1 /* $NetBSD: ath.c,v 1.106 2009/08/02 13:26:33 jmcneill Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.106 2009/08/02 13:26:33 jmcneill Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #include "opt_inet.h" 55 56 #ifdef __NetBSD__ 57 #include "bpfilter.h" 58 #endif /* __NetBSD__ */ 59 60 #include <sys/param.h> 61 #include <sys/reboot.h> 62 #include <sys/systm.h> 63 #include <sys/types.h> 64 #include <sys/sysctl.h> 65 #include <sys/mbuf.h> 66 #include <sys/malloc.h> 67 #include <sys/kernel.h> 68 #include <sys/socket.h> 69 #include <sys/sockio.h> 70 #include <sys/errno.h> 71 #include <sys/callout.h> 72 #include <sys/bus.h> 73 #include <sys/endian.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/if_ether.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_netbsd.h> 84 #include <net80211/ieee80211_var.h> 85 86 #if NBPFILTER > 0 87 #include <net/bpf.h> 88 #endif 89 90 #ifdef INET 91 #include <netinet/in.h> 92 #endif 93 94 #include <sys/device.h> 95 #include <dev/ic/ath_netbsd.h> 96 97 #define AR_DEBUG 98 #include <dev/ic/athvar.h> 99 #include "ah_desc.h" 100 #include "ah_devid.h" /* XXX for softled */ 101 #include "opt_ah.h" 102 103 #ifdef ATH_TX99_DIAG 104 #include <dev/ath/ath_tx99/ath_tx99.h> 105 #endif 106 107 /* unaligned little endian access */ 108 #define LE_READ_2(p) \ 109 ((u_int16_t) \ 110 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 111 #define LE_READ_4(p) \ 112 ((u_int32_t) \ 113 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 114 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 115 116 enum { 117 ATH_LED_TX, 118 ATH_LED_RX, 119 ATH_LED_POLL, 120 }; 121 122 #ifdef AH_NEED_DESC_SWAP 123 #define HTOAH32(x) htole32(x) 124 #else 125 #define HTOAH32(x) (x) 126 #endif 127 128 static int ath_ifinit(struct ifnet *); 129 static int ath_init(struct ath_softc *); 130 static void ath_stop_locked(struct ifnet *, int); 131 static void ath_stop(struct ifnet *, int); 132 static void ath_start(struct ifnet *); 133 static int ath_media_change(struct ifnet *); 134 static void ath_watchdog(struct ifnet *); 135 static int ath_ioctl(struct ifnet *, u_long, void *); 136 static void ath_fatal_proc(void *, int); 137 static void ath_rxorn_proc(void *, int); 138 static void ath_bmiss_proc(void *, int); 139 static void ath_radar_proc(void *, int); 140 static int ath_key_alloc(struct ieee80211com *, 141 const struct ieee80211_key *, 142 ieee80211_keyix *, ieee80211_keyix *); 143 static int ath_key_delete(struct ieee80211com *, 144 const struct ieee80211_key *); 145 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 146 const u_int8_t mac[IEEE80211_ADDR_LEN]); 147 static void ath_key_update_begin(struct ieee80211com *); 148 static void ath_key_update_end(struct ieee80211com *); 149 static void ath_mode_init(struct ath_softc *); 150 static void ath_setslottime(struct ath_softc *); 151 static void ath_updateslot(struct ifnet *); 152 static int ath_beaconq_setup(struct ath_hal *); 153 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 154 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 155 static void ath_beacon_proc(void *, int); 156 static void ath_bstuck_proc(void *, int); 157 static void ath_beacon_free(struct ath_softc *); 158 static void ath_beacon_config(struct ath_softc *); 159 static void ath_descdma_cleanup(struct ath_softc *sc, 160 struct ath_descdma *, ath_bufhead *); 161 static int ath_desc_alloc(struct ath_softc *); 162 static void ath_desc_free(struct ath_softc *); 163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 164 static void ath_node_free(struct ieee80211_node *); 165 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 166 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 167 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 168 struct ieee80211_node *ni, 169 int subtype, int rssi, u_int32_t rstamp); 170 static void ath_setdefantenna(struct ath_softc *, u_int); 171 static void ath_rx_proc(void *, int); 172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 173 static int ath_tx_setup(struct ath_softc *, int, int); 174 static int ath_wme_update(struct ieee80211com *); 175 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 176 static void ath_tx_cleanup(struct ath_softc *); 177 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 178 struct ath_buf *, struct mbuf *); 179 static void ath_tx_proc_q0(void *, int); 180 static void ath_tx_proc_q0123(void *, int); 181 static void ath_tx_proc(void *, int); 182 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 183 static void ath_draintxq(struct ath_softc *); 184 static void ath_stoprecv(struct ath_softc *); 185 static int ath_startrecv(struct ath_softc *); 186 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 187 static void ath_next_scan(void *); 188 static void ath_calibrate(void *); 189 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 190 static void ath_setup_stationkey(struct ieee80211_node *); 191 static void ath_newassoc(struct ieee80211_node *, int); 192 static int ath_getchannels(struct ath_softc *, u_int cc, 193 HAL_BOOL outdoor, HAL_BOOL xchanmode); 194 static void ath_led_event(struct ath_softc *, int); 195 static void ath_update_txpow(struct ath_softc *); 196 static void ath_freetx(struct mbuf *); 197 static void ath_restore_diversity(struct ath_softc *); 198 199 static int ath_rate_setup(struct ath_softc *, u_int mode); 200 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 201 202 #if NBPFILTER > 0 203 static void ath_bpfattach(struct ath_softc *); 204 #endif 205 static void ath_announce(struct ath_softc *); 206 207 int ath_dwelltime = 200; /* 5 channels/second */ 208 int ath_calinterval = 30; /* calibrate every 30 secs */ 209 int ath_outdoor = AH_TRUE; /* outdoor operation */ 210 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 211 int ath_countrycode = CTRY_DEFAULT; /* country code */ 212 int ath_regdomain = 0; /* regulatory domain */ 213 int ath_debug = 0; 214 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 215 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 216 217 #ifdef AR_DEBUG 218 enum { 219 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 220 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 221 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 222 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 223 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 224 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 225 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 226 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 227 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 228 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 229 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 230 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 231 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 232 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 233 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 234 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 235 ATH_DEBUG_NODE = 0x00080000, /* node management */ 236 ATH_DEBUG_LED = 0x00100000, /* led management */ 237 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 238 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 239 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 240 ATH_DEBUG_ANY = 0xffffffff 241 }; 242 #define IFF_DUMPPKTS(sc, m) \ 243 ((sc->sc_debug & (m)) || \ 244 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 245 #define DPRINTF(sc, m, fmt, ...) do { \ 246 if (sc->sc_debug & (m)) \ 247 printf(fmt, __VA_ARGS__); \ 248 } while (0) 249 #define KEYPRINTF(sc, ix, hk, mac) do { \ 250 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 251 ath_keyprint(__func__, ix, hk, mac); \ 252 } while (0) 253 static void ath_printrxbuf(struct ath_buf *bf, int); 254 static void ath_printtxbuf(struct ath_buf *bf, int); 255 #else 256 #define IFF_DUMPPKTS(sc, m) \ 257 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 258 #define DPRINTF(m, fmt, ...) 259 #define KEYPRINTF(sc, k, ix, mac) 260 #endif 261 262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 263 264 int 265 ath_attach(u_int16_t devid, struct ath_softc *sc) 266 { 267 struct ifnet *ifp = &sc->sc_if; 268 struct ieee80211com *ic = &sc->sc_ic; 269 struct ath_hal *ah = NULL; 270 HAL_STATUS status; 271 int error = 0, i; 272 273 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 274 275 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 276 277 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 278 if (ah == NULL) { 279 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 280 status); 281 error = ENXIO; 282 goto bad; 283 } 284 if (ah->ah_abi != HAL_ABI_VERSION) { 285 if_printf(ifp, "HAL ABI mismatch detected " 286 "(HAL:0x%x != driver:0x%x)\n", 287 ah->ah_abi, HAL_ABI_VERSION); 288 error = ENXIO; 289 goto bad; 290 } 291 sc->sc_ah = ah; 292 293 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev), 294 "pmf-powerdown", false)) 295 goto bad; 296 297 /* 298 * Check if the MAC has multi-rate retry support. 299 * We do this by trying to setup a fake extended 300 * descriptor. MAC's that don't have support will 301 * return false w/o doing anything. MAC's that do 302 * support it will return true w/o doing anything. 303 */ 304 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 305 306 /* 307 * Check if the device has hardware counters for PHY 308 * errors. If so we need to enable the MIB interrupt 309 * so we can act on stat triggers. 310 */ 311 if (ath_hal_hwphycounters(ah)) 312 sc->sc_needmib = 1; 313 314 /* 315 * Get the hardware key cache size. 316 */ 317 sc->sc_keymax = ath_hal_keycachesize(ah); 318 if (sc->sc_keymax > ATH_KEYMAX) { 319 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 320 ATH_KEYMAX, sc->sc_keymax); 321 sc->sc_keymax = ATH_KEYMAX; 322 } 323 /* 324 * Reset the key cache since some parts do not 325 * reset the contents on initial power up. 326 */ 327 for (i = 0; i < sc->sc_keymax; i++) 328 ath_hal_keyreset(ah, i); 329 /* 330 * Mark key cache slots associated with global keys 331 * as in use. If we knew TKIP was not to be used we 332 * could leave the +32, +64, and +32+64 slots free. 333 * XXX only for splitmic. 334 */ 335 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 336 setbit(sc->sc_keymap, i); 337 setbit(sc->sc_keymap, i+32); 338 setbit(sc->sc_keymap, i+64); 339 setbit(sc->sc_keymap, i+32+64); 340 } 341 342 /* 343 * Collect the channel list using the default country 344 * code and including outdoor channels. The 802.11 layer 345 * is resposible for filtering this list based on settings 346 * like the phy mode. 347 */ 348 error = ath_getchannels(sc, ath_countrycode, 349 ath_outdoor, ath_xchanmode); 350 if (error != 0) 351 goto bad; 352 353 /* 354 * Setup rate tables for all potential media types. 355 */ 356 ath_rate_setup(sc, IEEE80211_MODE_11A); 357 ath_rate_setup(sc, IEEE80211_MODE_11B); 358 ath_rate_setup(sc, IEEE80211_MODE_11G); 359 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 360 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 361 /* NB: setup here so ath_rate_update is happy */ 362 ath_setcurmode(sc, IEEE80211_MODE_11A); 363 364 /* 365 * Allocate tx+rx descriptors and populate the lists. 366 */ 367 error = ath_desc_alloc(sc); 368 if (error != 0) { 369 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 370 goto bad; 371 } 372 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 373 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 374 #if 0 375 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 376 #endif 377 378 ATH_TXBUF_LOCK_INIT(sc); 379 380 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 381 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 382 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 383 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 384 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 385 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 386 387 /* 388 * Allocate hardware transmit queues: one queue for 389 * beacon frames and one data queue for each QoS 390 * priority. Note that the hal handles reseting 391 * these queues at the needed time. 392 * 393 * XXX PS-Poll 394 */ 395 sc->sc_bhalq = ath_beaconq_setup(ah); 396 if (sc->sc_bhalq == (u_int) -1) { 397 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 398 error = EIO; 399 goto bad2; 400 } 401 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 402 if (sc->sc_cabq == NULL) { 403 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 404 error = EIO; 405 goto bad2; 406 } 407 /* NB: insure BK queue is the lowest priority h/w queue */ 408 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 409 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 410 ieee80211_wme_acnames[WME_AC_BK]); 411 error = EIO; 412 goto bad2; 413 } 414 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 415 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 416 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 417 /* 418 * Not enough hardware tx queues to properly do WME; 419 * just punt and assign them all to the same h/w queue. 420 * We could do a better job of this if, for example, 421 * we allocate queues when we switch from station to 422 * AP mode. 423 */ 424 if (sc->sc_ac2q[WME_AC_VI] != NULL) 425 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 426 if (sc->sc_ac2q[WME_AC_BE] != NULL) 427 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 428 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 429 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 430 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 431 } 432 433 /* 434 * Special case certain configurations. Note the 435 * CAB queue is handled by these specially so don't 436 * include them when checking the txq setup mask. 437 */ 438 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 439 case 0x01: 440 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 441 break; 442 case 0x0f: 443 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 444 break; 445 default: 446 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 447 break; 448 } 449 450 /* 451 * Setup rate control. Some rate control modules 452 * call back to change the anntena state so expose 453 * the necessary entry points. 454 * XXX maybe belongs in struct ath_ratectrl? 455 */ 456 sc->sc_setdefantenna = ath_setdefantenna; 457 sc->sc_rc = ath_rate_attach(sc); 458 if (sc->sc_rc == NULL) { 459 error = EIO; 460 goto bad2; 461 } 462 463 sc->sc_blinking = 0; 464 sc->sc_ledstate = 1; 465 sc->sc_ledon = 0; /* low true */ 466 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 467 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 468 /* 469 * Auto-enable soft led processing for IBM cards and for 470 * 5211 minipci cards. Users can also manually enable/disable 471 * support with a sysctl. 472 */ 473 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 474 if (sc->sc_softled) { 475 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 476 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 477 } 478 479 ifp->if_softc = sc; 480 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 481 ifp->if_start = ath_start; 482 ifp->if_stop = ath_stop; 483 ifp->if_watchdog = ath_watchdog; 484 ifp->if_ioctl = ath_ioctl; 485 ifp->if_init = ath_ifinit; 486 IFQ_SET_READY(&ifp->if_snd); 487 488 ic->ic_ifp = ifp; 489 ic->ic_reset = ath_reset; 490 ic->ic_newassoc = ath_newassoc; 491 ic->ic_updateslot = ath_updateslot; 492 ic->ic_wme.wme_update = ath_wme_update; 493 /* XXX not right but it's not used anywhere important */ 494 ic->ic_phytype = IEEE80211_T_OFDM; 495 ic->ic_opmode = IEEE80211_M_STA; 496 ic->ic_caps = 497 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 498 | IEEE80211_C_HOSTAP /* hostap mode */ 499 | IEEE80211_C_MONITOR /* monitor mode */ 500 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 501 | IEEE80211_C_SHSLOT /* short slot time supported */ 502 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 503 | IEEE80211_C_TXFRAG /* handle tx frags */ 504 ; 505 /* 506 * Query the hal to figure out h/w crypto support. 507 */ 508 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 509 ic->ic_caps |= IEEE80211_C_WEP; 510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 511 ic->ic_caps |= IEEE80211_C_AES; 512 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 513 ic->ic_caps |= IEEE80211_C_AES_CCM; 514 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 515 ic->ic_caps |= IEEE80211_C_CKIP; 516 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 517 ic->ic_caps |= IEEE80211_C_TKIP; 518 /* 519 * Check if h/w does the MIC and/or whether the 520 * separate key cache entries are required to 521 * handle both tx+rx MIC keys. 522 */ 523 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 524 ic->ic_caps |= IEEE80211_C_TKIPMIC; 525 526 /* 527 * If the h/w supports storing tx+rx MIC keys 528 * in one cache slot automatically enable use. 529 */ 530 if (ath_hal_hastkipsplit(ah) || 531 !ath_hal_settkipsplit(ah, AH_FALSE)) 532 sc->sc_splitmic = 1; 533 534 /* 535 * If the h/w can do TKIP MIC together with WME then 536 * we use it; otherwise we force the MIC to be done 537 * in software by the net80211 layer. 538 */ 539 if (ath_hal_haswmetkipmic(ah)) 540 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC; 541 } 542 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 543 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 544 /* 545 * Mark key cache slots associated with global keys 546 * as in use. If we knew TKIP was not to be used we 547 * could leave the +32, +64, and +32+64 slots free. 548 */ 549 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 550 setbit(sc->sc_keymap, i); 551 setbit(sc->sc_keymap, i+64); 552 if (sc->sc_splitmic) { 553 setbit(sc->sc_keymap, i+32); 554 setbit(sc->sc_keymap, i+32+64); 555 } 556 } 557 /* 558 * TPC support can be done either with a global cap or 559 * per-packet support. The latter is not available on 560 * all parts. We're a bit pedantic here as all parts 561 * support a global cap. 562 */ 563 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 564 ic->ic_caps |= IEEE80211_C_TXPMGT; 565 566 /* 567 * Mark WME capability only if we have sufficient 568 * hardware queues to do proper priority scheduling. 569 */ 570 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 571 ic->ic_caps |= IEEE80211_C_WME; 572 /* 573 * Check for misc other capabilities. 574 */ 575 if (ath_hal_hasbursting(ah)) 576 ic->ic_caps |= IEEE80211_C_BURST; 577 578 /* 579 * Indicate we need the 802.11 header padded to a 580 * 32-bit boundary for 4-address and QoS frames. 581 */ 582 ic->ic_flags |= IEEE80211_F_DATAPAD; 583 584 /* 585 * Query the hal about antenna support. 586 */ 587 sc->sc_defant = ath_hal_getdefantenna(ah); 588 589 /* 590 * Not all chips have the VEOL support we want to 591 * use with IBSS beacons; check here for it. 592 */ 593 sc->sc_hasveol = ath_hal_hasveol(ah); 594 595 /* get mac address from hardware */ 596 ath_hal_getmac(ah, ic->ic_myaddr); 597 598 if_attach(ifp); 599 /* call MI attach routine. */ 600 ieee80211_ifattach(ic); 601 /* override default methods */ 602 ic->ic_node_alloc = ath_node_alloc; 603 sc->sc_node_free = ic->ic_node_free; 604 ic->ic_node_free = ath_node_free; 605 ic->ic_node_getrssi = ath_node_getrssi; 606 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 607 ic->ic_recv_mgmt = ath_recv_mgmt; 608 sc->sc_newstate = ic->ic_newstate; 609 ic->ic_newstate = ath_newstate; 610 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 611 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 612 ic->ic_crypto.cs_key_delete = ath_key_delete; 613 ic->ic_crypto.cs_key_set = ath_key_set; 614 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 615 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 616 /* complete initialization */ 617 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 618 619 #if NBPFILTER > 0 620 ath_bpfattach(sc); 621 #endif 622 623 sc->sc_flags |= ATH_ATTACHED; 624 625 /* 626 * Setup dynamic sysctl's now that country code and 627 * regdomain are available from the hal. 628 */ 629 ath_sysctlattach(sc); 630 631 ieee80211_announce(ic); 632 ath_announce(sc); 633 return 0; 634 bad2: 635 ath_tx_cleanup(sc); 636 ath_desc_free(sc); 637 bad: 638 if (ah) 639 ath_hal_detach(ah); 640 /* XXX don't get under the abstraction like this */ 641 sc->sc_dev->dv_flags &= ~DVF_ACTIVE; 642 return error; 643 } 644 645 int 646 ath_detach(struct ath_softc *sc) 647 { 648 struct ifnet *ifp = &sc->sc_if; 649 int s; 650 651 if ((sc->sc_flags & ATH_ATTACHED) == 0) 652 return (0); 653 654 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 655 __func__, ifp->if_flags); 656 657 s = splnet(); 658 ath_stop(ifp, 1); 659 #if NBPFILTER > 0 660 bpfdetach(ifp); 661 #endif 662 /* 663 * NB: the order of these is important: 664 * o call the 802.11 layer before detaching the hal to 665 * insure callbacks into the driver to delete global 666 * key cache entries can be handled 667 * o reclaim the tx queue data structures after calling 668 * the 802.11 layer as we'll get called back to reclaim 669 * node state and potentially want to use them 670 * o to cleanup the tx queues the hal is called, so detach 671 * it last 672 * Other than that, it's straightforward... 673 */ 674 ieee80211_ifdetach(&sc->sc_ic); 675 #ifdef ATH_TX99_DIAG 676 if (sc->sc_tx99 != NULL) 677 sc->sc_tx99->detach(sc->sc_tx99); 678 #endif 679 ath_rate_detach(sc->sc_rc); 680 ath_desc_free(sc); 681 ath_tx_cleanup(sc); 682 sysctl_teardown(&sc->sc_sysctllog); 683 ath_hal_detach(sc->sc_ah); 684 if_detach(ifp); 685 splx(s); 686 687 return 0; 688 } 689 690 void 691 ath_suspend(struct ath_softc *sc) 692 { 693 #if notyet 694 /* 695 * Set the chip in full sleep mode. Note that we are 696 * careful to do this only when bringing the interface 697 * completely to a stop. When the chip is in this state 698 * it must be carefully woken up or references to 699 * registers in the PCI clock domain may freeze the bus 700 * (and system). This varies by chip and is mostly an 701 * issue with newer parts that go to sleep more quickly. 702 */ 703 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 704 #endif 705 } 706 707 bool 708 ath_resume(struct ath_softc *sc) 709 { 710 struct ath_hal *ah = sc->sc_ah; 711 struct ieee80211com *ic = &sc->sc_ic; 712 HAL_STATUS status; 713 int i; 714 715 #if notyet 716 ath_hal_setpower(ah, HAL_PM_AWAKE); 717 #else 718 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status); 719 #endif 720 721 /* 722 * Reset the key cache since some parts do not 723 * reset the contents on initial power up. 724 */ 725 for (i = 0; i < sc->sc_keymax; i++) 726 ath_hal_keyreset(ah, i); 727 728 ath_hal_resettxqueue(ah, sc->sc_bhalq); 729 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 730 if (ATH_TXQ_SETUP(sc, i)) 731 ath_hal_resettxqueue(ah, i); 732 733 if (sc->sc_softled) { 734 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 735 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 736 } 737 return true; 738 } 739 740 /* 741 * Interrupt handler. Most of the actual processing is deferred. 742 */ 743 int 744 ath_intr(void *arg) 745 { 746 struct ath_softc *sc = arg; 747 struct ifnet *ifp = &sc->sc_if; 748 struct ath_hal *ah = sc->sc_ah; 749 HAL_INT status; 750 751 if (!device_is_active(sc->sc_dev)) { 752 /* 753 * The hardware is not ready/present, don't touch anything. 754 * Note this can happen early on if the IRQ is shared. 755 */ 756 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 757 return 0; 758 } 759 760 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 761 return 0; 762 763 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 764 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 765 __func__, ifp->if_flags); 766 ath_hal_getisr(ah, &status); /* clear ISR */ 767 ath_hal_intrset(ah, 0); /* disable further intr's */ 768 return 1; /* XXX */ 769 } 770 /* 771 * Figure out the reason(s) for the interrupt. Note 772 * that the hal returns a pseudo-ISR that may include 773 * bits we haven't explicitly enabled so we mask the 774 * value to insure we only process bits we requested. 775 */ 776 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 777 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 778 status &= sc->sc_imask; /* discard unasked for bits */ 779 if (status & HAL_INT_FATAL) { 780 /* 781 * Fatal errors are unrecoverable. Typically 782 * these are caused by DMA errors. Unfortunately 783 * the exact reason is not (presently) returned 784 * by the hal. 785 */ 786 sc->sc_stats.ast_hardware++; 787 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 788 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 789 } else if (status & HAL_INT_RXORN) { 790 sc->sc_stats.ast_rxorn++; 791 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 792 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 793 } else { 794 if (status & HAL_INT_SWBA) { 795 /* 796 * Software beacon alert--time to send a beacon. 797 * Handle beacon transmission directly; deferring 798 * this is too slow to meet timing constraints 799 * under load. 800 */ 801 ath_beacon_proc(sc, 0); 802 } 803 if (status & HAL_INT_RXEOL) { 804 /* 805 * NB: the hardware should re-read the link when 806 * RXE bit is written, but it doesn't work at 807 * least on older hardware revs. 808 */ 809 sc->sc_stats.ast_rxeol++; 810 sc->sc_rxlink = NULL; 811 } 812 if (status & HAL_INT_TXURN) { 813 sc->sc_stats.ast_txurn++; 814 /* bump tx trigger level */ 815 ath_hal_updatetxtriglevel(ah, AH_TRUE); 816 } 817 if (status & HAL_INT_RX) 818 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 819 if (status & HAL_INT_TX) 820 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 821 if (status & HAL_INT_BMISS) { 822 sc->sc_stats.ast_bmiss++; 823 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 824 } 825 if (status & HAL_INT_MIB) { 826 sc->sc_stats.ast_mib++; 827 /* 828 * Disable interrupts until we service the MIB 829 * interrupt; otherwise it will continue to fire. 830 */ 831 ath_hal_intrset(ah, 0); 832 /* 833 * Let the hal handle the event. We assume it will 834 * clear whatever condition caused the interrupt. 835 */ 836 ath_hal_mibevent(ah, &sc->sc_halstats); 837 ath_hal_intrset(ah, sc->sc_imask); 838 } 839 } 840 return 1; 841 } 842 843 /* Swap transmit descriptor. 844 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null" 845 * function. 846 */ 847 static inline void 848 ath_desc_swap(struct ath_desc *ds) 849 { 850 #ifdef AH_NEED_DESC_SWAP 851 ds->ds_link = htole32(ds->ds_link); 852 ds->ds_data = htole32(ds->ds_data); 853 ds->ds_ctl0 = htole32(ds->ds_ctl0); 854 ds->ds_ctl1 = htole32(ds->ds_ctl1); 855 ds->ds_hw[0] = htole32(ds->ds_hw[0]); 856 ds->ds_hw[1] = htole32(ds->ds_hw[1]); 857 #endif 858 } 859 860 static void 861 ath_fatal_proc(void *arg, int pending) 862 { 863 struct ath_softc *sc = arg; 864 struct ifnet *ifp = &sc->sc_if; 865 866 if_printf(ifp, "hardware error; resetting\n"); 867 ath_reset(ifp); 868 } 869 870 static void 871 ath_rxorn_proc(void *arg, int pending) 872 { 873 struct ath_softc *sc = arg; 874 struct ifnet *ifp = &sc->sc_if; 875 876 if_printf(ifp, "rx FIFO overrun; resetting\n"); 877 ath_reset(ifp); 878 } 879 880 static void 881 ath_bmiss_proc(void *arg, int pending) 882 { 883 struct ath_softc *sc = arg; 884 struct ieee80211com *ic = &sc->sc_ic; 885 886 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 887 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 888 ("unexpect operating mode %u", ic->ic_opmode)); 889 if (ic->ic_state == IEEE80211_S_RUN) { 890 u_int64_t lastrx = sc->sc_lastrx; 891 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 892 893 DPRINTF(sc, ATH_DEBUG_BEACON, 894 "%s: tsf %" PRIu64 " lastrx %" PRId64 895 " (%" PRIu64 ") bmiss %u\n", 896 __func__, tsf, tsf - lastrx, lastrx, 897 ic->ic_bmisstimeout*1024); 898 /* 899 * Workaround phantom bmiss interrupts by sanity-checking 900 * the time of our last rx'd frame. If it is within the 901 * beacon miss interval then ignore the interrupt. If it's 902 * truly a bmiss we'll get another interrupt soon and that'll 903 * be dispatched up for processing. 904 */ 905 if (tsf - lastrx > ic->ic_bmisstimeout*1024) { 906 NET_LOCK_GIANT(); 907 ieee80211_beacon_miss(ic); 908 NET_UNLOCK_GIANT(); 909 } else 910 sc->sc_stats.ast_bmiss_phantom++; 911 } 912 } 913 914 static void 915 ath_radar_proc(void *arg, int pending) 916 { 917 #if 0 918 struct ath_softc *sc = arg; 919 struct ifnet *ifp = &sc->sc_if; 920 struct ath_hal *ah = sc->sc_ah; 921 HAL_CHANNEL hchan; 922 923 if (ath_hal_procdfs(ah, &hchan)) { 924 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 925 hchan.channel, hchan.channelFlags, hchan.privFlags); 926 /* 927 * Initiate channel change. 928 */ 929 /* XXX not yet */ 930 } 931 #endif 932 } 933 934 static u_int 935 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 936 { 937 #define N(a) (sizeof(a) / sizeof(a[0])) 938 static const u_int modeflags[] = { 939 0, /* IEEE80211_MODE_AUTO */ 940 CHANNEL_A, /* IEEE80211_MODE_11A */ 941 CHANNEL_B, /* IEEE80211_MODE_11B */ 942 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 943 0, /* IEEE80211_MODE_FH */ 944 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 945 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 946 }; 947 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 948 949 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 950 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 951 return modeflags[mode]; 952 #undef N 953 } 954 955 static int 956 ath_ifinit(struct ifnet *ifp) 957 { 958 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 959 960 return ath_init(sc); 961 } 962 963 static void 964 ath_settkipmic(struct ath_softc *sc) 965 { 966 struct ieee80211com *ic = &sc->sc_ic; 967 struct ath_hal *ah = sc->sc_ah; 968 969 if ((ic->ic_caps & IEEE80211_C_TKIP) && 970 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) { 971 if (ic->ic_flags & IEEE80211_F_WME) { 972 (void)ath_hal_settkipmic(ah, AH_FALSE); 973 ic->ic_caps &= ~IEEE80211_C_TKIPMIC; 974 } else { 975 (void)ath_hal_settkipmic(ah, AH_TRUE); 976 ic->ic_caps |= IEEE80211_C_TKIPMIC; 977 } 978 } 979 } 980 981 static int 982 ath_init(struct ath_softc *sc) 983 { 984 struct ifnet *ifp = &sc->sc_if; 985 struct ieee80211com *ic = &sc->sc_ic; 986 struct ath_hal *ah = sc->sc_ah; 987 HAL_STATUS status; 988 int error = 0; 989 990 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 991 __func__, ifp->if_flags); 992 993 if (device_is_active(sc->sc_dev)) { 994 ATH_LOCK(sc); 995 } else if (!pmf_device_resume_self(sc->sc_dev)) 996 return ENXIO; 997 else 998 ATH_LOCK(sc); 999 1000 /* 1001 * Stop anything previously setup. This is safe 1002 * whether this is the first time through or not. 1003 */ 1004 ath_stop_locked(ifp, 0); 1005 1006 /* 1007 * The basic interface to setting the hardware in a good 1008 * state is ``reset''. On return the hardware is known to 1009 * be powered up and with interrupts disabled. This must 1010 * be followed by initialization of the appropriate bits 1011 * and then setup of the interrupt mask. 1012 */ 1013 ath_settkipmic(sc); 1014 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 1015 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 1016 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1017 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1018 status); 1019 error = EIO; 1020 goto done; 1021 } 1022 1023 /* 1024 * This is needed only to setup initial state 1025 * but it's best done after a reset. 1026 */ 1027 ath_update_txpow(sc); 1028 /* 1029 * Likewise this is set during reset so update 1030 * state cached in the driver. 1031 */ 1032 ath_restore_diversity(sc); 1033 sc->sc_calinterval = 1; 1034 sc->sc_caltries = 0; 1035 1036 /* 1037 * Setup the hardware after reset: the key cache 1038 * is filled as needed and the receive engine is 1039 * set going. Frame transmit is handled entirely 1040 * in the frame output path; there's nothing to do 1041 * here except setup the interrupt mask. 1042 */ 1043 if ((error = ath_startrecv(sc)) != 0) { 1044 if_printf(ifp, "unable to start recv logic\n"); 1045 goto done; 1046 } 1047 1048 /* 1049 * Enable interrupts. 1050 */ 1051 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1052 | HAL_INT_RXEOL | HAL_INT_RXORN 1053 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1054 /* 1055 * Enable MIB interrupts when there are hardware phy counters. 1056 * Note we only do this (at the moment) for station mode. 1057 */ 1058 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1059 sc->sc_imask |= HAL_INT_MIB; 1060 ath_hal_intrset(ah, sc->sc_imask); 1061 1062 ifp->if_flags |= IFF_RUNNING; 1063 ic->ic_state = IEEE80211_S_INIT; 1064 1065 /* 1066 * The hardware should be ready to go now so it's safe 1067 * to kick the 802.11 state machine as it's likely to 1068 * immediately call back to us to send mgmt frames. 1069 */ 1070 ath_chan_change(sc, ic->ic_curchan); 1071 #ifdef ATH_TX99_DIAG 1072 if (sc->sc_tx99 != NULL) 1073 sc->sc_tx99->start(sc->sc_tx99); 1074 else 1075 #endif 1076 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1077 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1078 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1079 } else 1080 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1081 done: 1082 ATH_UNLOCK(sc); 1083 return error; 1084 } 1085 1086 static void 1087 ath_stop_locked(struct ifnet *ifp, int disable) 1088 { 1089 struct ath_softc *sc = ifp->if_softc; 1090 struct ieee80211com *ic = &sc->sc_ic; 1091 struct ath_hal *ah = sc->sc_ah; 1092 1093 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n", 1094 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags); 1095 1096 ATH_LOCK_ASSERT(sc); 1097 if (ifp->if_flags & IFF_RUNNING) { 1098 /* 1099 * Shutdown the hardware and driver: 1100 * reset 802.11 state machine 1101 * turn off timers 1102 * disable interrupts 1103 * turn off the radio 1104 * clear transmit machinery 1105 * clear receive machinery 1106 * drain and release tx queues 1107 * reclaim beacon resources 1108 * power down hardware 1109 * 1110 * Note that some of this work is not possible if the 1111 * hardware is gone (invalid). 1112 */ 1113 #ifdef ATH_TX99_DIAG 1114 if (sc->sc_tx99 != NULL) 1115 sc->sc_tx99->stop(sc->sc_tx99); 1116 #endif 1117 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1118 ifp->if_flags &= ~IFF_RUNNING; 1119 ifp->if_timer = 0; 1120 if (device_is_enabled(sc->sc_dev)) { 1121 if (sc->sc_softled) { 1122 callout_stop(&sc->sc_ledtimer); 1123 ath_hal_gpioset(ah, sc->sc_ledpin, 1124 !sc->sc_ledon); 1125 sc->sc_blinking = 0; 1126 } 1127 ath_hal_intrset(ah, 0); 1128 } 1129 ath_draintxq(sc); 1130 if (device_is_enabled(sc->sc_dev)) { 1131 ath_stoprecv(sc); 1132 ath_hal_phydisable(ah); 1133 } else 1134 sc->sc_rxlink = NULL; 1135 IF_PURGE(&ifp->if_snd); 1136 ath_beacon_free(sc); 1137 if (disable) 1138 pmf_device_suspend_self(sc->sc_dev); 1139 } 1140 } 1141 1142 static void 1143 ath_stop(struct ifnet *ifp, int disable) 1144 { 1145 struct ath_softc *sc = ifp->if_softc; 1146 1147 ATH_LOCK(sc); 1148 ath_stop_locked(ifp, disable); 1149 ATH_UNLOCK(sc); 1150 } 1151 1152 static void 1153 ath_restore_diversity(struct ath_softc *sc) 1154 { 1155 struct ifnet *ifp = &sc->sc_if; 1156 struct ath_hal *ah = sc->sc_ah; 1157 1158 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) || 1159 sc->sc_diversity != ath_hal_getdiversity(ah)) { 1160 if_printf(ifp, "could not restore diversity setting %d\n", 1161 sc->sc_diversity); 1162 sc->sc_diversity = ath_hal_getdiversity(ah); 1163 } 1164 } 1165 1166 /* 1167 * Reset the hardware w/o losing operational state. This is 1168 * basically a more efficient way of doing ath_stop, ath_init, 1169 * followed by state transitions to the current 802.11 1170 * operational state. Used to recover from various errors and 1171 * to reset or reload hardware state. 1172 */ 1173 int 1174 ath_reset(struct ifnet *ifp) 1175 { 1176 struct ath_softc *sc = ifp->if_softc; 1177 struct ieee80211com *ic = &sc->sc_ic; 1178 struct ath_hal *ah = sc->sc_ah; 1179 struct ieee80211_channel *c; 1180 HAL_STATUS status; 1181 1182 /* 1183 * Convert to a HAL channel description with the flags 1184 * constrained to reflect the current operating mode. 1185 */ 1186 c = ic->ic_curchan; 1187 sc->sc_curchan.channel = c->ic_freq; 1188 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1189 1190 ath_hal_intrset(ah, 0); /* disable interrupts */ 1191 ath_draintxq(sc); /* stop xmit side */ 1192 ath_stoprecv(sc); /* stop recv side */ 1193 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1194 /* NB: indicate channel change so we do a full reset */ 1195 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1196 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1197 __func__, status); 1198 ath_update_txpow(sc); /* update tx power state */ 1199 ath_restore_diversity(sc); 1200 sc->sc_calinterval = 1; 1201 sc->sc_caltries = 0; 1202 if (ath_startrecv(sc) != 0) /* restart recv */ 1203 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1204 /* 1205 * We may be doing a reset in response to an ioctl 1206 * that changes the channel so update any state that 1207 * might change as a result. 1208 */ 1209 ath_chan_change(sc, c); 1210 if (ic->ic_state == IEEE80211_S_RUN) 1211 ath_beacon_config(sc); /* restart beacons */ 1212 ath_hal_intrset(ah, sc->sc_imask); 1213 1214 ath_start(ifp); /* restart xmit */ 1215 return 0; 1216 } 1217 1218 /* 1219 * Cleanup driver resources when we run out of buffers 1220 * while processing fragments; return the tx buffers 1221 * allocated and drop node references. 1222 */ 1223 static void 1224 ath_txfrag_cleanup(struct ath_softc *sc, 1225 ath_bufhead *frags, struct ieee80211_node *ni) 1226 { 1227 struct ath_buf *bf; 1228 1229 ATH_TXBUF_LOCK_ASSERT(sc); 1230 1231 while ((bf = STAILQ_FIRST(frags)) != NULL) { 1232 STAILQ_REMOVE_HEAD(frags, bf_list); 1233 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1234 sc->sc_if.if_flags &= ~IFF_OACTIVE; 1235 ieee80211_node_decref(ni); 1236 } 1237 } 1238 1239 /* 1240 * Setup xmit of a fragmented frame. Allocate a buffer 1241 * for each frag and bump the node reference count to 1242 * reflect the held reference to be setup by ath_tx_start. 1243 */ 1244 static int 1245 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 1246 struct mbuf *m0, struct ieee80211_node *ni) 1247 { 1248 struct mbuf *m; 1249 struct ath_buf *bf; 1250 1251 ATH_TXBUF_LOCK(sc); 1252 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1253 bf = STAILQ_FIRST(&sc->sc_txbuf); 1254 if (bf == NULL) { /* out of buffers, cleanup */ 1255 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1256 __func__); 1257 sc->sc_if.if_flags |= IFF_OACTIVE; 1258 ath_txfrag_cleanup(sc, frags, ni); 1259 break; 1260 } 1261 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1262 ieee80211_node_incref(ni); 1263 STAILQ_INSERT_TAIL(frags, bf, bf_list); 1264 } 1265 ATH_TXBUF_UNLOCK(sc); 1266 1267 return !STAILQ_EMPTY(frags); 1268 } 1269 1270 static void 1271 ath_start(struct ifnet *ifp) 1272 { 1273 struct ath_softc *sc = ifp->if_softc; 1274 struct ath_hal *ah = sc->sc_ah; 1275 struct ieee80211com *ic = &sc->sc_ic; 1276 struct ieee80211_node *ni; 1277 struct ath_buf *bf; 1278 struct mbuf *m, *next; 1279 struct ieee80211_frame *wh; 1280 struct ether_header *eh; 1281 ath_bufhead frags; 1282 1283 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1284 !device_is_active(sc->sc_dev)) 1285 return; 1286 for (;;) { 1287 /* 1288 * Grab a TX buffer and associated resources. 1289 */ 1290 ATH_TXBUF_LOCK(sc); 1291 bf = STAILQ_FIRST(&sc->sc_txbuf); 1292 if (bf != NULL) 1293 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1294 ATH_TXBUF_UNLOCK(sc); 1295 if (bf == NULL) { 1296 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1297 __func__); 1298 sc->sc_stats.ast_tx_qstop++; 1299 ifp->if_flags |= IFF_OACTIVE; 1300 break; 1301 } 1302 /* 1303 * Poll the management queue for frames; they 1304 * have priority over normal data frames. 1305 */ 1306 IF_DEQUEUE(&ic->ic_mgtq, m); 1307 if (m == NULL) { 1308 /* 1309 * No data frames go out unless we're associated. 1310 */ 1311 if (ic->ic_state != IEEE80211_S_RUN) { 1312 DPRINTF(sc, ATH_DEBUG_XMIT, 1313 "%s: discard data packet, state %s\n", 1314 __func__, 1315 ieee80211_state_name[ic->ic_state]); 1316 sc->sc_stats.ast_tx_discard++; 1317 ATH_TXBUF_LOCK(sc); 1318 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1319 ATH_TXBUF_UNLOCK(sc); 1320 break; 1321 } 1322 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1323 if (m == NULL) { 1324 ATH_TXBUF_LOCK(sc); 1325 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1326 ATH_TXBUF_UNLOCK(sc); 1327 break; 1328 } 1329 STAILQ_INIT(&frags); 1330 /* 1331 * Find the node for the destination so we can do 1332 * things like power save and fast frames aggregation. 1333 */ 1334 if (m->m_len < sizeof(struct ether_header) && 1335 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1336 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1337 ni = NULL; 1338 goto bad; 1339 } 1340 eh = mtod(m, struct ether_header *); 1341 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1342 if (ni == NULL) { 1343 /* NB: ieee80211_find_txnode does stat+msg */ 1344 m_freem(m); 1345 goto bad; 1346 } 1347 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1348 (m->m_flags & M_PWR_SAV) == 0) { 1349 /* 1350 * Station in power save mode; pass the frame 1351 * to the 802.11 layer and continue. We'll get 1352 * the frame back when the time is right. 1353 */ 1354 ieee80211_pwrsave(ic, ni, m); 1355 goto reclaim; 1356 } 1357 /* calculate priority so we can find the tx queue */ 1358 if (ieee80211_classify(ic, m, ni)) { 1359 DPRINTF(sc, ATH_DEBUG_XMIT, 1360 "%s: discard, classification failure\n", 1361 __func__); 1362 m_freem(m); 1363 goto bad; 1364 } 1365 ifp->if_opackets++; 1366 1367 #if NBPFILTER > 0 1368 if (ifp->if_bpf) 1369 bpf_mtap(ifp->if_bpf, m); 1370 #endif 1371 /* 1372 * Encapsulate the packet in prep for transmission. 1373 */ 1374 m = ieee80211_encap(ic, m, ni); 1375 if (m == NULL) { 1376 DPRINTF(sc, ATH_DEBUG_XMIT, 1377 "%s: encapsulation failure\n", 1378 __func__); 1379 sc->sc_stats.ast_tx_encap++; 1380 goto bad; 1381 } 1382 /* 1383 * Check for fragmentation. If this has frame 1384 * has been broken up verify we have enough 1385 * buffers to send all the fragments so all 1386 * go out or none... 1387 */ 1388 if ((m->m_flags & M_FRAG) && 1389 !ath_txfrag_setup(sc, &frags, m, ni)) { 1390 DPRINTF(sc, ATH_DEBUG_ANY, 1391 "%s: out of txfrag buffers\n", __func__); 1392 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1393 ath_freetx(m); 1394 goto bad; 1395 } 1396 } else { 1397 /* 1398 * Hack! The referenced node pointer is in the 1399 * rcvif field of the packet header. This is 1400 * placed there by ieee80211_mgmt_output because 1401 * we need to hold the reference with the frame 1402 * and there's no other way (other than packet 1403 * tags which we consider too expensive to use) 1404 * to pass it along. 1405 */ 1406 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1407 m->m_pkthdr.rcvif = NULL; 1408 1409 wh = mtod(m, struct ieee80211_frame *); 1410 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1411 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1412 /* fill time stamp */ 1413 u_int64_t tsf; 1414 u_int32_t *tstamp; 1415 1416 tsf = ath_hal_gettsf64(ah); 1417 /* XXX: adjust 100us delay to xmit */ 1418 tsf += 100; 1419 tstamp = (u_int32_t *)&wh[1]; 1420 tstamp[0] = htole32(tsf & 0xffffffff); 1421 tstamp[1] = htole32(tsf >> 32); 1422 } 1423 sc->sc_stats.ast_tx_mgmt++; 1424 } 1425 1426 nextfrag: 1427 next = m->m_nextpkt; 1428 if (ath_tx_start(sc, ni, bf, m)) { 1429 bad: 1430 ifp->if_oerrors++; 1431 reclaim: 1432 ATH_TXBUF_LOCK(sc); 1433 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1434 ath_txfrag_cleanup(sc, &frags, ni); 1435 ATH_TXBUF_UNLOCK(sc); 1436 if (ni != NULL) 1437 ieee80211_free_node(ni); 1438 continue; 1439 } 1440 if (next != NULL) { 1441 m = next; 1442 bf = STAILQ_FIRST(&frags); 1443 KASSERT(bf != NULL, ("no buf for txfrag")); 1444 STAILQ_REMOVE_HEAD(&frags, bf_list); 1445 goto nextfrag; 1446 } 1447 1448 ifp->if_timer = 1; 1449 } 1450 } 1451 1452 static int 1453 ath_media_change(struct ifnet *ifp) 1454 { 1455 #define IS_UP(ifp) \ 1456 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1457 int error; 1458 1459 error = ieee80211_media_change(ifp); 1460 if (error == ENETRESET) { 1461 if (IS_UP(ifp)) 1462 ath_init(ifp->if_softc); /* XXX lose error */ 1463 error = 0; 1464 } 1465 return error; 1466 #undef IS_UP 1467 } 1468 1469 #ifdef AR_DEBUG 1470 static void 1471 ath_keyprint(const char *tag, u_int ix, 1472 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1473 { 1474 static const char *ciphers[] = { 1475 "WEP", 1476 "AES-OCB", 1477 "AES-CCM", 1478 "CKIP", 1479 "TKIP", 1480 "CLR", 1481 }; 1482 int i, n; 1483 1484 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1485 for (i = 0, n = hk->kv_len; i < n; i++) 1486 printf("%02x", hk->kv_val[i]); 1487 printf(" mac %s", ether_sprintf(mac)); 1488 if (hk->kv_type == HAL_CIPHER_TKIP) { 1489 printf(" mic "); 1490 for (i = 0; i < sizeof(hk->kv_mic); i++) 1491 printf("%02x", hk->kv_mic[i]); 1492 } 1493 printf("\n"); 1494 } 1495 #endif 1496 1497 /* 1498 * Set a TKIP key into the hardware. This handles the 1499 * potential distribution of key state to multiple key 1500 * cache slots for TKIP. 1501 */ 1502 static int 1503 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1504 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1505 { 1506 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1507 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1508 struct ath_hal *ah = sc->sc_ah; 1509 1510 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1511 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1512 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1513 if (sc->sc_splitmic) { 1514 /* 1515 * TX key goes at first index, RX key at the rx index. 1516 * The hal handles the MIC keys at index+64. 1517 */ 1518 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1519 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1520 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, 1521 zerobssid)) 1522 return 0; 1523 1524 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1525 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1526 /* XXX delete tx key on failure? */ 1527 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32), 1528 hk, mac); 1529 } else { 1530 /* 1531 * Room for both TX+RX MIC keys in one key cache 1532 * slot, just set key at the first index; the HAL 1533 * will handle the reset. 1534 */ 1535 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1536 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1537 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1538 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1539 } 1540 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 1541 if (sc->sc_splitmic) { 1542 /* 1543 * NB: must pass MIC key in expected location when 1544 * the keycache only holds one MIC key per entry. 1545 */ 1546 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 1547 } else 1548 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1549 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1550 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1551 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 1552 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1553 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1554 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1555 } 1556 return 0; 1557 #undef IEEE80211_KEY_XR 1558 } 1559 1560 /* 1561 * Set a net80211 key into the hardware. This handles the 1562 * potential distribution of key state to multiple key 1563 * cache slots for TKIP with hardware MIC support. 1564 */ 1565 static int 1566 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1567 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1568 struct ieee80211_node *bss) 1569 { 1570 #define N(a) (sizeof(a)/sizeof(a[0])) 1571 static const u_int8_t ciphermap[] = { 1572 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1573 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1574 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1575 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1576 (u_int8_t) -1, /* 4 is not allocated */ 1577 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1578 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1579 }; 1580 struct ath_hal *ah = sc->sc_ah; 1581 const struct ieee80211_cipher *cip = k->wk_cipher; 1582 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1583 const u_int8_t *mac; 1584 HAL_KEYVAL hk; 1585 1586 memset(&hk, 0, sizeof(hk)); 1587 /* 1588 * Software crypto uses a "clear key" so non-crypto 1589 * state kept in the key cache are maintained and 1590 * so that rx frames have an entry to match. 1591 */ 1592 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1593 KASSERT(cip->ic_cipher < N(ciphermap), 1594 ("invalid cipher type %u", cip->ic_cipher)); 1595 hk.kv_type = ciphermap[cip->ic_cipher]; 1596 hk.kv_len = k->wk_keylen; 1597 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1598 } else 1599 hk.kv_type = HAL_CIPHER_CLR; 1600 1601 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1602 /* 1603 * Group keys on hardware that supports multicast frame 1604 * key search use a mac that is the sender's address with 1605 * the high bit set instead of the app-specified address. 1606 */ 1607 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1608 gmac[0] |= 0x80; 1609 mac = gmac; 1610 } else 1611 mac = mac0; 1612 1613 if ((hk.kv_type == HAL_CIPHER_TKIP && 1614 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) { 1615 return ath_keyset_tkip(sc, k, &hk, mac); 1616 } else { 1617 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1618 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac); 1619 } 1620 #undef N 1621 } 1622 1623 /* 1624 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1625 * each key, one for decrypt/encrypt and the other for the MIC. 1626 */ 1627 static u_int16_t 1628 key_alloc_2pair(struct ath_softc *sc, 1629 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1630 { 1631 #define N(a) (sizeof(a)/sizeof(a[0])) 1632 u_int i, keyix; 1633 1634 KASSERT(sc->sc_splitmic, ("key cache !split")); 1635 /* XXX could optimize */ 1636 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1637 u_int8_t b = sc->sc_keymap[i]; 1638 if (b != 0xff) { 1639 /* 1640 * One or more slots in this byte are free. 1641 */ 1642 keyix = i*NBBY; 1643 while (b & 1) { 1644 again: 1645 keyix++; 1646 b >>= 1; 1647 } 1648 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1649 if (isset(sc->sc_keymap, keyix+32) || 1650 isset(sc->sc_keymap, keyix+64) || 1651 isset(sc->sc_keymap, keyix+32+64)) { 1652 /* full pair unavailable */ 1653 /* XXX statistic */ 1654 if (keyix == (i+1)*NBBY) { 1655 /* no slots were appropriate, advance */ 1656 continue; 1657 } 1658 goto again; 1659 } 1660 setbit(sc->sc_keymap, keyix); 1661 setbit(sc->sc_keymap, keyix+64); 1662 setbit(sc->sc_keymap, keyix+32); 1663 setbit(sc->sc_keymap, keyix+32+64); 1664 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1665 "%s: key pair %u,%u %u,%u\n", 1666 __func__, keyix, keyix+64, 1667 keyix+32, keyix+32+64); 1668 *txkeyix = keyix; 1669 *rxkeyix = keyix+32; 1670 return keyix; 1671 } 1672 } 1673 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1674 return IEEE80211_KEYIX_NONE; 1675 #undef N 1676 } 1677 1678 /* 1679 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1680 * each key, one for decrypt/encrypt and the other for the MIC. 1681 */ 1682 static int 1683 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, 1684 ieee80211_keyix *rxkeyix) 1685 { 1686 #define N(a) (sizeof(a)/sizeof(a[0])) 1687 u_int i, keyix; 1688 1689 KASSERT(!sc->sc_splitmic, ("key cache split")); 1690 /* XXX could optimize */ 1691 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1692 uint8_t b = sc->sc_keymap[i]; 1693 if (b != 0xff) { 1694 /* 1695 * One or more slots in this byte are free. 1696 */ 1697 keyix = i*NBBY; 1698 while (b & 1) { 1699 again: 1700 keyix++; 1701 b >>= 1; 1702 } 1703 if (isset(sc->sc_keymap, keyix+64)) { 1704 /* full pair unavailable */ 1705 /* XXX statistic */ 1706 if (keyix == (i+1)*NBBY) { 1707 /* no slots were appropriate, advance */ 1708 continue; 1709 } 1710 goto again; 1711 } 1712 setbit(sc->sc_keymap, keyix); 1713 setbit(sc->sc_keymap, keyix+64); 1714 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1715 "%s: key pair %u,%u\n", 1716 __func__, keyix, keyix+64); 1717 *txkeyix = *rxkeyix = keyix; 1718 return 1; 1719 } 1720 } 1721 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1722 return 0; 1723 #undef N 1724 } 1725 1726 /* 1727 * Allocate a single key cache slot. 1728 */ 1729 static int 1730 key_alloc_single(struct ath_softc *sc, 1731 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1732 { 1733 #define N(a) (sizeof(a)/sizeof(a[0])) 1734 u_int i, keyix; 1735 1736 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1737 for (i = 0; i < N(sc->sc_keymap); i++) { 1738 u_int8_t b = sc->sc_keymap[i]; 1739 if (b != 0xff) { 1740 /* 1741 * One or more slots are free. 1742 */ 1743 keyix = i*NBBY; 1744 while (b & 1) 1745 keyix++, b >>= 1; 1746 setbit(sc->sc_keymap, keyix); 1747 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1748 __func__, keyix); 1749 *txkeyix = *rxkeyix = keyix; 1750 return 1; 1751 } 1752 } 1753 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1754 return 0; 1755 #undef N 1756 } 1757 1758 /* 1759 * Allocate one or more key cache slots for a uniacst key. The 1760 * key itself is needed only to identify the cipher. For hardware 1761 * TKIP with split cipher+MIC keys we allocate two key cache slot 1762 * pairs so that we can setup separate TX and RX MIC keys. Note 1763 * that the MIC key for a TKIP key at slot i is assumed by the 1764 * hardware to be at slot i+64. This limits TKIP keys to the first 1765 * 64 entries. 1766 */ 1767 static int 1768 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1769 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1770 { 1771 struct ath_softc *sc = ic->ic_ifp->if_softc; 1772 1773 /* 1774 * Group key allocation must be handled specially for 1775 * parts that do not support multicast key cache search 1776 * functionality. For those parts the key id must match 1777 * the h/w key index so lookups find the right key. On 1778 * parts w/ the key search facility we install the sender's 1779 * mac address (with the high bit set) and let the hardware 1780 * find the key w/o using the key id. This is preferred as 1781 * it permits us to support multiple users for adhoc and/or 1782 * multi-station operation. 1783 */ 1784 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1785 if (!(&ic->ic_nw_keys[0] <= k && 1786 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1787 /* should not happen */ 1788 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1789 "%s: bogus group key\n", __func__); 1790 return 0; 1791 } 1792 /* 1793 * XXX we pre-allocate the global keys so 1794 * have no way to check if they've already been allocated. 1795 */ 1796 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1797 return 1; 1798 } 1799 1800 /* 1801 * We allocate two pair for TKIP when using the h/w to do 1802 * the MIC. For everything else, including software crypto, 1803 * we allocate a single entry. Note that s/w crypto requires 1804 * a pass-through slot on the 5211 and 5212. The 5210 does 1805 * not support pass-through cache entries and we map all 1806 * those requests to slot 0. 1807 */ 1808 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1809 return key_alloc_single(sc, keyix, rxkeyix); 1810 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1811 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1812 if (sc->sc_splitmic) 1813 return key_alloc_2pair(sc, keyix, rxkeyix); 1814 else 1815 return key_alloc_pair(sc, keyix, rxkeyix); 1816 } else { 1817 return key_alloc_single(sc, keyix, rxkeyix); 1818 } 1819 } 1820 1821 /* 1822 * Delete an entry in the key cache allocated by ath_key_alloc. 1823 */ 1824 static int 1825 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1826 { 1827 struct ath_softc *sc = ic->ic_ifp->if_softc; 1828 struct ath_hal *ah = sc->sc_ah; 1829 const struct ieee80211_cipher *cip = k->wk_cipher; 1830 u_int keyix = k->wk_keyix; 1831 1832 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1833 1834 if (!device_has_power(sc->sc_dev)) { 1835 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n", 1836 k->wk_keyix); 1837 } 1838 1839 ath_hal_keyreset(ah, keyix); 1840 /* 1841 * Handle split tx/rx keying required for TKIP with h/w MIC. 1842 */ 1843 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1844 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1845 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1846 if (keyix >= IEEE80211_WEP_NKID) { 1847 /* 1848 * Don't touch keymap entries for global keys so 1849 * they are never considered for dynamic allocation. 1850 */ 1851 clrbit(sc->sc_keymap, keyix); 1852 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1853 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1854 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1855 if (sc->sc_splitmic) { 1856 /* +32 for RX key, +32+64 for RX key MIC */ 1857 clrbit(sc->sc_keymap, keyix+32); 1858 clrbit(sc->sc_keymap, keyix+32+64); 1859 } 1860 } 1861 } 1862 return 1; 1863 } 1864 1865 /* 1866 * Set the key cache contents for the specified key. Key cache 1867 * slot(s) must already have been allocated by ath_key_alloc. 1868 */ 1869 static int 1870 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1871 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1872 { 1873 struct ath_softc *sc = ic->ic_ifp->if_softc; 1874 1875 if (!device_has_power(sc->sc_dev)) { 1876 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n", 1877 k->wk_keyix); 1878 } 1879 return ath_keyset(sc, k, mac, ic->ic_bss); 1880 } 1881 1882 /* 1883 * Block/unblock tx+rx processing while a key change is done. 1884 * We assume the caller serializes key management operations 1885 * so we only need to worry about synchronization with other 1886 * uses that originate in the driver. 1887 */ 1888 static void 1889 ath_key_update_begin(struct ieee80211com *ic) 1890 { 1891 struct ifnet *ifp = ic->ic_ifp; 1892 struct ath_softc *sc = ifp->if_softc; 1893 1894 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1895 #if 0 1896 tasklet_disable(&sc->sc_rxtq); 1897 #endif 1898 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1899 } 1900 1901 static void 1902 ath_key_update_end(struct ieee80211com *ic) 1903 { 1904 struct ifnet *ifp = ic->ic_ifp; 1905 struct ath_softc *sc = ifp->if_softc; 1906 1907 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1908 IF_UNLOCK(&ifp->if_snd); 1909 #if 0 1910 tasklet_enable(&sc->sc_rxtq); 1911 #endif 1912 } 1913 1914 /* 1915 * Calculate the receive filter according to the 1916 * operating mode and state: 1917 * 1918 * o always accept unicast, broadcast, and multicast traffic 1919 * o maintain current state of phy error reception (the hal 1920 * may enable phy error frames for noise immunity work) 1921 * o probe request frames are accepted only when operating in 1922 * hostap, adhoc, or monitor modes 1923 * o enable promiscuous mode according to the interface state 1924 * o accept beacons: 1925 * - when operating in adhoc mode so the 802.11 layer creates 1926 * node table entries for peers, 1927 * - when operating in station mode for collecting rssi data when 1928 * the station is otherwise quiet, or 1929 * - when scanning 1930 */ 1931 static u_int32_t 1932 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1933 { 1934 struct ieee80211com *ic = &sc->sc_ic; 1935 struct ath_hal *ah = sc->sc_ah; 1936 struct ifnet *ifp = &sc->sc_if; 1937 u_int32_t rfilt; 1938 1939 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1940 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1941 if (ic->ic_opmode != IEEE80211_M_STA) 1942 rfilt |= HAL_RX_FILTER_PROBEREQ; 1943 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1944 (ifp->if_flags & IFF_PROMISC)) 1945 rfilt |= HAL_RX_FILTER_PROM; 1946 if (ifp->if_flags & IFF_PROMISC) 1947 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ; 1948 if (ic->ic_opmode == IEEE80211_M_STA || 1949 ic->ic_opmode == IEEE80211_M_IBSS || 1950 state == IEEE80211_S_SCAN) 1951 rfilt |= HAL_RX_FILTER_BEACON; 1952 return rfilt; 1953 } 1954 1955 static void 1956 ath_mode_init(struct ath_softc *sc) 1957 { 1958 struct ifnet *ifp = &sc->sc_if; 1959 struct ieee80211com *ic = &sc->sc_ic; 1960 struct ath_hal *ah = sc->sc_ah; 1961 struct ether_multi *enm; 1962 struct ether_multistep estep; 1963 u_int32_t rfilt, mfilt[2], val; 1964 int i; 1965 uint8_t pos; 1966 1967 /* configure rx filter */ 1968 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1969 ath_hal_setrxfilter(ah, rfilt); 1970 1971 /* configure operational mode */ 1972 ath_hal_setopmode(ah); 1973 1974 /* Write keys to hardware; it may have been powered down. */ 1975 ath_key_update_begin(ic); 1976 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1977 ath_key_set(ic, 1978 &ic->ic_crypto.cs_nw_keys[i], 1979 ic->ic_myaddr); 1980 } 1981 ath_key_update_end(ic); 1982 1983 /* 1984 * Handle any link-level address change. Note that we only 1985 * need to force ic_myaddr; any other addresses are handled 1986 * as a byproduct of the ifnet code marking the interface 1987 * down then up. 1988 * 1989 * XXX should get from lladdr instead of arpcom but that's more work 1990 */ 1991 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl)); 1992 ath_hal_setmac(ah, ic->ic_myaddr); 1993 1994 /* calculate and install multicast filter */ 1995 ifp->if_flags &= ~IFF_ALLMULTI; 1996 mfilt[0] = mfilt[1] = 0; 1997 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1998 while (enm != NULL) { 1999 void *dl; 2000 /* XXX Punt on ranges. */ 2001 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 2002 mfilt[0] = mfilt[1] = 0xffffffff; 2003 ifp->if_flags |= IFF_ALLMULTI; 2004 break; 2005 } 2006 dl = enm->enm_addrlo; 2007 val = LE_READ_4((char *)dl + 0); 2008 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2009 val = LE_READ_4((char *)dl + 3); 2010 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2011 pos &= 0x3f; 2012 mfilt[pos / 32] |= (1 << (pos % 32)); 2013 2014 ETHER_NEXT_MULTI(estep, enm); 2015 } 2016 2017 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 2018 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 2019 __func__, rfilt, mfilt[0], mfilt[1]); 2020 } 2021 2022 /* 2023 * Set the slot time based on the current setting. 2024 */ 2025 static void 2026 ath_setslottime(struct ath_softc *sc) 2027 { 2028 struct ieee80211com *ic = &sc->sc_ic; 2029 struct ath_hal *ah = sc->sc_ah; 2030 2031 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2032 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 2033 else 2034 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 2035 sc->sc_updateslot = OK; 2036 } 2037 2038 /* 2039 * Callback from the 802.11 layer to update the 2040 * slot time based on the current setting. 2041 */ 2042 static void 2043 ath_updateslot(struct ifnet *ifp) 2044 { 2045 struct ath_softc *sc = ifp->if_softc; 2046 struct ieee80211com *ic = &sc->sc_ic; 2047 2048 /* 2049 * When not coordinating the BSS, change the hardware 2050 * immediately. For other operation we defer the change 2051 * until beacon updates have propagated to the stations. 2052 */ 2053 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2054 sc->sc_updateslot = UPDATE; 2055 else 2056 ath_setslottime(sc); 2057 } 2058 2059 /* 2060 * Setup a h/w transmit queue for beacons. 2061 */ 2062 static int 2063 ath_beaconq_setup(struct ath_hal *ah) 2064 { 2065 HAL_TXQ_INFO qi; 2066 2067 memset(&qi, 0, sizeof(qi)); 2068 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2069 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2070 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2071 /* NB: for dynamic turbo, don't enable any other interrupts */ 2072 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2073 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2074 } 2075 2076 /* 2077 * Setup the transmit queue parameters for the beacon queue. 2078 */ 2079 static int 2080 ath_beaconq_config(struct ath_softc *sc) 2081 { 2082 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2083 struct ieee80211com *ic = &sc->sc_ic; 2084 struct ath_hal *ah = sc->sc_ah; 2085 HAL_TXQ_INFO qi; 2086 2087 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2088 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2089 /* 2090 * Always burst out beacon and CAB traffic. 2091 */ 2092 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2093 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2094 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2095 } else { 2096 struct wmeParams *wmep = 2097 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2098 /* 2099 * Adhoc mode; important thing is to use 2x cwmin. 2100 */ 2101 qi.tqi_aifs = wmep->wmep_aifsn; 2102 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2103 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2104 } 2105 2106 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2107 device_printf(sc->sc_dev, "unable to update parameters for " 2108 "beacon hardware queue!\n"); 2109 return 0; 2110 } else { 2111 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2112 return 1; 2113 } 2114 #undef ATH_EXPONENT_TO_VALUE 2115 } 2116 2117 /* 2118 * Allocate and setup an initial beacon frame. 2119 */ 2120 static int 2121 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2122 { 2123 struct ieee80211com *ic = ni->ni_ic; 2124 struct ath_buf *bf; 2125 struct mbuf *m; 2126 int error; 2127 2128 bf = STAILQ_FIRST(&sc->sc_bbuf); 2129 if (bf == NULL) { 2130 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 2131 sc->sc_stats.ast_be_nombuf++; /* XXX */ 2132 return ENOMEM; /* XXX */ 2133 } 2134 /* 2135 * NB: the beacon data buffer must be 32-bit aligned; 2136 * we assume the mbuf routines will return us something 2137 * with this alignment (perhaps should assert). 2138 */ 2139 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 2140 if (m == NULL) { 2141 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 2142 __func__); 2143 sc->sc_stats.ast_be_nombuf++; 2144 return ENOMEM; 2145 } 2146 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2147 BUS_DMA_NOWAIT); 2148 if (error == 0) { 2149 bf->bf_m = m; 2150 bf->bf_node = ieee80211_ref_node(ni); 2151 } else { 2152 m_freem(m); 2153 } 2154 return error; 2155 } 2156 2157 /* 2158 * Setup the beacon frame for transmit. 2159 */ 2160 static void 2161 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2162 { 2163 #define USE_SHPREAMBLE(_ic) \ 2164 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2165 == IEEE80211_F_SHPREAMBLE) 2166 struct ieee80211_node *ni = bf->bf_node; 2167 struct ieee80211com *ic = ni->ni_ic; 2168 struct mbuf *m = bf->bf_m; 2169 struct ath_hal *ah = sc->sc_ah; 2170 struct ath_desc *ds; 2171 int flags, antenna; 2172 const HAL_RATE_TABLE *rt; 2173 u_int8_t rix, rate; 2174 2175 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 2176 __func__, m, m->m_len); 2177 2178 /* setup descriptors */ 2179 ds = bf->bf_desc; 2180 2181 flags = HAL_TXDESC_NOACK; 2182 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2183 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */ 2184 flags |= HAL_TXDESC_VEOL; 2185 /* 2186 * Let hardware handle antenna switching unless 2187 * the user has selected a transmit antenna 2188 * (sc_txantenna is not 0). 2189 */ 2190 antenna = sc->sc_txantenna; 2191 } else { 2192 ds->ds_link = 0; 2193 /* 2194 * Switch antenna every 4 beacons, unless the user 2195 * has selected a transmit antenna (sc_txantenna 2196 * is not 0). 2197 * 2198 * XXX assumes two antenna 2199 */ 2200 if (sc->sc_txantenna == 0) 2201 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2202 else 2203 antenna = sc->sc_txantenna; 2204 } 2205 2206 KASSERT(bf->bf_nseg == 1, 2207 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2208 ds->ds_data = bf->bf_segs[0].ds_addr; 2209 /* 2210 * Calculate rate code. 2211 * XXX everything at min xmit rate 2212 */ 2213 rix = sc->sc_minrateix; 2214 rt = sc->sc_currates; 2215 rate = rt->info[rix].rateCode; 2216 if (USE_SHPREAMBLE(ic)) 2217 rate |= rt->info[rix].shortPreamble; 2218 ath_hal_setuptxdesc(ah, ds 2219 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2220 , sizeof(struct ieee80211_frame)/* header length */ 2221 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2222 , ni->ni_txpower /* txpower XXX */ 2223 , rate, 1 /* series 0 rate/tries */ 2224 , HAL_TXKEYIX_INVALID /* no encryption */ 2225 , antenna /* antenna mode */ 2226 , flags /* no ack, veol for beacons */ 2227 , 0 /* rts/cts rate */ 2228 , 0 /* rts/cts duration */ 2229 ); 2230 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2231 ath_hal_filltxdesc(ah, ds 2232 , roundup(m->m_len, 4) /* buffer length */ 2233 , AH_TRUE /* first segment */ 2234 , AH_TRUE /* last segment */ 2235 , ds /* first descriptor */ 2236 ); 2237 2238 /* NB: The desc swap function becomes void, if descriptor swapping 2239 * is not enabled 2240 */ 2241 ath_desc_swap(ds); 2242 2243 #undef USE_SHPREAMBLE 2244 } 2245 2246 /* 2247 * Transmit a beacon frame at SWBA. Dynamic updates to the 2248 * frame contents are done as needed and the slot time is 2249 * also adjusted based on current state. 2250 */ 2251 static void 2252 ath_beacon_proc(void *arg, int pending) 2253 { 2254 struct ath_softc *sc = arg; 2255 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2256 struct ieee80211_node *ni = bf->bf_node; 2257 struct ieee80211com *ic = ni->ni_ic; 2258 struct ath_hal *ah = sc->sc_ah; 2259 struct mbuf *m; 2260 int ncabq, error, otherant; 2261 2262 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2263 __func__, pending); 2264 2265 if (ic->ic_opmode == IEEE80211_M_STA || 2266 ic->ic_opmode == IEEE80211_M_MONITOR || 2267 bf == NULL || bf->bf_m == NULL) { 2268 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2269 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2270 return; 2271 } 2272 /* 2273 * Check if the previous beacon has gone out. If 2274 * not don't try to post another, skip this period 2275 * and wait for the next. Missed beacons indicate 2276 * a problem and should not occur. If we miss too 2277 * many consecutive beacons reset the device. 2278 */ 2279 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2280 sc->sc_bmisscount++; 2281 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2282 "%s: missed %u consecutive beacons\n", 2283 __func__, sc->sc_bmisscount); 2284 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2285 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2286 return; 2287 } 2288 if (sc->sc_bmisscount != 0) { 2289 DPRINTF(sc, ATH_DEBUG_BEACON, 2290 "%s: resume beacon xmit after %u misses\n", 2291 __func__, sc->sc_bmisscount); 2292 sc->sc_bmisscount = 0; 2293 } 2294 2295 /* 2296 * Update dynamic beacon contents. If this returns 2297 * non-zero then we need to remap the memory because 2298 * the beacon frame changed size (probably because 2299 * of the TIM bitmap). 2300 */ 2301 m = bf->bf_m; 2302 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2303 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2304 /* XXX too conservative? */ 2305 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2306 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2307 BUS_DMA_NOWAIT); 2308 if (error != 0) { 2309 if_printf(&sc->sc_if, 2310 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2311 __func__, error); 2312 return; 2313 } 2314 } 2315 2316 /* 2317 * Handle slot time change when a non-ERP station joins/leaves 2318 * an 11g network. The 802.11 layer notifies us via callback, 2319 * we mark updateslot, then wait one beacon before effecting 2320 * the change. This gives associated stations at least one 2321 * beacon interval to note the state change. 2322 */ 2323 /* XXX locking */ 2324 if (sc->sc_updateslot == UPDATE) 2325 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2326 else if (sc->sc_updateslot == COMMIT) 2327 ath_setslottime(sc); /* commit change to h/w */ 2328 2329 /* 2330 * Check recent per-antenna transmit statistics and flip 2331 * the default antenna if noticeably more frames went out 2332 * on the non-default antenna. 2333 * XXX assumes 2 anntenae 2334 */ 2335 otherant = sc->sc_defant & 1 ? 2 : 1; 2336 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2337 ath_setdefantenna(sc, otherant); 2338 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2339 2340 /* 2341 * Construct tx descriptor. 2342 */ 2343 ath_beacon_setup(sc, bf); 2344 2345 /* 2346 * Stop any current dma and put the new frame on the queue. 2347 * This should never fail since we check above that no frames 2348 * are still pending on the queue. 2349 */ 2350 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2351 DPRINTF(sc, ATH_DEBUG_ANY, 2352 "%s: beacon queue %u did not stop?\n", 2353 __func__, sc->sc_bhalq); 2354 } 2355 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2356 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2357 2358 /* 2359 * Enable the CAB queue before the beacon queue to 2360 * insure cab frames are triggered by this beacon. 2361 */ 2362 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */ 2363 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2364 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2365 ath_hal_txstart(ah, sc->sc_bhalq); 2366 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2367 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__, 2368 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc); 2369 2370 sc->sc_stats.ast_be_xmit++; 2371 } 2372 2373 /* 2374 * Reset the hardware after detecting beacons have stopped. 2375 */ 2376 static void 2377 ath_bstuck_proc(void *arg, int pending) 2378 { 2379 struct ath_softc *sc = arg; 2380 struct ifnet *ifp = &sc->sc_if; 2381 2382 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2383 sc->sc_bmisscount); 2384 ath_reset(ifp); 2385 } 2386 2387 /* 2388 * Reclaim beacon resources. 2389 */ 2390 static void 2391 ath_beacon_free(struct ath_softc *sc) 2392 { 2393 struct ath_buf *bf; 2394 2395 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2396 if (bf->bf_m != NULL) { 2397 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2398 m_freem(bf->bf_m); 2399 bf->bf_m = NULL; 2400 } 2401 if (bf->bf_node != NULL) { 2402 ieee80211_free_node(bf->bf_node); 2403 bf->bf_node = NULL; 2404 } 2405 } 2406 } 2407 2408 /* 2409 * Configure the beacon and sleep timers. 2410 * 2411 * When operating as an AP this resets the TSF and sets 2412 * up the hardware to notify us when we need to issue beacons. 2413 * 2414 * When operating in station mode this sets up the beacon 2415 * timers according to the timestamp of the last received 2416 * beacon and the current TSF, configures PCF and DTIM 2417 * handling, programs the sleep registers so the hardware 2418 * will wakeup in time to receive beacons, and configures 2419 * the beacon miss handling so we'll receive a BMISS 2420 * interrupt when we stop seeing beacons from the AP 2421 * we've associated with. 2422 */ 2423 static void 2424 ath_beacon_config(struct ath_softc *sc) 2425 { 2426 #define TSF_TO_TU(_h,_l) \ 2427 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2428 #define FUDGE 2 2429 struct ath_hal *ah = sc->sc_ah; 2430 struct ieee80211com *ic = &sc->sc_ic; 2431 struct ieee80211_node *ni = ic->ic_bss; 2432 u_int32_t nexttbtt, intval, tsftu; 2433 u_int64_t tsf; 2434 2435 /* extract tstamp from last beacon and convert to TU */ 2436 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2437 LE_READ_4(ni->ni_tstamp.data)); 2438 /* NB: the beacon interval is kept internally in TU's */ 2439 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2440 if (nexttbtt == 0) /* e.g. for ap mode */ 2441 nexttbtt = intval; 2442 else if (intval) /* NB: can be 0 for monitor mode */ 2443 nexttbtt = roundup(nexttbtt, intval); 2444 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2445 __func__, nexttbtt, intval, ni->ni_intval); 2446 if (ic->ic_opmode == IEEE80211_M_STA) { 2447 HAL_BEACON_STATE bs; 2448 int dtimperiod, dtimcount; 2449 int cfpperiod, cfpcount; 2450 2451 /* 2452 * Setup dtim and cfp parameters according to 2453 * last beacon we received (which may be none). 2454 */ 2455 dtimperiod = ni->ni_dtim_period; 2456 if (dtimperiod <= 0) /* NB: 0 if not known */ 2457 dtimperiod = 1; 2458 dtimcount = ni->ni_dtim_count; 2459 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2460 dtimcount = 0; /* XXX? */ 2461 cfpperiod = 1; /* NB: no PCF support yet */ 2462 cfpcount = 0; 2463 /* 2464 * Pull nexttbtt forward to reflect the current 2465 * TSF and calculate dtim+cfp state for the result. 2466 */ 2467 tsf = ath_hal_gettsf64(ah); 2468 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2469 do { 2470 nexttbtt += intval; 2471 if (--dtimcount < 0) { 2472 dtimcount = dtimperiod - 1; 2473 if (--cfpcount < 0) 2474 cfpcount = cfpperiod - 1; 2475 } 2476 } while (nexttbtt < tsftu); 2477 memset(&bs, 0, sizeof(bs)); 2478 bs.bs_intval = intval; 2479 bs.bs_nexttbtt = nexttbtt; 2480 bs.bs_dtimperiod = dtimperiod*intval; 2481 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2482 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2483 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2484 bs.bs_cfpmaxduration = 0; 2485 #if 0 2486 /* 2487 * The 802.11 layer records the offset to the DTIM 2488 * bitmap while receiving beacons; use it here to 2489 * enable h/w detection of our AID being marked in 2490 * the bitmap vector (to indicate frames for us are 2491 * pending at the AP). 2492 * XXX do DTIM handling in s/w to WAR old h/w bugs 2493 * XXX enable based on h/w rev for newer chips 2494 */ 2495 bs.bs_timoffset = ni->ni_timoff; 2496 #endif 2497 /* 2498 * Calculate the number of consecutive beacons to miss 2499 * before taking a BMISS interrupt. The configuration 2500 * is specified in ms, so we need to convert that to 2501 * TU's and then calculate based on the beacon interval. 2502 * Note that we clamp the result to at most 10 beacons. 2503 */ 2504 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2505 if (bs.bs_bmissthreshold > 10) 2506 bs.bs_bmissthreshold = 10; 2507 else if (bs.bs_bmissthreshold <= 0) 2508 bs.bs_bmissthreshold = 1; 2509 2510 /* 2511 * Calculate sleep duration. The configuration is 2512 * given in ms. We insure a multiple of the beacon 2513 * period is used. Also, if the sleep duration is 2514 * greater than the DTIM period then it makes senses 2515 * to make it a multiple of that. 2516 * 2517 * XXX fixed at 100ms 2518 */ 2519 bs.bs_sleepduration = 2520 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2521 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2522 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2523 2524 DPRINTF(sc, ATH_DEBUG_BEACON, 2525 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2526 , __func__ 2527 , tsf, tsftu 2528 , bs.bs_intval 2529 , bs.bs_nexttbtt 2530 , bs.bs_dtimperiod 2531 , bs.bs_nextdtim 2532 , bs.bs_bmissthreshold 2533 , bs.bs_sleepduration 2534 , bs.bs_cfpperiod 2535 , bs.bs_cfpmaxduration 2536 , bs.bs_cfpnext 2537 , bs.bs_timoffset 2538 ); 2539 ath_hal_intrset(ah, 0); 2540 ath_hal_beacontimers(ah, &bs); 2541 sc->sc_imask |= HAL_INT_BMISS; 2542 ath_hal_intrset(ah, sc->sc_imask); 2543 } else { 2544 ath_hal_intrset(ah, 0); 2545 if (nexttbtt == intval) 2546 intval |= HAL_BEACON_RESET_TSF; 2547 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2548 /* 2549 * In IBSS mode enable the beacon timers but only 2550 * enable SWBA interrupts if we need to manually 2551 * prepare beacon frames. Otherwise we use a 2552 * self-linked tx descriptor and let the hardware 2553 * deal with things. 2554 */ 2555 intval |= HAL_BEACON_ENA; 2556 if (!sc->sc_hasveol) 2557 sc->sc_imask |= HAL_INT_SWBA; 2558 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2559 /* 2560 * Pull nexttbtt forward to reflect 2561 * the current TSF. 2562 */ 2563 tsf = ath_hal_gettsf64(ah); 2564 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2565 do { 2566 nexttbtt += intval; 2567 } while (nexttbtt < tsftu); 2568 } 2569 ath_beaconq_config(sc); 2570 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2571 /* 2572 * In AP mode we enable the beacon timers and 2573 * SWBA interrupts to prepare beacon frames. 2574 */ 2575 intval |= HAL_BEACON_ENA; 2576 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2577 ath_beaconq_config(sc); 2578 } 2579 ath_hal_beaconinit(ah, nexttbtt, intval); 2580 sc->sc_bmisscount = 0; 2581 ath_hal_intrset(ah, sc->sc_imask); 2582 /* 2583 * When using a self-linked beacon descriptor in 2584 * ibss mode load it once here. 2585 */ 2586 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2587 ath_beacon_proc(sc, 0); 2588 } 2589 sc->sc_syncbeacon = 0; 2590 #undef UNDEF 2591 #undef TSF_TO_TU 2592 } 2593 2594 static int 2595 ath_descdma_setup(struct ath_softc *sc, 2596 struct ath_descdma *dd, ath_bufhead *head, 2597 const char *name, int nbuf, int ndesc) 2598 { 2599 #define DS2PHYS(_dd, _ds) \ 2600 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc)) 2601 struct ifnet *ifp = &sc->sc_if; 2602 struct ath_desc *ds; 2603 struct ath_buf *bf; 2604 int i, bsize, error; 2605 2606 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2607 __func__, name, nbuf, ndesc); 2608 2609 dd->dd_name = name; 2610 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2611 2612 /* 2613 * Setup DMA descriptor area. 2614 */ 2615 dd->dd_dmat = sc->sc_dmat; 2616 2617 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2618 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2619 2620 if (error != 0) { 2621 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2622 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2623 goto fail0; 2624 } 2625 2626 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2627 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT); 2628 if (error != 0) { 2629 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2630 nbuf * ndesc, dd->dd_name, error); 2631 goto fail1; 2632 } 2633 2634 /* allocate descriptors */ 2635 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2636 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2637 if (error != 0) { 2638 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2639 "error %u\n", dd->dd_name, error); 2640 goto fail2; 2641 } 2642 2643 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2644 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2645 if (error != 0) { 2646 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2647 dd->dd_name, error); 2648 goto fail3; 2649 } 2650 2651 ds = dd->dd_desc; 2652 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2653 DPRINTF(sc, ATH_DEBUG_RESET, 2654 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n", 2655 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2656 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2657 2658 /* allocate rx buffers */ 2659 bsize = sizeof(struct ath_buf) * nbuf; 2660 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2661 if (bf == NULL) { 2662 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2663 dd->dd_name, bsize); 2664 goto fail4; 2665 } 2666 dd->dd_bufptr = bf; 2667 2668 STAILQ_INIT(head); 2669 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2670 bf->bf_desc = ds; 2671 bf->bf_daddr = DS2PHYS(dd, ds); 2672 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2673 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2674 if (error != 0) { 2675 if_printf(ifp, "unable to create dmamap for %s " 2676 "buffer %u, error %u\n", dd->dd_name, i, error); 2677 ath_descdma_cleanup(sc, dd, head); 2678 return error; 2679 } 2680 STAILQ_INSERT_TAIL(head, bf, bf_list); 2681 } 2682 return 0; 2683 fail4: 2684 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2685 fail3: 2686 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2687 fail2: 2688 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2689 fail1: 2690 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2691 fail0: 2692 memset(dd, 0, sizeof(*dd)); 2693 return error; 2694 #undef DS2PHYS 2695 } 2696 2697 static void 2698 ath_descdma_cleanup(struct ath_softc *sc, 2699 struct ath_descdma *dd, ath_bufhead *head) 2700 { 2701 struct ath_buf *bf; 2702 struct ieee80211_node *ni; 2703 2704 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2705 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2706 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2707 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2708 2709 STAILQ_FOREACH(bf, head, bf_list) { 2710 if (bf->bf_m) { 2711 m_freem(bf->bf_m); 2712 bf->bf_m = NULL; 2713 } 2714 if (bf->bf_dmamap != NULL) { 2715 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2716 bf->bf_dmamap = NULL; 2717 } 2718 ni = bf->bf_node; 2719 bf->bf_node = NULL; 2720 if (ni != NULL) { 2721 /* 2722 * Reclaim node reference. 2723 */ 2724 ieee80211_free_node(ni); 2725 } 2726 } 2727 2728 STAILQ_INIT(head); 2729 free(dd->dd_bufptr, M_ATHDEV); 2730 memset(dd, 0, sizeof(*dd)); 2731 } 2732 2733 static int 2734 ath_desc_alloc(struct ath_softc *sc) 2735 { 2736 int error; 2737 2738 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2739 "rx", ath_rxbuf, 1); 2740 if (error != 0) 2741 return error; 2742 2743 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2744 "tx", ath_txbuf, ATH_TXDESC); 2745 if (error != 0) { 2746 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2747 return error; 2748 } 2749 2750 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2751 "beacon", 1, 1); 2752 if (error != 0) { 2753 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2754 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2755 return error; 2756 } 2757 return 0; 2758 } 2759 2760 static void 2761 ath_desc_free(struct ath_softc *sc) 2762 { 2763 2764 if (sc->sc_bdma.dd_desc_len != 0) 2765 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2766 if (sc->sc_txdma.dd_desc_len != 0) 2767 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2768 if (sc->sc_rxdma.dd_desc_len != 0) 2769 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2770 } 2771 2772 static struct ieee80211_node * 2773 ath_node_alloc(struct ieee80211_node_table *nt) 2774 { 2775 struct ieee80211com *ic = nt->nt_ic; 2776 struct ath_softc *sc = ic->ic_ifp->if_softc; 2777 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2778 struct ath_node *an; 2779 2780 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2781 if (an == NULL) { 2782 /* XXX stat+msg */ 2783 return NULL; 2784 } 2785 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2786 ath_rate_node_init(sc, an); 2787 2788 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2789 return &an->an_node; 2790 } 2791 2792 static void 2793 ath_node_free(struct ieee80211_node *ni) 2794 { 2795 struct ieee80211com *ic = ni->ni_ic; 2796 struct ath_softc *sc = ic->ic_ifp->if_softc; 2797 2798 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2799 2800 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2801 sc->sc_node_free(ni); 2802 } 2803 2804 static u_int8_t 2805 ath_node_getrssi(const struct ieee80211_node *ni) 2806 { 2807 #define HAL_EP_RND(x, mul) \ 2808 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2809 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2810 int32_t rssi; 2811 2812 /* 2813 * When only one frame is received there will be no state in 2814 * avgrssi so fallback on the value recorded by the 802.11 layer. 2815 */ 2816 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2817 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2818 else 2819 rssi = ni->ni_rssi; 2820 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2821 #undef HAL_EP_RND 2822 } 2823 2824 static int 2825 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2826 { 2827 struct ath_hal *ah = sc->sc_ah; 2828 int error; 2829 struct mbuf *m; 2830 struct ath_desc *ds; 2831 2832 m = bf->bf_m; 2833 if (m == NULL) { 2834 /* 2835 * NB: by assigning a page to the rx dma buffer we 2836 * implicitly satisfy the Atheros requirement that 2837 * this buffer be cache-line-aligned and sized to be 2838 * multiple of the cache line size. Not doing this 2839 * causes weird stuff to happen (for the 5210 at least). 2840 */ 2841 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2842 if (m == NULL) { 2843 DPRINTF(sc, ATH_DEBUG_ANY, 2844 "%s: no mbuf/cluster\n", __func__); 2845 sc->sc_stats.ast_rx_nombuf++; 2846 return ENOMEM; 2847 } 2848 bf->bf_m = m; 2849 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2850 2851 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2852 bf->bf_dmamap, m, 2853 BUS_DMA_NOWAIT); 2854 if (error != 0) { 2855 DPRINTF(sc, ATH_DEBUG_ANY, 2856 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2857 __func__, error); 2858 sc->sc_stats.ast_rx_busdma++; 2859 return error; 2860 } 2861 KASSERT(bf->bf_nseg == 1, 2862 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2863 } 2864 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2865 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2866 2867 /* 2868 * Setup descriptors. For receive we always terminate 2869 * the descriptor list with a self-linked entry so we'll 2870 * not get overrun under high load (as can happen with a 2871 * 5212 when ANI processing enables PHY error frames). 2872 * 2873 * To insure the last descriptor is self-linked we create 2874 * each descriptor as self-linked and add it to the end. As 2875 * each additional descriptor is added the previous self-linked 2876 * entry is ``fixed'' naturally. This should be safe even 2877 * if DMA is happening. When processing RX interrupts we 2878 * never remove/process the last, self-linked, entry on the 2879 * descriptor list. This insures the hardware always has 2880 * someplace to write a new frame. 2881 */ 2882 ds = bf->bf_desc; 2883 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */ 2884 ds->ds_data = bf->bf_segs[0].ds_addr; 2885 /* ds->ds_vdata = mtod(m, void *); for radar */ 2886 ath_hal_setuprxdesc(ah, ds 2887 , m->m_len /* buffer size */ 2888 , 0 2889 ); 2890 2891 if (sc->sc_rxlink != NULL) 2892 *sc->sc_rxlink = bf->bf_daddr; 2893 sc->sc_rxlink = &ds->ds_link; 2894 return 0; 2895 } 2896 2897 /* 2898 * Extend 15-bit time stamp from rx descriptor to 2899 * a full 64-bit TSF using the specified TSF. 2900 */ 2901 static inline u_int64_t 2902 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2903 { 2904 if ((tsf & 0x7fff) < rstamp) 2905 tsf -= 0x8000; 2906 return ((tsf &~ 0x7fff) | rstamp); 2907 } 2908 2909 /* 2910 * Intercept management frames to collect beacon rssi data 2911 * and to do ibss merges. 2912 */ 2913 static void 2914 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2915 struct ieee80211_node *ni, 2916 int subtype, int rssi, u_int32_t rstamp) 2917 { 2918 struct ath_softc *sc = ic->ic_ifp->if_softc; 2919 2920 /* 2921 * Call up first so subsequent work can use information 2922 * potentially stored in the node (e.g. for ibss merge). 2923 */ 2924 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2925 switch (subtype) { 2926 case IEEE80211_FC0_SUBTYPE_BEACON: 2927 /* update rssi statistics for use by the hal */ 2928 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2929 if (sc->sc_syncbeacon && 2930 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2931 /* 2932 * Resync beacon timers using the tsf of the beacon 2933 * frame we just received. 2934 */ 2935 ath_beacon_config(sc); 2936 } 2937 /* fall thru... */ 2938 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2939 if (ic->ic_opmode == IEEE80211_M_IBSS && 2940 ic->ic_state == IEEE80211_S_RUN) { 2941 u_int64_t tsf = ath_extend_tsf(rstamp, 2942 ath_hal_gettsf64(sc->sc_ah)); 2943 2944 /* 2945 * Handle ibss merge as needed; check the tsf on the 2946 * frame before attempting the merge. The 802.11 spec 2947 * says the station should change it's bssid to match 2948 * the oldest station with the same ssid, where oldest 2949 * is determined by the tsf. Note that hardware 2950 * reconfiguration happens through callback to 2951 * ath_newstate as the state machine will go from 2952 * RUN -> RUN when this happens. 2953 */ 2954 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2955 DPRINTF(sc, ATH_DEBUG_STATE, 2956 "ibss merge, rstamp %u tsf %ju " 2957 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2958 (uintmax_t)ni->ni_tstamp.tsf); 2959 (void) ieee80211_ibss_merge(ni); 2960 } 2961 } 2962 break; 2963 } 2964 } 2965 2966 /* 2967 * Set the default antenna. 2968 */ 2969 static void 2970 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2971 { 2972 struct ath_hal *ah = sc->sc_ah; 2973 2974 /* XXX block beacon interrupts */ 2975 ath_hal_setdefantenna(ah, antenna); 2976 if (sc->sc_defant != antenna) 2977 sc->sc_stats.ast_ant_defswitch++; 2978 sc->sc_defant = antenna; 2979 sc->sc_rxotherant = 0; 2980 } 2981 2982 static void 2983 ath_handle_micerror(struct ieee80211com *ic, 2984 struct ieee80211_frame *wh, int keyix) 2985 { 2986 struct ieee80211_node *ni; 2987 2988 /* XXX recheck MIC to deal w/ chips that lie */ 2989 /* XXX discard MIC errors on !data frames */ 2990 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix); 2991 if (ni != NULL) { 2992 ieee80211_notify_michael_failure(ic, wh, keyix); 2993 ieee80211_free_node(ni); 2994 } 2995 } 2996 2997 static void 2998 ath_rx_proc(void *arg, int npending) 2999 { 3000 #define PA2DESC(_sc, _pa) \ 3001 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 3002 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 3003 struct ath_softc *sc = arg; 3004 struct ath_buf *bf; 3005 struct ieee80211com *ic = &sc->sc_ic; 3006 struct ifnet *ifp = &sc->sc_if; 3007 struct ath_hal *ah = sc->sc_ah; 3008 struct ath_desc *ds; 3009 struct mbuf *m; 3010 struct ieee80211_node *ni; 3011 struct ath_node *an; 3012 int len, ngood, type; 3013 u_int phyerr; 3014 HAL_STATUS status; 3015 int16_t nf; 3016 u_int64_t tsf; 3017 uint8_t rxerr_tap, rxerr_mon; 3018 3019 NET_LOCK_GIANT(); /* XXX */ 3020 3021 rxerr_tap = 3022 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0; 3023 3024 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR) 3025 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3026 else if (ifp->if_flags & IFF_PROMISC) 3027 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3028 3029 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3030 ngood = 0; 3031 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 3032 tsf = ath_hal_gettsf64(ah); 3033 do { 3034 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3035 if (bf == NULL) { /* NB: shouldn't happen */ 3036 if_printf(ifp, "%s: no buffer!\n", __func__); 3037 break; 3038 } 3039 ds = bf->bf_desc; 3040 if (ds->ds_link == bf->bf_daddr) { 3041 /* NB: never process the self-linked entry at the end */ 3042 break; 3043 } 3044 m = bf->bf_m; 3045 if (m == NULL) { /* NB: shouldn't happen */ 3046 if_printf(ifp, "%s: no mbuf!\n", __func__); 3047 break; 3048 } 3049 /* XXX sync descriptor memory */ 3050 /* 3051 * Must provide the virtual address of the current 3052 * descriptor, the physical address, and the virtual 3053 * address of the next descriptor in the h/w chain. 3054 * This allows the HAL to look ahead to see if the 3055 * hardware is done with a descriptor by checking the 3056 * done bit in the following descriptor and the address 3057 * of the current descriptor the DMA engine is working 3058 * on. All this is necessary because of our use of 3059 * a self-linked list to avoid rx overruns. 3060 */ 3061 status = ath_hal_rxprocdesc(ah, ds, 3062 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 3063 &ds->ds_rxstat); 3064 #ifdef AR_DEBUG 3065 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3066 ath_printrxbuf(bf, status == HAL_OK); 3067 #endif 3068 if (status == HAL_EINPROGRESS) 3069 break; 3070 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3071 if (ds->ds_rxstat.rs_more) { 3072 /* 3073 * Frame spans multiple descriptors; this 3074 * cannot happen yet as we don't support 3075 * jumbograms. If not in monitor mode, 3076 * discard the frame. 3077 */ 3078 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3079 sc->sc_stats.ast_rx_toobig++; 3080 goto rx_next; 3081 } 3082 /* fall thru for monitor mode handling... */ 3083 } else if (ds->ds_rxstat.rs_status != 0) { 3084 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 3085 sc->sc_stats.ast_rx_crcerr++; 3086 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 3087 sc->sc_stats.ast_rx_fifoerr++; 3088 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 3089 sc->sc_stats.ast_rx_phyerr++; 3090 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 3091 sc->sc_stats.ast_rx_phy[phyerr]++; 3092 goto rx_next; 3093 } 3094 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 3095 /* 3096 * Decrypt error. If the error occurred 3097 * because there was no hardware key, then 3098 * let the frame through so the upper layers 3099 * can process it. This is necessary for 5210 3100 * parts which have no way to setup a ``clear'' 3101 * key cache entry. 3102 * 3103 * XXX do key cache faulting 3104 */ 3105 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 3106 goto rx_accept; 3107 sc->sc_stats.ast_rx_badcrypt++; 3108 } 3109 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 3110 sc->sc_stats.ast_rx_badmic++; 3111 /* 3112 * Do minimal work required to hand off 3113 * the 802.11 header for notifcation. 3114 */ 3115 /* XXX frag's and qos frames */ 3116 len = ds->ds_rxstat.rs_datalen; 3117 if (len >= sizeof (struct ieee80211_frame)) { 3118 bus_dmamap_sync(sc->sc_dmat, 3119 bf->bf_dmamap, 3120 0, bf->bf_dmamap->dm_mapsize, 3121 BUS_DMASYNC_POSTREAD); 3122 ath_handle_micerror(ic, 3123 mtod(m, struct ieee80211_frame *), 3124 sc->sc_splitmic ? 3125 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix); 3126 } 3127 } 3128 ifp->if_ierrors++; 3129 /* 3130 * Reject error frames, we normally don't want 3131 * to see them in monitor mode (in monitor mode 3132 * allow through packets that have crypto problems). 3133 */ 3134 3135 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon)) 3136 goto rx_next; 3137 } 3138 rx_accept: 3139 /* 3140 * Sync and unmap the frame. At this point we're 3141 * committed to passing the mbuf somewhere so clear 3142 * bf_m; this means a new sk_buff must be allocated 3143 * when the rx descriptor is setup again to receive 3144 * another frame. 3145 */ 3146 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3147 0, bf->bf_dmamap->dm_mapsize, 3148 BUS_DMASYNC_POSTREAD); 3149 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3150 bf->bf_m = NULL; 3151 3152 m->m_pkthdr.rcvif = ifp; 3153 len = ds->ds_rxstat.rs_datalen; 3154 m->m_pkthdr.len = m->m_len = len; 3155 3156 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 3157 3158 #if NBPFILTER > 0 3159 if (sc->sc_drvbpf) { 3160 u_int8_t rix; 3161 3162 /* 3163 * Discard anything shorter than an ack or cts. 3164 */ 3165 if (len < IEEE80211_ACK_LEN) { 3166 DPRINTF(sc, ATH_DEBUG_RECV, 3167 "%s: runt packet %d\n", 3168 __func__, len); 3169 sc->sc_stats.ast_rx_tooshort++; 3170 m_freem(m); 3171 goto rx_next; 3172 } 3173 rix = ds->ds_rxstat.rs_rate; 3174 sc->sc_rx_th.wr_tsf = htole64( 3175 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 3176 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3177 if (ds->ds_rxstat.rs_status & 3178 (HAL_RXERR_CRC|HAL_RXERR_PHY)) { 3179 sc->sc_rx_th.wr_flags |= 3180 IEEE80211_RADIOTAP_F_BADFCS; 3181 } 3182 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3183 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 3184 sc->sc_rx_th.wr_antnoise = nf; 3185 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 3186 3187 bpf_mtap2(sc->sc_drvbpf, 3188 &sc->sc_rx_th, sc->sc_rx_th_len, m); 3189 } 3190 #endif 3191 3192 if (ds->ds_rxstat.rs_status & rxerr_tap) { 3193 m_freem(m); 3194 goto rx_next; 3195 } 3196 /* 3197 * From this point on we assume the frame is at least 3198 * as large as ieee80211_frame_min; verify that. 3199 */ 3200 if (len < IEEE80211_MIN_LEN) { 3201 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3202 __func__, len); 3203 sc->sc_stats.ast_rx_tooshort++; 3204 m_freem(m); 3205 goto rx_next; 3206 } 3207 3208 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3209 ieee80211_dump_pkt(mtod(m, void *), len, 3210 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3211 ds->ds_rxstat.rs_rssi); 3212 } 3213 3214 m_adj(m, -IEEE80211_CRC_LEN); 3215 3216 /* 3217 * Locate the node for sender, track state, and then 3218 * pass the (referenced) node up to the 802.11 layer 3219 * for its use. 3220 */ 3221 ni = ieee80211_find_rxnode_withkey(ic, 3222 mtod(m, const struct ieee80211_frame_min *), 3223 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3224 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3225 /* 3226 * Track rx rssi and do any rx antenna management. 3227 */ 3228 an = ATH_NODE(ni); 3229 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3230 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3231 /* 3232 * Send frame up for processing. 3233 */ 3234 type = ieee80211_input(ic, m, ni, 3235 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3236 ieee80211_free_node(ni); 3237 if (sc->sc_diversity) { 3238 /* 3239 * When using fast diversity, change the default rx 3240 * antenna if diversity chooses the other antenna 3 3241 * times in a row. 3242 */ 3243 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3244 if (++sc->sc_rxotherant >= 3) 3245 ath_setdefantenna(sc, 3246 ds->ds_rxstat.rs_antenna); 3247 } else 3248 sc->sc_rxotherant = 0; 3249 } 3250 if (sc->sc_softled) { 3251 /* 3252 * Blink for any data frame. Otherwise do a 3253 * heartbeat-style blink when idle. The latter 3254 * is mainly for station mode where we depend on 3255 * periodic beacon frames to trigger the poll event. 3256 */ 3257 if (type == IEEE80211_FC0_TYPE_DATA) { 3258 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3259 ath_led_event(sc, ATH_LED_RX); 3260 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3261 ath_led_event(sc, ATH_LED_POLL); 3262 } 3263 /* 3264 * Arrange to update the last rx timestamp only for 3265 * frames from our ap when operating in station mode. 3266 * This assumes the rx key is always setup when associated. 3267 */ 3268 if (ic->ic_opmode == IEEE80211_M_STA && 3269 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3270 ngood++; 3271 rx_next: 3272 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3273 } while (ath_rxbuf_init(sc, bf) == 0); 3274 3275 /* rx signal state monitoring */ 3276 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3277 #if 0 3278 if (ath_hal_radar_event(ah)) 3279 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask); 3280 #endif 3281 if (ngood) 3282 sc->sc_lastrx = tsf; 3283 3284 #ifdef __NetBSD__ 3285 /* XXX Why isn't this necessary in FreeBSD? */ 3286 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3287 ath_start(ifp); 3288 #endif /* __NetBSD__ */ 3289 3290 NET_UNLOCK_GIANT(); /* XXX */ 3291 #undef PA2DESC 3292 } 3293 3294 /* 3295 * Setup a h/w transmit queue. 3296 */ 3297 static struct ath_txq * 3298 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3299 { 3300 #define N(a) (sizeof(a)/sizeof(a[0])) 3301 struct ath_hal *ah = sc->sc_ah; 3302 HAL_TXQ_INFO qi; 3303 int qnum; 3304 3305 memset(&qi, 0, sizeof(qi)); 3306 qi.tqi_subtype = subtype; 3307 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3308 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3309 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3310 /* 3311 * Enable interrupts only for EOL and DESC conditions. 3312 * We mark tx descriptors to receive a DESC interrupt 3313 * when a tx queue gets deep; otherwise waiting for the 3314 * EOL to reap descriptors. Note that this is done to 3315 * reduce interrupt load and this only defers reaping 3316 * descriptors, never transmitting frames. Aside from 3317 * reducing interrupts this also permits more concurrency. 3318 * The only potential downside is if the tx queue backs 3319 * up in which case the top half of the kernel may backup 3320 * due to a lack of tx descriptors. 3321 */ 3322 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3323 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3324 if (qnum == -1) { 3325 /* 3326 * NB: don't print a message, this happens 3327 * normally on parts with too few tx queues 3328 */ 3329 return NULL; 3330 } 3331 if (qnum >= N(sc->sc_txq)) { 3332 device_printf(sc->sc_dev, 3333 "hal qnum %u out of range, max %zu!\n", 3334 qnum, N(sc->sc_txq)); 3335 ath_hal_releasetxqueue(ah, qnum); 3336 return NULL; 3337 } 3338 if (!ATH_TXQ_SETUP(sc, qnum)) { 3339 struct ath_txq *txq = &sc->sc_txq[qnum]; 3340 3341 txq->axq_qnum = qnum; 3342 txq->axq_depth = 0; 3343 txq->axq_intrcnt = 0; 3344 txq->axq_link = NULL; 3345 STAILQ_INIT(&txq->axq_q); 3346 ATH_TXQ_LOCK_INIT(sc, txq); 3347 sc->sc_txqsetup |= 1<<qnum; 3348 } 3349 return &sc->sc_txq[qnum]; 3350 #undef N 3351 } 3352 3353 /* 3354 * Setup a hardware data transmit queue for the specified 3355 * access control. The hal may not support all requested 3356 * queues in which case it will return a reference to a 3357 * previously setup queue. We record the mapping from ac's 3358 * to h/w queues for use by ath_tx_start and also track 3359 * the set of h/w queues being used to optimize work in the 3360 * transmit interrupt handler and related routines. 3361 */ 3362 static int 3363 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3364 { 3365 #define N(a) (sizeof(a)/sizeof(a[0])) 3366 struct ath_txq *txq; 3367 3368 if (ac >= N(sc->sc_ac2q)) { 3369 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3370 ac, N(sc->sc_ac2q)); 3371 return 0; 3372 } 3373 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3374 if (txq != NULL) { 3375 sc->sc_ac2q[ac] = txq; 3376 return 1; 3377 } else 3378 return 0; 3379 #undef N 3380 } 3381 3382 /* 3383 * Update WME parameters for a transmit queue. 3384 */ 3385 static int 3386 ath_txq_update(struct ath_softc *sc, int ac) 3387 { 3388 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3389 #define ATH_TXOP_TO_US(v) (v<<5) 3390 struct ieee80211com *ic = &sc->sc_ic; 3391 struct ath_txq *txq = sc->sc_ac2q[ac]; 3392 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3393 struct ath_hal *ah = sc->sc_ah; 3394 HAL_TXQ_INFO qi; 3395 3396 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3397 qi.tqi_aifs = wmep->wmep_aifsn; 3398 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3399 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3400 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3401 3402 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3403 device_printf(sc->sc_dev, "unable to update hardware queue " 3404 "parameters for %s traffic!\n", 3405 ieee80211_wme_acnames[ac]); 3406 return 0; 3407 } else { 3408 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3409 return 1; 3410 } 3411 #undef ATH_TXOP_TO_US 3412 #undef ATH_EXPONENT_TO_VALUE 3413 } 3414 3415 /* 3416 * Callback from the 802.11 layer to update WME parameters. 3417 */ 3418 static int 3419 ath_wme_update(struct ieee80211com *ic) 3420 { 3421 struct ath_softc *sc = ic->ic_ifp->if_softc; 3422 3423 return !ath_txq_update(sc, WME_AC_BE) || 3424 !ath_txq_update(sc, WME_AC_BK) || 3425 !ath_txq_update(sc, WME_AC_VI) || 3426 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3427 } 3428 3429 /* 3430 * Reclaim resources for a setup queue. 3431 */ 3432 static void 3433 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3434 { 3435 3436 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3437 ATH_TXQ_LOCK_DESTROY(txq); 3438 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3439 } 3440 3441 /* 3442 * Reclaim all tx queue resources. 3443 */ 3444 static void 3445 ath_tx_cleanup(struct ath_softc *sc) 3446 { 3447 int i; 3448 3449 ATH_TXBUF_LOCK_DESTROY(sc); 3450 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3451 if (ATH_TXQ_SETUP(sc, i)) 3452 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3453 } 3454 3455 /* 3456 * Defragment an mbuf chain, returning at most maxfrags separate 3457 * mbufs+clusters. If this is not possible NULL is returned and 3458 * the original mbuf chain is left in it's present (potentially 3459 * modified) state. We use two techniques: collapsing consecutive 3460 * mbufs and replacing consecutive mbufs by a cluster. 3461 */ 3462 static struct mbuf * 3463 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3464 { 3465 struct mbuf *m, *n, *n2, **prev; 3466 u_int curfrags; 3467 3468 /* 3469 * Calculate the current number of frags. 3470 */ 3471 curfrags = 0; 3472 for (m = m0; m != NULL; m = m->m_next) 3473 curfrags++; 3474 /* 3475 * First, try to collapse mbufs. Note that we always collapse 3476 * towards the front so we don't need to deal with moving the 3477 * pkthdr. This may be suboptimal if the first mbuf has much 3478 * less data than the following. 3479 */ 3480 m = m0; 3481 again: 3482 for (;;) { 3483 n = m->m_next; 3484 if (n == NULL) 3485 break; 3486 if (n->m_len < M_TRAILINGSPACE(m)) { 3487 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), 3488 n->m_len); 3489 m->m_len += n->m_len; 3490 m->m_next = n->m_next; 3491 m_free(n); 3492 if (--curfrags <= maxfrags) 3493 return m0; 3494 } else 3495 m = n; 3496 } 3497 KASSERT(maxfrags > 1, 3498 ("maxfrags %u, but normal collapse failed", maxfrags)); 3499 /* 3500 * Collapse consecutive mbufs to a cluster. 3501 */ 3502 prev = &m0->m_next; /* NB: not the first mbuf */ 3503 while ((n = *prev) != NULL) { 3504 if ((n2 = n->m_next) != NULL && 3505 n->m_len + n2->m_len < MCLBYTES) { 3506 m = m_getcl(how, MT_DATA, 0); 3507 if (m == NULL) 3508 goto bad; 3509 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3510 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3511 n2->m_len); 3512 m->m_len = n->m_len + n2->m_len; 3513 m->m_next = n2->m_next; 3514 *prev = m; 3515 m_free(n); 3516 m_free(n2); 3517 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3518 return m0; 3519 /* 3520 * Still not there, try the normal collapse 3521 * again before we allocate another cluster. 3522 */ 3523 goto again; 3524 } 3525 prev = &n->m_next; 3526 } 3527 /* 3528 * No place where we can collapse to a cluster; punt. 3529 * This can occur if, for example, you request 2 frags 3530 * but the packet requires that both be clusters (we 3531 * never reallocate the first mbuf to avoid moving the 3532 * packet header). 3533 */ 3534 bad: 3535 return NULL; 3536 } 3537 3538 /* 3539 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3540 */ 3541 static int 3542 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3543 { 3544 int i; 3545 3546 for (i = 0; i < rt->rateCount; i++) 3547 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3548 return i; 3549 return 0; /* NB: lowest rate */ 3550 } 3551 3552 static void 3553 ath_freetx(struct mbuf *m) 3554 { 3555 struct mbuf *next; 3556 3557 do { 3558 next = m->m_nextpkt; 3559 m->m_nextpkt = NULL; 3560 m_freem(m); 3561 } while ((m = next) != NULL); 3562 } 3563 3564 static int 3565 deduct_pad_bytes(int len, int hdrlen) 3566 { 3567 /* XXX I am suspicious that this code, which I extracted 3568 * XXX from ath_tx_start() for reuse, does the right thing. 3569 */ 3570 return len - (hdrlen & 3); 3571 } 3572 3573 static int 3574 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3575 struct mbuf *m0) 3576 { 3577 struct ieee80211com *ic = &sc->sc_ic; 3578 struct ath_hal *ah = sc->sc_ah; 3579 struct ifnet *ifp = &sc->sc_if; 3580 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3581 int i, error, iswep, ismcast, isfrag, ismrr; 3582 int keyix, hdrlen, pktlen, try0; 3583 u_int8_t rix, txrate, ctsrate; 3584 u_int8_t cix = 0xff; /* NB: silence compiler */ 3585 struct ath_desc *ds, *ds0; 3586 struct ath_txq *txq; 3587 struct ieee80211_frame *wh; 3588 u_int subtype, flags, ctsduration; 3589 HAL_PKT_TYPE atype; 3590 const HAL_RATE_TABLE *rt; 3591 HAL_BOOL shortPreamble; 3592 struct ath_node *an; 3593 struct mbuf *m; 3594 u_int pri; 3595 3596 wh = mtod(m0, struct ieee80211_frame *); 3597 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3598 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3599 isfrag = m0->m_flags & M_FRAG; 3600 hdrlen = ieee80211_anyhdrsize(wh); 3601 /* 3602 * Packet length must not include any 3603 * pad bytes; deduct them here. 3604 */ 3605 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen); 3606 3607 if (iswep) { 3608 const struct ieee80211_cipher *cip; 3609 struct ieee80211_key *k; 3610 3611 /* 3612 * Construct the 802.11 header+trailer for an encrypted 3613 * frame. The only reason this can fail is because of an 3614 * unknown or unsupported cipher/key type. 3615 */ 3616 k = ieee80211_crypto_encap(ic, ni, m0); 3617 if (k == NULL) { 3618 /* 3619 * This can happen when the key is yanked after the 3620 * frame was queued. Just discard the frame; the 3621 * 802.11 layer counts failures and provides 3622 * debugging/diagnostics. 3623 */ 3624 ath_freetx(m0); 3625 return EIO; 3626 } 3627 /* 3628 * Adjust the packet + header lengths for the crypto 3629 * additions and calculate the h/w key index. When 3630 * a s/w mic is done the frame will have had any mic 3631 * added to it prior to entry so m0->m_pkthdr.len above will 3632 * account for it. Otherwise we need to add it to the 3633 * packet length. 3634 */ 3635 cip = k->wk_cipher; 3636 hdrlen += cip->ic_header; 3637 pktlen += cip->ic_header + cip->ic_trailer; 3638 /* NB: frags always have any TKIP MIC done in s/w */ 3639 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 3640 pktlen += cip->ic_miclen; 3641 keyix = k->wk_keyix; 3642 3643 /* packet header may have moved, reset our local pointer */ 3644 wh = mtod(m0, struct ieee80211_frame *); 3645 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3646 /* 3647 * Use station key cache slot, if assigned. 3648 */ 3649 keyix = ni->ni_ucastkey.wk_keyix; 3650 if (keyix == IEEE80211_KEYIX_NONE) 3651 keyix = HAL_TXKEYIX_INVALID; 3652 } else 3653 keyix = HAL_TXKEYIX_INVALID; 3654 3655 pktlen += IEEE80211_CRC_LEN; 3656 3657 /* 3658 * Load the DMA map so any coalescing is done. This 3659 * also calculates the number of descriptors we need. 3660 */ 3661 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3662 BUS_DMA_NOWAIT); 3663 if (error == EFBIG) { 3664 /* XXX packet requires too many descriptors */ 3665 bf->bf_nseg = ATH_TXDESC+1; 3666 } else if (error != 0) { 3667 sc->sc_stats.ast_tx_busdma++; 3668 ath_freetx(m0); 3669 return error; 3670 } 3671 /* 3672 * Discard null packets and check for packets that 3673 * require too many TX descriptors. We try to convert 3674 * the latter to a cluster. 3675 */ 3676 if (error == EFBIG) { /* too many desc's, linearize */ 3677 sc->sc_stats.ast_tx_linear++; 3678 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3679 if (m == NULL) { 3680 ath_freetx(m0); 3681 sc->sc_stats.ast_tx_nombuf++; 3682 return ENOMEM; 3683 } 3684 m0 = m; 3685 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3686 BUS_DMA_NOWAIT); 3687 if (error != 0) { 3688 sc->sc_stats.ast_tx_busdma++; 3689 ath_freetx(m0); 3690 return error; 3691 } 3692 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3693 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3694 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3695 sc->sc_stats.ast_tx_nodata++; 3696 ath_freetx(m0); 3697 return EIO; 3698 } 3699 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3700 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3701 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3702 bf->bf_m = m0; 3703 bf->bf_node = ni; /* NB: held reference */ 3704 3705 /* setup descriptors */ 3706 ds = bf->bf_desc; 3707 rt = sc->sc_currates; 3708 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3709 3710 /* 3711 * NB: the 802.11 layer marks whether or not we should 3712 * use short preamble based on the current mode and 3713 * negotiated parameters. 3714 */ 3715 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3716 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3717 shortPreamble = AH_TRUE; 3718 sc->sc_stats.ast_tx_shortpre++; 3719 } else { 3720 shortPreamble = AH_FALSE; 3721 } 3722 3723 an = ATH_NODE(ni); 3724 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3725 ismrr = 0; /* default no multi-rate retry*/ 3726 /* 3727 * Calculate Atheros packet type from IEEE80211 packet header, 3728 * setup for rate calculations, and select h/w transmit queue. 3729 */ 3730 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3731 case IEEE80211_FC0_TYPE_MGT: 3732 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3733 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3734 atype = HAL_PKT_TYPE_BEACON; 3735 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3736 atype = HAL_PKT_TYPE_PROBE_RESP; 3737 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3738 atype = HAL_PKT_TYPE_ATIM; 3739 else 3740 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3741 rix = sc->sc_minrateix; 3742 txrate = rt->info[rix].rateCode; 3743 if (shortPreamble) 3744 txrate |= rt->info[rix].shortPreamble; 3745 try0 = ATH_TXMGTTRY; 3746 /* NB: force all management frames to highest queue */ 3747 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3748 /* NB: force all management frames to highest queue */ 3749 pri = WME_AC_VO; 3750 } else 3751 pri = WME_AC_BE; 3752 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3753 break; 3754 case IEEE80211_FC0_TYPE_CTL: 3755 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3756 rix = sc->sc_minrateix; 3757 txrate = rt->info[rix].rateCode; 3758 if (shortPreamble) 3759 txrate |= rt->info[rix].shortPreamble; 3760 try0 = ATH_TXMGTTRY; 3761 /* NB: force all ctl frames to highest queue */ 3762 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3763 /* NB: force all ctl frames to highest queue */ 3764 pri = WME_AC_VO; 3765 } else 3766 pri = WME_AC_BE; 3767 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3768 break; 3769 case IEEE80211_FC0_TYPE_DATA: 3770 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3771 /* 3772 * Data frames: multicast frames go out at a fixed rate, 3773 * otherwise consult the rate control module for the 3774 * rate to use. 3775 */ 3776 if (ismcast) { 3777 /* 3778 * Check mcast rate setting in case it's changed. 3779 * XXX move out of fastpath 3780 */ 3781 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3782 sc->sc_mcastrix = 3783 ath_tx_findrix(rt, ic->ic_mcast_rate); 3784 sc->sc_mcastrate = ic->ic_mcast_rate; 3785 } 3786 rix = sc->sc_mcastrix; 3787 txrate = rt->info[rix].rateCode; 3788 try0 = 1; 3789 } else { 3790 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3791 &rix, &try0, &txrate); 3792 sc->sc_txrate = txrate; /* for LED blinking */ 3793 if (try0 != ATH_TXMAXTRY) 3794 ismrr = 1; 3795 } 3796 pri = M_WME_GETAC(m0); 3797 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3798 flags |= HAL_TXDESC_NOACK; 3799 break; 3800 default: 3801 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3802 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3803 /* XXX statistic */ 3804 ath_freetx(m0); 3805 return EIO; 3806 } 3807 txq = sc->sc_ac2q[pri]; 3808 3809 /* 3810 * When servicing one or more stations in power-save mode 3811 * multicast frames must be buffered until after the beacon. 3812 * We use the CAB queue for that. 3813 */ 3814 if (ismcast && ic->ic_ps_sta) { 3815 txq = sc->sc_cabq; 3816 /* XXX? more bit in 802.11 frame header */ 3817 } 3818 3819 /* 3820 * Calculate miscellaneous flags. 3821 */ 3822 if (ismcast) { 3823 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3824 } else if (pktlen > ic->ic_rtsthreshold) { 3825 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3826 cix = rt->info[rix].controlRate; 3827 sc->sc_stats.ast_tx_rts++; 3828 } 3829 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3830 sc->sc_stats.ast_tx_noack++; 3831 3832 /* 3833 * If 802.11g protection is enabled, determine whether 3834 * to use RTS/CTS or just CTS. Note that this is only 3835 * done for OFDM unicast frames. 3836 */ 3837 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3838 rt->info[rix].phy == IEEE80211_T_OFDM && 3839 (flags & HAL_TXDESC_NOACK) == 0) { 3840 /* XXX fragments must use CCK rates w/ protection */ 3841 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3842 flags |= HAL_TXDESC_RTSENA; 3843 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3844 flags |= HAL_TXDESC_CTSENA; 3845 if (isfrag) { 3846 /* 3847 * For frags it would be desirable to use the 3848 * highest CCK rate for RTS/CTS. But stations 3849 * farther away may detect it at a lower CCK rate 3850 * so use the configured protection rate instead 3851 * (for now). 3852 */ 3853 cix = rt->info[sc->sc_protrix].controlRate; 3854 } else 3855 cix = rt->info[sc->sc_protrix].controlRate; 3856 sc->sc_stats.ast_tx_protect++; 3857 } 3858 3859 /* 3860 * Calculate duration. This logically belongs in the 802.11 3861 * layer but it lacks sufficient information to calculate it. 3862 */ 3863 if ((flags & HAL_TXDESC_NOACK) == 0 && 3864 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3865 u_int16_t dur; 3866 /* 3867 * XXX not right with fragmentation. 3868 */ 3869 if (shortPreamble) 3870 dur = rt->info[rix].spAckDuration; 3871 else 3872 dur = rt->info[rix].lpAckDuration; 3873 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 3874 dur += dur; /* additional SIFS+ACK */ 3875 KASSERT(m0->m_nextpkt != NULL, ("no fragment")); 3876 /* 3877 * Include the size of next fragment so NAV is 3878 * updated properly. The last fragment uses only 3879 * the ACK duration 3880 */ 3881 dur += ath_hal_computetxtime(ah, rt, 3882 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len, 3883 hdrlen) - 3884 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen, 3885 rix, shortPreamble); 3886 } 3887 if (isfrag) { 3888 /* 3889 * Force hardware to use computed duration for next 3890 * fragment by disabling multi-rate retry which updates 3891 * duration based on the multi-rate duration table. 3892 */ 3893 try0 = ATH_TXMAXTRY; 3894 } 3895 *(u_int16_t *)wh->i_dur = htole16(dur); 3896 } 3897 3898 /* 3899 * Calculate RTS/CTS rate and duration if needed. 3900 */ 3901 ctsduration = 0; 3902 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3903 /* 3904 * CTS transmit rate is derived from the transmit rate 3905 * by looking in the h/w rate table. We must also factor 3906 * in whether or not a short preamble is to be used. 3907 */ 3908 /* NB: cix is set above where RTS/CTS is enabled */ 3909 KASSERT(cix != 0xff, ("cix not setup")); 3910 ctsrate = rt->info[cix].rateCode; 3911 /* 3912 * Compute the transmit duration based on the frame 3913 * size and the size of an ACK frame. We call into the 3914 * HAL to do the computation since it depends on the 3915 * characteristics of the actual PHY being used. 3916 * 3917 * NB: CTS is assumed the same size as an ACK so we can 3918 * use the precalculated ACK durations. 3919 */ 3920 if (shortPreamble) { 3921 ctsrate |= rt->info[cix].shortPreamble; 3922 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3923 ctsduration += rt->info[cix].spAckDuration; 3924 ctsduration += ath_hal_computetxtime(ah, 3925 rt, pktlen, rix, AH_TRUE); 3926 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3927 ctsduration += rt->info[rix].spAckDuration; 3928 } else { 3929 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3930 ctsduration += rt->info[cix].lpAckDuration; 3931 ctsduration += ath_hal_computetxtime(ah, 3932 rt, pktlen, rix, AH_FALSE); 3933 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3934 ctsduration += rt->info[rix].lpAckDuration; 3935 } 3936 /* 3937 * Must disable multi-rate retry when using RTS/CTS. 3938 */ 3939 ismrr = 0; 3940 try0 = ATH_TXMGTTRY; /* XXX */ 3941 } else 3942 ctsrate = 0; 3943 3944 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3945 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len, 3946 sc->sc_hwmap[txrate].ieeerate, -1); 3947 #if NBPFILTER > 0 3948 if (ic->ic_rawbpf) 3949 bpf_mtap(ic->ic_rawbpf, m0); 3950 if (sc->sc_drvbpf) { 3951 u_int64_t tsf = ath_hal_gettsf64(ah); 3952 3953 sc->sc_tx_th.wt_tsf = htole64(tsf); 3954 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3955 if (iswep) 3956 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3957 if (isfrag) 3958 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 3959 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3960 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3961 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3962 3963 bpf_mtap2(sc->sc_drvbpf, 3964 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3965 } 3966 #endif 3967 3968 /* 3969 * Determine if a tx interrupt should be generated for 3970 * this descriptor. We take a tx interrupt to reap 3971 * descriptors when the h/w hits an EOL condition or 3972 * when the descriptor is specifically marked to generate 3973 * an interrupt. We periodically mark descriptors in this 3974 * way to insure timely replenishing of the supply needed 3975 * for sending frames. Defering interrupts reduces system 3976 * load and potentially allows more concurrent work to be 3977 * done but if done to aggressively can cause senders to 3978 * backup. 3979 * 3980 * NB: use >= to deal with sc_txintrperiod changing 3981 * dynamically through sysctl. 3982 */ 3983 if (flags & HAL_TXDESC_INTREQ) { 3984 txq->axq_intrcnt = 0; 3985 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3986 flags |= HAL_TXDESC_INTREQ; 3987 txq->axq_intrcnt = 0; 3988 } 3989 3990 /* 3991 * Formulate first tx descriptor with tx controls. 3992 */ 3993 /* XXX check return value? */ 3994 ath_hal_setuptxdesc(ah, ds 3995 , pktlen /* packet length */ 3996 , hdrlen /* header length */ 3997 , atype /* Atheros packet type */ 3998 , ni->ni_txpower /* txpower */ 3999 , txrate, try0 /* series 0 rate/tries */ 4000 , keyix /* key cache index */ 4001 , sc->sc_txantenna /* antenna mode */ 4002 , flags /* flags */ 4003 , ctsrate /* rts/cts rate */ 4004 , ctsduration /* rts/cts duration */ 4005 ); 4006 bf->bf_flags = flags; 4007 /* 4008 * Setup the multi-rate retry state only when we're 4009 * going to use it. This assumes ath_hal_setuptxdesc 4010 * initializes the descriptors (so we don't have to) 4011 * when the hardware supports multi-rate retry and 4012 * we don't use it. 4013 */ 4014 if (ismrr) 4015 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 4016 4017 /* 4018 * Fillin the remainder of the descriptor info. 4019 */ 4020 ds0 = ds; 4021 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4022 ds->ds_data = bf->bf_segs[i].ds_addr; 4023 if (i == bf->bf_nseg - 1) 4024 ds->ds_link = 0; 4025 else 4026 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4027 ath_hal_filltxdesc(ah, ds 4028 , bf->bf_segs[i].ds_len /* segment length */ 4029 , i == 0 /* first segment */ 4030 , i == bf->bf_nseg - 1 /* last segment */ 4031 , ds0 /* first descriptor */ 4032 ); 4033 4034 /* NB: The desc swap function becomes void, 4035 * if descriptor swapping is not enabled 4036 */ 4037 ath_desc_swap(ds); 4038 4039 DPRINTF(sc, ATH_DEBUG_XMIT, 4040 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4041 __func__, i, ds->ds_link, ds->ds_data, 4042 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4043 } 4044 /* 4045 * Insert the frame on the outbound list and 4046 * pass it on to the hardware. 4047 */ 4048 ATH_TXQ_LOCK(txq); 4049 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4050 if (txq->axq_link == NULL) { 4051 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4052 DPRINTF(sc, ATH_DEBUG_XMIT, 4053 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__, 4054 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc, 4055 txq->axq_depth); 4056 } else { 4057 *txq->axq_link = HTOAH32(bf->bf_daddr); 4058 DPRINTF(sc, ATH_DEBUG_XMIT, 4059 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n", 4060 __func__, txq->axq_qnum, txq->axq_link, 4061 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4062 } 4063 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4064 /* 4065 * The CAB queue is started from the SWBA handler since 4066 * frames only go out on DTIM and to avoid possible races. 4067 */ 4068 if (txq != sc->sc_cabq) 4069 ath_hal_txstart(ah, txq->axq_qnum); 4070 ATH_TXQ_UNLOCK(txq); 4071 4072 return 0; 4073 } 4074 4075 /* 4076 * Process completed xmit descriptors from the specified queue. 4077 */ 4078 static int 4079 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4080 { 4081 struct ath_hal *ah = sc->sc_ah; 4082 struct ieee80211com *ic = &sc->sc_ic; 4083 struct ath_buf *bf; 4084 struct ath_desc *ds, *ds0; 4085 struct ieee80211_node *ni; 4086 struct ath_node *an; 4087 int sr, lr, pri, nacked; 4088 HAL_STATUS status; 4089 4090 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4091 __func__, txq->axq_qnum, 4092 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4093 txq->axq_link); 4094 nacked = 0; 4095 for (;;) { 4096 ATH_TXQ_LOCK(txq); 4097 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4098 bf = STAILQ_FIRST(&txq->axq_q); 4099 if (bf == NULL) { 4100 txq->axq_link = NULL; 4101 ATH_TXQ_UNLOCK(txq); 4102 break; 4103 } 4104 ds0 = &bf->bf_desc[0]; 4105 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4106 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat); 4107 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4108 ath_printtxbuf(bf, status == HAL_OK); 4109 if (status == HAL_EINPROGRESS) { 4110 ATH_TXQ_UNLOCK(txq); 4111 break; 4112 } 4113 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4114 ATH_TXQ_UNLOCK(txq); 4115 4116 ni = bf->bf_node; 4117 if (ni != NULL) { 4118 an = ATH_NODE(ni); 4119 if (ds->ds_txstat.ts_status == 0) { 4120 u_int8_t txant = ds->ds_txstat.ts_antenna; 4121 sc->sc_stats.ast_ant_tx[txant]++; 4122 sc->sc_ant_tx[txant]++; 4123 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 4124 sc->sc_stats.ast_tx_altrate++; 4125 sc->sc_stats.ast_tx_rssi = 4126 ds->ds_txstat.ts_rssi; 4127 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4128 ds->ds_txstat.ts_rssi); 4129 pri = M_WME_GETAC(bf->bf_m); 4130 if (pri >= WME_AC_VO) 4131 ic->ic_wme.wme_hipri_traffic++; 4132 ni->ni_inact = ni->ni_inact_reload; 4133 } else { 4134 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 4135 sc->sc_stats.ast_tx_xretries++; 4136 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 4137 sc->sc_stats.ast_tx_fifoerr++; 4138 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 4139 sc->sc_stats.ast_tx_filtered++; 4140 } 4141 sr = ds->ds_txstat.ts_shortretry; 4142 lr = ds->ds_txstat.ts_longretry; 4143 sc->sc_stats.ast_tx_shortretry += sr; 4144 sc->sc_stats.ast_tx_longretry += lr; 4145 /* 4146 * Hand the descriptor to the rate control algorithm. 4147 */ 4148 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 4149 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 4150 /* 4151 * If frame was ack'd update the last rx time 4152 * used to workaround phantom bmiss interrupts. 4153 */ 4154 if (ds->ds_txstat.ts_status == 0) 4155 nacked++; 4156 ath_rate_tx_complete(sc, an, ds, ds0); 4157 } 4158 /* 4159 * Reclaim reference to node. 4160 * 4161 * NB: the node may be reclaimed here if, for example 4162 * this is a DEAUTH message that was sent and the 4163 * node was timed out due to inactivity. 4164 */ 4165 ieee80211_free_node(ni); 4166 } 4167 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 4168 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4169 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4170 m_freem(bf->bf_m); 4171 bf->bf_m = NULL; 4172 bf->bf_node = NULL; 4173 4174 ATH_TXBUF_LOCK(sc); 4175 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4176 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4177 ATH_TXBUF_UNLOCK(sc); 4178 } 4179 return nacked; 4180 } 4181 4182 static inline int 4183 txqactive(struct ath_hal *ah, int qnum) 4184 { 4185 u_int32_t txqs = 1<<qnum; 4186 ath_hal_gettxintrtxqs(ah, &txqs); 4187 return (txqs & (1<<qnum)); 4188 } 4189 4190 /* 4191 * Deferred processing of transmit interrupt; special-cased 4192 * for a single hardware transmit queue (e.g. 5210 and 5211). 4193 */ 4194 static void 4195 ath_tx_proc_q0(void *arg, int npending) 4196 { 4197 struct ath_softc *sc = arg; 4198 struct ifnet *ifp = &sc->sc_if; 4199 4200 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){ 4201 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4202 } 4203 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4204 ath_tx_processq(sc, sc->sc_cabq); 4205 4206 if (sc->sc_softled) 4207 ath_led_event(sc, ATH_LED_TX); 4208 4209 ath_start(ifp); 4210 } 4211 4212 /* 4213 * Deferred processing of transmit interrupt; special-cased 4214 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4215 */ 4216 static void 4217 ath_tx_proc_q0123(void *arg, int npending) 4218 { 4219 struct ath_softc *sc = arg; 4220 struct ifnet *ifp = &sc->sc_if; 4221 int nacked; 4222 4223 /* 4224 * Process each active queue. 4225 */ 4226 nacked = 0; 4227 if (txqactive(sc->sc_ah, 0)) 4228 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4229 if (txqactive(sc->sc_ah, 1)) 4230 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4231 if (txqactive(sc->sc_ah, 2)) 4232 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4233 if (txqactive(sc->sc_ah, 3)) 4234 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4235 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4236 ath_tx_processq(sc, sc->sc_cabq); 4237 if (nacked) { 4238 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4239 } 4240 4241 if (sc->sc_softled) 4242 ath_led_event(sc, ATH_LED_TX); 4243 4244 ath_start(ifp); 4245 } 4246 4247 /* 4248 * Deferred processing of transmit interrupt. 4249 */ 4250 static void 4251 ath_tx_proc(void *arg, int npending) 4252 { 4253 struct ath_softc *sc = arg; 4254 struct ifnet *ifp = &sc->sc_if; 4255 int i, nacked; 4256 4257 /* 4258 * Process each active queue. 4259 */ 4260 nacked = 0; 4261 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4262 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4263 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4264 if (nacked) { 4265 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4266 } 4267 4268 if (sc->sc_softled) 4269 ath_led_event(sc, ATH_LED_TX); 4270 4271 ath_start(ifp); 4272 } 4273 4274 static void 4275 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4276 { 4277 struct ath_hal *ah = sc->sc_ah; 4278 struct ieee80211_node *ni; 4279 struct ath_buf *bf; 4280 struct ath_desc *ds; 4281 4282 /* 4283 * NB: this assumes output has been stopped and 4284 * we do not need to block ath_tx_tasklet 4285 */ 4286 for (;;) { 4287 ATH_TXQ_LOCK(txq); 4288 bf = STAILQ_FIRST(&txq->axq_q); 4289 if (bf == NULL) { 4290 txq->axq_link = NULL; 4291 ATH_TXQ_UNLOCK(txq); 4292 break; 4293 } 4294 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4295 ATH_TXQ_UNLOCK(txq); 4296 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4297 if (sc->sc_debug & ATH_DEBUG_RESET) 4298 ath_printtxbuf(bf, 4299 ath_hal_txprocdesc(ah, bf->bf_desc, 4300 &ds->ds_txstat) == HAL_OK); 4301 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4302 m_freem(bf->bf_m); 4303 bf->bf_m = NULL; 4304 ni = bf->bf_node; 4305 bf->bf_node = NULL; 4306 if (ni != NULL) { 4307 /* 4308 * Reclaim node reference. 4309 */ 4310 ieee80211_free_node(ni); 4311 } 4312 ATH_TXBUF_LOCK(sc); 4313 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4314 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4315 ATH_TXBUF_UNLOCK(sc); 4316 } 4317 } 4318 4319 static void 4320 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4321 { 4322 struct ath_hal *ah = sc->sc_ah; 4323 4324 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4325 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4326 __func__, txq->axq_qnum, 4327 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4328 txq->axq_link); 4329 } 4330 4331 /* 4332 * Drain the transmit queues and reclaim resources. 4333 */ 4334 static void 4335 ath_draintxq(struct ath_softc *sc) 4336 { 4337 struct ath_hal *ah = sc->sc_ah; 4338 int i; 4339 4340 /* XXX return value */ 4341 if (device_is_active(sc->sc_dev)) { 4342 /* don't touch the hardware if marked invalid */ 4343 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4344 DPRINTF(sc, ATH_DEBUG_RESET, 4345 "%s: beacon queue %p\n", __func__, 4346 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4347 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4348 if (ATH_TXQ_SETUP(sc, i)) 4349 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4350 } 4351 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4352 if (ATH_TXQ_SETUP(sc, i)) 4353 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4354 } 4355 4356 /* 4357 * Disable the receive h/w in preparation for a reset. 4358 */ 4359 static void 4360 ath_stoprecv(struct ath_softc *sc) 4361 { 4362 #define PA2DESC(_sc, _pa) \ 4363 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 4364 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4365 struct ath_hal *ah = sc->sc_ah; 4366 u_int64_t tsf; 4367 4368 ath_hal_stoppcurecv(ah); /* disable PCU */ 4369 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4370 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4371 DELAY(3000); /* 3ms is long enough for 1 frame */ 4372 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4373 struct ath_buf *bf; 4374 4375 printf("%s: rx queue %p, link %p\n", __func__, 4376 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4377 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4378 struct ath_desc *ds = bf->bf_desc; 4379 tsf = ath_hal_gettsf64(sc->sc_ah); 4380 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4381 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 4382 &ds->ds_rxstat); 4383 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4384 ath_printrxbuf(bf, status == HAL_OK); 4385 } 4386 } 4387 sc->sc_rxlink = NULL; /* just in case */ 4388 #undef PA2DESC 4389 } 4390 4391 /* 4392 * Enable the receive h/w following a reset. 4393 */ 4394 static int 4395 ath_startrecv(struct ath_softc *sc) 4396 { 4397 struct ath_hal *ah = sc->sc_ah; 4398 struct ath_buf *bf; 4399 4400 sc->sc_rxlink = NULL; 4401 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4402 int error = ath_rxbuf_init(sc, bf); 4403 if (error != 0) { 4404 DPRINTF(sc, ATH_DEBUG_RECV, 4405 "%s: ath_rxbuf_init failed %d\n", 4406 __func__, error); 4407 return error; 4408 } 4409 } 4410 4411 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4412 ath_hal_putrxbuf(ah, bf->bf_daddr); 4413 ath_hal_rxena(ah); /* enable recv descriptors */ 4414 ath_mode_init(sc); /* set filters, etc. */ 4415 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4416 return 0; 4417 } 4418 4419 /* 4420 * Update internal state after a channel change. 4421 */ 4422 static void 4423 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4424 { 4425 struct ieee80211com *ic = &sc->sc_ic; 4426 enum ieee80211_phymode mode; 4427 u_int16_t flags; 4428 4429 /* 4430 * Change channels and update the h/w rate map 4431 * if we're switching; e.g. 11a to 11b/g. 4432 */ 4433 mode = ieee80211_chan2mode(ic, chan); 4434 if (mode != sc->sc_curmode) 4435 ath_setcurmode(sc, mode); 4436 /* 4437 * Update BPF state. NB: ethereal et. al. don't handle 4438 * merged flags well so pick a unique mode for their use. 4439 */ 4440 if (IEEE80211_IS_CHAN_A(chan)) 4441 flags = IEEE80211_CHAN_A; 4442 /* XXX 11g schizophrenia */ 4443 else if (IEEE80211_IS_CHAN_G(chan) || 4444 IEEE80211_IS_CHAN_PUREG(chan)) 4445 flags = IEEE80211_CHAN_G; 4446 else 4447 flags = IEEE80211_CHAN_B; 4448 if (IEEE80211_IS_CHAN_T(chan)) 4449 flags |= IEEE80211_CHAN_TURBO; 4450 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4451 htole16(chan->ic_freq); 4452 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4453 htole16(flags); 4454 } 4455 4456 #if 0 4457 /* 4458 * Poll for a channel clear indication; this is required 4459 * for channels requiring DFS and not previously visited 4460 * and/or with a recent radar detection. 4461 */ 4462 static void 4463 ath_dfswait(void *arg) 4464 { 4465 struct ath_softc *sc = arg; 4466 struct ath_hal *ah = sc->sc_ah; 4467 HAL_CHANNEL hchan; 4468 4469 ath_hal_radar_wait(ah, &hchan); 4470 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4471 if_printf(&sc->sc_if, 4472 "channel %u/0x%x/0x%x has interference\n", 4473 hchan.channel, hchan.channelFlags, hchan.privFlags); 4474 return; 4475 } 4476 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4477 /* XXX should not happen */ 4478 return; 4479 } 4480 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4481 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4482 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4483 if_printf(&sc->sc_if, 4484 "channel %u/0x%x/0x%x marked clear\n", 4485 hchan.channel, hchan.channelFlags, hchan.privFlags); 4486 } else 4487 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4488 } 4489 #endif 4490 4491 /* 4492 * Set/change channels. If the channel is really being changed, 4493 * it's done by reseting the chip. To accomplish this we must 4494 * first cleanup any pending DMA, then restart stuff after a la 4495 * ath_init. 4496 */ 4497 static int 4498 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4499 { 4500 struct ath_hal *ah = sc->sc_ah; 4501 struct ieee80211com *ic = &sc->sc_ic; 4502 HAL_CHANNEL hchan; 4503 4504 /* 4505 * Convert to a HAL channel description with 4506 * the flags constrained to reflect the current 4507 * operating mode. 4508 */ 4509 hchan.channel = chan->ic_freq; 4510 hchan.channelFlags = ath_chan2flags(ic, chan); 4511 4512 DPRINTF(sc, ATH_DEBUG_RESET, 4513 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4514 __func__, 4515 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4516 sc->sc_curchan.channelFlags), 4517 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4518 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4519 hchan.channel, hchan.channelFlags); 4520 if (hchan.channel != sc->sc_curchan.channel || 4521 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4522 HAL_STATUS status; 4523 4524 /* 4525 * To switch channels clear any pending DMA operations; 4526 * wait long enough for the RX fifo to drain, reset the 4527 * hardware at the new frequency, and then re-enable 4528 * the relevant bits of the h/w. 4529 */ 4530 ath_hal_intrset(ah, 0); /* disable interrupts */ 4531 ath_draintxq(sc); /* clear pending tx frames */ 4532 ath_stoprecv(sc); /* turn off frame recv */ 4533 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4534 if_printf(ic->ic_ifp, "%s: unable to reset " 4535 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n", 4536 __func__, ieee80211_chan2ieee(ic, chan), 4537 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4538 return EIO; 4539 } 4540 sc->sc_curchan = hchan; 4541 ath_update_txpow(sc); /* update tx power state */ 4542 ath_restore_diversity(sc); 4543 sc->sc_calinterval = 1; 4544 sc->sc_caltries = 0; 4545 4546 /* 4547 * Re-enable rx framework. 4548 */ 4549 if (ath_startrecv(sc) != 0) { 4550 if_printf(&sc->sc_if, 4551 "%s: unable to restart recv logic\n", __func__); 4552 return EIO; 4553 } 4554 4555 /* 4556 * Change channels and update the h/w rate map 4557 * if we're switching; e.g. 11a to 11b/g. 4558 */ 4559 ic->ic_ibss_chan = chan; 4560 ath_chan_change(sc, chan); 4561 4562 #if 0 4563 /* 4564 * Handle DFS required waiting period to determine 4565 * if channel is clear of radar traffic. 4566 */ 4567 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4568 #define DFS_AND_NOT_CLEAR(_c) \ 4569 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4570 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4571 if_printf(&sc->sc_if, 4572 "wait for DFS clear channel signal\n"); 4573 /* XXX stop sndq */ 4574 sc->sc_if.if_flags |= IFF_OACTIVE; 4575 callout_reset(&sc->sc_dfs_ch, 4576 2 * hz, ath_dfswait, sc); 4577 } else 4578 callout_stop(&sc->sc_dfs_ch); 4579 #undef DFS_NOT_CLEAR 4580 } 4581 #endif 4582 4583 /* 4584 * Re-enable interrupts. 4585 */ 4586 ath_hal_intrset(ah, sc->sc_imask); 4587 } 4588 return 0; 4589 } 4590 4591 static void 4592 ath_next_scan(void *arg) 4593 { 4594 struct ath_softc *sc = arg; 4595 struct ieee80211com *ic = &sc->sc_ic; 4596 int s; 4597 4598 /* don't call ath_start w/o network interrupts blocked */ 4599 s = splnet(); 4600 4601 if (ic->ic_state == IEEE80211_S_SCAN) 4602 ieee80211_next_scan(ic); 4603 splx(s); 4604 } 4605 4606 /* 4607 * Periodically recalibrate the PHY to account 4608 * for temperature/environment changes. 4609 */ 4610 static void 4611 ath_calibrate(void *arg) 4612 { 4613 struct ath_softc *sc = arg; 4614 struct ath_hal *ah = sc->sc_ah; 4615 HAL_BOOL iqCalDone; 4616 4617 sc->sc_stats.ast_per_cal++; 4618 4619 ATH_LOCK(sc); 4620 4621 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4622 /* 4623 * Rfgain is out of bounds, reset the chip 4624 * to load new gain values. 4625 */ 4626 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4627 "%s: rfgain change\n", __func__); 4628 sc->sc_stats.ast_per_rfgain++; 4629 ath_reset(&sc->sc_if); 4630 } 4631 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4632 DPRINTF(sc, ATH_DEBUG_ANY, 4633 "%s: calibration of channel %u failed\n", 4634 __func__, sc->sc_curchan.channel); 4635 sc->sc_stats.ast_per_calfail++; 4636 } 4637 /* 4638 * Calibrate noise floor data again in case of change. 4639 */ 4640 ath_hal_process_noisefloor(ah); 4641 /* 4642 * Poll more frequently when the IQ calibration is in 4643 * progress to speedup loading the final settings. 4644 * We temper this aggressive polling with an exponential 4645 * back off after 4 tries up to ath_calinterval. 4646 */ 4647 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4648 sc->sc_caltries = 0; 4649 sc->sc_calinterval = ath_calinterval; 4650 } else if (sc->sc_caltries > 4) { 4651 sc->sc_caltries = 0; 4652 sc->sc_calinterval <<= 1; 4653 if (sc->sc_calinterval > ath_calinterval) 4654 sc->sc_calinterval = ath_calinterval; 4655 } 4656 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval, 4657 ("bad calibration interval %u", sc->sc_calinterval)); 4658 4659 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4660 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4661 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4662 sc->sc_caltries++; 4663 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4664 ath_calibrate, sc); 4665 ATH_UNLOCK(sc); 4666 } 4667 4668 static int 4669 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4670 { 4671 struct ifnet *ifp = ic->ic_ifp; 4672 struct ath_softc *sc = ifp->if_softc; 4673 struct ath_hal *ah = sc->sc_ah; 4674 struct ieee80211_node *ni; 4675 int i, error; 4676 const u_int8_t *bssid; 4677 u_int32_t rfilt; 4678 static const HAL_LED_STATE leds[] = { 4679 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4680 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4681 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4682 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4683 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4684 }; 4685 4686 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4687 ieee80211_state_name[ic->ic_state], 4688 ieee80211_state_name[nstate]); 4689 4690 callout_stop(&sc->sc_scan_ch); 4691 callout_stop(&sc->sc_cal_ch); 4692 #if 0 4693 callout_stop(&sc->sc_dfs_ch); 4694 #endif 4695 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4696 4697 if (nstate == IEEE80211_S_INIT) { 4698 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4699 /* 4700 * NB: disable interrupts so we don't rx frames. 4701 */ 4702 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4703 /* 4704 * Notify the rate control algorithm. 4705 */ 4706 ath_rate_newstate(sc, nstate); 4707 goto done; 4708 } 4709 ni = ic->ic_bss; 4710 error = ath_chan_set(sc, ic->ic_curchan); 4711 if (error != 0) 4712 goto bad; 4713 rfilt = ath_calcrxfilter(sc, nstate); 4714 if (nstate == IEEE80211_S_SCAN) 4715 bssid = ifp->if_broadcastaddr; 4716 else 4717 bssid = ni->ni_bssid; 4718 ath_hal_setrxfilter(ah, rfilt); 4719 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4720 __func__, rfilt, ether_sprintf(bssid)); 4721 4722 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4723 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4724 else 4725 ath_hal_setassocid(ah, bssid, 0); 4726 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4727 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4728 if (ath_hal_keyisvalid(ah, i)) 4729 ath_hal_keysetmac(ah, i, bssid); 4730 } 4731 4732 /* 4733 * Notify the rate control algorithm so rates 4734 * are setup should ath_beacon_alloc be called. 4735 */ 4736 ath_rate_newstate(sc, nstate); 4737 4738 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4739 /* nothing to do */; 4740 } else if (nstate == IEEE80211_S_RUN) { 4741 DPRINTF(sc, ATH_DEBUG_STATE, 4742 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4743 "capinfo=0x%04x chan=%d\n" 4744 , __func__ 4745 , ic->ic_flags 4746 , ni->ni_intval 4747 , ether_sprintf(ni->ni_bssid) 4748 , ni->ni_capinfo 4749 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4750 4751 switch (ic->ic_opmode) { 4752 case IEEE80211_M_HOSTAP: 4753 case IEEE80211_M_IBSS: 4754 /* 4755 * Allocate and setup the beacon frame. 4756 * 4757 * Stop any previous beacon DMA. This may be 4758 * necessary, for example, when an ibss merge 4759 * causes reconfiguration; there will be a state 4760 * transition from RUN->RUN that means we may 4761 * be called with beacon transmission active. 4762 */ 4763 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4764 ath_beacon_free(sc); 4765 error = ath_beacon_alloc(sc, ni); 4766 if (error != 0) 4767 goto bad; 4768 /* 4769 * If joining an adhoc network defer beacon timer 4770 * configuration to the next beacon frame so we 4771 * have a current TSF to use. Otherwise we're 4772 * starting an ibss/bss so there's no need to delay. 4773 */ 4774 if (ic->ic_opmode == IEEE80211_M_IBSS && 4775 ic->ic_bss->ni_tstamp.tsf != 0) 4776 sc->sc_syncbeacon = 1; 4777 else 4778 ath_beacon_config(sc); 4779 break; 4780 case IEEE80211_M_STA: 4781 /* 4782 * Allocate a key cache slot to the station. 4783 */ 4784 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4785 sc->sc_hasclrkey && 4786 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4787 ath_setup_stationkey(ni); 4788 /* 4789 * Defer beacon timer configuration to the next 4790 * beacon frame so we have a current TSF to use 4791 * (any TSF collected when scanning is likely old). 4792 */ 4793 sc->sc_syncbeacon = 1; 4794 break; 4795 default: 4796 break; 4797 } 4798 /* 4799 * Let the hal process statistics collected during a 4800 * scan so it can provide calibrated noise floor data. 4801 */ 4802 ath_hal_process_noisefloor(ah); 4803 /* 4804 * Reset rssi stats; maybe not the best place... 4805 */ 4806 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4807 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4808 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4809 } else { 4810 ath_hal_intrset(ah, 4811 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4812 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4813 } 4814 done: 4815 /* 4816 * Invoke the parent method to complete the work. 4817 */ 4818 error = sc->sc_newstate(ic, nstate, arg); 4819 /* 4820 * Finally, start any timers. 4821 */ 4822 if (nstate == IEEE80211_S_RUN) { 4823 /* start periodic recalibration timer */ 4824 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4825 ath_calibrate, sc); 4826 } else if (nstate == IEEE80211_S_SCAN) { 4827 /* start ap/neighbor scan timer */ 4828 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4829 ath_next_scan, sc); 4830 } 4831 bad: 4832 return error; 4833 } 4834 4835 /* 4836 * Allocate a key cache slot to the station so we can 4837 * setup a mapping from key index to node. The key cache 4838 * slot is needed for managing antenna state and for 4839 * compression when stations do not use crypto. We do 4840 * it uniliaterally here; if crypto is employed this slot 4841 * will be reassigned. 4842 */ 4843 static void 4844 ath_setup_stationkey(struct ieee80211_node *ni) 4845 { 4846 struct ieee80211com *ic = ni->ni_ic; 4847 struct ath_softc *sc = ic->ic_ifp->if_softc; 4848 ieee80211_keyix keyix, rxkeyix; 4849 4850 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4851 /* 4852 * Key cache is full; we'll fall back to doing 4853 * the more expensive lookup in software. Note 4854 * this also means no h/w compression. 4855 */ 4856 /* XXX msg+statistic */ 4857 } else { 4858 /* XXX locking? */ 4859 ni->ni_ucastkey.wk_keyix = keyix; 4860 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4861 /* NB: this will create a pass-thru key entry */ 4862 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4863 } 4864 } 4865 4866 /* 4867 * Setup driver-specific state for a newly associated node. 4868 * Note that we're called also on a re-associate, the isnew 4869 * param tells us if this is the first time or not. 4870 */ 4871 static void 4872 ath_newassoc(struct ieee80211_node *ni, int isnew) 4873 { 4874 struct ieee80211com *ic = ni->ni_ic; 4875 struct ath_softc *sc = ic->ic_ifp->if_softc; 4876 4877 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4878 if (isnew && 4879 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4880 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4881 ("new assoc with a unicast key already setup (keyix %u)", 4882 ni->ni_ucastkey.wk_keyix)); 4883 ath_setup_stationkey(ni); 4884 } 4885 } 4886 4887 static int 4888 ath_getchannels(struct ath_softc *sc, u_int cc, 4889 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4890 { 4891 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4892 struct ieee80211com *ic = &sc->sc_ic; 4893 struct ifnet *ifp = &sc->sc_if; 4894 struct ath_hal *ah = sc->sc_ah; 4895 HAL_CHANNEL *chans; 4896 int i, ix, nchan; 4897 4898 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4899 M_TEMP, M_NOWAIT); 4900 if (chans == NULL) { 4901 if_printf(ifp, "unable to allocate channel table\n"); 4902 return ENOMEM; 4903 } 4904 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4905 NULL, 0, NULL, 4906 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4907 u_int32_t rd; 4908 4909 (void)ath_hal_getregdomain(ah, &rd); 4910 if_printf(ifp, "unable to collect channel list from hal; " 4911 "regdomain likely %u country code %u\n", rd, cc); 4912 free(chans, M_TEMP); 4913 return EINVAL; 4914 } 4915 4916 /* 4917 * Convert HAL channels to ieee80211 ones and insert 4918 * them in the table according to their channel number. 4919 */ 4920 for (i = 0; i < nchan; i++) { 4921 HAL_CHANNEL *c = &chans[i]; 4922 u_int16_t flags; 4923 4924 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4925 if (ix > IEEE80211_CHAN_MAX) { 4926 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4927 ix, c->channel, c->channelFlags); 4928 continue; 4929 } 4930 if (ix < 0) { 4931 /* XXX can't handle stuff <2400 right now */ 4932 if (bootverbose) 4933 if_printf(ifp, "hal channel %d (%u/%x) " 4934 "cannot be handled; ignored\n", 4935 ix, c->channel, c->channelFlags); 4936 continue; 4937 } 4938 /* 4939 * Calculate net80211 flags; most are compatible 4940 * but some need massaging. Note the static turbo 4941 * conversion can be removed once net80211 is updated 4942 * to understand static vs. dynamic turbo. 4943 */ 4944 flags = c->channelFlags & COMPAT; 4945 if (c->channelFlags & CHANNEL_STURBO) 4946 flags |= IEEE80211_CHAN_TURBO; 4947 if (ic->ic_channels[ix].ic_freq == 0) { 4948 ic->ic_channels[ix].ic_freq = c->channel; 4949 ic->ic_channels[ix].ic_flags = flags; 4950 } else { 4951 /* channels overlap; e.g. 11g and 11b */ 4952 ic->ic_channels[ix].ic_flags |= flags; 4953 } 4954 } 4955 free(chans, M_TEMP); 4956 return 0; 4957 #undef COMPAT 4958 } 4959 4960 static void 4961 ath_led_done(void *arg) 4962 { 4963 struct ath_softc *sc = arg; 4964 4965 sc->sc_blinking = 0; 4966 } 4967 4968 /* 4969 * Turn the LED off: flip the pin and then set a timer so no 4970 * update will happen for the specified duration. 4971 */ 4972 static void 4973 ath_led_off(void *arg) 4974 { 4975 struct ath_softc *sc = arg; 4976 4977 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4978 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4979 } 4980 4981 /* 4982 * Blink the LED according to the specified on/off times. 4983 */ 4984 static void 4985 ath_led_blink(struct ath_softc *sc, int on, int off) 4986 { 4987 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4988 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4989 sc->sc_blinking = 1; 4990 sc->sc_ledoff = off; 4991 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4992 } 4993 4994 static void 4995 ath_led_event(struct ath_softc *sc, int event) 4996 { 4997 4998 sc->sc_ledevent = ticks; /* time of last event */ 4999 if (sc->sc_blinking) /* don't interrupt active blink */ 5000 return; 5001 switch (event) { 5002 case ATH_LED_POLL: 5003 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 5004 sc->sc_hwmap[0].ledoff); 5005 break; 5006 case ATH_LED_TX: 5007 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 5008 sc->sc_hwmap[sc->sc_txrate].ledoff); 5009 break; 5010 case ATH_LED_RX: 5011 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 5012 sc->sc_hwmap[sc->sc_rxrate].ledoff); 5013 break; 5014 } 5015 } 5016 5017 static void 5018 ath_update_txpow(struct ath_softc *sc) 5019 { 5020 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 5021 struct ieee80211com *ic = &sc->sc_ic; 5022 struct ath_hal *ah = sc->sc_ah; 5023 u_int32_t txpow; 5024 5025 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 5026 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 5027 /* read back in case value is clamped */ 5028 (void)ath_hal_gettxpowlimit(ah, &txpow); 5029 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 5030 } 5031 /* 5032 * Fetch max tx power level for status requests. 5033 */ 5034 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 5035 ic->ic_bss->ni_txpower = txpow; 5036 } 5037 5038 static void 5039 rate_setup(struct ath_softc *sc, 5040 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 5041 { 5042 int i, maxrates; 5043 5044 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 5045 DPRINTF(sc, ATH_DEBUG_ANY, 5046 "%s: rate table too small (%u > %u)\n", 5047 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 5048 maxrates = IEEE80211_RATE_MAXSIZE; 5049 } else 5050 maxrates = rt->rateCount; 5051 for (i = 0; i < maxrates; i++) 5052 rs->rs_rates[i] = rt->info[i].dot11Rate; 5053 rs->rs_nrates = maxrates; 5054 } 5055 5056 static int 5057 ath_rate_setup(struct ath_softc *sc, u_int mode) 5058 { 5059 struct ath_hal *ah = sc->sc_ah; 5060 struct ieee80211com *ic = &sc->sc_ic; 5061 const HAL_RATE_TABLE *rt; 5062 5063 switch (mode) { 5064 case IEEE80211_MODE_11A: 5065 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5066 break; 5067 case IEEE80211_MODE_11B: 5068 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5069 break; 5070 case IEEE80211_MODE_11G: 5071 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5072 break; 5073 case IEEE80211_MODE_TURBO_A: 5074 /* XXX until static/dynamic turbo is fixed */ 5075 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5076 break; 5077 case IEEE80211_MODE_TURBO_G: 5078 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5079 break; 5080 default: 5081 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5082 __func__, mode); 5083 return 0; 5084 } 5085 sc->sc_rates[mode] = rt; 5086 if (rt != NULL) { 5087 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 5088 return 1; 5089 } else 5090 return 0; 5091 } 5092 5093 static void 5094 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5095 { 5096 #define N(a) (sizeof(a)/sizeof(a[0])) 5097 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5098 static const struct { 5099 u_int rate; /* tx/rx 802.11 rate */ 5100 u_int16_t timeOn; /* LED on time (ms) */ 5101 u_int16_t timeOff; /* LED off time (ms) */ 5102 } blinkrates[] = { 5103 { 108, 40, 10 }, 5104 { 96, 44, 11 }, 5105 { 72, 50, 13 }, 5106 { 48, 57, 14 }, 5107 { 36, 67, 16 }, 5108 { 24, 80, 20 }, 5109 { 22, 100, 25 }, 5110 { 18, 133, 34 }, 5111 { 12, 160, 40 }, 5112 { 10, 200, 50 }, 5113 { 6, 240, 58 }, 5114 { 4, 267, 66 }, 5115 { 2, 400, 100 }, 5116 { 0, 500, 130 }, 5117 }; 5118 const HAL_RATE_TABLE *rt; 5119 int i, j; 5120 5121 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5122 rt = sc->sc_rates[mode]; 5123 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5124 for (i = 0; i < rt->rateCount; i++) 5125 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 5126 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5127 for (i = 0; i < 32; i++) { 5128 u_int8_t ix = rt->rateCodeToIndex[i]; 5129 if (ix == 0xff) { 5130 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5131 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5132 continue; 5133 } 5134 sc->sc_hwmap[i].ieeerate = 5135 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 5136 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5137 if (rt->info[ix].shortPreamble || 5138 rt->info[ix].phy == IEEE80211_T_OFDM) 5139 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5140 /* NB: receive frames include FCS */ 5141 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 5142 IEEE80211_RADIOTAP_F_FCS; 5143 /* setup blink rate table to avoid per-packet lookup */ 5144 for (j = 0; j < N(blinkrates)-1; j++) 5145 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5146 break; 5147 /* NB: this uses the last entry if the rate isn't found */ 5148 /* XXX beware of overlow */ 5149 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5150 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5151 } 5152 sc->sc_currates = rt; 5153 sc->sc_curmode = mode; 5154 /* 5155 * All protection frames are transmited at 2Mb/s for 5156 * 11g, otherwise at 1Mb/s. 5157 */ 5158 if (mode == IEEE80211_MODE_11G) 5159 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 5160 else 5161 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 5162 /* rate index used to send management frames */ 5163 sc->sc_minrateix = 0; 5164 /* 5165 * Setup multicast rate state. 5166 */ 5167 /* XXX layering violation */ 5168 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 5169 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 5170 /* NB: caller is responsible for reseting rate control state */ 5171 #undef N 5172 } 5173 5174 #ifdef AR_DEBUG 5175 static void 5176 ath_printrxbuf(struct ath_buf *bf, int done) 5177 { 5178 struct ath_desc *ds; 5179 int i; 5180 5181 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5182 printf("R%d (%p %" PRIx64 5183 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds, 5184 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5185 ds->ds_link, ds->ds_data, 5186 ds->ds_ctl0, ds->ds_ctl1, 5187 ds->ds_hw[0], ds->ds_hw[1], 5188 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix, 5189 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 5190 } 5191 } 5192 5193 static void 5194 ath_printtxbuf(struct ath_buf *bf, int done) 5195 { 5196 struct ath_desc *ds; 5197 int i; 5198 5199 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5200 printf("T%d (%p %" PRIx64 5201 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 5202 i, ds, 5203 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5204 ds->ds_link, ds->ds_data, 5205 ds->ds_ctl0, ds->ds_ctl1, 5206 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 5207 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 5208 } 5209 } 5210 #endif /* AR_DEBUG */ 5211 5212 static void 5213 ath_watchdog(struct ifnet *ifp) 5214 { 5215 struct ath_softc *sc = ifp->if_softc; 5216 struct ieee80211com *ic = &sc->sc_ic; 5217 struct ath_txq *axq; 5218 int i; 5219 5220 ifp->if_timer = 0; 5221 if ((ifp->if_flags & IFF_RUNNING) == 0 || 5222 !device_is_active(sc->sc_dev)) 5223 return; 5224 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5225 if (!ATH_TXQ_SETUP(sc, i)) 5226 continue; 5227 axq = &sc->sc_txq[i]; 5228 ATH_TXQ_LOCK(axq); 5229 if (axq->axq_timer == 0) 5230 ; 5231 else if (--axq->axq_timer == 0) { 5232 ATH_TXQ_UNLOCK(axq); 5233 if_printf(ifp, "device timeout (txq %d, " 5234 "txintrperiod %d)\n", i, sc->sc_txintrperiod); 5235 if (sc->sc_txintrperiod > 1) 5236 sc->sc_txintrperiod--; 5237 ath_reset(ifp); 5238 ifp->if_oerrors++; 5239 sc->sc_stats.ast_watchdog++; 5240 break; 5241 } else 5242 ifp->if_timer = 1; 5243 ATH_TXQ_UNLOCK(axq); 5244 } 5245 ieee80211_watchdog(ic); 5246 } 5247 5248 /* 5249 * Diagnostic interface to the HAL. This is used by various 5250 * tools to do things like retrieve register contents for 5251 * debugging. The mechanism is intentionally opaque so that 5252 * it can change frequently w/o concern for compatiblity. 5253 */ 5254 static int 5255 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5256 { 5257 struct ath_hal *ah = sc->sc_ah; 5258 u_int id = ad->ad_id & ATH_DIAG_ID; 5259 void *indata = NULL; 5260 void *outdata = NULL; 5261 u_int32_t insize = ad->ad_in_size; 5262 u_int32_t outsize = ad->ad_out_size; 5263 int error = 0; 5264 5265 if (ad->ad_id & ATH_DIAG_IN) { 5266 /* 5267 * Copy in data. 5268 */ 5269 indata = malloc(insize, M_TEMP, M_NOWAIT); 5270 if (indata == NULL) { 5271 error = ENOMEM; 5272 goto bad; 5273 } 5274 error = copyin(ad->ad_in_data, indata, insize); 5275 if (error) 5276 goto bad; 5277 } 5278 if (ad->ad_id & ATH_DIAG_DYN) { 5279 /* 5280 * Allocate a buffer for the results (otherwise the HAL 5281 * returns a pointer to a buffer where we can read the 5282 * results). Note that we depend on the HAL leaving this 5283 * pointer for us to use below in reclaiming the buffer; 5284 * may want to be more defensive. 5285 */ 5286 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5287 if (outdata == NULL) { 5288 error = ENOMEM; 5289 goto bad; 5290 } 5291 } 5292 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5293 if (outsize < ad->ad_out_size) 5294 ad->ad_out_size = outsize; 5295 if (outdata != NULL) 5296 error = copyout(outdata, ad->ad_out_data, 5297 ad->ad_out_size); 5298 } else { 5299 error = EINVAL; 5300 } 5301 bad: 5302 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5303 free(indata, M_TEMP); 5304 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5305 free(outdata, M_TEMP); 5306 return error; 5307 } 5308 5309 static int 5310 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data) 5311 { 5312 #define IS_RUNNING(ifp) \ 5313 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 5314 struct ath_softc *sc = ifp->if_softc; 5315 struct ieee80211com *ic = &sc->sc_ic; 5316 struct ifreq *ifr = (struct ifreq *)data; 5317 int error = 0; 5318 5319 ATH_LOCK(sc); 5320 switch (cmd) { 5321 case SIOCSIFFLAGS: 5322 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 5323 break; 5324 if (IS_RUNNING(ifp)) { 5325 /* 5326 * To avoid rescanning another access point, 5327 * do not call ath_init() here. Instead, 5328 * only reflect promisc mode settings. 5329 */ 5330 ath_mode_init(sc); 5331 } else if (ifp->if_flags & IFF_UP) { 5332 /* 5333 * Beware of being called during attach/detach 5334 * to reset promiscuous mode. In that case we 5335 * will still be marked UP but not RUNNING. 5336 * However trying to re-init the interface 5337 * is the wrong thing to do as we've already 5338 * torn down much of our state. There's 5339 * probably a better way to deal with this. 5340 */ 5341 error = ath_init(sc); 5342 } else if (device_is_active(sc->sc_dev)) 5343 ath_stop_locked(ifp, 1); 5344 break; 5345 case SIOCADDMULTI: 5346 case SIOCDELMULTI: 5347 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 5348 if (ifp->if_flags & IFF_RUNNING) 5349 ath_mode_init(sc); 5350 error = 0; 5351 } 5352 break; 5353 case SIOCGATHSTATS: 5354 /* NB: embed these numbers to get a consistent view */ 5355 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5356 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5357 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 5358 ATH_UNLOCK(sc); 5359 /* 5360 * NB: Drop the softc lock in case of a page fault; 5361 * we'll accept any potential inconsisentcy in the 5362 * statistics. The alternative is to copy the data 5363 * to a local structure. 5364 */ 5365 return copyout(&sc->sc_stats, 5366 ifr->ifr_data, sizeof (sc->sc_stats)); 5367 case SIOCGATHDIAG: 5368 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5369 break; 5370 default: 5371 error = ieee80211_ioctl(ic, cmd, data); 5372 if (error != ENETRESET) 5373 ; 5374 else if (IS_RUNNING(ifp) && 5375 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5376 error = ath_init(sc); 5377 else 5378 error = 0; 5379 break; 5380 } 5381 ATH_UNLOCK(sc); 5382 return error; 5383 #undef IS_RUNNING 5384 } 5385 5386 #if NBPFILTER > 0 5387 static void 5388 ath_bpfattach(struct ath_softc *sc) 5389 { 5390 struct ifnet *ifp = &sc->sc_if; 5391 5392 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 5393 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5394 &sc->sc_drvbpf); 5395 /* 5396 * Initialize constant fields. 5397 * XXX make header lengths a multiple of 32-bits so subsequent 5398 * headers are properly aligned; this is a kludge to keep 5399 * certain applications happy. 5400 * 5401 * NB: the channel is setup each time we transition to the 5402 * RUN state to avoid filling it in for each frame. 5403 */ 5404 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5405 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5406 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5407 5408 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5409 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5410 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5411 } 5412 #endif 5413 5414 /* 5415 * Announce various information on device/driver attach. 5416 */ 5417 static void 5418 ath_announce(struct ath_softc *sc) 5419 { 5420 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5421 struct ifnet *ifp = &sc->sc_if; 5422 struct ath_hal *ah = sc->sc_ah; 5423 u_int modes, cc; 5424 5425 if_printf(ifp, "mac %d.%d phy %d.%d", 5426 ah->ah_macVersion, ah->ah_macRev, 5427 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5428 /* 5429 * Print radio revision(s). We check the wireless modes 5430 * to avoid falsely printing revs for inoperable parts. 5431 * Dual-band radio revs are returned in the 5 GHz rev number. 5432 */ 5433 ath_hal_getcountrycode(ah, &cc); 5434 modes = ath_hal_getwirelessmodes(ah, cc); 5435 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5436 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5437 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d", 5438 ah->ah_analog5GhzRev >> 4, 5439 ah->ah_analog5GhzRev & 0xf, 5440 ah->ah_analog2GhzRev >> 4, 5441 ah->ah_analog2GhzRev & 0xf); 5442 else 5443 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5444 ah->ah_analog5GhzRev & 0xf); 5445 } else 5446 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5447 ah->ah_analog5GhzRev & 0xf); 5448 printf("\n"); 5449 if (bootverbose) { 5450 int i; 5451 for (i = 0; i <= WME_AC_VO; i++) { 5452 struct ath_txq *txq = sc->sc_ac2q[i]; 5453 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5454 txq->axq_qnum, ieee80211_wme_acnames[i]); 5455 } 5456 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5457 sc->sc_cabq->axq_qnum); 5458 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5459 } 5460 if (ath_rxbuf != ATH_RXBUF) 5461 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5462 if (ath_txbuf != ATH_TXBUF) 5463 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5464 #undef HAL_MODE_DUALBAND 5465 } 5466