1 /* $NetBSD: ath.c,v 1.75 2006/06/08 22:42:24 gdamore Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.75 2006/06/08 22:42:24 gdamore Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #include "opt_inet.h" 55 56 #ifdef __NetBSD__ 57 #include "bpfilter.h" 58 #endif /* __NetBSD__ */ 59 60 #include <sys/param.h> 61 #include <sys/reboot.h> 62 #include <sys/systm.h> 63 #include <sys/types.h> 64 #include <sys/sysctl.h> 65 #include <sys/mbuf.h> 66 #include <sys/malloc.h> 67 #include <sys/lock.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/sockio.h> 71 #include <sys/errno.h> 72 #include <sys/callout.h> 73 #include <machine/bus.h> 74 #include <sys/endian.h> 75 76 #include <machine/bus.h> 77 78 #include <net/if.h> 79 #include <net/if_dl.h> 80 #include <net/if_media.h> 81 #include <net/if_types.h> 82 #include <net/if_arp.h> 83 #include <net/if_ether.h> 84 #include <net/if_llc.h> 85 86 #include <net80211/ieee80211_netbsd.h> 87 #include <net80211/ieee80211_var.h> 88 89 #if NBPFILTER > 0 90 #include <net/bpf.h> 91 #endif 92 93 #ifdef INET 94 #include <netinet/in.h> 95 #endif 96 97 #include <sys/device.h> 98 #include <dev/ic/ath_netbsd.h> 99 100 #define AR_DEBUG 101 #include <dev/ic/athvar.h> 102 #include <contrib/dev/ath/ah_desc.h> 103 #include <contrib/dev/ath/ah_devid.h> /* XXX for softled */ 104 #include "athhal_options.h" 105 106 #ifdef ATH_TX99_DIAG 107 #include <dev/ath/ath_tx99/ath_tx99.h> 108 #endif 109 110 /* unaligned little endian access */ 111 #define LE_READ_2(p) \ 112 ((u_int16_t) \ 113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 114 #define LE_READ_4(p) \ 115 ((u_int32_t) \ 116 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 117 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 118 119 enum { 120 ATH_LED_TX, 121 ATH_LED_RX, 122 ATH_LED_POLL, 123 }; 124 125 #ifdef AH_NEED_DESC_SWAP 126 #define HTOAH32(x) htole32(x) 127 #else 128 #define HTOAH32(x) (x) 129 #endif 130 131 static int ath_ifinit(struct ifnet *); 132 static int ath_init(struct ath_softc *); 133 static void ath_stop_locked(struct ifnet *, int); 134 static void ath_stop(struct ifnet *, int); 135 static void ath_start(struct ifnet *); 136 static int ath_media_change(struct ifnet *); 137 static void ath_watchdog(struct ifnet *); 138 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 139 static void ath_fatal_proc(void *, int); 140 static void ath_rxorn_proc(void *, int); 141 static void ath_bmiss_proc(void *, int); 142 static void ath_radar_proc(void *, int); 143 static int ath_key_alloc(struct ieee80211com *, 144 const struct ieee80211_key *, 145 ieee80211_keyix *, ieee80211_keyix *); 146 static int ath_key_delete(struct ieee80211com *, 147 const struct ieee80211_key *); 148 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 149 const u_int8_t mac[IEEE80211_ADDR_LEN]); 150 static void ath_key_update_begin(struct ieee80211com *); 151 static void ath_key_update_end(struct ieee80211com *); 152 static void ath_mode_init(struct ath_softc *); 153 static void ath_setslottime(struct ath_softc *); 154 static void ath_updateslot(struct ifnet *); 155 static int ath_beaconq_setup(struct ath_hal *); 156 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 157 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 158 static void ath_beacon_proc(void *, int); 159 static void ath_bstuck_proc(void *, int); 160 static void ath_beacon_free(struct ath_softc *); 161 static void ath_beacon_config(struct ath_softc *); 162 static void ath_descdma_cleanup(struct ath_softc *sc, 163 struct ath_descdma *, ath_bufhead *); 164 static int ath_desc_alloc(struct ath_softc *); 165 static void ath_desc_free(struct ath_softc *); 166 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 167 static void ath_node_free(struct ieee80211_node *); 168 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 169 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 170 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 171 struct ieee80211_node *ni, 172 int subtype, int rssi, u_int32_t rstamp); 173 static void ath_setdefantenna(struct ath_softc *, u_int); 174 static void ath_rx_proc(void *, int); 175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 176 static int ath_tx_setup(struct ath_softc *, int, int); 177 static int ath_wme_update(struct ieee80211com *); 178 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 179 static void ath_tx_cleanup(struct ath_softc *); 180 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 181 struct ath_buf *, struct mbuf *); 182 static void ath_tx_proc_q0(void *, int); 183 static void ath_tx_proc_q0123(void *, int); 184 static void ath_tx_proc(void *, int); 185 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 186 static void ath_draintxq(struct ath_softc *); 187 static void ath_stoprecv(struct ath_softc *); 188 static int ath_startrecv(struct ath_softc *); 189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_next_scan(void *); 191 static void ath_calibrate(void *); 192 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 193 static void ath_setup_stationkey(struct ieee80211_node *); 194 static void ath_newassoc(struct ieee80211_node *, int); 195 static int ath_getchannels(struct ath_softc *, u_int cc, 196 HAL_BOOL outdoor, HAL_BOOL xchanmode); 197 static void ath_led_event(struct ath_softc *, int); 198 static void ath_update_txpow(struct ath_softc *); 199 200 static int ath_rate_setup(struct ath_softc *, u_int mode); 201 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 202 203 #ifdef __NetBSD__ 204 int ath_enable(struct ath_softc *); 205 void ath_disable(struct ath_softc *); 206 void ath_power(int, void *); 207 #endif 208 209 #if NBPFILTER > 0 210 static void ath_bpfattach(struct ath_softc *); 211 #endif 212 static void ath_announce(struct ath_softc *); 213 214 int ath_dwelltime = 200; /* 5 channels/second */ 215 int ath_calinterval = 30; /* calibrate every 30 secs */ 216 int ath_outdoor = AH_TRUE; /* outdoor operation */ 217 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 218 int ath_countrycode = CTRY_DEFAULT; /* country code */ 219 int ath_regdomain = 0; /* regulatory domain */ 220 int ath_debug = 0; 221 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 222 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 223 224 #ifdef AR_DEBUG 225 enum { 226 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 227 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 228 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 229 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 230 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 231 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 232 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 233 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 234 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 235 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 236 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 237 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 238 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 239 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 240 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 241 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 242 ATH_DEBUG_NODE = 0x00080000, /* node management */ 243 ATH_DEBUG_LED = 0x00100000, /* led management */ 244 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 245 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 246 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 247 ATH_DEBUG_ANY = 0xffffffff 248 }; 249 #define IFF_DUMPPKTS(sc, m) \ 250 ((sc->sc_debug & (m)) || \ 251 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 252 #define DPRINTF(sc, m, fmt, ...) do { \ 253 if (sc->sc_debug & (m)) \ 254 printf(fmt, __VA_ARGS__); \ 255 } while (0) 256 #define KEYPRINTF(sc, ix, hk, mac) do { \ 257 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 258 ath_keyprint(__func__, ix, hk, mac); \ 259 } while (0) 260 static void ath_printrxbuf(struct ath_buf *bf, int); 261 static void ath_printtxbuf(struct ath_buf *bf, int); 262 #else 263 #define IFF_DUMPPKTS(sc, m) \ 264 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 265 #define DPRINTF(m, fmt, ...) 266 #define KEYPRINTF(sc, k, ix, mac) 267 #endif 268 269 #ifdef __NetBSD__ 270 int 271 ath_activate(struct device *self, enum devact act) 272 { 273 struct ath_softc *sc = (struct ath_softc *)self; 274 int rv = 0, s; 275 276 s = splnet(); 277 switch (act) { 278 case DVACT_ACTIVATE: 279 rv = EOPNOTSUPP; 280 break; 281 case DVACT_DEACTIVATE: 282 if_deactivate(&sc->sc_if); 283 break; 284 } 285 splx(s); 286 return rv; 287 } 288 289 int 290 ath_enable(struct ath_softc *sc) 291 { 292 if (ATH_IS_ENABLED(sc) == 0) { 293 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 294 printf("%s: device enable failed\n", 295 sc->sc_dev.dv_xname); 296 return (EIO); 297 } 298 sc->sc_flags |= ATH_ENABLED; 299 } 300 return (0); 301 } 302 303 void 304 ath_disable(struct ath_softc *sc) 305 { 306 if (!ATH_IS_ENABLED(sc)) 307 return; 308 if (sc->sc_disable != NULL) 309 (*sc->sc_disable)(sc); 310 sc->sc_flags &= ~ATH_ENABLED; 311 } 312 #endif /* __NetBSD__ */ 313 314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 315 316 int 317 ath_attach(u_int16_t devid, struct ath_softc *sc) 318 { 319 struct ifnet *ifp = &sc->sc_if; 320 struct ieee80211com *ic = &sc->sc_ic; 321 struct ath_hal *ah = NULL; 322 HAL_STATUS status; 323 int error = 0, i; 324 325 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 326 327 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 328 329 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 330 if (ah == NULL) { 331 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 332 status); 333 error = ENXIO; 334 goto bad; 335 } 336 if (ah->ah_abi != HAL_ABI_VERSION) { 337 if_printf(ifp, "HAL ABI mismatch detected " 338 "(HAL:0x%x != driver:0x%x)\n", 339 ah->ah_abi, HAL_ABI_VERSION); 340 error = ENXIO; 341 goto bad; 342 } 343 sc->sc_ah = ah; 344 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 345 346 /* 347 * Check if the MAC has multi-rate retry support. 348 * We do this by trying to setup a fake extended 349 * descriptor. MAC's that don't have support will 350 * return false w/o doing anything. MAC's that do 351 * support it will return true w/o doing anything. 352 */ 353 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 354 355 /* 356 * Check if the device has hardware counters for PHY 357 * errors. If so we need to enable the MIB interrupt 358 * so we can act on stat triggers. 359 */ 360 if (ath_hal_hwphycounters(ah)) 361 sc->sc_needmib = 1; 362 363 /* 364 * Get the hardware key cache size. 365 */ 366 sc->sc_keymax = ath_hal_keycachesize(ah); 367 if (sc->sc_keymax > ATH_KEYMAX) { 368 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 369 ATH_KEYMAX, sc->sc_keymax); 370 sc->sc_keymax = ATH_KEYMAX; 371 } 372 /* 373 * Reset the key cache since some parts do not 374 * reset the contents on initial power up. 375 */ 376 for (i = 0; i < sc->sc_keymax; i++) 377 ath_hal_keyreset(ah, i); 378 /* 379 * Mark key cache slots associated with global keys 380 * as in use. If we knew TKIP was not to be used we 381 * could leave the +32, +64, and +32+64 slots free. 382 * XXX only for splitmic. 383 */ 384 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 385 setbit(sc->sc_keymap, i); 386 setbit(sc->sc_keymap, i+32); 387 setbit(sc->sc_keymap, i+64); 388 setbit(sc->sc_keymap, i+32+64); 389 } 390 391 /* 392 * Collect the channel list using the default country 393 * code and including outdoor channels. The 802.11 layer 394 * is resposible for filtering this list based on settings 395 * like the phy mode. 396 */ 397 error = ath_getchannels(sc, ath_countrycode, 398 ath_outdoor, ath_xchanmode); 399 if (error != 0) 400 goto bad; 401 402 /* 403 * Setup rate tables for all potential media types. 404 */ 405 ath_rate_setup(sc, IEEE80211_MODE_11A); 406 ath_rate_setup(sc, IEEE80211_MODE_11B); 407 ath_rate_setup(sc, IEEE80211_MODE_11G); 408 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 409 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 410 /* NB: setup here so ath_rate_update is happy */ 411 ath_setcurmode(sc, IEEE80211_MODE_11A); 412 413 /* 414 * Allocate tx+rx descriptors and populate the lists. 415 */ 416 error = ath_desc_alloc(sc); 417 if (error != 0) { 418 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 419 goto bad; 420 } 421 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 422 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 423 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 424 425 ATH_TXBUF_LOCK_INIT(sc); 426 427 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 428 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 429 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 430 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 431 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 432 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 433 434 /* 435 * Allocate hardware transmit queues: one queue for 436 * beacon frames and one data queue for each QoS 437 * priority. Note that the hal handles reseting 438 * these queues at the needed time. 439 * 440 * XXX PS-Poll 441 */ 442 sc->sc_bhalq = ath_beaconq_setup(ah); 443 if (sc->sc_bhalq == (u_int) -1) { 444 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 445 error = EIO; 446 goto bad2; 447 } 448 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 449 if (sc->sc_cabq == NULL) { 450 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 451 error = EIO; 452 goto bad2; 453 } 454 /* NB: insure BK queue is the lowest priority h/w queue */ 455 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 456 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 457 ieee80211_wme_acnames[WME_AC_BK]); 458 error = EIO; 459 goto bad2; 460 } 461 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 462 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 463 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 464 /* 465 * Not enough hardware tx queues to properly do WME; 466 * just punt and assign them all to the same h/w queue. 467 * We could do a better job of this if, for example, 468 * we allocate queues when we switch from station to 469 * AP mode. 470 */ 471 if (sc->sc_ac2q[WME_AC_VI] != NULL) 472 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 473 if (sc->sc_ac2q[WME_AC_BE] != NULL) 474 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 475 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 476 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 477 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 478 } 479 480 /* 481 * Special case certain configurations. Note the 482 * CAB queue is handled by these specially so don't 483 * include them when checking the txq setup mask. 484 */ 485 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 486 case 0x01: 487 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 488 break; 489 case 0x0f: 490 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 491 break; 492 default: 493 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 494 break; 495 } 496 497 /* 498 * Setup rate control. Some rate control modules 499 * call back to change the anntena state so expose 500 * the necessary entry points. 501 * XXX maybe belongs in struct ath_ratectrl? 502 */ 503 sc->sc_setdefantenna = ath_setdefantenna; 504 sc->sc_rc = ath_rate_attach(sc); 505 if (sc->sc_rc == NULL) { 506 error = EIO; 507 goto bad2; 508 } 509 510 sc->sc_blinking = 0; 511 sc->sc_ledstate = 1; 512 sc->sc_ledon = 0; /* low true */ 513 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 514 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 515 /* 516 * Auto-enable soft led processing for IBM cards and for 517 * 5211 minipci cards. Users can also manually enable/disable 518 * support with a sysctl. 519 */ 520 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 521 if (sc->sc_softled) { 522 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 523 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 524 } 525 526 ifp->if_softc = sc; 527 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 528 ifp->if_start = ath_start; 529 ifp->if_watchdog = ath_watchdog; 530 ifp->if_ioctl = ath_ioctl; 531 ifp->if_init = ath_ifinit; 532 IFQ_SET_READY(&ifp->if_snd); 533 534 ic->ic_ifp = ifp; 535 ic->ic_reset = ath_reset; 536 ic->ic_newassoc = ath_newassoc; 537 ic->ic_updateslot = ath_updateslot; 538 ic->ic_wme.wme_update = ath_wme_update; 539 /* XXX not right but it's not used anywhere important */ 540 ic->ic_phytype = IEEE80211_T_OFDM; 541 ic->ic_opmode = IEEE80211_M_STA; 542 ic->ic_caps = 543 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 544 | IEEE80211_C_HOSTAP /* hostap mode */ 545 | IEEE80211_C_MONITOR /* monitor mode */ 546 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 547 | IEEE80211_C_SHSLOT /* short slot time supported */ 548 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 549 ; 550 /* 551 * Query the hal to figure out h/w crypto support. 552 */ 553 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 554 ic->ic_caps |= IEEE80211_C_WEP; 555 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 556 ic->ic_caps |= IEEE80211_C_AES; 557 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 558 ic->ic_caps |= IEEE80211_C_AES_CCM; 559 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 560 ic->ic_caps |= IEEE80211_C_CKIP; 561 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 562 ic->ic_caps |= IEEE80211_C_TKIP; 563 /* 564 * Check if h/w does the MIC and/or whether the 565 * separate key cache entries are required to 566 * handle both tx+rx MIC keys. 567 */ 568 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 569 ic->ic_caps |= IEEE80211_C_TKIPMIC; 570 if (ath_hal_tkipsplit(ah)) 571 sc->sc_splitmic = 1; 572 } 573 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 574 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 575 /* 576 * TPC support can be done either with a global cap or 577 * per-packet support. The latter is not available on 578 * all parts. We're a bit pedantic here as all parts 579 * support a global cap. 580 */ 581 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 582 ic->ic_caps |= IEEE80211_C_TXPMGT; 583 584 /* 585 * Mark WME capability only if we have sufficient 586 * hardware queues to do proper priority scheduling. 587 */ 588 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 589 ic->ic_caps |= IEEE80211_C_WME; 590 /* 591 * Check for misc other capabilities. 592 */ 593 if (ath_hal_hasbursting(ah)) 594 ic->ic_caps |= IEEE80211_C_BURST; 595 596 /* 597 * Indicate we need the 802.11 header padded to a 598 * 32-bit boundary for 4-address and QoS frames. 599 */ 600 ic->ic_flags |= IEEE80211_F_DATAPAD; 601 602 /* 603 * Query the hal about antenna support. 604 */ 605 sc->sc_defant = ath_hal_getdefantenna(ah); 606 607 /* 608 * Not all chips have the VEOL support we want to 609 * use with IBSS beacons; check here for it. 610 */ 611 sc->sc_hasveol = ath_hal_hasveol(ah); 612 613 /* get mac address from hardware */ 614 ath_hal_getmac(ah, ic->ic_myaddr); 615 616 if_attach(ifp); 617 /* call MI attach routine. */ 618 ieee80211_ifattach(ic); 619 /* override default methods */ 620 ic->ic_node_alloc = ath_node_alloc; 621 sc->sc_node_free = ic->ic_node_free; 622 ic->ic_node_free = ath_node_free; 623 ic->ic_node_getrssi = ath_node_getrssi; 624 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 625 ic->ic_recv_mgmt = ath_recv_mgmt; 626 sc->sc_newstate = ic->ic_newstate; 627 ic->ic_newstate = ath_newstate; 628 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 629 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 630 ic->ic_crypto.cs_key_delete = ath_key_delete; 631 ic->ic_crypto.cs_key_set = ath_key_set; 632 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 633 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 634 /* complete initialization */ 635 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 636 637 #if NBPFILTER > 0 638 ath_bpfattach(sc); 639 #endif 640 641 #ifdef __NetBSD__ 642 sc->sc_flags |= ATH_ATTACHED; 643 /* 644 * Make sure the interface is shutdown during reboot. 645 */ 646 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc); 647 if (sc->sc_sdhook == NULL) 648 printf("%s: WARNING: unable to establish shutdown hook\n", 649 sc->sc_dev.dv_xname); 650 sc->sc_powerhook = powerhook_establish(ath_power, sc); 651 if (sc->sc_powerhook == NULL) 652 printf("%s: WARNING: unable to establish power hook\n", 653 sc->sc_dev.dv_xname); 654 #endif 655 656 /* 657 * Setup dynamic sysctl's now that country code and 658 * regdomain are available from the hal. 659 */ 660 ath_sysctlattach(sc); 661 662 ieee80211_announce(ic); 663 ath_announce(sc); 664 return 0; 665 bad2: 666 ath_tx_cleanup(sc); 667 ath_desc_free(sc); 668 bad: 669 if (ah) 670 ath_hal_detach(ah); 671 sc->sc_invalid = 1; 672 return error; 673 } 674 675 int 676 ath_detach(struct ath_softc *sc) 677 { 678 struct ifnet *ifp = &sc->sc_if; 679 int s; 680 681 if ((sc->sc_flags & ATH_ATTACHED) == 0) 682 return (0); 683 684 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 685 __func__, ifp->if_flags); 686 687 s = splnet(); 688 ath_stop(ifp, 1); 689 #if NBPFILTER > 0 690 bpfdetach(ifp); 691 #endif 692 /* 693 * NB: the order of these is important: 694 * o call the 802.11 layer before detaching the hal to 695 * insure callbacks into the driver to delete global 696 * key cache entries can be handled 697 * o reclaim the tx queue data structures after calling 698 * the 802.11 layer as we'll get called back to reclaim 699 * node state and potentially want to use them 700 * o to cleanup the tx queues the hal is called, so detach 701 * it last 702 * Other than that, it's straightforward... 703 */ 704 ieee80211_ifdetach(&sc->sc_ic); 705 #ifdef ATH_TX99_DIAG 706 if (sc->sc_tx99 != NULL) 707 sc->sc_tx99->detach(sc->sc_tx99); 708 #endif 709 ath_rate_detach(sc->sc_rc); 710 ath_desc_free(sc); 711 ath_tx_cleanup(sc); 712 sysctl_teardown(&sc->sc_sysctllog); 713 ath_hal_detach(sc->sc_ah); 714 if_detach(ifp); 715 splx(s); 716 powerhook_disestablish(sc->sc_powerhook); 717 shutdownhook_disestablish(sc->sc_sdhook); 718 719 return 0; 720 } 721 722 #ifdef __NetBSD__ 723 void 724 ath_power(int why, void *arg) 725 { 726 struct ath_softc *sc = arg; 727 int s; 728 729 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why); 730 731 s = splnet(); 732 switch (why) { 733 case PWR_SUSPEND: 734 case PWR_STANDBY: 735 ath_suspend(sc, why); 736 break; 737 case PWR_RESUME: 738 ath_resume(sc, why); 739 break; 740 case PWR_SOFTSUSPEND: 741 case PWR_SOFTSTANDBY: 742 case PWR_SOFTRESUME: 743 break; 744 } 745 splx(s); 746 } 747 #endif 748 749 void 750 ath_suspend(struct ath_softc *sc, int why) 751 { 752 struct ifnet *ifp = &sc->sc_if; 753 754 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 755 __func__, ifp->if_flags); 756 757 ath_stop(ifp, 1); 758 if (sc->sc_power != NULL) 759 (*sc->sc_power)(sc, why); 760 } 761 762 void 763 ath_resume(struct ath_softc *sc, int why) 764 { 765 struct ifnet *ifp = &sc->sc_if; 766 767 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 768 __func__, ifp->if_flags); 769 770 if (ifp->if_flags & IFF_UP) { 771 ath_init(sc); 772 #if 0 773 (void)ath_intr(sc); 774 #endif 775 if (sc->sc_power != NULL) 776 (*sc->sc_power)(sc, why); 777 if (ifp->if_flags & IFF_RUNNING) 778 ath_start(ifp); 779 } 780 if (sc->sc_softled) { 781 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 782 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 783 } 784 } 785 786 void 787 ath_shutdown(void *arg) 788 { 789 struct ath_softc *sc = arg; 790 791 ath_stop(&sc->sc_if, 1); 792 } 793 794 /* 795 * Interrupt handler. Most of the actual processing is deferred. 796 */ 797 int 798 ath_intr(void *arg) 799 { 800 struct ath_softc *sc = arg; 801 struct ifnet *ifp = &sc->sc_if; 802 struct ath_hal *ah = sc->sc_ah; 803 HAL_INT status; 804 805 if (sc->sc_invalid) { 806 /* 807 * The hardware is not ready/present, don't touch anything. 808 * Note this can happen early on if the IRQ is shared. 809 */ 810 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 811 return 0; 812 } 813 814 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 815 return 0; 816 817 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 818 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 819 __func__, ifp->if_flags); 820 ath_hal_getisr(ah, &status); /* clear ISR */ 821 ath_hal_intrset(ah, 0); /* disable further intr's */ 822 return 1; /* XXX */ 823 } 824 /* 825 * Figure out the reason(s) for the interrupt. Note 826 * that the hal returns a pseudo-ISR that may include 827 * bits we haven't explicitly enabled so we mask the 828 * value to insure we only process bits we requested. 829 */ 830 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 831 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 832 status &= sc->sc_imask; /* discard unasked for bits */ 833 if (status & HAL_INT_FATAL) { 834 /* 835 * Fatal errors are unrecoverable. Typically 836 * these are caused by DMA errors. Unfortunately 837 * the exact reason is not (presently) returned 838 * by the hal. 839 */ 840 sc->sc_stats.ast_hardware++; 841 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 842 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 843 } else if (status & HAL_INT_RXORN) { 844 sc->sc_stats.ast_rxorn++; 845 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 846 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 847 } else { 848 if (status & HAL_INT_SWBA) { 849 /* 850 * Software beacon alert--time to send a beacon. 851 * Handle beacon transmission directly; deferring 852 * this is too slow to meet timing constraints 853 * under load. 854 */ 855 ath_beacon_proc(sc, 0); 856 } 857 if (status & HAL_INT_RXEOL) { 858 /* 859 * NB: the hardware should re-read the link when 860 * RXE bit is written, but it doesn't work at 861 * least on older hardware revs. 862 */ 863 sc->sc_stats.ast_rxeol++; 864 sc->sc_rxlink = NULL; 865 } 866 if (status & HAL_INT_TXURN) { 867 sc->sc_stats.ast_txurn++; 868 /* bump tx trigger level */ 869 ath_hal_updatetxtriglevel(ah, AH_TRUE); 870 } 871 if (status & HAL_INT_RX) 872 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 873 if (status & HAL_INT_TX) 874 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 875 if (status & HAL_INT_BMISS) { 876 sc->sc_stats.ast_bmiss++; 877 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 878 } 879 if (status & HAL_INT_MIB) { 880 sc->sc_stats.ast_mib++; 881 /* 882 * Disable interrupts until we service the MIB 883 * interrupt; otherwise it will continue to fire. 884 */ 885 ath_hal_intrset(ah, 0); 886 /* 887 * Let the hal handle the event. We assume it will 888 * clear whatever condition caused the interrupt. 889 */ 890 ath_hal_mibevent(ah, &sc->sc_halstats); 891 ath_hal_intrset(ah, sc->sc_imask); 892 } 893 } 894 return 1; 895 } 896 897 /* Swap transmit descriptor. 898 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null" 899 * function. 900 */ 901 static inline void 902 ath_desc_swap(struct ath_desc *ds) 903 { 904 #ifdef AH_NEED_DESC_SWAP 905 ds->ds_link = htole32(ds->ds_link); 906 ds->ds_data = htole32(ds->ds_data); 907 ds->ds_ctl0 = htole32(ds->ds_ctl0); 908 ds->ds_ctl1 = htole32(ds->ds_ctl1); 909 ds->ds_hw[0] = htole32(ds->ds_hw[0]); 910 ds->ds_hw[1] = htole32(ds->ds_hw[1]); 911 #endif 912 } 913 914 static void 915 ath_fatal_proc(void *arg, int pending) 916 { 917 struct ath_softc *sc = arg; 918 struct ifnet *ifp = &sc->sc_if; 919 920 if_printf(ifp, "hardware error; resetting\n"); 921 ath_reset(ifp); 922 } 923 924 static void 925 ath_rxorn_proc(void *arg, int pending) 926 { 927 struct ath_softc *sc = arg; 928 struct ifnet *ifp = &sc->sc_if; 929 930 if_printf(ifp, "rx FIFO overrun; resetting\n"); 931 ath_reset(ifp); 932 } 933 934 static void 935 ath_bmiss_proc(void *arg, int pending) 936 { 937 struct ath_softc *sc = arg; 938 struct ieee80211com *ic = &sc->sc_ic; 939 940 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 941 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 942 ("unexpect operating mode %u", ic->ic_opmode)); 943 if (ic->ic_state == IEEE80211_S_RUN) { 944 u_int64_t lastrx = sc->sc_lastrx; 945 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 946 947 DPRINTF(sc, ATH_DEBUG_BEACON, 948 "%s: tsf %" PRIu64 " lastrx %" PRId64 949 " (%" PRIu64 ") bmiss %u\n", 950 __func__, tsf, tsf - lastrx, lastrx, 951 ic->ic_bmisstimeout*1024); 952 /* 953 * Workaround phantom bmiss interrupts by sanity-checking 954 * the time of our last rx'd frame. If it is within the 955 * beacon miss interval then ignore the interrupt. If it's 956 * truly a bmiss we'll get another interrupt soon and that'll 957 * be dispatched up for processing. 958 */ 959 if (tsf - lastrx > ic->ic_bmisstimeout*1024) { 960 NET_LOCK_GIANT(); 961 ieee80211_beacon_miss(ic); 962 NET_UNLOCK_GIANT(); 963 } else 964 sc->sc_stats.ast_bmiss_phantom++; 965 } 966 } 967 968 static void 969 ath_radar_proc(void *arg, int pending) 970 { 971 struct ath_softc *sc = arg; 972 struct ifnet *ifp = &sc->sc_if; 973 struct ath_hal *ah = sc->sc_ah; 974 HAL_CHANNEL hchan; 975 976 if (ath_hal_procdfs(ah, &hchan)) { 977 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 978 hchan.channel, hchan.channelFlags, hchan.privFlags); 979 /* 980 * Initiate channel change. 981 */ 982 /* XXX not yet */ 983 } 984 } 985 986 static u_int 987 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 988 { 989 #define N(a) (sizeof(a) / sizeof(a[0])) 990 static const u_int modeflags[] = { 991 0, /* IEEE80211_MODE_AUTO */ 992 CHANNEL_A, /* IEEE80211_MODE_11A */ 993 CHANNEL_B, /* IEEE80211_MODE_11B */ 994 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 995 0, /* IEEE80211_MODE_FH */ 996 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 997 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 998 }; 999 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 1000 1001 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 1002 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 1003 return modeflags[mode]; 1004 #undef N 1005 } 1006 1007 static int 1008 ath_ifinit(struct ifnet *ifp) 1009 { 1010 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 1011 1012 return ath_init(sc); 1013 } 1014 1015 static int 1016 ath_init(struct ath_softc *sc) 1017 { 1018 struct ifnet *ifp = &sc->sc_if; 1019 struct ieee80211com *ic = &sc->sc_ic; 1020 struct ath_hal *ah = sc->sc_ah; 1021 HAL_STATUS status; 1022 int error = 0; 1023 1024 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1025 __func__, ifp->if_flags); 1026 1027 ATH_LOCK(sc); 1028 1029 if ((error = ath_enable(sc)) != 0) 1030 return error; 1031 1032 /* 1033 * Stop anything previously setup. This is safe 1034 * whether this is the first time through or not. 1035 */ 1036 ath_stop_locked(ifp, 0); 1037 1038 /* 1039 * The basic interface to setting the hardware in a good 1040 * state is ``reset''. On return the hardware is known to 1041 * be powered up and with interrupts disabled. This must 1042 * be followed by initialization of the appropriate bits 1043 * and then setup of the interrupt mask. 1044 */ 1045 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 1046 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 1047 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1048 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1049 status); 1050 error = EIO; 1051 goto done; 1052 } 1053 1054 /* 1055 * This is needed only to setup initial state 1056 * but it's best done after a reset. 1057 */ 1058 ath_update_txpow(sc); 1059 /* 1060 * Likewise this is set during reset so update 1061 * state cached in the driver. 1062 */ 1063 sc->sc_diversity = ath_hal_getdiversity(ah); 1064 sc->sc_calinterval = 1; 1065 sc->sc_caltries = 0; 1066 1067 /* 1068 * Setup the hardware after reset: the key cache 1069 * is filled as needed and the receive engine is 1070 * set going. Frame transmit is handled entirely 1071 * in the frame output path; there's nothing to do 1072 * here except setup the interrupt mask. 1073 */ 1074 if ((error = ath_startrecv(sc)) != 0) { 1075 if_printf(ifp, "unable to start recv logic\n"); 1076 goto done; 1077 } 1078 1079 /* 1080 * Enable interrupts. 1081 */ 1082 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1083 | HAL_INT_RXEOL | HAL_INT_RXORN 1084 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1085 /* 1086 * Enable MIB interrupts when there are hardware phy counters. 1087 * Note we only do this (at the moment) for station mode. 1088 */ 1089 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1090 sc->sc_imask |= HAL_INT_MIB; 1091 ath_hal_intrset(ah, sc->sc_imask); 1092 1093 ifp->if_flags |= IFF_RUNNING; 1094 ic->ic_state = IEEE80211_S_INIT; 1095 1096 /* 1097 * The hardware should be ready to go now so it's safe 1098 * to kick the 802.11 state machine as it's likely to 1099 * immediately call back to us to send mgmt frames. 1100 */ 1101 ath_chan_change(sc, ic->ic_curchan); 1102 #ifdef ATH_TX99_DIAG 1103 if (sc->sc_tx99 != NULL) 1104 sc->sc_tx99->start(sc->sc_tx99); 1105 else 1106 #endif 1107 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1108 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1109 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1110 } else 1111 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1112 done: 1113 ATH_UNLOCK(sc); 1114 return error; 1115 } 1116 1117 static void 1118 ath_stop_locked(struct ifnet *ifp, int disable) 1119 { 1120 struct ath_softc *sc = ifp->if_softc; 1121 struct ieee80211com *ic = &sc->sc_ic; 1122 struct ath_hal *ah = sc->sc_ah; 1123 1124 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1125 __func__, sc->sc_invalid, ifp->if_flags); 1126 1127 ATH_LOCK_ASSERT(sc); 1128 if (ifp->if_flags & IFF_RUNNING) { 1129 /* 1130 * Shutdown the hardware and driver: 1131 * reset 802.11 state machine 1132 * turn off timers 1133 * disable interrupts 1134 * turn off the radio 1135 * clear transmit machinery 1136 * clear receive machinery 1137 * drain and release tx queues 1138 * reclaim beacon resources 1139 * power down hardware 1140 * 1141 * Note that some of this work is not possible if the 1142 * hardware is gone (invalid). 1143 */ 1144 #ifdef ATH_TX99_DIAG 1145 if (sc->sc_tx99 != NULL) 1146 sc->sc_tx99->stop(sc->sc_tx99); 1147 #endif 1148 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1149 ifp->if_flags &= ~IFF_RUNNING; 1150 ifp->if_timer = 0; 1151 if (!sc->sc_invalid) { 1152 if (sc->sc_softled) { 1153 callout_stop(&sc->sc_ledtimer); 1154 ath_hal_gpioset(ah, sc->sc_ledpin, 1155 !sc->sc_ledon); 1156 sc->sc_blinking = 0; 1157 } 1158 ath_hal_intrset(ah, 0); 1159 } 1160 ath_draintxq(sc); 1161 if (!sc->sc_invalid) { 1162 ath_stoprecv(sc); 1163 ath_hal_phydisable(ah); 1164 } else 1165 sc->sc_rxlink = NULL; 1166 IF_PURGE(&ifp->if_snd); 1167 ath_beacon_free(sc); 1168 if (disable) 1169 ath_disable(sc); 1170 } 1171 } 1172 1173 static void 1174 ath_stop(struct ifnet *ifp, int disable) 1175 { 1176 struct ath_softc *sc = ifp->if_softc; 1177 1178 ATH_LOCK(sc); 1179 ath_stop_locked(ifp, disable); 1180 if (!sc->sc_invalid) { 1181 /* 1182 * Set the chip in full sleep mode. Note that we are 1183 * careful to do this only when bringing the interface 1184 * completely to a stop. When the chip is in this state 1185 * it must be carefully woken up or references to 1186 * registers in the PCI clock domain may freeze the bus 1187 * (and system). This varies by chip and is mostly an 1188 * issue with newer parts that go to sleep more quickly. 1189 */ 1190 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 1191 } 1192 ATH_UNLOCK(sc); 1193 } 1194 1195 /* 1196 * Reset the hardware w/o losing operational state. This is 1197 * basically a more efficient way of doing ath_stop, ath_init, 1198 * followed by state transitions to the current 802.11 1199 * operational state. Used to recover from various errors and 1200 * to reset or reload hardware state. 1201 */ 1202 int 1203 ath_reset(struct ifnet *ifp) 1204 { 1205 struct ath_softc *sc = ifp->if_softc; 1206 struct ieee80211com *ic = &sc->sc_ic; 1207 struct ath_hal *ah = sc->sc_ah; 1208 struct ieee80211_channel *c; 1209 HAL_STATUS status; 1210 1211 /* 1212 * Convert to a HAL channel description with the flags 1213 * constrained to reflect the current operating mode. 1214 */ 1215 c = ic->ic_curchan; 1216 sc->sc_curchan.channel = c->ic_freq; 1217 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1218 1219 ath_hal_intrset(ah, 0); /* disable interrupts */ 1220 ath_draintxq(sc); /* stop xmit side */ 1221 ath_stoprecv(sc); /* stop recv side */ 1222 /* NB: indicate channel change so we do a full reset */ 1223 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1224 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1225 __func__, status); 1226 ath_update_txpow(sc); /* update tx power state */ 1227 sc->sc_diversity = ath_hal_getdiversity(ah); 1228 sc->sc_calinterval = 1; 1229 sc->sc_caltries = 0; 1230 if (ath_startrecv(sc) != 0) /* restart recv */ 1231 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1232 /* 1233 * We may be doing a reset in response to an ioctl 1234 * that changes the channel so update any state that 1235 * might change as a result. 1236 */ 1237 ath_chan_change(sc, c); 1238 if (ic->ic_state == IEEE80211_S_RUN) 1239 ath_beacon_config(sc); /* restart beacons */ 1240 ath_hal_intrset(ah, sc->sc_imask); 1241 1242 ath_start(ifp); /* restart xmit */ 1243 return 0; 1244 } 1245 1246 static void 1247 ath_start(struct ifnet *ifp) 1248 { 1249 struct ath_softc *sc = ifp->if_softc; 1250 struct ath_hal *ah = sc->sc_ah; 1251 struct ieee80211com *ic = &sc->sc_ic; 1252 struct ieee80211_node *ni; 1253 struct ath_buf *bf; 1254 struct mbuf *m; 1255 struct ieee80211_frame *wh; 1256 struct ether_header *eh; 1257 1258 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1259 return; 1260 for (;;) { 1261 /* 1262 * Grab a TX buffer and associated resources. 1263 */ 1264 ATH_TXBUF_LOCK(sc); 1265 bf = STAILQ_FIRST(&sc->sc_txbuf); 1266 if (bf != NULL) 1267 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1268 ATH_TXBUF_UNLOCK(sc); 1269 if (bf == NULL) { 1270 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1271 __func__); 1272 sc->sc_stats.ast_tx_qstop++; 1273 ifp->if_flags |= IFF_OACTIVE; 1274 break; 1275 } 1276 /* 1277 * Poll the management queue for frames; they 1278 * have priority over normal data frames. 1279 */ 1280 IF_DEQUEUE(&ic->ic_mgtq, m); 1281 if (m == NULL) { 1282 /* 1283 * No data frames go out unless we're associated. 1284 */ 1285 if (ic->ic_state != IEEE80211_S_RUN) { 1286 DPRINTF(sc, ATH_DEBUG_XMIT, 1287 "%s: discard data packet, state %s\n", 1288 __func__, 1289 ieee80211_state_name[ic->ic_state]); 1290 sc->sc_stats.ast_tx_discard++; 1291 ATH_TXBUF_LOCK(sc); 1292 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1293 ATH_TXBUF_UNLOCK(sc); 1294 break; 1295 } 1296 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1297 if (m == NULL) { 1298 ATH_TXBUF_LOCK(sc); 1299 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1300 ATH_TXBUF_UNLOCK(sc); 1301 break; 1302 } 1303 /* 1304 * Find the node for the destination so we can do 1305 * things like power save and fast frames aggregation. 1306 */ 1307 if (m->m_len < sizeof(struct ether_header) && 1308 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1309 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1310 ni = NULL; 1311 goto bad; 1312 } 1313 eh = mtod(m, struct ether_header *); 1314 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1315 if (ni == NULL) { 1316 /* NB: ieee80211_find_txnode does stat+msg */ 1317 m_freem(m); 1318 goto bad; 1319 } 1320 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1321 (m->m_flags & M_PWR_SAV) == 0) { 1322 /* 1323 * Station in power save mode; pass the frame 1324 * to the 802.11 layer and continue. We'll get 1325 * the frame back when the time is right. 1326 */ 1327 ieee80211_pwrsave(ic, ni, m); 1328 goto reclaim; 1329 } 1330 /* calculate priority so we can find the tx queue */ 1331 if (ieee80211_classify(ic, m, ni)) { 1332 DPRINTF(sc, ATH_DEBUG_XMIT, 1333 "%s: discard, classification failure\n", 1334 __func__); 1335 m_freem(m); 1336 goto bad; 1337 } 1338 ifp->if_opackets++; 1339 1340 #if NBPFILTER > 0 1341 if (ifp->if_bpf) 1342 bpf_mtap(ifp->if_bpf, m); 1343 #endif 1344 /* 1345 * Encapsulate the packet in prep for transmission. 1346 */ 1347 m = ieee80211_encap(ic, m, ni); 1348 if (m == NULL) { 1349 DPRINTF(sc, ATH_DEBUG_XMIT, 1350 "%s: encapsulation failure\n", 1351 __func__); 1352 sc->sc_stats.ast_tx_encap++; 1353 goto bad; 1354 } 1355 } else { 1356 /* 1357 * Hack! The referenced node pointer is in the 1358 * rcvif field of the packet header. This is 1359 * placed there by ieee80211_mgmt_output because 1360 * we need to hold the reference with the frame 1361 * and there's no other way (other than packet 1362 * tags which we consider too expensive to use) 1363 * to pass it along. 1364 */ 1365 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1366 m->m_pkthdr.rcvif = NULL; 1367 1368 wh = mtod(m, struct ieee80211_frame *); 1369 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1370 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1371 /* fill time stamp */ 1372 u_int64_t tsf; 1373 u_int32_t *tstamp; 1374 1375 tsf = ath_hal_gettsf64(ah); 1376 /* XXX: adjust 100us delay to xmit */ 1377 tsf += 100; 1378 tstamp = (u_int32_t *)&wh[1]; 1379 tstamp[0] = htole32(tsf & 0xffffffff); 1380 tstamp[1] = htole32(tsf >> 32); 1381 } 1382 sc->sc_stats.ast_tx_mgmt++; 1383 } 1384 1385 if (ath_tx_start(sc, ni, bf, m)) { 1386 bad: 1387 ifp->if_oerrors++; 1388 reclaim: 1389 ATH_TXBUF_LOCK(sc); 1390 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1391 ATH_TXBUF_UNLOCK(sc); 1392 if (ni != NULL) 1393 ieee80211_free_node(ni); 1394 continue; 1395 } 1396 1397 sc->sc_tx_timer = 5; 1398 ifp->if_timer = 1; 1399 } 1400 } 1401 1402 static int 1403 ath_media_change(struct ifnet *ifp) 1404 { 1405 #define IS_UP(ifp) \ 1406 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1407 int error; 1408 1409 error = ieee80211_media_change(ifp); 1410 if (error == ENETRESET) { 1411 if (IS_UP(ifp)) 1412 ath_init(ifp->if_softc); /* XXX lose error */ 1413 error = 0; 1414 } 1415 return error; 1416 #undef IS_UP 1417 } 1418 1419 #ifdef AR_DEBUG 1420 static void 1421 ath_keyprint(const char *tag, u_int ix, 1422 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1423 { 1424 static const char *ciphers[] = { 1425 "WEP", 1426 "AES-OCB", 1427 "AES-CCM", 1428 "CKIP", 1429 "TKIP", 1430 "CLR", 1431 }; 1432 int i, n; 1433 1434 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1435 for (i = 0, n = hk->kv_len; i < n; i++) 1436 printf("%02x", hk->kv_val[i]); 1437 printf(" mac %s", ether_sprintf(mac)); 1438 if (hk->kv_type == HAL_CIPHER_TKIP) { 1439 printf(" mic "); 1440 for (i = 0; i < sizeof(hk->kv_mic); i++) 1441 printf("%02x", hk->kv_mic[i]); 1442 } 1443 printf("\n"); 1444 } 1445 #endif 1446 1447 /* 1448 * Set a TKIP key into the hardware. This handles the 1449 * potential distribution of key state to multiple key 1450 * cache slots for TKIP. 1451 */ 1452 static int 1453 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1454 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1455 { 1456 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1457 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1458 struct ath_hal *ah = sc->sc_ah; 1459 1460 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1461 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1462 KASSERT(sc->sc_splitmic, ("key cache !split")); 1463 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1464 /* 1465 * TX key goes at first index, RX key at the rx index. 1466 * The hal handles the MIC keys at index+64. 1467 */ 1468 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1469 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1470 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 1471 return 0; 1472 1473 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1474 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1475 /* XXX delete tx key on failure? */ 1476 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 1477 } else if (k->wk_flags & IEEE80211_KEY_XR) { 1478 /* 1479 * TX/RX key goes at first index. 1480 * The hal handles the MIC keys are index+64. 1481 */ 1482 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ? 1483 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic)); 1484 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1485 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1486 } 1487 return 0; 1488 #undef IEEE80211_KEY_XR 1489 } 1490 1491 /* 1492 * Set a net80211 key into the hardware. This handles the 1493 * potential distribution of key state to multiple key 1494 * cache slots for TKIP with hardware MIC support. 1495 */ 1496 static int 1497 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1498 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1499 struct ieee80211_node *bss) 1500 { 1501 #define N(a) (sizeof(a)/sizeof(a[0])) 1502 static const u_int8_t ciphermap[] = { 1503 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1504 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1505 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1506 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1507 (u_int8_t) -1, /* 4 is not allocated */ 1508 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1509 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1510 }; 1511 struct ath_hal *ah = sc->sc_ah; 1512 const struct ieee80211_cipher *cip = k->wk_cipher; 1513 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1514 const u_int8_t *mac; 1515 HAL_KEYVAL hk; 1516 1517 memset(&hk, 0, sizeof(hk)); 1518 /* 1519 * Software crypto uses a "clear key" so non-crypto 1520 * state kept in the key cache are maintained and 1521 * so that rx frames have an entry to match. 1522 */ 1523 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1524 KASSERT(cip->ic_cipher < N(ciphermap), 1525 ("invalid cipher type %u", cip->ic_cipher)); 1526 hk.kv_type = ciphermap[cip->ic_cipher]; 1527 hk.kv_len = k->wk_keylen; 1528 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1529 } else 1530 hk.kv_type = HAL_CIPHER_CLR; 1531 1532 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1533 /* 1534 * Group keys on hardware that supports multicast frame 1535 * key search use a mac that is the sender's address with 1536 * the high bit set instead of the app-specified address. 1537 */ 1538 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1539 gmac[0] |= 0x80; 1540 mac = gmac; 1541 } else 1542 mac = mac0; 1543 1544 if (hk.kv_type == HAL_CIPHER_TKIP && 1545 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1546 sc->sc_splitmic) { 1547 return ath_keyset_tkip(sc, k, &hk, mac); 1548 } else { 1549 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1550 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 1551 } 1552 #undef N 1553 } 1554 1555 /* 1556 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1557 * each key, one for decrypt/encrypt and the other for the MIC. 1558 */ 1559 static u_int16_t 1560 key_alloc_2pair(struct ath_softc *sc, 1561 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1562 { 1563 #define N(a) (sizeof(a)/sizeof(a[0])) 1564 u_int i, keyix; 1565 1566 KASSERT(sc->sc_splitmic, ("key cache !split")); 1567 /* XXX could optimize */ 1568 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1569 u_int8_t b = sc->sc_keymap[i]; 1570 if (b != 0xff) { 1571 /* 1572 * One or more slots in this byte are free. 1573 */ 1574 keyix = i*NBBY; 1575 while (b & 1) { 1576 again: 1577 keyix++; 1578 b >>= 1; 1579 } 1580 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1581 if (isset(sc->sc_keymap, keyix+32) || 1582 isset(sc->sc_keymap, keyix+64) || 1583 isset(sc->sc_keymap, keyix+32+64)) { 1584 /* full pair unavailable */ 1585 /* XXX statistic */ 1586 if (keyix == (i+1)*NBBY) { 1587 /* no slots were appropriate, advance */ 1588 continue; 1589 } 1590 goto again; 1591 } 1592 setbit(sc->sc_keymap, keyix); 1593 setbit(sc->sc_keymap, keyix+64); 1594 setbit(sc->sc_keymap, keyix+32); 1595 setbit(sc->sc_keymap, keyix+32+64); 1596 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1597 "%s: key pair %u,%u %u,%u\n", 1598 __func__, keyix, keyix+64, 1599 keyix+32, keyix+32+64); 1600 *txkeyix = keyix; 1601 *rxkeyix = keyix+32; 1602 return 1; 1603 } 1604 } 1605 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1606 return 0; 1607 #undef N 1608 } 1609 1610 /* 1611 * Allocate a single key cache slot. 1612 */ 1613 static int 1614 key_alloc_single(struct ath_softc *sc, 1615 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1616 { 1617 #define N(a) (sizeof(a)/sizeof(a[0])) 1618 u_int i, keyix; 1619 1620 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1621 for (i = 0; i < N(sc->sc_keymap); i++) { 1622 u_int8_t b = sc->sc_keymap[i]; 1623 if (b != 0xff) { 1624 /* 1625 * One or more slots are free. 1626 */ 1627 keyix = i*NBBY; 1628 while (b & 1) 1629 keyix++, b >>= 1; 1630 setbit(sc->sc_keymap, keyix); 1631 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1632 __func__, keyix); 1633 *txkeyix = *rxkeyix = keyix; 1634 return 1; 1635 } 1636 } 1637 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1638 return 0; 1639 #undef N 1640 } 1641 1642 /* 1643 * Allocate one or more key cache slots for a uniacst key. The 1644 * key itself is needed only to identify the cipher. For hardware 1645 * TKIP with split cipher+MIC keys we allocate two key cache slot 1646 * pairs so that we can setup separate TX and RX MIC keys. Note 1647 * that the MIC key for a TKIP key at slot i is assumed by the 1648 * hardware to be at slot i+64. This limits TKIP keys to the first 1649 * 64 entries. 1650 */ 1651 static int 1652 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1653 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1654 { 1655 struct ath_softc *sc = ic->ic_ifp->if_softc; 1656 1657 /* 1658 * Group key allocation must be handled specially for 1659 * parts that do not support multicast key cache search 1660 * functionality. For those parts the key id must match 1661 * the h/w key index so lookups find the right key. On 1662 * parts w/ the key search facility we install the sender's 1663 * mac address (with the high bit set) and let the hardware 1664 * find the key w/o using the key id. This is preferred as 1665 * it permits us to support multiple users for adhoc and/or 1666 * multi-station operation. 1667 */ 1668 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1669 if (!(&ic->ic_nw_keys[0] <= k && 1670 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1671 /* should not happen */ 1672 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1673 "%s: bogus group key\n", __func__); 1674 return 0; 1675 } 1676 /* 1677 * XXX we pre-allocate the global keys so 1678 * have no way to check if they've already been allocated. 1679 */ 1680 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1681 return 1; 1682 } 1683 1684 /* 1685 * We allocate two pair for TKIP when using the h/w to do 1686 * the MIC. For everything else, including software crypto, 1687 * we allocate a single entry. Note that s/w crypto requires 1688 * a pass-through slot on the 5211 and 5212. The 5210 does 1689 * not support pass-through cache entries and we map all 1690 * those requests to slot 0. 1691 */ 1692 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1693 return key_alloc_single(sc, keyix, rxkeyix); 1694 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1695 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1696 return key_alloc_2pair(sc, keyix, rxkeyix); 1697 } else { 1698 return key_alloc_single(sc, keyix, rxkeyix); 1699 } 1700 } 1701 1702 /* 1703 * Delete an entry in the key cache allocated by ath_key_alloc. 1704 */ 1705 static int 1706 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1707 { 1708 struct ath_softc *sc = ic->ic_ifp->if_softc; 1709 struct ath_hal *ah = sc->sc_ah; 1710 const struct ieee80211_cipher *cip = k->wk_cipher; 1711 u_int keyix = k->wk_keyix; 1712 1713 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1714 1715 ath_hal_keyreset(ah, keyix); 1716 /* 1717 * Handle split tx/rx keying required for TKIP with h/w MIC. 1718 */ 1719 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1720 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1721 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1722 if (keyix >= IEEE80211_WEP_NKID) { 1723 /* 1724 * Don't touch keymap entries for global keys so 1725 * they are never considered for dynamic allocation. 1726 */ 1727 clrbit(sc->sc_keymap, keyix); 1728 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1729 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1730 sc->sc_splitmic) { 1731 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1732 clrbit(sc->sc_keymap, keyix+32); /* RX key */ 1733 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */ 1734 } 1735 } 1736 return 1; 1737 } 1738 1739 /* 1740 * Set the key cache contents for the specified key. Key cache 1741 * slot(s) must already have been allocated by ath_key_alloc. 1742 */ 1743 static int 1744 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1745 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1746 { 1747 struct ath_softc *sc = ic->ic_ifp->if_softc; 1748 1749 return ath_keyset(sc, k, mac, ic->ic_bss); 1750 } 1751 1752 /* 1753 * Block/unblock tx+rx processing while a key change is done. 1754 * We assume the caller serializes key management operations 1755 * so we only need to worry about synchronization with other 1756 * uses that originate in the driver. 1757 */ 1758 static void 1759 ath_key_update_begin(struct ieee80211com *ic) 1760 { 1761 struct ifnet *ifp = ic->ic_ifp; 1762 struct ath_softc *sc = ifp->if_softc; 1763 1764 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1765 #if 0 1766 tasklet_disable(&sc->sc_rxtq); 1767 #endif 1768 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1769 } 1770 1771 static void 1772 ath_key_update_end(struct ieee80211com *ic) 1773 { 1774 struct ifnet *ifp = ic->ic_ifp; 1775 struct ath_softc *sc = ifp->if_softc; 1776 1777 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1778 IF_UNLOCK(&ifp->if_snd); 1779 #if 0 1780 tasklet_enable(&sc->sc_rxtq); 1781 #endif 1782 } 1783 1784 /* 1785 * Calculate the receive filter according to the 1786 * operating mode and state: 1787 * 1788 * o always accept unicast, broadcast, and multicast traffic 1789 * o maintain current state of phy error reception (the hal 1790 * may enable phy error frames for noise immunity work) 1791 * o probe request frames are accepted only when operating in 1792 * hostap, adhoc, or monitor modes 1793 * o enable promiscuous mode according to the interface state 1794 * o accept beacons: 1795 * - when operating in adhoc mode so the 802.11 layer creates 1796 * node table entries for peers, 1797 * - when operating in station mode for collecting rssi data when 1798 * the station is otherwise quiet, or 1799 * - when scanning 1800 */ 1801 static u_int32_t 1802 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1803 { 1804 struct ieee80211com *ic = &sc->sc_ic; 1805 struct ath_hal *ah = sc->sc_ah; 1806 struct ifnet *ifp = &sc->sc_if; 1807 u_int32_t rfilt; 1808 1809 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1810 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1811 if (ic->ic_opmode != IEEE80211_M_STA) 1812 rfilt |= HAL_RX_FILTER_PROBEREQ; 1813 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1814 (ifp->if_flags & IFF_PROMISC)) 1815 rfilt |= HAL_RX_FILTER_PROM; 1816 if (ic->ic_opmode == IEEE80211_M_STA || 1817 ic->ic_opmode == IEEE80211_M_IBSS || 1818 state == IEEE80211_S_SCAN) 1819 rfilt |= HAL_RX_FILTER_BEACON; 1820 return rfilt; 1821 } 1822 1823 static void 1824 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt) 1825 { 1826 u_int32_t val; 1827 u_int8_t pos; 1828 1829 /* calculate XOR of eight 6bit values */ 1830 val = LE_READ_4(dl + 0); 1831 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1832 val = LE_READ_4(dl + 3); 1833 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1834 pos &= 0x3f; 1835 mfilt[pos / 32] |= (1 << (pos % 32)); 1836 } 1837 1838 static void 1839 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt) 1840 { 1841 struct ifnet *ifp = &sc->sc_if; 1842 struct ether_multi *enm; 1843 struct ether_multistep estep; 1844 1845 mfilt[0] = mfilt[1] = 0; 1846 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1847 while (enm != NULL) { 1848 /* XXX Punt on ranges. */ 1849 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1850 mfilt[0] = mfilt[1] = ~((u_int32_t)0); 1851 ifp->if_flags |= IFF_ALLMULTI; 1852 return; 1853 } 1854 ath_mcastfilter_accum(enm->enm_addrlo, mfilt); 1855 ETHER_NEXT_MULTI(estep, enm); 1856 } 1857 ifp->if_flags &= ~IFF_ALLMULTI; 1858 } 1859 1860 static void 1861 ath_mode_init(struct ath_softc *sc) 1862 { 1863 struct ieee80211com *ic = &sc->sc_ic; 1864 struct ath_hal *ah = sc->sc_ah; 1865 u_int32_t rfilt, mfilt[2]; 1866 int i; 1867 1868 /* configure rx filter */ 1869 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1870 ath_hal_setrxfilter(ah, rfilt); 1871 1872 /* configure operational mode */ 1873 ath_hal_setopmode(ah); 1874 1875 /* Write keys to hardware; it may have been powered down. */ 1876 ath_key_update_begin(ic); 1877 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1878 ath_key_set(ic, 1879 &ic->ic_crypto.cs_nw_keys[i], 1880 ic->ic_myaddr); 1881 } 1882 ath_key_update_end(ic); 1883 1884 /* 1885 * Handle any link-level address change. Note that we only 1886 * need to force ic_myaddr; any other addresses are handled 1887 * as a byproduct of the ifnet code marking the interface 1888 * down then up. 1889 * 1890 * XXX should get from lladdr instead of arpcom but that's more work 1891 */ 1892 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl)); 1893 ath_hal_setmac(ah, ic->ic_myaddr); 1894 1895 /* calculate and install multicast filter */ 1896 #ifdef __FreeBSD__ 1897 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1898 mfilt[0] = mfilt[1] = 0; 1899 IF_ADDR_LOCK(ifp); 1900 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1901 caddr_t dl; 1902 1903 /* calculate XOR of eight 6bit values */ 1904 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1905 val = LE_READ_4(dl + 0); 1906 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1907 val = LE_READ_4(dl + 3); 1908 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1909 pos &= 0x3f; 1910 mfilt[pos / 32] |= (1 << (pos % 32)); 1911 } 1912 IF_ADDR_UNLOCK(ifp); 1913 } else { 1914 mfilt[0] = mfilt[1] = ~0; 1915 } 1916 #endif 1917 #ifdef __NetBSD__ 1918 ath_mcastfilter_compute(sc, mfilt); 1919 #endif 1920 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1921 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 1922 __func__, rfilt, mfilt[0], mfilt[1]); 1923 } 1924 1925 /* 1926 * Set the slot time based on the current setting. 1927 */ 1928 static void 1929 ath_setslottime(struct ath_softc *sc) 1930 { 1931 struct ieee80211com *ic = &sc->sc_ic; 1932 struct ath_hal *ah = sc->sc_ah; 1933 1934 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1935 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 1936 else 1937 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 1938 sc->sc_updateslot = OK; 1939 } 1940 1941 /* 1942 * Callback from the 802.11 layer to update the 1943 * slot time based on the current setting. 1944 */ 1945 static void 1946 ath_updateslot(struct ifnet *ifp) 1947 { 1948 struct ath_softc *sc = ifp->if_softc; 1949 struct ieee80211com *ic = &sc->sc_ic; 1950 1951 /* 1952 * When not coordinating the BSS, change the hardware 1953 * immediately. For other operation we defer the change 1954 * until beacon updates have propagated to the stations. 1955 */ 1956 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1957 sc->sc_updateslot = UPDATE; 1958 else 1959 ath_setslottime(sc); 1960 } 1961 1962 /* 1963 * Setup a h/w transmit queue for beacons. 1964 */ 1965 static int 1966 ath_beaconq_setup(struct ath_hal *ah) 1967 { 1968 HAL_TXQ_INFO qi; 1969 1970 memset(&qi, 0, sizeof(qi)); 1971 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 1972 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 1973 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 1974 /* NB: for dynamic turbo, don't enable any other interrupts */ 1975 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 1976 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 1977 } 1978 1979 /* 1980 * Setup the transmit queue parameters for the beacon queue. 1981 */ 1982 static int 1983 ath_beaconq_config(struct ath_softc *sc) 1984 { 1985 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 1986 struct ieee80211com *ic = &sc->sc_ic; 1987 struct ath_hal *ah = sc->sc_ah; 1988 HAL_TXQ_INFO qi; 1989 1990 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 1991 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1992 /* 1993 * Always burst out beacon and CAB traffic. 1994 */ 1995 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 1996 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 1997 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 1998 } else { 1999 struct wmeParams *wmep = 2000 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2001 /* 2002 * Adhoc mode; important thing is to use 2x cwmin. 2003 */ 2004 qi.tqi_aifs = wmep->wmep_aifsn; 2005 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2006 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2007 } 2008 2009 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2010 device_printf(sc->sc_dev, "unable to update parameters for " 2011 "beacon hardware queue!\n"); 2012 return 0; 2013 } else { 2014 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2015 return 1; 2016 } 2017 #undef ATH_EXPONENT_TO_VALUE 2018 } 2019 2020 /* 2021 * Allocate and setup an initial beacon frame. 2022 */ 2023 static int 2024 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2025 { 2026 struct ieee80211com *ic = ni->ni_ic; 2027 struct ath_buf *bf; 2028 struct mbuf *m; 2029 int error; 2030 2031 bf = STAILQ_FIRST(&sc->sc_bbuf); 2032 if (bf == NULL) { 2033 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 2034 sc->sc_stats.ast_be_nombuf++; /* XXX */ 2035 return ENOMEM; /* XXX */ 2036 } 2037 /* 2038 * NB: the beacon data buffer must be 32-bit aligned; 2039 * we assume the mbuf routines will return us something 2040 * with this alignment (perhaps should assert). 2041 */ 2042 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 2043 if (m == NULL) { 2044 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 2045 __func__); 2046 sc->sc_stats.ast_be_nombuf++; 2047 return ENOMEM; 2048 } 2049 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2050 BUS_DMA_NOWAIT); 2051 if (error == 0) { 2052 bf->bf_m = m; 2053 bf->bf_node = ieee80211_ref_node(ni); 2054 } else { 2055 m_freem(m); 2056 } 2057 return error; 2058 } 2059 2060 /* 2061 * Setup the beacon frame for transmit. 2062 */ 2063 static void 2064 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2065 { 2066 #define USE_SHPREAMBLE(_ic) \ 2067 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2068 == IEEE80211_F_SHPREAMBLE) 2069 struct ieee80211_node *ni = bf->bf_node; 2070 struct ieee80211com *ic = ni->ni_ic; 2071 struct mbuf *m = bf->bf_m; 2072 struct ath_hal *ah = sc->sc_ah; 2073 struct ath_desc *ds; 2074 int flags, antenna; 2075 const HAL_RATE_TABLE *rt; 2076 u_int8_t rix, rate; 2077 2078 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 2079 __func__, m, m->m_len); 2080 2081 /* setup descriptors */ 2082 ds = bf->bf_desc; 2083 2084 flags = HAL_TXDESC_NOACK; 2085 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2086 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */ 2087 flags |= HAL_TXDESC_VEOL; 2088 /* 2089 * Let hardware handle antenna switching unless 2090 * the user has selected a transmit antenna 2091 * (sc_txantenna is not 0). 2092 */ 2093 antenna = sc->sc_txantenna; 2094 } else { 2095 ds->ds_link = 0; 2096 /* 2097 * Switch antenna every 4 beacons, unless the user 2098 * has selected a transmit antenna (sc_txantenna 2099 * is not 0). 2100 * 2101 * XXX assumes two antenna 2102 */ 2103 if (sc->sc_txantenna == 0) 2104 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2105 else 2106 antenna = sc->sc_txantenna; 2107 } 2108 2109 KASSERT(bf->bf_nseg == 1, 2110 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2111 ds->ds_data = bf->bf_segs[0].ds_addr; 2112 /* 2113 * Calculate rate code. 2114 * XXX everything at min xmit rate 2115 */ 2116 rix = sc->sc_minrateix; 2117 rt = sc->sc_currates; 2118 rate = rt->info[rix].rateCode; 2119 if (USE_SHPREAMBLE(ic)) 2120 rate |= rt->info[rix].shortPreamble; 2121 ath_hal_setuptxdesc(ah, ds 2122 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2123 , sizeof(struct ieee80211_frame)/* header length */ 2124 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2125 , ni->ni_txpower /* txpower XXX */ 2126 , rate, 1 /* series 0 rate/tries */ 2127 , HAL_TXKEYIX_INVALID /* no encryption */ 2128 , antenna /* antenna mode */ 2129 , flags /* no ack, veol for beacons */ 2130 , 0 /* rts/cts rate */ 2131 , 0 /* rts/cts duration */ 2132 ); 2133 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2134 ath_hal_filltxdesc(ah, ds 2135 , roundup(m->m_len, 4) /* buffer length */ 2136 , AH_TRUE /* first segment */ 2137 , AH_TRUE /* last segment */ 2138 , ds /* first descriptor */ 2139 ); 2140 2141 /* NB: The desc swap function becomes void, 2142 * if descriptor swapping is not enabled 2143 */ 2144 ath_desc_swap(ds); 2145 2146 #undef USE_SHPREAMBLE 2147 } 2148 2149 /* 2150 * Transmit a beacon frame at SWBA. Dynamic updates to the 2151 * frame contents are done as needed and the slot time is 2152 * also adjusted based on current state. 2153 */ 2154 static void 2155 ath_beacon_proc(void *arg, int pending) 2156 { 2157 struct ath_softc *sc = arg; 2158 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2159 struct ieee80211_node *ni = bf->bf_node; 2160 struct ieee80211com *ic = ni->ni_ic; 2161 struct ath_hal *ah = sc->sc_ah; 2162 struct mbuf *m; 2163 int ncabq, error, otherant; 2164 2165 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2166 __func__, pending); 2167 2168 if (ic->ic_opmode == IEEE80211_M_STA || 2169 ic->ic_opmode == IEEE80211_M_MONITOR || 2170 bf == NULL || bf->bf_m == NULL) { 2171 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2172 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2173 return; 2174 } 2175 /* 2176 * Check if the previous beacon has gone out. If 2177 * not don't try to post another, skip this period 2178 * and wait for the next. Missed beacons indicate 2179 * a problem and should not occur. If we miss too 2180 * many consecutive beacons reset the device. 2181 */ 2182 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2183 sc->sc_bmisscount++; 2184 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2185 "%s: missed %u consecutive beacons\n", 2186 __func__, sc->sc_bmisscount); 2187 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2188 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2189 return; 2190 } 2191 if (sc->sc_bmisscount != 0) { 2192 DPRINTF(sc, ATH_DEBUG_BEACON, 2193 "%s: resume beacon xmit after %u misses\n", 2194 __func__, sc->sc_bmisscount); 2195 sc->sc_bmisscount = 0; 2196 } 2197 2198 /* 2199 * Update dynamic beacon contents. If this returns 2200 * non-zero then we need to remap the memory because 2201 * the beacon frame changed size (probably because 2202 * of the TIM bitmap). 2203 */ 2204 m = bf->bf_m; 2205 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2206 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2207 /* XXX too conservative? */ 2208 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2209 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2210 BUS_DMA_NOWAIT); 2211 if (error != 0) { 2212 if_printf(&sc->sc_if, 2213 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2214 __func__, error); 2215 return; 2216 } 2217 } 2218 2219 /* 2220 * Handle slot time change when a non-ERP station joins/leaves 2221 * an 11g network. The 802.11 layer notifies us via callback, 2222 * we mark updateslot, then wait one beacon before effecting 2223 * the change. This gives associated stations at least one 2224 * beacon interval to note the state change. 2225 */ 2226 /* XXX locking */ 2227 if (sc->sc_updateslot == UPDATE) 2228 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2229 else if (sc->sc_updateslot == COMMIT) 2230 ath_setslottime(sc); /* commit change to h/w */ 2231 2232 /* 2233 * Check recent per-antenna transmit statistics and flip 2234 * the default antenna if noticeably more frames went out 2235 * on the non-default antenna. 2236 * XXX assumes 2 anntenae 2237 */ 2238 otherant = sc->sc_defant & 1 ? 2 : 1; 2239 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2240 ath_setdefantenna(sc, otherant); 2241 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2242 2243 /* 2244 * Construct tx descriptor. 2245 */ 2246 ath_beacon_setup(sc, bf); 2247 2248 /* 2249 * Stop any current dma and put the new frame on the queue. 2250 * This should never fail since we check above that no frames 2251 * are still pending on the queue. 2252 */ 2253 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2254 DPRINTF(sc, ATH_DEBUG_ANY, 2255 "%s: beacon queue %u did not stop?\n", 2256 __func__, sc->sc_bhalq); 2257 } 2258 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2259 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2260 2261 /* 2262 * Enable the CAB queue before the beacon queue to 2263 * insure cab frames are triggered by this beacon. 2264 */ 2265 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */ 2266 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2267 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2268 ath_hal_txstart(ah, sc->sc_bhalq); 2269 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2270 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__, 2271 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc); 2272 2273 sc->sc_stats.ast_be_xmit++; 2274 } 2275 2276 /* 2277 * Reset the hardware after detecting beacons have stopped. 2278 */ 2279 static void 2280 ath_bstuck_proc(void *arg, int pending) 2281 { 2282 struct ath_softc *sc = arg; 2283 struct ifnet *ifp = &sc->sc_if; 2284 2285 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2286 sc->sc_bmisscount); 2287 ath_reset(ifp); 2288 } 2289 2290 /* 2291 * Reclaim beacon resources. 2292 */ 2293 static void 2294 ath_beacon_free(struct ath_softc *sc) 2295 { 2296 struct ath_buf *bf; 2297 2298 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2299 if (bf->bf_m != NULL) { 2300 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2301 m_freem(bf->bf_m); 2302 bf->bf_m = NULL; 2303 } 2304 if (bf->bf_node != NULL) { 2305 ieee80211_free_node(bf->bf_node); 2306 bf->bf_node = NULL; 2307 } 2308 } 2309 } 2310 2311 /* 2312 * Configure the beacon and sleep timers. 2313 * 2314 * When operating as an AP this resets the TSF and sets 2315 * up the hardware to notify us when we need to issue beacons. 2316 * 2317 * When operating in station mode this sets up the beacon 2318 * timers according to the timestamp of the last received 2319 * beacon and the current TSF, configures PCF and DTIM 2320 * handling, programs the sleep registers so the hardware 2321 * will wakeup in time to receive beacons, and configures 2322 * the beacon miss handling so we'll receive a BMISS 2323 * interrupt when we stop seeing beacons from the AP 2324 * we've associated with. 2325 */ 2326 static void 2327 ath_beacon_config(struct ath_softc *sc) 2328 { 2329 #define TSF_TO_TU(_h,_l) \ 2330 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2331 #define FUDGE 2 2332 struct ath_hal *ah = sc->sc_ah; 2333 struct ieee80211com *ic = &sc->sc_ic; 2334 struct ieee80211_node *ni = ic->ic_bss; 2335 u_int32_t nexttbtt, intval, tsftu; 2336 u_int64_t tsf; 2337 2338 /* extract tstamp from last beacon and convert to TU */ 2339 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2340 LE_READ_4(ni->ni_tstamp.data)); 2341 /* NB: the beacon interval is kept internally in TU's */ 2342 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2343 if (nexttbtt == 0) /* e.g. for ap mode */ 2344 nexttbtt = intval; 2345 else if (intval) /* NB: can be 0 for monitor mode */ 2346 nexttbtt = roundup(nexttbtt, intval); 2347 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2348 __func__, nexttbtt, intval, ni->ni_intval); 2349 if (ic->ic_opmode == IEEE80211_M_STA) { 2350 HAL_BEACON_STATE bs; 2351 int dtimperiod, dtimcount; 2352 int cfpperiod, cfpcount; 2353 2354 /* 2355 * Setup dtim and cfp parameters according to 2356 * last beacon we received (which may be none). 2357 */ 2358 dtimperiod = ni->ni_dtim_period; 2359 if (dtimperiod <= 0) /* NB: 0 if not known */ 2360 dtimperiod = 1; 2361 dtimcount = ni->ni_dtim_count; 2362 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2363 dtimcount = 0; /* XXX? */ 2364 cfpperiod = 1; /* NB: no PCF support yet */ 2365 cfpcount = 0; 2366 /* 2367 * Pull nexttbtt forward to reflect the current 2368 * TSF and calculate dtim+cfp state for the result. 2369 */ 2370 tsf = ath_hal_gettsf64(ah); 2371 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2372 do { 2373 nexttbtt += intval; 2374 if (--dtimcount < 0) { 2375 dtimcount = dtimperiod - 1; 2376 if (--cfpcount < 0) 2377 cfpcount = cfpperiod - 1; 2378 } 2379 } while (nexttbtt < tsftu); 2380 memset(&bs, 0, sizeof(bs)); 2381 bs.bs_intval = intval; 2382 bs.bs_nexttbtt = nexttbtt; 2383 bs.bs_dtimperiod = dtimperiod*intval; 2384 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2385 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2386 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2387 bs.bs_cfpmaxduration = 0; 2388 #if 0 2389 /* 2390 * The 802.11 layer records the offset to the DTIM 2391 * bitmap while receiving beacons; use it here to 2392 * enable h/w detection of our AID being marked in 2393 * the bitmap vector (to indicate frames for us are 2394 * pending at the AP). 2395 * XXX do DTIM handling in s/w to WAR old h/w bugs 2396 * XXX enable based on h/w rev for newer chips 2397 */ 2398 bs.bs_timoffset = ni->ni_timoff; 2399 #endif 2400 /* 2401 * Calculate the number of consecutive beacons to miss 2402 * before taking a BMISS interrupt. The configuration 2403 * is specified in ms, so we need to convert that to 2404 * TU's and then calculate based on the beacon interval. 2405 * Note that we clamp the result to at most 10 beacons. 2406 */ 2407 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2408 if (bs.bs_bmissthreshold > 10) 2409 bs.bs_bmissthreshold = 10; 2410 else if (bs.bs_bmissthreshold <= 0) 2411 bs.bs_bmissthreshold = 1; 2412 2413 /* 2414 * Calculate sleep duration. The configuration is 2415 * given in ms. We insure a multiple of the beacon 2416 * period is used. Also, if the sleep duration is 2417 * greater than the DTIM period then it makes senses 2418 * to make it a multiple of that. 2419 * 2420 * XXX fixed at 100ms 2421 */ 2422 bs.bs_sleepduration = 2423 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2424 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2425 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2426 2427 DPRINTF(sc, ATH_DEBUG_BEACON, 2428 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2429 , __func__ 2430 , tsf, tsftu 2431 , bs.bs_intval 2432 , bs.bs_nexttbtt 2433 , bs.bs_dtimperiod 2434 , bs.bs_nextdtim 2435 , bs.bs_bmissthreshold 2436 , bs.bs_sleepduration 2437 , bs.bs_cfpperiod 2438 , bs.bs_cfpmaxduration 2439 , bs.bs_cfpnext 2440 , bs.bs_timoffset 2441 ); 2442 ath_hal_intrset(ah, 0); 2443 ath_hal_beacontimers(ah, &bs); 2444 sc->sc_imask |= HAL_INT_BMISS; 2445 ath_hal_intrset(ah, sc->sc_imask); 2446 } else { 2447 ath_hal_intrset(ah, 0); 2448 if (nexttbtt == intval) 2449 intval |= HAL_BEACON_RESET_TSF; 2450 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2451 /* 2452 * In IBSS mode enable the beacon timers but only 2453 * enable SWBA interrupts if we need to manually 2454 * prepare beacon frames. Otherwise we use a 2455 * self-linked tx descriptor and let the hardware 2456 * deal with things. 2457 */ 2458 intval |= HAL_BEACON_ENA; 2459 if (!sc->sc_hasveol) 2460 sc->sc_imask |= HAL_INT_SWBA; 2461 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2462 /* 2463 * Pull nexttbtt forward to reflect 2464 * the current TSF. 2465 */ 2466 tsf = ath_hal_gettsf64(ah); 2467 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2468 do { 2469 nexttbtt += intval; 2470 } while (nexttbtt < tsftu); 2471 } 2472 ath_beaconq_config(sc); 2473 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2474 /* 2475 * In AP mode we enable the beacon timers and 2476 * SWBA interrupts to prepare beacon frames. 2477 */ 2478 intval |= HAL_BEACON_ENA; 2479 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2480 ath_beaconq_config(sc); 2481 } 2482 ath_hal_beaconinit(ah, nexttbtt, intval); 2483 sc->sc_bmisscount = 0; 2484 ath_hal_intrset(ah, sc->sc_imask); 2485 /* 2486 * When using a self-linked beacon descriptor in 2487 * ibss mode load it once here. 2488 */ 2489 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2490 ath_beacon_proc(sc, 0); 2491 } 2492 sc->sc_syncbeacon = 0; 2493 #undef UNDEF 2494 #undef TSF_TO_TU 2495 } 2496 2497 static int 2498 ath_descdma_setup(struct ath_softc *sc, 2499 struct ath_descdma *dd, ath_bufhead *head, 2500 const char *name, int nbuf, int ndesc) 2501 { 2502 #define DS2PHYS(_dd, _ds) \ 2503 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2504 struct ifnet *ifp = &sc->sc_if; 2505 struct ath_desc *ds; 2506 struct ath_buf *bf; 2507 int i, bsize, error; 2508 2509 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2510 __func__, name, nbuf, ndesc); 2511 2512 dd->dd_name = name; 2513 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2514 2515 /* 2516 * Setup DMA descriptor area. 2517 */ 2518 dd->dd_dmat = sc->sc_dmat; 2519 2520 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2521 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2522 2523 if (error != 0) { 2524 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2525 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2526 goto fail0; 2527 } 2528 2529 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2530 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT); 2531 if (error != 0) { 2532 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2533 nbuf * ndesc, dd->dd_name, error); 2534 goto fail1; 2535 } 2536 2537 /* allocate descriptors */ 2538 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2539 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2540 if (error != 0) { 2541 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2542 "error %u\n", dd->dd_name, error); 2543 goto fail2; 2544 } 2545 2546 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2547 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2548 if (error != 0) { 2549 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2550 dd->dd_name, error); 2551 goto fail3; 2552 } 2553 2554 ds = dd->dd_desc; 2555 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2556 DPRINTF(sc, ATH_DEBUG_RESET, 2557 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n", 2558 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2559 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2560 2561 /* allocate rx buffers */ 2562 bsize = sizeof(struct ath_buf) * nbuf; 2563 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2564 if (bf == NULL) { 2565 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2566 dd->dd_name, bsize); 2567 goto fail4; 2568 } 2569 dd->dd_bufptr = bf; 2570 2571 STAILQ_INIT(head); 2572 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2573 bf->bf_desc = ds; 2574 bf->bf_daddr = DS2PHYS(dd, ds); 2575 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2576 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2577 if (error != 0) { 2578 if_printf(ifp, "unable to create dmamap for %s " 2579 "buffer %u, error %u\n", dd->dd_name, i, error); 2580 ath_descdma_cleanup(sc, dd, head); 2581 return error; 2582 } 2583 STAILQ_INSERT_TAIL(head, bf, bf_list); 2584 } 2585 return 0; 2586 fail4: 2587 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2588 fail3: 2589 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2590 fail2: 2591 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len); 2592 fail1: 2593 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2594 fail0: 2595 memset(dd, 0, sizeof(*dd)); 2596 return error; 2597 #undef DS2PHYS 2598 } 2599 2600 static void 2601 ath_descdma_cleanup(struct ath_softc *sc, 2602 struct ath_descdma *dd, ath_bufhead *head) 2603 { 2604 struct ath_buf *bf; 2605 struct ieee80211_node *ni; 2606 2607 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2608 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2609 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len); 2610 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2611 2612 STAILQ_FOREACH(bf, head, bf_list) { 2613 if (bf->bf_m) { 2614 m_freem(bf->bf_m); 2615 bf->bf_m = NULL; 2616 } 2617 if (bf->bf_dmamap != NULL) { 2618 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2619 bf->bf_dmamap = NULL; 2620 } 2621 ni = bf->bf_node; 2622 bf->bf_node = NULL; 2623 if (ni != NULL) { 2624 /* 2625 * Reclaim node reference. 2626 */ 2627 ieee80211_free_node(ni); 2628 } 2629 } 2630 2631 STAILQ_INIT(head); 2632 free(dd->dd_bufptr, M_ATHDEV); 2633 memset(dd, 0, sizeof(*dd)); 2634 } 2635 2636 static int 2637 ath_desc_alloc(struct ath_softc *sc) 2638 { 2639 int error; 2640 2641 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2642 "rx", ath_rxbuf, 1); 2643 if (error != 0) 2644 return error; 2645 2646 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2647 "tx", ath_txbuf, ATH_TXDESC); 2648 if (error != 0) { 2649 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2650 return error; 2651 } 2652 2653 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2654 "beacon", 1, 1); 2655 if (error != 0) { 2656 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2657 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2658 return error; 2659 } 2660 return 0; 2661 } 2662 2663 static void 2664 ath_desc_free(struct ath_softc *sc) 2665 { 2666 2667 if (sc->sc_bdma.dd_desc_len != 0) 2668 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2669 if (sc->sc_txdma.dd_desc_len != 0) 2670 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2671 if (sc->sc_rxdma.dd_desc_len != 0) 2672 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2673 } 2674 2675 static struct ieee80211_node * 2676 ath_node_alloc(struct ieee80211_node_table *nt) 2677 { 2678 struct ieee80211com *ic = nt->nt_ic; 2679 struct ath_softc *sc = ic->ic_ifp->if_softc; 2680 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2681 struct ath_node *an; 2682 2683 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2684 if (an == NULL) { 2685 /* XXX stat+msg */ 2686 return NULL; 2687 } 2688 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2689 ath_rate_node_init(sc, an); 2690 2691 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2692 return &an->an_node; 2693 } 2694 2695 static void 2696 ath_node_free(struct ieee80211_node *ni) 2697 { 2698 struct ieee80211com *ic = ni->ni_ic; 2699 struct ath_softc *sc = ic->ic_ifp->if_softc; 2700 2701 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2702 2703 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2704 sc->sc_node_free(ni); 2705 } 2706 2707 static u_int8_t 2708 ath_node_getrssi(const struct ieee80211_node *ni) 2709 { 2710 #define HAL_EP_RND(x, mul) \ 2711 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2712 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2713 int32_t rssi; 2714 2715 /* 2716 * When only one frame is received there will be no state in 2717 * avgrssi so fallback on the value recorded by the 802.11 layer. 2718 */ 2719 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2720 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2721 else 2722 rssi = ni->ni_rssi; 2723 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2724 #undef HAL_EP_RND 2725 } 2726 2727 static int 2728 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2729 { 2730 struct ath_hal *ah = sc->sc_ah; 2731 int error; 2732 struct mbuf *m; 2733 struct ath_desc *ds; 2734 2735 m = bf->bf_m; 2736 if (m == NULL) { 2737 /* 2738 * NB: by assigning a page to the rx dma buffer we 2739 * implicitly satisfy the Atheros requirement that 2740 * this buffer be cache-line-aligned and sized to be 2741 * multiple of the cache line size. Not doing this 2742 * causes weird stuff to happen (for the 5210 at least). 2743 */ 2744 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2745 if (m == NULL) { 2746 DPRINTF(sc, ATH_DEBUG_ANY, 2747 "%s: no mbuf/cluster\n", __func__); 2748 sc->sc_stats.ast_rx_nombuf++; 2749 return ENOMEM; 2750 } 2751 bf->bf_m = m; 2752 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2753 2754 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2755 bf->bf_dmamap, m, 2756 BUS_DMA_NOWAIT); 2757 if (error != 0) { 2758 DPRINTF(sc, ATH_DEBUG_ANY, 2759 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2760 __func__, error); 2761 sc->sc_stats.ast_rx_busdma++; 2762 return error; 2763 } 2764 KASSERT(bf->bf_nseg == 1, 2765 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2766 } 2767 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2768 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2769 2770 /* 2771 * Setup descriptors. For receive we always terminate 2772 * the descriptor list with a self-linked entry so we'll 2773 * not get overrun under high load (as can happen with a 2774 * 5212 when ANI processing enables PHY error frames). 2775 * 2776 * To insure the last descriptor is self-linked we create 2777 * each descriptor as self-linked and add it to the end. As 2778 * each additional descriptor is added the previous self-linked 2779 * entry is ``fixed'' naturally. This should be safe even 2780 * if DMA is happening. When processing RX interrupts we 2781 * never remove/process the last, self-linked, entry on the 2782 * descriptor list. This insures the hardware always has 2783 * someplace to write a new frame. 2784 */ 2785 ds = bf->bf_desc; 2786 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */ 2787 ds->ds_data = bf->bf_segs[0].ds_addr; 2788 ds->ds_vdata = mtod(m, void *); /* for radar */ 2789 ath_hal_setuprxdesc(ah, ds 2790 , m->m_len /* buffer size */ 2791 , 0 2792 ); 2793 2794 if (sc->sc_rxlink != NULL) 2795 *sc->sc_rxlink = bf->bf_daddr; 2796 sc->sc_rxlink = &ds->ds_link; 2797 return 0; 2798 } 2799 2800 /* 2801 * Extend 15-bit time stamp from rx descriptor to 2802 * a full 64-bit TSF using the specified TSF. 2803 */ 2804 static inline u_int64_t 2805 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2806 { 2807 if ((tsf & 0x7fff) < rstamp) 2808 tsf -= 0x8000; 2809 return ((tsf &~ 0x7fff) | rstamp); 2810 } 2811 2812 /* 2813 * Intercept management frames to collect beacon rssi data 2814 * and to do ibss merges. 2815 */ 2816 static void 2817 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2818 struct ieee80211_node *ni, 2819 int subtype, int rssi, u_int32_t rstamp) 2820 { 2821 struct ath_softc *sc = ic->ic_ifp->if_softc; 2822 2823 /* 2824 * Call up first so subsequent work can use information 2825 * potentially stored in the node (e.g. for ibss merge). 2826 */ 2827 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2828 switch (subtype) { 2829 case IEEE80211_FC0_SUBTYPE_BEACON: 2830 /* update rssi statistics for use by the hal */ 2831 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2832 if (sc->sc_syncbeacon && 2833 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2834 /* 2835 * Resync beacon timers using the tsf of the beacon 2836 * frame we just received. 2837 */ 2838 ath_beacon_config(sc); 2839 } 2840 /* fall thru... */ 2841 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2842 if (ic->ic_opmode == IEEE80211_M_IBSS && 2843 ic->ic_state == IEEE80211_S_RUN) { 2844 u_int64_t tsf = ath_extend_tsf(rstamp, 2845 ath_hal_gettsf64(sc->sc_ah)); 2846 2847 /* 2848 * Handle ibss merge as needed; check the tsf on the 2849 * frame before attempting the merge. The 802.11 spec 2850 * says the station should change it's bssid to match 2851 * the oldest station with the same ssid, where oldest 2852 * is determined by the tsf. Note that hardware 2853 * reconfiguration happens through callback to 2854 * ath_newstate as the state machine will go from 2855 * RUN -> RUN when this happens. 2856 */ 2857 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2858 DPRINTF(sc, ATH_DEBUG_STATE, 2859 "ibss merge, rstamp %u tsf %ju " 2860 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2861 (uintmax_t)ni->ni_tstamp.tsf); 2862 (void) ieee80211_ibss_merge(ni); 2863 } 2864 } 2865 break; 2866 } 2867 } 2868 2869 /* 2870 * Set the default antenna. 2871 */ 2872 static void 2873 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2874 { 2875 struct ath_hal *ah = sc->sc_ah; 2876 2877 /* XXX block beacon interrupts */ 2878 ath_hal_setdefantenna(ah, antenna); 2879 if (sc->sc_defant != antenna) 2880 sc->sc_stats.ast_ant_defswitch++; 2881 sc->sc_defant = antenna; 2882 sc->sc_rxotherant = 0; 2883 } 2884 2885 static void 2886 ath_rx_proc(void *arg, int npending) 2887 { 2888 #define PA2DESC(_sc, _pa) \ 2889 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 2890 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2891 struct ath_softc *sc = arg; 2892 struct ath_buf *bf; 2893 struct ieee80211com *ic = &sc->sc_ic; 2894 struct ifnet *ifp = &sc->sc_if; 2895 struct ath_hal *ah = sc->sc_ah; 2896 struct ath_desc *ds; 2897 struct mbuf *m; 2898 struct ieee80211_node *ni; 2899 struct ath_node *an; 2900 int len, type, ngood; 2901 u_int phyerr; 2902 HAL_STATUS status; 2903 int16_t nf; 2904 u_int64_t tsf; 2905 2906 NET_LOCK_GIANT(); /* XXX */ 2907 2908 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 2909 ngood = 0; 2910 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 2911 tsf = ath_hal_gettsf64(ah); 2912 do { 2913 bf = STAILQ_FIRST(&sc->sc_rxbuf); 2914 if (bf == NULL) { /* NB: shouldn't happen */ 2915 if_printf(ifp, "%s: no buffer!\n", __func__); 2916 break; 2917 } 2918 ds = bf->bf_desc; 2919 if (ds->ds_link == bf->bf_daddr) { 2920 /* NB: never process the self-linked entry at the end */ 2921 break; 2922 } 2923 m = bf->bf_m; 2924 if (m == NULL) { /* NB: shouldn't happen */ 2925 if_printf(ifp, "%s: no mbuf!\n", __func__); 2926 break; 2927 } 2928 /* XXX sync descriptor memory */ 2929 /* 2930 * Must provide the virtual address of the current 2931 * descriptor, the physical address, and the virtual 2932 * address of the next descriptor in the h/w chain. 2933 * This allows the HAL to look ahead to see if the 2934 * hardware is done with a descriptor by checking the 2935 * done bit in the following descriptor and the address 2936 * of the current descriptor the DMA engine is working 2937 * on. All this is necessary because of our use of 2938 * a self-linked list to avoid rx overruns. 2939 */ 2940 status = ath_hal_rxprocdesc(ah, ds, 2941 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2942 #ifdef AR_DEBUG 2943 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 2944 ath_printrxbuf(bf, status == HAL_OK); 2945 #endif 2946 if (status == HAL_EINPROGRESS) 2947 break; 2948 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 2949 if (ds->ds_rxstat.rs_more) { 2950 /* 2951 * Frame spans multiple descriptors; this 2952 * cannot happen yet as we don't support 2953 * jumbograms. If not in monitor mode, 2954 * discard the frame. 2955 */ 2956 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2957 sc->sc_stats.ast_rx_toobig++; 2958 goto rx_next; 2959 } 2960 /* fall thru for monitor mode handling... */ 2961 } else if (ds->ds_rxstat.rs_status != 0) { 2962 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2963 sc->sc_stats.ast_rx_crcerr++; 2964 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2965 sc->sc_stats.ast_rx_fifoerr++; 2966 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2967 sc->sc_stats.ast_rx_phyerr++; 2968 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2969 sc->sc_stats.ast_rx_phy[phyerr]++; 2970 goto rx_next; 2971 } 2972 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 2973 /* 2974 * Decrypt error. If the error occurred 2975 * because there was no hardware key, then 2976 * let the frame through so the upper layers 2977 * can process it. This is necessary for 5210 2978 * parts which have no way to setup a ``clear'' 2979 * key cache entry. 2980 * 2981 * XXX do key cache faulting 2982 */ 2983 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 2984 goto rx_accept; 2985 sc->sc_stats.ast_rx_badcrypt++; 2986 } 2987 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 2988 sc->sc_stats.ast_rx_badmic++; 2989 /* 2990 * Do minimal work required to hand off 2991 * the 802.11 header for notifcation. 2992 */ 2993 /* XXX frag's and qos frames */ 2994 len = ds->ds_rxstat.rs_datalen; 2995 if (len >= sizeof (struct ieee80211_frame)) { 2996 bus_dmamap_sync(sc->sc_dmat, 2997 bf->bf_dmamap, 2998 0, bf->bf_dmamap->dm_mapsize, 2999 BUS_DMASYNC_POSTREAD); 3000 ieee80211_notify_michael_failure(ic, 3001 mtod(m, struct ieee80211_frame *), 3002 sc->sc_splitmic ? 3003 ds->ds_rxstat.rs_keyix-32 : 3004 ds->ds_rxstat.rs_keyix 3005 ); 3006 } 3007 } 3008 ifp->if_ierrors++; 3009 /* 3010 * Reject error frames, we normally don't want 3011 * to see them in monitor mode (in monitor mode 3012 * allow through packets that have crypto problems). 3013 */ 3014 if ((ds->ds_rxstat.rs_status &~ 3015 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) || 3016 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 3017 goto rx_next; 3018 } 3019 rx_accept: 3020 /* 3021 * Sync and unmap the frame. At this point we're 3022 * committed to passing the mbuf somewhere so clear 3023 * bf_m; this means a new sk_buff must be allocated 3024 * when the rx descriptor is setup again to receive 3025 * another frame. 3026 */ 3027 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3028 0, bf->bf_dmamap->dm_mapsize, 3029 BUS_DMASYNC_POSTREAD); 3030 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3031 bf->bf_m = NULL; 3032 3033 m->m_pkthdr.rcvif = ifp; 3034 len = ds->ds_rxstat.rs_datalen; 3035 m->m_pkthdr.len = m->m_len = len; 3036 3037 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 3038 3039 #if NBPFILTER > 0 3040 if (sc->sc_drvbpf) { 3041 u_int8_t rix; 3042 3043 /* 3044 * Discard anything shorter than an ack or cts. 3045 */ 3046 if (len < IEEE80211_ACK_LEN) { 3047 DPRINTF(sc, ATH_DEBUG_RECV, 3048 "%s: runt packet %d\n", 3049 __func__, len); 3050 sc->sc_stats.ast_rx_tooshort++; 3051 m_freem(m); 3052 goto rx_next; 3053 } 3054 rix = ds->ds_rxstat.rs_rate; 3055 sc->sc_rx_th.wr_tsf = htole64( 3056 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 3057 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3058 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3059 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 3060 sc->sc_rx_th.wr_antnoise = nf; 3061 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 3062 3063 bpf_mtap2(sc->sc_drvbpf, 3064 &sc->sc_rx_th, sc->sc_rx_th_len, m); 3065 } 3066 #endif 3067 3068 /* 3069 * From this point on we assume the frame is at least 3070 * as large as ieee80211_frame_min; verify that. 3071 */ 3072 if (len < IEEE80211_MIN_LEN) { 3073 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3074 __func__, len); 3075 sc->sc_stats.ast_rx_tooshort++; 3076 m_freem(m); 3077 goto rx_next; 3078 } 3079 3080 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3081 ieee80211_dump_pkt(mtod(m, caddr_t), len, 3082 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3083 ds->ds_rxstat.rs_rssi); 3084 } 3085 3086 m_adj(m, -IEEE80211_CRC_LEN); 3087 3088 /* 3089 * Locate the node for sender, track state, and then 3090 * pass the (referenced) node up to the 802.11 layer 3091 * for its use. 3092 */ 3093 ni = ieee80211_find_rxnode_withkey(ic, 3094 mtod(m, const struct ieee80211_frame_min *), 3095 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3096 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3097 /* 3098 * Track rx rssi and do any rx antenna management. 3099 */ 3100 an = ATH_NODE(ni); 3101 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3102 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3103 /* 3104 * Send frame up for processing. 3105 */ 3106 type = ieee80211_input(ic, m, ni, 3107 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3108 ieee80211_free_node(ni); 3109 if (sc->sc_diversity) { 3110 /* 3111 * When using fast diversity, change the default rx 3112 * antenna if diversity chooses the other antenna 3 3113 * times in a row. 3114 */ 3115 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3116 if (++sc->sc_rxotherant >= 3) 3117 ath_setdefantenna(sc, 3118 ds->ds_rxstat.rs_antenna); 3119 } else 3120 sc->sc_rxotherant = 0; 3121 } 3122 if (sc->sc_softled) { 3123 /* 3124 * Blink for any data frame. Otherwise do a 3125 * heartbeat-style blink when idle. The latter 3126 * is mainly for station mode where we depend on 3127 * periodic beacon frames to trigger the poll event. 3128 */ 3129 if (type == IEEE80211_FC0_TYPE_DATA) { 3130 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3131 ath_led_event(sc, ATH_LED_RX); 3132 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3133 ath_led_event(sc, ATH_LED_POLL); 3134 } 3135 /* 3136 * Arrange to update the last rx timestamp only for 3137 * frames from our ap when operating in station mode. 3138 * This assumes the rx key is always setup when associated. 3139 */ 3140 if (ic->ic_opmode == IEEE80211_M_STA && 3141 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3142 ngood++; 3143 rx_next: 3144 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3145 } while (ath_rxbuf_init(sc, bf) == 0); 3146 3147 /* rx signal state monitoring */ 3148 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3149 if (ath_hal_radar_event(ah)) 3150 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask); 3151 if (ngood) 3152 sc->sc_lastrx = tsf; 3153 3154 #ifdef __NetBSD__ 3155 /* XXX Why isn't this necessary in FreeBSD? */ 3156 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3157 ath_start(ifp); 3158 #endif /* __NetBSD__ */ 3159 3160 NET_UNLOCK_GIANT(); /* XXX */ 3161 #undef PA2DESC 3162 } 3163 3164 /* 3165 * Setup a h/w transmit queue. 3166 */ 3167 static struct ath_txq * 3168 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3169 { 3170 #define N(a) (sizeof(a)/sizeof(a[0])) 3171 struct ath_hal *ah = sc->sc_ah; 3172 HAL_TXQ_INFO qi; 3173 int qnum; 3174 3175 memset(&qi, 0, sizeof(qi)); 3176 qi.tqi_subtype = subtype; 3177 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3178 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3179 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3180 /* 3181 * Enable interrupts only for EOL and DESC conditions. 3182 * We mark tx descriptors to receive a DESC interrupt 3183 * when a tx queue gets deep; otherwise waiting for the 3184 * EOL to reap descriptors. Note that this is done to 3185 * reduce interrupt load and this only defers reaping 3186 * descriptors, never transmitting frames. Aside from 3187 * reducing interrupts this also permits more concurrency. 3188 * The only potential downside is if the tx queue backs 3189 * up in which case the top half of the kernel may backup 3190 * due to a lack of tx descriptors. 3191 */ 3192 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3193 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3194 if (qnum == -1) { 3195 /* 3196 * NB: don't print a message, this happens 3197 * normally on parts with too few tx queues 3198 */ 3199 return NULL; 3200 } 3201 if (qnum >= N(sc->sc_txq)) { 3202 device_printf(sc->sc_dev, 3203 "hal qnum %u out of range, max %zu!\n", 3204 qnum, N(sc->sc_txq)); 3205 ath_hal_releasetxqueue(ah, qnum); 3206 return NULL; 3207 } 3208 if (!ATH_TXQ_SETUP(sc, qnum)) { 3209 struct ath_txq *txq = &sc->sc_txq[qnum]; 3210 3211 txq->axq_qnum = qnum; 3212 txq->axq_depth = 0; 3213 txq->axq_intrcnt = 0; 3214 txq->axq_link = NULL; 3215 STAILQ_INIT(&txq->axq_q); 3216 ATH_TXQ_LOCK_INIT(sc, txq); 3217 sc->sc_txqsetup |= 1<<qnum; 3218 } 3219 return &sc->sc_txq[qnum]; 3220 #undef N 3221 } 3222 3223 /* 3224 * Setup a hardware data transmit queue for the specified 3225 * access control. The hal may not support all requested 3226 * queues in which case it will return a reference to a 3227 * previously setup queue. We record the mapping from ac's 3228 * to h/w queues for use by ath_tx_start and also track 3229 * the set of h/w queues being used to optimize work in the 3230 * transmit interrupt handler and related routines. 3231 */ 3232 static int 3233 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3234 { 3235 #define N(a) (sizeof(a)/sizeof(a[0])) 3236 struct ath_txq *txq; 3237 3238 if (ac >= N(sc->sc_ac2q)) { 3239 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3240 ac, N(sc->sc_ac2q)); 3241 return 0; 3242 } 3243 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3244 if (txq != NULL) { 3245 sc->sc_ac2q[ac] = txq; 3246 return 1; 3247 } else 3248 return 0; 3249 #undef N 3250 } 3251 3252 /* 3253 * Update WME parameters for a transmit queue. 3254 */ 3255 static int 3256 ath_txq_update(struct ath_softc *sc, int ac) 3257 { 3258 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3259 #define ATH_TXOP_TO_US(v) (v<<5) 3260 struct ieee80211com *ic = &sc->sc_ic; 3261 struct ath_txq *txq = sc->sc_ac2q[ac]; 3262 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3263 struct ath_hal *ah = sc->sc_ah; 3264 HAL_TXQ_INFO qi; 3265 3266 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3267 qi.tqi_aifs = wmep->wmep_aifsn; 3268 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3269 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3270 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3271 3272 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3273 device_printf(sc->sc_dev, "unable to update hardware queue " 3274 "parameters for %s traffic!\n", 3275 ieee80211_wme_acnames[ac]); 3276 return 0; 3277 } else { 3278 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3279 return 1; 3280 } 3281 #undef ATH_TXOP_TO_US 3282 #undef ATH_EXPONENT_TO_VALUE 3283 } 3284 3285 /* 3286 * Callback from the 802.11 layer to update WME parameters. 3287 */ 3288 static int 3289 ath_wme_update(struct ieee80211com *ic) 3290 { 3291 struct ath_softc *sc = ic->ic_ifp->if_softc; 3292 3293 return !ath_txq_update(sc, WME_AC_BE) || 3294 !ath_txq_update(sc, WME_AC_BK) || 3295 !ath_txq_update(sc, WME_AC_VI) || 3296 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3297 } 3298 3299 /* 3300 * Reclaim resources for a setup queue. 3301 */ 3302 static void 3303 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3304 { 3305 3306 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3307 ATH_TXQ_LOCK_DESTROY(txq); 3308 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3309 } 3310 3311 /* 3312 * Reclaim all tx queue resources. 3313 */ 3314 static void 3315 ath_tx_cleanup(struct ath_softc *sc) 3316 { 3317 int i; 3318 3319 ATH_TXBUF_LOCK_DESTROY(sc); 3320 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3321 if (ATH_TXQ_SETUP(sc, i)) 3322 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3323 } 3324 3325 /* 3326 * Defragment an mbuf chain, returning at most maxfrags separate 3327 * mbufs+clusters. If this is not possible NULL is returned and 3328 * the original mbuf chain is left in it's present (potentially 3329 * modified) state. We use two techniques: collapsing consecutive 3330 * mbufs and replacing consecutive mbufs by a cluster. 3331 */ 3332 static struct mbuf * 3333 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3334 { 3335 struct mbuf *m, *n, *n2, **prev; 3336 u_int curfrags; 3337 3338 /* 3339 * Calculate the current number of frags. 3340 */ 3341 curfrags = 0; 3342 for (m = m0; m != NULL; m = m->m_next) 3343 curfrags++; 3344 /* 3345 * First, try to collapse mbufs. Note that we always collapse 3346 * towards the front so we don't need to deal with moving the 3347 * pkthdr. This may be suboptimal if the first mbuf has much 3348 * less data than the following. 3349 */ 3350 m = m0; 3351 again: 3352 for (;;) { 3353 n = m->m_next; 3354 if (n == NULL) 3355 break; 3356 if ((m->m_flags & M_RDONLY) == 0 && 3357 n->m_len < M_TRAILINGSPACE(m)) { 3358 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 3359 n->m_len); 3360 m->m_len += n->m_len; 3361 m->m_next = n->m_next; 3362 m_free(n); 3363 if (--curfrags <= maxfrags) 3364 return m0; 3365 } else 3366 m = n; 3367 } 3368 KASSERT(maxfrags > 1, 3369 ("maxfrags %u, but normal collapse failed", maxfrags)); 3370 /* 3371 * Collapse consecutive mbufs to a cluster. 3372 */ 3373 prev = &m0->m_next; /* NB: not the first mbuf */ 3374 while ((n = *prev) != NULL) { 3375 if ((n2 = n->m_next) != NULL && 3376 n->m_len + n2->m_len < MCLBYTES) { 3377 m = m_getcl(how, MT_DATA, 0); 3378 if (m == NULL) 3379 goto bad; 3380 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3381 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3382 n2->m_len); 3383 m->m_len = n->m_len + n2->m_len; 3384 m->m_next = n2->m_next; 3385 *prev = m; 3386 m_free(n); 3387 m_free(n2); 3388 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3389 return m0; 3390 /* 3391 * Still not there, try the normal collapse 3392 * again before we allocate another cluster. 3393 */ 3394 goto again; 3395 } 3396 prev = &n->m_next; 3397 } 3398 /* 3399 * No place where we can collapse to a cluster; punt. 3400 * This can occur if, for example, you request 2 frags 3401 * but the packet requires that both be clusters (we 3402 * never reallocate the first mbuf to avoid moving the 3403 * packet header). 3404 */ 3405 bad: 3406 return NULL; 3407 } 3408 3409 /* 3410 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3411 */ 3412 static int 3413 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3414 { 3415 int i; 3416 3417 for (i = 0; i < rt->rateCount; i++) 3418 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3419 return i; 3420 return 0; /* NB: lowest rate */ 3421 } 3422 3423 static int 3424 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3425 struct mbuf *m0) 3426 { 3427 struct ieee80211com *ic = &sc->sc_ic; 3428 struct ath_hal *ah = sc->sc_ah; 3429 struct ifnet *ifp = &sc->sc_if; 3430 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3431 int i, error, iswep, ismcast, ismrr; 3432 int keyix, hdrlen, pktlen, try0; 3433 u_int8_t rix, txrate, ctsrate; 3434 u_int8_t cix = 0xff; /* NB: silence compiler */ 3435 struct ath_desc *ds, *ds0; 3436 struct ath_txq *txq; 3437 struct ieee80211_frame *wh; 3438 u_int subtype, flags, ctsduration; 3439 HAL_PKT_TYPE atype; 3440 const HAL_RATE_TABLE *rt; 3441 HAL_BOOL shortPreamble; 3442 struct ath_node *an; 3443 struct mbuf *m; 3444 u_int pri; 3445 3446 wh = mtod(m0, struct ieee80211_frame *); 3447 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3448 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3449 hdrlen = ieee80211_anyhdrsize(wh); 3450 /* 3451 * Packet length must not include any 3452 * pad bytes; deduct them here. 3453 */ 3454 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 3455 3456 if (iswep) { 3457 const struct ieee80211_cipher *cip; 3458 struct ieee80211_key *k; 3459 3460 /* 3461 * Construct the 802.11 header+trailer for an encrypted 3462 * frame. The only reason this can fail is because of an 3463 * unknown or unsupported cipher/key type. 3464 */ 3465 k = ieee80211_crypto_encap(ic, ni, m0); 3466 if (k == NULL) { 3467 /* 3468 * This can happen when the key is yanked after the 3469 * frame was queued. Just discard the frame; the 3470 * 802.11 layer counts failures and provides 3471 * debugging/diagnostics. 3472 */ 3473 m_freem(m0); 3474 return EIO; 3475 } 3476 /* 3477 * Adjust the packet + header lengths for the crypto 3478 * additions and calculate the h/w key index. When 3479 * a s/w mic is done the frame will have had any mic 3480 * added to it prior to entry so skb->len above will 3481 * account for it. Otherwise we need to add it to the 3482 * packet length. 3483 */ 3484 cip = k->wk_cipher; 3485 hdrlen += cip->ic_header; 3486 pktlen += cip->ic_header + cip->ic_trailer; 3487 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0) 3488 pktlen += cip->ic_miclen; 3489 keyix = k->wk_keyix; 3490 3491 /* packet header may have moved, reset our local pointer */ 3492 wh = mtod(m0, struct ieee80211_frame *); 3493 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3494 /* 3495 * Use station key cache slot, if assigned. 3496 */ 3497 keyix = ni->ni_ucastkey.wk_keyix; 3498 if (keyix == IEEE80211_KEYIX_NONE) 3499 keyix = HAL_TXKEYIX_INVALID; 3500 } else 3501 keyix = HAL_TXKEYIX_INVALID; 3502 3503 pktlen += IEEE80211_CRC_LEN; 3504 3505 /* 3506 * Load the DMA map so any coalescing is done. This 3507 * also calculates the number of descriptors we need. 3508 */ 3509 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3510 BUS_DMA_NOWAIT); 3511 if (error == EFBIG) { 3512 /* XXX packet requires too many descriptors */ 3513 bf->bf_nseg = ATH_TXDESC+1; 3514 } else if (error != 0) { 3515 sc->sc_stats.ast_tx_busdma++; 3516 m_freem(m0); 3517 return error; 3518 } 3519 /* 3520 * Discard null packets and check for packets that 3521 * require too many TX descriptors. We try to convert 3522 * the latter to a cluster. 3523 */ 3524 if (error == EFBIG) { /* too many desc's, linearize */ 3525 sc->sc_stats.ast_tx_linear++; 3526 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3527 if (m == NULL) { 3528 m_freem(m0); 3529 sc->sc_stats.ast_tx_nombuf++; 3530 return ENOMEM; 3531 } 3532 m0 = m; 3533 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3534 BUS_DMA_NOWAIT); 3535 if (error != 0) { 3536 sc->sc_stats.ast_tx_busdma++; 3537 m_freem(m0); 3538 return error; 3539 } 3540 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3541 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3542 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3543 sc->sc_stats.ast_tx_nodata++; 3544 m_freem(m0); 3545 return EIO; 3546 } 3547 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3548 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3549 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3550 bf->bf_m = m0; 3551 bf->bf_node = ni; /* NB: held reference */ 3552 3553 /* setup descriptors */ 3554 ds = bf->bf_desc; 3555 rt = sc->sc_currates; 3556 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3557 3558 /* 3559 * NB: the 802.11 layer marks whether or not we should 3560 * use short preamble based on the current mode and 3561 * negotiated parameters. 3562 */ 3563 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3564 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3565 shortPreamble = AH_TRUE; 3566 sc->sc_stats.ast_tx_shortpre++; 3567 } else { 3568 shortPreamble = AH_FALSE; 3569 } 3570 3571 an = ATH_NODE(ni); 3572 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3573 ismrr = 0; /* default no multi-rate retry*/ 3574 /* 3575 * Calculate Atheros packet type from IEEE80211 packet header, 3576 * setup for rate calculations, and select h/w transmit queue. 3577 */ 3578 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3579 case IEEE80211_FC0_TYPE_MGT: 3580 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3581 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3582 atype = HAL_PKT_TYPE_BEACON; 3583 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3584 atype = HAL_PKT_TYPE_PROBE_RESP; 3585 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3586 atype = HAL_PKT_TYPE_ATIM; 3587 else 3588 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3589 rix = sc->sc_minrateix; 3590 txrate = rt->info[rix].rateCode; 3591 if (shortPreamble) 3592 txrate |= rt->info[rix].shortPreamble; 3593 try0 = ATH_TXMGTTRY; 3594 /* NB: force all management frames to highest queue */ 3595 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3596 /* NB: force all management frames to highest queue */ 3597 pri = WME_AC_VO; 3598 } else 3599 pri = WME_AC_BE; 3600 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3601 break; 3602 case IEEE80211_FC0_TYPE_CTL: 3603 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3604 rix = sc->sc_minrateix; 3605 txrate = rt->info[rix].rateCode; 3606 if (shortPreamble) 3607 txrate |= rt->info[rix].shortPreamble; 3608 try0 = ATH_TXMGTTRY; 3609 /* NB: force all ctl frames to highest queue */ 3610 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3611 /* NB: force all ctl frames to highest queue */ 3612 pri = WME_AC_VO; 3613 } else 3614 pri = WME_AC_BE; 3615 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3616 break; 3617 case IEEE80211_FC0_TYPE_DATA: 3618 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3619 /* 3620 * Data frames: multicast frames go out at a fixed rate, 3621 * otherwise consult the rate control module for the 3622 * rate to use. 3623 */ 3624 if (ismcast) { 3625 /* 3626 * Check mcast rate setting in case it's changed. 3627 * XXX move out of fastpath 3628 */ 3629 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3630 sc->sc_mcastrix = 3631 ath_tx_findrix(rt, ic->ic_mcast_rate); 3632 sc->sc_mcastrate = ic->ic_mcast_rate; 3633 } 3634 rix = sc->sc_mcastrix; 3635 txrate = rt->info[rix].rateCode; 3636 try0 = 1; 3637 } else { 3638 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3639 &rix, &try0, &txrate); 3640 sc->sc_txrate = txrate; /* for LED blinking */ 3641 if (try0 != ATH_TXMAXTRY) 3642 ismrr = 1; 3643 } 3644 pri = M_WME_GETAC(m0); 3645 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3646 flags |= HAL_TXDESC_NOACK; 3647 break; 3648 default: 3649 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3650 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3651 /* XXX statistic */ 3652 m_freem(m0); 3653 return EIO; 3654 } 3655 txq = sc->sc_ac2q[pri]; 3656 3657 /* 3658 * When servicing one or more stations in power-save mode 3659 * multicast frames must be buffered until after the beacon. 3660 * We use the CAB queue for that. 3661 */ 3662 if (ismcast && ic->ic_ps_sta) { 3663 txq = sc->sc_cabq; 3664 /* XXX? more bit in 802.11 frame header */ 3665 } 3666 3667 /* 3668 * Calculate miscellaneous flags. 3669 */ 3670 if (ismcast) { 3671 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3672 } else if (pktlen > ic->ic_rtsthreshold) { 3673 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3674 cix = rt->info[rix].controlRate; 3675 sc->sc_stats.ast_tx_rts++; 3676 } 3677 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3678 sc->sc_stats.ast_tx_noack++; 3679 3680 /* 3681 * If 802.11g protection is enabled, determine whether 3682 * to use RTS/CTS or just CTS. Note that this is only 3683 * done for OFDM unicast frames. 3684 */ 3685 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3686 rt->info[rix].phy == IEEE80211_T_OFDM && 3687 (flags & HAL_TXDESC_NOACK) == 0) { 3688 /* XXX fragments must use CCK rates w/ protection */ 3689 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3690 flags |= HAL_TXDESC_RTSENA; 3691 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3692 flags |= HAL_TXDESC_CTSENA; 3693 cix = rt->info[sc->sc_protrix].controlRate; 3694 sc->sc_stats.ast_tx_protect++; 3695 } 3696 3697 /* 3698 * Calculate duration. This logically belongs in the 802.11 3699 * layer but it lacks sufficient information to calculate it. 3700 */ 3701 if ((flags & HAL_TXDESC_NOACK) == 0 && 3702 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3703 u_int16_t dur; 3704 /* 3705 * XXX not right with fragmentation. 3706 */ 3707 if (shortPreamble) 3708 dur = rt->info[rix].spAckDuration; 3709 else 3710 dur = rt->info[rix].lpAckDuration; 3711 *(u_int16_t *)wh->i_dur = htole16(dur); 3712 } 3713 3714 /* 3715 * Calculate RTS/CTS rate and duration if needed. 3716 */ 3717 ctsduration = 0; 3718 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3719 /* 3720 * CTS transmit rate is derived from the transmit rate 3721 * by looking in the h/w rate table. We must also factor 3722 * in whether or not a short preamble is to be used. 3723 */ 3724 /* NB: cix is set above where RTS/CTS is enabled */ 3725 KASSERT(cix != 0xff, ("cix not setup")); 3726 ctsrate = rt->info[cix].rateCode; 3727 /* 3728 * Compute the transmit duration based on the frame 3729 * size and the size of an ACK frame. We call into the 3730 * HAL to do the computation since it depends on the 3731 * characteristics of the actual PHY being used. 3732 * 3733 * NB: CTS is assumed the same size as an ACK so we can 3734 * use the precalculated ACK durations. 3735 */ 3736 if (shortPreamble) { 3737 ctsrate |= rt->info[cix].shortPreamble; 3738 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3739 ctsduration += rt->info[cix].spAckDuration; 3740 ctsduration += ath_hal_computetxtime(ah, 3741 rt, pktlen, rix, AH_TRUE); 3742 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3743 ctsduration += rt->info[rix].spAckDuration; 3744 } else { 3745 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3746 ctsduration += rt->info[cix].lpAckDuration; 3747 ctsduration += ath_hal_computetxtime(ah, 3748 rt, pktlen, rix, AH_FALSE); 3749 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3750 ctsduration += rt->info[rix].lpAckDuration; 3751 } 3752 /* 3753 * Must disable multi-rate retry when using RTS/CTS. 3754 */ 3755 ismrr = 0; 3756 try0 = ATH_TXMGTTRY; /* XXX */ 3757 } else 3758 ctsrate = 0; 3759 3760 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3761 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len, 3762 sc->sc_hwmap[txrate].ieeerate, -1); 3763 #if NBPFILTER > 0 3764 if (ic->ic_rawbpf) 3765 bpf_mtap(ic->ic_rawbpf, m0); 3766 if (sc->sc_drvbpf) { 3767 u_int64_t tsf = ath_hal_gettsf64(ah); 3768 3769 sc->sc_tx_th.wt_tsf = htole64(tsf); 3770 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3771 if (iswep) 3772 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3773 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3774 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3775 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3776 3777 bpf_mtap2(sc->sc_drvbpf, 3778 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3779 } 3780 #endif 3781 3782 /* 3783 * Determine if a tx interrupt should be generated for 3784 * this descriptor. We take a tx interrupt to reap 3785 * descriptors when the h/w hits an EOL condition or 3786 * when the descriptor is specifically marked to generate 3787 * an interrupt. We periodically mark descriptors in this 3788 * way to insure timely replenishing of the supply needed 3789 * for sending frames. Defering interrupts reduces system 3790 * load and potentially allows more concurrent work to be 3791 * done but if done to aggressively can cause senders to 3792 * backup. 3793 * 3794 * NB: use >= to deal with sc_txintrperiod changing 3795 * dynamically through sysctl. 3796 */ 3797 if (flags & HAL_TXDESC_INTREQ) { 3798 txq->axq_intrcnt = 0; 3799 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3800 flags |= HAL_TXDESC_INTREQ; 3801 txq->axq_intrcnt = 0; 3802 } 3803 3804 /* 3805 * Formulate first tx descriptor with tx controls. 3806 */ 3807 /* XXX check return value? */ 3808 ath_hal_setuptxdesc(ah, ds 3809 , pktlen /* packet length */ 3810 , hdrlen /* header length */ 3811 , atype /* Atheros packet type */ 3812 , ni->ni_txpower /* txpower */ 3813 , txrate, try0 /* series 0 rate/tries */ 3814 , keyix /* key cache index */ 3815 , sc->sc_txantenna /* antenna mode */ 3816 , flags /* flags */ 3817 , ctsrate /* rts/cts rate */ 3818 , ctsduration /* rts/cts duration */ 3819 ); 3820 bf->bf_flags = flags; 3821 /* 3822 * Setup the multi-rate retry state only when we're 3823 * going to use it. This assumes ath_hal_setuptxdesc 3824 * initializes the descriptors (so we don't have to) 3825 * when the hardware supports multi-rate retry and 3826 * we don't use it. 3827 */ 3828 if (ismrr) 3829 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 3830 3831 /* 3832 * Fillin the remainder of the descriptor info. 3833 */ 3834 ds0 = ds; 3835 for (i = 0; i < bf->bf_nseg; i++, ds++) { 3836 ds->ds_data = bf->bf_segs[i].ds_addr; 3837 if (i == bf->bf_nseg - 1) 3838 ds->ds_link = 0; 3839 else 3840 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 3841 ath_hal_filltxdesc(ah, ds 3842 , bf->bf_segs[i].ds_len /* segment length */ 3843 , i == 0 /* first segment */ 3844 , i == bf->bf_nseg - 1 /* last segment */ 3845 , ds0 /* first descriptor */ 3846 ); 3847 3848 /* NB: The desc swap function becomes void, 3849 * if descriptor swapping is not enabled 3850 */ 3851 ath_desc_swap(ds); 3852 3853 DPRINTF(sc, ATH_DEBUG_XMIT, 3854 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 3855 __func__, i, ds->ds_link, ds->ds_data, 3856 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 3857 } 3858 /* 3859 * Insert the frame on the outbound list and 3860 * pass it on to the hardware. 3861 */ 3862 ATH_TXQ_LOCK(txq); 3863 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 3864 if (txq->axq_link == NULL) { 3865 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 3866 DPRINTF(sc, ATH_DEBUG_XMIT, 3867 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__, 3868 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc, 3869 txq->axq_depth); 3870 } else { 3871 *txq->axq_link = HTOAH32(bf->bf_daddr); 3872 DPRINTF(sc, ATH_DEBUG_XMIT, 3873 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n", 3874 __func__, txq->axq_qnum, txq->axq_link, 3875 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 3876 } 3877 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 3878 /* 3879 * The CAB queue is started from the SWBA handler since 3880 * frames only go out on DTIM and to avoid possible races. 3881 */ 3882 if (txq != sc->sc_cabq) 3883 ath_hal_txstart(ah, txq->axq_qnum); 3884 ATH_TXQ_UNLOCK(txq); 3885 3886 return 0; 3887 } 3888 3889 /* 3890 * Process completed xmit descriptors from the specified queue. 3891 */ 3892 static int 3893 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 3894 { 3895 struct ath_hal *ah = sc->sc_ah; 3896 struct ieee80211com *ic = &sc->sc_ic; 3897 struct ath_buf *bf; 3898 struct ath_desc *ds, *ds0; 3899 struct ieee80211_node *ni; 3900 struct ath_node *an; 3901 int sr, lr, pri, nacked; 3902 HAL_STATUS status; 3903 3904 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3905 __func__, txq->axq_qnum, 3906 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3907 txq->axq_link); 3908 nacked = 0; 3909 for (;;) { 3910 ATH_TXQ_LOCK(txq); 3911 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3912 bf = STAILQ_FIRST(&txq->axq_q); 3913 if (bf == NULL) { 3914 txq->axq_link = NULL; 3915 ATH_TXQ_UNLOCK(txq); 3916 break; 3917 } 3918 ds0 = &bf->bf_desc[0]; 3919 ds = &bf->bf_desc[bf->bf_nseg - 1]; 3920 status = ath_hal_txprocdesc(ah, ds); 3921 #ifdef AR_DEBUG 3922 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3923 ath_printtxbuf(bf, status == HAL_OK); 3924 #endif 3925 if (status == HAL_EINPROGRESS) { 3926 ATH_TXQ_UNLOCK(txq); 3927 break; 3928 } 3929 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3930 ATH_TXQ_UNLOCK(txq); 3931 3932 ni = bf->bf_node; 3933 if (ni != NULL) { 3934 an = ATH_NODE(ni); 3935 if (ds->ds_txstat.ts_status == 0) { 3936 u_int8_t txant = ds->ds_txstat.ts_antenna; 3937 sc->sc_stats.ast_ant_tx[txant]++; 3938 sc->sc_ant_tx[txant]++; 3939 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 3940 sc->sc_stats.ast_tx_altrate++; 3941 sc->sc_stats.ast_tx_rssi = 3942 ds->ds_txstat.ts_rssi; 3943 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3944 ds->ds_txstat.ts_rssi); 3945 pri = M_WME_GETAC(bf->bf_m); 3946 if (pri >= WME_AC_VO) 3947 ic->ic_wme.wme_hipri_traffic++; 3948 ni->ni_inact = ni->ni_inact_reload; 3949 } else { 3950 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 3951 sc->sc_stats.ast_tx_xretries++; 3952 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 3953 sc->sc_stats.ast_tx_fifoerr++; 3954 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 3955 sc->sc_stats.ast_tx_filtered++; 3956 } 3957 sr = ds->ds_txstat.ts_shortretry; 3958 lr = ds->ds_txstat.ts_longretry; 3959 sc->sc_stats.ast_tx_shortretry += sr; 3960 sc->sc_stats.ast_tx_longretry += lr; 3961 /* 3962 * Hand the descriptor to the rate control algorithm. 3963 */ 3964 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 3965 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 3966 /* 3967 * If frame was ack'd update the last rx time 3968 * used to workaround phantom bmiss interrupts. 3969 */ 3970 if (ds->ds_txstat.ts_status == 0) 3971 nacked++; 3972 ath_rate_tx_complete(sc, an, ds, ds0); 3973 } 3974 /* 3975 * Reclaim reference to node. 3976 * 3977 * NB: the node may be reclaimed here if, for example 3978 * this is a DEAUTH message that was sent and the 3979 * node was timed out due to inactivity. 3980 */ 3981 ieee80211_free_node(ni); 3982 } 3983 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3984 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 3985 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3986 m_freem(bf->bf_m); 3987 bf->bf_m = NULL; 3988 bf->bf_node = NULL; 3989 3990 ATH_TXBUF_LOCK(sc); 3991 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3992 ATH_TXBUF_UNLOCK(sc); 3993 } 3994 return nacked; 3995 } 3996 3997 static inline int 3998 txqactive(struct ath_hal *ah, int qnum) 3999 { 4000 u_int32_t txqs = 1<<qnum; 4001 ath_hal_gettxintrtxqs(ah, &txqs); 4002 return (txqs & (1<<qnum)); 4003 } 4004 4005 /* 4006 * Deferred processing of transmit interrupt; special-cased 4007 * for a single hardware transmit queue (e.g. 5210 and 5211). 4008 */ 4009 static void 4010 ath_tx_proc_q0(void *arg, int npending) 4011 { 4012 struct ath_softc *sc = arg; 4013 struct ifnet *ifp = &sc->sc_if; 4014 4015 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0])) 4016 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4017 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4018 ath_tx_processq(sc, sc->sc_cabq); 4019 ifp->if_flags &= ~IFF_OACTIVE; 4020 sc->sc_tx_timer = 0; 4021 4022 if (sc->sc_softled) 4023 ath_led_event(sc, ATH_LED_TX); 4024 4025 ath_start(ifp); 4026 } 4027 4028 /* 4029 * Deferred processing of transmit interrupt; special-cased 4030 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4031 */ 4032 static void 4033 ath_tx_proc_q0123(void *arg, int npending) 4034 { 4035 struct ath_softc *sc = arg; 4036 struct ifnet *ifp = &sc->sc_if; 4037 int nacked; 4038 4039 /* 4040 * Process each active queue. 4041 */ 4042 nacked = 0; 4043 if (txqactive(sc->sc_ah, 0)) 4044 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4045 if (txqactive(sc->sc_ah, 1)) 4046 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4047 if (txqactive(sc->sc_ah, 2)) 4048 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4049 if (txqactive(sc->sc_ah, 3)) 4050 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4051 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4052 ath_tx_processq(sc, sc->sc_cabq); 4053 if (nacked) 4054 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4055 ath_tx_processq(sc, sc->sc_cabq); 4056 4057 ifp->if_flags &= ~IFF_OACTIVE; 4058 sc->sc_tx_timer = 0; 4059 4060 if (sc->sc_softled) 4061 ath_led_event(sc, ATH_LED_TX); 4062 4063 ath_start(ifp); 4064 } 4065 4066 /* 4067 * Deferred processing of transmit interrupt. 4068 */ 4069 static void 4070 ath_tx_proc(void *arg, int npending) 4071 { 4072 struct ath_softc *sc = arg; 4073 struct ifnet *ifp = &sc->sc_if; 4074 int i, nacked; 4075 4076 /* 4077 * Process each active queue. 4078 */ 4079 nacked = 0; 4080 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4081 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4082 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4083 if (nacked) 4084 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4085 4086 ifp->if_flags &= ~IFF_OACTIVE; 4087 sc->sc_tx_timer = 0; 4088 4089 if (sc->sc_softled) 4090 ath_led_event(sc, ATH_LED_TX); 4091 4092 ath_start(ifp); 4093 } 4094 4095 static void 4096 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4097 { 4098 struct ath_hal *ah = sc->sc_ah; 4099 struct ieee80211_node *ni; 4100 struct ath_buf *bf; 4101 4102 /* 4103 * NB: this assumes output has been stopped and 4104 * we do not need to block ath_tx_tasklet 4105 */ 4106 for (;;) { 4107 ATH_TXQ_LOCK(txq); 4108 bf = STAILQ_FIRST(&txq->axq_q); 4109 if (bf == NULL) { 4110 txq->axq_link = NULL; 4111 ATH_TXQ_UNLOCK(txq); 4112 break; 4113 } 4114 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4115 ATH_TXQ_UNLOCK(txq); 4116 #ifdef AR_DEBUG 4117 if (sc->sc_debug & ATH_DEBUG_RESET) 4118 ath_printtxbuf(bf, 4119 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 4120 #endif /* AR_DEBUG */ 4121 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4122 m_freem(bf->bf_m); 4123 bf->bf_m = NULL; 4124 ni = bf->bf_node; 4125 bf->bf_node = NULL; 4126 if (ni != NULL) { 4127 /* 4128 * Reclaim node reference. 4129 */ 4130 ieee80211_free_node(ni); 4131 } 4132 ATH_TXBUF_LOCK(sc); 4133 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4134 ATH_TXBUF_UNLOCK(sc); 4135 } 4136 } 4137 4138 static void 4139 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4140 { 4141 struct ath_hal *ah = sc->sc_ah; 4142 4143 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4144 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4145 __func__, txq->axq_qnum, 4146 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4147 txq->axq_link); 4148 } 4149 4150 /* 4151 * Drain the transmit queues and reclaim resources. 4152 */ 4153 static void 4154 ath_draintxq(struct ath_softc *sc) 4155 { 4156 struct ath_hal *ah = sc->sc_ah; 4157 struct ifnet *ifp = &sc->sc_if; 4158 int i; 4159 4160 /* XXX return value */ 4161 if (!sc->sc_invalid) { 4162 /* don't touch the hardware if marked invalid */ 4163 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4164 DPRINTF(sc, ATH_DEBUG_RESET, 4165 "%s: beacon queue %p\n", __func__, 4166 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4167 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4168 if (ATH_TXQ_SETUP(sc, i)) 4169 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4170 } 4171 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4172 if (ATH_TXQ_SETUP(sc, i)) 4173 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4174 ifp->if_flags &= ~IFF_OACTIVE; 4175 sc->sc_tx_timer = 0; 4176 } 4177 4178 /* 4179 * Disable the receive h/w in preparation for a reset. 4180 */ 4181 static void 4182 ath_stoprecv(struct ath_softc *sc) 4183 { 4184 #define PA2DESC(_sc, _pa) \ 4185 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4186 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4187 struct ath_hal *ah = sc->sc_ah; 4188 4189 ath_hal_stoppcurecv(ah); /* disable PCU */ 4190 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4191 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4192 DELAY(3000); /* 3ms is long enough for 1 frame */ 4193 #ifdef AR_DEBUG 4194 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4195 struct ath_buf *bf; 4196 4197 printf("%s: rx queue %p, link %p\n", __func__, 4198 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4199 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4200 struct ath_desc *ds = bf->bf_desc; 4201 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4202 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 4203 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4204 ath_printrxbuf(bf, status == HAL_OK); 4205 } 4206 } 4207 #endif 4208 sc->sc_rxlink = NULL; /* just in case */ 4209 #undef PA2DESC 4210 } 4211 4212 /* 4213 * Enable the receive h/w following a reset. 4214 */ 4215 static int 4216 ath_startrecv(struct ath_softc *sc) 4217 { 4218 struct ath_hal *ah = sc->sc_ah; 4219 struct ath_buf *bf; 4220 4221 sc->sc_rxlink = NULL; 4222 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4223 int error = ath_rxbuf_init(sc, bf); 4224 if (error != 0) { 4225 DPRINTF(sc, ATH_DEBUG_RECV, 4226 "%s: ath_rxbuf_init failed %d\n", 4227 __func__, error); 4228 return error; 4229 } 4230 } 4231 4232 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4233 ath_hal_putrxbuf(ah, bf->bf_daddr); 4234 ath_hal_rxena(ah); /* enable recv descriptors */ 4235 ath_mode_init(sc); /* set filters, etc. */ 4236 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4237 return 0; 4238 } 4239 4240 /* 4241 * Update internal state after a channel change. 4242 */ 4243 static void 4244 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4245 { 4246 struct ieee80211com *ic = &sc->sc_ic; 4247 enum ieee80211_phymode mode; 4248 u_int16_t flags; 4249 4250 /* 4251 * Change channels and update the h/w rate map 4252 * if we're switching; e.g. 11a to 11b/g. 4253 */ 4254 mode = ieee80211_chan2mode(ic, chan); 4255 if (mode != sc->sc_curmode) 4256 ath_setcurmode(sc, mode); 4257 /* 4258 * Update BPF state. NB: ethereal et. al. don't handle 4259 * merged flags well so pick a unique mode for their use. 4260 */ 4261 if (IEEE80211_IS_CHAN_A(chan)) 4262 flags = IEEE80211_CHAN_A; 4263 /* XXX 11g schizophrenia */ 4264 else if (IEEE80211_IS_CHAN_G(chan) || 4265 IEEE80211_IS_CHAN_PUREG(chan)) 4266 flags = IEEE80211_CHAN_G; 4267 else 4268 flags = IEEE80211_CHAN_B; 4269 if (IEEE80211_IS_CHAN_T(chan)) 4270 flags |= IEEE80211_CHAN_TURBO; 4271 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4272 htole16(chan->ic_freq); 4273 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4274 htole16(flags); 4275 } 4276 4277 /* 4278 * Poll for a channel clear indication; this is required 4279 * for channels requiring DFS and not previously visited 4280 * and/or with a recent radar detection. 4281 */ 4282 static void 4283 ath_dfswait(void *arg) 4284 { 4285 struct ath_softc *sc = arg; 4286 struct ath_hal *ah = sc->sc_ah; 4287 HAL_CHANNEL hchan; 4288 4289 ath_hal_radar_wait(ah, &hchan); 4290 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4291 if_printf(&sc->sc_if, 4292 "channel %u/0x%x/0x%x has interference\n", 4293 hchan.channel, hchan.channelFlags, hchan.privFlags); 4294 return; 4295 } 4296 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4297 /* XXX should not happen */ 4298 return; 4299 } 4300 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4301 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4302 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4303 if_printf(&sc->sc_if, 4304 "channel %u/0x%x/0x%x marked clear\n", 4305 hchan.channel, hchan.channelFlags, hchan.privFlags); 4306 } else 4307 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4308 } 4309 4310 /* 4311 * Set/change channels. If the channel is really being changed, 4312 * it's done by reseting the chip. To accomplish this we must 4313 * first cleanup any pending DMA, then restart stuff after a la 4314 * ath_init. 4315 */ 4316 static int 4317 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4318 { 4319 struct ath_hal *ah = sc->sc_ah; 4320 struct ieee80211com *ic = &sc->sc_ic; 4321 HAL_CHANNEL hchan; 4322 4323 /* 4324 * Convert to a HAL channel description with 4325 * the flags constrained to reflect the current 4326 * operating mode. 4327 */ 4328 hchan.channel = chan->ic_freq; 4329 hchan.channelFlags = ath_chan2flags(ic, chan); 4330 4331 DPRINTF(sc, ATH_DEBUG_RESET, 4332 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4333 __func__, 4334 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4335 sc->sc_curchan.channelFlags), 4336 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4337 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4338 hchan.channel, hchan.channelFlags); 4339 if (hchan.channel != sc->sc_curchan.channel || 4340 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4341 HAL_STATUS status; 4342 4343 /* 4344 * To switch channels clear any pending DMA operations; 4345 * wait long enough for the RX fifo to drain, reset the 4346 * hardware at the new frequency, and then re-enable 4347 * the relevant bits of the h/w. 4348 */ 4349 ath_hal_intrset(ah, 0); /* disable interrupts */ 4350 ath_draintxq(sc); /* clear pending tx frames */ 4351 ath_stoprecv(sc); /* turn off frame recv */ 4352 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4353 if_printf(ic->ic_ifp, "%s: unable to reset " 4354 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n", 4355 __func__, ieee80211_chan2ieee(ic, chan), 4356 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4357 return EIO; 4358 } 4359 sc->sc_curchan = hchan; 4360 ath_update_txpow(sc); /* update tx power state */ 4361 sc->sc_diversity = ath_hal_getdiversity(ah); 4362 sc->sc_calinterval = 1; 4363 sc->sc_caltries = 0; 4364 4365 /* 4366 * Re-enable rx framework. 4367 */ 4368 if (ath_startrecv(sc) != 0) { 4369 if_printf(&sc->sc_if, 4370 "%s: unable to restart recv logic\n", __func__); 4371 return EIO; 4372 } 4373 4374 /* 4375 * Change channels and update the h/w rate map 4376 * if we're switching; e.g. 11a to 11b/g. 4377 */ 4378 ic->ic_ibss_chan = chan; 4379 ath_chan_change(sc, chan); 4380 4381 /* 4382 * Handle DFS required waiting period to determine 4383 * if channel is clear of radar traffic. 4384 */ 4385 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4386 #define DFS_AND_NOT_CLEAR(_c) \ 4387 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4388 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4389 if_printf(&sc->sc_if, 4390 "wait for DFS clear channel signal\n"); 4391 /* XXX stop sndq */ 4392 sc->sc_if.if_flags |= IFF_OACTIVE; 4393 callout_reset(&sc->sc_dfs_ch, 4394 2 * hz, ath_dfswait, sc); 4395 } else 4396 callout_stop(&sc->sc_dfs_ch); 4397 #undef DFS_NOT_CLEAR 4398 } 4399 4400 /* 4401 * Re-enable interrupts. 4402 */ 4403 ath_hal_intrset(ah, sc->sc_imask); 4404 } 4405 return 0; 4406 } 4407 4408 static void 4409 ath_next_scan(void *arg) 4410 { 4411 struct ath_softc *sc = arg; 4412 struct ieee80211com *ic = &sc->sc_ic; 4413 int s; 4414 4415 /* don't call ath_start w/o network interrupts blocked */ 4416 s = splnet(); 4417 4418 if (ic->ic_state == IEEE80211_S_SCAN) 4419 ieee80211_next_scan(ic); 4420 splx(s); 4421 } 4422 4423 /* 4424 * Periodically recalibrate the PHY to account 4425 * for temperature/environment changes. 4426 */ 4427 static void 4428 ath_calibrate(void *arg) 4429 { 4430 struct ath_softc *sc = arg; 4431 struct ath_hal *ah = sc->sc_ah; 4432 HAL_BOOL iqCalDone; 4433 4434 sc->sc_stats.ast_per_cal++; 4435 4436 ATH_LOCK(sc); 4437 4438 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4439 /* 4440 * Rfgain is out of bounds, reset the chip 4441 * to load new gain values. 4442 */ 4443 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4444 "%s: rfgain change\n", __func__); 4445 sc->sc_stats.ast_per_rfgain++; 4446 ath_reset(&sc->sc_if); 4447 } 4448 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4449 DPRINTF(sc, ATH_DEBUG_ANY, 4450 "%s: calibration of channel %u failed\n", 4451 __func__, sc->sc_curchan.channel); 4452 sc->sc_stats.ast_per_calfail++; 4453 } 4454 /* 4455 * Calibrate noise floor data again in case of change. 4456 */ 4457 ath_hal_process_noisefloor(ah); 4458 /* 4459 * Poll more frequently when the IQ calibration is in 4460 * progress to speedup loading the final settings. 4461 * We temper this aggressive polling with an exponential 4462 * back off after 4 tries up to ath_calinterval. 4463 */ 4464 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4465 sc->sc_caltries = 0; 4466 sc->sc_calinterval = ath_calinterval; 4467 } else if (sc->sc_caltries > 4) { 4468 sc->sc_caltries = 0; 4469 sc->sc_calinterval <<= 1; 4470 if (sc->sc_calinterval > ath_calinterval) 4471 sc->sc_calinterval = ath_calinterval; 4472 } 4473 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval, 4474 ("bad calibration interval %u", sc->sc_calinterval)); 4475 4476 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4477 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4478 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4479 sc->sc_caltries++; 4480 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4481 ath_calibrate, sc); 4482 ATH_UNLOCK(sc); 4483 } 4484 4485 static int 4486 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4487 { 4488 struct ifnet *ifp = ic->ic_ifp; 4489 struct ath_softc *sc = ifp->if_softc; 4490 struct ath_hal *ah = sc->sc_ah; 4491 struct ieee80211_node *ni; 4492 int i, error; 4493 const u_int8_t *bssid; 4494 u_int32_t rfilt; 4495 static const HAL_LED_STATE leds[] = { 4496 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4497 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4498 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4499 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4500 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4501 }; 4502 4503 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4504 ieee80211_state_name[ic->ic_state], 4505 ieee80211_state_name[nstate]); 4506 4507 callout_stop(&sc->sc_scan_ch); 4508 callout_stop(&sc->sc_cal_ch); 4509 callout_stop(&sc->sc_dfs_ch); 4510 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4511 4512 if (nstate == IEEE80211_S_INIT) { 4513 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4514 /* 4515 * NB: disable interrupts so we don't rx frames. 4516 */ 4517 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4518 /* 4519 * Notify the rate control algorithm. 4520 */ 4521 ath_rate_newstate(sc, nstate); 4522 goto done; 4523 } 4524 ni = ic->ic_bss; 4525 error = ath_chan_set(sc, ic->ic_curchan); 4526 if (error != 0) 4527 goto bad; 4528 rfilt = ath_calcrxfilter(sc, nstate); 4529 if (nstate == IEEE80211_S_SCAN) 4530 bssid = ifp->if_broadcastaddr; 4531 else 4532 bssid = ni->ni_bssid; 4533 ath_hal_setrxfilter(ah, rfilt); 4534 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4535 __func__, rfilt, ether_sprintf(bssid)); 4536 4537 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4538 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4539 else 4540 ath_hal_setassocid(ah, bssid, 0); 4541 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4542 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4543 if (ath_hal_keyisvalid(ah, i)) 4544 ath_hal_keysetmac(ah, i, bssid); 4545 } 4546 4547 /* 4548 * Notify the rate control algorithm so rates 4549 * are setup should ath_beacon_alloc be called. 4550 */ 4551 ath_rate_newstate(sc, nstate); 4552 4553 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4554 /* nothing to do */; 4555 } else if (nstate == IEEE80211_S_RUN) { 4556 DPRINTF(sc, ATH_DEBUG_STATE, 4557 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4558 "capinfo=0x%04x chan=%d\n" 4559 , __func__ 4560 , ic->ic_flags 4561 , ni->ni_intval 4562 , ether_sprintf(ni->ni_bssid) 4563 , ni->ni_capinfo 4564 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4565 4566 switch (ic->ic_opmode) { 4567 case IEEE80211_M_HOSTAP: 4568 case IEEE80211_M_IBSS: 4569 /* 4570 * Allocate and setup the beacon frame. 4571 * 4572 * Stop any previous beacon DMA. This may be 4573 * necessary, for example, when an ibss merge 4574 * causes reconfiguration; there will be a state 4575 * transition from RUN->RUN that means we may 4576 * be called with beacon transmission active. 4577 */ 4578 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4579 ath_beacon_free(sc); 4580 error = ath_beacon_alloc(sc, ni); 4581 if (error != 0) 4582 goto bad; 4583 /* 4584 * If joining an adhoc network defer beacon timer 4585 * configuration to the next beacon frame so we 4586 * have a current TSF to use. Otherwise we're 4587 * starting an ibss/bss so there's no need to delay. 4588 */ 4589 if (ic->ic_opmode == IEEE80211_M_IBSS && 4590 ic->ic_bss->ni_tstamp.tsf != 0) 4591 sc->sc_syncbeacon = 1; 4592 else 4593 ath_beacon_config(sc); 4594 break; 4595 case IEEE80211_M_STA: 4596 /* 4597 * Allocate a key cache slot to the station. 4598 */ 4599 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4600 sc->sc_hasclrkey && 4601 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4602 ath_setup_stationkey(ni); 4603 /* 4604 * Defer beacon timer configuration to the next 4605 * beacon frame so we have a current TSF to use 4606 * (any TSF collected when scanning is likely old). 4607 */ 4608 sc->sc_syncbeacon = 1; 4609 break; 4610 default: 4611 break; 4612 } 4613 /* 4614 * Let the hal process statistics collected during a 4615 * scan so it can provide calibrated noise floor data. 4616 */ 4617 ath_hal_process_noisefloor(ah); 4618 /* 4619 * Reset rssi stats; maybe not the best place... 4620 */ 4621 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4622 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4623 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4624 } else { 4625 ath_hal_intrset(ah, 4626 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4627 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4628 } 4629 done: 4630 /* 4631 * Invoke the parent method to complete the work. 4632 */ 4633 error = sc->sc_newstate(ic, nstate, arg); 4634 /* 4635 * Finally, start any timers. 4636 */ 4637 if (nstate == IEEE80211_S_RUN) { 4638 /* start periodic recalibration timer */ 4639 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4640 ath_calibrate, sc); 4641 } else if (nstate == IEEE80211_S_SCAN) { 4642 /* start ap/neighbor scan timer */ 4643 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4644 ath_next_scan, sc); 4645 } 4646 bad: 4647 return error; 4648 } 4649 4650 /* 4651 * Allocate a key cache slot to the station so we can 4652 * setup a mapping from key index to node. The key cache 4653 * slot is needed for managing antenna state and for 4654 * compression when stations do not use crypto. We do 4655 * it uniliaterally here; if crypto is employed this slot 4656 * will be reassigned. 4657 */ 4658 static void 4659 ath_setup_stationkey(struct ieee80211_node *ni) 4660 { 4661 struct ieee80211com *ic = ni->ni_ic; 4662 struct ath_softc *sc = ic->ic_ifp->if_softc; 4663 ieee80211_keyix keyix, rxkeyix; 4664 4665 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4666 /* 4667 * Key cache is full; we'll fall back to doing 4668 * the more expensive lookup in software. Note 4669 * this also means no h/w compression. 4670 */ 4671 /* XXX msg+statistic */ 4672 } else { 4673 /* XXX locking? */ 4674 ni->ni_ucastkey.wk_keyix = keyix; 4675 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4676 /* NB: this will create a pass-thru key entry */ 4677 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4678 } 4679 } 4680 4681 /* 4682 * Setup driver-specific state for a newly associated node. 4683 * Note that we're called also on a re-associate, the isnew 4684 * param tells us if this is the first time or not. 4685 */ 4686 static void 4687 ath_newassoc(struct ieee80211_node *ni, int isnew) 4688 { 4689 struct ieee80211com *ic = ni->ni_ic; 4690 struct ath_softc *sc = ic->ic_ifp->if_softc; 4691 4692 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4693 if (isnew && 4694 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4695 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4696 ("new assoc with a unicast key already setup (keyix %u)", 4697 ni->ni_ucastkey.wk_keyix)); 4698 ath_setup_stationkey(ni); 4699 } 4700 } 4701 4702 static int 4703 ath_getchannels(struct ath_softc *sc, u_int cc, 4704 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4705 { 4706 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4707 struct ieee80211com *ic = &sc->sc_ic; 4708 struct ifnet *ifp = &sc->sc_if; 4709 struct ath_hal *ah = sc->sc_ah; 4710 HAL_CHANNEL *chans; 4711 int i, ix, nchan; 4712 4713 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4714 M_TEMP, M_NOWAIT); 4715 if (chans == NULL) { 4716 if_printf(ifp, "unable to allocate channel table\n"); 4717 return ENOMEM; 4718 } 4719 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4720 NULL, 0, NULL, 4721 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4722 u_int32_t rd; 4723 4724 (void)ath_hal_getregdomain(ah, &rd); 4725 if_printf(ifp, "unable to collect channel list from hal; " 4726 "regdomain likely %u country code %u\n", rd, cc); 4727 free(chans, M_TEMP); 4728 return EINVAL; 4729 } 4730 4731 /* 4732 * Convert HAL channels to ieee80211 ones and insert 4733 * them in the table according to their channel number. 4734 */ 4735 for (i = 0; i < nchan; i++) { 4736 HAL_CHANNEL *c = &chans[i]; 4737 u_int16_t flags; 4738 4739 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4740 if (ix > IEEE80211_CHAN_MAX) { 4741 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4742 ix, c->channel, c->channelFlags); 4743 continue; 4744 } 4745 if (ix < 0) { 4746 /* XXX can't handle stuff <2400 right now */ 4747 if (bootverbose) 4748 if_printf(ifp, "hal channel %d (%u/%x) " 4749 "cannot be handled; ignored\n", 4750 ix, c->channel, c->channelFlags); 4751 continue; 4752 } 4753 /* 4754 * Calculate net80211 flags; most are compatible 4755 * but some need massaging. Note the static turbo 4756 * conversion can be removed once net80211 is updated 4757 * to understand static vs. dynamic turbo. 4758 */ 4759 flags = c->channelFlags & COMPAT; 4760 if (c->channelFlags & CHANNEL_STURBO) 4761 flags |= IEEE80211_CHAN_TURBO; 4762 if (ic->ic_channels[ix].ic_freq == 0) { 4763 ic->ic_channels[ix].ic_freq = c->channel; 4764 ic->ic_channels[ix].ic_flags = flags; 4765 } else { 4766 /* channels overlap; e.g. 11g and 11b */ 4767 ic->ic_channels[ix].ic_flags |= flags; 4768 } 4769 } 4770 free(chans, M_TEMP); 4771 return 0; 4772 #undef COMPAT 4773 } 4774 4775 static void 4776 ath_led_done(void *arg) 4777 { 4778 struct ath_softc *sc = arg; 4779 4780 sc->sc_blinking = 0; 4781 } 4782 4783 /* 4784 * Turn the LED off: flip the pin and then set a timer so no 4785 * update will happen for the specified duration. 4786 */ 4787 static void 4788 ath_led_off(void *arg) 4789 { 4790 struct ath_softc *sc = arg; 4791 4792 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4793 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4794 } 4795 4796 /* 4797 * Blink the LED according to the specified on/off times. 4798 */ 4799 static void 4800 ath_led_blink(struct ath_softc *sc, int on, int off) 4801 { 4802 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4803 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4804 sc->sc_blinking = 1; 4805 sc->sc_ledoff = off; 4806 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4807 } 4808 4809 static void 4810 ath_led_event(struct ath_softc *sc, int event) 4811 { 4812 4813 sc->sc_ledevent = ticks; /* time of last event */ 4814 if (sc->sc_blinking) /* don't interrupt active blink */ 4815 return; 4816 switch (event) { 4817 case ATH_LED_POLL: 4818 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4819 sc->sc_hwmap[0].ledoff); 4820 break; 4821 case ATH_LED_TX: 4822 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4823 sc->sc_hwmap[sc->sc_txrate].ledoff); 4824 break; 4825 case ATH_LED_RX: 4826 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 4827 sc->sc_hwmap[sc->sc_rxrate].ledoff); 4828 break; 4829 } 4830 } 4831 4832 static void 4833 ath_update_txpow(struct ath_softc *sc) 4834 { 4835 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4836 struct ieee80211com *ic = &sc->sc_ic; 4837 struct ath_hal *ah = sc->sc_ah; 4838 u_int32_t txpow; 4839 4840 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 4841 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 4842 /* read back in case value is clamped */ 4843 (void)ath_hal_gettxpowlimit(ah, &txpow); 4844 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 4845 } 4846 /* 4847 * Fetch max tx power level for status requests. 4848 */ 4849 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 4850 ic->ic_bss->ni_txpower = txpow; 4851 } 4852 4853 static void 4854 rate_setup(struct ath_softc *sc, 4855 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 4856 { 4857 int i, maxrates; 4858 4859 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 4860 DPRINTF(sc, ATH_DEBUG_ANY, 4861 "%s: rate table too small (%u > %u)\n", 4862 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 4863 maxrates = IEEE80211_RATE_MAXSIZE; 4864 } else 4865 maxrates = rt->rateCount; 4866 for (i = 0; i < maxrates; i++) 4867 rs->rs_rates[i] = rt->info[i].dot11Rate; 4868 rs->rs_nrates = maxrates; 4869 } 4870 4871 static int 4872 ath_rate_setup(struct ath_softc *sc, u_int mode) 4873 { 4874 struct ath_hal *ah = sc->sc_ah; 4875 struct ieee80211com *ic = &sc->sc_ic; 4876 const HAL_RATE_TABLE *rt; 4877 4878 switch (mode) { 4879 case IEEE80211_MODE_11A: 4880 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 4881 break; 4882 case IEEE80211_MODE_11B: 4883 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 4884 break; 4885 case IEEE80211_MODE_11G: 4886 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 4887 break; 4888 case IEEE80211_MODE_TURBO_A: 4889 /* XXX until static/dynamic turbo is fixed */ 4890 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4891 break; 4892 case IEEE80211_MODE_TURBO_G: 4893 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 4894 break; 4895 default: 4896 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4897 __func__, mode); 4898 return 0; 4899 } 4900 sc->sc_rates[mode] = rt; 4901 if (rt != NULL) { 4902 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 4903 return 1; 4904 } else 4905 return 0; 4906 } 4907 4908 static void 4909 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4910 { 4911 #define N(a) (sizeof(a)/sizeof(a[0])) 4912 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4913 static const struct { 4914 u_int rate; /* tx/rx 802.11 rate */ 4915 u_int16_t timeOn; /* LED on time (ms) */ 4916 u_int16_t timeOff; /* LED off time (ms) */ 4917 } blinkrates[] = { 4918 { 108, 40, 10 }, 4919 { 96, 44, 11 }, 4920 { 72, 50, 13 }, 4921 { 48, 57, 14 }, 4922 { 36, 67, 16 }, 4923 { 24, 80, 20 }, 4924 { 22, 100, 25 }, 4925 { 18, 133, 34 }, 4926 { 12, 160, 40 }, 4927 { 10, 200, 50 }, 4928 { 6, 240, 58 }, 4929 { 4, 267, 66 }, 4930 { 2, 400, 100 }, 4931 { 0, 500, 130 }, 4932 }; 4933 const HAL_RATE_TABLE *rt; 4934 int i, j; 4935 4936 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4937 rt = sc->sc_rates[mode]; 4938 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4939 for (i = 0; i < rt->rateCount; i++) 4940 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 4941 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4942 for (i = 0; i < 32; i++) { 4943 u_int8_t ix = rt->rateCodeToIndex[i]; 4944 if (ix == 0xff) { 4945 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4946 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4947 continue; 4948 } 4949 sc->sc_hwmap[i].ieeerate = 4950 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 4951 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4952 if (rt->info[ix].shortPreamble || 4953 rt->info[ix].phy == IEEE80211_T_OFDM) 4954 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4955 /* NB: receive frames include FCS */ 4956 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 4957 IEEE80211_RADIOTAP_F_FCS; 4958 /* setup blink rate table to avoid per-packet lookup */ 4959 for (j = 0; j < N(blinkrates)-1; j++) 4960 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4961 break; 4962 /* NB: this uses the last entry if the rate isn't found */ 4963 /* XXX beware of overlow */ 4964 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4965 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4966 } 4967 sc->sc_currates = rt; 4968 sc->sc_curmode = mode; 4969 /* 4970 * All protection frames are transmited at 2Mb/s for 4971 * 11g, otherwise at 1Mb/s. 4972 */ 4973 if (mode == IEEE80211_MODE_11G) 4974 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 4975 else 4976 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 4977 /* rate index used to send management frames */ 4978 sc->sc_minrateix = 0; 4979 /* 4980 * Setup multicast rate state. 4981 */ 4982 /* XXX layering violation */ 4983 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 4984 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 4985 /* NB: caller is responsible for reseting rate control state */ 4986 #undef N 4987 } 4988 4989 #ifdef AR_DEBUG 4990 static void 4991 ath_printrxbuf(struct ath_buf *bf, int done) 4992 { 4993 struct ath_desc *ds; 4994 int i; 4995 4996 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4997 printf("R%d (%p %" PRIx64 4998 ") %08x %08x %08x %08x %08x %08x %c\n", i, ds, 4999 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5000 ds->ds_link, ds->ds_data, 5001 ds->ds_ctl0, ds->ds_ctl1, 5002 ds->ds_hw[0], ds->ds_hw[1], 5003 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 5004 } 5005 } 5006 5007 static void 5008 ath_printtxbuf(struct ath_buf *bf, int done) 5009 { 5010 struct ath_desc *ds; 5011 int i; 5012 5013 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5014 printf("T%d (%p %" PRIx64 5015 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 5016 i, ds, 5017 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5018 ds->ds_link, ds->ds_data, 5019 ds->ds_ctl0, ds->ds_ctl1, 5020 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 5021 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 5022 } 5023 } 5024 #endif /* AR_DEBUG */ 5025 5026 static void 5027 ath_watchdog(struct ifnet *ifp) 5028 { 5029 struct ath_softc *sc = ifp->if_softc; 5030 struct ieee80211com *ic = &sc->sc_ic; 5031 5032 ifp->if_timer = 0; 5033 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 5034 return; 5035 if (sc->sc_tx_timer) { 5036 if (--sc->sc_tx_timer == 0) { 5037 if_printf(ifp, "device timeout\n"); 5038 ath_reset(ifp); 5039 ifp->if_oerrors++; 5040 sc->sc_stats.ast_watchdog++; 5041 } else 5042 ifp->if_timer = 1; 5043 } 5044 ieee80211_watchdog(ic); 5045 } 5046 5047 /* 5048 * Diagnostic interface to the HAL. This is used by various 5049 * tools to do things like retrieve register contents for 5050 * debugging. The mechanism is intentionally opaque so that 5051 * it can change frequently w/o concern for compatiblity. 5052 */ 5053 static int 5054 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5055 { 5056 struct ath_hal *ah = sc->sc_ah; 5057 u_int id = ad->ad_id & ATH_DIAG_ID; 5058 void *indata = NULL; 5059 void *outdata = NULL; 5060 u_int32_t insize = ad->ad_in_size; 5061 u_int32_t outsize = ad->ad_out_size; 5062 int error = 0; 5063 5064 if (ad->ad_id & ATH_DIAG_IN) { 5065 /* 5066 * Copy in data. 5067 */ 5068 indata = malloc(insize, M_TEMP, M_NOWAIT); 5069 if (indata == NULL) { 5070 error = ENOMEM; 5071 goto bad; 5072 } 5073 error = copyin(ad->ad_in_data, indata, insize); 5074 if (error) 5075 goto bad; 5076 } 5077 if (ad->ad_id & ATH_DIAG_DYN) { 5078 /* 5079 * Allocate a buffer for the results (otherwise the HAL 5080 * returns a pointer to a buffer where we can read the 5081 * results). Note that we depend on the HAL leaving this 5082 * pointer for us to use below in reclaiming the buffer; 5083 * may want to be more defensive. 5084 */ 5085 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5086 if (outdata == NULL) { 5087 error = ENOMEM; 5088 goto bad; 5089 } 5090 } 5091 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5092 if (outsize < ad->ad_out_size) 5093 ad->ad_out_size = outsize; 5094 if (outdata != NULL) 5095 error = copyout(outdata, ad->ad_out_data, 5096 ad->ad_out_size); 5097 } else { 5098 error = EINVAL; 5099 } 5100 bad: 5101 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5102 free(indata, M_TEMP); 5103 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5104 free(outdata, M_TEMP); 5105 return error; 5106 } 5107 5108 static int 5109 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5110 { 5111 #define IS_RUNNING(ifp) \ 5112 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 5113 struct ath_softc *sc = ifp->if_softc; 5114 struct ieee80211com *ic = &sc->sc_ic; 5115 struct ifreq *ifr = (struct ifreq *)data; 5116 int error = 0; 5117 5118 ATH_LOCK(sc); 5119 switch (cmd) { 5120 case SIOCSIFFLAGS: 5121 if (IS_RUNNING(ifp)) { 5122 /* 5123 * To avoid rescanning another access point, 5124 * do not call ath_init() here. Instead, 5125 * only reflect promisc mode settings. 5126 */ 5127 ath_mode_init(sc); 5128 } else if (ifp->if_flags & IFF_UP) { 5129 /* 5130 * Beware of being called during attach/detach 5131 * to reset promiscuous mode. In that case we 5132 * will still be marked UP but not RUNNING. 5133 * However trying to re-init the interface 5134 * is the wrong thing to do as we've already 5135 * torn down much of our state. There's 5136 * probably a better way to deal with this. 5137 */ 5138 if (!sc->sc_invalid && ic->ic_bss != NULL) 5139 ath_init(sc); /* XXX lose error */ 5140 } else 5141 ath_stop_locked(ifp, 1); 5142 break; 5143 case SIOCADDMULTI: 5144 case SIOCDELMULTI: 5145 error = (cmd == SIOCADDMULTI) ? 5146 ether_addmulti(ifr, &sc->sc_ec) : 5147 ether_delmulti(ifr, &sc->sc_ec); 5148 if (error == ENETRESET) { 5149 if (ifp->if_flags & IFF_RUNNING) 5150 ath_mode_init(sc); 5151 error = 0; 5152 } 5153 break; 5154 case SIOCGATHSTATS: 5155 /* NB: embed these numbers to get a consistent view */ 5156 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5157 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5158 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 5159 ATH_UNLOCK(sc); 5160 /* 5161 * NB: Drop the softc lock in case of a page fault; 5162 * we'll accept any potential inconsisentcy in the 5163 * statistics. The alternative is to copy the data 5164 * to a local structure. 5165 */ 5166 return copyout(&sc->sc_stats, 5167 ifr->ifr_data, sizeof (sc->sc_stats)); 5168 case SIOCGATHDIAG: 5169 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5170 break; 5171 default: 5172 error = ieee80211_ioctl(ic, cmd, data); 5173 if (error == ENETRESET) { 5174 if (IS_RUNNING(ifp) && 5175 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5176 ath_init(sc); /* XXX lose error */ 5177 error = 0; 5178 } 5179 if (error == ERESTART) 5180 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0; 5181 break; 5182 } 5183 ATH_UNLOCK(sc); 5184 return error; 5185 #undef IS_RUNNING 5186 } 5187 5188 #if NBPFILTER > 0 5189 static void 5190 ath_bpfattach(struct ath_softc *sc) 5191 { 5192 struct ifnet *ifp = &sc->sc_if; 5193 5194 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 5195 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5196 &sc->sc_drvbpf); 5197 /* 5198 * Initialize constant fields. 5199 * XXX make header lengths a multiple of 32-bits so subsequent 5200 * headers are properly aligned; this is a kludge to keep 5201 * certain applications happy. 5202 * 5203 * NB: the channel is setup each time we transition to the 5204 * RUN state to avoid filling it in for each frame. 5205 */ 5206 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5207 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5208 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5209 5210 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5211 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5212 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5213 } 5214 #endif 5215 5216 /* 5217 * Announce various information on device/driver attach. 5218 */ 5219 static void 5220 ath_announce(struct ath_softc *sc) 5221 { 5222 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5223 struct ifnet *ifp = &sc->sc_if; 5224 struct ath_hal *ah = sc->sc_ah; 5225 u_int modes, cc; 5226 5227 if_printf(ifp, "mac %d.%d phy %d.%d", 5228 ah->ah_macVersion, ah->ah_macRev, 5229 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5230 /* 5231 * Print radio revision(s). We check the wireless modes 5232 * to avoid falsely printing revs for inoperable parts. 5233 * Dual-band radio revs are returned in the 5 GHz rev number. 5234 */ 5235 ath_hal_getcountrycode(ah, &cc); 5236 modes = ath_hal_getwirelessmodes(ah, cc); 5237 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5238 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5239 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d", 5240 ah->ah_analog5GhzRev >> 4, 5241 ah->ah_analog5GhzRev & 0xf, 5242 ah->ah_analog2GhzRev >> 4, 5243 ah->ah_analog2GhzRev & 0xf); 5244 else 5245 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5246 ah->ah_analog5GhzRev & 0xf); 5247 } else 5248 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5249 ah->ah_analog5GhzRev & 0xf); 5250 printf("\n"); 5251 if (bootverbose) { 5252 int i; 5253 for (i = 0; i <= WME_AC_VO; i++) { 5254 struct ath_txq *txq = sc->sc_ac2q[i]; 5255 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5256 txq->axq_qnum, ieee80211_wme_acnames[i]); 5257 } 5258 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5259 sc->sc_cabq->axq_qnum); 5260 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5261 } 5262 if (ath_rxbuf != ATH_RXBUF) 5263 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5264 if (ath_txbuf != ATH_TXBUF) 5265 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5266 #undef HAL_MODE_DUALBAND 5267 } 5268