xref: /netbsd-src/sys/dev/ic/ath.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: ath.c,v 1.18 2003/12/16 06:48:09 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.36 2003/11/29 01:23:59 sam Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.18 2003/12/16 06:48:09 dyoung Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/types.h>
63 #include <sys/sysctl.h>
64 #include <sys/mbuf.h>
65 #include <sys/malloc.h>
66 #include <sys/lock.h>
67 #ifdef __FreeBSD__
68 #include <sys/mutex.h>
69 #endif
70 #include <sys/kernel.h>
71 #include <sys/socket.h>
72 #include <sys/sockio.h>
73 #include <sys/errno.h>
74 #include <sys/callout.h>
75 #ifdef __FreeBSD__
76 #include <sys/bus.h>
77 #else
78 #include <machine/bus.h>
79 #endif
80 #include <sys/endian.h>
81 
82 #include <machine/bus.h>
83 
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_arp.h>
88 #ifdef __FreeBSD__
89 #include <net/ethernet.h>
90 #else
91 #include <net/if_ether.h>
92 #endif
93 #include <net/if_llc.h>
94 
95 #include <net80211/ieee80211_var.h>
96 #include <net80211/ieee80211_compat.h>
97 
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #endif
105 
106 #include <dev/ic/athcompat.h>
107 
108 #define	AR_DEBUG
109 #ifdef __FreeBSD__
110 #include <dev/ath/if_athvar.h>
111 #include <contrib/dev/ath/ah_desc.h>
112 #else
113 #include <dev/ic/athvar.h>
114 #include <../contrib/sys/dev/ic/athhal_desc.h>
115 #endif
116 
117 /* unaligned little endian access */
118 #define LE_READ_2(p)							\
119 	((u_int16_t)							\
120 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
121 #define LE_READ_4(p)							\
122 	((u_int32_t)							\
123 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
124 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
125 
126 #ifdef __FreeBSD__
127 static void	ath_init(void *);
128 #else
129 static int	ath_init(struct ifnet *);
130 #endif
131 static int	ath_init1(struct ath_softc *);
132 static int	ath_intr1(struct ath_softc *);
133 static void	ath_stop(struct ifnet *);
134 static void	ath_start(struct ifnet *);
135 static void	ath_reset(struct ath_softc *);
136 static int	ath_media_change(struct ifnet *);
137 static void	ath_watchdog(struct ifnet *);
138 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void	ath_fatal_proc(void *, int);
140 static void	ath_rxorn_proc(void *, int);
141 static void	ath_bmiss_proc(void *, int);
142 static void	ath_initkeytable(struct ath_softc *);
143 static void	ath_mode_init(struct ath_softc *);
144 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
145 static void	ath_beacon_proc(void *, int);
146 static void	ath_beacon_free(struct ath_softc *);
147 static void	ath_beacon_config(struct ath_softc *);
148 static int	ath_desc_alloc(struct ath_softc *);
149 static void	ath_desc_free(struct ath_softc *);
150 static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
151 static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
152 static void	ath_node_copy(struct ieee80211com *,
153 			struct ieee80211_node *, const struct ieee80211_node *);
154 static u_int8_t	ath_node_getrssi(struct ieee80211com *,
155 			struct ieee80211_node *);
156 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
157 static void	ath_rx_proc(void *, int);
158 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159 			     struct ath_buf *, struct mbuf *);
160 static void	ath_tx_proc(void *, int);
161 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
162 static void	ath_draintxq(struct ath_softc *);
163 static void	ath_stoprecv(struct ath_softc *);
164 static int	ath_startrecv(struct ath_softc *);
165 static void	ath_next_scan(void *);
166 static void	ath_calibrate(void *);
167 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
168 static void	ath_newassoc(struct ieee80211com *,
169 			struct ieee80211_node *, int);
170 static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
171 
172 static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
173 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
174 static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
175 static void	ath_rate_ctl(void *, struct ieee80211_node *);
176 
177 #ifdef __NetBSD__
178 int	ath_enable(struct ath_softc *);
179 void	ath_disable(struct ath_softc *);
180 void	ath_power(int, void *);
181 #endif
182 
183 #ifdef __FreeBSD__
184 SYSCTL_DECL(_hw_ath);
185 /* XXX validate sysctl values */
186 SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
187 	    0, "channel dwell time (ms) for AP/station scanning");
188 SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
189 	    0, "chip calibration interval (secs)");
190 SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
191 	    0, "enable/disable outdoor operation");
192 SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
193 	    0, "country code");
194 SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
195 	    0, "regulatory domain");
196 #endif /* __FreeBSD__ */
197 
198 static	int ath_dwelltime = 200;		/* 5 channels/second */
199 static	int ath_calinterval = 30;		/* calibrate every 30 secs */
200 static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
201 static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
202 static	int ath_regdomain = 0;			/* regulatory domain */
203 
204 #ifdef AR_DEBUG
205 int	ath_debug = 0;
206 #ifdef __FreeBSD__
207 SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
208 	    0, "control debugging printfs");
209 #endif /* __FreeBSD__ */
210 #define	IFF_DUMPPKTS(_ifp) \
211 	(ath_debug || \
212 	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
213 static	void ath_printrxbuf(struct ath_buf *bf, int);
214 static	void ath_printtxbuf(struct ath_buf *bf, int);
215 #define	DPRINTF(X)	if (ath_debug) printf X
216 #define	DPRINTF2(X)	if (ath_debug > 1) printf X
217 #else
218 #define	IFF_DUMPPKTS(_ifp) \
219 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
220 #define	DPRINTF(X)
221 #define	DPRINTF2(X)
222 #endif
223 
224 #ifdef __NetBSD__
225 int
226 ath_activate(struct device *self, enum devact act)
227 {
228 	struct ath_softc *sc = (struct ath_softc *)self;
229 	int rv = 0, s;
230 
231 	s = splnet();
232 	switch (act) {
233 	case DVACT_ACTIVATE:
234 		rv = EOPNOTSUPP;
235 		break;
236 	case DVACT_DEACTIVATE:
237 		if_deactivate(&sc->sc_ic.ic_if);
238 		break;
239 	}
240 	splx(s);
241 	return rv;
242 }
243 
244 int
245 ath_enable(struct ath_softc *sc)
246 {
247 	if (ATH_IS_ENABLED(sc) == 0) {
248 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
249 			printf("%s: device enable failed\n",
250 				sc->sc_dev.dv_xname);
251 			return (EIO);
252 		}
253 		sc->sc_flags |= ATH_ENABLED;
254 	}
255 	return (0);
256 }
257 
258 void
259 ath_disable(struct ath_softc *sc)
260 {
261 	if (!ATH_IS_ENABLED(sc))
262 		return;
263 	if (sc->sc_disable != NULL)
264 		(*sc->sc_disable)(sc);
265 	sc->sc_flags &= ~ATH_ENABLED;
266 }
267 #endif	/* #ifdef __NetBSD__ */
268 
269 int
270 ath_attach(u_int16_t devid, struct ath_softc *sc)
271 {
272 	struct ieee80211com *ic = &sc->sc_ic;
273 	struct ifnet *ifp = &ic->ic_if;
274 	struct ath_hal *ah;
275 	HAL_STATUS status;
276 	int error = 0;
277 
278 	DPRINTF(("ath_attach: devid 0x%x\n", devid));
279 
280 #ifdef __FreeBSD__
281 	/* set these up early for if_printf use */
282 	if_initname(ifp, device_get_name(sc->sc_dev),
283 	    device_get_unit(sc->sc_dev));
284 #else
285 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
286 #endif
287 
288 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
289 	if (ah == NULL) {
290 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
291 			status);
292 		error = ENXIO;
293 		goto bad;
294 	}
295 	if (ah->ah_abi != HAL_ABI_VERSION) {
296 		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
297 			ah->ah_abi, HAL_ABI_VERSION);
298 		error = ENXIO;
299 		goto bad;
300 	}
301 	if_printf(ifp, "mac %d.%d phy %d.%d",
302 		ah->ah_macVersion, ah->ah_macRev,
303 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
304 	if (ah->ah_analog5GhzRev)
305 		printf(" 5ghz radio %d.%d",
306 			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
307 	if (ah->ah_analog2GhzRev)
308 		printf(" 2ghz radio %d.%d",
309 			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
310 	printf("\n");
311 	sc->sc_ah = ah;
312 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
313 
314 	/*
315 	 * Collect the channel list using the default country
316 	 * code and including outdoor channels.  The 802.11 layer
317 	 * is resposible for filtering this list based on settings
318 	 * like the phy mode.
319 	 */
320 	error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
321 	if (error != 0)
322 		goto bad;
323 	/*
324 	 * Copy these back; they are set as a side effect
325 	 * of constructing the channel list.
326 	 */
327 	ath_regdomain = ath_hal_getregdomain(ah);
328 	ath_countrycode = ath_hal_getcountrycode(ah);
329 
330 	/*
331 	 * Setup rate tables for all potential media types.
332 	 */
333 	ath_rate_setup(sc, IEEE80211_MODE_11A);
334 	ath_rate_setup(sc, IEEE80211_MODE_11B);
335 	ath_rate_setup(sc, IEEE80211_MODE_11G);
336 	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
337 
338 	error = ath_desc_alloc(sc);
339 	if (error != 0) {
340 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
341 		goto bad;
342 	}
343 	ATH_CALLOUT_INIT(&sc->sc_scan_ch);
344 	ATH_CALLOUT_INIT(&sc->sc_cal_ch);
345 
346 #ifdef __FreeBSD__
347 	ATH_TXBUF_LOCK_INIT(sc);
348 	ATH_TXQ_LOCK_INIT(sc);
349 #endif
350 
351 	ATH_TASK_INIT(&sc->sc_txtask, ath_tx_proc, sc);
352 	ATH_TASK_INIT(&sc->sc_rxtask, ath_rx_proc, sc);
353 	ATH_TASK_INIT(&sc->sc_swbatask, ath_beacon_proc, sc);
354 	ATH_TASK_INIT(&sc->sc_rxorntask, ath_rxorn_proc, sc);
355 	ATH_TASK_INIT(&sc->sc_fataltask, ath_fatal_proc, sc);
356 	ATH_TASK_INIT(&sc->sc_bmisstask, ath_bmiss_proc, sc);
357 
358 	/*
359 	 * For now just pre-allocate one data queue and one
360 	 * beacon queue.  Note that the HAL handles resetting
361 	 * them at the needed time.  Eventually we'll want to
362 	 * allocate more tx queues for splitting management
363 	 * frames and for QOS support.
364 	 */
365 	sc->sc_txhalq = ath_hal_setuptxqueue(ah,
366 		HAL_TX_QUEUE_DATA,
367 		AH_TRUE			/* enable interrupts */
368 	);
369 	if (sc->sc_txhalq == (u_int) -1) {
370 		if_printf(ifp, "unable to setup a data xmit queue!\n");
371 		goto bad;
372 	}
373 	sc->sc_bhalq = ath_hal_setuptxqueue(ah,
374 		HAL_TX_QUEUE_BEACON,
375 		AH_TRUE			/* enable interrupts */
376 	);
377 	if (sc->sc_bhalq == (u_int) -1) {
378 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
379 		goto bad;
380 	}
381 
382 	ifp->if_softc = sc;
383 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
384 	ifp->if_start = ath_start;
385 	ifp->if_watchdog = ath_watchdog;
386 	ifp->if_ioctl = ath_ioctl;
387 	ifp->if_init = ath_init;
388 #ifdef __FreeBSD__
389 	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
390 #else
391 #if 0
392 	ifp->if_stop = ath_stop;		/* XXX */
393 #endif
394 	IFQ_SET_READY(&ifp->if_snd);
395 #endif
396 
397 	ic->ic_softc = sc;
398 	ic->ic_newassoc = ath_newassoc;
399 	/* XXX not right but it's not used anywhere important */
400 	ic->ic_phytype = IEEE80211_T_OFDM;
401 	ic->ic_opmode = IEEE80211_M_STA;
402 	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
403 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
404 		| IEEE80211_C_HOSTAP		/* hostap mode */
405 		| IEEE80211_C_MONITOR		/* monitor mode */
406 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
407 		| IEEE80211_C_RCVMGT;		/* recv management frames */
408 
409 	/* get mac address from hardware */
410 	ath_hal_getmac(ah, ic->ic_myaddr);
411 
412 #ifdef __NetBSD__
413 	if_attach(ifp);
414 #endif
415 	/* call MI attach routine. */
416 	ieee80211_ifattach(ifp);
417 	/* override default methods */
418 	ic->ic_node_alloc = ath_node_alloc;
419 	ic->ic_node_free = ath_node_free;
420 	ic->ic_node_copy = ath_node_copy;
421 	ic->ic_node_getrssi = ath_node_getrssi;
422 	sc->sc_newstate = ic->ic_newstate;
423 	ic->ic_newstate = ath_newstate;
424 	/* complete initialization */
425 	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
426 
427 #if NBPFILTER > 0
428 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
429 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
430 		&sc->sc_drvbpf);
431 #endif
432 	/*
433 	 * Initialize constant fields.
434 	 *
435 	 * NB: the channel is setup each time we transition to the
436 	 *     RUN state to avoid filling it in for each frame.
437 	 */
438 	sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
439 	sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
440 
441 	sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
442 	sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
443 
444 	if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
445 
446 #ifdef __NetBSD__
447 	sc->sc_flags |= ATH_ATTACHED;
448 	/*
449 	 * Make sure the interface is shutdown during reboot.
450 	 */
451 	sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc);
452 	if (sc->sc_sdhook == NULL)
453 		printf("%s: WARNING: unable to establish shutdown hook\n",
454 			sc->sc_dev.dv_xname);
455 	sc->sc_powerhook = powerhook_establish(ath_power, sc);
456 	if (sc->sc_powerhook == NULL)
457 		printf("%s: WARNING: unable to establish power hook\n",
458 			sc->sc_dev.dv_xname);
459 #endif
460 	return 0;
461 bad:
462 	if (ah)
463 		ath_hal_detach(ah);
464 	sc->sc_invalid = 1;
465 	return error;
466 }
467 
468 int
469 ath_detach(struct ath_softc *sc)
470 {
471 	struct ifnet *ifp = &sc->sc_ic.ic_if;
472 	ath_softc_critsect_decl(s);
473 
474 	DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
475 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
476 		return (0);
477 
478 	ath_softc_critsect_begin(sc, s);
479 	ath_stop(ifp);
480 #if NBPFILTER > 0
481 	bpfdetach(ifp);
482 #endif
483 	ath_desc_free(sc);
484 	ath_hal_detach(sc->sc_ah);
485 	ieee80211_ifdetach(ifp);
486 #ifdef __NetBSD__
487 	if_detach(ifp);
488 #endif /* __NetBSD__ */
489 	ath_softc_critsect_end(sc, s);
490 #ifdef __NetBSD__
491 	powerhook_disestablish(sc->sc_powerhook);
492 	shutdownhook_disestablish(sc->sc_sdhook);
493 #endif /* __NetBSD__ */
494 #ifdef __FreeBSD__
495 
496 	ATH_TXBUF_LOCK_DESTROY(sc);
497 	ATH_TXQ_LOCK_DESTROY(sc);
498 
499 #endif /* __FreeBSD__ */
500 	return 0;
501 }
502 
503 #ifdef __NetBSD__
504 void
505 ath_power(int why, void *arg)
506 {
507 	struct ath_softc *sc = arg;
508 	int s;
509 
510 	DPRINTF(("ath_power(%d)\n", why));
511 
512 	s = splnet();
513 	switch (why) {
514 	case PWR_SUSPEND:
515 	case PWR_STANDBY:
516 		ath_suspend(sc, why);
517 		break;
518 	case PWR_RESUME:
519 		ath_resume(sc, why);
520 		break;
521 	case PWR_SOFTSUSPEND:
522 	case PWR_SOFTSTANDBY:
523 	case PWR_SOFTRESUME:
524 		break;
525 	}
526 	splx(s);
527 }
528 #endif
529 
530 void
531 ath_suspend(struct ath_softc *sc, int why)
532 {
533 	struct ifnet *ifp = &sc->sc_ic.ic_if;
534 
535 	DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
536 
537 	ath_stop(ifp);
538 	if (sc->sc_power != NULL)
539 		(*sc->sc_power)(sc, why);
540 }
541 
542 void
543 ath_resume(struct ath_softc *sc, int why)
544 {
545 	struct ifnet *ifp = &sc->sc_ic.ic_if;
546 
547 	DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
548 
549 	if (ifp->if_flags & IFF_UP) {
550 		ath_init(ifp);
551 #if 0
552 		(void)ath_intr(sc);
553 #endif
554 		if (sc->sc_power != NULL)
555 			(*sc->sc_power)(sc, why);
556 		if (ifp->if_flags & IFF_RUNNING)
557 			ath_start(ifp);
558 	}
559 }
560 
561 #ifdef __NetBSD__
562 void
563 ath_shutdown(void *arg)
564 {
565 	struct ath_softc *sc = arg;
566 
567 	ath_stop(&sc->sc_ic.ic_if);
568 }
569 #else
570 void
571 ath_shutdown(struct ath_softc *sc)
572 {
573 #if 1
574 	return;
575 #else
576 	struct ifnet *ifp = &sc->sc_ic.ic_if;
577 
578 	DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
579 
580 	ath_stop(ifp);
581 #endif
582 }
583 #endif
584 
585 #ifdef __NetBSD__
586 int
587 ath_intr(void *arg)
588 {
589 	return ath_intr1((struct ath_softc *)arg);
590 }
591 #else
592 void
593 ath_intr(void *arg)
594 {
595 	(void)ath_intr1((struct ath_softc *)arg);
596 }
597 #endif
598 
599 static int
600 ath_intr1(struct ath_softc *sc)
601 {
602 	struct ieee80211com *ic = &sc->sc_ic;
603 	struct ifnet *ifp = &ic->ic_if;
604 	struct ath_hal *ah = sc->sc_ah;
605 	HAL_INT status;
606 
607 	if (sc->sc_invalid) {
608 		/*
609 		 * The hardware is not ready/present, don't touch anything.
610 		 * Note this can happen early on if the IRQ is shared.
611 		 */
612 		DPRINTF(("ath_intr: invalid; ignored\n"));
613 		return 0;
614 	}
615 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
616 		DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
617 		ath_hal_getisr(ah, &status);	/* clear ISR */
618 		ath_hal_intrset(ah, 0);		/* disable further intr's */
619 		return 1; /* XXX */
620 	}
621 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
622 	DPRINTF2(("ath_intr: status 0x%x\n", status));
623 #ifdef AR_DEBUG
624 	if (ath_debug &&
625 	    (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
626 		if_printf(ifp, "ath_intr: status 0x%x\n", status);
627 		ath_hal_dumpstate(ah);
628 	}
629 #endif /* AR_DEBUG */
630 	status &= sc->sc_imask;			/* discard unasked for bits */
631 	if (status & HAL_INT_FATAL) {
632 		sc->sc_stats.ast_hardware++;
633 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
634 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
635 	} else if (status & HAL_INT_RXORN) {
636 		sc->sc_stats.ast_rxorn++;
637 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
638 		ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
639 	} else {
640 		if (status & HAL_INT_RXEOL) {
641 			/*
642 			 * NB: the hardware should re-read the link when
643 			 *     RXE bit is written, but it doesn't work at
644 			 *     least on older hardware revs.
645 			 */
646 			sc->sc_stats.ast_rxeol++;
647 			sc->sc_rxlink = NULL;
648 		}
649 		if (status & HAL_INT_TXURN) {
650 			sc->sc_stats.ast_txurn++;
651 			/* bump tx trigger level */
652 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
653 		}
654 		if (status & HAL_INT_RX)
655 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
656 		if (status & HAL_INT_TX)
657 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
658 		if (status & HAL_INT_SWBA)
659 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_swbatask);
660 		if (status & HAL_INT_BMISS) {
661 			sc->sc_stats.ast_bmiss++;
662 			ATH_TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
663 		}
664 	}
665 	return 1;
666 }
667 
668 static void
669 ath_fatal_proc(void *arg, int pending)
670 {
671 	struct ath_softc *sc = arg;
672 
673 	device_printf(sc->sc_dev, "hardware error; resetting\n");
674 	ath_reset(sc);
675 }
676 
677 static void
678 ath_rxorn_proc(void *arg, int pending)
679 {
680 	struct ath_softc *sc = arg;
681 
682 	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
683 	ath_reset(sc);
684 }
685 
686 static void
687 ath_bmiss_proc(void *arg, int pending)
688 {
689 	struct ath_softc *sc = arg;
690 	struct ieee80211com *ic = &sc->sc_ic;
691 
692 	DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
693 	if (ic->ic_opmode != IEEE80211_M_STA)
694 		return;
695 	if (ic->ic_state == IEEE80211_S_RUN) {
696 		/*
697 		 * Rather than go directly to scan state, try to
698 		 * reassociate first.  If that fails then the state
699 		 * machine will drop us into scanning after timing
700 		 * out waiting for a probe response.
701 		 */
702 		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
703 	}
704 }
705 
706 static u_int
707 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
708 {
709 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
710 
711 	switch (mode) {
712 	case IEEE80211_MODE_AUTO:
713 		return 0;
714 	case IEEE80211_MODE_11A:
715 		return CHANNEL_A;
716 	case IEEE80211_MODE_11B:
717 		return CHANNEL_B;
718 	case IEEE80211_MODE_11G:
719 		return CHANNEL_PUREG;
720 	case IEEE80211_MODE_TURBO:
721 		return CHANNEL_T;
722 	default:
723 		panic("%s: unsupported mode %d\n", __func__, mode);
724 		return 0;
725 	}
726 }
727 
728 #ifdef __NetBSD__
729 static int
730 ath_init(struct ifnet *ifp)
731 {
732 	return ath_init1((struct ath_softc *)ifp->if_softc);
733 }
734 #else
735 static void
736 ath_init(void *arg)
737 {
738 	(void)ath_init1((struct ath_softc *)arg);
739 }
740 #endif
741 
742 static int
743 ath_init1(struct ath_softc *sc)
744 {
745 	struct ieee80211com *ic = &sc->sc_ic;
746 	struct ifnet *ifp = &ic->ic_if;
747 	struct ieee80211_node *ni;
748 	enum ieee80211_phymode mode;
749 	struct ath_hal *ah = sc->sc_ah;
750 	HAL_STATUS status;
751 	HAL_CHANNEL hchan;
752 	int error = 0;
753 	ath_softc_critsect_decl(s);
754 
755 	DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
756 
757 #ifdef __NetBSD__
758 	if ((error = ath_enable(sc)) != 0)
759 		return error;
760 #endif
761 
762 	ath_softc_critsect_begin(sc, s);
763 	/*
764 	 * Stop anything previously setup.  This is safe
765 	 * whether this is the first time through or not.
766 	 */
767 	ath_stop(ifp);
768 
769 	/*
770 	 * The basic interface to setting the hardware in a good
771 	 * state is ``reset''.  On return the hardware is known to
772 	 * be powered up and with interrupts disabled.  This must
773 	 * be followed by initialization of the appropriate bits
774 	 * and then setup of the interrupt mask.
775 	 */
776 	hchan.channel = ic->ic_ibss_chan->ic_freq;
777 	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
778 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
779 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
780 			status);
781 		error = -1;
782 		goto done;
783 	}
784 
785 	/*
786 	 * Setup the hardware after reset: the key cache
787 	 * is filled as needed and the receive engine is
788 	 * set going.  Frame transmit is handled entirely
789 	 * in the frame output path; there's nothing to do
790 	 * here except setup the interrupt mask.
791 	 */
792 	if (ic->ic_flags & IEEE80211_F_WEPON)
793 		ath_initkeytable(sc);
794 	if ((error = ath_startrecv(sc)) != 0) {
795 		if_printf(ifp, "unable to start recv logic\n");
796 		goto done;
797 	}
798 
799 	/*
800 	 * Enable interrupts.
801 	 */
802 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
803 		  | HAL_INT_RXEOL | HAL_INT_RXORN
804 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
805 	ath_hal_intrset(ah, sc->sc_imask);
806 
807 	ifp->if_flags |= IFF_RUNNING;
808 	ic->ic_state = IEEE80211_S_INIT;
809 
810 	/*
811 	 * The hardware should be ready to go now so it's safe
812 	 * to kick the 802.11 state machine as it's likely to
813 	 * immediately call back to us to send mgmt frames.
814 	 */
815 	ni = ic->ic_bss;
816 	ni->ni_chan = ic->ic_ibss_chan;
817 	mode = ieee80211_chan2mode(ic, ni->ni_chan);
818 	if (mode != sc->sc_curmode)
819 		ath_setcurmode(sc, mode);
820 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
821 		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
822 	else
823 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
824 done:
825 	ath_softc_critsect_end(sc, s);
826 	return error;
827 }
828 
829 static void
830 ath_stop(struct ifnet *ifp)
831 {
832 	struct ieee80211com *ic = (struct ieee80211com *) ifp;
833 	struct ath_softc *sc = ifp->if_softc;
834 	struct ath_hal *ah = sc->sc_ah;
835 	ath_softc_critsect_decl(s);
836 
837 	DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
838 		sc->sc_invalid, ifp->if_flags));
839 
840 	ath_softc_critsect_begin(sc, s);
841 	if (ifp->if_flags & IFF_RUNNING) {
842 		/*
843 		 * Shutdown the hardware and driver:
844 		 *    disable interrupts
845 		 *    turn off timers
846 		 *    clear transmit machinery
847 		 *    clear receive machinery
848 		 *    drain and release tx queues
849 		 *    reclaim beacon resources
850 		 *    reset 802.11 state machine
851 		 *    power down hardware
852 		 *
853 		 * Note that some of this work is not possible if the
854 		 * hardware is gone (invalid).
855 		 */
856 		ifp->if_flags &= ~IFF_RUNNING;
857 		ifp->if_timer = 0;
858 		if (!sc->sc_invalid)
859 			ath_hal_intrset(ah, 0);
860 		ath_draintxq(sc);
861 		if (!sc->sc_invalid)
862 			ath_stoprecv(sc);
863 		else
864 			sc->sc_rxlink = NULL;
865 #ifdef __FreeBSD__
866 		IF_DRAIN(&ifp->if_snd);
867 #else
868 		IF_PURGE(&ifp->if_snd);
869 #endif
870 		ath_beacon_free(sc);
871 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
872 		if (!sc->sc_invalid) {
873 			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
874 		}
875 #ifdef __NetBSD__
876 		ath_disable(sc);
877 #endif
878 	}
879 	ath_softc_critsect_end(sc, s);
880 }
881 
882 /*
883  * Reset the hardware w/o losing operational state.  This is
884  * basically a more efficient way of doing ath_stop, ath_init,
885  * followed by state transitions to the current 802.11
886  * operational state.  Used to recover from errors rx overrun
887  * and to reset the hardware when rf gain settings must be reset.
888  */
889 static void
890 ath_reset(struct ath_softc *sc)
891 {
892 	struct ieee80211com *ic = &sc->sc_ic;
893 	struct ifnet *ifp = &ic->ic_if;
894 	struct ath_hal *ah = sc->sc_ah;
895 	struct ieee80211_channel *c;
896 	HAL_STATUS status;
897 	HAL_CHANNEL hchan;
898 
899 	/*
900 	 * Convert to a HAL channel description with the flags
901 	 * constrained to reflect the current operating mode.
902 	 */
903 	c = ic->ic_ibss_chan;
904 	hchan.channel = c->ic_freq;
905 	hchan.channelFlags = ath_chan2flags(ic, c);
906 
907 	ath_hal_intrset(ah, 0);		/* disable interrupts */
908 	ath_draintxq(sc);		/* stop xmit side */
909 	ath_stoprecv(sc);		/* stop recv side */
910 	/* NB: indicate channel change so we do a full reset */
911 	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
912 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
913 			__func__, status);
914 	ath_hal_intrset(ah, sc->sc_imask);
915 	if (ath_startrecv(sc) != 0)	/* restart recv */
916 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
917 	ath_start(ifp);			/* restart xmit */
918 	if (ic->ic_state == IEEE80211_S_RUN)
919 		ath_beacon_config(sc);	/* restart beacons */
920 }
921 
922 static void
923 ath_start(struct ifnet *ifp)
924 {
925 	struct ath_softc *sc = ifp->if_softc;
926 	struct ath_hal *ah = sc->sc_ah;
927 	struct ieee80211com *ic = &sc->sc_ic;
928 	struct ieee80211_node *ni;
929 	struct ath_buf *bf;
930 	struct mbuf *m;
931 	struct ieee80211_frame *wh;
932 	ath_txbuf_critsect_decl(s);
933 
934 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
935 		return;
936 	for (;;) {
937 		/*
938 		 * Grab a TX buffer and associated resources.
939 		 */
940 		ath_txbuf_critsect_begin(sc, s);
941 		bf = TAILQ_FIRST(&sc->sc_txbuf);
942 		if (bf != NULL)
943 			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
944 		ath_txbuf_critsect_end(sc, s);
945 		if (bf == NULL) {
946 			DPRINTF(("ath_start: out of xmit buffers\n"));
947 			sc->sc_stats.ast_tx_qstop++;
948 			ifp->if_flags |= IFF_OACTIVE;
949 			break;
950 		}
951 		/*
952 		 * Poll the management queue for frames; they
953 		 * have priority over normal data frames.
954 		 */
955 		IF_DEQUEUE(&ic->ic_mgtq, m);
956 		if (m == NULL) {
957 			/*
958 			 * No data frames go out unless we're associated.
959 			 */
960 			if (ic->ic_state != IEEE80211_S_RUN) {
961 				DPRINTF(("ath_start: ignore data packet, "
962 					"state %u\n", ic->ic_state));
963 				sc->sc_stats.ast_tx_discard++;
964 				ath_txbuf_critsect_begin(sc, s);
965 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
966 				ath_txbuf_critsect_end(sc, s);
967 				break;
968 			}
969 			IF_DEQUEUE(&ifp->if_snd, m);
970 			if (m == NULL) {
971 				ath_txbuf_critsect_begin(sc, s);
972 				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
973 				ath_txbuf_critsect_end(sc, s);
974 				break;
975 			}
976 			ifp->if_opackets++;
977 
978 #ifdef __NetBSD__
979 #if NBPFILTER > 0
980 			if (ifp->if_bpf)
981 				bpf_mtap(ifp->if_bpf, m);
982 #endif
983 #endif
984 #ifdef __FreeBSD__
985 			BPF_MTAP(ifp, m);
986 #endif
987 			/*
988 			 * Encapsulate the packet in prep for transmission.
989 			 */
990 			m = ieee80211_encap(ifp, m, &ni);
991 			if (m == NULL) {
992 				DPRINTF(("ath_start: encapsulation failure\n"));
993 				sc->sc_stats.ast_tx_encap++;
994 				goto bad;
995 			}
996 			wh = mtod(m, struct ieee80211_frame *);
997 			if (ic->ic_flags & IEEE80211_F_WEPON)
998 				wh->i_fc[1] |= IEEE80211_FC1_WEP;
999 		} else {
1000 			/*
1001 			 * Hack!  The referenced node pointer is in the
1002 			 * rcvif field of the packet header.  This is
1003 			 * placed there by ieee80211_mgmt_output because
1004 			 * we need to hold the reference with the frame
1005 			 * and there's no other way (other than packet
1006 			 * tags which we consider too expensive to use)
1007 			 * to pass it along.
1008 			 */
1009 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1010 			m->m_pkthdr.rcvif = NULL;
1011 
1012 			wh = mtod(m, struct ieee80211_frame *);
1013 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1014 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1015 				/* fill time stamp */
1016 				u_int64_t tsf;
1017 				u_int32_t *tstamp;
1018 
1019 				tsf = ath_hal_gettsf64(ah);
1020 				/* XXX: adjust 100us delay to xmit */
1021 				tsf += 100;
1022 				tstamp = (u_int32_t *)&wh[1];
1023 				tstamp[0] = htole32(tsf & 0xffffffff);
1024 				tstamp[1] = htole32(tsf >> 32);
1025 			}
1026 			sc->sc_stats.ast_tx_mgmt++;
1027 		}
1028 #if NBPFILTER > 0
1029 		if (ic->ic_rawbpf)
1030 			bpf_mtap(ic->ic_rawbpf, m);
1031 #endif
1032 
1033 #if NBPFILTER > 0
1034 		if (sc->sc_drvbpf) {
1035 #ifdef __FreeBSD__
1036 			struct mbuf *mb;
1037 
1038 			MGETHDR(mb, M_DONTWAIT, m->m_type);
1039 			if (mb != NULL) {
1040 				sc->sc_tx_th.wt_rate =
1041 					ni->ni_rates.rs_rates[ni->ni_txrate];
1042 
1043 				mb->m_next = m;
1044 				mb->m_data = (caddr_t)&sc->sc_tx_th;
1045 				mb->m_len = sizeof(sc->sc_tx_th);
1046 				mb->m_pkthdr.len += mb->m_len;
1047 				bpf_mtap(sc->sc_drvbpf, mb);
1048 				m_free(mb);
1049 			}
1050 #else
1051 			struct mbuf mb;
1052 
1053 			M_COPY_PKTHDR(&mb, m);
1054 			sc->sc_tx_th.wt_rate =
1055 				ni->ni_rates.rs_rates[ni->ni_txrate];
1056 
1057 			mb.m_next = m;
1058 			mb.m_data = (caddr_t)&sc->sc_tx_th;
1059 			mb.m_len = sizeof(sc->sc_tx_th);
1060 			mb.m_pkthdr.len += mb.m_len;
1061 			bpf_mtap(sc->sc_drvbpf, &mb);
1062 #endif
1063 		}
1064 #endif
1065 
1066 		if (ath_tx_start(sc, ni, bf, m)) {
1067 	bad:
1068 			ath_txbuf_critsect_begin(sc, s);
1069 			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1070 			ath_txbuf_critsect_end(sc, s);
1071 			ifp->if_oerrors++;
1072 			if (ni && ni != ic->ic_bss)
1073 				ieee80211_free_node(ic, ni);
1074 			continue;
1075 		}
1076 
1077 		sc->sc_tx_timer = 5;
1078 		ifp->if_timer = 1;
1079 	}
1080 }
1081 
1082 static int
1083 ath_media_change(struct ifnet *ifp)
1084 {
1085 	int error;
1086 
1087 	error = ieee80211_media_change(ifp);
1088 	if (error == ENETRESET) {
1089 		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1090 		    (IFF_RUNNING|IFF_UP))
1091 			ath_init(ifp);		/* XXX lose error */
1092 		error = 0;
1093 	}
1094 	return error;
1095 }
1096 
1097 static void
1098 ath_watchdog(struct ifnet *ifp)
1099 {
1100 	struct ath_softc *sc = ifp->if_softc;
1101 	struct ieee80211com *ic = &sc->sc_ic;
1102 
1103 	ifp->if_timer = 0;
1104 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1105 		return;
1106 	if (sc->sc_tx_timer) {
1107 		if (--sc->sc_tx_timer == 0) {
1108 			if_printf(ifp, "device timeout\n");
1109 #ifdef AR_DEBUG
1110 			if (ath_debug)
1111 				ath_hal_dumpstate(sc->sc_ah);
1112 #endif /* AR_DEBUG */
1113 			ath_init(ifp);		/* XXX ath_reset??? */
1114 			ifp->if_oerrors++;
1115 			sc->sc_stats.ast_watchdog++;
1116 			return;
1117 		}
1118 		ifp->if_timer = 1;
1119 	}
1120 	if (ic->ic_fixed_rate == -1) {
1121 		/*
1122 		 * Run the rate control algorithm if we're not
1123 		 * locked at a fixed rate.
1124 		 */
1125 		if (ic->ic_opmode == IEEE80211_M_STA)
1126 			ath_rate_ctl(sc, ic->ic_bss);
1127 		else
1128 			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
1129 	}
1130 	ieee80211_watchdog(ifp);
1131 }
1132 
1133 static int
1134 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1135 {
1136 	struct ath_softc *sc = ifp->if_softc;
1137 	struct ifreq *ifr = (struct ifreq *)data;
1138 	int error = 0;
1139 	ath_softc_critsect_decl(s);
1140 
1141 	ath_softc_critsect_begin(sc, s);
1142 	switch (cmd) {
1143 	case SIOCSIFFLAGS:
1144 		if (ifp->if_flags & IFF_UP) {
1145 			if (ifp->if_flags & IFF_RUNNING) {
1146 				/*
1147 				 * To avoid rescanning another access point,
1148 				 * do not call ath_init() here.  Instead,
1149 				 * only reflect promisc mode settings.
1150 				 */
1151 				ath_mode_init(sc);
1152 			} else {
1153 				/*
1154 				 * Beware of being called during detach to
1155 				 * reset promiscuous mode.  In that case we
1156 				 * will still be marked UP but not RUNNING.
1157 				 * However trying to re-init the interface
1158 				 * is the wrong thing to do as we've already
1159 				 * torn down much of our state.  There's
1160 				 * probably a better way to deal with this.
1161 				 */
1162 				if (!sc->sc_invalid)
1163 					ath_init(ifp);	/* XXX lose error */
1164 			}
1165 		} else
1166 			ath_stop(ifp);
1167 		break;
1168 	case SIOCADDMULTI:
1169 	case SIOCDELMULTI:
1170 #ifdef __FreeBSD__
1171 		/*
1172 		 * The upper layer has already installed/removed
1173 		 * the multicast address(es), just recalculate the
1174 		 * multicast filter for the card.
1175 		 */
1176 		if (ifp->if_flags & IFF_RUNNING)
1177 			ath_mode_init(sc);
1178 #endif
1179 #ifdef __NetBSD__
1180 		error = (cmd == SIOCADDMULTI) ?
1181 		    ether_addmulti(ifr, &sc->sc_ic.ic_ec) :
1182 		    ether_delmulti(ifr, &sc->sc_ic.ic_ec);
1183 		if (error == ENETRESET) {
1184 			if (ifp->if_flags & IFF_RUNNING)
1185 				ath_mode_init(sc);
1186 			error = 0;
1187 		}
1188 #endif
1189 		break;
1190 	case SIOCGATHSTATS:
1191 		error = copyout(&sc->sc_stats,
1192 				ifr->ifr_data, sizeof (sc->sc_stats));
1193 		break;
1194 	case SIOCGATHDIAG: {
1195 		struct ath_diag *ad = (struct ath_diag *)data;
1196 		struct ath_hal *ah = sc->sc_ah;
1197 		void *data;
1198 		u_int size;
1199 
1200 		if (ath_hal_getdiagstate(ah, ad->ad_id, &data, &size)) {
1201 			if (size < ad->ad_size)
1202 				ad->ad_size = size;
1203 			if (data)
1204 				error = copyout(data, ad->ad_data, ad->ad_size);
1205 		} else
1206 			error = EINVAL;
1207 		break;
1208 	}
1209 	default:
1210 		error = ieee80211_ioctl(ifp, cmd, data);
1211 		if (error == ENETRESET) {
1212 			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
1213 			    (IFF_RUNNING|IFF_UP))
1214 				ath_init(ifp);		/* XXX lose error */
1215 			error = 0;
1216 		}
1217 		break;
1218 	}
1219 	ath_softc_critsect_end(sc, s);
1220 	return error;
1221 }
1222 
1223 /*
1224  * Fill the hardware key cache with key entries.
1225  */
1226 static void
1227 ath_initkeytable(struct ath_softc *sc)
1228 {
1229 	struct ieee80211com *ic = &sc->sc_ic;
1230 	struct ath_hal *ah = sc->sc_ah;
1231 	int i;
1232 
1233 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1234 		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
1235 		if (k->wk_len == 0)
1236 			ath_hal_keyreset(ah, i);
1237 		else
1238 			/* XXX return value */
1239 			/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
1240 			ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
1241 	}
1242 }
1243 
1244 static void
1245 ath_mcastfilter_accum(caddr_t dl, u_int32_t (*mfilt)[2])
1246 {
1247 	u_int32_t val;
1248 	u_int8_t pos;
1249 
1250 	val = LE_READ_4(dl + 0);
1251 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1252 	val = LE_READ_4(dl + 3);
1253 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1254 	pos &= 0x3f;
1255 	(*mfilt)[pos / 32] |= (1 << (pos % 32));
1256 }
1257 
1258 #ifdef __FreeBSD__
1259 static void
1260 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1261 {
1262 	struct ieee80211com *ic = &sc->sc_ic;
1263 	struct ifnet *ifp = &ic->ic_if;
1264 	struct ifmultiaddr *ifma;
1265 
1266 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1267 		caddr_t dl;
1268 
1269 		/* calculate XOR of eight 6bit values */
1270 		dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1271 		ath_mcastfilter_accum(dl, &mfilt);
1272 	}
1273 }
1274 #else
1275 static void
1276 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t (*mfilt)[2])
1277 {
1278 	struct ifnet *ifp = &sc->sc_ic.ic_if;
1279 	struct ether_multi *enm;
1280 	struct ether_multistep estep;
1281 
1282 	ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm);
1283 	while (enm != NULL) {
1284 		/* XXX Punt on ranges. */
1285 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1286 			(*mfilt)[0] = (*mfilt)[1] = ~((u_int32_t)0);
1287 			ifp->if_flags |= IFF_ALLMULTI;
1288 			return;
1289 		}
1290 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1291 		ETHER_NEXT_MULTI(estep, enm);
1292 	}
1293 	ifp->if_flags &= ~IFF_ALLMULTI;
1294 }
1295 #endif
1296 
1297 /*
1298  * Calculate the receive filter according to the
1299  * operating mode and state:
1300  *
1301  * o always accept unicast, broadcast, and multicast traffic
1302  * o maintain current state of phy error reception
1303  * o probe request frames are accepted only when operating in
1304  *   hostap, adhoc, or monitor modes
1305  * o enable promiscuous mode according to the interface state
1306  * o accept beacons:
1307  *   - when operating in adhoc mode so the 802.11 layer creates
1308  *     node table entries for peers,
1309  *   - when operating in station mode for collecting rssi data when
1310  *     the station is otherwise quiet, or
1311  *   - when scanning
1312  */
1313 static u_int32_t
1314 ath_calcrxfilter(struct ath_softc *sc)
1315 {
1316 	struct ieee80211com *ic = &sc->sc_ic;
1317 	struct ath_hal *ah = sc->sc_ah;
1318 	struct ifnet *ifp = &ic->ic_if;
1319 	u_int32_t rfilt;
1320 
1321 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1322 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1323 	if (ic->ic_opmode != IEEE80211_M_STA)
1324 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1325 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1326 	    (ifp->if_flags & IFF_PROMISC))
1327 		rfilt |= HAL_RX_FILTER_PROM;
1328 	if (ic->ic_opmode == IEEE80211_M_STA ||
1329 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1330 	    ic->ic_state == IEEE80211_S_SCAN)
1331 		rfilt |= HAL_RX_FILTER_BEACON;
1332 	return rfilt;
1333 }
1334 
1335 static void
1336 ath_mode_init(struct ath_softc *sc)
1337 {
1338 	struct ieee80211com *ic = &sc->sc_ic;
1339 	struct ath_hal *ah = sc->sc_ah;
1340 	u_int32_t rfilt, mfilt[2];
1341 
1342 	/* configure rx filter */
1343 	rfilt = ath_calcrxfilter(sc);
1344 	ath_hal_setrxfilter(ah, rfilt);
1345 
1346 	/* configure operational mode */
1347 	ath_hal_setopmode(ah, ic->ic_opmode);
1348 
1349 	/* calculate and install multicast filter */
1350 #ifdef __FreeBSD__
1351 	if ((ic->ic_if.if_flags & IFF_ALLMULTI) == 0) {
1352 		mfilt[0] = mfilt[1] = 0;
1353 		ath_mcastfilter_compute(sc, &mfilt);
1354 	} else {
1355 		mfilt[0] = mfilt[1] = ~0;
1356 	}
1357 #endif
1358 #ifdef __NetBSD__
1359 	mfilt[0] = mfilt[1] = 0;
1360 	ath_mcastfilter_compute(sc, &mfilt);
1361 #endif
1362 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1363 	DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1364 		rfilt, mfilt[0], mfilt[1]));
1365 }
1366 
1367 #ifdef __FreeBSD__
1368 static void
1369 ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1370 {
1371 	struct ath_buf *bf = arg;
1372 
1373 	KASSERT(nseg <= ATH_MAX_SCATTER,
1374 		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1375 	bf->bf_mapsize = mapsize;
1376 	bf->bf_nseg = nseg;
1377 	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1378 }
1379 #endif /* __FreeBSD__ */
1380 
1381 static struct mbuf *
1382 ath_getmbuf(int flags, int type, u_int pktlen)
1383 {
1384 	struct mbuf *m;
1385 
1386 	KASSERT(pktlen <= MCLBYTES, ("802.11 packet too large: %u", pktlen));
1387 #ifdef __FreeBSD__
1388 	if (pktlen <= MHLEN)
1389 		MGETHDR(m, flags, type);
1390 	else
1391 		m = m_getcl(flags, type, M_PKTHDR);
1392 #else
1393 	MGETHDR(m, flags, type);
1394 	if (m != NULL && pktlen > MHLEN)
1395 		MCLGET(m, flags);
1396 #endif
1397 	return m;
1398 }
1399 
1400 static int
1401 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1402 {
1403 	struct ieee80211com *ic = &sc->sc_ic;
1404 	struct ifnet *ifp = &ic->ic_if;
1405 	struct ath_hal *ah = sc->sc_ah;
1406 	struct ieee80211_frame *wh;
1407 	struct ath_buf *bf;
1408 	struct ath_desc *ds;
1409 	struct mbuf *m;
1410 	int error, pktlen;
1411 	u_int8_t *frm, rate;
1412 	u_int16_t capinfo;
1413 	struct ieee80211_rateset *rs;
1414 	const HAL_RATE_TABLE *rt;
1415 
1416 	bf = sc->sc_bcbuf;
1417 	if (bf->bf_m != NULL) {
1418 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1419 		m_freem(bf->bf_m);
1420 		bf->bf_m = NULL;
1421 		bf->bf_node = NULL;
1422 	}
1423 	/*
1424 	 * NB: the beacon data buffer must be 32-bit aligned;
1425 	 * we assume the mbuf routines will return us something
1426 	 * with this alignment (perhaps should assert).
1427 	 */
1428 	rs = &ni->ni_rates;
1429 	pktlen = sizeof (struct ieee80211_frame)
1430 	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1431 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1432 		pktlen += 2;
1433 	m = ath_getmbuf(M_DONTWAIT, MT_DATA, pktlen);
1434 	if (m == NULL) {
1435 		DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1436 			pktlen));
1437 		sc->sc_stats.ast_be_nombuf++;
1438 		return ENOMEM;
1439 	}
1440 
1441 	wh = mtod(m, struct ieee80211_frame *);
1442 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1443 	    IEEE80211_FC0_SUBTYPE_BEACON;
1444 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1445 	*(u_int16_t *)wh->i_dur = 0;
1446 	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1447 	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1448 	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1449 	*(u_int16_t *)wh->i_seq = 0;
1450 
1451 	/*
1452 	 * beacon frame format
1453 	 *	[8] time stamp
1454 	 *	[2] beacon interval
1455 	 *	[2] cabability information
1456 	 *	[tlv] ssid
1457 	 *	[tlv] supported rates
1458 	 *	[tlv] parameter set (IBSS)
1459 	 *	[tlv] extended supported rates
1460 	 */
1461 	frm = (u_int8_t *)&wh[1];
1462 	memset(frm, 0, 8);	/* timestamp is set by hardware */
1463 	frm += 8;
1464 	*(u_int16_t *)frm = htole16(ni->ni_intval);
1465 	frm += 2;
1466 	if (ic->ic_opmode == IEEE80211_M_IBSS)
1467 		capinfo = IEEE80211_CAPINFO_IBSS;
1468 	else
1469 		capinfo = IEEE80211_CAPINFO_ESS;
1470 	if (ic->ic_flags & IEEE80211_F_WEPON)
1471 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1472 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1473 	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1474 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1475 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1476 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1477 	*(u_int16_t *)frm = htole16(capinfo);
1478 	frm += 2;
1479 	*frm++ = IEEE80211_ELEMID_SSID;
1480 	*frm++ = ni->ni_esslen;
1481 	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1482 	frm += ni->ni_esslen;
1483 	frm = ieee80211_add_rates(frm, rs);
1484 	*frm++ = IEEE80211_ELEMID_DSPARMS;
1485 	*frm++ = 1;
1486 	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1487 	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1488 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1489 		*frm++ = 2;
1490 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1491 	} else {
1492 		/* TODO: TIM */
1493 		*frm++ = IEEE80211_ELEMID_TIM;
1494 		*frm++ = 4;	/* length */
1495 		*frm++ = 0;	/* DTIM count */
1496 		*frm++ = 1;	/* DTIM period */
1497 		*frm++ = 0;	/* bitmap control */
1498 		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1499 	}
1500 	frm = ieee80211_add_xrates(frm, rs);
1501 	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1502 	KASSERT(m->m_pkthdr.len <= pktlen,
1503 		("beacon bigger than expected, len %u calculated %u",
1504 		m->m_pkthdr.len, pktlen));
1505 
1506 	DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1507 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m, BUS_DMA_NOWAIT);
1508 	if (error != 0) {
1509 		m_freem(m);
1510 		return error;
1511 	}
1512 	KASSERT(bf->bf_nseg == 1,
1513 		("ath_beacon_alloc: multi-segment packet; nseg %u",
1514 		bf->bf_nseg));
1515 	bf->bf_m = m;
1516 
1517 	/* setup descriptors */
1518 	ds = bf->bf_desc;
1519 
1520 	ds->ds_link = 0;
1521 	ds->ds_data = bf->bf_segs[0].ds_addr;
1522 
1523 	DPRINTF2(("%s: segaddr %p seglen %u\n", __func__,
1524 	    (caddr_t)bf->bf_segs[0].ds_addr, (u_int)bf->bf_segs[0].ds_len));
1525 
1526 	/*
1527 	 * Calculate rate code.
1528 	 * XXX everything at min xmit rate
1529 	 */
1530 	rt = sc->sc_currates;
1531 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1532 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1533 		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1534 	else
1535 		rate = rt->info[0].rateCode;
1536 	if (!ath_hal_setuptxdesc(ah, ds
1537 		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1538 		, sizeof(struct ieee80211_frame)	/* header length */
1539 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1540 		, 0x20				/* txpower XXX */
1541 		, rate, 1			/* series 0 rate/tries */
1542 		, HAL_TXKEYIX_INVALID		/* no encryption */
1543 		, 0				/* antenna mode */
1544 		, HAL_TXDESC_NOACK		/* no ack for beacons */
1545 		, 0				/* rts/cts rate */
1546 		, 0				/* rts/cts duration */
1547 	)) {
1548 		printf("%s: ath_hal_setuptxdesc failed\n", __func__);
1549 		return -1;
1550 	}
1551 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1552 	/* XXX verify mbuf data area covers this roundup */
1553 	if (!ath_hal_filltxdesc(ah, ds
1554 		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1555 		, AH_TRUE				/* first segment */
1556 		, AH_TRUE				/* last segment */
1557 	)) {
1558 		printf("%s: ath_hal_filltxdesc failed\n", __func__);
1559 		return -1;
1560 	}
1561 
1562 	/* XXX it is not appropriate to bus_dmamap_sync? -dcy */
1563 
1564 	return 0;
1565 }
1566 
1567 static void
1568 ath_beacon_proc(void *arg, int pending)
1569 {
1570 	struct ath_softc *sc = arg;
1571 	struct ieee80211com *ic = &sc->sc_ic;
1572 	struct ath_buf *bf = sc->sc_bcbuf;
1573 	struct ath_hal *ah = sc->sc_ah;
1574 
1575 	DPRINTF2(("%s: pending %u\n", __func__, pending));
1576 	if (ic->ic_opmode == IEEE80211_M_STA ||
1577 	    bf == NULL || bf->bf_m == NULL) {
1578 		DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1579 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1580 		return;
1581 	}
1582 	/* TODO: update beacon to reflect PS poll state */
1583 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1584 		DPRINTF(("%s: beacon queue %u did not stop?",
1585 			__func__, sc->sc_bhalq));
1586 		return;			/* busy, XXX is this right? */
1587 	}
1588 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
1589 
1590 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1591 	ath_hal_txstart(ah, sc->sc_bhalq);
1592 	DPRINTF2(("%s: BCDP%u = %p (%p)\n", __func__,
1593 		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1594 }
1595 
1596 static void
1597 ath_beacon_free(struct ath_softc *sc)
1598 {
1599 	struct ath_buf *bf = sc->sc_bcbuf;
1600 
1601 	if (bf->bf_m != NULL) {
1602 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1603 		m_freem(bf->bf_m);
1604 		bf->bf_m = NULL;
1605 		bf->bf_node = NULL;
1606 	}
1607 }
1608 
1609 /*
1610  * Configure the beacon and sleep timers.
1611  *
1612  * When operating as an AP this resets the TSF and sets
1613  * up the hardware to notify us when we need to issue beacons.
1614  *
1615  * When operating in station mode this sets up the beacon
1616  * timers according to the timestamp of the last received
1617  * beacon and the current TSF, configures PCF and DTIM
1618  * handling, programs the sleep registers so the hardware
1619  * will wakeup in time to receive beacons, and configures
1620  * the beacon miss handling so we'll receive a BMISS
1621  * interrupt when we stop seeing beacons from the AP
1622  * we've associated with.
1623  */
1624 static void
1625 ath_beacon_config(struct ath_softc *sc)
1626 {
1627 	struct ath_hal *ah = sc->sc_ah;
1628 	struct ieee80211com *ic = &sc->sc_ic;
1629 	struct ieee80211_node *ni = ic->ic_bss;
1630 	u_int32_t nexttbtt;
1631 
1632 	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1633 	    (LE_READ_4(ni->ni_tstamp) >> 10);
1634 	DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1635 	nexttbtt += ni->ni_intval;
1636 	if (ic->ic_opmode == IEEE80211_M_STA) {
1637 		HAL_BEACON_STATE bs;
1638 		u_int32_t bmisstime;
1639 
1640 		/* NB: no PCF support right now */
1641 		memset(&bs, 0, sizeof(bs));
1642 		bs.bs_intval = ni->ni_intval;
1643 		bs.bs_nexttbtt = nexttbtt;
1644 		bs.bs_dtimperiod = bs.bs_intval;
1645 		bs.bs_nextdtim = nexttbtt;
1646 		/*
1647 		 * Calculate the number of consecutive beacons to miss
1648 		 * before taking a BMISS interrupt.  The configuration
1649 		 * is specified in ms, so we need to convert that to
1650 		 * TU's and then calculate based on the beacon interval.
1651 		 * Note that we clamp the result to at most 10 beacons.
1652 		 */
1653 		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1654 		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1655 		if (bs.bs_bmissthreshold > 10)
1656 			bs.bs_bmissthreshold = 10;
1657 		else if (bs.bs_bmissthreshold <= 0)
1658 			bs.bs_bmissthreshold = 1;
1659 
1660 		/*
1661 		 * Calculate sleep duration.  The configuration is
1662 		 * given in ms.  We insure a multiple of the beacon
1663 		 * period is used.  Also, if the sleep duration is
1664 		 * greater than the DTIM period then it makes senses
1665 		 * to make it a multiple of that.
1666 		 *
1667 		 * XXX fixed at 100ms
1668 		 */
1669 		bs.bs_sleepduration =
1670 			roundup((100 * 1000) / 1024, bs.bs_intval);
1671 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1672 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1673 
1674 		DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1675 			, __func__
1676 			, bs.bs_intval
1677 			, bs.bs_nexttbtt
1678 			, bs.bs_dtimperiod
1679 			, bs.bs_nextdtim
1680 			, bs.bs_bmissthreshold
1681 			, bs.bs_sleepduration
1682 		));
1683 		ath_hal_intrset(ah, 0);
1684 		/*
1685 		 * Reset our tsf so the hardware will update the
1686 		 * tsf register to reflect timestamps found in
1687 		 * received beacons.
1688 		 */
1689 		ath_hal_resettsf(ah);
1690 		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1691 		sc->sc_imask |= HAL_INT_BMISS;
1692 		ath_hal_intrset(ah, sc->sc_imask);
1693 	} else {
1694 		DPRINTF(("%s: intval %u nexttbtt %u\n",
1695 			__func__, ni->ni_intval, nexttbtt));
1696 		ath_hal_intrset(ah, 0);
1697 		ath_hal_beaconinit(ah, ic->ic_opmode,
1698 			nexttbtt, ni->ni_intval);
1699 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1700 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1701 		ath_hal_intrset(ah, sc->sc_imask);
1702 	}
1703 }
1704 
1705 #ifdef __FreeBSD__
1706 static void
1707 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1708 {
1709 	bus_addr_t *paddr = (bus_addr_t*) arg;
1710 	*paddr = segs->ds_addr;
1711 }
1712 #endif
1713 
1714 #ifdef __FreeBSD__
1715 static int
1716 ath_desc_alloc(struct ath_softc *sc)
1717 {
1718 	int i, bsize, error;
1719 	struct ath_desc *ds;
1720 	struct ath_buf *bf;
1721 
1722 	/* allocate descriptors */
1723 	sc->sc_desc_len = sizeof(struct ath_desc) *
1724 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1725 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1726 	if (error != 0)
1727 		return error;
1728 
1729 	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1730 				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1731 
1732 	if (error != 0)
1733 		goto fail0;
1734 
1735 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1736 				sc->sc_desc, sc->sc_desc_len,
1737 				ath_load_cb, &sc->sc_desc_paddr,
1738 				BUS_DMA_NOWAIT);
1739 	if (error != 0)
1740 		goto fail1;
1741 
1742 	ds = sc->sc_desc;
1743 	DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1744 	    ds, sc->sc_desc_len,
1745 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1746 
1747 	/* allocate buffers */
1748 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1749 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1750 	if (bf == NULL) {
1751 		printf("%s: unable to allocate Tx/Rx buffers\n",
1752 		    sc->sc_dev.dv_xname);
1753 		error = -1;
1754 		goto fail2;
1755 	}
1756 	sc->sc_bufptr = bf;
1757 
1758 	TAILQ_INIT(&sc->sc_rxbuf);
1759 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1760 		bf->bf_desc = ds;
1761 		bf->bf_daddr = sc->sc_desc_paddr +
1762 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1763 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1764 					  &bf->bf_dmamap);
1765 		if (error != 0)
1766 			break;
1767 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1768 	}
1769 
1770 	TAILQ_INIT(&sc->sc_txbuf);
1771 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1772 		bf->bf_desc = ds;
1773 		bf->bf_daddr = sc->sc_desc_paddr +
1774 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1775 		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1776 					  &bf->bf_dmamap);
1777 		if (error != 0)
1778 			break;
1779 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1780 	}
1781 	TAILQ_INIT(&sc->sc_txq);
1782 
1783 	/* beacon buffer */
1784 	bf->bf_desc = ds;
1785 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1786 	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1787 	if (error != 0)
1788 		return error;
1789 	sc->sc_bcbuf = bf;
1790 	return 0;
1791 
1792 fail2:
1793 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1794 fail1:
1795 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1796 fail0:
1797 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1798 	sc->sc_ddmamap = NULL;
1799 	return error;
1800 }
1801 #else
1802 static int
1803 ath_desc_alloc(struct ath_softc *sc)
1804 {
1805 	int i, bsize, error = -1;
1806 	struct ath_desc *ds;
1807 	struct ath_buf *bf;
1808 
1809 	/* allocate descriptors */
1810 	sc->sc_desc_len = sizeof(struct ath_desc) *
1811 				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1812 	if ((error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_desc_len, PAGE_SIZE,
1813 	    0, &sc->sc_dseg, 1, &sc->sc_dnseg, 0)) != 0) {
1814 		printf("%s: unable to allocate control data, error = %d\n",
1815 		    sc->sc_dev.dv_xname, error);
1816 		goto fail0;
1817 	}
1818 
1819 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg,
1820 	    sc->sc_desc_len, (caddr_t *)&sc->sc_desc, BUS_DMA_COHERENT)) != 0) {
1821 		printf("%s: unable to map control data, error = %d\n",
1822 		    sc->sc_dev.dv_xname, error);
1823 		goto fail1;
1824 	}
1825 
1826 	if ((error = bus_dmamap_create(sc->sc_dmat, sc->sc_desc_len, 1,
1827 	    sc->sc_desc_len, 0, 0, &sc->sc_ddmamap)) != 0) {
1828 		printf("%s: unable to create control data DMA map, "
1829 		    "error = %d\n", sc->sc_dev.dv_xname, error);
1830 		goto fail2;
1831 	}
1832 
1833 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap, sc->sc_desc,
1834 	    sc->sc_desc_len, NULL, 0)) != 0) {
1835 		printf("%s: unable to load control data DMA map, error = %d\n",
1836 		    sc->sc_dev.dv_xname, error);
1837 		goto fail3;
1838 	}
1839 
1840 	ds = sc->sc_desc;
1841 	sc->sc_desc_paddr = sc->sc_ddmamap->dm_segs[0].ds_addr;
1842 
1843 	DPRINTF(("ath_desc_alloc: DMA map: %p (%lu) -> %p (%lu)\n",
1844 	    ds, (u_long)sc->sc_desc_len,
1845 	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1846 
1847 	/* allocate buffers */
1848 	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1849 	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1850 	if (bf == NULL) {
1851 		printf("%s: unable to allocate Tx/Rx buffers\n",
1852 		    sc->sc_dev.dv_xname);
1853 		error = ENOMEM;
1854 		goto fail3;
1855 	}
1856 	sc->sc_bufptr = bf;
1857 
1858 	TAILQ_INIT(&sc->sc_rxbuf);
1859 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1860 		bf->bf_desc = ds;
1861 		bf->bf_daddr = sc->sc_desc_paddr +
1862 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1863 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1864 		    MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1865 			printf("%s: unable to create Rx dmamap, error = %d\n",
1866 			    sc->sc_dev.dv_xname, error);
1867 			goto fail4;
1868 		}
1869 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1870 	}
1871 
1872 	TAILQ_INIT(&sc->sc_txbuf);
1873 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1874 		bf->bf_desc = ds;
1875 		bf->bf_daddr = sc->sc_desc_paddr +
1876 		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1877 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1878 		    ATH_TXDESC, MCLBYTES, 0, 0, &bf->bf_dmamap)) != 0) {
1879 			printf("%s: unable to create Tx dmamap, error = %d\n",
1880 			    sc->sc_dev.dv_xname, error);
1881 			goto fail5;
1882 		}
1883 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1884 	}
1885 	TAILQ_INIT(&sc->sc_txq);
1886 
1887 	/* beacon buffer */
1888 	bf->bf_desc = ds;
1889 	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1890 	if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
1891 	    &bf->bf_dmamap)) != 0) {
1892 		printf("%s: unable to create beacon dmamap, error = %d\n",
1893 		    sc->sc_dev.dv_xname, error);
1894 		goto fail5;
1895 	}
1896 	sc->sc_bcbuf = bf;
1897 	return 0;
1898 
1899 fail5:
1900 	for (i = ATH_RXBUF; i < ATH_RXBUF + ATH_TXBUF; i++) {
1901 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
1902 			continue;
1903 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1904 	}
1905 fail4:
1906 	for (i = 0; i < ATH_RXBUF; i++) {
1907 		if (sc->sc_bufptr[i].bf_dmamap == NULL)
1908 			continue;
1909 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bufptr[i].bf_dmamap);
1910 	}
1911 fail3:
1912 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1913 fail2:
1914 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1915 	sc->sc_ddmamap = NULL;
1916 fail1:
1917 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_desc, sc->sc_desc_len);
1918 fail0:
1919 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1920 	return error;
1921 }
1922 #endif
1923 
1924 static void
1925 ath_desc_free(struct ath_softc *sc)
1926 {
1927 	struct ath_buf *bf;
1928 
1929 #ifdef __FreeBSD__
1930 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1931 	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1932 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1933 #else
1934 	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1935 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1936 	bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_dnseg);
1937 #endif
1938 
1939 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1940 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1941 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1942 		m_freem(bf->bf_m);
1943 	}
1944 	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1945 		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1946 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1947 		if (bf->bf_m) {
1948 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1949 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1950 			m_freem(bf->bf_m);
1951 			bf->bf_m = NULL;
1952 		}
1953 	}
1954 	if (sc->sc_bcbuf != NULL) {
1955 		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1956 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1957 		sc->sc_bcbuf = NULL;
1958 	}
1959 
1960 	TAILQ_INIT(&sc->sc_rxbuf);
1961 	TAILQ_INIT(&sc->sc_txbuf);
1962 	TAILQ_INIT(&sc->sc_txq);
1963 	free(sc->sc_bufptr, M_DEVBUF);
1964 	sc->sc_bufptr = NULL;
1965 }
1966 
1967 static struct ieee80211_node *
1968 ath_node_alloc(struct ieee80211com *ic)
1969 {
1970 	struct ath_node *an =
1971 		malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1972 	if (an) {
1973 		int i;
1974 		for (i = 0; i < ATH_RHIST_SIZE; i++)
1975 			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1976 		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1977 		return &an->an_node;
1978 	} else
1979 		return NULL;
1980 }
1981 
1982 static void
1983 ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1984 {
1985 	struct ath_softc *sc = ic->ic_if.if_softc;
1986 	struct ath_buf *bf;
1987 
1988 	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1989 		if (bf->bf_node == ni)
1990 			bf->bf_node = NULL;
1991 	}
1992 	free(ni, M_DEVBUF);
1993 }
1994 
1995 static void
1996 ath_node_copy(struct ieee80211com *ic,
1997 	struct ieee80211_node *dst, const struct ieee80211_node *src)
1998 {
1999 	*(struct ath_node *)dst = *(const struct ath_node *)src;
2000 }
2001 
2002 static u_int8_t
2003 ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
2004 {
2005 	struct ath_node *an = ATH_NODE(ni);
2006 	int i, now, nsamples, rssi;
2007 
2008 	/*
2009 	 * Calculate the average over the last second of sampled data.
2010 	 */
2011 	now = ATH_TICKS();
2012 	nsamples = 0;
2013 	rssi = 0;
2014 	i = an->an_rx_hist_next;
2015 	do {
2016 		struct ath_recv_hist *rh = &an->an_rx_hist[i];
2017 		if (rh->arh_ticks == ATH_RHIST_NOTIME)
2018 			goto done;
2019 		if (now - rh->arh_ticks > hz)
2020 			goto done;
2021 		rssi += rh->arh_rssi;
2022 		nsamples++;
2023 		if (i == 0)
2024 			i = ATH_RHIST_SIZE-1;
2025 		else
2026 			i--;
2027 	} while (i != an->an_rx_hist_next);
2028 done:
2029 	/*
2030 	 * Return either the average or the last known
2031 	 * value if there is no recent data.
2032 	 */
2033 	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
2034 }
2035 
2036 static int
2037 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2038 {
2039 	struct ath_hal *ah = sc->sc_ah;
2040 	int error;
2041 	struct mbuf *m;
2042 	struct ath_desc *ds;
2043 
2044 	m = bf->bf_m;
2045 	if (m == NULL) {
2046 		/*
2047 		 * NB: by assigning a page to the rx dma buffer we
2048 		 * implicitly satisfy the Atheros requirement that
2049 		 * this buffer be cache-line-aligned and sized to be
2050 		 * multiple of the cache line size.  Not doing this
2051 		 * causes weird stuff to happen (for the 5210 at least).
2052 		 */
2053 		m = ath_getmbuf(M_DONTWAIT, MT_DATA, MCLBYTES);
2054 		if (m == NULL) {
2055 			DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
2056 			sc->sc_stats.ast_rx_nombuf++;
2057 			return ENOMEM;
2058 		}
2059 		bf->bf_m = m;
2060 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2061 
2062 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m,
2063 		                                 BUS_DMA_NOWAIT);
2064 		if (error != 0) {
2065 			DPRINTF(("ath_rxbuf_init: ath_buf_dmamap_load_mbuf failed;"
2066 				" error %d\n", error));
2067 			sc->sc_stats.ast_rx_busdma++;
2068 			return error;
2069 		}
2070 		KASSERT(bf->bf_nseg == 1,
2071 			("ath_rxbuf_init: multi-segment packet; nseg %u",
2072 			bf->bf_nseg));
2073 	}
2074 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREREAD);
2075 
2076 	/*
2077 	 * Setup descriptors.  For receive we always terminate
2078 	 * the descriptor list with a self-linked entry so we'll
2079 	 * not get overrun under high load (as can happen with a
2080 	 * 5212 when ANI processing enables PHY errors).
2081 	 *
2082 	 * To insure the last descriptor is self-linked we create
2083 	 * each descriptor as self-linked and add it to the end.  As
2084 	 * each additional descriptor is added the previous self-linked
2085 	 * entry is ``fixed'' naturally.  This should be safe even
2086 	 * if DMA is happening.  When processing RX interrupts we
2087 	 * never remove/process the last, self-linked, entry on the
2088 	 * descriptor list.  This insures the hardware always has
2089 	 * someplace to write a new frame.
2090 	 */
2091 	ds = bf->bf_desc;
2092 	ds->ds_link = bf->bf_daddr;	/* link to self */
2093 	ds->ds_data = bf->bf_segs[0].ds_addr;
2094 	ath_hal_setuprxdesc(ah, ds
2095 		, m->m_len		/* buffer size */
2096 		, 0
2097 	);
2098 
2099 	if (sc->sc_rxlink != NULL)
2100 		*sc->sc_rxlink = bf->bf_daddr;
2101 	sc->sc_rxlink = &ds->ds_link;
2102 	return 0;
2103 }
2104 
2105 static void
2106 ath_rx_proc(void *arg, int npending)
2107 {
2108 #define	PA2DESC(_sc, _pa) \
2109 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2110 		((_pa) - (_sc)->sc_desc_paddr)))
2111 	struct ath_softc *sc = arg;
2112 	struct ath_buf *bf;
2113 	struct ieee80211com *ic = &sc->sc_ic;
2114 	struct ifnet *ifp = &ic->ic_if;
2115 	struct ath_hal *ah = sc->sc_ah;
2116 	struct ath_desc *ds;
2117 	struct mbuf *m;
2118 	struct ieee80211_frame *wh, whbuf;
2119 	struct ieee80211_node *ni;
2120 	struct ath_node *an;
2121 	struct ath_recv_hist *rh;
2122 	int len;
2123 	u_int phyerr;
2124 	HAL_STATUS status;
2125 
2126 	DPRINTF2(("ath_rx_proc: pending %u\n", npending));
2127 	do {
2128 		bf = TAILQ_FIRST(&sc->sc_rxbuf);
2129 		if (bf == NULL) {		/* NB: shouldn't happen */
2130 			if_printf(ifp, "ath_rx_proc: no buffer!\n");
2131 			break;
2132 		}
2133 		ds = bf->bf_desc;
2134 		if (ds->ds_link == bf->bf_daddr) {
2135 			/* NB: never process the self-linked entry at the end */
2136 			break;
2137 		}
2138 		m = bf->bf_m;
2139 		if (m == NULL) {		/* NB: shouldn't happen */
2140 			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
2141 			continue;
2142 		}
2143 		/* XXX sync descriptor memory */
2144 		/*
2145 		 * Must provide the virtual address of the current
2146 		 * descriptor, the physical address, and the virtual
2147 		 * address of the next descriptor in the h/w chain.
2148 		 * This allows the HAL to look ahead to see if the
2149 		 * hardware is done with a descriptor by checking the
2150 		 * done bit in the following descriptor and the address
2151 		 * of the current descriptor the DMA engine is working
2152 		 * on.  All this is necessary because of our use of
2153 		 * a self-linked list to avoid rx overruns.
2154 		 */
2155 		status = ath_hal_rxprocdesc(ah, ds,
2156 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2157 #ifdef AR_DEBUG
2158 		if (ath_debug > 1)
2159 			ath_printrxbuf(bf, status == HAL_OK);
2160 #endif
2161 		if (status == HAL_EINPROGRESS)
2162 			break;
2163 		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
2164 		if (ds->ds_rxstat.rs_status != 0) {
2165 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2166 				sc->sc_stats.ast_rx_crcerr++;
2167 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2168 				sc->sc_stats.ast_rx_fifoerr++;
2169 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
2170 				sc->sc_stats.ast_rx_badcrypt++;
2171 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2172 				sc->sc_stats.ast_rx_phyerr++;
2173 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2174 				sc->sc_stats.ast_rx_phy[phyerr]++;
2175 			} else {
2176 				/*
2177 				 * NB: don't count PHY errors as input errors;
2178 				 * we enable them on the 5212 to collect info
2179 				 * about environmental noise and, in that
2180 				 * setting, they don't really reflect tx/rx
2181 				 * errors.
2182 				 */
2183 				ifp->if_ierrors++;
2184 			}
2185 			goto rx_next;
2186 		}
2187 
2188 		len = ds->ds_rxstat.rs_datalen;
2189 		if (len < IEEE80211_MIN_LEN) {
2190 			DPRINTF(("ath_rx_proc: short packet %d\n", len));
2191 			sc->sc_stats.ast_rx_tooshort++;
2192 			goto rx_next;
2193 		}
2194 
2195 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTREAD);
2196 
2197 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2198 		bf->bf_m = NULL;
2199 		m->m_pkthdr.rcvif = ifp;
2200 		m->m_pkthdr.len = m->m_len = len;
2201 
2202 #if NBPFILTER > 0
2203 		if (sc->sc_drvbpf) {
2204 #ifdef __FreeBSD__
2205 			struct mbuf *mb;
2206 
2207 			/* XXX pre-allocate space when setting up recv's */
2208 			MGETHDR(mb, M_DONTWAIT, m->m_type);
2209 			if (mb != NULL) {
2210 				sc->sc_rx_th.wr_rate =
2211 					sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2212 				sc->sc_rx_th.wr_antsignal =
2213 					ds->ds_rxstat.rs_rssi;
2214 				sc->sc_rx_th.wr_antenna =
2215 					ds->ds_rxstat.rs_antenna;
2216 				/* XXX TSF */
2217 
2218 				(void) m_dup_pkthdr(mb, m, M_DONTWAIT);
2219 				mb->m_next = m;
2220 				mb->m_data = (caddr_t)&sc->sc_rx_th;
2221 				mb->m_len = sizeof(sc->sc_rx_th);
2222 				mb->m_pkthdr.len += mb->m_len;
2223 				bpf_mtap(sc->sc_drvbpf, mb);
2224 				m_free(mb);
2225 			}
2226 #else
2227 			/* XXX pre-allocate space when setting up recv's */
2228 			struct mbuf mb;
2229 
2230 			sc->sc_rx_th.wr_rate =
2231 				sc->sc_hwmap[ds->ds_rxstat.rs_rate];
2232 			sc->sc_rx_th.wr_antsignal =
2233 				ds->ds_rxstat.rs_rssi;
2234 			sc->sc_rx_th.wr_antenna =
2235 				ds->ds_rxstat.rs_antenna;
2236 			/* XXX TSF */
2237 
2238 			M_COPY_PKTHDR(&mb, m);
2239 			mb.m_next = m;
2240 			mb.m_data = (caddr_t)&sc->sc_rx_th;
2241 			mb.m_len = sizeof(sc->sc_rx_th);
2242 			mb.m_pkthdr.len += mb.m_len;
2243 			bpf_mtap(sc->sc_drvbpf, &mb);
2244 #endif
2245 		}
2246 #endif
2247 
2248 		m_adj(m, -IEEE80211_CRC_LEN);
2249 		wh = mtod(m, struct ieee80211_frame *);
2250 		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
2251 			/*
2252 			 * WEP is decrypted by hardware. Clear WEP bit
2253 			 * and trim WEP header for ieee80211_input().
2254 			 */
2255 			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
2256 			memcpy(&whbuf, wh, sizeof(whbuf));
2257 			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
2258 			wh = mtod(m, struct ieee80211_frame *);
2259 			memcpy(wh, &whbuf, sizeof(whbuf));
2260 			/*
2261 			 * Also trim WEP ICV from the tail.
2262 			 */
2263 			m_adj(m, -IEEE80211_WEP_CRCLEN);
2264 			/*
2265 			 * The header has probably moved.
2266 			 */
2267 			wh = mtod(m, struct ieee80211_frame *);
2268 		}
2269 
2270 		/*
2271 		 * Locate the node for sender, track state, and
2272 		 * then pass this node (referenced) up to the 802.11
2273 		 * layer for its use.  We are required to pass
2274 		 * something so we fall back to ic_bss when this frame
2275 		 * is from an unknown sender.
2276 		 */
2277 		ni = ieee80211_find_rxnode(ic, wh);
2278 
2279 		/*
2280 		 * Record driver-specific state.
2281 		 */
2282 		an = ATH_NODE(ni);
2283 		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
2284 			an->an_rx_hist_next = 0;
2285 		rh = &an->an_rx_hist[an->an_rx_hist_next];
2286 		rh->arh_ticks = ATH_TICKS();
2287 		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
2288 		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
2289 
2290 		/*
2291 		 * Send frame up for processing.
2292 		 */
2293 		ieee80211_input(ifp, m, ni,
2294 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2295 
2296 		/*
2297 		 * The frame may have caused the node to be marked for
2298 		 * reclamation (e.g. in response to a DEAUTH message)
2299 		 * so use free_node here instead of unref_node.
2300 		 */
2301 		if (ni == ic->ic_bss)
2302 			ieee80211_unref_node(&ni);
2303 		else
2304 			ieee80211_free_node(ic, ni);
2305   rx_next:
2306 		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2307 	} while (ath_rxbuf_init(sc, bf) == 0);
2308 
2309 	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
2310 	ath_hal_rxena(ah);			/* in case of RXEOL */
2311 
2312 #ifdef __NetBSD__
2313 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
2314 		ath_start(ifp);
2315 #endif /* __NetBSD__ */
2316 #undef PA2DESC
2317 }
2318 
2319 /*
2320  * XXX Size of an ACK control frame in bytes.
2321  */
2322 #define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
2323 
2324 static int
2325 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2326     struct mbuf *m0)
2327 {
2328 	struct ieee80211com *ic = &sc->sc_ic;
2329 	struct ath_hal *ah = sc->sc_ah;
2330 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2331 	int i, error, iswep, hdrlen, pktlen;
2332 	u_int8_t rix, cix, txrate, ctsrate;
2333 	struct ath_desc *ds;
2334 	struct mbuf *m;
2335 	struct ieee80211_frame *wh;
2336 	u_int32_t iv;
2337 	u_int8_t *ivp;
2338 	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
2339 	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
2340 	u_int subtype, flags, ctsduration, antenna;
2341 	HAL_PKT_TYPE atype;
2342 	const HAL_RATE_TABLE *rt;
2343 	HAL_BOOL shortPreamble;
2344 	struct ath_node *an;
2345 	ath_txq_critsect_decl(s);
2346 
2347 	wh = mtod(m0, struct ieee80211_frame *);
2348 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2349 	hdrlen = sizeof(struct ieee80211_frame);
2350 	pktlen = m0->m_pkthdr.len;
2351 
2352 	if (iswep) {
2353 		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
2354 		m_adj(m0, hdrlen);
2355 		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
2356 		if (m0 == NULL) {
2357 			sc->sc_stats.ast_tx_nombuf++;
2358 			return ENOMEM;
2359 		}
2360 		ivp = hdrbuf + hdrlen;
2361 		wh = mtod(m0, struct ieee80211_frame *);
2362 		/*
2363 		 * XXX
2364 		 * IV must not duplicate during the lifetime of the key.
2365 		 * But no mechanism to renew keys is defined in IEEE 802.11
2366 		 * WEP.  And IV may be duplicated between other stations
2367 		 * because of the session key itself is shared.
2368 		 * So we use pseudo random IV for now, though it is not the
2369 		 * right way.
2370 		 */
2371                 iv = ic->ic_iv;
2372 		/*
2373 		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
2374 		 * (B, 255, N) with 3 <= B < 8
2375 		 */
2376 		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
2377 			iv += 0x000100;
2378 		ic->ic_iv = iv + 1;
2379 		for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
2380 			ivp[i] = iv;
2381 			iv >>= 8;
2382 		}
2383 		ivp[i] = sc->sc_ic.ic_wep_txkey << 6;	/* Key ID and pad */
2384 		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
2385 		/*
2386 		 * The ICV length must be included into hdrlen and pktlen.
2387 		 */
2388 		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
2389 		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
2390 	}
2391 	pktlen += IEEE80211_CRC_LEN;
2392 
2393 	/*
2394 	 * Load the DMA map so any coalescing is done.  This
2395 	 * also calculates the number of descriptors we need.
2396 	 */
2397 	error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0, BUS_DMA_NOWAIT);
2398 	/*
2399 	 * Discard null packets and check for packets that
2400 	 * require too many TX descriptors.  We try to convert
2401 	 * the latter to a cluster.
2402 	 */
2403 	if (error == EFBIG) {		/* too many desc's, linearize */
2404 		sc->sc_stats.ast_tx_linear++;
2405 		MGETHDR(m, M_DONTWAIT, MT_DATA);
2406 		if (m == NULL) {
2407 			sc->sc_stats.ast_tx_nombuf++;
2408 			m_freem(m0);
2409 			return ENOMEM;
2410 		}
2411 #ifdef __FreeBSD__
2412 		M_MOVE_PKTHDR(m, m0);
2413 #else
2414 		M_COPY_PKTHDR(m, m0);
2415 #endif
2416 		MCLGET(m, M_DONTWAIT);
2417 		if ((m->m_flags & M_EXT) == 0) {
2418 			sc->sc_stats.ast_tx_nomcl++;
2419 			m_freem(m0);
2420 			m_free(m);
2421 			return ENOMEM;
2422 		}
2423 		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
2424 		m_freem(m0);
2425 		m->m_len = m->m_pkthdr.len;
2426 		m0 = m;
2427 		error = ath_buf_dmamap_load_mbuf(sc->sc_dmat, bf, m0,
2428 					         BUS_DMA_NOWAIT);
2429 		if (error != 0) {
2430 			sc->sc_stats.ast_tx_busdma++;
2431 			m_freem(m0);
2432 			return error;
2433 		}
2434 		KASSERT(bf->bf_nseg == 1,
2435 			("ath_tx_start: packet not one segment; nseg %u",
2436 			bf->bf_nseg));
2437 	} else if (error != 0) {
2438 		sc->sc_stats.ast_tx_busdma++;
2439 		m_freem(m0);
2440 		return error;
2441 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
2442 		sc->sc_stats.ast_tx_nodata++;
2443 		m_freem(m0);
2444 		return EIO;
2445 	}
2446 	DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
2447 	ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_PREWRITE);
2448 	bf->bf_m = m0;
2449 	bf->bf_node = ni;			/* NB: held reference */
2450 
2451 	/* setup descriptors */
2452 	ds = bf->bf_desc;
2453 	rt = sc->sc_currates;
2454 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
2455 
2456 	/*
2457 	 * Calculate Atheros packet type from IEEE80211 packet header
2458 	 * and setup for rate calculations.
2459 	 */
2460 	atype = HAL_PKT_TYPE_NORMAL;			/* default */
2461 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
2462 	case IEEE80211_FC0_TYPE_MGT:
2463 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2464 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
2465 			atype = HAL_PKT_TYPE_BEACON;
2466 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
2467 			atype = HAL_PKT_TYPE_PROBE_RESP;
2468 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
2469 			atype = HAL_PKT_TYPE_ATIM;
2470 		rix = 0;			/* XXX lowest rate */
2471 		break;
2472 	case IEEE80211_FC0_TYPE_CTL:
2473 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2474 		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
2475 			atype = HAL_PKT_TYPE_PSPOLL;
2476 		rix = 0;			/* XXX lowest rate */
2477 		break;
2478 	default:
2479 		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
2480 				IEEE80211_RATE_VAL];
2481 		if (rix == 0xff) {
2482 			if_printf(ifp, "bogus xmit rate 0x%x\n",
2483 				ni->ni_rates.rs_rates[ni->ni_txrate]);
2484 			sc->sc_stats.ast_tx_badrate++;
2485 			m_freem(m0);
2486 			return EIO;
2487 		}
2488 		break;
2489 	}
2490 	/*
2491 	 * NB: the 802.11 layer marks whether or not we should
2492 	 * use short preamble based on the current mode and
2493 	 * negotiated parameters.
2494 	 */
2495 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2496 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
2497 		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
2498 		shortPreamble = AH_TRUE;
2499 		sc->sc_stats.ast_tx_shortpre++;
2500 	} else {
2501 		txrate = rt->info[rix].rateCode;
2502 		shortPreamble = AH_FALSE;
2503 	}
2504 
2505 	/*
2506 	 * Calculate miscellaneous flags.
2507 	 */
2508 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
2509 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
2510 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
2511 		sc->sc_stats.ast_tx_noack++;
2512 	} else if (pktlen > ic->ic_rtsthreshold) {
2513 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
2514 		sc->sc_stats.ast_tx_rts++;
2515 	}
2516 
2517 	/*
2518 	 * Calculate duration.  This logically belongs in the 802.11
2519 	 * layer but it lacks sufficient information to calculate it.
2520 	 */
2521 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
2522 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2523 		u_int16_t dur;
2524 		/*
2525 		 * XXX not right with fragmentation.
2526 		 */
2527 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
2528 				rix, shortPreamble);
2529 		*((u_int16_t*) wh->i_dur) = htole16(dur);
2530 	}
2531 
2532 	/*
2533 	 * Calculate RTS/CTS rate and duration if needed.
2534 	 */
2535 	ctsduration = 0;
2536 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
2537 		/*
2538 		 * CTS transmit rate is derived from the transmit rate
2539 		 * by looking in the h/w rate table.  We must also factor
2540 		 * in whether or not a short preamble is to be used.
2541 		 */
2542 		cix = rt->info[rix].controlRate;
2543 		ctsrate = rt->info[cix].rateCode;
2544 		if (shortPreamble)
2545 			ctsrate |= rt->info[cix].shortPreamble;
2546 		/*
2547 		 * Compute the transmit duration based on the size
2548 		 * of an ACK frame.  We call into the HAL to do the
2549 		 * computation since it depends on the characteristics
2550 		 * of the actual PHY being used.
2551 		 */
2552 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
2553 			ctsduration += ath_hal_computetxtime(ah,
2554 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2555 		}
2556 		/* SIFS + data */
2557 		ctsduration += ath_hal_computetxtime(ah,
2558 			rt, pktlen, rix, shortPreamble);
2559 		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
2560 			ctsduration += ath_hal_computetxtime(ah,
2561 				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2562 		}
2563 	} else
2564 		ctsrate = 0;
2565 
2566 	/*
2567 	 * For now use the antenna on which the last good
2568 	 * frame was received on.  We assume this field is
2569 	 * initialized to 0 which gives us ``auto'' or the
2570 	 * ``default'' antenna.
2571 	 */
2572 	an = (struct ath_node *) ni;
2573 	if (an->an_tx_antenna)
2574 		antenna = an->an_tx_antenna;
2575 	else
2576 		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2577 
2578 	/*
2579 	 * Formulate first tx descriptor with tx controls.
2580 	 */
2581 	/* XXX check return value? */
2582 	ath_hal_setuptxdesc(ah, ds
2583 		, pktlen		/* packet length */
2584 		, hdrlen		/* header length */
2585 		, atype			/* Atheros packet type */
2586 		, 60			/* txpower XXX */
2587 		, txrate, 1+10		/* series 0 rate/tries */
2588 		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2589 		, antenna		/* antenna mode */
2590 		, flags			/* flags */
2591 		, ctsrate		/* rts/cts rate */
2592 		, ctsduration		/* rts/cts duration */
2593 	);
2594 #ifdef notyet
2595 	ath_hal_setupxtxdesc(ah, ds
2596 		, AH_FALSE		/* short preamble */
2597 		, 0, 0			/* series 1 rate/tries */
2598 		, 0, 0			/* series 2 rate/tries */
2599 		, 0, 0			/* series 3 rate/tries */
2600 	);
2601 #endif
2602 	/*
2603 	 * Fillin the remainder of the descriptor info.
2604 	 */
2605 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2606 		ds->ds_data = bf->bf_segs[i].ds_addr;
2607 		if (i == bf->bf_nseg - 1)
2608 			ds->ds_link = 0;
2609 		else
2610 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2611 		ath_hal_filltxdesc(ah, ds
2612 			, bf->bf_segs[i].ds_len	/* segment length */
2613 			, i == 0		/* first segment */
2614 			, i == bf->bf_nseg - 1	/* last segment */
2615 		);
2616 		DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2617 		    i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2618 		    ds->ds_hw[0], ds->ds_hw[1]));
2619 	}
2620 
2621 	/*
2622 	 * Insert the frame on the outbound list and
2623 	 * pass it on to the hardware.
2624 	 */
2625 	ath_txq_critsect_begin(sc, s);
2626 	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2627 	if (sc->sc_txlink == NULL) {
2628 		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2629 		DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2630 		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2631 	} else {
2632 		*sc->sc_txlink = bf->bf_daddr;
2633 		DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2634 		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2635 	}
2636 	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2637 	ath_txq_critsect_end(sc, s);
2638 
2639 	ath_hal_txstart(ah, sc->sc_txhalq);
2640 	return 0;
2641 }
2642 
2643 static void
2644 ath_tx_proc(void *arg, int npending)
2645 {
2646 	struct ath_softc *sc = arg;
2647 	struct ath_hal *ah = sc->sc_ah;
2648 	struct ath_buf *bf;
2649 	struct ieee80211com *ic = &sc->sc_ic;
2650 	struct ifnet *ifp = &ic->ic_if;
2651 	struct ath_desc *ds;
2652 	struct ieee80211_node *ni;
2653 	struct ath_node *an;
2654 	int sr, lr;
2655 	HAL_STATUS status;
2656 	ath_txq_critsect_decl(s);
2657 	ath_txbuf_critsect_decl(s2);
2658 
2659 	DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2660 		npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2661 		sc->sc_txlink));
2662 	for (;;) {
2663 		ath_txq_critsect_begin(sc, s);
2664 		bf = TAILQ_FIRST(&sc->sc_txq);
2665 		if (bf == NULL) {
2666 			sc->sc_txlink = NULL;
2667 			ath_txq_critsect_end(sc, s);
2668 			break;
2669 		}
2670 		/* only the last descriptor is needed */
2671 		ds = &bf->bf_desc[bf->bf_nseg - 1];
2672 		status = ath_hal_txprocdesc(ah, ds);
2673 #ifdef AR_DEBUG
2674 		if (ath_debug > 1)
2675 			ath_printtxbuf(bf, status == HAL_OK);
2676 #endif
2677 		if (status == HAL_EINPROGRESS) {
2678 			ath_txq_critsect_end(sc, s);
2679 			break;
2680 		}
2681 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2682 		ath_txq_critsect_end(sc, s);
2683 
2684 		ni = bf->bf_node;
2685 		if (ni != NULL) {
2686 			an = (struct ath_node *) ni;
2687 			if (ds->ds_txstat.ts_status == 0) {
2688 				an->an_tx_ok++;
2689 				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2690 			} else {
2691 				an->an_tx_err++;
2692 				ifp->if_oerrors++;
2693 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2694 					sc->sc_stats.ast_tx_xretries++;
2695 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2696 					sc->sc_stats.ast_tx_fifoerr++;
2697 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2698 					sc->sc_stats.ast_tx_filtered++;
2699 				an->an_tx_antenna = 0;	/* invalidate */
2700 			}
2701 			sr = ds->ds_txstat.ts_shortretry;
2702 			lr = ds->ds_txstat.ts_longretry;
2703 			sc->sc_stats.ast_tx_shortretry += sr;
2704 			sc->sc_stats.ast_tx_longretry += lr;
2705 			if (sr + lr)
2706 				an->an_tx_retr++;
2707 			/*
2708 			 * Reclaim reference to node.
2709 			 *
2710 			 * NB: the node may be reclaimed here if, for example
2711 			 *     this is a DEAUTH message that was sent and the
2712 			 *     node was timed out due to inactivity.
2713 			 */
2714 			if (ni != ic->ic_bss)
2715 				ieee80211_free_node(ic, ni);
2716 		}
2717 		ath_buf_dmamap_sync(sc->sc_dmat, bf, BUS_DMASYNC_POSTWRITE);
2718 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2719 		m_freem(bf->bf_m);
2720 		bf->bf_m = NULL;
2721 		bf->bf_node = NULL;
2722 
2723 		ath_txbuf_critsect_begin(sc, s2);
2724 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2725 		ath_txbuf_critsect_end(sc, s2);
2726 	}
2727 	ifp->if_flags &= ~IFF_OACTIVE;
2728 	sc->sc_tx_timer = 0;
2729 
2730 	ath_start(ifp);
2731 }
2732 
2733 /*
2734  * Drain the transmit queue and reclaim resources.
2735  */
2736 static void
2737 ath_draintxq(struct ath_softc *sc)
2738 {
2739 	struct ath_hal *ah = sc->sc_ah;
2740 	struct ifnet *ifp = &sc->sc_ic.ic_if;
2741 	struct ath_buf *bf;
2742 	ath_txq_critsect_decl(s);
2743 	ath_txbuf_critsect_decl(s2);
2744 
2745 	/* XXX return value */
2746 	if (!sc->sc_invalid) {
2747 		/* don't touch the hardware if marked invalid */
2748 		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2749 		DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2750 		    (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2751 		    sc->sc_txlink));
2752 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2753 		DPRINTF(("ath_draintxq: beacon queue %p\n",
2754 		    (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2755 	}
2756 	for (;;) {
2757 		ath_txq_critsect_begin(sc, s);
2758 		bf = TAILQ_FIRST(&sc->sc_txq);
2759 		if (bf == NULL) {
2760 			sc->sc_txlink = NULL;
2761 			ath_txq_critsect_end(sc, s);
2762 			break;
2763 		}
2764 		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2765 		ath_txq_critsect_end(sc, s);
2766 #ifdef AR_DEBUG
2767 		if (ath_debug)
2768 			ath_printtxbuf(bf,
2769 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2770 #endif /* AR_DEBUG */
2771 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2772 		m_freem(bf->bf_m);
2773 		bf->bf_m = NULL;
2774 		bf->bf_node = NULL;
2775 		ath_txbuf_critsect_begin(sc, s2);
2776 		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2777 		ath_txbuf_critsect_end(sc, s2);
2778 	}
2779 	ifp->if_flags &= ~IFF_OACTIVE;
2780 	sc->sc_tx_timer = 0;
2781 }
2782 
2783 /*
2784  * Disable the receive h/w in preparation for a reset.
2785  */
2786 static void
2787 ath_stoprecv(struct ath_softc *sc)
2788 {
2789 #define	PA2DESC(_sc, _pa) \
2790 	((struct ath_desc *)((caddr_t)(_sc)->sc_desc + \
2791 		((_pa) - (_sc)->sc_desc_paddr)))
2792 	struct ath_hal *ah = sc->sc_ah;
2793 
2794 	ath_hal_stoppcurecv(ah);	/* disable PCU */
2795 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
2796 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
2797 	DELAY(3000);			/* long enough for 1 frame */
2798 #ifdef AR_DEBUG
2799 	if (ath_debug) {
2800 		struct ath_buf *bf;
2801 
2802 		DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2803 		    (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2804 		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2805 			struct ath_desc *ds = bf->bf_desc;
2806 			if (ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
2807 			    PA2DESC(sc, ds->ds_link)) == HAL_OK)
2808 				ath_printrxbuf(bf, 1);
2809 		}
2810 	}
2811 #endif
2812 	sc->sc_rxlink = NULL;		/* just in case */
2813 #undef PA2DESC
2814 }
2815 
2816 /*
2817  * Enable the receive h/w following a reset.
2818  */
2819 static int
2820 ath_startrecv(struct ath_softc *sc)
2821 {
2822 	struct ath_hal *ah = sc->sc_ah;
2823 	struct ath_buf *bf;
2824 
2825 	sc->sc_rxlink = NULL;
2826 	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2827 		int error = ath_rxbuf_init(sc, bf);
2828 		if (error != 0) {
2829 			DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2830 				error));
2831 			return error;
2832 		}
2833 	}
2834 
2835 	bf = TAILQ_FIRST(&sc->sc_rxbuf);
2836 	ath_hal_putrxbuf(ah, bf->bf_daddr);
2837 	ath_hal_rxena(ah);		/* enable recv descriptors */
2838 	ath_mode_init(sc);		/* set filters, etc. */
2839 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
2840 	return 0;
2841 }
2842 
2843 /*
2844  * Set/change channels.  If the channel is really being changed,
2845  * it's done by resetting the chip.  To accomplish this we must
2846  * first cleanup any pending DMA, then restart stuff after a la
2847  * ath_init.
2848  */
2849 static int
2850 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2851 {
2852 	struct ath_hal *ah = sc->sc_ah;
2853 	struct ieee80211com *ic = &sc->sc_ic;
2854 
2855 	DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2856 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2857 		ic->ic_ibss_chan->ic_freq,
2858 	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2859 	if (chan != ic->ic_ibss_chan) {
2860 		HAL_STATUS status;
2861 		HAL_CHANNEL hchan;
2862 		enum ieee80211_phymode mode;
2863 
2864 		/*
2865 		 * To switch channels clear any pending DMA operations;
2866 		 * wait long enough for the RX fifo to drain, reset the
2867 		 * hardware at the new frequency, and then re-enable
2868 		 * the relevant bits of the h/w.
2869 		 */
2870 		ath_hal_intrset(ah, 0);		/* disable interrupts */
2871 		ath_draintxq(sc);		/* clear pending tx frames */
2872 		ath_stoprecv(sc);		/* turn off frame recv */
2873 		/*
2874 		 * Convert to a HAL channel description with
2875 		 * the flags constrained to reflect the current
2876 		 * operating mode.
2877 		 */
2878 		hchan.channel = chan->ic_freq;
2879 		hchan.channelFlags = ath_chan2flags(ic, chan);
2880 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2881 			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2882 				"channel %u (%u Mhz)\n",
2883 				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2884 			return EIO;
2885 		}
2886 		/*
2887 		 * Re-enable rx framework.
2888 		 */
2889 		if (ath_startrecv(sc) != 0) {
2890 			if_printf(&ic->ic_if,
2891 				"ath_chan_set: unable to restart recv logic\n");
2892 			return EIO;
2893 		}
2894 
2895 		/*
2896 		 * Update BPF state.
2897 		 */
2898 		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2899 			htole16(chan->ic_freq);
2900 		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2901 			htole16(chan->ic_flags);
2902 
2903 		/*
2904 		 * Change channels and update the h/w rate map
2905 		 * if we're switching; e.g. 11a to 11b/g.
2906 		 */
2907 		ic->ic_ibss_chan = chan;
2908 		mode = ieee80211_chan2mode(ic, chan);
2909 		if (mode != sc->sc_curmode)
2910 			ath_setcurmode(sc, mode);
2911 
2912 		/*
2913 		 * Re-enable interrupts.
2914 		 */
2915 		ath_hal_intrset(ah, sc->sc_imask);
2916 	}
2917 	return 0;
2918 }
2919 
2920 static void
2921 ath_next_scan(void *arg)
2922 {
2923 	struct ath_softc *sc = arg;
2924 	struct ieee80211com *ic = &sc->sc_ic;
2925 	struct ifnet *ifp = &ic->ic_if;
2926 	int s;
2927 
2928 	/* don't call ath_start w/o network interrupts blocked */
2929 	s = splnet();
2930 
2931 	if (ic->ic_state == IEEE80211_S_SCAN)
2932 		ieee80211_next_scan(ifp);
2933 	splx(s);
2934 }
2935 
2936 /*
2937  * Periodically recalibrate the PHY to account
2938  * for temperature/environment changes.
2939  */
2940 static void
2941 ath_calibrate(void *arg)
2942 {
2943 	struct ath_softc *sc = arg;
2944 	struct ath_hal *ah = sc->sc_ah;
2945 	struct ieee80211com *ic = &sc->sc_ic;
2946 	struct ieee80211_channel *c;
2947 	HAL_CHANNEL hchan;
2948 
2949 	sc->sc_stats.ast_per_cal++;
2950 
2951 	/*
2952 	 * Convert to a HAL channel description with the flags
2953 	 * constrained to reflect the current operating mode.
2954 	 */
2955 	c = ic->ic_ibss_chan;
2956 	hchan.channel = c->ic_freq;
2957 	hchan.channelFlags = ath_chan2flags(ic, c);
2958 
2959 	DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2960 
2961 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2962 		/*
2963 		 * Rfgain is out of bounds, reset the chip
2964 		 * to load new gain values.
2965 		 */
2966 		sc->sc_stats.ast_per_rfgain++;
2967 		ath_reset(sc);
2968 	}
2969 	if (!ath_hal_calibrate(ah, &hchan)) {
2970 		DPRINTF(("%s: calibration of channel %u failed\n",
2971 			__func__, c->ic_freq));
2972 		sc->sc_stats.ast_per_calfail++;
2973 	}
2974 	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2975 }
2976 
2977 static HAL_LED_STATE
2978 ath_state_to_led(enum ieee80211_state state)
2979 {
2980 	switch (state) {
2981 	case IEEE80211_S_INIT:
2982 		return HAL_LED_INIT;
2983 	case IEEE80211_S_SCAN:
2984 		return HAL_LED_SCAN;
2985 	case IEEE80211_S_AUTH:
2986 		return HAL_LED_AUTH;
2987 	case IEEE80211_S_ASSOC:
2988 		return HAL_LED_ASSOC;
2989 	case IEEE80211_S_RUN:
2990 		return HAL_LED_RUN;
2991 	default:
2992 		panic("%s: unknown 802.11 state %d\n", __func__, state);
2993 		return HAL_LED_INIT;
2994 	}
2995 }
2996 
2997 static int
2998 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2999 {
3000 	struct ifnet *ifp = &ic->ic_if;
3001 	struct ath_softc *sc = ifp->if_softc;
3002 	struct ath_hal *ah = sc->sc_ah;
3003 	struct ieee80211_node *ni;
3004 	int i, error;
3005 	const u_int8_t *bssid;
3006 	u_int32_t rfilt;
3007 
3008 	DPRINTF(("%s: %s -> %s\n", __func__,
3009 		ieee80211_state_name[ic->ic_state],
3010 		ieee80211_state_name[nstate]));
3011 
3012 	ath_hal_setledstate(ah, ath_state_to_led(nstate));	/* set LED */
3013 
3014 	if (nstate == IEEE80211_S_INIT) {
3015 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3016 		ath_hal_intrset(ah, sc->sc_imask);
3017 		callout_stop(&sc->sc_scan_ch);
3018 		callout_stop(&sc->sc_cal_ch);
3019 		return (*sc->sc_newstate)(ic, nstate, arg);
3020 	}
3021 	ni = ic->ic_bss;
3022 	error = ath_chan_set(sc, ni->ni_chan);
3023 	if (error != 0)
3024 		goto bad;
3025 	rfilt = ath_calcrxfilter(sc);
3026 	if (nstate == IEEE80211_S_SCAN) {
3027 		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
3028 			ath_next_scan, sc);
3029 		bssid = ifp->if_broadcastaddr;
3030 	} else {
3031 		callout_stop(&sc->sc_scan_ch);
3032 		bssid = ni->ni_bssid;
3033 	}
3034 	ath_hal_setrxfilter(ah, rfilt);
3035 	DPRINTF(("%s: RX filter 0x%x bssid %s\n",
3036 		 __func__, rfilt, ether_sprintf(bssid)));
3037 
3038 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3039 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
3040 	else
3041 		ath_hal_setassocid(ah, bssid, 0);
3042 	if (ic->ic_flags & IEEE80211_F_WEPON) {
3043 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
3044 			if (ath_hal_keyisvalid(ah, i))
3045 				ath_hal_keysetmac(ah, i, bssid);
3046 	}
3047 
3048 	if (nstate == IEEE80211_S_RUN) {
3049 		DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3050 			"capinfo=0x%04x chan=%d\n"
3051 			 , __func__
3052 			 , ic->ic_flags
3053 			 , ni->ni_intval
3054 			 , ether_sprintf(ni->ni_bssid)
3055 			 , ni->ni_capinfo
3056 			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
3057 
3058 		/*
3059 		 * Allocate and setup the beacon frame for AP or adhoc mode.
3060 		 */
3061 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3062 		    ic->ic_opmode == IEEE80211_M_IBSS) {
3063 			error = ath_beacon_alloc(sc, ni);
3064 			if (error != 0)
3065 				goto bad;
3066 		}
3067 
3068 		/*
3069 		 * Configure the beacon and sleep timers.
3070 		 */
3071 		ath_beacon_config(sc);
3072 
3073 		/* start periodic recalibration timer */
3074 		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
3075 			ath_calibrate, sc);
3076 	} else {
3077 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3078 		ath_hal_intrset(ah, sc->sc_imask);
3079 		callout_stop(&sc->sc_cal_ch);		/* no calibration */
3080 	}
3081 	/*
3082 	 * Reset the rate control state.
3083 	 */
3084 	ath_rate_ctl_reset(sc, nstate);
3085 	/*
3086 	 * Invoke the parent method to complete the work.
3087 	 */
3088 	return (*sc->sc_newstate)(ic, nstate, arg);
3089 bad:
3090 	callout_stop(&sc->sc_scan_ch);
3091 	callout_stop(&sc->sc_cal_ch);
3092 	/* NB: do not invoke the parent */
3093 	return error;
3094 }
3095 
3096 /*
3097  * Setup driver-specific state for a newly associated node.
3098  * Note that we're called also on a re-associate, the isnew
3099  * param tells us if this is the first time or not.
3100  */
3101 static void
3102 ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3103 {
3104 	if (isnew) {
3105 		struct ath_node *an = (struct ath_node *) ni;
3106 
3107 		an->an_tx_ok = an->an_tx_err =
3108 			an->an_tx_retr = an->an_tx_upper = 0;
3109 		/* start with highest negotiated rate */
3110 		/*
3111 		 * XXX should do otherwise but only when
3112 		 * the rate control algorithm is better.
3113 		 */
3114 		KASSERT(ni->ni_rates.rs_nrates > 0,
3115 			("new association w/ no rates!"));
3116 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3117 	}
3118 }
3119 
3120 static int
3121 ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
3122 {
3123 	struct ieee80211com *ic = &sc->sc_ic;
3124 	struct ifnet *ifp = &ic->ic_if;
3125 	struct ath_hal *ah = sc->sc_ah;
3126 	HAL_CHANNEL *chans;
3127 	int i, ix, nchan;
3128 
3129 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
3130 			M_TEMP, M_NOWAIT);
3131 	if (chans == NULL) {
3132 		if_printf(ifp, "unable to allocate channel table\n");
3133 		return ENOMEM;
3134 	}
3135 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
3136 	    cc, HAL_MODE_ALL, outdoor)) {
3137 		if_printf(ifp, "unable to collect channel list from hal\n");
3138 		free(chans, M_TEMP);
3139 		return EINVAL;
3140 	}
3141 
3142 	/*
3143 	 * Convert HAL channels to ieee80211 ones and insert
3144 	 * them in the table according to their channel number.
3145 	 */
3146 	for (i = 0; i < nchan; i++) {
3147 		HAL_CHANNEL *c = &chans[i];
3148 		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
3149 		if (ix > IEEE80211_CHAN_MAX) {
3150 			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
3151 				ix, c->channel, c->channelFlags);
3152 			continue;
3153 		}
3154 		/* NB: flags are known to be compatible */
3155 		if (ic->ic_channels[ix].ic_freq == 0) {
3156 			ic->ic_channels[ix].ic_freq = c->channel;
3157 			ic->ic_channels[ix].ic_flags = c->channelFlags;
3158 		} else {
3159 			/* channels overlap; e.g. 11g and 11b */
3160 			ic->ic_channels[ix].ic_flags |= c->channelFlags;
3161 		}
3162 	}
3163 	free(chans, M_TEMP);
3164 	return 0;
3165 }
3166 
3167 static int
3168 ath_rate_setup(struct ath_softc *sc, u_int mode)
3169 {
3170 	struct ath_hal *ah = sc->sc_ah;
3171 	struct ieee80211com *ic = &sc->sc_ic;
3172 	const HAL_RATE_TABLE *rt;
3173 	struct ieee80211_rateset *rs;
3174 	int i, maxrates;
3175 
3176 	switch (mode) {
3177 	case IEEE80211_MODE_11A:
3178 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
3179 		break;
3180 	case IEEE80211_MODE_11B:
3181 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
3182 		break;
3183 	case IEEE80211_MODE_11G:
3184 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
3185 		break;
3186 	case IEEE80211_MODE_TURBO:
3187 		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
3188 		break;
3189 	default:
3190 		DPRINTF(("%s: invalid mode %u\n", __func__, mode));
3191 		return 0;
3192 	}
3193 	rt = sc->sc_rates[mode];
3194 	if (rt == NULL)
3195 		return 0;
3196 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
3197 		DPRINTF(("%s: rate table too small (%u > %u)\n",
3198 			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
3199 		maxrates = IEEE80211_RATE_MAXSIZE;
3200 	} else
3201 		maxrates = rt->rateCount;
3202 	rs = &ic->ic_sup_rates[mode];
3203 	for (i = 0; i < maxrates; i++)
3204 		rs->rs_rates[i] = rt->info[i].dot11Rate;
3205 	rs->rs_nrates = maxrates;
3206 	return 1;
3207 }
3208 
3209 static void
3210 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
3211 {
3212 	const HAL_RATE_TABLE *rt;
3213 	int i;
3214 
3215 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
3216 	rt = sc->sc_rates[mode];
3217 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
3218 	for (i = 0; i < rt->rateCount; i++)
3219 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
3220 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
3221 	for (i = 0; i < 32; i++)
3222 		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
3223 	sc->sc_currates = rt;
3224 	sc->sc_curmode = mode;
3225 }
3226 
3227 /*
3228  * Reset the rate control state for each 802.11 state transition.
3229  */
3230 static void
3231 ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
3232 {
3233 	struct ieee80211com *ic = &sc->sc_ic;
3234 	struct ieee80211_node *ni;
3235 	struct ath_node *an;
3236 
3237 	if (ic->ic_opmode != IEEE80211_M_STA) {
3238 		/*
3239 		 * When operating as a station the node table holds
3240 		 * the AP's that were discovered during scanning.
3241 		 * For any other operating mode we want to reset the
3242 		 * tx rate state of each node.
3243 		 */
3244 		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
3245 			ni->ni_txrate = 0;		/* use lowest rate */
3246 			an = (struct ath_node *) ni;
3247 			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
3248 			    an->an_tx_upper = 0;
3249 		}
3250 	}
3251 	/*
3252 	 * Reset local xmit state; this is really only meaningful
3253 	 * when operating in station or adhoc mode.
3254 	 */
3255 	ni = ic->ic_bss;
3256 	an = (struct ath_node *) ni;
3257 	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
3258 	if (state == IEEE80211_S_RUN) {
3259 		/* start with highest negotiated rate */
3260 		KASSERT(ni->ni_rates.rs_nrates > 0,
3261 			("transition to RUN state w/ no rates!"));
3262 		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
3263 	} else {
3264 		/* use lowest rate */
3265 		ni->ni_txrate = 0;
3266 	}
3267 }
3268 
3269 /*
3270  * Examine and potentially adjust the transmit rate.
3271  */
3272 static void
3273 ath_rate_ctl(void *arg, struct ieee80211_node *ni)
3274 {
3275 	struct ath_softc *sc = arg;
3276 	struct ath_node *an = (struct ath_node *) ni;
3277 	struct ieee80211_rateset *rs = &ni->ni_rates;
3278 	int mod = 0, orate, enough;
3279 
3280 	/*
3281 	 * Rate control
3282 	 * XXX: very primitive version.
3283 	 */
3284 	sc->sc_stats.ast_rate_calls++;
3285 
3286 	enough = (an->an_tx_ok + an->an_tx_err >= 10);
3287 
3288 	/* no packet reached -> down */
3289 	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
3290 		mod = -1;
3291 
3292 	/* all packets needs retry in average -> down */
3293 	if (enough && an->an_tx_ok < an->an_tx_retr)
3294 		mod = -1;
3295 
3296 	/* no error and less than 10% of packets needs retry -> up */
3297 	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
3298 		mod = 1;
3299 
3300 	orate = ni->ni_txrate;
3301 	switch (mod) {
3302 	case 0:
3303 		if (enough && an->an_tx_upper > 0)
3304 			an->an_tx_upper--;
3305 		break;
3306 	case -1:
3307 		if (ni->ni_txrate > 0) {
3308 			ni->ni_txrate--;
3309 			sc->sc_stats.ast_rate_drop++;
3310 		}
3311 		an->an_tx_upper = 0;
3312 		break;
3313 	case 1:
3314 		if (++an->an_tx_upper < 2)
3315 			break;
3316 		an->an_tx_upper = 0;
3317 		if (ni->ni_txrate + 1 < rs->rs_nrates) {
3318 			ni->ni_txrate++;
3319 			sc->sc_stats.ast_rate_raise++;
3320 		}
3321 		break;
3322 	}
3323 
3324 	if (ni->ni_txrate != orate) {
3325 		DPRINTF(("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
3326 		    __func__,
3327 		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
3328 		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
3329 		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr));
3330 	}
3331 	if (ni->ni_txrate != orate || enough)
3332 		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
3333 }
3334 
3335 #ifdef AR_DEBUG
3336 #ifdef __FreeBSD__
3337 static int
3338 sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
3339 {
3340 	char dmode[64];
3341 	int error;
3342 
3343 	strncpy(dmode, "", sizeof(dmode) - 1);
3344 	dmode[sizeof(dmode) - 1] = '\0';
3345 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
3346 
3347 	if (error == 0 && req->newptr != NULL) {
3348 		struct ifnet *ifp;
3349 		struct ath_softc *sc;
3350 
3351 		ifp = ifunit("ath0");		/* XXX */
3352 		if (!ifp)
3353 			return EINVAL;
3354 		sc = ifp->if_softc;
3355 		if (strcmp(dmode, "hal") == 0)
3356 			ath_hal_dumpstate(sc->sc_ah);
3357 		else
3358 			return EINVAL;
3359 	}
3360 	return error;
3361 }
3362 SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
3363 	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
3364 #endif /* __FreeBSD__ */
3365 
3366 static void
3367 ath_printrxbuf(struct ath_buf *bf, int done)
3368 {
3369 	struct ath_desc *ds;
3370 	int i;
3371 
3372 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3373 		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
3374 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3375 		    ds->ds_link, ds->ds_data,
3376 		    ds->ds_ctl0, ds->ds_ctl1,
3377 		    ds->ds_hw[0], ds->ds_hw[1],
3378 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
3379 	}
3380 }
3381 
3382 static void
3383 ath_printtxbuf(struct ath_buf *bf, int done)
3384 {
3385 	struct ath_desc *ds;
3386 	int i;
3387 
3388 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
3389 		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
3390 		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
3391 		    ds->ds_link, ds->ds_data,
3392 		    ds->ds_ctl0, ds->ds_ctl1,
3393 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
3394 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
3395 	}
3396 }
3397 #endif /* AR_DEBUG */
3398