not invoke the parent */ 3313 return error; 3314 } 3315 3316 static uint64_t 3317 ath_tsf_extend(struct ath_hal *ah, uint32_t rstamp) 3318 { 3319 uint64_t tsf; 3320 3321 KASSERT((rstamp & 0xffff0000) == 0, 3322 ("rx timestamp > 16 bits wide, %" PRIu32, rstamp)); 3323 3324 tsf = ath_hal_gettsf64(ah); 3325 3326 /* Compensate for rollover. */ 3327 if ((tsf & 0xffff) <= rstamp) 3328 tsf -= 0x10000; 3329 3330 return (tsf & ~(uint64_t)0xffff) | rstamp; 3331 } 3332 3333 static void 3334 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 3335 struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp) 3336 { 3337 struct ath_softc *sc = (struct ath_softc*)ic->ic_softc; 3338 struct ath_hal *ah = sc->sc_ah; 3339 3340 (*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp); 3341 3342 switch (subtype) { 3343 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 3344 case IEEE80211_FC0_SUBTYPE_BEACON: 3345 if (ic->ic_opmode != IEEE80211_M_IBSS || 3346 ic->ic_state != IEEE80211_S_RUN) 3347 break; 3348 if (le64toh(ni->ni_tsf) >= ath_tsf_extend(ah, rstamp) && 3349 ieee80211_ibss_merge(ic, ni)) { 3350 /* 3351 * XXX rather than handle this here it's 3352 * probably better to do it at the 802.11 3353 * layer through the state machine so, 3354 * we can switch channel, etc. 3355 */ 3356 /* XXX adopt beacon interval and ATIM window */ 3357 ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0); 3358 ath_hal_stoptxdma(ah, sc->sc_bhalq); 3359 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 3360 } 3361 break; 3362 default: 3363 break; 3364 } 3365 return; 3366 } 3367 3368 /* 3369 * Setup driver-specific state for a newly associated node. 3370 * Note that we're called also on a re-associate, the isnew 3371 * param tells us if this is the first time or not. 3372 */ 3373 static void 3374 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 3375 { 3376 if (isnew) { 3377 struct ath_node *an = (struct ath_node *) ni; 3378 3379 an->an_tx_ok = an->an_tx_err = 3380 an->an_tx_retr = an->an_tx_upper = 0; 3381 /* start with highest negotiated rate */ 3382 /* 3383 * XXX should do otherwise but only when 3384 * the rate control algorithm is better. 3385 */ 3386 KASSERT(ni->ni_rates.rs_nrates > 0, 3387 ("new association w/ no rates!")); 3388 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 3389 } 3390 } 3391 3392 static int 3393 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor, 3394 HAL_BOOL xchanmode) 3395 { 3396 struct ieee80211com *ic = &sc->sc_ic; 3397 struct ifnet *ifp = &ic->ic_if; 3398 struct ath_hal *ah = sc->sc_ah; 3399 HAL_CHANNEL *chans; 3400 int i, ix, nchan; 3401 3402 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 3403 M_TEMP, M_NOWAIT); 3404 if (chans == NULL) { 3405 if_printf(ifp, "unable to allocate channel table\n"); 3406 return ENOMEM; 3407 } 3408 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 3409 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 3410 if_printf(ifp, "unable to collect channel list from hal\n"); 3411 free(chans, M_TEMP); 3412 return EINVAL; 3413 } 3414 3415 /* 3416 * Convert HAL channels to ieee80211 ones and insert 3417 * them in the table according to their channel number. 3418 */ 3419 for (i = 0; i < nchan; i++) { 3420 HAL_CHANNEL *c = &chans[i]; 3421 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 3422 if (ix > IEEE80211_CHAN_MAX) { 3423 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 3424 ix, c->channel, c->channelFlags); 3425 continue; 3426 } 3427 DPRINTF(ATH_DEBUG_ANY, 3428 ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n", 3429 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags, 3430 ix)); 3431 /* NB: flags are known to be compatible */ 3432 if (ic->ic_channels[ix].ic_freq == 0) { 3433 ic->ic_channels[ix].ic_freq = c->channel; 3434 ic->ic_channels[ix].ic_flags = c->channelFlags; 3435 } else { 3436 /* channels overlap; e.g. 11g and 11b */ 3437 ic->ic_channels[ix].ic_flags |= c->channelFlags; 3438 } 3439 } 3440 free(chans, M_TEMP); 3441 return 0; 3442 } 3443 3444 static int 3445 ath_rate_setup(struct ath_softc *sc, u_int mode) 3446 { 3447 struct ath_hal *ah = sc->sc_ah; 3448 struct ieee80211com *ic = &sc->sc_ic; 3449 const HAL_RATE_TABLE *rt; 3450 struct ieee80211_rateset *rs; 3451 int i, maxrates; 3452 3453 switch (mode) { 3454 case IEEE80211_MODE_11A: 3455 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 3456 break; 3457 case IEEE80211_MODE_11B: 3458 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 3459 break; 3460 case IEEE80211_MODE_11G: 3461 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 3462 break; 3463 case IEEE80211_MODE_TURBO: 3464 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 3465 break; 3466 default: 3467 DPRINTF(ATH_DEBUG_ANY, 3468 ("%s: invalid mode %u\n", __func__, mode)); 3469 return 0; 3470 } 3471 rt = sc->sc_rates[mode]; 3472 if (rt == NULL) 3473 return 0; 3474 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 3475 DPRINTF(ATH_DEBUG_ANY, 3476 ("%s: rate table too small (%u > %u)\n", 3477 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE)); 3478 maxrates = IEEE80211_RATE_MAXSIZE; 3479 } else 3480 maxrates = rt->rateCount; 3481 rs = &ic->ic_sup_rates[mode]; 3482 for (i = 0; i < maxrates; i++) 3483 rs->rs_rates[i] = rt->info[i].dot11Rate; 3484 rs->rs_nrates = maxrates; 3485 return 1; 3486 } 3487 3488 static void 3489 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 3490 { 3491 const HAL_RATE_TABLE *rt; 3492 int i; 3493 3494 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 3495 rt = sc->sc_rates[mode]; 3496 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 3497 for (i = 0; i < rt->rateCount; i++) 3498 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 3499 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 3500 for (i = 0; i < 32; i++) 3501 sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate; 3502 sc->sc_currates = rt; 3503 sc->sc_curmode = mode; 3504 } 3505 3506 /* 3507 * Reset the rate control state for each 802.11 state transition. 3508 */ 3509 static void 3510 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state) 3511 { 3512 struct ieee80211com *ic = &sc->sc_ic; 3513 struct ieee80211_node *ni; 3514 struct ath_node *an; 3515 3516 if (ic->ic_opmode != IEEE80211_M_STA) { 3517 /* 3518 * When operating as a station the node table holds 3519 * the AP's that were discovered during scanning. 3520 * For any other operating mode we want to reset the 3521 * tx rate state of each node. 3522 */ 3523 TAILQ_FOREACH(ni, &ic->ic_node, ni_list) { 3524 ni->ni_txrate = 0; /* use lowest rate */ 3525 an = (struct ath_node *) ni; 3526 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 3527 an->an_tx_upper = 0; 3528 } 3529 } 3530 /* 3531 * Reset local xmit state; this is really only meaningful 3532 * when operating in station or adhoc mode. 3533 */ 3534 ni = ic->ic_bss; 3535 an = (struct ath_node *) ni; 3536 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0; 3537 if (state == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_IBSS) { 3538 /* start with highest negotiated rate */ 3539 KASSERT(ni->ni_rates.rs_nrates > 0, 3540 ("transition to RUN state w/ no rates!")); 3541 ni->ni_txrate = ni->ni_rates.rs_nrates - 1; 3542 } else { 3543 /* use lowest rate */ 3544 ni->ni_txrate = 0; 3545 } 3546 } 3547 3548 /* 3549 * Examine and potentially adjust the transmit rate. 3550 */ 3551 static void 3552 ath_rate_ctl(void *arg, struct ieee80211_node *ni) 3553 { 3554 struct ath_softc *sc = arg; 3555 struct ath_node *an = (struct ath_node *) ni; 3556 struct ieee80211_rateset *rs = &ni->ni_rates; 3557 int mod = 0, orate, enough; 3558 3559 /* 3560 * Rate control 3561 * XXX: very primitive version. 3562 */ 3563 sc->sc_stats.ast_rate_calls++; 3564 3565 enough = (an->an_tx_ok + an->an_tx_err >= 10); 3566 3567 /* no packet reached -> down */ 3568 if (an->an_tx_err > 0 && an->an_tx_ok == 0) 3569 mod = -1; 3570 3571 /* all packets needs retry in average -> down */ 3572 if (enough && an->an_tx_ok < an->an_tx_retr) 3573 mod = -1; 3574 3575 /* no error and less than 10% of packets needs retry -> up */ 3576 if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10) 3577 mod = 1; 3578 3579 orate = ni->ni_txrate; 3580 switch (mod) { 3581 case 0: 3582 if (enough && an->an_tx_upper > 0) 3583 an->an_tx_upper--; 3584 break; 3585 case -1: 3586 if (ni->ni_txrate > 0) { 3587 ni->ni_txrate--; 3588 sc->sc_stats.ast_rate_drop++; 3589 } 3590 an->an_tx_upper = 0; 3591 break; 3592 case 1: 3593 if (++an->an_tx_upper < 2) 3594 break; 3595 an->an_tx_upper = 0; 3596 if (ni->ni_txrate + 1 < rs->rs_nrates) { 3597 ni->ni_txrate++; 3598 sc->sc_stats.ast_rate_raise++; 3599 } 3600 break; 3601 } 3602 3603 if (ni->ni_txrate != orate) { 3604 DPRINTF(ATH_DEBUG_RATE, 3605 ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n", 3606 __func__, 3607 (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2, 3608 (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2, 3609 an->an_tx_ok, an->an_tx_err, an->an_tx_retr)); 3610 } 3611 if (ni->ni_txrate != orate || enough) 3612 an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0; 3613 } 3614 3615 #ifdef AR_DEBUG 3616 #ifdef __FreeBSD__ 3617 static int 3618 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS) 3619 { 3620 char dmode[64]; 3621 int error; 3622 3623 strncpy(dmode, "", sizeof(dmode) - 1); 3624 dmode[sizeof(dmode) - 1] = '\0'; 3625 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req); 3626 3627 if (error == 0 && req->newptr != NULL) { 3628 struct ifnet *ifp; 3629 struct ath_softc *sc; 3630 3631 ifp = ifunit("ath0"); /* XXX */ 3632 if (!ifp) 3633 return EINVAL; 3634 sc = ifp->if_softc; 3635 if (strcmp(dmode, "hal") == 0) 3636 ath_hal_dumpstate(sc->sc_ah); 3637 else 3638 return EINVAL; 3639 } 3640 return error; 3641 } 3642 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW, 3643 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state"); 3644 #endif /* __FreeBSD__ */ 3645 3646 #if 0 /* #ifdef __NetBSD__ */ 3647 static int 3648 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS) 3649 { 3650 char dmode[64]; 3651 int error; 3652 3653 strncpy(dmode, "", sizeof(dmode) - 1); 3654 dmode[sizeof(dmode) - 1] = '\0'; 3655 error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req); 3656 3657 if (error == 0 && req->newptr != NULL) { 3658 struct ifnet *ifp; 3659 struct ath_softc *sc; 3660 3661 ifp = ifunit("ath0"); /* XXX */ 3662 if (!ifp) 3663 return EINVAL; 3664 sc = ifp->if_softc; 3665 if (strcmp(dmode, "hal") == 0) 3666 ath_hal_dumpstate(sc->sc_ah); 3667 else 3668 return EINVAL; 3669 } 3670 return error; 3671 } 3672 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW, 3673 0, 0, sysctl_hw_ath_dump, "A", "Dump driver state"); 3674 #endif /* __NetBSD__ */ 3675 3676 static void 3677 ath_printrxbuf(struct ath_buf *bf, int done) 3678 { 3679 struct ath_desc *ds; 3680 int i; 3681 3682 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 3683 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 3684 i, ds, (struct ath_desc *)bf->bf_daddr + i, 3685 ds->ds_link, ds->ds_data, 3686 ds->ds_ctl0, ds->ds_ctl1, 3687 ds->ds_hw[0], ds->ds_hw[1], 3688 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 3689 } 3690 } 3691 3692 static void 3693 ath_printtxbuf(struct ath_buf *bf, int done) 3694 { 3695 struct ath_desc *ds; 3696 int i; 3697 3698 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 3699 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 3700 i, ds, (struct ath_desc *)bf->bf_daddr + i, 3701 ds->ds_link, ds->ds_data, 3702 ds->ds_ctl0, ds->ds_ctl1, 3703 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 3704 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 3705 } 3706 } 3707 #endif /* AR_DEBUG */ 3708