xref: /netbsd-src/sys/dev/ic/ath.c (revision fd5cb0acea84d278e04e640d37ca2398f894991f)
1 /*	$NetBSD: ath.c,v 1.44 2005/01/19 04:56:42 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.54 2004/04/05 04:42:42 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.44 2005/01/19 04:56:42 dyoung Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81 
82 #include <machine/bus.h>
83 
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94 
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97 
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105 
106 #include <dev/ic/athcompat.h>
107 
108 #define	AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116 
117 /* unaligned little endian access */
118 #define LE_READ_2(p)							\
119 	((u_int16_t)							\
120 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
121 #define LE_READ_4(p)							\
122 	((u_int32_t)							\
123 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
124 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125 
126 #ifdef __FreeBSD__
127 static void	ath_init(void *);
128 #else
129 static int	ath_init(struct ifnet *);
130 #endif
131 static int	ath_init1(struct ath_softc *);
132 static int	ath_intr1(struct ath_softc *);
133 static void	ath_stop(struct ifnet *, int);
134 static void	ath_start(struct ifnet *);
135 static void	ath_reset(struct ath_softc *);
136 static int	ath_media_change(struct ifnet *);
137 static void	ath_watchdog(struct ifnet *);
138 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void	ath_fatal_proc(void *, int);
140 static void	ath_rxorn_proc(void *, int);
141 static void	ath_bmiss_proc(void *, int);
142 static void	ath_initkeytable(struct ath_softc *);
143 static void	ath_mode_init(struct ath_softc *);
144 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void	ath_beacon_proc(struct ath_softc *, int);
146 static void	ath_beacon_free(struct ath_softc *);
147 static void	ath_beacon_config(struct ath_softc *);
148 static int	ath_desc_alloc(struct ath_softc *);
149 static void	ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void	ath_node_copy(struct ieee80211com *,
153 			struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t	ath_node_getrssi(struct ieee80211com *,
155 			struct ieee80211_node *);
156 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void	ath_rx_proc(void *, int);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc(void *, int);
161 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void	ath_draintxq(struct ath_softc *);
163 static void	ath_stoprecv(struct ath_softc *);
164 static int	ath_startrecv(struct ath_softc *);
165 static void	ath_next_scan(void *);
166 static void	ath_calibrate(void *);
167 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void	ath_newassoc(struct ieee80211com *,
169 			struct ieee80211_node *, int);
170 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor,
171 			HAL_BOOL xchanmode);
172 
173 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
174 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
175 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
176 static void	ath_rate_ctl(void *, struct ieee80211_node *);
177 static void	ath_recv_mgmt(struct ieee80211com *, struct mbuf *,
178 			struct ieee80211_node *, int, int, u_int32_t);
179 
180 #ifdef __NetBSD__
181 int	ath_enable(struct ath_softc *);
182 void	ath_disable(struct ath_softc *);
183 void	ath_power(int, void *);
184 #endif
185 
186 #ifdef __FreeBSD__
187 SYSCTL_DECL(_hw_ath);
188 /* XXX validate sysctl values */
189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
190 	    0, "channel dwell time (ms) for AP/station scanning");
191 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
192 	    0, "chip calibration interval (secs)");
193 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
194 	    0, "enable/disable outdoor operation");
195 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197 	    0, "country code");
198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200 	    0, "regulatory domain");
201 #endif /* __FreeBSD__ */
202 
203 #ifdef __NetBSD__
204 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
205            ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
206 #endif /* __NetBSD__ */
207 
208 static	int ath_dwelltime = 200;		/* 5 channels/second */
209 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
210 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
211 static	int ath_xchanmode = AH_TRUE;		/* enable extended channels */
212 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
213 static	int ath_regdomain = 0;			/* regulatory domain */
214 
215 #ifdef AR_DEBUG
216 int	ath_debug = 0;
217 #ifdef __FreeBSD__
218 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
219 	    0, "control debugging printfs");
220 TUNABLE_INT("hw.ath.debug", &ath_debug);
221 #endif /* __FreeBSD__ */
222 #define	IFF_DUMPPKTS(_ifp, _m) \
223 	((ath_debug & _m) || \
224 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
225 static	void ath_printrxbuf(struct ath_buf *bf, int);
226 static	void ath_printtxbuf(struct ath_buf *bf, int);
227 enum {
228 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
229 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
230 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
231 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
232 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
233 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
234 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
235 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
236 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
237 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
238 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
239 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
240 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
241 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
242 	ATH_DEBUG_ANY		= 0xffffffff
243 };
244 #define	DPRINTF(_m,X)	if (ath_debug & (_m)) printf X
245 #else
246 #define	IFF_DUMPPKTS(_ifp, _m) \
247 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
248 #define	DPRINTF(_m, X)
249 #endif
250 
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 	struct ath_softc *sc = (struct ath_softc *)self;
256 	int rv = 0, s;
257 
258 	s = splnet();
259 	switch (act) {
260 	case DVACT_ACTIVATE:
261 		rv = EOPNOTSUPP;
262 		break;
263 	case DVACT_DEACTIVATE:
264 		if_deactivate(&sc->sc_ic.ic_if);
265 		break;
266 	}
267 	splx(s);
268 	return rv;
269 }
270 
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 	if (ATH_IS_ENABLED(sc) == 0) {
275 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 			printf("%s: device enable failed\n",
277 				sc->sc_dev.dv_xname);
278 			return (EIO);
279 		}
280 		sc->sc_flags |= ATH_ENABLED;
281 	}
282 	return (0);
283 }
284 
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 	if (!ATH_IS_ENABLED(sc))
289 		return;
290 	if (sc->sc_disable != NULL)
291 		(*sc->sc_disable)(sc);
292 	sc->sc_flags &= ~ATH_ENABLED;
293 }
294 
295 static int
296 sysctl_ath_verify(SYSCTLFN_ARGS)
297 {
298 	int error, t;
299 	struct sysctlnode node;
300 
301 	node = *rnode;
302 	t = *(int*)rnode->sysctl_data;
303 	node.sysctl_data = &t;
304 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 	if (error || newp == NULL)
306 		return (error);
307 
308 	DPRINTF(ATH_DEBUG_ANY, ("%s: t = %d, nodenum = %d, rnodenum = %d\n",
309 	    __func__, t, node.sysctl_num, rnode->sysctl_num));
310 
311 	if (node.sysctl_num == ath_dwelltime_nodenum) {
312 		if (t <= 0)
313 			return (EINVAL);
314 	} else if (node.sysctl_num == ath_calibrate_nodenum) {
315 		if (t <= 0)
316 			return (EINVAL);
317 #ifdef AR_DEBUG
318 	} else if (node.sysctl_num == ath_debug_nodenum) {
319 		;		/* Accept any vaule */
320 #endif /* AR_DEBUG */
321 	} else
322 		return (EINVAL);
323 
324 	*(int*)rnode->sysctl_data = t;
325 
326 	return (0);
327 }
328 
329 /*
330  * Setup sysctl(3) MIB, ath.*.
331  *
332  * TBD condition CTLFLAG_PERMANENT on being an LKM or not
333  */
334 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
335 {
336 	int rc, ath_node_num;
337 	struct sysctlnode *node;
338 
339 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
340 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
341 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
342 		goto err;
343 
344 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
345 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "ath",
346 	    SYSCTL_DESCR("ath information and options"),
347 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
348 		goto err;
349 
350 	ath_node_num = node->sysctl_num;
351 
352 	/* channel dwell time (ms) for AP/station scanning */
353 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
354 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
355 	    CTLTYPE_INT, "dwell",
356 	    SYSCTL_DESCR("Channel dwell time (ms) for AP/station scanning"),
357 	    sysctl_ath_verify, 0, &ath_dwelltime,
358 	    0, CTL_HW, ath_node_num, CTL_CREATE,
359 	    CTL_EOL)) != 0)
360 		goto err;
361 
362 	ath_dwelltime_nodenum = node->sysctl_num;
363 
364 	/* chip calibration interval (secs) */
365 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
366 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
367 	    CTLTYPE_INT, "calibrate",
368 	    SYSCTL_DESCR("Chip calibration interval (secs)"), sysctl_ath_verify,
369 	    0, &ath_calinterval, 0, CTL_HW,
370 	    ath_node_num, CTL_CREATE, CTL_EOL)) != 0)
371 		goto err;
372 
373 	ath_calibrate_nodenum = node->sysctl_num;
374 
375 	/* enable/disable outdoor operation */
376 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
377 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
378 	    "outdoor", SYSCTL_DESCR("Enable/disable outdoor operation"),
379 	    NULL, 0, &ath_outdoor, 0,
380 	    CTL_HW, ath_node_num, CTL_CREATE,
381 	    CTL_EOL)) != 0)
382 		goto err;
383 
384 	ath_outdoor_nodenum = node->sysctl_num;
385 
386 	/* country code */
387 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
388 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
389 	    "countrycode", SYSCTL_DESCR("Country code"),
390 	    NULL, 0, &ath_countrycode, 0,
391 	    CTL_HW, ath_node_num, CTL_CREATE,
392 	    CTL_EOL)) != 0)
393 		goto err;
394 
395 	ath_countrycode_nodenum = node->sysctl_num;
396 
397 	/* regulatory domain */
398 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
399 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
400 	    "regdomain", SYSCTL_DESCR("Regulatory domain"),
401 	    NULL, 0, &ath_regdomain, 0,
402 	    CTL_HW, ath_node_num, CTL_CREATE,
403 	    CTL_EOL)) != 0)
404 		goto err;
405 
406 	ath_regdomain_nodenum = node->sysctl_num;
407 
408 #ifdef AR_DEBUG
409 
410 	/* control debugging printfs */
411 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
412 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
413 	    "debug", SYSCTL_DESCR("Enable/disable ath debugging output"),
414 	    sysctl_ath_verify, 0, &ath_debug, 0,
415 	    CTL_HW, ath_node_num, CTL_CREATE,
416 	    CTL_EOL)) != 0)
417 		goto err;
418 
419 	ath_debug_nodenum = node->sysctl_num;
420 
421 #endif /* AR_DEBUG */
422 	return;
423 err:
424 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
425 }
426 #endif /* __NetBSD__ */
427 
428 int
429 ath_attach(u_int16_t devid, struct ath_softc *sc)
430 {
431 	struct ieee80211com *ic = &sc->sc_ic;
432 	struct ifnet *ifp = &ic->ic_if;
433 	struct ath_hal *ah;
434 	HAL_STATUS status;
435 	HAL_TXQ_INFO qinfo;
436 	int error = 0;
437 
438 	DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
439 
440 #ifdef __FreeBSD__
441 	/* set these up early for if_printf use */
442 	if_initname(ifp, device_get_name(sc->sc_dev),
443 	    device_get_unit(sc->sc_dev));
444 #else
445 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
446 #endif
447 
448 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
449 	if (ah == NULL) {
450 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
451 			status);
452 		error = ENXIO;
453 		goto bad;
454 	}
455 	if (ah->ah_abi != HAL_ABI_VERSION) {
456 		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
457 			ah->ah_abi, HAL_ABI_VERSION);
458 		error = ENXIO;
459 		goto bad;
460 	}
461 	if_printf(ifp, "mac %d.%d phy %d.%d",
462 		ah->ah_macVersion, ah->ah_macRev,
463 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
464 	if (ah->ah_analog5GhzRev)
465 		printf(" 5ghz radio %d.%d",
466 			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
467 	if (ah->ah_analog2GhzRev)
468 		printf(" 2ghz radio %d.%d",
469 			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
470 	printf("\n");
471 	sc->sc_ah = ah;
472 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
473 
474 	/*
475 	 * Collect the channel list using the default country
476 	 * code and including outdoor channels.  The 802.11 layer
477 	 * is resposible for filtering this list based on settings
478 	 * like the phy mode.
479 	 */
480 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor,
481 	    ath_xchanmode);
482 	if (error != 0)
483 		goto bad;
484 	/*
485 	 * Copy these back; they are set as a side effect
486 	 * of constructing the channel list.
487 	 */
488 	ath_hal_getregdomain(ah, &ath_regdomain);
489 	ath_hal_getcountrycode(ah, &ath_countrycode);
490 
491 	/*
492 	 * Setup rate tables for all potential media types.
493 	 */
494 	ath_rate_setup(sc, IEEE80211_MODE_11A);
495 	ath_rate_setup(sc, IEEE80211_MODE_11B);
496 	ath_rate_setup(sc, IEEE80211_MODE_11G);
497 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
498 
499 	error = ath_desc_alloc(sc);
500 	if (error != 0) {
501 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
502 		goto bad;
503 	}
504 	ATH_CALLOUT_INIT(&sc->sc_scan_ch);
505 	ATH_CALLOUT_INIT(&sc->sc_cal_ch);
506 
507 #ifdef __FreeBSD__
508 	ATH_TXBUF_LOCK_INIT(sc);
509 	ATH_TXQ_LOCK_INIT(sc);
510 #endif
511 
512 	ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
513 	ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
514 	ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
515 	ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
516 	ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
517 
518 	/*
519 	 * For now just pre-allocate one data queue and one
520 	 * beacon queue.  Note that the HAL handles resetting
521 	 * them at the needed time.  Eventually we'll want to
522 	 * allocate more tx queues for splitting management
523 	 * frames and for QOS support.
524 	 */
525 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,HAL_TX_QUEUE_BEACON,NULL);
526 	if (sc->sc_bhalq == (u_int) -1) {
527 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
528 		goto bad2;
529 	}
530 
531 	memset(&qinfo, 0, sizeof(qinfo));
532 	qinfo.tqi_subtype = HAL_WME_AC_BE;
533 	sc->sc_txhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_DATA, &qinfo);
534 	if (sc->sc_txhalq == (u_int) -1) {
535 		if_printf(ifp, "unable to setup a data xmit queue!\n");
536 		goto bad2;
537 	}
538 
539 	ifp->if_softc = sc;
540 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
541 	ifp->if_start = ath_start;
542 	ifp->if_watchdog = ath_watchdog;
543 	ifp->if_ioctl = ath_ioctl;
544 	ifp->if_init = ath_init;
545 #ifdef __FreeBSD__
546 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
547 #else
548 #if 0
549 	ifp->if_stop = ath_stop;		/* XXX */
550 #endif
551 	IFQ_SET_READY(&ifp->if_snd);
552 #endif
553 
554 	ic->ic_softc = sc;
555 	ic->ic_newassoc = ath_newassoc;
556 	/* XXX not right but it's not used anywhere important */
557 	ic->ic_phytype = IEEE80211_T_OFDM;
558 	ic->ic_opmode = IEEE80211_M_STA;
559 	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
560 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
561 		| IEEE80211_C_HOSTAP		/* hostap mode */
562 		| IEEE80211_C_MONITOR		/* monitor mode */
563 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
564 		;
565 
566 	/* get mac address from hardware */
567 	ath_hal_getmac(ah, ic->ic_myaddr);
568 
569 #ifdef __NetBSD__
570 	if_attach(ifp);
571 #endif
572 	/* call MI attach routine. */
573 	ieee80211_ifattach(ifp);
574 	/* override default methods */
575 	ic->ic_node_alloc = ath_node_alloc;
576 	sc->sc_node_free = ic->ic_node_free;
577 	ic->ic_node_free = ath_node_free;
578 	sc->sc_node_copy = ic->ic_node_copy;
579 	ic->ic_node_copy = ath_node_copy;
580 	ic->ic_node_getrssi = ath_node_getrssi;
581 	sc->sc_newstate = ic->ic_newstate;
582 	ic->ic_newstate = ath_newstate;
583 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
584 	ic->ic_recv_mgmt = ath_recv_mgmt;
585 
586 	/* complete initialization */
587 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
588 
589 #if NBPFILTER > 0
590 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
591 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
592 		&sc->sc_drvbpf);
593 #endif
594 	/*
595 	 * Initialize constant fields.
596 	 * XXX make header lengths a multiple of 32-bits so subsequent
597 	 *     headers are properly aligned; this is a kludge to keep
598 	 *     certain applications happy.
599 	 *
600 	 * NB: the channel is setup each time we transition to the
601 	 *     RUN state to avoid filling it in for each frame.
602 	 */
603 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
604 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
605 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
606 
607 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
608 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
609 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
610 
611 #ifdef __NetBSD__
612 	sc->sc_flags |= ATH_ATTACHED;
613 	/*
614 	 * Make sure the interface is shutdown during reboot.
615 	 */
616 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
617 	if (sc->sc_sdhook == NULL)
618 		printf("%s: WARNING: unable to establish shutdown hook\n",
619 			sc->sc_dev.dv_xname);
620 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
621 	if (sc->sc_powerhook == NULL)
622 		printf("%s: WARNING: unable to establish power hook\n",
623 			sc->sc_dev.dv_xname);
624 #endif
625 	return 0;
626 bad2:
627 	ath_desc_free(sc);
628 bad:
629 	if (ah)
630 		ath_hal_detach(ah);
631 	sc->sc_invalid = 1;
632 	return error;
633 }
634 
635 int
636 ath_detach(struct ath_softc *sc)
637 {
638 	struct ifnet *ifp = &sc->sc_ic.ic_if;
639 	ath_softc_critsect_decl(s);
640 
641 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
642 		return (0);
643 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
644 
645 	ath_softc_critsect_begin(sc, s);
646 	ath_stop(ifp, 1);
647 #if NBPFILTER > 0
648 	bpfdetach(ifp);
649 #endif
650 	ath_desc_free(sc);
651 	ath_hal_detach(sc->sc_ah);
652 	ieee80211_ifdetach(ifp);
653 #ifdef __NetBSD__
654 	if_detach(ifp);
655 #endif /* __NetBSD__ */
656 	ath_softc_critsect_end(sc, s);
657 #ifdef __NetBSD__
658 	powerhook_disestablish(sc->sc_powerhook);
659 	shutdownhook_disestablish(sc->sc_sdhook);
660 #endif /* __NetBSD__ */
661 #ifdef __FreeBSD__
662 
663 	ATH_TXBUF_LOCK_DESTROY(sc);
664 	ATH_TXQ_LOCK_DESTROY(sc);
665 
666 #endif /* __FreeBSD__ */
667 	return 0;
668 }
669 
670 #ifdef __NetBSD__
671 void
672 ath_power(int why, void *arg)
673 {
674 	struct ath_softc *sc = arg;
675 	int s;
676 
677 	DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why));
678 
679 	s = splnet();
680 	switch (why) {
681 	case PWR_SUSPEND:
682 	case PWR_STANDBY:
683 		ath_suspend(sc, why);
684 		break;
685 	case PWR_RESUME:
686 		ath_resume(sc, why);
687 		break;
688 	case PWR_SOFTSUSPEND:
689 	case PWR_SOFTSTANDBY:
690 	case PWR_SOFTRESUME:
691 		break;
692 	}
693 	splx(s);
694 }
695 #endif
696 
697 void
698 ath_suspend(struct ath_softc *sc, int why)
699 {
700 	struct ifnet *ifp = &sc->sc_ic.ic_if;
701 
702 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
703 
704 	ath_stop(ifp, 1);
705 	if (sc->sc_power != NULL)
706 		(*sc->sc_power)(sc, why);
707 }
708 
709 void
710 ath_resume(struct ath_softc *sc, int why)
711 {
712 	struct ifnet *ifp = &sc->sc_ic.ic_if;
713 
714 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
715 
716 	if (ifp->if_flags & IFF_UP) {
717 		ath_init(ifp);
718 #if 0
719 		(void)ath_intr(sc);
720 #endif
721 		if (sc->sc_power != NULL)
722 			(*sc->sc_power)(sc, why);
723 		if (ifp->if_flags & IFF_RUNNING)
724 			ath_start(ifp);
725 	}
726 }
727 
728 #ifdef __NetBSD__
729 void
730 ath_shutdown(void *arg)
731 {
732 	struct ath_softc *sc = arg;
733 
734 	ath_stop(&sc->sc_ic.ic_if, 1);
735 }
736 #else
737 void
738 ath_shutdown(struct ath_softc *sc)
739 {
740 #if 1
741 	return;
742 #else
743 	struct ifnet *ifp = &sc->sc_ic.ic_if;
744 
745 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
746 
747 	ath_stop(ifp, 1);
748 #endif
749 }
750 #endif
751 
752 #ifdef __NetBSD__
753 int
754 ath_intr(void *arg)
755 {
756 	return ath_intr1((struct ath_softc *)arg);
757 }
758 #else
759 void
760 ath_intr(void *arg)
761 {
762 	(void)ath_intr1((struct ath_softc *)arg);
763 }
764 #endif
765 
766 static int
767 ath_intr1(struct ath_softc *sc)
768 {
769 	struct ieee80211com *ic = &sc->sc_ic;
770 	struct ifnet *ifp = &ic->ic_if;
771 	struct ath_hal *ah = sc->sc_ah;
772 	HAL_INT status;
773 
774 	if (sc->sc_invalid) {
775 		/*
776 		 * The hardware is not ready/present, don't touch anything.
777 		 * Note this can happen early on if the IRQ is shared.
778 		 */
779 		DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
780 		return 0;
781 	}
782 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
783 		return 0;
784 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
785 		DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
786 			__func__, ifp->if_flags));
787 		ath_hal_getisr(ah, &status);	/* clear ISR */
788 		ath_hal_intrset(ah, 0);		/* disable further intr's */
789 		return 1; /* XXX */
790 	}
791 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
792 	DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
793 	status &= sc->sc_imask;			/* discard unasked for bits */
794 	if (status & HAL_INT_FATAL) {
795 		sc->sc_stats.ast_hardware++;
796 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
797 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
798 	} else if (status & HAL_INT_RXORN) {
799 		sc->sc_stats.ast_rxorn++;
800 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
801 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
802 	} else {
803 		if (status & HAL_INT_RXEOL) {
804 			/*
805 			 * NB: the hardware should re-read the link when
806 			 *     RXE bit is written, but it doesn't work at
807 			 *     least on older hardware revs.
808 			 */
809 			sc->sc_stats.ast_rxeol++;
810 			sc->sc_rxlink = NULL;
811 		}
812 		if (status & HAL_INT_TXURN) {
813 			sc->sc_stats.ast_txurn++;
814 			/* bump tx trigger level */
815 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
816 		}
817 		if (status & HAL_INT_RX)
818 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
819 		if (status & HAL_INT_TX)
820 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
821 		if (status & HAL_INT_SWBA) {
822 			/*
823 			 * Handle beacon transmission directly; deferring
824 			 * this is too slow to meet timing constraints
825 			 * under load.
826 			 */
827 			ath_beacon_proc(sc, 0);
828 		}
829 		if (status & HAL_INT_BMISS) {
830 			sc->sc_stats.ast_bmiss++;
831 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
832 		}
833 	}
834 	return 1;
835 }
836 
837 static void
838 ath_fatal_proc(void *arg, int pending)
839 {
840 	struct ath_softc *sc = arg;
841 
842 	device_printf(sc->sc_dev, "hardware error; resetting\n");
843 	ath_reset(sc);
844 }
845 
846 static void
847 ath_rxorn_proc(void *arg, int pending)
848 {
849 	struct ath_softc *sc = arg;
850 
851 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
852 	ath_reset(sc);
853 }
854 
855 static void
856 ath_bmiss_proc(void *arg, int pending)
857 {
858 	struct ath_softc *sc = arg;
859 	struct ieee80211com *ic = &sc->sc_ic;
860 
861 	DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
862 	if (ic->ic_opmode != IEEE80211_M_STA)
863 		return;
864 	if (ic->ic_state == IEEE80211_S_RUN) {
865 		/*
866 		 * Rather than go directly to scan state, try to
867 		 * reassociate first.  If that fails then the state
868 		 * machine will drop us into scanning after timing
869 		 * out waiting for a probe response.
870 		 */
871 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
872 	}
873 }
874 
875 static u_int
876 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
877 {
878 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
879 
880 	switch (mode) {
881 	case IEEE80211_MODE_AUTO:
882 		return 0;
883 	case IEEE80211_MODE_11A:
884 		return CHANNEL_A;
885 	case IEEE80211_MODE_11B:
886 		return CHANNEL_B;
887 	case IEEE80211_MODE_11G:
888 		return CHANNEL_PUREG;
889 	case IEEE80211_MODE_TURBO:
890 		return CHANNEL_T;
891 	default:
892 		panic("%s: unsupported mode %d\n", __func__, mode);
893 		return 0;
894 	}
895 }
896 
897 #ifdef __NetBSD__
898 static int
899 ath_init(struct ifnet *ifp)
900 {
901 	return ath_init1((struct ath_softc *)ifp->if_softc);
902 }
903 #else
904 static void
905 ath_init(void *arg)
906 {
907 	(void)ath_init1((struct ath_softc *)arg);
908 }
909 #endif
910 
911 static int
912 ath_init1(struct ath_softc *sc)
913 {
914 	struct ieee80211com *ic = &sc->sc_ic;
915 	struct ifnet *ifp = &ic->ic_if;
916 	struct ieee80211_node *ni;
917 	enum ieee80211_phymode mode;
918 	struct ath_hal *ah = sc->sc_ah;
919 	HAL_STATUS status;
920 	HAL_CHANNEL hchan;
921 	int error = 0;
922 	ath_softc_critsect_decl(s);
923 
924 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
925 		__func__, ifp->if_flags));
926 
927 #ifdef __NetBSD__
928 	if ((error = ath_enable(sc)) != 0)
929 		return error;
930 #endif
931 
932 	ath_softc_critsect_begin(sc, s);
933 	/*
934 	 * Stop anything previously setup.  This is safe
935 	 * whether this is the first time through or not.
936 	 */
937 	ath_stop(ifp, 0);
938 
939 	/*
940 	 * The basic interface to setting the hardware in a good
941 	 * state is ``reset''.  On return the hardware is known to
942 	 * be powered up and with interrupts disabled.  This must
943 	 * be followed by initialization of the appropriate bits
944 	 * and then setup of the interrupt mask.
945 	 */
946 	hchan.channel = ic->ic_ibss_chan->ic_freq;
947 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
948 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
949 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
950 			status);
951 		error = EIO;
952 		goto done;
953 	}
954 
955 	/*
956 	 * Setup the hardware after reset: the key cache
957 	 * is filled as needed and the receive engine is
958 	 * set going.  Frame transmit is handled entirely
959 	 * in the frame output path; there's nothing to do
960 	 * here except setup the interrupt mask.
961 	 */
962 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
963 		ath_initkeytable(sc);
964 	if ((error = ath_startrecv(sc)) != 0) {
965 		if_printf(ifp, "unable to start recv logic\n");
966 		goto done;
967 	}
968 
969 	/*
970 	 * Enable interrupts.
971 	 */
972 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
973 		  | HAL_INT_RXEOL | HAL_INT_RXORN
974 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
975 	ath_hal_intrset(ah, sc->sc_imask);
976 
977 	ifp->if_flags |= IFF_RUNNING;
978 	ic->ic_state = IEEE80211_S_INIT;
979 
980 	/*
981 	 * The hardware should be ready to go now so it's safe
982 	 * to kick the 802.11 state machine as it's likely to
983 	 * immediately call back to us to send mgmt frames.
984 	 */
985 	ni = ic->ic_bss;
986 	ni->ni_chan = ic->ic_ibss_chan;
987 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
988 	if (mode != sc->sc_curmode)
989 		ath_setcurmode(sc, mode);
990 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
991 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
992 	else
993 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
994 done:
995 	ath_softc_critsect_end(sc, s);
996 	return error;
997 }
998 
999 static void
1000 ath_stop(struct ifnet *ifp, int disable)
1001 {
1002 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
1003 	struct ath_softc *sc = ifp->if_softc;
1004 	struct ath_hal *ah = sc->sc_ah;
1005 	ath_softc_critsect_decl(s);
1006 
1007 	DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
1008 		__func__, sc->sc_invalid, ifp->if_flags));
1009 
1010 	ath_softc_critsect_begin(sc, s);
1011 	if (ifp->if_flags & IFF_RUNNING) {
1012 		/*
1013 		 * Shutdown the hardware and driver:
1014 		 *    disable interrupts
1015 		 *    turn off timers
1016 		 *    clear transmit machinery
1017 		 *    clear receive machinery
1018 		 *    drain and release tx queues
1019 		 *    reclaim beacon resources
1020 		 *    reset 802.11 state machine
1021 		 *    power down hardware
1022 		 *
1023 		 * Note that some of this work is not possible if the
1024 		 * hardware is gone (invalid).
1025 		 */
1026 		ifp->if_flags &= ~IFF_RUNNING;
1027 		ifp->if_timer = 0;
1028 		if (!sc->sc_invalid)
1029 			ath_hal_intrset(ah, 0);
1030 		ath_draintxq(sc);
1031 		if (!sc->sc_invalid)
1032 			ath_stoprecv(sc);
1033 		else
1034 			sc->sc_rxlink = NULL;
1035 #ifdef __FreeBSD__
1036 		IF_DRAIN(&ifp->if_snd);
1037 #else
1038 		IF_PURGE(&ifp->if_snd);
1039 #endif
1040 		ath_beacon_free(sc);
1041 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1042 		if (!sc->sc_invalid) {
1043 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
1044 		}
1045 #ifdef __NetBSD__
1046 		if (disable)
1047 			ath_disable(sc);
1048 #endif
1049 	}
1050 	ath_softc_critsect_end(sc, s);
1051 }
1052 
1053 /*
1054  * Reset the hardware w/o losing operational state.  This is
1055  * basically a more efficient way of doing ath_stop, ath_init,
1056  * followed by state transitions to the current 802.11
1057  * operational state.  Used to recover from errors rx overrun
1058  * and to reset the hardware when rf gain settings must be reset.
1059  */
1060 static void
1061 ath_reset(struct ath_softc *sc)
1062 {
1063 	struct ieee80211com *ic = &sc->sc_ic;
1064 	struct ifnet *ifp = &ic->ic_if;
1065 	struct ath_hal *ah = sc->sc_ah;
1066 	struct ieee80211_channel *c;
1067 	HAL_STATUS status;
1068 	HAL_CHANNEL hchan;
1069 
1070 	/*
1071 	 * Convert to a HAL channel description with the flags
1072 	 * constrained to reflect the current operating mode.
1073 	 */
1074 	c = ic->ic_ibss_chan;
1075 	hchan.channel = c->ic_freq;
1076 	hchan.channelFlags = ath_chan2flags(ic, c);
1077 
1078 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1079 	ath_draintxq(sc);		/* stop xmit side */
1080 	ath_stoprecv(sc);		/* stop recv side */
1081 	/* NB: indicate channel change so we do a full reset */
1082 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
1083 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1084 			__func__, status);
1085 	ath_hal_intrset(ah, sc->sc_imask);
1086 	if (ath_startrecv(sc) != 0)	/* restart recv */
1087 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1088 	ath_start(ifp);			/* restart xmit */
1089 	if (ic->ic_state == IEEE80211_S_RUN)
1090 		ath_beacon_config(sc);	/* restart beacons */
1091 }
1092 
1093 static void
1094 ath_start(struct ifnet *ifp)
1095 {
1096 	struct ath_softc *sc = ifp->if_softc;
1097 	struct ath_hal *ah = sc->sc_ah;
1098 	struct ieee80211com *ic = &sc->sc_ic;
1099 	struct ieee80211_node *ni;
1100 	struct ath_buf *bf;
1101 	struct mbuf *m;
1102 	struct ieee80211_frame *wh;
1103 	ath_txbuf_critsect_decl(s);
1104 
1105 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1106 		return;
1107 	for (;;) {
1108 		/*
1109 		 * Grab a TX buffer and associated resources.
1110 		 */
1111 		ath_txbuf_critsect_begin(sc, s);
1112 		bf = TAILQ_FIRST(&sc->sc_txbuf);
1113 		if (bf != NULL)
1114 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
1115 		ath_txbuf_critsect_end(sc, s);
1116 		if (bf == NULL) {
1117 			DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
1118 				__func__));
1119 			sc->sc_stats.ast_tx_qstop++;
1120 			ifp->if_flags |= IFF_OACTIVE;
1121 			break;
1122 		}
1123 		/*
1124 		 * Poll the management queue for frames; they
1125 		 * have priority over normal data frames.
1126 		 */
1127 		IF_DEQUEUE(&ic->ic_mgtq, m);
1128 		if (m == NULL) {
1129 			/*
1130 			 * No data frames go out unless we're associated.
1131 			 */
1132 			if (ic->ic_state != IEEE80211_S_RUN) {
1133 				DPRINTF(ATH_DEBUG_ANY,
1134 					("%s: ignore data packet, state %u\n",
1135 					__func__, ic->ic_state));
1136 				sc->sc_stats.ast_tx_discard++;
1137 				ath_txbuf_critsect_begin(sc, s);
1138 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1139 				ath_txbuf_critsect_end(sc, s);
1140 				break;
1141 			}
1142 			IF_DEQUEUE(&ifp->if_snd, m);
1143 			if (m == NULL) {
1144 				ath_txbuf_critsect_begin(sc, s);
1145 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1146 				ath_txbuf_critsect_end(sc, s);
1147 				break;
1148 			}
1149 			ifp->if_opackets++;
1150 
1151 #ifdef __NetBSD__
1152 #if NBPFILTER > 0
1153 			if (ifp->if_bpf)
1154 				bpf_mtap(ifp->if_bpf, m);
1155 #endif
1156 #endif
1157 #ifdef __FreeBSD__
1158 			BPF_MTAP(ifp, m);
1159 #endif
1160 			/*
1161 			 * Encapsulate the packet in prep for transmission.
1162 			 */
1163 			m = ieee80211_encap(ifp, m, &ni);
1164 			if (m == NULL) {
1165 				DPRINTF(ATH_DEBUG_ANY,
1166 					("%s: encapsulation failure\n",
1167 					__func__));
1168 				sc->sc_stats.ast_tx_encap++;
1169 				goto bad;
1170 			}
1171 			wh = mtod(m, struct ieee80211_frame *);
1172 		} else {
1173 			/*
1174 			 * Hack!  The referenced node pointer is in the
1175 			 * rcvif field of the packet header.  This is
1176 			 * placed there by ieee80211_mgmt_output because
1177 			 * we need to hold the reference with the frame
1178 			 * and there's no other way (other than packet
1179 			 * tags which we consider too expensive to use)
1180 			 * to pass it along.
1181 			 */
1182 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1183 			m->m_pkthdr.rcvif = NULL;
1184 
1185 			wh = mtod(m, struct ieee80211_frame *);
1186 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1187 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1188 				/* fill time stamp */
1189 				u_int64_t tsf;
1190 				u_int32_t *tstamp;
1191 
1192 				tsf = ath_hal_gettsf64(ah);
1193 				/* XXX: adjust 100us delay to xmit */
1194 				tsf += 100;
1195 				tstamp = (u_int32_t *)&wh[1];
1196 				tstamp[0] = htole32(tsf & 0xffffffff);
1197 				tstamp[1] = htole32(tsf >> 32);
1198 			}
1199 			sc->sc_stats.ast_tx_mgmt++;
1200 		}
1201 
1202 		if (ath_tx_start(sc, ni, bf, m)) {
1203 	bad:
1204 			ath_txbuf_critsect_begin(sc, s);
1205 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1206 			ath_txbuf_critsect_end(sc, s);
1207 			ifp->if_oerrors++;
1208 			if (ni != NULL)
1209 				ieee80211_release_node(ic, ni);
1210 			continue;
1211 		}
1212 
1213 		sc->sc_tx_timer = 5;
1214 		ifp->if_timer = 1;
1215 	}
1216 }
1217 
1218 static int
1219 ath_media_change(struct ifnet *ifp)
1220 {
1221 	int error;
1222 
1223 	error = ieee80211_media_change(ifp);
1224 	if (error == ENETRESET) {
1225 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1226 		    (IFF_RUNNING|IFF_UP))
1227 			ath_init(ifp);		/* XXX lose error */
1228 		error = 0;
1229 	}
1230 	return error;
1231 }
1232 
1233 static void
1234 ath_watchdog(struct ifnet *ifp)
1235 {
1236 	struct ath_softc *sc = ifp->if_softc;
1237 	struct ieee80211com *ic = &sc->sc_ic;
1238 
1239 	ifp->if_timer = 0;
1240 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1241 		return;
1242 	if (sc->sc_tx_timer) {
1243 		if (--sc->sc_tx_timer == 0) {
1244 			if_printf(ifp, "device timeout\n");
1245 			ath_reset(sc);
1246 			ifp->if_oerrors++;
1247 			sc->sc_stats.ast_watchdog++;
1248 			return;
1249 		}
1250 		ifp->if_timer = 1;
1251 	}
1252 	if (ic->ic_fixed_rate == -1) {
1253 		/*
1254 		 * Run the rate control algorithm if we're not
1255 		 * locked at a fixed rate.
1256 		 */
1257 		if (ic->ic_opmode == IEEE80211_M_STA)
1258 			ath_rate_ctl(sc, ic->ic_bss);
1259 		else
1260 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1261 	}
1262 	ieee80211_watchdog(ifp);
1263 }
1264 
1265 static int
1266 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1267 {
1268 	struct ath_softc *sc = ifp->if_softc;
1269 	struct ifreq *ifr = (struct ifreq *)data;
1270 	int error = 0;
1271 	ath_softc_critsect_decl(s);
1272 
1273 	ath_softc_critsect_begin(sc, s);
1274 	switch (cmd) {
1275 	case SIOCSIFFLAGS:
1276 		if (ifp->if_flags & IFF_UP) {
1277 			if (ifp->if_flags & IFF_RUNNING) {
1278 				/*
1279 				 * To avoid rescanning another access point,
1280 				 * do not call ath_init() here.  Instead,
1281 				 * only reflect promisc mode settings.
1282 				 */
1283 				ath_mode_init(sc);
1284 			} else {
1285 				/*
1286 				 * Beware of being called during detach to
1287 				 * reset promiscuous mode.  In that case we
1288 				 * will still be marked UP but not RUNNING.
1289 				 * However trying to re-init the interface
1290 				 * is the wrong thing to do as we've already
1291 				 * torn down much of our state.  There's
1292 				 * probably a better way to deal with this.
1293 				 */
1294 				if (!sc->sc_invalid)
1295 					ath_init(ifp);	/* XXX lose error */
1296 			}
1297 		} else
1298 			ath_stop(ifp, 1);
1299 		break;
1300 	case SIOCADDMULTI:
1301 	case SIOCDELMULTI:
1302 #ifdef __FreeBSD__
1303 		/*
1304 		 * The upper layer has already installed/removed
1305 		 * the multicast address(es), just recalculate the
1306 		 * multicast filter for the card.
1307 		 */
1308 		if (ifp->if_flags & IFF_RUNNING)
1309 			ath_mode_init(sc);
1310 #endif
1311 #ifdef __NetBSD__
1312 		error = (cmd == SIOCADDMULTI) ?
1313 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1314 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1315 		if (error == ENETRESET) {
1316 			if (ifp->if_flags & IFF_RUNNING)
1317 				ath_mode_init(sc);
1318 			error = 0;
1319 		}
1320 #endif
1321 		break;
1322 	case SIOCGATHSTATS:
1323 		error = copyout(&sc->sc_stats,
1324 				ifr->ifr_data, sizeof (sc->sc_stats));
1325 		break;
1326 	case SIOCGATHDIAG: {
1327 #if 0	/* XXX punt */
1328 		struct ath_diag *ad = (struct ath_diag *)data;
1329 		struct ath_hal *ah = sc->sc_ah;
1330 		void *data;
1331 		u_int size;
1332 
1333 		if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1334 			if (size < ad->ad_size)
1335 				ad->ad_size = size;
1336 			if (data)
1337 				error = copyout(data, ad->ad_data, ad->ad_size);
1338 		} else
1339 			error = EINVAL;
1340 #else
1341 		error = EINVAL;
1342 #endif
1343 		break;
1344 	}
1345 	default:
1346 		error = ieee80211_ioctl(ifp, cmd, data);
1347 		if (error == ENETRESET) {
1348 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1349 			    (IFF_RUNNING|IFF_UP))
1350 				ath_init(ifp);		/* XXX lose error */
1351 			error = 0;
1352 		}
1353 		break;
1354 	}
1355 	ath_softc_critsect_end(sc, s);
1356 	return error;
1357 }
1358 
1359 /*
1360  * Fill the hardware key cache with key entries.
1361  */
1362 static void
1363 ath_initkeytable(struct ath_softc *sc)
1364 {
1365 	struct ieee80211com *ic = &sc->sc_ic;
1366 	struct ath_hal *ah = sc->sc_ah;
1367 	int i;
1368 
1369 	/* XXX maybe should reset all keys when !WEPON */
1370 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1371 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1372 		if (k->wk_len == 0)
1373 			ath_hal_keyreset(ah, i);
1374 		else {
1375 			HAL_KEYVAL hk;
1376 
1377 			memset(&hk, 0, sizeof(hk));
1378 			hk.kv_type = HAL_CIPHER_WEP;
1379 			hk.kv_len = k->wk_len;
1380 			memcpy(hk.kv_val, k->wk_key, k->wk_len);
1381 			/* XXX return value */
1382 			ath_hal_keyset(ah, i, &hk);
1383 		}
1384 	}
1385 }
1386 
1387 static void
1388 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1389 {
1390 	u_int32_t val;
1391 	u_int8_t pos;
1392 
1393 	val = LE_READ_4(dl + 0);
1394 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1395 	val = LE_READ_4(dl + 3);
1396 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1397 	pos &= 0x3f;
1398 	(*mfilt)[pos / 32] |= (1 << (pos % 32));
1399 }
1400 
1401 #ifdef __FreeBSD__
1402 static void
1403 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1404 {
1405 	struct ieee80211com *ic = &sc->sc_ic;
1406 	struct ifnet *ifp = &ic->ic_if;
1407 	struct ifmultiaddr *ifma;
1408 
1409 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1410 		caddr_t dl;
1411 
1412 		/* calculate XOR of eight 6bit values */
1413 		dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1414 		ath_mcastfilter_accum(dl, &mfilt);
1415 	}
1416 }
1417 #else
1418 static void
1419 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1420 {
1421 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1422 	struct ether_multi *enm;
1423 	struct ether_multistep estep;
1424 
1425 	ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1426 	while (enm != NULL) {
1427 		/* XXX Punt on ranges. */
1428 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1429 			(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1430 			ifp->if_flags |= IFF_ALLMULTI;
1431 			return;
1432 		}
1433 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1434 		ETHER_NEXT_MULTI(estep, enm);
1435 	}
1436 	ifp->if_flags &= ~IFF_ALLMULTI;
1437 }
1438 #endif
1439 
1440 /*
1441  * Calculate the receive filter according to the
1442  * operating mode and state:
1443  *
1444  * o always accept unicast, broadcast, and multicast traffic
1445  * o maintain current state of phy error reception
1446  * o probe request frames are accepted only when operating in
1447  *   hostap, adhoc, or monitor modes
1448  * o enable promiscuous mode according to the interface state
1449  * o accept beacons:
1450  *   - when operating in adhoc mode so the 802.11 layer creates
1451  *     node table entries for peers,
1452  *   - when operating in station mode for collecting rssi data when
1453  *     the station is otherwise quiet, or
1454  *   - when scanning
1455  */
1456 static u_int32_t
1457 ath_calcrxfilter(struct ath_softc *sc)
1458 {
1459 	struct ieee80211com *ic = &sc->sc_ic;
1460 	struct ath_hal *ah = sc->sc_ah;
1461 	struct ifnet *ifp = &ic->ic_if;
1462 	u_int32_t rfilt;
1463 
1464 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1465 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1466 	if (ic->ic_opmode != IEEE80211_M_STA)
1467 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1468 	if (ic->ic_opmode != IEEE80211_M_AHDEMO)
1469 		rfilt |= HAL_RX_FILTER_BEACON;
1470 	if (ifp->if_flags & IFF_PROMISC)
1471 		rfilt |= HAL_RX_FILTER_PROM;
1472 	return rfilt;
1473 }
1474 
1475 static void
1476 ath_mode_init(struct ath_softc *sc)
1477 {
1478 #ifdef __FreeBSD__
1479 	struct ieee80211com *ic = &sc->sc_ic;
1480 #endif
1481 	struct ath_hal *ah = sc->sc_ah;
1482 	u_int32_t rfilt, mfilt[2];
1483 
1484 	/* configure rx filter */
1485 	rfilt = ath_calcrxfilter(sc);
1486 	ath_hal_setrxfilter(ah, rfilt);
1487 
1488 	/* configure operational mode */
1489 	ath_hal_setopmode(ah);
1490 
1491 	/* calculate and install multicast filter */
1492 #ifdef __FreeBSD__
1493 	if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1494 		mfilt[0] = mfilt[1] = 0;
1495 		ath_mcastfilter_compute(sc, &mfilt);
1496 	} else {
1497 		mfilt[0] = mfilt[1] = ~0;
1498 	}
1499 #endif
1500 #ifdef __NetBSD__
1501 	mfilt[0] = mfilt[1] = 0;
1502 	ath_mcastfilter_compute(sc, &mfilt);
1503 #endif
1504 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1505 	DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1506 		__func__, rfilt, mfilt[0], mfilt[1]));
1507 }
1508 
1509 #ifdef __FreeBSD__
1510 static void
1511 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1512 {
1513 	struct ath_buf *bf = arg;
1514 
1515 	KASSERT(nseg <= ATH_MAX_SCATTER,
1516 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1517 	bf->bf_mapsize = mapsize;
1518 	bf->bf_nseg = nseg;
1519 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1520 }
1521 #endif /* __FreeBSD__ */
1522 
1523 static struct mbuf *
1524 ath_getmbuf(int flags, int type, u_int pktlen)
1525 {
1526 	struct mbuf *m;
1527 
1528 	KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1529 #ifdef __FreeBSD__
1530 	if (pktlen <= MHLEN)
1531 		MGETHDR(m, flags, type);
1532 	else
1533 		m = m_getcl(flags, type, M_PKTHDR);
1534 #else
1535 	MGETHDR(m, flags, type);
1536 	if (m != NULL && pktlen > MHLEN) {
1537 		MCLGET(m, flags);
1538 		if ((m->m_flags & M_EXT) == 0) {
1539 			m_free(m);
1540 			m = NULL;
1541 		}
1542 	}
1543 #endif
1544 	return m;
1545 }
1546 
1547 static int
1548 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1549 {
1550 	struct ieee80211com *ic = &sc->sc_ic;
1551 	struct ifnet *ifp = &ic->ic_if;
1552 	struct ath_hal *ah = sc->sc_ah;
1553 	struct ieee80211_frame *wh;
1554 	struct ath_buf *bf;
1555 	struct ath_desc *ds;
1556 	struct mbuf *m;
1557 	int error, pktlen;
1558 	u_int8_t *frm, rate;
1559 	u_int16_t capinfo;
1560 	struct ieee80211_rateset *rs;
1561 	const HAL_RATE_TABLE *rt;
1562 	u_int flags;
1563 
1564 	bf = sc->sc_bcbuf;
1565 	if (bf->bf_m != NULL) {
1566 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1567 		m_freem(bf->bf_m);
1568 		bf->bf_m = NULL;
1569 		bf->bf_node = NULL;
1570 	}
1571 	/*
1572 	 * NB: the beacon data buffer must be 32-bit aligned;
1573 	 * we assume the mbuf routines will return us something
1574 	 * with this alignment (perhaps should assert).
1575 	 */
1576 	rs = &ni->ni_rates;
1577 	pktlen = sizeof (struct ieee80211_frame)
1578 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1579 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1580 		pktlen += 2;
1581 	m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1582 	if (m == NULL) {
1583 		DPRINTF(ATH_DEBUG_BEACON,
1584 			("%s: cannot get mbuf/cluster; size %u\n",
1585 			__func__, pktlen));
1586 		sc->sc_stats.ast_be_nombuf++;
1587 		return ENOMEM;
1588 	}
1589 
1590 	wh = mtod(m, struct ieee80211_frame *);
1591 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1592 	    IEEE80211_FC0_SUBTYPE_BEACON;
1593 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1594 	*(u_int16_t *)wh->i_dur = 0;
1595 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1596 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1597 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1598 	*(u_int16_t *)wh->i_seq = 0;
1599 
1600 	/*
1601 	 * beacon frame format
1602 	 *	[8] time stamp
1603 	 *	[2] beacon interval
1604 	 *	[2] cabability information
1605 	 *	[tlv] ssid
1606 	 *	[tlv] supported rates
1607 	 *	[tlv] parameter set (IBSS)
1608 	 *	[tlv] extended supported rates
1609 	 */
1610 	frm = (u_int8_t *)&wh[1];
1611 	memset(frm, 0, 8);	/* timestamp is set by hardware */
1612 	frm += 8;
1613 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1614 	frm += 2;
1615 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1616 		capinfo = IEEE80211_CAPINFO_IBSS;
1617 	else
1618 		capinfo = IEEE80211_CAPINFO_ESS;
1619 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1620 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1621 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1622 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1623 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1624 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1625 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1626 	*(u_int16_t *)frm = htole16(capinfo);
1627 	frm += 2;
1628 	*frm++ = IEEE80211_ELEMID_SSID;
1629 	*frm++ = ni->ni_esslen;
1630 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1631 	frm += ni->ni_esslen;
1632 	frm = ieee80211_add_rates(frm, rs);
1633 	*frm++ = IEEE80211_ELEMID_DSPARMS;
1634 	*frm++ = 1;
1635 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1636 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1637 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1638 		*frm++ = 2;
1639 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1640 	} else {
1641 		/* TODO: TIM */
1642 		*frm++ = IEEE80211_ELEMID_TIM;
1643 		*frm++ = 4;	/* length */
1644 		*frm++ = 0;	/* DTIM count */
1645 		*frm++ = 1;	/* DTIM period */
1646 		*frm++ = 0;	/* bitmap control */
1647 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1648 	}
1649 	frm = ieee80211_add_xrates(frm, rs);
1650 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1651 	KASSERT(m->m_pkthdr.len <= pktlen,
1652 		("beacon bigger than expected, len %u calculated %u",
1653 		m->m_pkthdr.len, pktlen));
1654 
1655 	DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1656 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1657 	if (error != 0) {
1658 		m_freem(m);
1659 		return error;
1660 	}
1661 	KASSERT(bf->bf_nseg == 1,
1662 		("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1663 	bf->bf_m = m;
1664 
1665 	/* setup descriptors */
1666 	ds = bf->bf_desc;
1667 
1668 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1669 		ds->ds_link = bf->bf_daddr;	/* link to self */
1670 	else
1671 		ds->ds_link = 0;
1672 	ds->ds_data = bf->bf_segs[0].ds_addr;
1673 
1674 	DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__,
1675 	    (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1676 
1677 	/*
1678 	 * Calculate rate code.
1679 	 * XXX everything at min xmit rate
1680 	 */
1681 	rt = sc->sc_currates;
1682 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1683 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1684 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1685 	else
1686 		rate = rt->info[0].rateCode;
1687 
1688 	flags = HAL_TXDESC_NOACK;
1689 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1690 		flags |= HAL_TXDESC_VEOL;
1691 
1692 	if (!ath_hal_setuptxdesc(ah, ds
1693 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1694 		, sizeof(struct ieee80211_frame)	/* header length */
1695 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1696 		, 0x20				/* txpower XXX */
1697 		, rate, 1			/* series 0 rate/tries */
1698 		, HAL_TXKEYIX_INVALID		/* no encryption */
1699 		, 0				/* antenna mode */
1700 		, flags				/* no ack for beacons */
1701 		, 0				/* rts/cts rate */
1702 		, 0				/* rts/cts duration */
1703 	)) {
1704 		printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1705 		return -1;
1706 	}
1707 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1708 	/* XXX verify mbuf data area covers this roundup */
1709 	if (!ath_hal_filltxdesc(ah, ds
1710 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1711 		, AH_TRUE				/* first segment */
1712 		, AH_TRUE				/* last segment */
1713 	)) {
1714 		printf("%s: ath_hal_filltxdesc failed\n", __func__);
1715 		return -1;
1716 	}
1717 
1718 	/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1719 
1720 	return 0;
1721 }
1722 
1723 static void
1724 ath_beacon_proc(struct ath_softc *sc, int pending)
1725 {
1726 	struct ieee80211com *ic = &sc->sc_ic;
1727 	struct ath_buf *bf = sc->sc_bcbuf;
1728 	struct ath_hal *ah = sc->sc_ah;
1729 
1730 	DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1731 	if (ic->ic_opmode == IEEE80211_M_STA ||
1732 	    bf == NULL || bf->bf_m == NULL) {
1733 		DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1734 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1735 		return;
1736 	}
1737 	/* TODO: update beacon to reflect PS poll state */
1738 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1739 		DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1740 			__func__, sc->sc_bhalq));
1741 		/* NB: the HAL still stops DMA, so proceed */
1742 	}
1743 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1744 
1745 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1746 	ath_hal_txstart(ah, sc->sc_bhalq);
1747 	DPRINTF(ATH_DEBUG_BEACON_PROC,
1748 		("%s: TXDP%u = %p (%p)\n", __func__,
1749 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1750 }
1751 
1752 static void
1753 ath_beacon_free(struct ath_softc *sc)
1754 {
1755 	struct ath_buf *bf = sc->sc_bcbuf;
1756 
1757 	if (bf->bf_m != NULL) {
1758 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1759 		m_freem(bf->bf_m);
1760 		bf->bf_m = NULL;
1761 		bf->bf_node = NULL;
1762 	}
1763 }
1764 
1765 /*
1766  * Configure the beacon and sleep timers.
1767  *
1768  * When operating as an AP this resets the TSF and sets
1769  * up the hardware to notify us when we need to issue beacons.
1770  *
1771  * When operating in station mode this sets up the beacon
1772  * timers according to the timestamp of the last received
1773  * beacon and the current TSF, configures PCF and DTIM
1774  * handling, programs the sleep registers so the hardware
1775  * will wakeup in time to receive beacons, and configures
1776  * the beacon miss handling so we'll receive a BMISS
1777  * interrupt when we stop seeing beacons from the AP
1778  * we've associated with.
1779  */
1780 static void
1781 ath_beacon_config(struct ath_softc *sc)
1782 {
1783 	struct ath_hal *ah = sc->sc_ah;
1784 	struct ieee80211com *ic = &sc->sc_ic;
1785 	struct ieee80211_node *ni = ic->ic_bss;
1786 	u_int32_t nexttbtt, intval;
1787 
1788 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1789 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1790 	DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
1791 	nexttbtt += ni->ni_intval;
1792 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
1793 	if (ic->ic_opmode == IEEE80211_M_STA) {
1794 		HAL_BEACON_STATE bs;
1795 		u_int32_t bmisstime;
1796 
1797 		/* NB: no PCF support right now */
1798 		memset(&bs, 0, sizeof(bs));
1799 		/*
1800 		 * Reset our tsf so the hardware will update the
1801 		 * tsf register to reflect timestamps found in
1802 		 * received beacons.
1803 		 */
1804 		bs.bs_intval = intval | HAL_BEACON_RESET_TSF;
1805 		bs.bs_nexttbtt = nexttbtt;
1806 		bs.bs_dtimperiod = bs.bs_intval;
1807 		bs.bs_nextdtim = nexttbtt;
1808 		/*
1809 		 * Calculate the number of consecutive beacons to miss
1810 		 * before taking a BMISS interrupt.  The configuration
1811 		 * is specified in ms, so we need to convert that to
1812 		 * TU's and then calculate based on the beacon interval.
1813 		 * Note that we clamp the result to at most 10 beacons.
1814 		 */
1815 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1816 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1817 		if (bs.bs_bmissthreshold > 10)
1818 			bs.bs_bmissthreshold = 10;
1819 		else if (bs.bs_bmissthreshold <= 0)
1820 			bs.bs_bmissthreshold = 1;
1821 
1822 		/*
1823 		 * Calculate sleep duration.  The configuration is
1824 		 * given in ms.  We insure a multiple of the beacon
1825 		 * period is used.  Also, if the sleep duration is
1826 		 * greater than the DTIM period then it makes senses
1827 		 * to make it a multiple of that.
1828 		 *
1829 		 * XXX fixed at 100ms
1830 		 */
1831 		bs.bs_sleepduration =
1832 			roundup((100 * 1000) / 1024, bs.bs_intval);
1833 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1834 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1835 
1836 		DPRINTF(ATH_DEBUG_BEACON,
1837 			("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1838 			, __func__
1839 			, bs.bs_intval
1840 			, bs.bs_nexttbtt
1841 			, bs.bs_dtimperiod
1842 			, bs.bs_nextdtim
1843 			, bs.bs_bmissthreshold
1844 			, bs.bs_sleepduration
1845 		));
1846 		ath_hal_intrset(ah, 0);
1847 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1848 		sc->sc_imask |= HAL_INT_BMISS;
1849 		ath_hal_intrset(ah, sc->sc_imask);
1850 	} else {
1851 		ath_hal_intrset(ah, 0);
1852 		sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1853 		intval |= HAL_BEACON_ENA;
1854 		switch (ic->ic_opmode) {
1855 		/* No beacons in monitor, ad hoc-demo modes. */
1856 		case IEEE80211_M_MONITOR:
1857 		case IEEE80211_M_AHDEMO:
1858 			intval &= ~HAL_BEACON_ENA;
1859 			/*FALLTHROUGH*/
1860 		/* In IBSS mode, I am uncertain how SWBA interrupts
1861 		 * work, so I just turn them off and use a self-linked
1862 		 * descriptor.
1863 		 */
1864 		case IEEE80211_M_IBSS:
1865 			sc->sc_imask &= ~HAL_INT_SWBA;
1866 			nexttbtt = ni->ni_intval;
1867 			/*FALLTHROUGH*/
1868 		case IEEE80211_M_HOSTAP:
1869 		default:
1870 			if (nexttbtt == ni->ni_intval)
1871 				intval |= HAL_BEACON_RESET_TSF;
1872 			break;
1873 		}
1874 		DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1875 			__func__, ni->ni_intval, nexttbtt));
1876 		ath_hal_beaconinit(ah, nexttbtt, intval);
1877 		ath_hal_intrset(ah, sc->sc_imask);
1878 		if (ic->ic_opmode == IEEE80211_M_IBSS)
1879 			ath_beacon_proc(sc, 0);
1880 	}
1881 }
1882 
1883 #ifdef __FreeBSD__
1884 static void
1885 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1886 {
1887 	bus_addr_t *paddr = (bus_addr_t*) arg;
1888 	*paddr = segs->ds_addr;
1889 }
1890 #endif
1891 
1892 #ifdef __FreeBSD__
1893 static int
1894 ath_desc_alloc(struct ath_softc *sc)
1895 {
1896 	int i, bsize, error;
1897 	struct ath_desc *ds;
1898 	struct ath_buf *bf;
1899 
1900 	/* allocate descriptors */
1901 	sc->sc_desc_len = sizeof(struct ath_desc) *
1902 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1903 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1904 	if (error != 0)
1905 		return error;
1906 
1907 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1908 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1909 
1910 	if (error != 0)
1911 		goto fail0;
1912 
1913 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1914 				sc->sc_desc, sc->sc_desc_len,
1915 				ath_load_cb, &sc->sc_desc_paddr,
1916 				BUS_DMA_NOWAIT);
1917 	if (error != 0)
1918 		goto fail1;
1919 
1920 	ds = sc->sc_desc;
1921 	DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
1922 	    __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
1923 	    /*XXX*/ (u_long) sc->sc_desc_len));
1924 
1925 	/* allocate buffers */
1926 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1927 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1928 	if (bf == NULL) {
1929 		printf("%s: unable to allocate Tx/Rx buffers\n",
1930 		    sc->sc_dev.dv_xname);
1931 		error = -1;
1932 		goto fail2;
1933 	}
1934 	sc->sc_bufptr = bf;
1935 
1936 	TAILQ_INIT(&sc->sc_rxbuf);
1937 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1938 		bf->bf_desc = ds;
1939 		bf->bf_daddr = sc->sc_desc_paddr +
1940 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1941 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1942 					  &bf->bf_dmamap);
1943 		if (error != 0)
1944 			break;
1945 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1946 	}
1947 
1948 	TAILQ_INIT(&sc->sc_txbuf);
1949 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1950 		bf->bf_desc = ds;
1951 		bf->bf_daddr = sc->sc_desc_paddr +
1952 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1953 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1954 					  &bf->bf_dmamap);
1955 		if (error != 0)
1956 			break;
1957 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1958 	}
1959 	TAILQ_INIT(&sc->sc_txq);
1960 
1961 	/* beacon buffer */
1962 	bf->bf_desc = ds;
1963 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1964 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1965 	if (error != 0)
1966 		return error;
1967 	sc->sc_bcbuf = bf;
1968 	return 0;
1969 
1970 fail2:
1971 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1972 fail1:
1973 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1974 fail0:
1975 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1976 	sc->sc_ddmamap = NULL;
1977 	return error;
1978 }
1979 #else
1980 static int
1981 ath_desc_alloc(struct ath_softc *sc)
1982 {
1983 	int i, bsize, error = -1;
1984 	struct ath_desc *ds;
1985 	struct ath_buf *bf;
1986 
1987 	/* allocate descriptors */
1988 	sc->sc_desc_len = sizeof(struct ath_desc) *
1989 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1990 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1991 	    0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1992 		printf("%s: unable to allocate control data, error = %d\n",
1993 		    sc->sc_dev.dv_xname, error);
1994 		goto fail0;
1995 	}
1996 
1997 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1998 	    sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1999 		printf("%s: unable to map control data, error = %d\n",
2000 		    sc->sc_dev.dv_xname, error);
2001 		goto fail1;
2002 	}
2003 
2004 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
2005 	    sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
2006 		printf("%s: unable to create control data DMA map, "
2007 		    "error = %d\n", sc->sc_dev.dv_xname, error);
2008 		goto fail2;
2009 	}
2010 
2011 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
2012 	    sc->sc_desc_len, NULL, 0)) != 0) {
2013 		printf("%s: unable to load control data DMA map, error = %d\n",
2014 		    sc->sc_dev.dv_xname, error);
2015 		goto fail3;
2016 	}
2017 
2018 	ds = sc->sc_desc;
2019 	sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
2020 
2021 	DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC,
2022 	    ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
2023 	    ds, (u_long)sc->sc_desc_len,
2024 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
2025 
2026 	/* allocate buffers */
2027 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
2028 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
2029 	if (bf == NULL) {
2030 		printf("%s: unable to allocate Tx/Rx buffers\n",
2031 		    sc->sc_dev.dv_xname);
2032 		error = ENOMEM;
2033 		goto fail3;
2034 	}
2035 	sc->sc_bufptr = bf;
2036 
2037 	TAILQ_INIT(&sc->sc_rxbuf);
2038 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
2039 		bf->bf_desc = ds;
2040 		bf->bf_daddr = sc->sc_desc_paddr +
2041 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
2042 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
2043 		    MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2044 			printf("%s: unable to create Rx dmamap, error = %d\n",
2045 			    sc->sc_dev.dv_xname, error);
2046 			goto fail4;
2047 		}
2048 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2049 	}
2050 
2051 	TAILQ_INIT(&sc->sc_txbuf);
2052 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
2053 		bf->bf_desc = ds;
2054 		bf->bf_daddr = sc->sc_desc_paddr +
2055 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
2056 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
2057 		    ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2058 			printf("%s: unable to create Tx dmamap, error = %d\n",
2059 			    sc->sc_dev.dv_xname, error);
2060 			goto fail5;
2061 		}
2062 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2063 	}
2064 	TAILQ_INIT(&sc->sc_txq);
2065 
2066 	/* beacon buffer */
2067 	bf->bf_desc = ds;
2068 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
2069 	if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
2070 	    &bf->bf_dmamap)) != 0) {
2071 		printf("%s: unable to create beacon dmamap, error = %d\n",
2072 		    sc->sc_dev.dv_xname, error);
2073 		goto fail5;
2074 	}
2075 	sc->sc_bcbuf = bf;
2076 	return 0;
2077 
2078 fail5:
2079 	for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
2080 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
2081 			continue;
2082 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2083 	}
2084 fail4:
2085 	for (i = 0; i < ATH_RXBUF; i++) {
2086 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
2087 			continue;
2088 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2089 	}
2090 fail3:
2091 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2092 fail2:
2093 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2094 	sc->sc_ddmamap = NULL;
2095 fail1:
2096 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
2097 fail0:
2098 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2099 	return error;
2100 }
2101 #endif
2102 
2103 static void
2104 ath_desc_free(struct ath_softc *sc)
2105 {
2106 	struct ath_buf *bf;
2107 
2108 #ifdef __FreeBSD__
2109 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2110 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
2111 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2112 #else
2113 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2114 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2115 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2116 #endif
2117 
2118 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2119 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2120 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2121 		m_freem(bf->bf_m);
2122 	}
2123 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
2124 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2125 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2126 		if (bf->bf_m) {
2127 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2128 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2129 			m_freem(bf->bf_m);
2130 			bf->bf_m = NULL;
2131 		}
2132 	}
2133 	if (sc->sc_bcbuf != NULL) {
2134 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2135 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2136 		sc->sc_bcbuf = NULL;
2137 	}
2138 
2139 	TAILQ_INIT(&sc->sc_rxbuf);
2140 	TAILQ_INIT(&sc->sc_txbuf);
2141 	TAILQ_INIT(&sc->sc_txq);
2142 	free(sc->sc_bufptr, M_DEVBUF);
2143 	sc->sc_bufptr = NULL;
2144 }
2145 
2146 static struct ieee80211_node *
2147 ath_node_alloc(struct ieee80211com *ic)
2148 {
2149 	struct ath_node *an =
2150 		malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
2151 	if (an) {
2152 		int i;
2153 		for (i = 0; i < ATH_RHIST_SIZE; i++)
2154 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
2155 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
2156 		return &an->an_node;
2157 	} else
2158 		return NULL;
2159 }
2160 
2161 static void
2162 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2163 {
2164 	struct ath_softc *sc = ic->ic_if.if_softc;
2165 	struct ath_buf *bf;
2166 
2167 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2168 		if (bf->bf_node == ni)
2169 			bf->bf_node = NULL;
2170 	}
2171 	(*sc->sc_node_free)(ic, ni);
2172 }
2173 
2174 static void
2175 ath_node_copy(struct ieee80211com *ic,
2176 	struct ieee80211_node *dst, const struct ieee80211_node *src)
2177 {
2178         struct ath_softc *sc = ic->ic_if.if_softc;
2179 
2180 	memcpy(&dst[1], &src[1],
2181 		sizeof(struct ath_node) - sizeof(struct ieee80211_node));
2182 	(*sc->sc_node_copy)(ic, dst, src);
2183 }
2184 
2185 static u_int8_t
2186 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2187 {
2188 	struct ath_node *an = ATH_NODE(ni);
2189 	int i, now, nsamples, rssi;
2190 
2191 	/*
2192 	 * Calculate the average over the last second of sampled data.
2193 	 */
2194 	now = ATH_TICKS();
2195 	nsamples = 0;
2196 	rssi = 0;
2197 	i = an->an_rx_hist_next;
2198 	do {
2199 		struct ath_recv_hist *rh = &an->an_rx_hist[i];
2200 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
2201 			goto done;
2202 		if (now - rh->arh_ticks > hz)
2203 			goto done;
2204 		rssi += rh->arh_rssi;
2205 		nsamples++;
2206 		if (i == 0)
2207 			i = ATH_RHIST_SIZE-1;
2208 		else
2209 			i--;
2210 	} while (i != an->an_rx_hist_next);
2211 done:
2212 	/*
2213 	 * Return either the average or the last known
2214 	 * value if there is no recent data.
2215 	 */
2216 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2217 }
2218 
2219 static int
2220 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2221 {
2222 	struct ath_hal *ah = sc->sc_ah;
2223 	int error;
2224 	struct mbuf *m;
2225 	struct ath_desc *ds;
2226 
2227 	m = bf->bf_m;
2228 	if (m == NULL) {
2229 		/*
2230 		 * NB: by assigning a page to the rx dma buffer we
2231 		 * implicitly satisfy the Atheros requirement that
2232 		 * this buffer be cache-line-aligned and sized to be
2233 		 * multiple of the cache line size.  Not doing this
2234 		 * causes weird stuff to happen (for the 5210 at least).
2235 		 */
2236 		m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2237 		if (m == NULL) {
2238 			DPRINTF(ATH_DEBUG_ANY,
2239 				("%s: no mbuf/cluster\n", __func__));
2240 			sc->sc_stats.ast_rx_nombuf++;
2241 			return ENOMEM;
2242 		}
2243 		bf->bf_m = m;
2244 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2245 
2246 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2247 		                                 BUS_DMA_NOWAIT);
2248 		if (error != 0) {
2249 			DPRINTF(ATH_DEBUG_ANY,
2250 				("%s: ath_buf_dmamap_load_mbuf failed;"
2251 				" error %d\n", __func__, error));
2252 			sc->sc_stats.ast_rx_busdma++;
2253 			return error;
2254 		}
2255 		KASSERT(bf->bf_nseg == 1,
2256 			("ath_rxbuf_init: multi-segment packet; nseg %u",
2257 			bf->bf_nseg));
2258 	}
2259 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2260 
2261 	/*
2262 	 * Setup descriptors.  For receive we always terminate
2263 	 * the descriptor list with a self-linked entry so we'll
2264 	 * not get overrun under high load (as can happen with a
2265 	 * 5212 when ANI processing enables PHY errors).
2266 	 *
2267 	 * To insure the last descriptor is self-linked we create
2268 	 * each descriptor as self-linked and add it to the end.  As
2269 	 * each additional descriptor is added the previous self-linked
2270 	 * entry is ``fixed'' naturally.  This should be safe even
2271 	 * if DMA is happening.  When processing RX interrupts we
2272 	 * never remove/process the last, self-linked, entry on the
2273 	 * descriptor list.  This insures the hardware always has
2274 	 * someplace to write a new frame.
2275 	 */
2276 	ds = bf->bf_desc;
2277 	ds->ds_link = bf->bf_daddr;	/* link to self */
2278 	ds->ds_data = bf->bf_segs[0].ds_addr;
2279 	ath_hal_setuprxdesc(ah, ds
2280 		, m->m_len		/* buffer size */
2281 		, 0
2282 	);
2283 
2284 	if (sc->sc_rxlink != NULL)
2285 		*sc->sc_rxlink = bf->bf_daddr;
2286 	sc->sc_rxlink = &ds->ds_link;
2287 	return 0;
2288 }
2289 
2290 static void
2291 ath_rx_proc(void *arg, int npending)
2292 {
2293 #define	PA2DESC(_sc, _pa) \
2294 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2295 		((_pa) - (_sc)->sc_desc_paddr)))
2296 	struct ath_softc *sc = arg;
2297 	struct ath_buf *bf;
2298 	struct ieee80211com *ic = &sc->sc_ic;
2299 	struct ifnet *ifp = &ic->ic_if;
2300 	struct ath_hal *ah = sc->sc_ah;
2301 	struct ath_desc *ds;
2302 	struct mbuf *m;
2303 	struct ieee80211_frame *wh, whbuf;
2304 	struct ieee80211_node *ni;
2305 	struct ath_node *an;
2306 	struct ath_recv_hist *rh;
2307 	int len;
2308 	u_int phyerr;
2309 	HAL_STATUS status;
2310 
2311 	DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
2312 	do {
2313 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
2314 		if (bf == NULL) {		/* NB: shouldn't happen */
2315 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
2316 			break;
2317 		}
2318 		ds = bf->bf_desc;
2319 		if (ds->ds_link == bf->bf_daddr) {
2320 			/* NB: never process the self-linked entry at the end */
2321 			break;
2322 		}
2323 		m = bf->bf_m;
2324 		if (m == NULL) {		/* NB: shouldn't happen */
2325 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2326 			continue;
2327 		}
2328 		/* XXX sync descriptor memory */
2329 		/*
2330 		 * Must provide the virtual address of the current
2331 		 * descriptor, the physical address, and the virtual
2332 		 * address of the next descriptor in the h/w chain.
2333 		 * This allows the HAL to look ahead to see if the
2334 		 * hardware is done with a descriptor by checking the
2335 		 * done bit in the following descriptor and the address
2336 		 * of the current descriptor the DMA engine is working
2337 		 * on.  All this is necessary because of our use of
2338 		 * a self-linked list to avoid rx overruns.
2339 		 */
2340 		status = ath_hal_rxprocdesc(ah, ds,
2341 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2342 #ifdef AR_DEBUG
2343 		if (ath_debug & ATH_DEBUG_RECV_DESC)
2344 			ath_printrxbuf(bf, status == HAL_OK);
2345 #endif
2346 		if (status == HAL_EINPROGRESS)
2347 			break;
2348 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2349 
2350 		if (ds->ds_rxstat.rs_more) {
2351 			/*
2352 			 * Frame spans multiple descriptors; this
2353 			 * cannot happen yet as we don't support
2354 			 * jumbograms.  If not in monitor mode,
2355 			 * discard the frame.
2356 			 */
2357 
2358 			/* enable this if you want to see error frames in Monitor mode */
2359 #ifdef ERROR_FRAMES
2360 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2361 				/* XXX statistic */
2362 				goto rx_next;
2363 			}
2364 #endif
2365 			/* fall thru for monitor mode handling... */
2366 
2367 		} else if (ds->ds_rxstat.rs_status != 0) {
2368 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2369 				sc->sc_stats.ast_rx_crcerr++;
2370 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2371 				sc->sc_stats.ast_rx_fifoerr++;
2372 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2373 				sc->sc_stats.ast_rx_badcrypt++;
2374 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2375 				sc->sc_stats.ast_rx_phyerr++;
2376 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2377 				sc->sc_stats.ast_rx_phy[phyerr]++;
2378 			}
2379 
2380 			/*
2381 			 * reject error frames, we normally don't want
2382 			 * to see them in monitor mode.
2383 			 */
2384 			if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) ||
2385 			    (ds->ds_rxstat.rs_status & HAL_RXERR_PHY))
2386 			    goto rx_next;
2387 
2388 			/*
2389 			 * In monitor mode, allow through packets that
2390 			 * cannot be decrypted
2391 			 */
2392 			if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) ||
2393 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2394 				goto rx_next;
2395 		}
2396 
2397 		len = ds->ds_rxstat.rs_datalen;
2398 		if (len < IEEE80211_MIN_LEN) {
2399 			DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
2400 				__func__, len));
2401 			sc->sc_stats.ast_rx_tooshort++;
2402 			goto rx_next;
2403 		}
2404 
2405 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2406 
2407 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2408 		bf->bf_m = NULL;
2409 		m->m_pkthdr.rcvif = ifp;
2410 		m->m_pkthdr.len = m->m_len = len;
2411 
2412 #if NBPFILTER > 0
2413 		if (sc->sc_drvbpf) {
2414 			sc->sc_rx_th.wr_rate =
2415 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2416 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2417 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2418 			/* XXX TSF */
2419 			bpf_mtap2(sc->sc_drvbpf,
2420 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2421 		}
2422 #endif
2423 
2424 		m_adj(m, -IEEE80211_CRC_LEN);
2425 		wh = mtod(m, struct ieee80211_frame *);
2426 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2427 			/*
2428 			 * WEP is decrypted by hardware. Clear WEP bit
2429 			 * and trim WEP header for ieee80211_input().
2430 			 */
2431 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2432 			memcpy(&whbuf, wh, sizeof(whbuf));
2433 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2434 			wh = mtod(m, struct ieee80211_frame *);
2435 			memcpy(wh, &whbuf, sizeof(whbuf));
2436 			/*
2437 			 * Also trim WEP ICV from the tail.
2438 			 */
2439 			m_adj(m, -IEEE80211_WEP_CRCLEN);
2440 			/*
2441 			 * The header has probably moved.
2442 			 */
2443 			wh = mtod(m, struct ieee80211_frame *);
2444 		}
2445 
2446 		/*
2447 		 * Locate the node for sender, track state, and
2448 		 * then pass this node (referenced) up to the 802.11
2449 		 * layer for its use.
2450 		 */
2451 		ni = ieee80211_find_rxnode(ic, wh);
2452 
2453 		/*
2454 		 * Record driver-specific state.
2455 		 */
2456 		an = ATH_NODE(ni);
2457 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2458 			an->an_rx_hist_next = 0;
2459 		rh = &an->an_rx_hist[an->an_rx_hist_next];
2460 		rh->arh_ticks = ATH_TICKS();
2461 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2462 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2463 
2464 		/*
2465 		 * Send frame up for processing.
2466 		 */
2467 		ieee80211_input(ifp, m, ni,
2468 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2469 
2470 		/*
2471 		 * The frame may have caused the node to be marked for
2472 		 * reclamation (e.g. in response to a DEAUTH message)
2473 		 * so use release_node here instead of unref_node.
2474 		 */
2475 		ieee80211_release_node(ic, ni);
2476   rx_next:
2477 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2478 	} while (ath_rxbuf_init(sc, bf) == 0);
2479 
2480 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
2481 	ath_hal_rxena(ah);			/* in case of RXEOL */
2482 
2483 #ifdef __NetBSD__
2484 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2485 		ath_start(ifp);
2486 #endif /* __NetBSD__ */
2487 #undef PA2DESC
2488 }
2489 
2490 /*
2491  * XXX Size of an ACK control frame in bytes.
2492  */
2493 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
2494 
2495 static int
2496 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2497     struct mbuf *m0)
2498 {
2499 	struct ieee80211com *ic = &sc->sc_ic;
2500 	struct ath_hal *ah = sc->sc_ah;
2501 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2502 	int i, error, iswep, hdrlen, pktlen;
2503 	u_int8_t rix, cix, txrate, ctsrate;
2504 	struct ath_desc *ds;
2505 	struct mbuf *m;
2506 	struct ieee80211_frame *wh;
2507 	u_int32_t iv;
2508 	u_int8_t *ivp;
2509 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2510 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2511 	u_int subtype, flags, ctsduration, antenna;
2512 	HAL_PKT_TYPE atype;
2513 	const HAL_RATE_TABLE *rt;
2514 	HAL_BOOL shortPreamble;
2515 	struct ath_node *an;
2516 	ath_txq_critsect_decl(s);
2517 
2518 	wh = mtod(m0, struct ieee80211_frame *);
2519 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2520 	hdrlen = sizeof(struct ieee80211_frame);
2521 	pktlen = m0->m_pkthdr.len;
2522 
2523 	if (iswep) {
2524 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2525 		m_adj(m0, hdrlen);
2526 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2527 		if (m0 == NULL) {
2528 			sc->sc_stats.ast_tx_nombuf++;
2529 			return ENOMEM;
2530 		}
2531 		ivp = hdrbuf + hdrlen;
2532 		wh = mtod(m0, struct ieee80211_frame *);
2533 		/*
2534 		 * XXX
2535 		 * IV must not duplicate during the lifetime of the key.
2536 		 * But no mechanism to renew keys is defined in IEEE 802.11
2537 		 * for WEP.  And the IV may be duplicated at other stations
2538 		 * because the session key itself is shared.  So we use a
2539 		 * pseudo random IV for now, though it is not the right way.
2540 		 *
2541 		 * NB: Rather than use a strictly random IV we select a
2542 		 * random one to start and then increment the value for
2543 		 * each frame.  This is an explicit tradeoff between
2544 		 * overhead and security.  Given the basic insecurity of
2545 		 * WEP this seems worthwhile.
2546 		 */
2547 
2548 		/*
2549 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2550 		 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
2551 		 */
2552 		iv = ic->ic_iv;
2553 		if ((iv & 0xff00) == 0xff00) {
2554 			int B = (iv & 0xff0000) >> 16;
2555 			if (3 <= B && B < 16)
2556 				iv = (B+1) << 16;
2557 		}
2558 		ic->ic_iv = iv + 1;
2559 
2560 		/*
2561 		 * NB: Preserve byte order of IV for packet
2562 		 *     sniffers; it doesn't matter otherwise.
2563 		 */
2564 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
2565 		ivp[0] = iv >> 0;
2566 		ivp[1] = iv >> 8;
2567 		ivp[2] = iv >> 16;
2568 #else
2569 		ivp[2] = iv >> 0;
2570 		ivp[1] = iv >> 8;
2571 		ivp[0] = iv >> 16;
2572 #endif
2573 		ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */
2574 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2575 		/*
2576 		 * The ICV length must be included into hdrlen and pktlen.
2577 		 */
2578 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2579 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2580 	}
2581 	pktlen += IEEE80211_CRC_LEN;
2582 
2583 	/*
2584 	 * Load the DMA map so any coalescing is done.  This
2585 	 * also calculates the number of descriptors we need.
2586 	 */
2587 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2588 	/*
2589 	 * Discard null packets and check for packets that
2590 	 * require too many TX descriptors.  We try to convert
2591 	 * the latter to a cluster.
2592 	 */
2593 	if (error == EFBIG) {		/* too many desc's, linearize */
2594 		sc->sc_stats.ast_tx_linear++;
2595 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2596 		if (m == NULL) {
2597 			sc->sc_stats.ast_tx_nombuf++;
2598 			m_freem(m0);
2599 			return ENOMEM;
2600 		}
2601 #ifdef __FreeBSD__
2602 		M_MOVE_PKTHDR(m, m0);
2603 #else
2604 		M_COPY_PKTHDR(m, m0);
2605 #endif
2606 		MCLGET(m, M_DONTWAIT);
2607 		if ((m->m_flags & M_EXT) == 0) {
2608 			sc->sc_stats.ast_tx_nomcl++;
2609 			m_freem(m0);
2610 			m_free(m);
2611 			return ENOMEM;
2612 		}
2613 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2614 		m_freem(m0);
2615 		m->m_len = m->m_pkthdr.len;
2616 		m0 = m;
2617 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2618 					         BUS_DMA_NOWAIT);
2619 		if (error != 0) {
2620 			sc->sc_stats.ast_tx_busdma++;
2621 			m_freem(m0);
2622 			return error;
2623 		}
2624 		KASSERT(bf->bf_nseg == 1,
2625 			("ath_tx_start: packet not one segment; nseg %u",
2626 			bf->bf_nseg));
2627 	} else if (error != 0) {
2628 		sc->sc_stats.ast_tx_busdma++;
2629 		m_freem(m0);
2630 		return error;
2631 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
2632 		sc->sc_stats.ast_tx_nodata++;
2633 		m_freem(m0);
2634 		return EIO;
2635 	}
2636 	DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
2637 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2638 	bf->bf_m = m0;
2639 	bf->bf_node = ni;			/* NB: held reference */
2640 
2641 	/* setup descriptors */
2642 	ds = bf->bf_desc;
2643 	rt = sc->sc_currates;
2644 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2645 
2646 	/*
2647 	 * Calculate Atheros packet type from IEEE80211 packet header
2648 	 * and setup for rate calculations.
2649 	 */
2650 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
2651 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2652 	case IEEE80211_FC0_TYPE_MGT:
2653 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2654 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2655 			atype = HAL_PKT_TYPE_BEACON;
2656 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2657 			atype = HAL_PKT_TYPE_PROBE_RESP;
2658 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2659 			atype = HAL_PKT_TYPE_ATIM;
2660 		rix = 0;			/* XXX lowest rate */
2661 		break;
2662 	case IEEE80211_FC0_TYPE_CTL:
2663 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2664 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2665 			atype = HAL_PKT_TYPE_PSPOLL;
2666 		rix = 0;			/* XXX lowest rate */
2667 		break;
2668 	default:
2669 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2670 				IEEE80211_RATE_VAL];
2671 		if (rix == 0xff) {
2672 			if_printf(ifp, "bogus xmit rate 0x%x\n",
2673 				ni->ni_rates.rs_rates[ni->ni_txrate]);
2674 			sc->sc_stats.ast_tx_badrate++;
2675 			m_freem(m0);
2676 			return EIO;
2677 		}
2678 		break;
2679 	}
2680 	/*
2681 	 * NB: the 802.11 layer marks whether or not we should
2682 	 * use short preamble based on the current mode and
2683 	 * negotiated parameters.
2684 	 */
2685 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2686 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2687 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2688 		shortPreamble = AH_TRUE;
2689 		sc->sc_stats.ast_tx_shortpre++;
2690 	} else {
2691 		txrate = rt->info[rix].rateCode;
2692 		shortPreamble = AH_FALSE;
2693 	}
2694 
2695 	/*
2696 	 * Calculate miscellaneous flags.
2697 	 */
2698 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
2699 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2700 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
2701 		sc->sc_stats.ast_tx_noack++;
2702 	} else if (pktlen > ic->ic_rtsthreshold) {
2703 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
2704 		sc->sc_stats.ast_tx_rts++;
2705 	}
2706 
2707 	/*
2708 	 * Calculate duration.  This logically belongs in the 802.11
2709 	 * layer but it lacks sufficient information to calculate it.
2710 	 */
2711 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
2712 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2713 		u_int16_t dur;
2714 		/*
2715 		 * XXX not right with fragmentation.
2716 		 */
2717 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2718 				rix, shortPreamble);
2719 		*((u_int16_t*) wh->i_dur) = htole16(dur);
2720 	}
2721 
2722 	/*
2723 	 * Calculate RTS/CTS rate and duration if needed.
2724 	 */
2725 	ctsduration = 0;
2726 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2727 		/*
2728 		 * CTS transmit rate is derived from the transmit rate
2729 		 * by looking in the h/w rate table.  We must also factor
2730 		 * in whether or not a short preamble is to be used.
2731 		 */
2732 		cix = rt->info[rix].controlRate;
2733 		ctsrate = rt->info[cix].rateCode;
2734 		if (shortPreamble)
2735 			ctsrate |= rt->info[cix].shortPreamble;
2736 		/*
2737 		 * Compute the transmit duration based on the size
2738 		 * of an ACK frame.  We call into the HAL to do the
2739 		 * computation since it depends on the characteristics
2740 		 * of the actual PHY being used.
2741 		 */
2742 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
2743 			ctsduration += ath_hal_computetxtime(ah,
2744 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2745 		}
2746 		/* SIFS + data */
2747 		ctsduration += ath_hal_computetxtime(ah,
2748 			rt, pktlen, rix, shortPreamble);
2749 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
2750 			ctsduration += ath_hal_computetxtime(ah,
2751 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2752 		}
2753 	} else
2754 		ctsrate = 0;
2755 
2756 	/*
2757 	 * For now use the antenna on which the last good
2758 	 * frame was received on.  We assume this field is
2759 	 * initialized to 0 which gives us ``auto'' or the
2760 	 * ``default'' antenna.
2761 	 */
2762 	an = (struct ath_node *) ni;
2763 	if (an->an_tx_antenna)
2764 		antenna = an->an_tx_antenna;
2765 	else
2766 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2767 
2768 	if (ic->ic_rawbpf)
2769 		bpf_mtap(ic->ic_rawbpf, m0);
2770 	if (sc->sc_drvbpf) {
2771 		sc->sc_tx_th.wt_flags = 0;
2772 		if (shortPreamble)
2773 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2774 		if (iswep)
2775 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2776 		sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2777 		sc->sc_tx_th.wt_txpower = 60/2;		/* XXX */
2778 		sc->sc_tx_th.wt_antenna = antenna;
2779 
2780 		bpf_mtap2(sc->sc_drvbpf,
2781 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
2782 	}
2783 
2784 	/*
2785 	 * Formulate first tx descriptor with tx controls.
2786 	 */
2787 	/* XXX check return value? */
2788 	ath_hal_setuptxdesc(ah, ds
2789 		, pktlen		/* packet length */
2790 		, hdrlen		/* header length */
2791 		, atype			/* Atheros packet type */
2792 		, 60			/* txpower XXX */
2793 		, txrate, 1+10		/* series 0 rate/tries */
2794 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2795 		, antenna		/* antenna mode */
2796 		, flags			/* flags */
2797 		, ctsrate		/* rts/cts rate */
2798 		, ctsduration		/* rts/cts duration */
2799 	);
2800 #ifdef notyet
2801 	ath_hal_setupxtxdesc(ah, ds
2802 		, AH_FALSE		/* short preamble */
2803 		, 0, 0			/* series 1 rate/tries */
2804 		, 0, 0			/* series 2 rate/tries */
2805 		, 0, 0			/* series 3 rate/tries */
2806 	);
2807 #endif
2808 	/*
2809 	 * Fillin the remainder of the descriptor info.
2810 	 */
2811 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2812 		ds->ds_data = bf->bf_segs[i].ds_addr;
2813 		if (i == bf->bf_nseg - 1)
2814 			ds->ds_link = 0;
2815 		else
2816 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2817 		ath_hal_filltxdesc(ah, ds
2818 			, bf->bf_segs[i].ds_len	/* segment length */
2819 			, i == 0		/* first segment */
2820 			, i == bf->bf_nseg - 1	/* last segment */
2821 		);
2822 		DPRINTF(ATH_DEBUG_XMIT,
2823 			("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2824 			__func__, i, ds->ds_link, ds->ds_data,
2825 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2826 	}
2827 
2828 	/*
2829 	 * Insert the frame on the outbound list and
2830 	 * pass it on to the hardware.
2831 	 */
2832 	ath_txq_critsect_begin(sc, s);
2833 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2834 	if (sc->sc_txlink == NULL) {
2835 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2836 		DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2837 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2838 	} else {
2839 		*sc->sc_txlink = bf->bf_daddr;
2840 		DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2841 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2842 	}
2843 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2844 	ath_txq_critsect_end(sc, s);
2845 
2846 	ath_hal_txstart(ah, sc->sc_txhalq);
2847 	return 0;
2848 }
2849 
2850 static void
2851 ath_tx_proc(void *arg, int npending)
2852 {
2853 	struct ath_softc *sc = arg;
2854 	struct ath_hal *ah = sc->sc_ah;
2855 	struct ath_buf *bf;
2856 	struct ieee80211com *ic = &sc->sc_ic;
2857 	struct ifnet *ifp = &ic->ic_if;
2858 	struct ath_desc *ds;
2859 	struct ieee80211_node *ni;
2860 	struct ath_node *an;
2861 	int sr, lr;
2862 	HAL_STATUS status;
2863 	ath_txq_critsect_decl(s);
2864 	ath_txbuf_critsect_decl(s2);
2865 
2866 	DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
2867 		__func__, npending,
2868 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2869 		sc->sc_txlink));
2870 	for (;;) {
2871 		ath_txq_critsect_begin(sc, s);
2872 		bf = TAILQ_FIRST(&sc->sc_txq);
2873 		if (bf == NULL) {
2874 			sc->sc_txlink = NULL;
2875 			ath_txq_critsect_end(sc, s);
2876 			break;
2877 		}
2878 		/* only the last descriptor is needed */
2879 		ds = &bf->bf_desc[bf->bf_nseg - 1];
2880 		status = ath_hal_txprocdesc(ah, ds);
2881 #ifdef AR_DEBUG
2882 		if (ath_debug & ATH_DEBUG_XMIT_DESC)
2883 			ath_printtxbuf(bf, status == HAL_OK);
2884 #endif
2885 		if (status == HAL_EINPROGRESS) {
2886 			ath_txq_critsect_end(sc, s);
2887 			break;
2888 		}
2889 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2890 		ath_txq_critsect_end(sc, s);
2891 
2892 		ni = bf->bf_node;
2893 		if (ni != NULL) {
2894 			an = (struct ath_node *) ni;
2895 			if (ds->ds_txstat.ts_status == 0) {
2896 				an->an_tx_ok++;
2897 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2898 			} else {
2899 				an->an_tx_err++;
2900 				ifp->if_oerrors++;
2901 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2902 					sc->sc_stats.ast_tx_xretries++;
2903 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2904 					sc->sc_stats.ast_tx_fifoerr++;
2905 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2906 					sc->sc_stats.ast_tx_filtered++;
2907 				an->an_tx_antenna = 0;	/* invalidate */
2908 			}
2909 			sr = ds->ds_txstat.ts_shortretry;
2910 			lr = ds->ds_txstat.ts_longretry;
2911 			sc->sc_stats.ast_tx_shortretry += sr;
2912 			sc->sc_stats.ast_tx_longretry += lr;
2913 			if (sr + lr)
2914 				an->an_tx_retr++;
2915 			/*
2916 			 * Reclaim reference to node.
2917 			 *
2918 			 * NB: the node may be reclaimed here if, for example
2919 			 *     this is a DEAUTH message that was sent and the
2920 			 *     node was timed out due to inactivity.
2921 			 */
2922 			ieee80211_release_node(ic, ni);
2923 		}
2924 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2925 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2926 		m_freem(bf->bf_m);
2927 		bf->bf_m = NULL;
2928 		bf->bf_node = NULL;
2929 
2930 		ath_txbuf_critsect_begin(sc, s2);
2931 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2932 		ath_txbuf_critsect_end(sc, s2);
2933 	}
2934 	ifp->if_flags &= ~IFF_OACTIVE;
2935 	sc->sc_tx_timer = 0;
2936 
2937 	ath_start(ifp);
2938 }
2939 
2940 /*
2941  * Drain the transmit queue and reclaim resources.
2942  */
2943 static void
2944 ath_draintxq(struct ath_softc *sc)
2945 {
2946 	struct ath_hal *ah = sc->sc_ah;
2947 	struct ieee80211com *ic = &sc->sc_ic;
2948 	struct ifnet *ifp = &ic->ic_if;
2949 	struct ieee80211_node *ni;
2950 	struct ath_buf *bf;
2951 	ath_txq_critsect_decl(s);
2952 	ath_txbuf_critsect_decl(s2);
2953 
2954 	/* XXX return value */
2955 	if (!sc->sc_invalid) {
2956 		/* don't touch the hardware if marked invalid */
2957 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2958 		DPRINTF(ATH_DEBUG_RESET,
2959 		    ("%s: tx queue %p, link %p\n", __func__,
2960 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2961 		    sc->sc_txlink));
2962 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2963 		DPRINTF(ATH_DEBUG_RESET,
2964 		    ("%s: beacon queue %p\n", __func__,
2965 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2966 	}
2967 	for (;;) {
2968 		ath_txq_critsect_begin(sc, s);
2969 		bf = TAILQ_FIRST(&sc->sc_txq);
2970 		if (bf == NULL) {
2971 			sc->sc_txlink = NULL;
2972 			ath_txq_critsect_end(sc, s);
2973 			break;
2974 		}
2975 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2976 		ath_txq_critsect_end(sc, s);
2977 #ifdef AR_DEBUG
2978 		if (ath_debug & ATH_DEBUG_RESET)
2979 			ath_printtxbuf(bf,
2980 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2981 #endif /* AR_DEBUG */
2982 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2983 		m_freem(bf->bf_m);
2984 		bf->bf_m = NULL;
2985 		ni = bf->bf_node;
2986 		bf->bf_node = NULL;
2987 		ath_txbuf_critsect_begin(sc, s2);
2988 		if (ni != NULL) {
2989 			/*
2990 			 * Reclaim node reference.
2991 			 */
2992 			ieee80211_release_node(ic, ni);
2993 		}
2994 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2995 		ath_txbuf_critsect_end(sc, s2);
2996 	}
2997 	ifp->if_flags &= ~IFF_OACTIVE;
2998 	sc->sc_tx_timer = 0;
2999 }
3000 
3001 /*
3002  * Disable the receive h/w in preparation for a reset.
3003  */
3004 static void
3005 ath_stoprecv(struct ath_softc *sc)
3006 {
3007 #define	PA2DESC(_sc, _pa) \
3008 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
3009 		((_pa) - (_sc)->sc_desc_paddr)))
3010 	struct ath_hal *ah = sc->sc_ah;
3011 
3012 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3013 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3014 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3015 	DELAY(3000);			/* long enough for 1 frame */
3016 #ifdef AR_DEBUG
3017 	if (ath_debug & ATH_DEBUG_RESET) {
3018 		struct ath_buf *bf;
3019 
3020 		printf("%s: rx queue %p, link %p\n", __func__,
3021 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3022 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3023 			struct ath_desc *ds = bf->bf_desc;
3024 			if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
3025 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
3026 				ath_printrxbuf(bf, 1);
3027 		}
3028 	}
3029 #endif
3030 	sc->sc_rxlink = NULL;		/* just in case */
3031 #undef PA2DESC
3032 }
3033 
3034 /*
3035  * Enable the receive h/w following a reset.
3036  */
3037 static int
3038 ath_startrecv(struct ath_softc *sc)
3039 {
3040 	struct ath_hal *ah = sc->sc_ah;
3041 	struct ath_buf *bf;
3042 
3043 	sc->sc_rxlink = NULL;
3044 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3045 		int error = ath_rxbuf_init(sc, bf);
3046 		if (error != 0) {
3047 			DPRINTF(ATH_DEBUG_RECV,
3048 				("%s: ath_rxbuf_init failed %d\n",
3049 				__func__, error));
3050 			return error;
3051 		}
3052 	}
3053 
3054 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
3055 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3056 	ath_hal_rxena(ah);		/* enable recv descriptors */
3057 	ath_mode_init(sc);		/* set filters, etc. */
3058 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3059 	return 0;
3060 }
3061 
3062 /*
3063  * Set/change channels.  If the channel is really being changed,
3064  * it's done by resetting the chip.  To accomplish this we must
3065  * first cleanup any pending DMA, then restart stuff after a la
3066  * ath_init.
3067  */
3068 static int
3069 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3070 {
3071 	struct ath_hal *ah = sc->sc_ah;
3072 	struct ieee80211com *ic = &sc->sc_ic;
3073 
3074 	DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
3075 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
3076 		ic->ic_ibss_chan->ic_freq,
3077 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
3078 	if (chan != ic->ic_ibss_chan) {
3079 		HAL_STATUS status;
3080 		HAL_CHANNEL hchan;
3081 		enum ieee80211_phymode mode;
3082 
3083 		/*
3084 		 * To switch channels clear any pending DMA operations;
3085 		 * wait long enough for the RX fifo to drain, reset the
3086 		 * hardware at the new frequency, and then re-enable
3087 		 * the relevant bits of the h/w.
3088 		 */
3089 		ath_hal_intrset(ah, 0);		/* disable interrupts */
3090 		ath_draintxq(sc);		/* clear pending tx frames */
3091 		ath_stoprecv(sc);		/* turn off frame recv */
3092 		/*
3093 		 * Convert to a HAL channel description with
3094 		 * the flags constrained to reflect the current
3095 		 * operating mode.
3096 		 */
3097 		hchan.channel = chan->ic_freq;
3098 		hchan.channelFlags = ath_chan2flags(ic, chan);
3099 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3100 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
3101 				"channel %u (%u Mhz)\n",
3102 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3103 			return EIO;
3104 		}
3105 		/*
3106 		 * Re-enable rx framework.
3107 		 */
3108 		if (ath_startrecv(sc) != 0) {
3109 			if_printf(&ic->ic_if,
3110 				"ath_chan_set: unable to restart recv logic\n");
3111 			return EIO;
3112 		}
3113 
3114 		/*
3115 		 * Update BPF state.
3116 		 */
3117 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3118 			htole16(chan->ic_freq);
3119 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3120 			htole16(chan->ic_flags);
3121 
3122 		/*
3123 		 * Change channels and update the h/w rate map
3124 		 * if we're switching; e.g. 11a to 11b/g.
3125 		 */
3126 		ic->ic_ibss_chan = chan;
3127 		mode = ieee80211_chan2mode(ic, chan);
3128 		if (mode != sc->sc_curmode)
3129 			ath_setcurmode(sc, mode);
3130 
3131 		/*
3132 		 * Re-enable interrupts.
3133 		 */
3134 		ath_hal_intrset(ah, sc->sc_imask);
3135 	}
3136 	return 0;
3137 }
3138 
3139 static void
3140 ath_next_scan(void *arg)
3141 {
3142 	struct ath_softc *sc = arg;
3143 	struct ieee80211com *ic = &sc->sc_ic;
3144 	int s;
3145 
3146 	/* don't call ath_start w/o network interrupts blocked */
3147 	s = splnet();
3148 
3149 	if (ic->ic_state == IEEE80211_S_SCAN)
3150 		ieee80211_next_scan(ic);
3151 	splx(s);
3152 }
3153 
3154 /*
3155  * Periodically recalibrate the PHY to account
3156  * for temperature/environment changes.
3157  */
3158 static void
3159 ath_calibrate(void *arg)
3160 {
3161 	struct ath_softc *sc = arg;
3162 	struct ath_hal *ah = sc->sc_ah;
3163 	struct ieee80211com *ic = &sc->sc_ic;
3164 	struct ieee80211_channel *c;
3165 	HAL_CHANNEL hchan;
3166 
3167 	sc->sc_stats.ast_per_cal++;
3168 
3169 	/*
3170 	 * Convert to a HAL channel description with the flags
3171 	 * constrained to reflect the current operating mode.
3172 	 */
3173 	c = ic->ic_ibss_chan;
3174 	hchan.channel = c->ic_freq;
3175 	hchan.channelFlags = ath_chan2flags(ic, c);
3176 
3177 	DPRINTF(ATH_DEBUG_CALIBRATE,
3178 		("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
3179 
3180 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3181 		/*
3182 		 * Rfgain is out of bounds, reset the chip
3183 		 * to load new gain values.
3184 		 */
3185 		sc->sc_stats.ast_per_rfgain++;
3186 		ath_reset(sc);
3187 	}
3188 	if (!ath_hal_calibrate(ah, &hchan)) {
3189 		DPRINTF(ATH_DEBUG_ANY,
3190 			("%s: calibration of channel %u failed\n",
3191 			__func__, c->ic_freq));
3192 		sc->sc_stats.ast_per_calfail++;
3193 	}
3194 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
3195 }
3196 
3197 static HAL_LED_STATE
3198 ath_state_to_led(enum ieee80211_state state)
3199 {
3200 	switch (state) {
3201 	case IEEE80211_S_INIT:
3202 		return HAL_LED_INIT;
3203 	case IEEE80211_S_SCAN:
3204 		return HAL_LED_SCAN;
3205 	case IEEE80211_S_AUTH:
3206 		return HAL_LED_AUTH;
3207 	case IEEE80211_S_ASSOC:
3208 		return HAL_LED_ASSOC;
3209 	case IEEE80211_S_RUN:
3210 		return HAL_LED_RUN;
3211 	default:
3212 		panic("%s: unknown 802.11 state %d\n", __func__, state);
3213 		return HAL_LED_INIT;
3214 	}
3215 }
3216 
3217 static int
3218 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3219 {
3220 	struct ifnet *ifp = &ic->ic_if;
3221 	struct ath_softc *sc = ifp->if_softc;
3222 	struct ath_hal *ah = sc->sc_ah;
3223 	struct ieee80211_node *ni;
3224 	int i, error;
3225 	const u_int8_t *bssid;
3226 	u_int32_t rfilt;
3227 
3228 	DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
3229 		ieee80211_state_name[ic->ic_state],
3230 		ieee80211_state_name[nstate]));
3231 
3232 	ath_hal_setledstate(ah, ath_state_to_led(nstate));	/* set LED */
3233 
3234 	if (nstate == IEEE80211_S_INIT) {
3235 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3236 		ath_hal_intrset(ah, sc->sc_imask);
3237 		callout_stop(&sc->sc_scan_ch);
3238 		callout_stop(&sc->sc_cal_ch);
3239 		return (*sc->sc_newstate)(ic, nstate, arg);
3240 	}
3241 	ni = ic->ic_bss;
3242 	error = ath_chan_set(sc, ni->ni_chan);
3243 	if (error != 0)
3244 		goto bad;
3245 	rfilt = ath_calcrxfilter(sc);
3246 	if (nstate == IEEE80211_S_SCAN) {
3247 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3248 			ath_next_scan, sc);
3249 		bssid = ifp->if_broadcastaddr;
3250 	} else {
3251 		callout_stop(&sc->sc_scan_ch);
3252 		bssid = ni->ni_bssid;
3253 	}
3254 	ath_hal_setrxfilter(ah, rfilt);
3255 	DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
3256 		 __func__, rfilt, ether_sprintf(bssid)));
3257 
3258 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3259 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
3260 	else
3261 		ath_hal_setassocid(ah, bssid, 0);
3262 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3263 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
3264 			if (ath_hal_keyisvalid(ah, i))
3265 				ath_hal_keysetmac(ah, i, bssid);
3266 	}
3267 
3268 	if (nstate == IEEE80211_S_RUN) {
3269 		DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3270 			"capinfo=0x%04x chan=%d\n"
3271 			 , __func__
3272 			 , ic->ic_flags
3273 			 , ni->ni_intval
3274 			 , ether_sprintf(ni->ni_bssid)
3275 			 , ni->ni_capinfo
3276 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3277 
3278 		/*
3279 		 * Allocate and setup the beacon frame for AP or adhoc mode.
3280 		 */
3281 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3282 		    ic->ic_opmode == IEEE80211_M_IBSS) {
3283 			error = ath_beacon_alloc(sc, ni);
3284 			if (error != 0)
3285 				goto bad;
3286 		}
3287 
3288 		/*
3289 		 * Configure the beacon and sleep timers.
3290 		 */
3291 		ath_beacon_config(sc);
3292 
3293 		/* start periodic recalibration timer */
3294 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3295 			ath_calibrate, sc);
3296 	} else {
3297 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3298 		ath_hal_intrset(ah, sc->sc_imask);
3299 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
3300 	}
3301 	/*
3302 	 * Reset the rate control state.
3303 	 */
3304 	ath_rate_ctl_reset(sc, nstate);
3305 	/*
3306 	 * Invoke the parent method to complete the work.
3307 	 */
3308 	return (*sc->sc_newstate)(ic, nstate, arg);
3309 bad:
3310 	callout_stop(&sc->sc_scan_ch);
3311 	callout_stop(&sc->sc_cal_ch);
3312 	/* NB: do not invoke the parent */
3313 	return error;
3314 }
3315 
3316 static uint64_t
3317 ath_tsf_extend(struct ath_hal *ah, uint32_t rstamp)
3318 {
3319 	uint64_t tsf;
3320 
3321 	KASSERT((rstamp & 0xffff0000) == 0,
3322 	    ("rx timestamp > 16 bits wide, %" PRIu32, rstamp));
3323 
3324 	tsf = ath_hal_gettsf64(ah);
3325 
3326 	/* Compensate for rollover. */
3327 	if ((tsf & 0xffff) <= rstamp)
3328 		tsf -= 0x10000;
3329 
3330 	return (tsf & ~(uint64_t)0xffff) | rstamp;
3331 }
3332 
3333 static void
3334 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3335     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
3336 {
3337 	struct ath_softc *sc = (struct ath_softc*)ic->ic_softc;
3338 	struct ath_hal *ah = sc->sc_ah;
3339 
3340 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3341 
3342 	switch (subtype) {
3343 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3344 	case IEEE80211_FC0_SUBTYPE_BEACON:
3345 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
3346 		    ic->ic_state != IEEE80211_S_RUN)
3347 			break;
3348 		if (le64toh(ni->ni_tsf) >= ath_tsf_extend(ah, rstamp) &&
3349 		    ieee80211_ibss_merge(ic, ni)) {
3350 			/*
3351 			 * XXX rather than handle this here it's
3352 			 *     probably better to do it at the 802.11
3353 			 *     layer through the state machine so,
3354 			 *     we can switch channel, etc.
3355 			 */
3356 			/* XXX adopt beacon interval and ATIM window */
3357 			ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0);
3358 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
3359 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
3360 		}
3361 		break;
3362 	default:
3363 		break;
3364 	}
3365 	return;
3366 }
3367 
3368 /*
3369  * Setup driver-specific state for a newly associated node.
3370  * Note that we're called also on a re-associate, the isnew
3371  * param tells us if this is the first time or not.
3372  */
3373 static void
3374 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3375 {
3376 	if (isnew) {
3377 		struct ath_node *an = (struct ath_node *) ni;
3378 
3379 		an->an_tx_ok = an->an_tx_err =
3380 			an->an_tx_retr = an->an_tx_upper = 0;
3381 		/* start with highest negotiated rate */
3382 		/*
3383 		 * XXX should do otherwise but only when
3384 		 * the rate control algorithm is better.
3385 		 */
3386 		KASSERT(ni->ni_rates.rs_nrates > 0,
3387 			("new association w/ no rates!"));
3388 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3389 	}
3390 }
3391 
3392 static int
3393 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor,
3394     HAL_BOOL xchanmode)
3395 {
3396 	struct ieee80211com *ic = &sc->sc_ic;
3397 	struct ifnet *ifp = &ic->ic_if;
3398 	struct ath_hal *ah = sc->sc_ah;
3399 	HAL_CHANNEL *chans;
3400 	int i, ix, nchan;
3401 
3402 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3403 			M_TEMP, M_NOWAIT);
3404 	if (chans == NULL) {
3405 		if_printf(ifp, "unable to allocate channel table\n");
3406 		return ENOMEM;
3407 	}
3408 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3409 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3410 		if_printf(ifp, "unable to collect channel list from hal\n");
3411 		free(chans, M_TEMP);
3412 		return EINVAL;
3413 	}
3414 
3415 	/*
3416 	 * Convert HAL channels to ieee80211 ones and insert
3417 	 * them in the table according to their channel number.
3418 	 */
3419 	for (i = 0; i < nchan; i++) {
3420 		HAL_CHANNEL *c = &chans[i];
3421 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3422 		if (ix > IEEE80211_CHAN_MAX) {
3423 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3424 				ix, c->channel, c->channelFlags);
3425 			continue;
3426 		}
3427 		DPRINTF(ATH_DEBUG_ANY,
3428 		    ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
3429 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
3430 		    ix));
3431 		/* NB: flags are known to be compatible */
3432 		if (ic->ic_channels[ix].ic_freq == 0) {
3433 			ic->ic_channels[ix].ic_freq = c->channel;
3434 			ic->ic_channels[ix].ic_flags = c->channelFlags;
3435 		} else {
3436 			/* channels overlap; e.g. 11g and 11b */
3437 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
3438 		}
3439 	}
3440 	free(chans, M_TEMP);
3441 	return 0;
3442 }
3443 
3444 static int
3445 ath_rate_setup(struct ath_softc *sc, u_int mode)
3446 {
3447 	struct ath_hal *ah = sc->sc_ah;
3448 	struct ieee80211com *ic = &sc->sc_ic;
3449 	const HAL_RATE_TABLE *rt;
3450 	struct ieee80211_rateset *rs;
3451 	int i, maxrates;
3452 
3453 	switch (mode) {
3454 	case IEEE80211_MODE_11A:
3455 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3456 		break;
3457 	case IEEE80211_MODE_11B:
3458 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3459 		break;
3460 	case IEEE80211_MODE_11G:
3461 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3462 		break;
3463 	case IEEE80211_MODE_TURBO:
3464 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3465 		break;
3466 	default:
3467 		DPRINTF(ATH_DEBUG_ANY,
3468 			("%s: invalid mode %u\n", __func__, mode));
3469 		return 0;
3470 	}
3471 	rt = sc->sc_rates[mode];
3472 	if (rt == NULL)
3473 		return 0;
3474 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3475 		DPRINTF(ATH_DEBUG_ANY,
3476 			("%s: rate table too small (%u > %u)\n",
3477 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3478 		maxrates = IEEE80211_RATE_MAXSIZE;
3479 	} else
3480 		maxrates = rt->rateCount;
3481 	rs = &ic->ic_sup_rates[mode];
3482 	for (i = 0; i < maxrates; i++)
3483 		rs->rs_rates[i] = rt->info[i].dot11Rate;
3484 	rs->rs_nrates = maxrates;
3485 	return 1;
3486 }
3487 
3488 static void
3489 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3490 {
3491 	const HAL_RATE_TABLE *rt;
3492 	int i;
3493 
3494 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3495 	rt = sc->sc_rates[mode];
3496 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3497 	for (i = 0; i < rt->rateCount; i++)
3498 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3499 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3500 	for (i = 0; i < 32; i++)
3501 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3502 	sc->sc_currates = rt;
3503 	sc->sc_curmode = mode;
3504 }
3505 
3506 /*
3507  * Reset the rate control state for each 802.11 state transition.
3508  */
3509 static void
3510 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3511 {
3512 	struct ieee80211com *ic = &sc->sc_ic;
3513 	struct ieee80211_node *ni;
3514 	struct ath_node *an;
3515 
3516 	if (ic->ic_opmode != IEEE80211_M_STA) {
3517 		/*
3518 		 * When operating as a station the node table holds
3519 		 * the AP's that were discovered during scanning.
3520 		 * For any other operating mode we want to reset the
3521 		 * tx rate state of each node.
3522 		 */
3523 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3524 			ni->ni_txrate = 0;		/* use lowest rate */
3525 			an = (struct ath_node *) ni;
3526 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3527 			    an->an_tx_upper = 0;
3528 		}
3529 	}
3530 	/*
3531 	 * Reset local xmit state; this is really only meaningful
3532 	 * when operating in station or adhoc mode.
3533 	 */
3534 	ni = ic->ic_bss;
3535 	an = (struct ath_node *) ni;
3536 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3537 	if (state == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_IBSS) {
3538 		/* start with highest negotiated rate */
3539 		KASSERT(ni->ni_rates.rs_nrates > 0,
3540 			("transition to RUN state w/ no rates!"));
3541 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3542 	} else {
3543 		/* use lowest rate */
3544 		ni->ni_txrate = 0;
3545 	}
3546 }
3547 
3548 /*
3549  * Examine and potentially adjust the transmit rate.
3550  */
3551 static void
3552 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3553 {
3554 	struct ath_softc *sc = arg;
3555 	struct ath_node *an = (struct ath_node *) ni;
3556 	struct ieee80211_rateset *rs = &ni->ni_rates;
3557 	int mod = 0, orate, enough;
3558 
3559 	/*
3560 	 * Rate control
3561 	 * XXX: very primitive version.
3562 	 */
3563 	sc->sc_stats.ast_rate_calls++;
3564 
3565 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
3566 
3567 	/* no packet reached -> down */
3568 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3569 		mod = -1;
3570 
3571 	/* all packets needs retry in average -> down */
3572 	if (enough && an->an_tx_ok < an->an_tx_retr)
3573 		mod = -1;
3574 
3575 	/* no error and less than 10% of packets needs retry -> up */
3576 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3577 		mod = 1;
3578 
3579 	orate = ni->ni_txrate;
3580 	switch (mod) {
3581 	case 0:
3582 		if (enough && an->an_tx_upper > 0)
3583 			an->an_tx_upper--;
3584 		break;
3585 	case -1:
3586 		if (ni->ni_txrate > 0) {
3587 			ni->ni_txrate--;
3588 			sc->sc_stats.ast_rate_drop++;
3589 		}
3590 		an->an_tx_upper = 0;
3591 		break;
3592 	case 1:
3593 		if (++an->an_tx_upper < 2)
3594 			break;
3595 		an->an_tx_upper = 0;
3596 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
3597 			ni->ni_txrate++;
3598 			sc->sc_stats.ast_rate_raise++;
3599 		}
3600 		break;
3601 	}
3602 
3603 	if (ni->ni_txrate != orate) {
3604 		DPRINTF(ATH_DEBUG_RATE,
3605 		    ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3606 		    __func__,
3607 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3608 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3609 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3610 	}
3611 	if (ni->ni_txrate != orate || enough)
3612 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3613 }
3614 
3615 #ifdef AR_DEBUG
3616 #ifdef __FreeBSD__
3617 static int
3618 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3619 {
3620 	char dmode[64];
3621 	int error;
3622 
3623 	strncpy(dmode, "", sizeof(dmode) - 1);
3624 	dmode[sizeof(dmode) - 1] = '\0';
3625 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3626 
3627 	if (error == 0 && req->newptr != NULL) {
3628 		struct ifnet *ifp;
3629 		struct ath_softc *sc;
3630 
3631 		ifp = ifunit("ath0");		/* XXX */
3632 		if (!ifp)
3633 			return EINVAL;
3634 		sc = ifp->if_softc;
3635 		if (strcmp(dmode, "hal") == 0)
3636 			ath_hal_dumpstate(sc->sc_ah);
3637 		else
3638 			return EINVAL;
3639 	}
3640 	return error;
3641 }
3642 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3643 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3644 #endif /* __FreeBSD__ */
3645 
3646 #if 0 /* #ifdef __NetBSD__ */
3647 static int
3648 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3649 {
3650 	char dmode[64];
3651 	int error;
3652 
3653 	strncpy(dmode, "", sizeof(dmode) - 1);
3654 	dmode[sizeof(dmode) - 1] = '\0';
3655 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3656 
3657 	if (error == 0 && req->newptr != NULL) {
3658 		struct ifnet *ifp;
3659 		struct ath_softc *sc;
3660 
3661 		ifp = ifunit("ath0");		/* XXX */
3662 		if (!ifp)
3663 			return EINVAL;
3664 		sc = ifp->if_softc;
3665 		if (strcmp(dmode, "hal") == 0)
3666 			ath_hal_dumpstate(sc->sc_ah);
3667 		else
3668 			return EINVAL;
3669 	}
3670 	return error;
3671 }
3672 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3673 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3674 #endif /* __NetBSD__ */
3675 
3676 static void
3677 ath_printrxbuf(struct ath_buf *bf, int done)
3678 {
3679 	struct ath_desc *ds;
3680 	int i;
3681 
3682 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3683 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3684 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3685 		    ds->ds_link, ds->ds_data,
3686 		    ds->ds_ctl0, ds->ds_ctl1,
3687 		    ds->ds_hw[0], ds->ds_hw[1],
3688 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3689 	}
3690 }
3691 
3692 static void
3693 ath_printtxbuf(struct ath_buf *bf, int done)
3694 {
3695 	struct ath_desc *ds;
3696 	int i;
3697 
3698 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3699 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3700 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3701 		    ds->ds_link, ds->ds_data,
3702 		    ds->ds_ctl0, ds->ds_ctl1,
3703 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3704 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3705 	}
3706 }
3707 #endif /* AR_DEBUG */
3708