xref: /netbsd-src/sys/dev/ic/ath.c (revision de1dfb1250df962f1ff3a011772cf58e605aed11)
1 /*	$NetBSD: ath.c,v 1.38 2004/09/07 01:15:59 enami Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.54 2004/04/05 04:42:42 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.38 2004/09/07 01:15:59 enami Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81 
82 #include <machine/bus.h>
83 
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94 
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97 
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105 
106 #include <dev/ic/athcompat.h>
107 
108 #define	AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116 
117 /* unaligned little endian access */
118 #define LE_READ_2(p)							\
119 	((u_int16_t)							\
120 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
121 #define LE_READ_4(p)							\
122 	((u_int32_t)							\
123 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
124 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125 
126 #ifdef __FreeBSD__
127 static void	ath_init(void *);
128 #else
129 static int	ath_init(struct ifnet *);
130 #endif
131 static int	ath_init1(struct ath_softc *);
132 static int	ath_intr1(struct ath_softc *);
133 static void	ath_stop(struct ifnet *);
134 static void	ath_start(struct ifnet *);
135 static void	ath_reset(struct ath_softc *);
136 static int	ath_media_change(struct ifnet *);
137 static void	ath_watchdog(struct ifnet *);
138 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void	ath_fatal_proc(void *, int);
140 static void	ath_rxorn_proc(void *, int);
141 static void	ath_bmiss_proc(void *, int);
142 static void	ath_initkeytable(struct ath_softc *);
143 static void	ath_mode_init(struct ath_softc *);
144 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void	ath_beacon_proc(struct ath_softc *, int);
146 static void	ath_beacon_free(struct ath_softc *);
147 static void	ath_beacon_config(struct ath_softc *);
148 static int	ath_desc_alloc(struct ath_softc *);
149 static void	ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void	ath_node_copy(struct ieee80211com *,
153 			struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t	ath_node_getrssi(struct ieee80211com *,
155 			struct ieee80211_node *);
156 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void	ath_rx_proc(void *, int);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc(void *, int);
161 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void	ath_draintxq(struct ath_softc *);
163 static void	ath_stoprecv(struct ath_softc *);
164 static int	ath_startrecv(struct ath_softc *);
165 static void	ath_next_scan(void *);
166 static void	ath_calibrate(void *);
167 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void	ath_newassoc(struct ieee80211com *,
169 			struct ieee80211_node *, int);
170 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor,
171 			HAL_BOOL xchanmode);
172 
173 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
174 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
175 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
176 static void	ath_rate_ctl(void *, struct ieee80211_node *);
177 static void	ath_recv_mgmt(struct ieee80211com *, struct mbuf *,
178 			struct ieee80211_node *, int, int, u_int32_t);
179 
180 #ifdef __NetBSD__
181 int	ath_enable(struct ath_softc *);
182 void	ath_disable(struct ath_softc *);
183 void	ath_power(int, void *);
184 #endif
185 
186 #ifdef __FreeBSD__
187 SYSCTL_DECL(_hw_ath);
188 /* XXX validate sysctl values */
189 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
190 	    0, "channel dwell time (ms) for AP/station scanning");
191 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
192 	    0, "chip calibration interval (secs)");
193 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
194 	    0, "enable/disable outdoor operation");
195 TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
196 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197 	    0, "country code");
198 TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200 	    0, "regulatory domain");
201 #endif /* __FreeBSD__ */
202 
203 #ifdef __NetBSD__
204 static int ath_dwelltime_nodenum, ath_calibrate_nodenum, ath_outdoor_nodenum,
205            ath_countrycode_nodenum, ath_regdomain_nodenum, ath_debug_nodenum;
206 #endif /* __NetBSD__ */
207 
208 static	int ath_dwelltime = 200;		/* 5 channels/second */
209 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
210 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
211 static	int ath_xchanmode = AH_TRUE;		/* enable extended channels */
212 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
213 static	int ath_regdomain = 0;			/* regulatory domain */
214 
215 #ifdef AR_DEBUG
216 int	ath_debug = 0;
217 #ifdef __FreeBSD__
218 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
219 	    0, "control debugging printfs");
220 TUNABLE_INT("hw.ath.debug", &ath_debug);
221 #endif /* __FreeBSD__ */
222 #define	IFF_DUMPPKTS(_ifp, _m) \
223 	((ath_debug & _m) || \
224 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
225 static	void ath_printrxbuf(struct ath_buf *bf, int);
226 static	void ath_printtxbuf(struct ath_buf *bf, int);
227 enum {
228 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
229 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
230 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
231 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
232 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
233 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
234 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
235 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
236 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
237 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
238 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
239 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
240 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
241 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
242 	ATH_DEBUG_ANY		= 0xffffffff
243 };
244 #define	DPRINTF(_m,X)	if (ath_debug & (_m)) printf X
245 #else
246 #define	IFF_DUMPPKTS(_ifp, _m) \
247 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
248 #define	DPRINTF(_m, X)
249 #endif
250 
251 #ifdef __NetBSD__
252 int
253 ath_activate(struct device *self, enum devact act)
254 {
255 	struct ath_softc *sc = (struct ath_softc *)self;
256 	int rv = 0, s;
257 
258 	s = splnet();
259 	switch (act) {
260 	case DVACT_ACTIVATE:
261 		rv = EOPNOTSUPP;
262 		break;
263 	case DVACT_DEACTIVATE:
264 		if_deactivate(&sc->sc_ic.ic_if);
265 		break;
266 	}
267 	splx(s);
268 	return rv;
269 }
270 
271 int
272 ath_enable(struct ath_softc *sc)
273 {
274 	if (ATH_IS_ENABLED(sc) == 0) {
275 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
276 			printf("%s: device enable failed\n",
277 				sc->sc_dev.dv_xname);
278 			return (EIO);
279 		}
280 		sc->sc_flags |= ATH_ENABLED;
281 	}
282 	return (0);
283 }
284 
285 void
286 ath_disable(struct ath_softc *sc)
287 {
288 	if (!ATH_IS_ENABLED(sc))
289 		return;
290 	if (sc->sc_disable != NULL)
291 		(*sc->sc_disable)(sc);
292 	sc->sc_flags &= ~ATH_ENABLED;
293 }
294 
295 static int
296 sysctl_ath_verify(SYSCTLFN_ARGS)
297 {
298 	int error, t;
299 	struct sysctlnode node;
300 
301 	node = *rnode;
302 	t = *(int*)rnode->sysctl_data;
303 	node.sysctl_data = &t;
304 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
305 	if (error || newp == NULL)
306 		return (error);
307 
308 	DPRINTF(ATH_DEBUG_ANY, ("%s: t = %d, nodenum = %d, rnodenum = %d\n",
309 	    __func__, t, node.sysctl_num, rnode->sysctl_num));
310 
311 	if (node.sysctl_num == ath_dwelltime_nodenum) {
312 		if (t <= 0)
313 			return (EINVAL);
314 	} else if (node.sysctl_num == ath_calibrate_nodenum) {
315 		if (t <= 0)
316 			return (EINVAL);
317 #ifdef AR_DEBUG
318 	} else if (node.sysctl_num == ath_debug_nodenum) {
319 		;		/* Accept any vaule */
320 #endif /* AR_DEBUG */
321 	} else
322 		return (EINVAL);
323 
324 	*(int*)rnode->sysctl_data = t;
325 
326 	return (0);
327 }
328 
329 /*
330  * Setup sysctl(3) MIB, ath.*.
331  *
332  * TBD condition CTLFLAG_PERMANENT on being an LKM or not
333  */
334 SYSCTL_SETUP(sysctl_ath, "sysctl ath subtree setup")
335 {
336 	int rc, ath_node_num;
337 	struct sysctlnode *node;
338 
339 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
340 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
341 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
342 		goto err;
343 
344 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
345 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "ath",
346 	    SYSCTL_DESCR("ath information and options"),
347 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
348 		goto err;
349 
350 	ath_node_num = node->sysctl_num;
351 
352 	/* channel dwell time (ms) for AP/station scanning */
353 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
354 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
355 	    CTLTYPE_INT, "dwell",
356 	    SYSCTL_DESCR("Channel dwell time (ms) for AP/station scanning"),
357 	    sysctl_ath_verify, 0, &ath_dwelltime,
358 	    0, CTL_HW, ath_node_num, CTL_CREATE,
359 	    CTL_EOL)) != 0)
360 		goto err;
361 
362 	ath_dwelltime_nodenum = node->sysctl_num;
363 
364 	/* chip calibration interval (secs) */
365 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
366 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
367 	    CTLTYPE_INT, "calibrate",
368 	    SYSCTL_DESCR("Chip calibration interval (secs)"), sysctl_ath_verify,
369 	    0, &ath_calinterval, 0, CTL_HW,
370 	    ath_node_num, CTL_CREATE, CTL_EOL)) != 0)
371 		goto err;
372 
373 	ath_calibrate_nodenum = node->sysctl_num;
374 
375 	/* enable/disable outdoor operation */
376 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
377 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
378 	    "outdoor", SYSCTL_DESCR("Enable/disable outdoor operation"),
379 	    NULL, 0, &ath_outdoor, 0,
380 	    CTL_HW, ath_node_num, CTL_CREATE,
381 	    CTL_EOL)) != 0)
382 		goto err;
383 
384 	ath_outdoor_nodenum = node->sysctl_num;
385 
386 	/* country code */
387 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
388 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
389 	    "countrycode", SYSCTL_DESCR("Country code"),
390 	    NULL, 0, &ath_countrycode, 0,
391 	    CTL_HW, ath_node_num, CTL_CREATE,
392 	    CTL_EOL)) != 0)
393 		goto err;
394 
395 	ath_countrycode_nodenum = node->sysctl_num;
396 
397 	/* regulatory domain */
398 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
399 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT,
400 	    "regdomain", SYSCTL_DESCR("Regulatory domain"),
401 	    NULL, 0, &ath_regdomain, 0,
402 	    CTL_HW, ath_node_num, CTL_CREATE,
403 	    CTL_EOL)) != 0)
404 		goto err;
405 
406 	ath_regdomain_nodenum = node->sysctl_num;
407 
408 #ifdef AR_DEBUG
409 
410 	/* control debugging printfs */
411 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
412 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
413 	    "debug", SYSCTL_DESCR("Enable/disable ath debugging output"),
414 	    sysctl_ath_verify, 0, &ath_debug, 0,
415 	    CTL_HW, ath_node_num, CTL_CREATE,
416 	    CTL_EOL)) != 0)
417 		goto err;
418 
419 	ath_debug_nodenum = node->sysctl_num;
420 
421 #endif /* AR_DEBUG */
422 	return;
423 err:
424 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
425 }
426 #endif /* __NetBSD__ */
427 
428 int
429 ath_attach(u_int16_t devid, struct ath_softc *sc)
430 {
431 	struct ieee80211com *ic = &sc->sc_ic;
432 	struct ifnet *ifp = &ic->ic_if;
433 	struct ath_hal *ah;
434 	HAL_STATUS status;
435 	HAL_TXQ_INFO qinfo;
436 	int error = 0;
437 
438 	DPRINTF(ATH_DEBUG_ANY, ("%s: devid 0x%x\n", __func__, devid));
439 
440 #ifdef __FreeBSD__
441 	/* set these up early for if_printf use */
442 	if_initname(ifp, device_get_name(sc->sc_dev),
443 	    device_get_unit(sc->sc_dev));
444 #else
445 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
446 #endif
447 
448 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
449 	if (ah == NULL) {
450 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
451 			status);
452 		error = ENXIO;
453 		goto bad;
454 	}
455 	if (ah->ah_abi != HAL_ABI_VERSION) {
456 		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
457 			ah->ah_abi, HAL_ABI_VERSION);
458 		error = ENXIO;
459 		goto bad;
460 	}
461 	if_printf(ifp, "mac %d.%d phy %d.%d",
462 		ah->ah_macVersion, ah->ah_macRev,
463 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
464 	if (ah->ah_analog5GhzRev)
465 		printf(" 5ghz radio %d.%d",
466 			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
467 	if (ah->ah_analog2GhzRev)
468 		printf(" 2ghz radio %d.%d",
469 			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
470 	printf("\n");
471 	sc->sc_ah = ah;
472 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
473 
474 	/*
475 	 * Collect the channel list using the default country
476 	 * code and including outdoor channels.  The 802.11 layer
477 	 * is resposible for filtering this list based on settings
478 	 * like the phy mode.
479 	 */
480 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor,
481 	    ath_xchanmode);
482 	if (error != 0)
483 		goto bad;
484 	/*
485 	 * Copy these back; they are set as a side effect
486 	 * of constructing the channel list.
487 	 */
488 	ath_hal_getregdomain(ah, &ath_regdomain);
489 	ath_hal_getcountrycode(ah, &ath_countrycode);
490 
491 	/*
492 	 * Setup rate tables for all potential media types.
493 	 */
494 	ath_rate_setup(sc, IEEE80211_MODE_11A);
495 	ath_rate_setup(sc, IEEE80211_MODE_11B);
496 	ath_rate_setup(sc, IEEE80211_MODE_11G);
497 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
498 
499 	error = ath_desc_alloc(sc);
500 	if (error != 0) {
501 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
502 		goto bad;
503 	}
504 	ATH_CALLOUT_INIT(&sc->sc_scan_ch);
505 	ATH_CALLOUT_INIT(&sc->sc_cal_ch);
506 
507 #ifdef __FreeBSD__
508 	ATH_TXBUF_LOCK_INIT(sc);
509 	ATH_TXQ_LOCK_INIT(sc);
510 #endif
511 
512 	ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
513 	ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
514 	ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
515 	ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
516 	ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
517 
518 	/*
519 	 * For now just pre-allocate one data queue and one
520 	 * beacon queue.  Note that the HAL handles resetting
521 	 * them at the needed time.  Eventually we'll want to
522 	 * allocate more tx queues for splitting management
523 	 * frames and for QOS support.
524 	 */
525 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,HAL_TX_QUEUE_BEACON,NULL);
526 	if (sc->sc_bhalq == (u_int) -1) {
527 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
528 		goto bad2;
529 	}
530 
531 	memset(&qinfo, 0, sizeof(qinfo));
532 	qinfo.tqi_subtype = HAL_WME_AC_BE;
533 	sc->sc_txhalq = ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_DATA, &qinfo);
534 	if (sc->sc_txhalq == (u_int) -1) {
535 		if_printf(ifp, "unable to setup a data xmit queue!\n");
536 		goto bad2;
537 	}
538 
539 	ifp->if_softc = sc;
540 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
541 	ifp->if_start = ath_start;
542 	ifp->if_watchdog = ath_watchdog;
543 	ifp->if_ioctl = ath_ioctl;
544 	ifp->if_init = ath_init;
545 #ifdef __FreeBSD__
546 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
547 #else
548 #if 0
549 	ifp->if_stop = ath_stop;		/* XXX */
550 #endif
551 	IFQ_SET_READY(&ifp->if_snd);
552 #endif
553 
554 	ic->ic_softc = sc;
555 	ic->ic_newassoc = ath_newassoc;
556 	/* XXX not right but it's not used anywhere important */
557 	ic->ic_phytype = IEEE80211_T_OFDM;
558 	ic->ic_opmode = IEEE80211_M_STA;
559 	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
560 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
561 		| IEEE80211_C_HOSTAP		/* hostap mode */
562 		| IEEE80211_C_MONITOR		/* monitor mode */
563 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
564 		;
565 
566 	/* get mac address from hardware */
567 	ath_hal_getmac(ah, ic->ic_myaddr);
568 
569 #ifdef __NetBSD__
570 	if_attach(ifp);
571 #endif
572 	/* call MI attach routine. */
573 	ieee80211_ifattach(ifp);
574 	/* override default methods */
575 	ic->ic_node_alloc = ath_node_alloc;
576 	sc->sc_node_free = ic->ic_node_free;
577 	ic->ic_node_free = ath_node_free;
578 	sc->sc_node_copy = ic->ic_node_copy;
579 	ic->ic_node_copy = ath_node_copy;
580 	ic->ic_node_getrssi = ath_node_getrssi;
581 	sc->sc_newstate = ic->ic_newstate;
582 	ic->ic_newstate = ath_newstate;
583 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
584 	ic->ic_recv_mgmt = ath_recv_mgmt;
585 
586 	/* complete initialization */
587 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
588 
589 #if NBPFILTER > 0
590 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
591 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
592 		&sc->sc_drvbpf);
593 #endif
594 	/*
595 	 * Initialize constant fields.
596 	 * XXX make header lengths a multiple of 32-bits so subsequent
597 	 *     headers are properly aligned; this is a kludge to keep
598 	 *     certain applications happy.
599 	 *
600 	 * NB: the channel is setup each time we transition to the
601 	 *     RUN state to avoid filling it in for each frame.
602 	 */
603 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
604 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
605 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
606 
607 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
608 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
609 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
610 
611 #ifdef __NetBSD__
612 	sc->sc_flags |= ATH_ATTACHED;
613 	/*
614 	 * Make sure the interface is shutdown during reboot.
615 	 */
616 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
617 	if (sc->sc_sdhook == NULL)
618 		printf("%s: WARNING: unable to establish shutdown hook\n",
619 			sc->sc_dev.dv_xname);
620 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
621 	if (sc->sc_powerhook == NULL)
622 		printf("%s: WARNING: unable to establish power hook\n",
623 			sc->sc_dev.dv_xname);
624 #endif
625 	return 0;
626 bad2:
627 	ath_desc_free(sc);
628 bad:
629 	if (ah)
630 		ath_hal_detach(ah);
631 	sc->sc_invalid = 1;
632 	return error;
633 }
634 
635 int
636 ath_detach(struct ath_softc *sc)
637 {
638 	struct ifnet *ifp = &sc->sc_ic.ic_if;
639 	ath_softc_critsect_decl(s);
640 
641 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
642 		return (0);
643 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
644 
645 	ath_softc_critsect_begin(sc, s);
646 	ath_stop(ifp);
647 #if NBPFILTER > 0
648 	bpfdetach(ifp);
649 #endif
650 	ath_desc_free(sc);
651 	ath_hal_detach(sc->sc_ah);
652 	ieee80211_ifdetach(ifp);
653 #ifdef __NetBSD__
654 	if_detach(ifp);
655 #endif /* __NetBSD__ */
656 	ath_softc_critsect_end(sc, s);
657 #ifdef __NetBSD__
658 	powerhook_disestablish(sc->sc_powerhook);
659 	shutdownhook_disestablish(sc->sc_sdhook);
660 #endif /* __NetBSD__ */
661 #ifdef __FreeBSD__
662 
663 	ATH_TXBUF_LOCK_DESTROY(sc);
664 	ATH_TXQ_LOCK_DESTROY(sc);
665 
666 #endif /* __FreeBSD__ */
667 	return 0;
668 }
669 
670 #ifdef __NetBSD__
671 void
672 ath_power(int why, void *arg)
673 {
674 	struct ath_softc *sc = arg;
675 	int s;
676 
677 	DPRINTF(ATH_DEBUG_ANY, ("ath_power(%d)\n", why));
678 
679 	s = splnet();
680 	switch (why) {
681 	case PWR_SUSPEND:
682 	case PWR_STANDBY:
683 		ath_suspend(sc, why);
684 		break;
685 	case PWR_RESUME:
686 		ath_resume(sc, why);
687 		break;
688 	case PWR_SOFTSUSPEND:
689 	case PWR_SOFTSTANDBY:
690 	case PWR_SOFTRESUME:
691 		break;
692 	}
693 	splx(s);
694 }
695 #endif
696 
697 void
698 ath_suspend(struct ath_softc *sc, int why)
699 {
700 	struct ifnet *ifp = &sc->sc_ic.ic_if;
701 
702 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
703 
704 	ath_stop(ifp);
705 	if (sc->sc_power != NULL)
706 		(*sc->sc_power)(sc, why);
707 }
708 
709 void
710 ath_resume(struct ath_softc *sc, int why)
711 {
712 	struct ifnet *ifp = &sc->sc_ic.ic_if;
713 
714 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
715 
716 	if (ifp->if_flags & IFF_UP) {
717 		ath_init(ifp);
718 #if 0
719 		(void)ath_intr(sc);
720 #endif
721 		if (sc->sc_power != NULL)
722 			(*sc->sc_power)(sc, why);
723 		if (ifp->if_flags & IFF_RUNNING)
724 			ath_start(ifp);
725 	}
726 }
727 
728 #ifdef __NetBSD__
729 void
730 ath_shutdown(void *arg)
731 {
732 	struct ath_softc *sc = arg;
733 
734 	ath_stop(&sc->sc_ic.ic_if);
735 }
736 #else
737 void
738 ath_shutdown(struct ath_softc *sc)
739 {
740 #if 1
741 	return;
742 #else
743 	struct ifnet *ifp = &sc->sc_ic.ic_if;
744 
745 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags %x\n", __func__, ifp->if_flags));
746 
747 	ath_stop(ifp);
748 #endif
749 }
750 #endif
751 
752 #ifdef __NetBSD__
753 int
754 ath_intr(void *arg)
755 {
756 	return ath_intr1((struct ath_softc *)arg);
757 }
758 #else
759 void
760 ath_intr(void *arg)
761 {
762 	(void)ath_intr1((struct ath_softc *)arg);
763 }
764 #endif
765 
766 static int
767 ath_intr1(struct ath_softc *sc)
768 {
769 	struct ieee80211com *ic = &sc->sc_ic;
770 	struct ifnet *ifp = &ic->ic_if;
771 	struct ath_hal *ah = sc->sc_ah;
772 	HAL_INT status;
773 
774 	if (sc->sc_invalid) {
775 		/*
776 		 * The hardware is not ready/present, don't touch anything.
777 		 * Note this can happen early on if the IRQ is shared.
778 		 */
779 		DPRINTF(ATH_DEBUG_ANY, ("%s: invalid; ignored\n", __func__));
780 		return 0;
781 	}
782 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
783 		return 0;
784 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
785 		DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
786 			__func__, ifp->if_flags));
787 		ath_hal_getisr(ah, &status);	/* clear ISR */
788 		ath_hal_intrset(ah, 0);		/* disable further intr's */
789 		return 1; /* XXX */
790 	}
791 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
792 	DPRINTF(ATH_DEBUG_INTR, ("%s: status 0x%x\n", __func__, status));
793 	status &= sc->sc_imask;			/* discard unasked for bits */
794 	if (status & HAL_INT_FATAL) {
795 		sc->sc_stats.ast_hardware++;
796 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
797 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
798 	} else if (status & HAL_INT_RXORN) {
799 		sc->sc_stats.ast_rxorn++;
800 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
801 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
802 	} else {
803 		if (status & HAL_INT_RXEOL) {
804 			/*
805 			 * NB: the hardware should re-read the link when
806 			 *     RXE bit is written, but it doesn't work at
807 			 *     least on older hardware revs.
808 			 */
809 			sc->sc_stats.ast_rxeol++;
810 			sc->sc_rxlink = NULL;
811 		}
812 		if (status & HAL_INT_TXURN) {
813 			sc->sc_stats.ast_txurn++;
814 			/* bump tx trigger level */
815 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
816 		}
817 		if (status & HAL_INT_RX)
818 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
819 		if (status & HAL_INT_TX)
820 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
821 		if (status & HAL_INT_SWBA) {
822 			/*
823 			 * Handle beacon transmission directly; deferring
824 			 * this is too slow to meet timing constraints
825 			 * under load.
826 			 */
827 			ath_beacon_proc(sc, 0);
828 		}
829 		if (status & HAL_INT_BMISS) {
830 			sc->sc_stats.ast_bmiss++;
831 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
832 		}
833 	}
834 	return 1;
835 }
836 
837 static void
838 ath_fatal_proc(void *arg, int pending)
839 {
840 	struct ath_softc *sc = arg;
841 
842 	device_printf(sc->sc_dev, "hardware error; resetting\n");
843 	ath_reset(sc);
844 }
845 
846 static void
847 ath_rxorn_proc(void *arg, int pending)
848 {
849 	struct ath_softc *sc = arg;
850 
851 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
852 	ath_reset(sc);
853 }
854 
855 static void
856 ath_bmiss_proc(void *arg, int pending)
857 {
858 	struct ath_softc *sc = arg;
859 	struct ieee80211com *ic = &sc->sc_ic;
860 
861 	DPRINTF(ATH_DEBUG_ANY, ("%s: pending %u\n", __func__, pending));
862 	if (ic->ic_opmode != IEEE80211_M_STA)
863 		return;
864 	if (ic->ic_state == IEEE80211_S_RUN) {
865 		/*
866 		 * Rather than go directly to scan state, try to
867 		 * reassociate first.  If that fails then the state
868 		 * machine will drop us into scanning after timing
869 		 * out waiting for a probe response.
870 		 */
871 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
872 	}
873 }
874 
875 static u_int
876 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
877 {
878 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
879 
880 	switch (mode) {
881 	case IEEE80211_MODE_AUTO:
882 		return 0;
883 	case IEEE80211_MODE_11A:
884 		return CHANNEL_A;
885 	case IEEE80211_MODE_11B:
886 		return CHANNEL_B;
887 	case IEEE80211_MODE_11G:
888 		return CHANNEL_PUREG;
889 	case IEEE80211_MODE_TURBO:
890 		return CHANNEL_T;
891 	default:
892 		panic("%s: unsupported mode %d\n", __func__, mode);
893 		return 0;
894 	}
895 }
896 
897 #ifdef __NetBSD__
898 static int
899 ath_init(struct ifnet *ifp)
900 {
901 	return ath_init1((struct ath_softc *)ifp->if_softc);
902 }
903 #else
904 static void
905 ath_init(void *arg)
906 {
907 	(void)ath_init1((struct ath_softc *)arg);
908 }
909 #endif
910 
911 static int
912 ath_init1(struct ath_softc *sc)
913 {
914 	struct ieee80211com *ic = &sc->sc_ic;
915 	struct ifnet *ifp = &ic->ic_if;
916 	struct ieee80211_node *ni;
917 	enum ieee80211_phymode mode;
918 	struct ath_hal *ah = sc->sc_ah;
919 	HAL_STATUS status;
920 	HAL_CHANNEL hchan;
921 	int error = 0;
922 	ath_softc_critsect_decl(s);
923 
924 	DPRINTF(ATH_DEBUG_ANY, ("%s: if_flags 0x%x\n",
925 		__func__, ifp->if_flags));
926 
927 #ifdef __NetBSD__
928 	if ((error = ath_enable(sc)) != 0)
929 		return error;
930 #endif
931 
932 	ath_softc_critsect_begin(sc, s);
933 	/*
934 	 * Stop anything previously setup.  This is safe
935 	 * whether this is the first time through or not.
936 	 */
937 	ath_stop(ifp);
938 
939 	/*
940 	 * The basic interface to setting the hardware in a good
941 	 * state is ``reset''.  On return the hardware is known to
942 	 * be powered up and with interrupts disabled.  This must
943 	 * be followed by initialization of the appropriate bits
944 	 * and then setup of the interrupt mask.
945 	 */
946 	hchan.channel = ic->ic_ibss_chan->ic_freq;
947 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
948 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
949 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
950 			status);
951 		error = EIO;
952 		goto done;
953 	}
954 
955 	/*
956 	 * Setup the hardware after reset: the key cache
957 	 * is filled as needed and the receive engine is
958 	 * set going.  Frame transmit is handled entirely
959 	 * in the frame output path; there's nothing to do
960 	 * here except setup the interrupt mask.
961 	 */
962 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
963 		ath_initkeytable(sc);
964 	if ((error = ath_startrecv(sc)) != 0) {
965 		if_printf(ifp, "unable to start recv logic\n");
966 		goto done;
967 	}
968 
969 	/*
970 	 * Enable interrupts.
971 	 */
972 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
973 		  | HAL_INT_RXEOL | HAL_INT_RXORN
974 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
975 	ath_hal_intrset(ah, sc->sc_imask);
976 
977 	ifp->if_flags |= IFF_RUNNING;
978 	ic->ic_state = IEEE80211_S_INIT;
979 
980 	/*
981 	 * The hardware should be ready to go now so it's safe
982 	 * to kick the 802.11 state machine as it's likely to
983 	 * immediately call back to us to send mgmt frames.
984 	 */
985 	ni = ic->ic_bss;
986 	ni->ni_chan = ic->ic_ibss_chan;
987 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
988 	if (mode != sc->sc_curmode)
989 		ath_setcurmode(sc, mode);
990 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
991 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
992 	else
993 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
994 done:
995 	ath_softc_critsect_end(sc, s);
996 	return error;
997 }
998 
999 static void
1000 ath_stop(struct ifnet *ifp)
1001 {
1002 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
1003 	struct ath_softc *sc = ifp->if_softc;
1004 	struct ath_hal *ah = sc->sc_ah;
1005 	ath_softc_critsect_decl(s);
1006 
1007 	DPRINTF(ATH_DEBUG_ANY, ("%s: invalid %u if_flags 0x%x\n",
1008 		__func__, sc->sc_invalid, ifp->if_flags));
1009 
1010 	ath_softc_critsect_begin(sc, s);
1011 	if (ifp->if_flags & IFF_RUNNING) {
1012 		/*
1013 		 * Shutdown the hardware and driver:
1014 		 *    disable interrupts
1015 		 *    turn off timers
1016 		 *    clear transmit machinery
1017 		 *    clear receive machinery
1018 		 *    drain and release tx queues
1019 		 *    reclaim beacon resources
1020 		 *    reset 802.11 state machine
1021 		 *    power down hardware
1022 		 *
1023 		 * Note that some of this work is not possible if the
1024 		 * hardware is gone (invalid).
1025 		 */
1026 		ifp->if_flags &= ~IFF_RUNNING;
1027 		ifp->if_timer = 0;
1028 		if (!sc->sc_invalid)
1029 			ath_hal_intrset(ah, 0);
1030 		ath_draintxq(sc);
1031 		if (!sc->sc_invalid)
1032 			ath_stoprecv(sc);
1033 		else
1034 			sc->sc_rxlink = NULL;
1035 #ifdef __FreeBSD__
1036 		IF_DRAIN(&ifp->if_snd);
1037 #else
1038 		IF_PURGE(&ifp->if_snd);
1039 #endif
1040 		ath_beacon_free(sc);
1041 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1042 		if (!sc->sc_invalid) {
1043 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
1044 		}
1045 #ifdef __NetBSD__
1046 		ath_disable(sc);
1047 #endif
1048 	}
1049 	ath_softc_critsect_end(sc, s);
1050 }
1051 
1052 /*
1053  * Reset the hardware w/o losing operational state.  This is
1054  * basically a more efficient way of doing ath_stop, ath_init,
1055  * followed by state transitions to the current 802.11
1056  * operational state.  Used to recover from errors rx overrun
1057  * and to reset the hardware when rf gain settings must be reset.
1058  */
1059 static void
1060 ath_reset(struct ath_softc *sc)
1061 {
1062 	struct ieee80211com *ic = &sc->sc_ic;
1063 	struct ifnet *ifp = &ic->ic_if;
1064 	struct ath_hal *ah = sc->sc_ah;
1065 	struct ieee80211_channel *c;
1066 	HAL_STATUS status;
1067 	HAL_CHANNEL hchan;
1068 
1069 	/*
1070 	 * Convert to a HAL channel description with the flags
1071 	 * constrained to reflect the current operating mode.
1072 	 */
1073 	c = ic->ic_ibss_chan;
1074 	hchan.channel = c->ic_freq;
1075 	hchan.channelFlags = ath_chan2flags(ic, c);
1076 
1077 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1078 	ath_draintxq(sc);		/* stop xmit side */
1079 	ath_stoprecv(sc);		/* stop recv side */
1080 	/* NB: indicate channel change so we do a full reset */
1081 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
1082 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1083 			__func__, status);
1084 	ath_hal_intrset(ah, sc->sc_imask);
1085 	if (ath_startrecv(sc) != 0)	/* restart recv */
1086 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1087 	ath_start(ifp);			/* restart xmit */
1088 	if (ic->ic_state == IEEE80211_S_RUN)
1089 		ath_beacon_config(sc);	/* restart beacons */
1090 }
1091 
1092 static void
1093 ath_start(struct ifnet *ifp)
1094 {
1095 	struct ath_softc *sc = ifp->if_softc;
1096 	struct ath_hal *ah = sc->sc_ah;
1097 	struct ieee80211com *ic = &sc->sc_ic;
1098 	struct ieee80211_node *ni;
1099 	struct ath_buf *bf;
1100 	struct mbuf *m;
1101 	struct ieee80211_frame *wh;
1102 	ath_txbuf_critsect_decl(s);
1103 
1104 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1105 		return;
1106 	for (;;) {
1107 		/*
1108 		 * Grab a TX buffer and associated resources.
1109 		 */
1110 		ath_txbuf_critsect_begin(sc, s);
1111 		bf = TAILQ_FIRST(&sc->sc_txbuf);
1112 		if (bf != NULL)
1113 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
1114 		ath_txbuf_critsect_end(sc, s);
1115 		if (bf == NULL) {
1116 			DPRINTF(ATH_DEBUG_ANY, ("%s: out of xmit buffers\n",
1117 				__func__));
1118 			sc->sc_stats.ast_tx_qstop++;
1119 			ifp->if_flags |= IFF_OACTIVE;
1120 			break;
1121 		}
1122 		/*
1123 		 * Poll the management queue for frames; they
1124 		 * have priority over normal data frames.
1125 		 */
1126 		IF_DEQUEUE(&ic->ic_mgtq, m);
1127 		if (m == NULL) {
1128 			/*
1129 			 * No data frames go out unless we're associated.
1130 			 */
1131 			if (ic->ic_state != IEEE80211_S_RUN) {
1132 				DPRINTF(ATH_DEBUG_ANY,
1133 					("%s: ignore data packet, state %u\n",
1134 					__func__, ic->ic_state));
1135 				sc->sc_stats.ast_tx_discard++;
1136 				ath_txbuf_critsect_begin(sc, s);
1137 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1138 				ath_txbuf_critsect_end(sc, s);
1139 				break;
1140 			}
1141 			IF_DEQUEUE(&ifp->if_snd, m);
1142 			if (m == NULL) {
1143 				ath_txbuf_critsect_begin(sc, s);
1144 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1145 				ath_txbuf_critsect_end(sc, s);
1146 				break;
1147 			}
1148 			ifp->if_opackets++;
1149 
1150 #ifdef __NetBSD__
1151 #if NBPFILTER > 0
1152 			if (ifp->if_bpf)
1153 				bpf_mtap(ifp->if_bpf, m);
1154 #endif
1155 #endif
1156 #ifdef __FreeBSD__
1157 			BPF_MTAP(ifp, m);
1158 #endif
1159 			/*
1160 			 * Encapsulate the packet in prep for transmission.
1161 			 */
1162 			m = ieee80211_encap(ifp, m, &ni);
1163 			if (m == NULL) {
1164 				DPRINTF(ATH_DEBUG_ANY,
1165 					("%s: encapsulation failure\n",
1166 					__func__));
1167 				sc->sc_stats.ast_tx_encap++;
1168 				goto bad;
1169 			}
1170 			wh = mtod(m, struct ieee80211_frame *);
1171 		} else {
1172 			/*
1173 			 * Hack!  The referenced node pointer is in the
1174 			 * rcvif field of the packet header.  This is
1175 			 * placed there by ieee80211_mgmt_output because
1176 			 * we need to hold the reference with the frame
1177 			 * and there's no other way (other than packet
1178 			 * tags which we consider too expensive to use)
1179 			 * to pass it along.
1180 			 */
1181 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1182 			m->m_pkthdr.rcvif = NULL;
1183 
1184 			wh = mtod(m, struct ieee80211_frame *);
1185 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1186 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1187 				/* fill time stamp */
1188 				u_int64_t tsf;
1189 				u_int32_t *tstamp;
1190 
1191 				tsf = ath_hal_gettsf64(ah);
1192 				/* XXX: adjust 100us delay to xmit */
1193 				tsf += 100;
1194 				tstamp = (u_int32_t *)&wh[1];
1195 				tstamp[0] = htole32(tsf & 0xffffffff);
1196 				tstamp[1] = htole32(tsf >> 32);
1197 			}
1198 			sc->sc_stats.ast_tx_mgmt++;
1199 		}
1200 
1201 		if (ath_tx_start(sc, ni, bf, m)) {
1202 	bad:
1203 			ath_txbuf_critsect_begin(sc, s);
1204 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1205 			ath_txbuf_critsect_end(sc, s);
1206 			ifp->if_oerrors++;
1207 			if (ni != NULL)
1208 				ieee80211_release_node(ic, ni);
1209 			continue;
1210 		}
1211 
1212 		sc->sc_tx_timer = 5;
1213 		ifp->if_timer = 1;
1214 	}
1215 }
1216 
1217 static int
1218 ath_media_change(struct ifnet *ifp)
1219 {
1220 	int error;
1221 
1222 	error = ieee80211_media_change(ifp);
1223 	if (error == ENETRESET) {
1224 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1225 		    (IFF_RUNNING|IFF_UP))
1226 			ath_init(ifp);		/* XXX lose error */
1227 		error = 0;
1228 	}
1229 	return error;
1230 }
1231 
1232 static void
1233 ath_watchdog(struct ifnet *ifp)
1234 {
1235 	struct ath_softc *sc = ifp->if_softc;
1236 	struct ieee80211com *ic = &sc->sc_ic;
1237 
1238 	ifp->if_timer = 0;
1239 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1240 		return;
1241 	if (sc->sc_tx_timer) {
1242 		if (--sc->sc_tx_timer == 0) {
1243 			if_printf(ifp, "device timeout\n");
1244 			ath_reset(sc);
1245 			ifp->if_oerrors++;
1246 			sc->sc_stats.ast_watchdog++;
1247 			return;
1248 		}
1249 		ifp->if_timer = 1;
1250 	}
1251 	if (ic->ic_fixed_rate == -1) {
1252 		/*
1253 		 * Run the rate control algorithm if we're not
1254 		 * locked at a fixed rate.
1255 		 */
1256 		if (ic->ic_opmode == IEEE80211_M_STA)
1257 			ath_rate_ctl(sc, ic->ic_bss);
1258 		else
1259 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1260 	}
1261 	ieee80211_watchdog(ifp);
1262 }
1263 
1264 static int
1265 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1266 {
1267 	struct ath_softc *sc = ifp->if_softc;
1268 	struct ifreq *ifr = (struct ifreq *)data;
1269 	int error = 0;
1270 	ath_softc_critsect_decl(s);
1271 
1272 	ath_softc_critsect_begin(sc, s);
1273 	switch (cmd) {
1274 	case SIOCSIFFLAGS:
1275 		if (ifp->if_flags & IFF_UP) {
1276 			if (ifp->if_flags & IFF_RUNNING) {
1277 				/*
1278 				 * To avoid rescanning another access point,
1279 				 * do not call ath_init() here.  Instead,
1280 				 * only reflect promisc mode settings.
1281 				 */
1282 				ath_mode_init(sc);
1283 			} else {
1284 				/*
1285 				 * Beware of being called during detach to
1286 				 * reset promiscuous mode.  In that case we
1287 				 * will still be marked UP but not RUNNING.
1288 				 * However trying to re-init the interface
1289 				 * is the wrong thing to do as we've already
1290 				 * torn down much of our state.  There's
1291 				 * probably a better way to deal with this.
1292 				 */
1293 				if (!sc->sc_invalid)
1294 					ath_init(ifp);	/* XXX lose error */
1295 			}
1296 		} else
1297 			ath_stop(ifp);
1298 		break;
1299 	case SIOCADDMULTI:
1300 	case SIOCDELMULTI:
1301 #ifdef __FreeBSD__
1302 		/*
1303 		 * The upper layer has already installed/removed
1304 		 * the multicast address(es), just recalculate the
1305 		 * multicast filter for the card.
1306 		 */
1307 		if (ifp->if_flags & IFF_RUNNING)
1308 			ath_mode_init(sc);
1309 #endif
1310 #ifdef __NetBSD__
1311 		error = (cmd == SIOCADDMULTI) ?
1312 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1313 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1314 		if (error == ENETRESET) {
1315 			if (ifp->if_flags & IFF_RUNNING)
1316 				ath_mode_init(sc);
1317 			error = 0;
1318 		}
1319 #endif
1320 		break;
1321 	case SIOCGATHSTATS:
1322 		error = copyout(&sc->sc_stats,
1323 				ifr->ifr_data, sizeof (sc->sc_stats));
1324 		break;
1325 	case SIOCGATHDIAG: {
1326 #if 0	/* XXX punt */
1327 		struct ath_diag *ad = (struct ath_diag *)data;
1328 		struct ath_hal *ah = sc->sc_ah;
1329 		void *data;
1330 		u_int size;
1331 
1332 		if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1333 			if (size < ad->ad_size)
1334 				ad->ad_size = size;
1335 			if (data)
1336 				error = copyout(data, ad->ad_data, ad->ad_size);
1337 		} else
1338 			error = EINVAL;
1339 #else
1340 		error = EINVAL;
1341 #endif
1342 		break;
1343 	}
1344 	default:
1345 		error = ieee80211_ioctl(ifp, cmd, data);
1346 		if (error == ENETRESET) {
1347 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1348 			    (IFF_RUNNING|IFF_UP))
1349 				ath_init(ifp);		/* XXX lose error */
1350 			error = 0;
1351 		}
1352 		break;
1353 	}
1354 	ath_softc_critsect_end(sc, s);
1355 	return error;
1356 }
1357 
1358 /*
1359  * Fill the hardware key cache with key entries.
1360  */
1361 static void
1362 ath_initkeytable(struct ath_softc *sc)
1363 {
1364 	struct ieee80211com *ic = &sc->sc_ic;
1365 	struct ath_hal *ah = sc->sc_ah;
1366 	int i;
1367 
1368 	/* XXX maybe should reset all keys when !WEPON */
1369 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1370 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1371 		if (k->wk_len == 0)
1372 			ath_hal_keyreset(ah, i);
1373 		else {
1374 			HAL_KEYVAL hk;
1375 
1376 			memset(&hk, 0, sizeof(hk));
1377 			hk.kv_type = HAL_CIPHER_WEP;
1378 			hk.kv_len = k->wk_len;
1379 			memcpy(hk.kv_val, k->wk_key, k->wk_len);
1380 			/* XXX return value */
1381 			ath_hal_keyset(ah, i, &hk);
1382 		}
1383 	}
1384 }
1385 
1386 static void
1387 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1388 {
1389 	u_int32_t val;
1390 	u_int8_t pos;
1391 
1392 	val = LE_READ_4(dl + 0);
1393 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1394 	val = LE_READ_4(dl + 3);
1395 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1396 	pos &= 0x3f;
1397 	(*mfilt)[pos / 32] |= (1 << (pos % 32));
1398 }
1399 
1400 #ifdef __FreeBSD__
1401 static void
1402 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1403 {
1404 	struct ieee80211com *ic = &sc->sc_ic;
1405 	struct ifnet *ifp = &ic->ic_if;
1406 	struct ifmultiaddr *ifma;
1407 
1408 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1409 		caddr_t dl;
1410 
1411 		/* calculate XOR of eight 6bit values */
1412 		dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1413 		ath_mcastfilter_accum(dl, &mfilt);
1414 	}
1415 }
1416 #else
1417 static void
1418 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1419 {
1420 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1421 	struct ether_multi *enm;
1422 	struct ether_multistep estep;
1423 
1424 	ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1425 	while (enm != NULL) {
1426 		/* XXX Punt on ranges. */
1427 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1428 			(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1429 			ifp->if_flags |= IFF_ALLMULTI;
1430 			return;
1431 		}
1432 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1433 		ETHER_NEXT_MULTI(estep, enm);
1434 	}
1435 	ifp->if_flags &= ~IFF_ALLMULTI;
1436 }
1437 #endif
1438 
1439 /*
1440  * Calculate the receive filter according to the
1441  * operating mode and state:
1442  *
1443  * o always accept unicast, broadcast, and multicast traffic
1444  * o maintain current state of phy error reception
1445  * o probe request frames are accepted only when operating in
1446  *   hostap, adhoc, or monitor modes
1447  * o enable promiscuous mode according to the interface state
1448  * o accept beacons:
1449  *   - when operating in adhoc mode so the 802.11 layer creates
1450  *     node table entries for peers,
1451  *   - when operating in station mode for collecting rssi data when
1452  *     the station is otherwise quiet, or
1453  *   - when scanning
1454  */
1455 static u_int32_t
1456 ath_calcrxfilter(struct ath_softc *sc)
1457 {
1458 	struct ieee80211com *ic = &sc->sc_ic;
1459 	struct ath_hal *ah = sc->sc_ah;
1460 	struct ifnet *ifp = &ic->ic_if;
1461 	u_int32_t rfilt;
1462 
1463 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1464 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1465 	if (ic->ic_opmode != IEEE80211_M_STA)
1466 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1467 	if (ic->ic_opmode != IEEE80211_M_AHDEMO)
1468 		rfilt |= HAL_RX_FILTER_BEACON;
1469 	if (ifp->if_flags & IFF_PROMISC)
1470 		rfilt |= HAL_RX_FILTER_PROM;
1471 	return rfilt;
1472 }
1473 
1474 static void
1475 ath_mode_init(struct ath_softc *sc)
1476 {
1477 #ifdef __FreeBSD__
1478 	struct ieee80211com *ic = &sc->sc_ic;
1479 #endif
1480 	struct ath_hal *ah = sc->sc_ah;
1481 	u_int32_t rfilt, mfilt[2];
1482 
1483 	/* configure rx filter */
1484 	rfilt = ath_calcrxfilter(sc);
1485 	ath_hal_setrxfilter(ah, rfilt);
1486 
1487 	/* configure operational mode */
1488 	ath_hal_setopmode(ah);
1489 
1490 	/* calculate and install multicast filter */
1491 #ifdef __FreeBSD__
1492 	if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1493 		mfilt[0] = mfilt[1] = 0;
1494 		ath_mcastfilter_compute(sc, &mfilt);
1495 	} else {
1496 		mfilt[0] = mfilt[1] = ~0;
1497 	}
1498 #endif
1499 #ifdef __NetBSD__
1500 	mfilt[0] = mfilt[1] = 0;
1501 	ath_mcastfilter_compute(sc, &mfilt);
1502 #endif
1503 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1504 	DPRINTF(ATH_DEBUG_MODE, ("%s: RX filter 0x%x, MC filter %08x:%08x\n",
1505 		__func__, rfilt, mfilt[0], mfilt[1]));
1506 }
1507 
1508 #ifdef __FreeBSD__
1509 static void
1510 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1511 {
1512 	struct ath_buf *bf = arg;
1513 
1514 	KASSERT(nseg <= ATH_MAX_SCATTER,
1515 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1516 	bf->bf_mapsize = mapsize;
1517 	bf->bf_nseg = nseg;
1518 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1519 }
1520 #endif /* __FreeBSD__ */
1521 
1522 static struct mbuf *
1523 ath_getmbuf(int flags, int type, u_int pktlen)
1524 {
1525 	struct mbuf *m;
1526 
1527 	KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1528 #ifdef __FreeBSD__
1529 	if (pktlen <= MHLEN)
1530 		MGETHDR(m, flags, type);
1531 	else
1532 		m = m_getcl(flags, type, M_PKTHDR);
1533 #else
1534 	MGETHDR(m, flags, type);
1535 	if (m != NULL && pktlen > MHLEN)
1536 		MCLGET(m, flags);
1537 #endif
1538 	return m;
1539 }
1540 
1541 static int
1542 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1543 {
1544 	struct ieee80211com *ic = &sc->sc_ic;
1545 	struct ifnet *ifp = &ic->ic_if;
1546 	struct ath_hal *ah = sc->sc_ah;
1547 	struct ieee80211_frame *wh;
1548 	struct ath_buf *bf;
1549 	struct ath_desc *ds;
1550 	struct mbuf *m;
1551 	int error, pktlen;
1552 	u_int8_t *frm, rate;
1553 	u_int16_t capinfo;
1554 	struct ieee80211_rateset *rs;
1555 	const HAL_RATE_TABLE *rt;
1556 	u_int flags;
1557 
1558 	bf = sc->sc_bcbuf;
1559 	if (bf->bf_m != NULL) {
1560 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1561 		m_freem(bf->bf_m);
1562 		bf->bf_m = NULL;
1563 		bf->bf_node = NULL;
1564 	}
1565 	/*
1566 	 * NB: the beacon data buffer must be 32-bit aligned;
1567 	 * we assume the mbuf routines will return us something
1568 	 * with this alignment (perhaps should assert).
1569 	 */
1570 	rs = &ni->ni_rates;
1571 	pktlen = sizeof (struct ieee80211_frame)
1572 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1573 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1574 		pktlen += 2;
1575 	m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1576 	if (m == NULL) {
1577 		DPRINTF(ATH_DEBUG_BEACON,
1578 			("%s: cannot get mbuf/cluster; size %u\n",
1579 			__func__, pktlen));
1580 		sc->sc_stats.ast_be_nombuf++;
1581 		return ENOMEM;
1582 	}
1583 
1584 	wh = mtod(m, struct ieee80211_frame *);
1585 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1586 	    IEEE80211_FC0_SUBTYPE_BEACON;
1587 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1588 	*(u_int16_t *)wh->i_dur = 0;
1589 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1590 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1591 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1592 	*(u_int16_t *)wh->i_seq = 0;
1593 
1594 	/*
1595 	 * beacon frame format
1596 	 *	[8] time stamp
1597 	 *	[2] beacon interval
1598 	 *	[2] cabability information
1599 	 *	[tlv] ssid
1600 	 *	[tlv] supported rates
1601 	 *	[tlv] parameter set (IBSS)
1602 	 *	[tlv] extended supported rates
1603 	 */
1604 	frm = (u_int8_t *)&wh[1];
1605 	memset(frm, 0, 8);	/* timestamp is set by hardware */
1606 	frm += 8;
1607 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1608 	frm += 2;
1609 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1610 		capinfo = IEEE80211_CAPINFO_IBSS;
1611 	else
1612 		capinfo = IEEE80211_CAPINFO_ESS;
1613 	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1614 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1615 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1616 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1617 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1618 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1619 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1620 	*(u_int16_t *)frm = htole16(capinfo);
1621 	frm += 2;
1622 	*frm++ = IEEE80211_ELEMID_SSID;
1623 	*frm++ = ni->ni_esslen;
1624 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1625 	frm += ni->ni_esslen;
1626 	frm = ieee80211_add_rates(frm, rs);
1627 	*frm++ = IEEE80211_ELEMID_DSPARMS;
1628 	*frm++ = 1;
1629 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1630 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1631 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1632 		*frm++ = 2;
1633 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1634 	} else {
1635 		/* TODO: TIM */
1636 		*frm++ = IEEE80211_ELEMID_TIM;
1637 		*frm++ = 4;	/* length */
1638 		*frm++ = 0;	/* DTIM count */
1639 		*frm++ = 1;	/* DTIM period */
1640 		*frm++ = 0;	/* bitmap control */
1641 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1642 	}
1643 	frm = ieee80211_add_xrates(frm, rs);
1644 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1645 	KASSERT(m->m_pkthdr.len <= pktlen,
1646 		("beacon bigger than expected, len %u calculated %u",
1647 		m->m_pkthdr.len, pktlen));
1648 
1649 	DPRINTF(ATH_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len));
1650 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1651 	if (error != 0) {
1652 		m_freem(m);
1653 		return error;
1654 	}
1655 	KASSERT(bf->bf_nseg == 1,
1656 		("%s: multi-segment packet; nseg %u", __func__, bf->bf_nseg));
1657 	bf->bf_m = m;
1658 
1659 	/* setup descriptors */
1660 	ds = bf->bf_desc;
1661 
1662 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1663 		ds->ds_link = bf->bf_daddr;	/* link to self */
1664 	else
1665 		ds->ds_link = 0;
1666 	ds->ds_data = bf->bf_segs[0].ds_addr;
1667 
1668 	DPRINTF(ATH_DEBUG_ANY, ("%s: segaddr %p seglen %u\n", __func__,
1669 	    (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1670 
1671 	/*
1672 	 * Calculate rate code.
1673 	 * XXX everything at min xmit rate
1674 	 */
1675 	rt = sc->sc_currates;
1676 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1677 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1678 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1679 	else
1680 		rate = rt->info[0].rateCode;
1681 
1682 	flags = HAL_TXDESC_NOACK;
1683 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1684 		flags |= HAL_TXDESC_VEOL;
1685 
1686 	if (!ath_hal_setuptxdesc(ah, ds
1687 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1688 		, sizeof(struct ieee80211_frame)	/* header length */
1689 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1690 		, 0x20				/* txpower XXX */
1691 		, rate, 1			/* series 0 rate/tries */
1692 		, HAL_TXKEYIX_INVALID		/* no encryption */
1693 		, 0				/* antenna mode */
1694 		, flags				/* no ack for beacons */
1695 		, 0				/* rts/cts rate */
1696 		, 0				/* rts/cts duration */
1697 	)) {
1698 		printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1699 		return -1;
1700 	}
1701 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1702 	/* XXX verify mbuf data area covers this roundup */
1703 	if (!ath_hal_filltxdesc(ah, ds
1704 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1705 		, AH_TRUE				/* first segment */
1706 		, AH_TRUE				/* last segment */
1707 	)) {
1708 		printf("%s: ath_hal_filltxdesc failed\n", __func__);
1709 		return -1;
1710 	}
1711 
1712 	/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1713 
1714 	return 0;
1715 }
1716 
1717 static void
1718 ath_beacon_proc(struct ath_softc *sc, int pending)
1719 {
1720 	struct ieee80211com *ic = &sc->sc_ic;
1721 	struct ath_buf *bf = sc->sc_bcbuf;
1722 	struct ath_hal *ah = sc->sc_ah;
1723 
1724 	DPRINTF(ATH_DEBUG_BEACON_PROC, ("%s: pending %u\n", __func__, pending));
1725 	if (ic->ic_opmode == IEEE80211_M_STA ||
1726 	    bf == NULL || bf->bf_m == NULL) {
1727 		DPRINTF(ATH_DEBUG_ANY, ("%s: ic_flags=%x bf=%p bf_m=%p\n",
1728 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1729 		return;
1730 	}
1731 	/* TODO: update beacon to reflect PS poll state */
1732 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1733 		DPRINTF(ATH_DEBUG_ANY, ("%s: beacon queue %u did not stop?\n",
1734 			__func__, sc->sc_bhalq));
1735 		/* NB: the HAL still stops DMA, so proceed */
1736 	}
1737 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1738 
1739 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1740 	ath_hal_txstart(ah, sc->sc_bhalq);
1741 	DPRINTF(ATH_DEBUG_BEACON_PROC,
1742 		("%s: TXDP%u = %p (%p)\n", __func__,
1743 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1744 }
1745 
1746 static void
1747 ath_beacon_free(struct ath_softc *sc)
1748 {
1749 	struct ath_buf *bf = sc->sc_bcbuf;
1750 
1751 	if (bf->bf_m != NULL) {
1752 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1753 		m_freem(bf->bf_m);
1754 		bf->bf_m = NULL;
1755 		bf->bf_node = NULL;
1756 	}
1757 }
1758 
1759 /*
1760  * Configure the beacon and sleep timers.
1761  *
1762  * When operating as an AP this resets the TSF and sets
1763  * up the hardware to notify us when we need to issue beacons.
1764  *
1765  * When operating in station mode this sets up the beacon
1766  * timers according to the timestamp of the last received
1767  * beacon and the current TSF, configures PCF and DTIM
1768  * handling, programs the sleep registers so the hardware
1769  * will wakeup in time to receive beacons, and configures
1770  * the beacon miss handling so we'll receive a BMISS
1771  * interrupt when we stop seeing beacons from the AP
1772  * we've associated with.
1773  */
1774 static void
1775 ath_beacon_config(struct ath_softc *sc)
1776 {
1777 	struct ath_hal *ah = sc->sc_ah;
1778 	struct ieee80211com *ic = &sc->sc_ic;
1779 	struct ieee80211_node *ni = ic->ic_bss;
1780 	u_int32_t nexttbtt, intval;
1781 
1782 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1783 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1784 	DPRINTF(ATH_DEBUG_BEACON, ("%s: nexttbtt=%u\n", __func__, nexttbtt));
1785 	nexttbtt += ni->ni_intval;
1786 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
1787 	if (ic->ic_opmode == IEEE80211_M_STA) {
1788 		HAL_BEACON_STATE bs;
1789 		u_int32_t bmisstime;
1790 
1791 		/* NB: no PCF support right now */
1792 		memset(&bs, 0, sizeof(bs));
1793 		/*
1794 		 * Reset our tsf so the hardware will update the
1795 		 * tsf register to reflect timestamps found in
1796 		 * received beacons.
1797 		 */
1798 		bs.bs_intval = intval | HAL_BEACON_RESET_TSF;
1799 		bs.bs_nexttbtt = nexttbtt;
1800 		bs.bs_dtimperiod = bs.bs_intval;
1801 		bs.bs_nextdtim = nexttbtt;
1802 		/*
1803 		 * Calculate the number of consecutive beacons to miss
1804 		 * before taking a BMISS interrupt.  The configuration
1805 		 * is specified in ms, so we need to convert that to
1806 		 * TU's and then calculate based on the beacon interval.
1807 		 * Note that we clamp the result to at most 10 beacons.
1808 		 */
1809 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1810 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1811 		if (bs.bs_bmissthreshold > 10)
1812 			bs.bs_bmissthreshold = 10;
1813 		else if (bs.bs_bmissthreshold <= 0)
1814 			bs.bs_bmissthreshold = 1;
1815 
1816 		/*
1817 		 * Calculate sleep duration.  The configuration is
1818 		 * given in ms.  We insure a multiple of the beacon
1819 		 * period is used.  Also, if the sleep duration is
1820 		 * greater than the DTIM period then it makes senses
1821 		 * to make it a multiple of that.
1822 		 *
1823 		 * XXX fixed at 100ms
1824 		 */
1825 		bs.bs_sleepduration =
1826 			roundup((100 * 1000) / 1024, bs.bs_intval);
1827 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1828 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1829 
1830 		DPRINTF(ATH_DEBUG_BEACON,
1831 			("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1832 			, __func__
1833 			, bs.bs_intval
1834 			, bs.bs_nexttbtt
1835 			, bs.bs_dtimperiod
1836 			, bs.bs_nextdtim
1837 			, bs.bs_bmissthreshold
1838 			, bs.bs_sleepduration
1839 		));
1840 		ath_hal_intrset(ah, 0);
1841 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1842 		sc->sc_imask |= HAL_INT_BMISS;
1843 		ath_hal_intrset(ah, sc->sc_imask);
1844 	} else {
1845 		ath_hal_intrset(ah, 0);
1846 		sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1847 		intval |= HAL_BEACON_ENA;
1848 		switch (ic->ic_opmode) {
1849 		/* No beacons in monitor, ad hoc-demo modes. */
1850 		case IEEE80211_M_MONITOR:
1851 		case IEEE80211_M_AHDEMO:
1852 			intval &= ~HAL_BEACON_ENA;
1853 			/*FALLTHROUGH*/
1854 		/* In IBSS mode, I am uncertain how SWBA interrupts
1855 		 * work, so I just turn them off and use a self-linked
1856 		 * descriptor.
1857 		 */
1858 		case IEEE80211_M_IBSS:
1859 			sc->sc_imask &= ~HAL_INT_SWBA;
1860 			nexttbtt = ni->ni_intval;
1861 			/*FALLTHROUGH*/
1862 		case IEEE80211_M_HOSTAP:
1863 		default:
1864 			if (nexttbtt == ni->ni_intval)
1865 				intval |= HAL_BEACON_RESET_TSF;
1866 			break;
1867 		}
1868 		DPRINTF(ATH_DEBUG_BEACON, ("%s: intval %u nexttbtt %u\n",
1869 			__func__, ni->ni_intval, nexttbtt));
1870 		ath_hal_beaconinit(ah, nexttbtt, intval);
1871 		ath_hal_intrset(ah, sc->sc_imask);
1872 		if (ic->ic_opmode == IEEE80211_M_IBSS)
1873 			ath_beacon_proc(sc, 0);
1874 	}
1875 }
1876 
1877 #ifdef __FreeBSD__
1878 static void
1879 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1880 {
1881 	bus_addr_t *paddr = (bus_addr_t*) arg;
1882 	*paddr = segs->ds_addr;
1883 }
1884 #endif
1885 
1886 #ifdef __FreeBSD__
1887 static int
1888 ath_desc_alloc(struct ath_softc *sc)
1889 {
1890 	int i, bsize, error;
1891 	struct ath_desc *ds;
1892 	struct ath_buf *bf;
1893 
1894 	/* allocate descriptors */
1895 	sc->sc_desc_len = sizeof(struct ath_desc) *
1896 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1897 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1898 	if (error != 0)
1899 		return error;
1900 
1901 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1902 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1903 
1904 	if (error != 0)
1905 		goto fail0;
1906 
1907 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1908 				sc->sc_desc, sc->sc_desc_len,
1909 				ath_load_cb, &sc->sc_desc_paddr,
1910 				BUS_DMA_NOWAIT);
1911 	if (error != 0)
1912 		goto fail1;
1913 
1914 	ds = sc->sc_desc;
1915 	DPRINTF(ATH_DEBUG_ANY, ("%s: DMA map: %p (%lu) -> %p (%lu)\n",
1916 	    __func__, ds, (u_long) sc->sc_desc_len, (caddr_t) sc->sc_desc_paddr,
1917 	    /*XXX*/ (u_long) sc->sc_desc_len));
1918 
1919 	/* allocate buffers */
1920 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1921 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1922 	if (bf == NULL) {
1923 		printf("%s: unable to allocate Tx/Rx buffers\n",
1924 		    sc->sc_dev.dv_xname);
1925 		error = -1;
1926 		goto fail2;
1927 	}
1928 	sc->sc_bufptr = bf;
1929 
1930 	TAILQ_INIT(&sc->sc_rxbuf);
1931 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1932 		bf->bf_desc = ds;
1933 		bf->bf_daddr = sc->sc_desc_paddr +
1934 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1935 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1936 					  &bf->bf_dmamap);
1937 		if (error != 0)
1938 			break;
1939 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1940 	}
1941 
1942 	TAILQ_INIT(&sc->sc_txbuf);
1943 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1944 		bf->bf_desc = ds;
1945 		bf->bf_daddr = sc->sc_desc_paddr +
1946 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1947 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1948 					  &bf->bf_dmamap);
1949 		if (error != 0)
1950 			break;
1951 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1952 	}
1953 	TAILQ_INIT(&sc->sc_txq);
1954 
1955 	/* beacon buffer */
1956 	bf->bf_desc = ds;
1957 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1958 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1959 	if (error != 0)
1960 		return error;
1961 	sc->sc_bcbuf = bf;
1962 	return 0;
1963 
1964 fail2:
1965 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1966 fail1:
1967 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1968 fail0:
1969 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1970 	sc->sc_ddmamap = NULL;
1971 	return error;
1972 }
1973 #else
1974 static int
1975 ath_desc_alloc(struct ath_softc *sc)
1976 {
1977 	int i, bsize, error = -1;
1978 	struct ath_desc *ds;
1979 	struct ath_buf *bf;
1980 
1981 	/* allocate descriptors */
1982 	sc->sc_desc_len = sizeof(struct ath_desc) *
1983 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1984 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1985 	    0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1986 		printf("%s: unable to allocate control data, error = %d\n",
1987 		    sc->sc_dev.dv_xname, error);
1988 		goto fail0;
1989 	}
1990 
1991 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1992 	    sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1993 		printf("%s: unable to map control data, error = %d\n",
1994 		    sc->sc_dev.dv_xname, error);
1995 		goto fail1;
1996 	}
1997 
1998 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1999 	    sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
2000 		printf("%s: unable to create control data DMA map, "
2001 		    "error = %d\n", sc->sc_dev.dv_xname, error);
2002 		goto fail2;
2003 	}
2004 
2005 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
2006 	    sc->sc_desc_len, NULL, 0)) != 0) {
2007 		printf("%s: unable to load control data DMA map, error = %d\n",
2008 		    sc->sc_dev.dv_xname, error);
2009 		goto fail3;
2010 	}
2011 
2012 	ds = sc->sc_desc;
2013 	sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
2014 
2015 	DPRINTF(ATH_DEBUG_XMIT_DESC|ATH_DEBUG_RECV_DESC,
2016 	    ("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
2017 	    ds, (u_long)sc->sc_desc_len,
2018 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
2019 
2020 	/* allocate buffers */
2021 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
2022 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
2023 	if (bf == NULL) {
2024 		printf("%s: unable to allocate Tx/Rx buffers\n",
2025 		    sc->sc_dev.dv_xname);
2026 		error = ENOMEM;
2027 		goto fail3;
2028 	}
2029 	sc->sc_bufptr = bf;
2030 
2031 	TAILQ_INIT(&sc->sc_rxbuf);
2032 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
2033 		bf->bf_desc = ds;
2034 		bf->bf_daddr = sc->sc_desc_paddr +
2035 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
2036 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
2037 		    MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2038 			printf("%s: unable to create Rx dmamap, error = %d\n",
2039 			    sc->sc_dev.dv_xname, error);
2040 			goto fail4;
2041 		}
2042 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2043 	}
2044 
2045 	TAILQ_INIT(&sc->sc_txbuf);
2046 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
2047 		bf->bf_desc = ds;
2048 		bf->bf_daddr = sc->sc_desc_paddr +
2049 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
2050 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
2051 		    ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
2052 			printf("%s: unable to create Tx dmamap, error = %d\n",
2053 			    sc->sc_dev.dv_xname, error);
2054 			goto fail5;
2055 		}
2056 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2057 	}
2058 	TAILQ_INIT(&sc->sc_txq);
2059 
2060 	/* beacon buffer */
2061 	bf->bf_desc = ds;
2062 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
2063 	if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
2064 	    &bf->bf_dmamap)) != 0) {
2065 		printf("%s: unable to create beacon dmamap, error = %d\n",
2066 		    sc->sc_dev.dv_xname, error);
2067 		goto fail5;
2068 	}
2069 	sc->sc_bcbuf = bf;
2070 	return 0;
2071 
2072 fail5:
2073 	for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
2074 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
2075 			continue;
2076 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2077 	}
2078 fail4:
2079 	for (i = 0; i < ATH_RXBUF; i++) {
2080 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
2081 			continue;
2082 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
2083 	}
2084 fail3:
2085 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2086 fail2:
2087 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2088 	sc->sc_ddmamap = NULL;
2089 fail1:
2090 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
2091 fail0:
2092 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2093 	return error;
2094 }
2095 #endif
2096 
2097 static void
2098 ath_desc_free(struct ath_softc *sc)
2099 {
2100 	struct ath_buf *bf;
2101 
2102 #ifdef __FreeBSD__
2103 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2104 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
2105 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2106 #else
2107 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
2108 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
2109 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
2110 #endif
2111 
2112 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2113 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2114 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2115 		m_freem(bf->bf_m);
2116 	}
2117 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
2118 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2119 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2120 		if (bf->bf_m) {
2121 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2122 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2123 			m_freem(bf->bf_m);
2124 			bf->bf_m = NULL;
2125 		}
2126 	}
2127 	if (sc->sc_bcbuf != NULL) {
2128 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2129 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
2130 		sc->sc_bcbuf = NULL;
2131 	}
2132 
2133 	TAILQ_INIT(&sc->sc_rxbuf);
2134 	TAILQ_INIT(&sc->sc_txbuf);
2135 	TAILQ_INIT(&sc->sc_txq);
2136 	free(sc->sc_bufptr, M_DEVBUF);
2137 	sc->sc_bufptr = NULL;
2138 }
2139 
2140 static struct ieee80211_node *
2141 ath_node_alloc(struct ieee80211com *ic)
2142 {
2143 	struct ath_node *an =
2144 		malloc(sizeof(struct ath_node), M_80211_NODE, M_NOWAIT|M_ZERO);
2145 	if (an) {
2146 		int i;
2147 		for (i = 0; i < ATH_RHIST_SIZE; i++)
2148 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
2149 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
2150 		return &an->an_node;
2151 	} else
2152 		return NULL;
2153 }
2154 
2155 static void
2156 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
2157 {
2158 	struct ath_softc *sc = ic->ic_if.if_softc;
2159 	struct ath_buf *bf;
2160 
2161 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
2162 		if (bf->bf_node == ni)
2163 			bf->bf_node = NULL;
2164 	}
2165 	(*sc->sc_node_free)(ic, ni);
2166 }
2167 
2168 static void
2169 ath_node_copy(struct ieee80211com *ic,
2170 	struct ieee80211_node *dst, const struct ieee80211_node *src)
2171 {
2172         struct ath_softc *sc = ic->ic_if.if_softc;
2173 
2174 	memcpy(&dst[1], &src[1],
2175 		sizeof(struct ath_node) - sizeof(struct ieee80211_node));
2176 	(*sc->sc_node_copy)(ic, dst, src);
2177 }
2178 
2179 static u_int8_t
2180 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2181 {
2182 	struct ath_node *an = ATH_NODE(ni);
2183 	int i, now, nsamples, rssi;
2184 
2185 	/*
2186 	 * Calculate the average over the last second of sampled data.
2187 	 */
2188 	now = ATH_TICKS();
2189 	nsamples = 0;
2190 	rssi = 0;
2191 	i = an->an_rx_hist_next;
2192 	do {
2193 		struct ath_recv_hist *rh = &an->an_rx_hist[i];
2194 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
2195 			goto done;
2196 		if (now - rh->arh_ticks > hz)
2197 			goto done;
2198 		rssi += rh->arh_rssi;
2199 		nsamples++;
2200 		if (i == 0)
2201 			i = ATH_RHIST_SIZE-1;
2202 		else
2203 			i--;
2204 	} while (i != an->an_rx_hist_next);
2205 done:
2206 	/*
2207 	 * Return either the average or the last known
2208 	 * value if there is no recent data.
2209 	 */
2210 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2211 }
2212 
2213 static int
2214 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2215 {
2216 	struct ath_hal *ah = sc->sc_ah;
2217 	int error;
2218 	struct mbuf *m;
2219 	struct ath_desc *ds;
2220 
2221 	m = bf->bf_m;
2222 	if (m == NULL) {
2223 		/*
2224 		 * NB: by assigning a page to the rx dma buffer we
2225 		 * implicitly satisfy the Atheros requirement that
2226 		 * this buffer be cache-line-aligned and sized to be
2227 		 * multiple of the cache line size.  Not doing this
2228 		 * causes weird stuff to happen (for the 5210 at least).
2229 		 */
2230 		m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2231 		if (m == NULL) {
2232 			DPRINTF(ATH_DEBUG_ANY,
2233 				("%s: no mbuf/cluster\n", __func__));
2234 			sc->sc_stats.ast_rx_nombuf++;
2235 			return ENOMEM;
2236 		}
2237 		bf->bf_m = m;
2238 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2239 
2240 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2241 		                                 BUS_DMA_NOWAIT);
2242 		if (error != 0) {
2243 			DPRINTF(ATH_DEBUG_ANY,
2244 				("%s: ath_buf_dmamap_load_mbuf failed;"
2245 				" error %d\n", __func__, error));
2246 			sc->sc_stats.ast_rx_busdma++;
2247 			return error;
2248 		}
2249 		KASSERT(bf->bf_nseg == 1,
2250 			("ath_rxbuf_init: multi-segment packet; nseg %u",
2251 			bf->bf_nseg));
2252 	}
2253 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2254 
2255 	/*
2256 	 * Setup descriptors.  For receive we always terminate
2257 	 * the descriptor list with a self-linked entry so we'll
2258 	 * not get overrun under high load (as can happen with a
2259 	 * 5212 when ANI processing enables PHY errors).
2260 	 *
2261 	 * To insure the last descriptor is self-linked we create
2262 	 * each descriptor as self-linked and add it to the end.  As
2263 	 * each additional descriptor is added the previous self-linked
2264 	 * entry is ``fixed'' naturally.  This should be safe even
2265 	 * if DMA is happening.  When processing RX interrupts we
2266 	 * never remove/process the last, self-linked, entry on the
2267 	 * descriptor list.  This insures the hardware always has
2268 	 * someplace to write a new frame.
2269 	 */
2270 	ds = bf->bf_desc;
2271 	ds->ds_link = bf->bf_daddr;	/* link to self */
2272 	ds->ds_data = bf->bf_segs[0].ds_addr;
2273 	ath_hal_setuprxdesc(ah, ds
2274 		, m->m_len		/* buffer size */
2275 		, 0
2276 	);
2277 
2278 	if (sc->sc_rxlink != NULL)
2279 		*sc->sc_rxlink = bf->bf_daddr;
2280 	sc->sc_rxlink = &ds->ds_link;
2281 	return 0;
2282 }
2283 
2284 static void
2285 ath_rx_proc(void *arg, int npending)
2286 {
2287 #define	PA2DESC(_sc, _pa) \
2288 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2289 		((_pa) - (_sc)->sc_desc_paddr)))
2290 	struct ath_softc *sc = arg;
2291 	struct ath_buf *bf;
2292 	struct ieee80211com *ic = &sc->sc_ic;
2293 	struct ifnet *ifp = &ic->ic_if;
2294 	struct ath_hal *ah = sc->sc_ah;
2295 	struct ath_desc *ds;
2296 	struct mbuf *m;
2297 	struct ieee80211_frame *wh, whbuf;
2298 	struct ieee80211_node *ni;
2299 	struct ath_node *an;
2300 	struct ath_recv_hist *rh;
2301 	int len;
2302 	u_int phyerr;
2303 	HAL_STATUS status;
2304 
2305 	DPRINTF(ATH_DEBUG_RX_PROC, ("%s: pending %u\n", __func__, npending));
2306 	do {
2307 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
2308 		if (bf == NULL) {		/* NB: shouldn't happen */
2309 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
2310 			break;
2311 		}
2312 		ds = bf->bf_desc;
2313 		if (ds->ds_link == bf->bf_daddr) {
2314 			/* NB: never process the self-linked entry at the end */
2315 			break;
2316 		}
2317 		m = bf->bf_m;
2318 		if (m == NULL) {		/* NB: shouldn't happen */
2319 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2320 			continue;
2321 		}
2322 		/* XXX sync descriptor memory */
2323 		/*
2324 		 * Must provide the virtual address of the current
2325 		 * descriptor, the physical address, and the virtual
2326 		 * address of the next descriptor in the h/w chain.
2327 		 * This allows the HAL to look ahead to see if the
2328 		 * hardware is done with a descriptor by checking the
2329 		 * done bit in the following descriptor and the address
2330 		 * of the current descriptor the DMA engine is working
2331 		 * on.  All this is necessary because of our use of
2332 		 * a self-linked list to avoid rx overruns.
2333 		 */
2334 		status = ath_hal_rxprocdesc(ah, ds,
2335 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2336 #ifdef AR_DEBUG
2337 		if (ath_debug & ATH_DEBUG_RECV_DESC)
2338 			ath_printrxbuf(bf, status == HAL_OK);
2339 #endif
2340 		if (status == HAL_EINPROGRESS)
2341 			break;
2342 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2343 
2344 		if (ds->ds_rxstat.rs_more) {
2345 			/*
2346 			 * Frame spans multiple descriptors; this
2347 			 * cannot happen yet as we don't support
2348 			 * jumbograms.  If not in monitor mode,
2349 			 * discard the frame.
2350 			 */
2351 
2352 			/* enable this if you want to see error frames in Monitor mode */
2353 #ifdef ERROR_FRAMES
2354 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2355 				/* XXX statistic */
2356 				goto rx_next;
2357 			}
2358 #endif
2359 			/* fall thru for monitor mode handling... */
2360 
2361 		} else if (ds->ds_rxstat.rs_status != 0) {
2362 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2363 				sc->sc_stats.ast_rx_crcerr++;
2364 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2365 				sc->sc_stats.ast_rx_fifoerr++;
2366 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2367 				sc->sc_stats.ast_rx_badcrypt++;
2368 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2369 				sc->sc_stats.ast_rx_phyerr++;
2370 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2371 				sc->sc_stats.ast_rx_phy[phyerr]++;
2372 			}
2373 
2374 			/*
2375 			 * reject error frames, we normally don't want
2376 			 * to see them in monitor mode.
2377 			 */
2378 			if ((ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT ) ||
2379 			    (ds->ds_rxstat.rs_status & HAL_RXERR_PHY))
2380 			    goto rx_next;
2381 
2382 			/*
2383 			 * In monitor mode, allow through packets that
2384 			 * cannot be decrypted
2385 			 */
2386 			if ((ds->ds_rxstat.rs_status & ~HAL_RXERR_DECRYPT) ||
2387 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2388 				goto rx_next;
2389 		}
2390 
2391 		len = ds->ds_rxstat.rs_datalen;
2392 		if (len < IEEE80211_MIN_LEN) {
2393 			DPRINTF(ATH_DEBUG_RECV, ("%s: short packet %d\n",
2394 				__func__, len));
2395 			sc->sc_stats.ast_rx_tooshort++;
2396 			goto rx_next;
2397 		}
2398 
2399 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2400 
2401 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2402 		bf->bf_m = NULL;
2403 		m->m_pkthdr.rcvif = ifp;
2404 		m->m_pkthdr.len = m->m_len = len;
2405 
2406 #if NBPFILTER > 0
2407 		if (sc->sc_drvbpf) {
2408 			sc->sc_rx_th.wr_rate =
2409 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2410 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2411 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2412 			/* XXX TSF */
2413 			bpf_mtap2(sc->sc_drvbpf,
2414 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2415 		}
2416 #endif
2417 
2418 		m_adj(m, -IEEE80211_CRC_LEN);
2419 		wh = mtod(m, struct ieee80211_frame *);
2420 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2421 			/*
2422 			 * WEP is decrypted by hardware. Clear WEP bit
2423 			 * and trim WEP header for ieee80211_input().
2424 			 */
2425 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2426 			memcpy(&whbuf, wh, sizeof(whbuf));
2427 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2428 			wh = mtod(m, struct ieee80211_frame *);
2429 			memcpy(wh, &whbuf, sizeof(whbuf));
2430 			/*
2431 			 * Also trim WEP ICV from the tail.
2432 			 */
2433 			m_adj(m, -IEEE80211_WEP_CRCLEN);
2434 			/*
2435 			 * The header has probably moved.
2436 			 */
2437 			wh = mtod(m, struct ieee80211_frame *);
2438 		}
2439 
2440 		/*
2441 		 * Locate the node for sender, track state, and
2442 		 * then pass this node (referenced) up to the 802.11
2443 		 * layer for its use.
2444 		 */
2445 		ni = ieee80211_find_rxnode(ic, wh);
2446 
2447 		/*
2448 		 * Record driver-specific state.
2449 		 */
2450 		an = ATH_NODE(ni);
2451 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2452 			an->an_rx_hist_next = 0;
2453 		rh = &an->an_rx_hist[an->an_rx_hist_next];
2454 		rh->arh_ticks = ATH_TICKS();
2455 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2456 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2457 
2458 		/*
2459 		 * Send frame up for processing.
2460 		 */
2461 		ieee80211_input(ifp, m, ni,
2462 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2463 
2464 		/*
2465 		 * The frame may have caused the node to be marked for
2466 		 * reclamation (e.g. in response to a DEAUTH message)
2467 		 * so use release_node here instead of unref_node.
2468 		 */
2469 		ieee80211_release_node(ic, ni);
2470   rx_next:
2471 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2472 	} while (ath_rxbuf_init(sc, bf) == 0);
2473 
2474 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
2475 	ath_hal_rxena(ah);			/* in case of RXEOL */
2476 
2477 #ifdef __NetBSD__
2478 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2479 		ath_start(ifp);
2480 #endif /* __NetBSD__ */
2481 #undef PA2DESC
2482 }
2483 
2484 /*
2485  * XXX Size of an ACK control frame in bytes.
2486  */
2487 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
2488 
2489 static int
2490 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2491     struct mbuf *m0)
2492 {
2493 	struct ieee80211com *ic = &sc->sc_ic;
2494 	struct ath_hal *ah = sc->sc_ah;
2495 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2496 	int i, error, iswep, hdrlen, pktlen;
2497 	u_int8_t rix, cix, txrate, ctsrate;
2498 	struct ath_desc *ds;
2499 	struct mbuf *m;
2500 	struct ieee80211_frame *wh;
2501 	u_int32_t iv;
2502 	u_int8_t *ivp;
2503 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2504 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2505 	u_int subtype, flags, ctsduration, antenna;
2506 	HAL_PKT_TYPE atype;
2507 	const HAL_RATE_TABLE *rt;
2508 	HAL_BOOL shortPreamble;
2509 	struct ath_node *an;
2510 	ath_txq_critsect_decl(s);
2511 
2512 	wh = mtod(m0, struct ieee80211_frame *);
2513 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2514 	hdrlen = sizeof(struct ieee80211_frame);
2515 	pktlen = m0->m_pkthdr.len;
2516 
2517 	if (iswep) {
2518 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2519 		m_adj(m0, hdrlen);
2520 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2521 		if (m0 == NULL) {
2522 			sc->sc_stats.ast_tx_nombuf++;
2523 			return ENOMEM;
2524 		}
2525 		ivp = hdrbuf + hdrlen;
2526 		wh = mtod(m0, struct ieee80211_frame *);
2527 		/*
2528 		 * XXX
2529 		 * IV must not duplicate during the lifetime of the key.
2530 		 * But no mechanism to renew keys is defined in IEEE 802.11
2531 		 * for WEP.  And the IV may be duplicated at other stations
2532 		 * because the session key itself is shared.  So we use a
2533 		 * pseudo random IV for now, though it is not the right way.
2534 		 *
2535 		 * NB: Rather than use a strictly random IV we select a
2536 		 * random one to start and then increment the value for
2537 		 * each frame.  This is an explicit tradeoff between
2538 		 * overhead and security.  Given the basic insecurity of
2539 		 * WEP this seems worthwhile.
2540 		 */
2541 
2542 		/*
2543 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2544 		 * (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
2545 		 */
2546 		iv = ic->ic_iv;
2547 		if ((iv & 0xff00) == 0xff00) {
2548 			int B = (iv & 0xff0000) >> 16;
2549 			if (3 <= B && B < 16)
2550 				iv = (B+1) << 16;
2551 		}
2552 		ic->ic_iv = iv + 1;
2553 
2554 		/*
2555 		 * NB: Preserve byte order of IV for packet
2556 		 *     sniffers; it doesn't matter otherwise.
2557 		 */
2558 #if AH_BYTE_ORDER == AH_BIG_ENDIAN
2559 		ivp[0] = iv >> 0;
2560 		ivp[1] = iv >> 8;
2561 		ivp[2] = iv >> 16;
2562 #else
2563 		ivp[2] = iv >> 0;
2564 		ivp[1] = iv >> 8;
2565 		ivp[0] = iv >> 16;
2566 #endif
2567 		ivp[3] = ic->ic_wep_txkey << 6; /* Key ID and pad */
2568 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2569 		/*
2570 		 * The ICV length must be included into hdrlen and pktlen.
2571 		 */
2572 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2573 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2574 	}
2575 	pktlen += IEEE80211_CRC_LEN;
2576 
2577 	/*
2578 	 * Load the DMA map so any coalescing is done.  This
2579 	 * also calculates the number of descriptors we need.
2580 	 */
2581 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2582 	/*
2583 	 * Discard null packets and check for packets that
2584 	 * require too many TX descriptors.  We try to convert
2585 	 * the latter to a cluster.
2586 	 */
2587 	if (error == EFBIG) {		/* too many desc's, linearize */
2588 		sc->sc_stats.ast_tx_linear++;
2589 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2590 		if (m == NULL) {
2591 			sc->sc_stats.ast_tx_nombuf++;
2592 			m_freem(m0);
2593 			return ENOMEM;
2594 		}
2595 #ifdef __FreeBSD__
2596 		M_MOVE_PKTHDR(m, m0);
2597 #else
2598 		M_COPY_PKTHDR(m, m0);
2599 #endif
2600 		MCLGET(m, M_DONTWAIT);
2601 		if ((m->m_flags & M_EXT) == 0) {
2602 			sc->sc_stats.ast_tx_nomcl++;
2603 			m_freem(m0);
2604 			m_free(m);
2605 			return ENOMEM;
2606 		}
2607 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2608 		m_freem(m0);
2609 		m->m_len = m->m_pkthdr.len;
2610 		m0 = m;
2611 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2612 					         BUS_DMA_NOWAIT);
2613 		if (error != 0) {
2614 			sc->sc_stats.ast_tx_busdma++;
2615 			m_freem(m0);
2616 			return error;
2617 		}
2618 		KASSERT(bf->bf_nseg == 1,
2619 			("ath_tx_start: packet not one segment; nseg %u",
2620 			bf->bf_nseg));
2621 	} else if (error != 0) {
2622 		sc->sc_stats.ast_tx_busdma++;
2623 		m_freem(m0);
2624 		return error;
2625 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
2626 		sc->sc_stats.ast_tx_nodata++;
2627 		m_freem(m0);
2628 		return EIO;
2629 	}
2630 	DPRINTF(ATH_DEBUG_XMIT, ("%s: m %p len %u\n", __func__, m0, pktlen));
2631 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2632 	bf->bf_m = m0;
2633 	bf->bf_node = ni;			/* NB: held reference */
2634 
2635 	/* setup descriptors */
2636 	ds = bf->bf_desc;
2637 	rt = sc->sc_currates;
2638 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2639 
2640 	/*
2641 	 * Calculate Atheros packet type from IEEE80211 packet header
2642 	 * and setup for rate calculations.
2643 	 */
2644 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
2645 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2646 	case IEEE80211_FC0_TYPE_MGT:
2647 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2648 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2649 			atype = HAL_PKT_TYPE_BEACON;
2650 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2651 			atype = HAL_PKT_TYPE_PROBE_RESP;
2652 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2653 			atype = HAL_PKT_TYPE_ATIM;
2654 		rix = 0;			/* XXX lowest rate */
2655 		break;
2656 	case IEEE80211_FC0_TYPE_CTL:
2657 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2658 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2659 			atype = HAL_PKT_TYPE_PSPOLL;
2660 		rix = 0;			/* XXX lowest rate */
2661 		break;
2662 	default:
2663 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2664 				IEEE80211_RATE_VAL];
2665 		if (rix == 0xff) {
2666 			if_printf(ifp, "bogus xmit rate 0x%x\n",
2667 				ni->ni_rates.rs_rates[ni->ni_txrate]);
2668 			sc->sc_stats.ast_tx_badrate++;
2669 			m_freem(m0);
2670 			return EIO;
2671 		}
2672 		break;
2673 	}
2674 	/*
2675 	 * NB: the 802.11 layer marks whether or not we should
2676 	 * use short preamble based on the current mode and
2677 	 * negotiated parameters.
2678 	 */
2679 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2680 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2681 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2682 		shortPreamble = AH_TRUE;
2683 		sc->sc_stats.ast_tx_shortpre++;
2684 	} else {
2685 		txrate = rt->info[rix].rateCode;
2686 		shortPreamble = AH_FALSE;
2687 	}
2688 
2689 	/*
2690 	 * Calculate miscellaneous flags.
2691 	 */
2692 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
2693 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2694 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
2695 		sc->sc_stats.ast_tx_noack++;
2696 	} else if (pktlen > ic->ic_rtsthreshold) {
2697 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
2698 		sc->sc_stats.ast_tx_rts++;
2699 	}
2700 
2701 	/*
2702 	 * Calculate duration.  This logically belongs in the 802.11
2703 	 * layer but it lacks sufficient information to calculate it.
2704 	 */
2705 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
2706 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2707 		u_int16_t dur;
2708 		/*
2709 		 * XXX not right with fragmentation.
2710 		 */
2711 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2712 				rix, shortPreamble);
2713 		*((u_int16_t*) wh->i_dur) = htole16(dur);
2714 	}
2715 
2716 	/*
2717 	 * Calculate RTS/CTS rate and duration if needed.
2718 	 */
2719 	ctsduration = 0;
2720 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2721 		/*
2722 		 * CTS transmit rate is derived from the transmit rate
2723 		 * by looking in the h/w rate table.  We must also factor
2724 		 * in whether or not a short preamble is to be used.
2725 		 */
2726 		cix = rt->info[rix].controlRate;
2727 		ctsrate = rt->info[cix].rateCode;
2728 		if (shortPreamble)
2729 			ctsrate |= rt->info[cix].shortPreamble;
2730 		/*
2731 		 * Compute the transmit duration based on the size
2732 		 * of an ACK frame.  We call into the HAL to do the
2733 		 * computation since it depends on the characteristics
2734 		 * of the actual PHY being used.
2735 		 */
2736 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
2737 			ctsduration += ath_hal_computetxtime(ah,
2738 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2739 		}
2740 		/* SIFS + data */
2741 		ctsduration += ath_hal_computetxtime(ah,
2742 			rt, pktlen, rix, shortPreamble);
2743 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
2744 			ctsduration += ath_hal_computetxtime(ah,
2745 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2746 		}
2747 	} else
2748 		ctsrate = 0;
2749 
2750 	/*
2751 	 * For now use the antenna on which the last good
2752 	 * frame was received on.  We assume this field is
2753 	 * initialized to 0 which gives us ``auto'' or the
2754 	 * ``default'' antenna.
2755 	 */
2756 	an = (struct ath_node *) ni;
2757 	if (an->an_tx_antenna)
2758 		antenna = an->an_tx_antenna;
2759 	else
2760 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2761 
2762 	if (ic->ic_rawbpf)
2763 		bpf_mtap(ic->ic_rawbpf, m0);
2764 	if (sc->sc_drvbpf) {
2765 		sc->sc_tx_th.wt_flags = 0;
2766 		if (shortPreamble)
2767 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2768 		if (iswep)
2769 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
2770 		sc->sc_tx_th.wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate];
2771 		sc->sc_tx_th.wt_txpower = 60/2;		/* XXX */
2772 		sc->sc_tx_th.wt_antenna = antenna;
2773 
2774 		bpf_mtap2(sc->sc_drvbpf,
2775 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
2776 	}
2777 
2778 	/*
2779 	 * Formulate first tx descriptor with tx controls.
2780 	 */
2781 	/* XXX check return value? */
2782 	ath_hal_setuptxdesc(ah, ds
2783 		, pktlen		/* packet length */
2784 		, hdrlen		/* header length */
2785 		, atype			/* Atheros packet type */
2786 		, 60			/* txpower XXX */
2787 		, txrate, 1+10		/* series 0 rate/tries */
2788 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2789 		, antenna		/* antenna mode */
2790 		, flags			/* flags */
2791 		, ctsrate		/* rts/cts rate */
2792 		, ctsduration		/* rts/cts duration */
2793 	);
2794 #ifdef notyet
2795 	ath_hal_setupxtxdesc(ah, ds
2796 		, AH_FALSE		/* short preamble */
2797 		, 0, 0			/* series 1 rate/tries */
2798 		, 0, 0			/* series 2 rate/tries */
2799 		, 0, 0			/* series 3 rate/tries */
2800 	);
2801 #endif
2802 	/*
2803 	 * Fillin the remainder of the descriptor info.
2804 	 */
2805 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2806 		ds->ds_data = bf->bf_segs[i].ds_addr;
2807 		if (i == bf->bf_nseg - 1)
2808 			ds->ds_link = 0;
2809 		else
2810 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2811 		ath_hal_filltxdesc(ah, ds
2812 			, bf->bf_segs[i].ds_len	/* segment length */
2813 			, i == 0		/* first segment */
2814 			, i == bf->bf_nseg - 1	/* last segment */
2815 		);
2816 		DPRINTF(ATH_DEBUG_XMIT,
2817 			("%s: %d: %08x %08x %08x %08x %08x %08x\n",
2818 			__func__, i, ds->ds_link, ds->ds_data,
2819 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]));
2820 	}
2821 
2822 	/*
2823 	 * Insert the frame on the outbound list and
2824 	 * pass it on to the hardware.
2825 	 */
2826 	ath_txq_critsect_begin(sc, s);
2827 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2828 	if (sc->sc_txlink == NULL) {
2829 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2830 		DPRINTF(ATH_DEBUG_XMIT, ("%s: TXDP0 = %p (%p)\n", __func__,
2831 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2832 	} else {
2833 		*sc->sc_txlink = bf->bf_daddr;
2834 		DPRINTF(ATH_DEBUG_XMIT, ("%s: link(%p)=%p (%p)\n", __func__,
2835 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2836 	}
2837 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2838 	ath_txq_critsect_end(sc, s);
2839 
2840 	ath_hal_txstart(ah, sc->sc_txhalq);
2841 	return 0;
2842 }
2843 
2844 static void
2845 ath_tx_proc(void *arg, int npending)
2846 {
2847 	struct ath_softc *sc = arg;
2848 	struct ath_hal *ah = sc->sc_ah;
2849 	struct ath_buf *bf;
2850 	struct ieee80211com *ic = &sc->sc_ic;
2851 	struct ifnet *ifp = &ic->ic_if;
2852 	struct ath_desc *ds;
2853 	struct ieee80211_node *ni;
2854 	struct ath_node *an;
2855 	int sr, lr;
2856 	HAL_STATUS status;
2857 	ath_txq_critsect_decl(s);
2858 	ath_txbuf_critsect_decl(s2);
2859 
2860 	DPRINTF(ATH_DEBUG_TX_PROC, ("%s: pending %u tx queue %p, link %p\n",
2861 		__func__, npending,
2862 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2863 		sc->sc_txlink));
2864 	for (;;) {
2865 		ath_txq_critsect_begin(sc, s);
2866 		bf = TAILQ_FIRST(&sc->sc_txq);
2867 		if (bf == NULL) {
2868 			sc->sc_txlink = NULL;
2869 			ath_txq_critsect_end(sc, s);
2870 			break;
2871 		}
2872 		/* only the last descriptor is needed */
2873 		ds = &bf->bf_desc[bf->bf_nseg - 1];
2874 		status = ath_hal_txprocdesc(ah, ds);
2875 #ifdef AR_DEBUG
2876 		if (ath_debug & ATH_DEBUG_XMIT_DESC)
2877 			ath_printtxbuf(bf, status == HAL_OK);
2878 #endif
2879 		if (status == HAL_EINPROGRESS) {
2880 			ath_txq_critsect_end(sc, s);
2881 			break;
2882 		}
2883 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2884 		ath_txq_critsect_end(sc, s);
2885 
2886 		ni = bf->bf_node;
2887 		if (ni != NULL) {
2888 			an = (struct ath_node *) ni;
2889 			if (ds->ds_txstat.ts_status == 0) {
2890 				an->an_tx_ok++;
2891 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2892 			} else {
2893 				an->an_tx_err++;
2894 				ifp->if_oerrors++;
2895 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2896 					sc->sc_stats.ast_tx_xretries++;
2897 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2898 					sc->sc_stats.ast_tx_fifoerr++;
2899 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2900 					sc->sc_stats.ast_tx_filtered++;
2901 				an->an_tx_antenna = 0;	/* invalidate */
2902 			}
2903 			sr = ds->ds_txstat.ts_shortretry;
2904 			lr = ds->ds_txstat.ts_longretry;
2905 			sc->sc_stats.ast_tx_shortretry += sr;
2906 			sc->sc_stats.ast_tx_longretry += lr;
2907 			if (sr + lr)
2908 				an->an_tx_retr++;
2909 			/*
2910 			 * Reclaim reference to node.
2911 			 *
2912 			 * NB: the node may be reclaimed here if, for example
2913 			 *     this is a DEAUTH message that was sent and the
2914 			 *     node was timed out due to inactivity.
2915 			 */
2916 			ieee80211_release_node(ic, ni);
2917 		}
2918 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2919 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2920 		m_freem(bf->bf_m);
2921 		bf->bf_m = NULL;
2922 		bf->bf_node = NULL;
2923 
2924 		ath_txbuf_critsect_begin(sc, s2);
2925 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2926 		ath_txbuf_critsect_end(sc, s2);
2927 	}
2928 	ifp->if_flags &= ~IFF_OACTIVE;
2929 	sc->sc_tx_timer = 0;
2930 
2931 	ath_start(ifp);
2932 }
2933 
2934 /*
2935  * Drain the transmit queue and reclaim resources.
2936  */
2937 static void
2938 ath_draintxq(struct ath_softc *sc)
2939 {
2940 	struct ath_hal *ah = sc->sc_ah;
2941 	struct ieee80211com *ic = &sc->sc_ic;
2942 	struct ifnet *ifp = &ic->ic_if;
2943 	struct ieee80211_node *ni;
2944 	struct ath_buf *bf;
2945 	ath_txq_critsect_decl(s);
2946 	ath_txbuf_critsect_decl(s2);
2947 
2948 	/* XXX return value */
2949 	if (!sc->sc_invalid) {
2950 		/* don't touch the hardware if marked invalid */
2951 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2952 		DPRINTF(ATH_DEBUG_RESET,
2953 		    ("%s: tx queue %p, link %p\n", __func__,
2954 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2955 		    sc->sc_txlink));
2956 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2957 		DPRINTF(ATH_DEBUG_RESET,
2958 		    ("%s: beacon queue %p\n", __func__,
2959 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2960 	}
2961 	for (;;) {
2962 		ath_txq_critsect_begin(sc, s);
2963 		bf = TAILQ_FIRST(&sc->sc_txq);
2964 		if (bf == NULL) {
2965 			sc->sc_txlink = NULL;
2966 			ath_txq_critsect_end(sc, s);
2967 			break;
2968 		}
2969 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2970 		ath_txq_critsect_end(sc, s);
2971 #ifdef AR_DEBUG
2972 		if (ath_debug & ATH_DEBUG_RESET)
2973 			ath_printtxbuf(bf,
2974 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2975 #endif /* AR_DEBUG */
2976 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2977 		m_freem(bf->bf_m);
2978 		bf->bf_m = NULL;
2979 		ni = bf->bf_node;
2980 		bf->bf_node = NULL;
2981 		ath_txbuf_critsect_begin(sc, s2);
2982 		if (ni != NULL) {
2983 			/*
2984 			 * Reclaim node reference.
2985 			 */
2986 			ieee80211_release_node(ic, ni);
2987 		}
2988 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2989 		ath_txbuf_critsect_end(sc, s2);
2990 	}
2991 	ifp->if_flags &= ~IFF_OACTIVE;
2992 	sc->sc_tx_timer = 0;
2993 }
2994 
2995 /*
2996  * Disable the receive h/w in preparation for a reset.
2997  */
2998 static void
2999 ath_stoprecv(struct ath_softc *sc)
3000 {
3001 #define	PA2DESC(_sc, _pa) \
3002 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
3003 		((_pa) - (_sc)->sc_desc_paddr)))
3004 	struct ath_hal *ah = sc->sc_ah;
3005 
3006 	ath_hal_stoppcurecv(ah);	/* disable PCU */
3007 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3008 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3009 	DELAY(3000);			/* long enough for 1 frame */
3010 #ifdef AR_DEBUG
3011 	if (ath_debug & ATH_DEBUG_RESET) {
3012 		struct ath_buf *bf;
3013 
3014 		printf("%s: rx queue %p, link %p\n", __func__,
3015 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3016 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3017 			struct ath_desc *ds = bf->bf_desc;
3018 			if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
3019 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
3020 				ath_printrxbuf(bf, 1);
3021 		}
3022 	}
3023 #endif
3024 	sc->sc_rxlink = NULL;		/* just in case */
3025 #undef PA2DESC
3026 }
3027 
3028 /*
3029  * Enable the receive h/w following a reset.
3030  */
3031 static int
3032 ath_startrecv(struct ath_softc *sc)
3033 {
3034 	struct ath_hal *ah = sc->sc_ah;
3035 	struct ath_buf *bf;
3036 
3037 	sc->sc_rxlink = NULL;
3038 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3039 		int error = ath_rxbuf_init(sc, bf);
3040 		if (error != 0) {
3041 			DPRINTF(ATH_DEBUG_RECV,
3042 				("%s: ath_rxbuf_init failed %d\n",
3043 				__func__, error));
3044 			return error;
3045 		}
3046 	}
3047 
3048 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
3049 	ath_hal_putrxbuf(ah, bf->bf_daddr);
3050 	ath_hal_rxena(ah);		/* enable recv descriptors */
3051 	ath_mode_init(sc);		/* set filters, etc. */
3052 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3053 	return 0;
3054 }
3055 
3056 /*
3057  * Set/change channels.  If the channel is really being changed,
3058  * it's done by resetting the chip.  To accomplish this we must
3059  * first cleanup any pending DMA, then restart stuff after a la
3060  * ath_init.
3061  */
3062 static int
3063 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3064 {
3065 	struct ath_hal *ah = sc->sc_ah;
3066 	struct ieee80211com *ic = &sc->sc_ic;
3067 
3068 	DPRINTF(ATH_DEBUG_ANY, ("%s: %u (%u MHz) -> %u (%u MHz)\n", __func__,
3069 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
3070 		ic->ic_ibss_chan->ic_freq,
3071 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
3072 	if (chan != ic->ic_ibss_chan) {
3073 		HAL_STATUS status;
3074 		HAL_CHANNEL hchan;
3075 		enum ieee80211_phymode mode;
3076 
3077 		/*
3078 		 * To switch channels clear any pending DMA operations;
3079 		 * wait long enough for the RX fifo to drain, reset the
3080 		 * hardware at the new frequency, and then re-enable
3081 		 * the relevant bits of the h/w.
3082 		 */
3083 		ath_hal_intrset(ah, 0);		/* disable interrupts */
3084 		ath_draintxq(sc);		/* clear pending tx frames */
3085 		ath_stoprecv(sc);		/* turn off frame recv */
3086 		/*
3087 		 * Convert to a HAL channel description with
3088 		 * the flags constrained to reflect the current
3089 		 * operating mode.
3090 		 */
3091 		hchan.channel = chan->ic_freq;
3092 		hchan.channelFlags = ath_chan2flags(ic, chan);
3093 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3094 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
3095 				"channel %u (%u Mhz)\n",
3096 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3097 			return EIO;
3098 		}
3099 		/*
3100 		 * Re-enable rx framework.
3101 		 */
3102 		if (ath_startrecv(sc) != 0) {
3103 			if_printf(&ic->ic_if,
3104 				"ath_chan_set: unable to restart recv logic\n");
3105 			return EIO;
3106 		}
3107 
3108 		/*
3109 		 * Update BPF state.
3110 		 */
3111 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3112 			htole16(chan->ic_freq);
3113 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3114 			htole16(chan->ic_flags);
3115 
3116 		/*
3117 		 * Change channels and update the h/w rate map
3118 		 * if we're switching; e.g. 11a to 11b/g.
3119 		 */
3120 		ic->ic_ibss_chan = chan;
3121 		mode = ieee80211_chan2mode(ic, chan);
3122 		if (mode != sc->sc_curmode)
3123 			ath_setcurmode(sc, mode);
3124 
3125 		/*
3126 		 * Re-enable interrupts.
3127 		 */
3128 		ath_hal_intrset(ah, sc->sc_imask);
3129 	}
3130 	return 0;
3131 }
3132 
3133 static void
3134 ath_next_scan(void *arg)
3135 {
3136 	struct ath_softc *sc = arg;
3137 	struct ieee80211com *ic = &sc->sc_ic;
3138 	int s;
3139 
3140 	/* don't call ath_start w/o network interrupts blocked */
3141 	s = splnet();
3142 
3143 	if (ic->ic_state == IEEE80211_S_SCAN)
3144 		ieee80211_next_scan(ic);
3145 	splx(s);
3146 }
3147 
3148 /*
3149  * Periodically recalibrate the PHY to account
3150  * for temperature/environment changes.
3151  */
3152 static void
3153 ath_calibrate(void *arg)
3154 {
3155 	struct ath_softc *sc = arg;
3156 	struct ath_hal *ah = sc->sc_ah;
3157 	struct ieee80211com *ic = &sc->sc_ic;
3158 	struct ieee80211_channel *c;
3159 	HAL_CHANNEL hchan;
3160 
3161 	sc->sc_stats.ast_per_cal++;
3162 
3163 	/*
3164 	 * Convert to a HAL channel description with the flags
3165 	 * constrained to reflect the current operating mode.
3166 	 */
3167 	c = ic->ic_ibss_chan;
3168 	hchan.channel = c->ic_freq;
3169 	hchan.channelFlags = ath_chan2flags(ic, c);
3170 
3171 	DPRINTF(ATH_DEBUG_CALIBRATE,
3172 		("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
3173 
3174 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3175 		/*
3176 		 * Rfgain is out of bounds, reset the chip
3177 		 * to load new gain values.
3178 		 */
3179 		sc->sc_stats.ast_per_rfgain++;
3180 		ath_reset(sc);
3181 	}
3182 	if (!ath_hal_calibrate(ah, &hchan)) {
3183 		DPRINTF(ATH_DEBUG_ANY,
3184 			("%s: calibration of channel %u failed\n",
3185 			__func__, c->ic_freq));
3186 		sc->sc_stats.ast_per_calfail++;
3187 	}
3188 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
3189 }
3190 
3191 static HAL_LED_STATE
3192 ath_state_to_led(enum ieee80211_state state)
3193 {
3194 	switch (state) {
3195 	case IEEE80211_S_INIT:
3196 		return HAL_LED_INIT;
3197 	case IEEE80211_S_SCAN:
3198 		return HAL_LED_SCAN;
3199 	case IEEE80211_S_AUTH:
3200 		return HAL_LED_AUTH;
3201 	case IEEE80211_S_ASSOC:
3202 		return HAL_LED_ASSOC;
3203 	case IEEE80211_S_RUN:
3204 		return HAL_LED_RUN;
3205 	default:
3206 		panic("%s: unknown 802.11 state %d\n", __func__, state);
3207 		return HAL_LED_INIT;
3208 	}
3209 }
3210 
3211 static int
3212 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3213 {
3214 	struct ifnet *ifp = &ic->ic_if;
3215 	struct ath_softc *sc = ifp->if_softc;
3216 	struct ath_hal *ah = sc->sc_ah;
3217 	struct ieee80211_node *ni;
3218 	int i, error;
3219 	const u_int8_t *bssid;
3220 	u_int32_t rfilt;
3221 
3222 	DPRINTF(ATH_DEBUG_ANY, ("%s: %s -> %s\n", __func__,
3223 		ieee80211_state_name[ic->ic_state],
3224 		ieee80211_state_name[nstate]));
3225 
3226 	ath_hal_setledstate(ah, ath_state_to_led(nstate));	/* set LED */
3227 
3228 	if (nstate == IEEE80211_S_INIT) {
3229 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3230 		ath_hal_intrset(ah, sc->sc_imask);
3231 		callout_stop(&sc->sc_scan_ch);
3232 		callout_stop(&sc->sc_cal_ch);
3233 		return (*sc->sc_newstate)(ic, nstate, arg);
3234 	}
3235 	ni = ic->ic_bss;
3236 	error = ath_chan_set(sc, ni->ni_chan);
3237 	if (error != 0)
3238 		goto bad;
3239 	rfilt = ath_calcrxfilter(sc);
3240 	if (nstate == IEEE80211_S_SCAN) {
3241 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3242 			ath_next_scan, sc);
3243 		bssid = ifp->if_broadcastaddr;
3244 	} else {
3245 		callout_stop(&sc->sc_scan_ch);
3246 		bssid = ni->ni_bssid;
3247 	}
3248 	ath_hal_setrxfilter(ah, rfilt);
3249 	DPRINTF(ATH_DEBUG_ANY, ("%s: RX filter 0x%x bssid %s\n",
3250 		 __func__, rfilt, ether_sprintf(bssid)));
3251 
3252 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3253 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
3254 	else
3255 		ath_hal_setassocid(ah, bssid, 0);
3256 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3257 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
3258 			if (ath_hal_keyisvalid(ah, i))
3259 				ath_hal_keysetmac(ah, i, bssid);
3260 	}
3261 
3262 	if (nstate == IEEE80211_S_RUN) {
3263 		DPRINTF(ATH_DEBUG_ANY, ("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3264 			"capinfo=0x%04x chan=%d\n"
3265 			 , __func__
3266 			 , ic->ic_flags
3267 			 , ni->ni_intval
3268 			 , ether_sprintf(ni->ni_bssid)
3269 			 , ni->ni_capinfo
3270 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3271 
3272 		/*
3273 		 * Allocate and setup the beacon frame for AP or adhoc mode.
3274 		 */
3275 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3276 		    ic->ic_opmode == IEEE80211_M_IBSS) {
3277 			error = ath_beacon_alloc(sc, ni);
3278 			if (error != 0)
3279 				goto bad;
3280 		}
3281 
3282 		/*
3283 		 * Configure the beacon and sleep timers.
3284 		 */
3285 		ath_beacon_config(sc);
3286 
3287 		/* start periodic recalibration timer */
3288 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3289 			ath_calibrate, sc);
3290 	} else {
3291 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3292 		ath_hal_intrset(ah, sc->sc_imask);
3293 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
3294 	}
3295 	/*
3296 	 * Reset the rate control state.
3297 	 */
3298 	ath_rate_ctl_reset(sc, nstate);
3299 	/*
3300 	 * Invoke the parent method to complete the work.
3301 	 */
3302 	return (*sc->sc_newstate)(ic, nstate, arg);
3303 bad:
3304 	callout_stop(&sc->sc_scan_ch);
3305 	callout_stop(&sc->sc_cal_ch);
3306 	/* NB: do not invoke the parent */
3307 	return error;
3308 }
3309 
3310 static void
3311 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
3312     struct ieee80211_node *ni, int subtype, int rssi, u_int32_t rstamp)
3313 {
3314 	struct ath_softc *sc = (struct ath_softc*)ic->ic_softc;
3315 	struct ath_hal *ah = sc->sc_ah;
3316 
3317 	(*sc->sc_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp);
3318 
3319 	switch (subtype) {
3320 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3321 	case IEEE80211_FC0_SUBTYPE_BEACON:
3322 		if (ic->ic_opmode != IEEE80211_M_IBSS ||
3323 		    ic->ic_state != IEEE80211_S_RUN)
3324 			break;
3325 		if (ieee80211_ibss_merge(ic, ni, ath_hal_gettsf64(ah)) ==
3326 		    ENETRESET)
3327 			ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0);
3328 		break;
3329 	default:
3330 		break;
3331 	}
3332 	return;
3333 }
3334 
3335 /*
3336  * Setup driver-specific state for a newly associated node.
3337  * Note that we're called also on a re-associate, the isnew
3338  * param tells us if this is the first time or not.
3339  */
3340 static void
3341 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3342 {
3343 	if (isnew) {
3344 		struct ath_node *an = (struct ath_node *) ni;
3345 
3346 		an->an_tx_ok = an->an_tx_err =
3347 			an->an_tx_retr = an->an_tx_upper = 0;
3348 		/* start with highest negotiated rate */
3349 		/*
3350 		 * XXX should do otherwise but only when
3351 		 * the rate control algorithm is better.
3352 		 */
3353 		KASSERT(ni->ni_rates.rs_nrates > 0,
3354 			("new association w/ no rates!"));
3355 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3356 	}
3357 }
3358 
3359 static int
3360 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor,
3361     HAL_BOOL xchanmode)
3362 {
3363 	struct ieee80211com *ic = &sc->sc_ic;
3364 	struct ifnet *ifp = &ic->ic_if;
3365 	struct ath_hal *ah = sc->sc_ah;
3366 	HAL_CHANNEL *chans;
3367 	int i, ix, nchan;
3368 
3369 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3370 			M_TEMP, M_NOWAIT);
3371 	if (chans == NULL) {
3372 		if_printf(ifp, "unable to allocate channel table\n");
3373 		return ENOMEM;
3374 	}
3375 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3376 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
3377 		if_printf(ifp, "unable to collect channel list from hal\n");
3378 		free(chans, M_TEMP);
3379 		return EINVAL;
3380 	}
3381 
3382 	/*
3383 	 * Convert HAL channels to ieee80211 ones and insert
3384 	 * them in the table according to their channel number.
3385 	 */
3386 	for (i = 0; i < nchan; i++) {
3387 		HAL_CHANNEL *c = &chans[i];
3388 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3389 		if (ix > IEEE80211_CHAN_MAX) {
3390 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3391 				ix, c->channel, c->channelFlags);
3392 			continue;
3393 		}
3394 		DPRINTF(ATH_DEBUG_ANY,
3395 		    ("%s: HAL channel %d/%d freq %d flags %#04x idx %d\n",
3396 		    sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags,
3397 		    ix));
3398 		/* NB: flags are known to be compatible */
3399 		if (ic->ic_channels[ix].ic_freq == 0) {
3400 			ic->ic_channels[ix].ic_freq = c->channel;
3401 			ic->ic_channels[ix].ic_flags = c->channelFlags;
3402 		} else {
3403 			/* channels overlap; e.g. 11g and 11b */
3404 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
3405 		}
3406 	}
3407 	free(chans, M_TEMP);
3408 	return 0;
3409 }
3410 
3411 static int
3412 ath_rate_setup(struct ath_softc *sc, u_int mode)
3413 {
3414 	struct ath_hal *ah = sc->sc_ah;
3415 	struct ieee80211com *ic = &sc->sc_ic;
3416 	const HAL_RATE_TABLE *rt;
3417 	struct ieee80211_rateset *rs;
3418 	int i, maxrates;
3419 
3420 	switch (mode) {
3421 	case IEEE80211_MODE_11A:
3422 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3423 		break;
3424 	case IEEE80211_MODE_11B:
3425 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3426 		break;
3427 	case IEEE80211_MODE_11G:
3428 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3429 		break;
3430 	case IEEE80211_MODE_TURBO:
3431 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3432 		break;
3433 	default:
3434 		DPRINTF(ATH_DEBUG_ANY,
3435 			("%s: invalid mode %u\n", __func__, mode));
3436 		return 0;
3437 	}
3438 	rt = sc->sc_rates[mode];
3439 	if (rt == NULL)
3440 		return 0;
3441 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3442 		DPRINTF(ATH_DEBUG_ANY,
3443 			("%s: rate table too small (%u > %u)\n",
3444 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3445 		maxrates = IEEE80211_RATE_MAXSIZE;
3446 	} else
3447 		maxrates = rt->rateCount;
3448 	rs = &ic->ic_sup_rates[mode];
3449 	for (i = 0; i < maxrates; i++)
3450 		rs->rs_rates[i] = rt->info[i].dot11Rate;
3451 	rs->rs_nrates = maxrates;
3452 	return 1;
3453 }
3454 
3455 static void
3456 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3457 {
3458 	const HAL_RATE_TABLE *rt;
3459 	int i;
3460 
3461 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3462 	rt = sc->sc_rates[mode];
3463 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3464 	for (i = 0; i < rt->rateCount; i++)
3465 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3466 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3467 	for (i = 0; i < 32; i++)
3468 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3469 	sc->sc_currates = rt;
3470 	sc->sc_curmode = mode;
3471 }
3472 
3473 /*
3474  * Reset the rate control state for each 802.11 state transition.
3475  */
3476 static void
3477 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3478 {
3479 	struct ieee80211com *ic = &sc->sc_ic;
3480 	struct ieee80211_node *ni;
3481 	struct ath_node *an;
3482 
3483 	if (ic->ic_opmode != IEEE80211_M_STA) {
3484 		/*
3485 		 * When operating as a station the node table holds
3486 		 * the AP's that were discovered during scanning.
3487 		 * For any other operating mode we want to reset the
3488 		 * tx rate state of each node.
3489 		 */
3490 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3491 			ni->ni_txrate = 0;		/* use lowest rate */
3492 			an = (struct ath_node *) ni;
3493 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3494 			    an->an_tx_upper = 0;
3495 		}
3496 	}
3497 	/*
3498 	 * Reset local xmit state; this is really only meaningful
3499 	 * when operating in station or adhoc mode.
3500 	 */
3501 	ni = ic->ic_bss;
3502 	an = (struct ath_node *) ni;
3503 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3504 	if (state == IEEE80211_S_RUN) {
3505 		/* start with highest negotiated rate */
3506 		KASSERT(ni->ni_rates.rs_nrates > 0,
3507 			("transition to RUN state w/ no rates!"));
3508 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3509 	} else {
3510 		/* use lowest rate */
3511 		ni->ni_txrate = 0;
3512 	}
3513 }
3514 
3515 /*
3516  * Examine and potentially adjust the transmit rate.
3517  */
3518 static void
3519 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3520 {
3521 	struct ath_softc *sc = arg;
3522 	struct ath_node *an = (struct ath_node *) ni;
3523 	struct ieee80211_rateset *rs = &ni->ni_rates;
3524 	int mod = 0, orate, enough;
3525 
3526 	/*
3527 	 * Rate control
3528 	 * XXX: very primitive version.
3529 	 */
3530 	sc->sc_stats.ast_rate_calls++;
3531 
3532 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
3533 
3534 	/* no packet reached -> down */
3535 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3536 		mod = -1;
3537 
3538 	/* all packets needs retry in average -> down */
3539 	if (enough && an->an_tx_ok < an->an_tx_retr)
3540 		mod = -1;
3541 
3542 	/* no error and less than 10% of packets needs retry -> up */
3543 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3544 		mod = 1;
3545 
3546 	orate = ni->ni_txrate;
3547 	switch (mod) {
3548 	case 0:
3549 		if (enough && an->an_tx_upper > 0)
3550 			an->an_tx_upper--;
3551 		break;
3552 	case -1:
3553 		if (ni->ni_txrate > 0) {
3554 			ni->ni_txrate--;
3555 			sc->sc_stats.ast_rate_drop++;
3556 		}
3557 		an->an_tx_upper = 0;
3558 		break;
3559 	case 1:
3560 		if (++an->an_tx_upper < 2)
3561 			break;
3562 		an->an_tx_upper = 0;
3563 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
3564 			ni->ni_txrate++;
3565 			sc->sc_stats.ast_rate_raise++;
3566 		}
3567 		break;
3568 	}
3569 
3570 	if (ni->ni_txrate != orate) {
3571 		DPRINTF(ATH_DEBUG_RATE,
3572 		    ("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3573 		    __func__,
3574 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3575 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3576 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3577 	}
3578 	if (ni->ni_txrate != orate || enough)
3579 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3580 }
3581 
3582 #ifdef AR_DEBUG
3583 #ifdef __FreeBSD__
3584 static int
3585 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3586 {
3587 	char dmode[64];
3588 	int error;
3589 
3590 	strncpy(dmode, "", sizeof(dmode) - 1);
3591 	dmode[sizeof(dmode) - 1] = '\0';
3592 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3593 
3594 	if (error == 0 && req->newptr != NULL) {
3595 		struct ifnet *ifp;
3596 		struct ath_softc *sc;
3597 
3598 		ifp = ifunit("ath0");		/* XXX */
3599 		if (!ifp)
3600 			return EINVAL;
3601 		sc = ifp->if_softc;
3602 		if (strcmp(dmode, "hal") == 0)
3603 			ath_hal_dumpstate(sc->sc_ah);
3604 		else
3605 			return EINVAL;
3606 	}
3607 	return error;
3608 }
3609 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3610 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3611 #endif /* __FreeBSD__ */
3612 
3613 #if 0 /* #ifdef __NetBSD__ */
3614 static int
3615 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3616 {
3617 	char dmode[64];
3618 	int error;
3619 
3620 	strncpy(dmode, "", sizeof(dmode) - 1);
3621 	dmode[sizeof(dmode) - 1] = '\0';
3622 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3623 
3624 	if (error == 0 && req->newptr != NULL) {
3625 		struct ifnet *ifp;
3626 		struct ath_softc *sc;
3627 
3628 		ifp = ifunit("ath0");		/* XXX */
3629 		if (!ifp)
3630 			return EINVAL;
3631 		sc = ifp->if_softc;
3632 		if (strcmp(dmode, "hal") == 0)
3633 			ath_hal_dumpstate(sc->sc_ah);
3634 		else
3635 			return EINVAL;
3636 	}
3637 	return error;
3638 }
3639 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3640 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3641 #endif /* __NetBSD__ */
3642 
3643 static void
3644 ath_printrxbuf(struct ath_buf *bf, int done)
3645 {
3646 	struct ath_desc *ds;
3647 	int i;
3648 
3649 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3650 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3651 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3652 		    ds->ds_link, ds->ds_data,
3653 		    ds->ds_ctl0, ds->ds_ctl1,
3654 		    ds->ds_hw[0], ds->ds_hw[1],
3655 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3656 	}
3657 }
3658 
3659 static void
3660 ath_printtxbuf(struct ath_buf *bf, int done)
3661 {
3662 	struct ath_desc *ds;
3663 	int i;
3664 
3665 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3666 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3667 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3668 		    ds->ds_link, ds->ds_data,
3669 		    ds->ds_ctl0, ds->ds_ctl1,
3670 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3671 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3672 	}
3673 }
3674 #endif /* AR_DEBUG */
3675