xref: /netbsd-src/sys/dev/ic/ath.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: ath.c,v 1.78 2006/10/12 01:30:59 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.78 2006/10/12 01:30:59 christos Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <machine/bus.h>
74 #include <sys/endian.h>
75 
76 #include <machine/bus.h>
77 
78 #include <net/if.h>
79 #include <net/if_dl.h>
80 #include <net/if_media.h>
81 #include <net/if_types.h>
82 #include <net/if_arp.h>
83 #include <net/if_ether.h>
84 #include <net/if_llc.h>
85 
86 #include <net80211/ieee80211_netbsd.h>
87 #include <net80211/ieee80211_var.h>
88 
89 #if NBPFILTER > 0
90 #include <net/bpf.h>
91 #endif
92 
93 #ifdef INET
94 #include <netinet/in.h>
95 #endif
96 
97 #include <sys/device.h>
98 #include <dev/ic/ath_netbsd.h>
99 
100 #define	AR_DEBUG
101 #include <dev/ic/athvar.h>
102 #include <contrib/dev/ath/ah_desc.h>
103 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
104 #include "athhal_options.h"
105 
106 #ifdef ATH_TX99_DIAG
107 #include <dev/ath/ath_tx99/ath_tx99.h>
108 #endif
109 
110 /* unaligned little endian access */
111 #define LE_READ_2(p)							\
112 	((u_int16_t)							\
113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
114 #define LE_READ_4(p)							\
115 	((u_int32_t)							\
116 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
117 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
118 
119 enum {
120 	ATH_LED_TX,
121 	ATH_LED_RX,
122 	ATH_LED_POLL,
123 };
124 
125 #ifdef	AH_NEED_DESC_SWAP
126 #define	HTOAH32(x)	htole32(x)
127 #else
128 #define	HTOAH32(x)	(x)
129 #endif
130 
131 static int	ath_ifinit(struct ifnet *);
132 static int	ath_init(struct ath_softc *);
133 static void	ath_stop_locked(struct ifnet *, int);
134 static void	ath_stop(struct ifnet *, int);
135 static void	ath_start(struct ifnet *);
136 static int	ath_media_change(struct ifnet *);
137 static void	ath_watchdog(struct ifnet *);
138 static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
139 static void	ath_fatal_proc(void *, int);
140 static void	ath_rxorn_proc(void *, int);
141 static void	ath_bmiss_proc(void *, int);
142 static void	ath_radar_proc(void *, int);
143 static int	ath_key_alloc(struct ieee80211com *,
144 			const struct ieee80211_key *,
145 			ieee80211_keyix *, ieee80211_keyix *);
146 static int	ath_key_delete(struct ieee80211com *,
147 			const struct ieee80211_key *);
148 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
149 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
150 static void	ath_key_update_begin(struct ieee80211com *);
151 static void	ath_key_update_end(struct ieee80211com *);
152 static void	ath_mode_init(struct ath_softc *);
153 static void	ath_setslottime(struct ath_softc *);
154 static void	ath_updateslot(struct ifnet *);
155 static int	ath_beaconq_setup(struct ath_hal *);
156 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
157 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158 static void	ath_beacon_proc(void *, int);
159 static void	ath_bstuck_proc(void *, int);
160 static void	ath_beacon_free(struct ath_softc *);
161 static void	ath_beacon_config(struct ath_softc *);
162 static void	ath_descdma_cleanup(struct ath_softc *sc,
163 			struct ath_descdma *, ath_bufhead *);
164 static int	ath_desc_alloc(struct ath_softc *);
165 static void	ath_desc_free(struct ath_softc *);
166 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
167 static void	ath_node_free(struct ieee80211_node *);
168 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
169 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
171 			struct ieee80211_node *ni,
172 			int subtype, int rssi, u_int32_t rstamp);
173 static void	ath_setdefantenna(struct ath_softc *, u_int);
174 static void	ath_rx_proc(void *, int);
175 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176 static int	ath_tx_setup(struct ath_softc *, int, int);
177 static int	ath_wme_update(struct ieee80211com *);
178 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179 static void	ath_tx_cleanup(struct ath_softc *);
180 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
181 			     struct ath_buf *, struct mbuf *);
182 static void	ath_tx_proc_q0(void *, int);
183 static void	ath_tx_proc_q0123(void *, int);
184 static void	ath_tx_proc(void *, int);
185 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
186 static void	ath_draintxq(struct ath_softc *);
187 static void	ath_stoprecv(struct ath_softc *);
188 static int	ath_startrecv(struct ath_softc *);
189 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190 static void	ath_next_scan(void *);
191 static void	ath_calibrate(void *);
192 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
193 static void	ath_setup_stationkey(struct ieee80211_node *);
194 static void	ath_newassoc(struct ieee80211_node *, int);
195 static int	ath_getchannels(struct ath_softc *, u_int cc,
196 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
197 static void	ath_led_event(struct ath_softc *, int);
198 static void	ath_update_txpow(struct ath_softc *);
199 
200 static int	ath_rate_setup(struct ath_softc *, u_int mode);
201 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202 
203 #ifdef __NetBSD__
204 int	ath_enable(struct ath_softc *);
205 void	ath_disable(struct ath_softc *);
206 void	ath_power(int, void *);
207 #endif
208 
209 #if NBPFILTER > 0
210 static void	ath_bpfattach(struct ath_softc *);
211 #endif
212 static void	ath_announce(struct ath_softc *);
213 
214 int ath_dwelltime = 200;		/* 5 channels/second */
215 int ath_calinterval = 30;		/* calibrate every 30 secs */
216 int ath_outdoor = AH_TRUE;		/* outdoor operation */
217 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
218 int ath_countrycode = CTRY_DEFAULT;	/* country code */
219 int ath_regdomain = 0;			/* regulatory domain */
220 int ath_debug = 0;
221 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
222 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
223 
224 #ifdef AR_DEBUG
225 enum {
226 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
227 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
228 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
229 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
230 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
231 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
232 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
233 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
234 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
235 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
236 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
237 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
238 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
239 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
240 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
241 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
242 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
243 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
244 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
245 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
246 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
247 	ATH_DEBUG_ANY		= 0xffffffff
248 };
249 #define	IFF_DUMPPKTS(sc, m) \
250 	((sc->sc_debug & (m)) || \
251 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
252 #define	DPRINTF(sc, m, fmt, ...) do {				\
253 	if (sc->sc_debug & (m))					\
254 		printf(fmt, __VA_ARGS__);			\
255 } while (0)
256 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
257 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
258 		ath_keyprint(__func__, ix, hk, mac);		\
259 } while (0)
260 static	void ath_printrxbuf(struct ath_buf *bf, int);
261 static	void ath_printtxbuf(struct ath_buf *bf, int);
262 #else
263 #define	IFF_DUMPPKTS(sc, m) \
264 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
265 #define	DPRINTF(m, fmt, ...)
266 #define	KEYPRINTF(sc, k, ix, mac)
267 #endif
268 
269 #ifdef __NetBSD__
270 int
271 ath_activate(struct device *self, enum devact act)
272 {
273 	struct ath_softc *sc = (struct ath_softc *)self;
274 	int rv = 0, s;
275 
276 	s = splnet();
277 	switch (act) {
278 	case DVACT_ACTIVATE:
279 		rv = EOPNOTSUPP;
280 		break;
281 	case DVACT_DEACTIVATE:
282 		if_deactivate(&sc->sc_if);
283 		break;
284 	}
285 	splx(s);
286 	return rv;
287 }
288 
289 int
290 ath_enable(struct ath_softc *sc)
291 {
292 	if (ATH_IS_ENABLED(sc) == 0) {
293 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
294 			printf("%s: device enable failed\n",
295 				sc->sc_dev.dv_xname);
296 			return (EIO);
297 		}
298 		sc->sc_flags |= ATH_ENABLED;
299 	}
300 	return (0);
301 }
302 
303 void
304 ath_disable(struct ath_softc *sc)
305 {
306 	if (!ATH_IS_ENABLED(sc))
307 		return;
308 	if (sc->sc_disable != NULL)
309 		(*sc->sc_disable)(sc);
310 	sc->sc_flags &= ~ATH_ENABLED;
311 }
312 #endif /* __NetBSD__ */
313 
314 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
315 
316 int
317 ath_attach(u_int16_t devid, struct ath_softc *sc)
318 {
319 	struct ifnet *ifp = &sc->sc_if;
320 	struct ieee80211com *ic = &sc->sc_ic;
321 	struct ath_hal *ah = NULL;
322 	HAL_STATUS status;
323 	int error = 0, i;
324 
325 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
326 
327 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
328 
329 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
330 	if (ah == NULL) {
331 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
332 			status);
333 		error = ENXIO;
334 		goto bad;
335 	}
336 	if (ah->ah_abi != HAL_ABI_VERSION) {
337 		if_printf(ifp, "HAL ABI mismatch detected "
338 			"(HAL:0x%x != driver:0x%x)\n",
339 			ah->ah_abi, HAL_ABI_VERSION);
340 		error = ENXIO;
341 		goto bad;
342 	}
343 	sc->sc_ah = ah;
344 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
345 
346 	/*
347 	 * Check if the MAC has multi-rate retry support.
348 	 * We do this by trying to setup a fake extended
349 	 * descriptor.  MAC's that don't have support will
350 	 * return false w/o doing anything.  MAC's that do
351 	 * support it will return true w/o doing anything.
352 	 */
353 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
354 
355 	/*
356 	 * Check if the device has hardware counters for PHY
357 	 * errors.  If so we need to enable the MIB interrupt
358 	 * so we can act on stat triggers.
359 	 */
360 	if (ath_hal_hwphycounters(ah))
361 		sc->sc_needmib = 1;
362 
363 	/*
364 	 * Get the hardware key cache size.
365 	 */
366 	sc->sc_keymax = ath_hal_keycachesize(ah);
367 	if (sc->sc_keymax > ATH_KEYMAX) {
368 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
369 			ATH_KEYMAX, sc->sc_keymax);
370 		sc->sc_keymax = ATH_KEYMAX;
371 	}
372 	/*
373 	 * Reset the key cache since some parts do not
374 	 * reset the contents on initial power up.
375 	 */
376 	for (i = 0; i < sc->sc_keymax; i++)
377 		ath_hal_keyreset(ah, i);
378 	/*
379 	 * Mark key cache slots associated with global keys
380 	 * as in use.  If we knew TKIP was not to be used we
381 	 * could leave the +32, +64, and +32+64 slots free.
382 	 * XXX only for splitmic.
383 	 */
384 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
385 		setbit(sc->sc_keymap, i);
386 		setbit(sc->sc_keymap, i+32);
387 		setbit(sc->sc_keymap, i+64);
388 		setbit(sc->sc_keymap, i+32+64);
389 	}
390 
391 	/*
392 	 * Collect the channel list using the default country
393 	 * code and including outdoor channels.  The 802.11 layer
394 	 * is resposible for filtering this list based on settings
395 	 * like the phy mode.
396 	 */
397 	error = ath_getchannels(sc, ath_countrycode,
398 			ath_outdoor, ath_xchanmode);
399 	if (error != 0)
400 		goto bad;
401 
402 	/*
403 	 * Setup rate tables for all potential media types.
404 	 */
405 	ath_rate_setup(sc, IEEE80211_MODE_11A);
406 	ath_rate_setup(sc, IEEE80211_MODE_11B);
407 	ath_rate_setup(sc, IEEE80211_MODE_11G);
408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
409 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
410 	/* NB: setup here so ath_rate_update is happy */
411 	ath_setcurmode(sc, IEEE80211_MODE_11A);
412 
413 	/*
414 	 * Allocate tx+rx descriptors and populate the lists.
415 	 */
416 	error = ath_desc_alloc(sc);
417 	if (error != 0) {
418 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
419 		goto bad;
420 	}
421 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
422 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
423 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
424 
425 	ATH_TXBUF_LOCK_INIT(sc);
426 
427 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
428 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
429 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
430 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
431 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
432 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
433 
434 	/*
435 	 * Allocate hardware transmit queues: one queue for
436 	 * beacon frames and one data queue for each QoS
437 	 * priority.  Note that the hal handles reseting
438 	 * these queues at the needed time.
439 	 *
440 	 * XXX PS-Poll
441 	 */
442 	sc->sc_bhalq = ath_beaconq_setup(ah);
443 	if (sc->sc_bhalq == (u_int) -1) {
444 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
445 		error = EIO;
446 		goto bad2;
447 	}
448 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
449 	if (sc->sc_cabq == NULL) {
450 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
451 		error = EIO;
452 		goto bad2;
453 	}
454 	/* NB: insure BK queue is the lowest priority h/w queue */
455 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
456 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
457 			ieee80211_wme_acnames[WME_AC_BK]);
458 		error = EIO;
459 		goto bad2;
460 	}
461 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
462 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
463 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
464 		/*
465 		 * Not enough hardware tx queues to properly do WME;
466 		 * just punt and assign them all to the same h/w queue.
467 		 * We could do a better job of this if, for example,
468 		 * we allocate queues when we switch from station to
469 		 * AP mode.
470 		 */
471 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
472 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
473 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
474 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
475 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
476 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
477 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
478 	}
479 
480 	/*
481 	 * Special case certain configurations.  Note the
482 	 * CAB queue is handled by these specially so don't
483 	 * include them when checking the txq setup mask.
484 	 */
485 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
486 	case 0x01:
487 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
488 		break;
489 	case 0x0f:
490 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
491 		break;
492 	default:
493 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
494 		break;
495 	}
496 
497 	/*
498 	 * Setup rate control.  Some rate control modules
499 	 * call back to change the anntena state so expose
500 	 * the necessary entry points.
501 	 * XXX maybe belongs in struct ath_ratectrl?
502 	 */
503 	sc->sc_setdefantenna = ath_setdefantenna;
504 	sc->sc_rc = ath_rate_attach(sc);
505 	if (sc->sc_rc == NULL) {
506 		error = EIO;
507 		goto bad2;
508 	}
509 
510 	sc->sc_blinking = 0;
511 	sc->sc_ledstate = 1;
512 	sc->sc_ledon = 0;			/* low true */
513 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
514 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
515 	/*
516 	 * Auto-enable soft led processing for IBM cards and for
517 	 * 5211 minipci cards.  Users can also manually enable/disable
518 	 * support with a sysctl.
519 	 */
520 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
521 	if (sc->sc_softled) {
522 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
523 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
524 	}
525 
526 	ifp->if_softc = sc;
527 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
528 	ifp->if_start = ath_start;
529 	ifp->if_watchdog = ath_watchdog;
530 	ifp->if_ioctl = ath_ioctl;
531 	ifp->if_init = ath_ifinit;
532 	IFQ_SET_READY(&ifp->if_snd);
533 
534 	ic->ic_ifp = ifp;
535 	ic->ic_reset = ath_reset;
536 	ic->ic_newassoc = ath_newassoc;
537 	ic->ic_updateslot = ath_updateslot;
538 	ic->ic_wme.wme_update = ath_wme_update;
539 	/* XXX not right but it's not used anywhere important */
540 	ic->ic_phytype = IEEE80211_T_OFDM;
541 	ic->ic_opmode = IEEE80211_M_STA;
542 	ic->ic_caps =
543 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
544 		| IEEE80211_C_HOSTAP		/* hostap mode */
545 		| IEEE80211_C_MONITOR		/* monitor mode */
546 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
547 		| IEEE80211_C_SHSLOT		/* short slot time supported */
548 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
549 		;
550 	/*
551 	 * Query the hal to figure out h/w crypto support.
552 	 */
553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 		ic->ic_caps |= IEEE80211_C_WEP;
555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 		ic->ic_caps |= IEEE80211_C_AES;
557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 		ic->ic_caps |= IEEE80211_C_AES_CCM;
559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 		ic->ic_caps |= IEEE80211_C_CKIP;
561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 		ic->ic_caps |= IEEE80211_C_TKIP;
563 		/*
564 		 * Check if h/w does the MIC and/or whether the
565 		 * separate key cache entries are required to
566 		 * handle both tx+rx MIC keys.
567 		 */
568 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 		if (ath_hal_tkipsplit(ah))
571 			sc->sc_splitmic = 1;
572 	}
573 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 	/*
576 	 * TPC support can be done either with a global cap or
577 	 * per-packet support.  The latter is not available on
578 	 * all parts.  We're a bit pedantic here as all parts
579 	 * support a global cap.
580 	 */
581 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 		ic->ic_caps |= IEEE80211_C_TXPMGT;
583 
584 	/*
585 	 * Mark WME capability only if we have sufficient
586 	 * hardware queues to do proper priority scheduling.
587 	 */
588 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 		ic->ic_caps |= IEEE80211_C_WME;
590 	/*
591 	 * Check for misc other capabilities.
592 	 */
593 	if (ath_hal_hasbursting(ah))
594 		ic->ic_caps |= IEEE80211_C_BURST;
595 
596 	/*
597 	 * Indicate we need the 802.11 header padded to a
598 	 * 32-bit boundary for 4-address and QoS frames.
599 	 */
600 	ic->ic_flags |= IEEE80211_F_DATAPAD;
601 
602 	/*
603 	 * Query the hal about antenna support.
604 	 */
605 	sc->sc_defant = ath_hal_getdefantenna(ah);
606 
607 	/*
608 	 * Not all chips have the VEOL support we want to
609 	 * use with IBSS beacons; check here for it.
610 	 */
611 	sc->sc_hasveol = ath_hal_hasveol(ah);
612 
613 	/* get mac address from hardware */
614 	ath_hal_getmac(ah, ic->ic_myaddr);
615 
616 	if_attach(ifp);
617 	/* call MI attach routine. */
618 	ieee80211_ifattach(ic);
619 	/* override default methods */
620 	ic->ic_node_alloc = ath_node_alloc;
621 	sc->sc_node_free = ic->ic_node_free;
622 	ic->ic_node_free = ath_node_free;
623 	ic->ic_node_getrssi = ath_node_getrssi;
624 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 	ic->ic_recv_mgmt = ath_recv_mgmt;
626 	sc->sc_newstate = ic->ic_newstate;
627 	ic->ic_newstate = ath_newstate;
628 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 	ic->ic_crypto.cs_key_delete = ath_key_delete;
631 	ic->ic_crypto.cs_key_set = ath_key_set;
632 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 	/* complete initialization */
635 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636 
637 #if NBPFILTER > 0
638 	ath_bpfattach(sc);
639 #endif
640 
641 #ifdef __NetBSD__
642 	sc->sc_flags |= ATH_ATTACHED;
643 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
644 	    ath_power, sc);
645 	if (sc->sc_powerhook == NULL)
646 		printf("%s: WARNING: unable to establish power hook\n",
647 			sc->sc_dev.dv_xname);
648 #endif
649 
650 	/*
651 	 * Setup dynamic sysctl's now that country code and
652 	 * regdomain are available from the hal.
653 	 */
654 	ath_sysctlattach(sc);
655 
656 	ieee80211_announce(ic);
657 	ath_announce(sc);
658 	return 0;
659 bad2:
660 	ath_tx_cleanup(sc);
661 	ath_desc_free(sc);
662 bad:
663 	if (ah)
664 		ath_hal_detach(ah);
665 	sc->sc_invalid = 1;
666 	return error;
667 }
668 
669 int
670 ath_detach(struct ath_softc *sc)
671 {
672 	struct ifnet *ifp = &sc->sc_if;
673 	int s;
674 
675 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
676 		return (0);
677 
678 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
679 		__func__, ifp->if_flags);
680 
681 	s = splnet();
682 	ath_stop(ifp, 1);
683 #if NBPFILTER > 0
684 	bpfdetach(ifp);
685 #endif
686 	/*
687 	 * NB: the order of these is important:
688 	 * o call the 802.11 layer before detaching the hal to
689 	 *   insure callbacks into the driver to delete global
690 	 *   key cache entries can be handled
691 	 * o reclaim the tx queue data structures after calling
692 	 *   the 802.11 layer as we'll get called back to reclaim
693 	 *   node state and potentially want to use them
694 	 * o to cleanup the tx queues the hal is called, so detach
695 	 *   it last
696 	 * Other than that, it's straightforward...
697 	 */
698 	ieee80211_ifdetach(&sc->sc_ic);
699 #ifdef ATH_TX99_DIAG
700 	if (sc->sc_tx99 != NULL)
701 		sc->sc_tx99->detach(sc->sc_tx99);
702 #endif
703 	ath_rate_detach(sc->sc_rc);
704 	ath_desc_free(sc);
705 	ath_tx_cleanup(sc);
706 	sysctl_teardown(&sc->sc_sysctllog);
707 	ath_hal_detach(sc->sc_ah);
708 	if_detach(ifp);
709 	splx(s);
710 	powerhook_disestablish(sc->sc_powerhook);
711 
712 	return 0;
713 }
714 
715 #ifdef __NetBSD__
716 void
717 ath_power(int why, void *arg)
718 {
719 	struct ath_softc *sc = arg;
720 	int s;
721 
722 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
723 
724 	s = splnet();
725 	switch (why) {
726 	case PWR_SUSPEND:
727 	case PWR_STANDBY:
728 		ath_suspend(sc, why);
729 		break;
730 	case PWR_RESUME:
731 		ath_resume(sc, why);
732 		break;
733 	case PWR_SOFTSUSPEND:
734 	case PWR_SOFTSTANDBY:
735 	case PWR_SOFTRESUME:
736 		break;
737 	}
738 	splx(s);
739 }
740 #endif
741 
742 void
743 ath_suspend(struct ath_softc *sc, int why)
744 {
745 	struct ifnet *ifp = &sc->sc_if;
746 
747 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
748 		__func__, ifp->if_flags);
749 
750 	ath_stop(ifp, 1);
751 	if (sc->sc_power != NULL)
752 		(*sc->sc_power)(sc, why);
753 }
754 
755 void
756 ath_resume(struct ath_softc *sc, int why)
757 {
758 	struct ifnet *ifp = &sc->sc_if;
759 
760 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
761 		__func__, ifp->if_flags);
762 
763 	if (ifp->if_flags & IFF_UP) {
764 		ath_init(sc);
765 #if 0
766 		(void)ath_intr(sc);
767 #endif
768 		if (sc->sc_power != NULL)
769 			(*sc->sc_power)(sc, why);
770 		if (ifp->if_flags & IFF_RUNNING)
771 			ath_start(ifp);
772 	}
773 	if (sc->sc_softled) {
774 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
775 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
776 	}
777 }
778 
779 void
780 ath_shutdown(void *arg)
781 {
782 	struct ath_softc *sc = arg;
783 
784 	ath_stop(&sc->sc_if, 1);
785 }
786 
787 /*
788  * Interrupt handler.  Most of the actual processing is deferred.
789  */
790 int
791 ath_intr(void *arg)
792 {
793 	struct ath_softc *sc = arg;
794 	struct ifnet *ifp = &sc->sc_if;
795 	struct ath_hal *ah = sc->sc_ah;
796 	HAL_INT status;
797 
798 	if (sc->sc_invalid) {
799 		/*
800 		 * The hardware is not ready/present, don't touch anything.
801 		 * Note this can happen early on if the IRQ is shared.
802 		 */
803 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
804 		return 0;
805 	}
806 
807 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
808 		return 0;
809 
810 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
811 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
812 			__func__, ifp->if_flags);
813 		ath_hal_getisr(ah, &status);	/* clear ISR */
814 		ath_hal_intrset(ah, 0);		/* disable further intr's */
815 		return 1; /* XXX */
816 	}
817 	/*
818 	 * Figure out the reason(s) for the interrupt.  Note
819 	 * that the hal returns a pseudo-ISR that may include
820 	 * bits we haven't explicitly enabled so we mask the
821 	 * value to insure we only process bits we requested.
822 	 */
823 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
824 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
825 	status &= sc->sc_imask;			/* discard unasked for bits */
826 	if (status & HAL_INT_FATAL) {
827 		/*
828 		 * Fatal errors are unrecoverable.  Typically
829 		 * these are caused by DMA errors.  Unfortunately
830 		 * the exact reason is not (presently) returned
831 		 * by the hal.
832 		 */
833 		sc->sc_stats.ast_hardware++;
834 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
835 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
836 	} else if (status & HAL_INT_RXORN) {
837 		sc->sc_stats.ast_rxorn++;
838 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
839 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
840 	} else {
841 		if (status & HAL_INT_SWBA) {
842 			/*
843 			 * Software beacon alert--time to send a beacon.
844 			 * Handle beacon transmission directly; deferring
845 			 * this is too slow to meet timing constraints
846 			 * under load.
847 			 */
848 			ath_beacon_proc(sc, 0);
849 		}
850 		if (status & HAL_INT_RXEOL) {
851 			/*
852 			 * NB: the hardware should re-read the link when
853 			 *     RXE bit is written, but it doesn't work at
854 			 *     least on older hardware revs.
855 			 */
856 			sc->sc_stats.ast_rxeol++;
857 			sc->sc_rxlink = NULL;
858 		}
859 		if (status & HAL_INT_TXURN) {
860 			sc->sc_stats.ast_txurn++;
861 			/* bump tx trigger level */
862 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
863 		}
864 		if (status & HAL_INT_RX)
865 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
866 		if (status & HAL_INT_TX)
867 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
868 		if (status & HAL_INT_BMISS) {
869 			sc->sc_stats.ast_bmiss++;
870 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
871 		}
872 		if (status & HAL_INT_MIB) {
873 			sc->sc_stats.ast_mib++;
874 			/*
875 			 * Disable interrupts until we service the MIB
876 			 * interrupt; otherwise it will continue to fire.
877 			 */
878 			ath_hal_intrset(ah, 0);
879 			/*
880 			 * Let the hal handle the event.  We assume it will
881 			 * clear whatever condition caused the interrupt.
882 			 */
883 			ath_hal_mibevent(ah, &sc->sc_halstats);
884 			ath_hal_intrset(ah, sc->sc_imask);
885 		}
886 	}
887 	return 1;
888 }
889 
890 /* Swap transmit descriptor.
891  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
892  * function.
893  */
894 static inline void
895 ath_desc_swap(struct ath_desc *ds __unused)
896 {
897 #ifdef AH_NEED_DESC_SWAP
898 	ds->ds_link = htole32(ds->ds_link);
899 	ds->ds_data = htole32(ds->ds_data);
900 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
901 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
902 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
903 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
904 #endif
905 }
906 
907 static void
908 ath_fatal_proc(void *arg, int pending __unused)
909 {
910 	struct ath_softc *sc = arg;
911 	struct ifnet *ifp = &sc->sc_if;
912 
913 	if_printf(ifp, "hardware error; resetting\n");
914 	ath_reset(ifp);
915 }
916 
917 static void
918 ath_rxorn_proc(void *arg, int pending __unused)
919 {
920 	struct ath_softc *sc = arg;
921 	struct ifnet *ifp = &sc->sc_if;
922 
923 	if_printf(ifp, "rx FIFO overrun; resetting\n");
924 	ath_reset(ifp);
925 }
926 
927 static void
928 ath_bmiss_proc(void *arg, int pending)
929 {
930 	struct ath_softc *sc = arg;
931 	struct ieee80211com *ic = &sc->sc_ic;
932 
933 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
934 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
935 		("unexpect operating mode %u", ic->ic_opmode));
936 	if (ic->ic_state == IEEE80211_S_RUN) {
937 		u_int64_t lastrx = sc->sc_lastrx;
938 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
939 
940 		DPRINTF(sc, ATH_DEBUG_BEACON,
941 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
942 		    " (%" PRIu64 ") bmiss %u\n",
943 		    __func__, tsf, tsf - lastrx, lastrx,
944 		    ic->ic_bmisstimeout*1024);
945 		/*
946 		 * Workaround phantom bmiss interrupts by sanity-checking
947 		 * the time of our last rx'd frame.  If it is within the
948 		 * beacon miss interval then ignore the interrupt.  If it's
949 		 * truly a bmiss we'll get another interrupt soon and that'll
950 		 * be dispatched up for processing.
951 		 */
952 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
953 			NET_LOCK_GIANT();
954 			ieee80211_beacon_miss(ic);
955 			NET_UNLOCK_GIANT();
956 		} else
957 			sc->sc_stats.ast_bmiss_phantom++;
958 	}
959 }
960 
961 static void
962 ath_radar_proc(void *arg, int pending __unused)
963 {
964 	struct ath_softc *sc = arg;
965 	struct ifnet *ifp = &sc->sc_if;
966 	struct ath_hal *ah = sc->sc_ah;
967 	HAL_CHANNEL hchan;
968 
969 	if (ath_hal_procdfs(ah, &hchan)) {
970 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
971 			hchan.channel, hchan.channelFlags, hchan.privFlags);
972 		/*
973 		 * Initiate channel change.
974 		 */
975 		/* XXX not yet */
976 	}
977 }
978 
979 static u_int
980 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
981 {
982 #define	N(a)	(sizeof(a) / sizeof(a[0]))
983 	static const u_int modeflags[] = {
984 		0,			/* IEEE80211_MODE_AUTO */
985 		CHANNEL_A,		/* IEEE80211_MODE_11A */
986 		CHANNEL_B,		/* IEEE80211_MODE_11B */
987 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
988 		0,			/* IEEE80211_MODE_FH */
989 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
990 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
991 	};
992 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
993 
994 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
995 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
996 	return modeflags[mode];
997 #undef N
998 }
999 
1000 static int
1001 ath_ifinit(struct ifnet *ifp)
1002 {
1003 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1004 
1005 	return ath_init(sc);
1006 }
1007 
1008 static int
1009 ath_init(struct ath_softc *sc)
1010 {
1011 	struct ifnet *ifp = &sc->sc_if;
1012 	struct ieee80211com *ic = &sc->sc_ic;
1013 	struct ath_hal *ah = sc->sc_ah;
1014 	HAL_STATUS status;
1015 	int error = 0;
1016 
1017 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1018 		__func__, ifp->if_flags);
1019 
1020 	ATH_LOCK(sc);
1021 
1022 	if ((error = ath_enable(sc)) != 0)
1023 		return error;
1024 
1025 	/*
1026 	 * Stop anything previously setup.  This is safe
1027 	 * whether this is the first time through or not.
1028 	 */
1029 	ath_stop_locked(ifp, 0);
1030 
1031 	/*
1032 	 * The basic interface to setting the hardware in a good
1033 	 * state is ``reset''.  On return the hardware is known to
1034 	 * be powered up and with interrupts disabled.  This must
1035 	 * be followed by initialization of the appropriate bits
1036 	 * and then setup of the interrupt mask.
1037 	 */
1038 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1039 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1040 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1041 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1042 			status);
1043 		error = EIO;
1044 		goto done;
1045 	}
1046 
1047 	/*
1048 	 * This is needed only to setup initial state
1049 	 * but it's best done after a reset.
1050 	 */
1051 	ath_update_txpow(sc);
1052 	/*
1053 	 * Likewise this is set during reset so update
1054 	 * state cached in the driver.
1055 	 */
1056 	sc->sc_diversity = ath_hal_getdiversity(ah);
1057 	sc->sc_calinterval = 1;
1058 	sc->sc_caltries = 0;
1059 
1060 	/*
1061 	 * Setup the hardware after reset: the key cache
1062 	 * is filled as needed and the receive engine is
1063 	 * set going.  Frame transmit is handled entirely
1064 	 * in the frame output path; there's nothing to do
1065 	 * here except setup the interrupt mask.
1066 	 */
1067 	if ((error = ath_startrecv(sc)) != 0) {
1068 		if_printf(ifp, "unable to start recv logic\n");
1069 		goto done;
1070 	}
1071 
1072 	/*
1073 	 * Enable interrupts.
1074 	 */
1075 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1076 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1077 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1078 	/*
1079 	 * Enable MIB interrupts when there are hardware phy counters.
1080 	 * Note we only do this (at the moment) for station mode.
1081 	 */
1082 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1083 		sc->sc_imask |= HAL_INT_MIB;
1084 	ath_hal_intrset(ah, sc->sc_imask);
1085 
1086 	ifp->if_flags |= IFF_RUNNING;
1087 	ic->ic_state = IEEE80211_S_INIT;
1088 
1089 	/*
1090 	 * The hardware should be ready to go now so it's safe
1091 	 * to kick the 802.11 state machine as it's likely to
1092 	 * immediately call back to us to send mgmt frames.
1093 	 */
1094 	ath_chan_change(sc, ic->ic_curchan);
1095 #ifdef ATH_TX99_DIAG
1096 	if (sc->sc_tx99 != NULL)
1097 		sc->sc_tx99->start(sc->sc_tx99);
1098 	else
1099 #endif
1100 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1101 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1102 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1103 	} else
1104 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1105 done:
1106 	ATH_UNLOCK(sc);
1107 	return error;
1108 }
1109 
1110 static void
1111 ath_stop_locked(struct ifnet *ifp, int disable)
1112 {
1113 	struct ath_softc *sc = ifp->if_softc;
1114 	struct ieee80211com *ic = &sc->sc_ic;
1115 	struct ath_hal *ah = sc->sc_ah;
1116 
1117 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1118 		__func__, sc->sc_invalid, ifp->if_flags);
1119 
1120 	ATH_LOCK_ASSERT(sc);
1121 	if (ifp->if_flags & IFF_RUNNING) {
1122 		/*
1123 		 * Shutdown the hardware and driver:
1124 		 *    reset 802.11 state machine
1125 		 *    turn off timers
1126 		 *    disable interrupts
1127 		 *    turn off the radio
1128 		 *    clear transmit machinery
1129 		 *    clear receive machinery
1130 		 *    drain and release tx queues
1131 		 *    reclaim beacon resources
1132 		 *    power down hardware
1133 		 *
1134 		 * Note that some of this work is not possible if the
1135 		 * hardware is gone (invalid).
1136 		 */
1137 #ifdef ATH_TX99_DIAG
1138 		if (sc->sc_tx99 != NULL)
1139 			sc->sc_tx99->stop(sc->sc_tx99);
1140 #endif
1141 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1142 		ifp->if_flags &= ~IFF_RUNNING;
1143 		ifp->if_timer = 0;
1144 		if (!sc->sc_invalid) {
1145 			if (sc->sc_softled) {
1146 				callout_stop(&sc->sc_ledtimer);
1147 				ath_hal_gpioset(ah, sc->sc_ledpin,
1148 					!sc->sc_ledon);
1149 				sc->sc_blinking = 0;
1150 			}
1151 			ath_hal_intrset(ah, 0);
1152 		}
1153 		ath_draintxq(sc);
1154 		if (!sc->sc_invalid) {
1155 			ath_stoprecv(sc);
1156 			ath_hal_phydisable(ah);
1157 		} else
1158 			sc->sc_rxlink = NULL;
1159 		IF_PURGE(&ifp->if_snd);
1160 		ath_beacon_free(sc);
1161 		if (disable)
1162 			ath_disable(sc);
1163 	}
1164 }
1165 
1166 static void
1167 ath_stop(struct ifnet *ifp, int disable)
1168 {
1169 	struct ath_softc *sc = ifp->if_softc;
1170 
1171 	ATH_LOCK(sc);
1172 	ath_stop_locked(ifp, disable);
1173 	if (!sc->sc_invalid) {
1174 		/*
1175 		 * Set the chip in full sleep mode.  Note that we are
1176 		 * careful to do this only when bringing the interface
1177 		 * completely to a stop.  When the chip is in this state
1178 		 * it must be carefully woken up or references to
1179 		 * registers in the PCI clock domain may freeze the bus
1180 		 * (and system).  This varies by chip and is mostly an
1181 		 * issue with newer parts that go to sleep more quickly.
1182 		 */
1183 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1184 	}
1185 	ATH_UNLOCK(sc);
1186 }
1187 
1188 /*
1189  * Reset the hardware w/o losing operational state.  This is
1190  * basically a more efficient way of doing ath_stop, ath_init,
1191  * followed by state transitions to the current 802.11
1192  * operational state.  Used to recover from various errors and
1193  * to reset or reload hardware state.
1194  */
1195 int
1196 ath_reset(struct ifnet *ifp)
1197 {
1198 	struct ath_softc *sc = ifp->if_softc;
1199 	struct ieee80211com *ic = &sc->sc_ic;
1200 	struct ath_hal *ah = sc->sc_ah;
1201 	struct ieee80211_channel *c;
1202 	HAL_STATUS status;
1203 
1204 	/*
1205 	 * Convert to a HAL channel description with the flags
1206 	 * constrained to reflect the current operating mode.
1207 	 */
1208 	c = ic->ic_curchan;
1209 	sc->sc_curchan.channel = c->ic_freq;
1210 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1211 
1212 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1213 	ath_draintxq(sc);		/* stop xmit side */
1214 	ath_stoprecv(sc);		/* stop recv side */
1215 	/* NB: indicate channel change so we do a full reset */
1216 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1217 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1218 			__func__, status);
1219 	ath_update_txpow(sc);		/* update tx power state */
1220 	sc->sc_diversity = ath_hal_getdiversity(ah);
1221 	sc->sc_calinterval = 1;
1222 	sc->sc_caltries = 0;
1223 	if (ath_startrecv(sc) != 0)	/* restart recv */
1224 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1225 	/*
1226 	 * We may be doing a reset in response to an ioctl
1227 	 * that changes the channel so update any state that
1228 	 * might change as a result.
1229 	 */
1230 	ath_chan_change(sc, c);
1231 	if (ic->ic_state == IEEE80211_S_RUN)
1232 		ath_beacon_config(sc);	/* restart beacons */
1233 	ath_hal_intrset(ah, sc->sc_imask);
1234 
1235 	ath_start(ifp);			/* restart xmit */
1236 	return 0;
1237 }
1238 
1239 static void
1240 ath_start(struct ifnet *ifp)
1241 {
1242 	struct ath_softc *sc = ifp->if_softc;
1243 	struct ath_hal *ah = sc->sc_ah;
1244 	struct ieee80211com *ic = &sc->sc_ic;
1245 	struct ieee80211_node *ni;
1246 	struct ath_buf *bf;
1247 	struct mbuf *m;
1248 	struct ieee80211_frame *wh;
1249 	struct ether_header *eh;
1250 
1251 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1252 		return;
1253 	for (;;) {
1254 		/*
1255 		 * Grab a TX buffer and associated resources.
1256 		 */
1257 		ATH_TXBUF_LOCK(sc);
1258 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1259 		if (bf != NULL)
1260 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1261 		ATH_TXBUF_UNLOCK(sc);
1262 		if (bf == NULL) {
1263 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1264 				__func__);
1265 			sc->sc_stats.ast_tx_qstop++;
1266 			ifp->if_flags |= IFF_OACTIVE;
1267 			break;
1268 		}
1269 		/*
1270 		 * Poll the management queue for frames; they
1271 		 * have priority over normal data frames.
1272 		 */
1273 		IF_DEQUEUE(&ic->ic_mgtq, m);
1274 		if (m == NULL) {
1275 			/*
1276 			 * No data frames go out unless we're associated.
1277 			 */
1278 			if (ic->ic_state != IEEE80211_S_RUN) {
1279 				DPRINTF(sc, ATH_DEBUG_XMIT,
1280 				    "%s: discard data packet, state %s\n",
1281 				    __func__,
1282 				    ieee80211_state_name[ic->ic_state]);
1283 				sc->sc_stats.ast_tx_discard++;
1284 				ATH_TXBUF_LOCK(sc);
1285 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1286 				ATH_TXBUF_UNLOCK(sc);
1287 				break;
1288 			}
1289 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1290 			if (m == NULL) {
1291 				ATH_TXBUF_LOCK(sc);
1292 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1293 				ATH_TXBUF_UNLOCK(sc);
1294 				break;
1295 			}
1296 			/*
1297 			 * Find the node for the destination so we can do
1298 			 * things like power save and fast frames aggregation.
1299 			 */
1300 			if (m->m_len < sizeof(struct ether_header) &&
1301 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1302 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1303 				ni = NULL;
1304 				goto bad;
1305 			}
1306 			eh = mtod(m, struct ether_header *);
1307 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1308 			if (ni == NULL) {
1309 				/* NB: ieee80211_find_txnode does stat+msg */
1310 				m_freem(m);
1311 				goto bad;
1312 			}
1313 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1314 			    (m->m_flags & M_PWR_SAV) == 0) {
1315 				/*
1316 				 * Station in power save mode; pass the frame
1317 				 * to the 802.11 layer and continue.  We'll get
1318 				 * the frame back when the time is right.
1319 				 */
1320 				ieee80211_pwrsave(ic, ni, m);
1321 				goto reclaim;
1322 			}
1323 			/* calculate priority so we can find the tx queue */
1324 			if (ieee80211_classify(ic, m, ni)) {
1325 				DPRINTF(sc, ATH_DEBUG_XMIT,
1326 					"%s: discard, classification failure\n",
1327 					__func__);
1328 				m_freem(m);
1329 				goto bad;
1330 			}
1331 			ifp->if_opackets++;
1332 
1333 #if NBPFILTER > 0
1334 			if (ifp->if_bpf)
1335 				bpf_mtap(ifp->if_bpf, m);
1336 #endif
1337 			/*
1338 			 * Encapsulate the packet in prep for transmission.
1339 			 */
1340 			m = ieee80211_encap(ic, m, ni);
1341 			if (m == NULL) {
1342 				DPRINTF(sc, ATH_DEBUG_XMIT,
1343 					"%s: encapsulation failure\n",
1344 					__func__);
1345 				sc->sc_stats.ast_tx_encap++;
1346 				goto bad;
1347 			}
1348 		} else {
1349 			/*
1350 			 * Hack!  The referenced node pointer is in the
1351 			 * rcvif field of the packet header.  This is
1352 			 * placed there by ieee80211_mgmt_output because
1353 			 * we need to hold the reference with the frame
1354 			 * and there's no other way (other than packet
1355 			 * tags which we consider too expensive to use)
1356 			 * to pass it along.
1357 			 */
1358 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1359 			m->m_pkthdr.rcvif = NULL;
1360 
1361 			wh = mtod(m, struct ieee80211_frame *);
1362 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1363 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1364 				/* fill time stamp */
1365 				u_int64_t tsf;
1366 				u_int32_t *tstamp;
1367 
1368 				tsf = ath_hal_gettsf64(ah);
1369 				/* XXX: adjust 100us delay to xmit */
1370 				tsf += 100;
1371 				tstamp = (u_int32_t *)&wh[1];
1372 				tstamp[0] = htole32(tsf & 0xffffffff);
1373 				tstamp[1] = htole32(tsf >> 32);
1374 			}
1375 			sc->sc_stats.ast_tx_mgmt++;
1376 		}
1377 
1378 		if (ath_tx_start(sc, ni, bf, m)) {
1379 	bad:
1380 			ifp->if_oerrors++;
1381 	reclaim:
1382 			ATH_TXBUF_LOCK(sc);
1383 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1384 			ATH_TXBUF_UNLOCK(sc);
1385 			if (ni != NULL)
1386 				ieee80211_free_node(ni);
1387 			continue;
1388 		}
1389 
1390 		sc->sc_tx_timer = 5;
1391 		ifp->if_timer = 1;
1392 	}
1393 }
1394 
1395 static int
1396 ath_media_change(struct ifnet *ifp)
1397 {
1398 #define	IS_UP(ifp) \
1399 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1400 	int error;
1401 
1402 	error = ieee80211_media_change(ifp);
1403 	if (error == ENETRESET) {
1404 		if (IS_UP(ifp))
1405 			ath_init(ifp->if_softc);	/* XXX lose error */
1406 		error = 0;
1407 	}
1408 	return error;
1409 #undef IS_UP
1410 }
1411 
1412 #ifdef AR_DEBUG
1413 static void
1414 ath_keyprint(const char *tag, u_int ix,
1415 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1416 {
1417 	static const char *ciphers[] = {
1418 		"WEP",
1419 		"AES-OCB",
1420 		"AES-CCM",
1421 		"CKIP",
1422 		"TKIP",
1423 		"CLR",
1424 	};
1425 	int i, n;
1426 
1427 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1428 	for (i = 0, n = hk->kv_len; i < n; i++)
1429 		printf("%02x", hk->kv_val[i]);
1430 	printf(" mac %s", ether_sprintf(mac));
1431 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1432 		printf(" mic ");
1433 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1434 			printf("%02x", hk->kv_mic[i]);
1435 	}
1436 	printf("\n");
1437 }
1438 #endif
1439 
1440 /*
1441  * Set a TKIP key into the hardware.  This handles the
1442  * potential distribution of key state to multiple key
1443  * cache slots for TKIP.
1444  */
1445 static int
1446 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1447 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1448 {
1449 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1450 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1451 	struct ath_hal *ah = sc->sc_ah;
1452 
1453 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1454 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1455 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1456 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1457 		/*
1458 		 * TX key goes at first index, RX key at the rx index.
1459 		 * The hal handles the MIC keys at index+64.
1460 		 */
1461 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1462 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1463 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1464 			return 0;
1465 
1466 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1467 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1468 		/* XXX delete tx key on failure? */
1469 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1470 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1471 		/*
1472 		 * TX/RX key goes at first index.
1473 		 * The hal handles the MIC keys are index+64.
1474 		 */
1475 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1476 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1477 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1478 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1479 	}
1480 	return 0;
1481 #undef IEEE80211_KEY_XR
1482 }
1483 
1484 /*
1485  * Set a net80211 key into the hardware.  This handles the
1486  * potential distribution of key state to multiple key
1487  * cache slots for TKIP with hardware MIC support.
1488  */
1489 static int
1490 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1491 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1492 	struct ieee80211_node *bss)
1493 {
1494 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1495 	static const u_int8_t ciphermap[] = {
1496 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1497 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1498 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1499 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1500 		(u_int8_t) -1,		/* 4 is not allocated */
1501 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1502 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1503 	};
1504 	struct ath_hal *ah = sc->sc_ah;
1505 	const struct ieee80211_cipher *cip = k->wk_cipher;
1506 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1507 	const u_int8_t *mac;
1508 	HAL_KEYVAL hk;
1509 
1510 	memset(&hk, 0, sizeof(hk));
1511 	/*
1512 	 * Software crypto uses a "clear key" so non-crypto
1513 	 * state kept in the key cache are maintained and
1514 	 * so that rx frames have an entry to match.
1515 	 */
1516 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1517 		KASSERT(cip->ic_cipher < N(ciphermap),
1518 			("invalid cipher type %u", cip->ic_cipher));
1519 		hk.kv_type = ciphermap[cip->ic_cipher];
1520 		hk.kv_len = k->wk_keylen;
1521 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1522 	} else
1523 		hk.kv_type = HAL_CIPHER_CLR;
1524 
1525 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1526 		/*
1527 		 * Group keys on hardware that supports multicast frame
1528 		 * key search use a mac that is the sender's address with
1529 		 * the high bit set instead of the app-specified address.
1530 		 */
1531 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1532 		gmac[0] |= 0x80;
1533 		mac = gmac;
1534 	} else
1535 		mac = mac0;
1536 
1537 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1538 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1539 	    sc->sc_splitmic) {
1540 		return ath_keyset_tkip(sc, k, &hk, mac);
1541 	} else {
1542 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1543 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1544 	}
1545 #undef N
1546 }
1547 
1548 /*
1549  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1550  * each key, one for decrypt/encrypt and the other for the MIC.
1551  */
1552 static u_int16_t
1553 key_alloc_2pair(struct ath_softc *sc,
1554 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1555 {
1556 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1557 	u_int i, keyix;
1558 
1559 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1560 	/* XXX could optimize */
1561 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1562 		u_int8_t b = sc->sc_keymap[i];
1563 		if (b != 0xff) {
1564 			/*
1565 			 * One or more slots in this byte are free.
1566 			 */
1567 			keyix = i*NBBY;
1568 			while (b & 1) {
1569 		again:
1570 				keyix++;
1571 				b >>= 1;
1572 			}
1573 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1574 			if (isset(sc->sc_keymap, keyix+32) ||
1575 			    isset(sc->sc_keymap, keyix+64) ||
1576 			    isset(sc->sc_keymap, keyix+32+64)) {
1577 				/* full pair unavailable */
1578 				/* XXX statistic */
1579 				if (keyix == (i+1)*NBBY) {
1580 					/* no slots were appropriate, advance */
1581 					continue;
1582 				}
1583 				goto again;
1584 			}
1585 			setbit(sc->sc_keymap, keyix);
1586 			setbit(sc->sc_keymap, keyix+64);
1587 			setbit(sc->sc_keymap, keyix+32);
1588 			setbit(sc->sc_keymap, keyix+32+64);
1589 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1590 				"%s: key pair %u,%u %u,%u\n",
1591 				__func__, keyix, keyix+64,
1592 				keyix+32, keyix+32+64);
1593 			*txkeyix = keyix;
1594 			*rxkeyix = keyix+32;
1595 			return 1;
1596 		}
1597 	}
1598 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1599 	return 0;
1600 #undef N
1601 }
1602 
1603 /*
1604  * Allocate a single key cache slot.
1605  */
1606 static int
1607 key_alloc_single(struct ath_softc *sc,
1608 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1609 {
1610 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1611 	u_int i, keyix;
1612 
1613 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1614 	for (i = 0; i < N(sc->sc_keymap); i++) {
1615 		u_int8_t b = sc->sc_keymap[i];
1616 		if (b != 0xff) {
1617 			/*
1618 			 * One or more slots are free.
1619 			 */
1620 			keyix = i*NBBY;
1621 			while (b & 1)
1622 				keyix++, b >>= 1;
1623 			setbit(sc->sc_keymap, keyix);
1624 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1625 				__func__, keyix);
1626 			*txkeyix = *rxkeyix = keyix;
1627 			return 1;
1628 		}
1629 	}
1630 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1631 	return 0;
1632 #undef N
1633 }
1634 
1635 /*
1636  * Allocate one or more key cache slots for a uniacst key.  The
1637  * key itself is needed only to identify the cipher.  For hardware
1638  * TKIP with split cipher+MIC keys we allocate two key cache slot
1639  * pairs so that we can setup separate TX and RX MIC keys.  Note
1640  * that the MIC key for a TKIP key at slot i is assumed by the
1641  * hardware to be at slot i+64.  This limits TKIP keys to the first
1642  * 64 entries.
1643  */
1644 static int
1645 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1646 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1647 {
1648 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1649 
1650 	/*
1651 	 * Group key allocation must be handled specially for
1652 	 * parts that do not support multicast key cache search
1653 	 * functionality.  For those parts the key id must match
1654 	 * the h/w key index so lookups find the right key.  On
1655 	 * parts w/ the key search facility we install the sender's
1656 	 * mac address (with the high bit set) and let the hardware
1657 	 * find the key w/o using the key id.  This is preferred as
1658 	 * it permits us to support multiple users for adhoc and/or
1659 	 * multi-station operation.
1660 	 */
1661 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1662 		if (!(&ic->ic_nw_keys[0] <= k &&
1663 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1664 			/* should not happen */
1665 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1666 				"%s: bogus group key\n", __func__);
1667 			return 0;
1668 		}
1669 		/*
1670 		 * XXX we pre-allocate the global keys so
1671 		 * have no way to check if they've already been allocated.
1672 		 */
1673 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1674 		return 1;
1675 	}
1676 
1677 	/*
1678 	 * We allocate two pair for TKIP when using the h/w to do
1679 	 * the MIC.  For everything else, including software crypto,
1680 	 * we allocate a single entry.  Note that s/w crypto requires
1681 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1682 	 * not support pass-through cache entries and we map all
1683 	 * those requests to slot 0.
1684 	 */
1685 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1686 		return key_alloc_single(sc, keyix, rxkeyix);
1687 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1688 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1689 		return key_alloc_2pair(sc, keyix, rxkeyix);
1690 	} else {
1691 		return key_alloc_single(sc, keyix, rxkeyix);
1692 	}
1693 }
1694 
1695 /*
1696  * Delete an entry in the key cache allocated by ath_key_alloc.
1697  */
1698 static int
1699 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1700 {
1701 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1702 	struct ath_hal *ah = sc->sc_ah;
1703 	const struct ieee80211_cipher *cip = k->wk_cipher;
1704 	u_int keyix = k->wk_keyix;
1705 
1706 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1707 
1708 	ath_hal_keyreset(ah, keyix);
1709 	/*
1710 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1711 	 */
1712 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1713 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1714 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1715 	if (keyix >= IEEE80211_WEP_NKID) {
1716 		/*
1717 		 * Don't touch keymap entries for global keys so
1718 		 * they are never considered for dynamic allocation.
1719 		 */
1720 		clrbit(sc->sc_keymap, keyix);
1721 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1722 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1723 		    sc->sc_splitmic) {
1724 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1725 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1726 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1727 		}
1728 	}
1729 	return 1;
1730 }
1731 
1732 /*
1733  * Set the key cache contents for the specified key.  Key cache
1734  * slot(s) must already have been allocated by ath_key_alloc.
1735  */
1736 static int
1737 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1738 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1739 {
1740 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1741 
1742 	return ath_keyset(sc, k, mac, ic->ic_bss);
1743 }
1744 
1745 /*
1746  * Block/unblock tx+rx processing while a key change is done.
1747  * We assume the caller serializes key management operations
1748  * so we only need to worry about synchronization with other
1749  * uses that originate in the driver.
1750  */
1751 static void
1752 ath_key_update_begin(struct ieee80211com *ic)
1753 {
1754 	struct ifnet *ifp = ic->ic_ifp;
1755 	struct ath_softc *sc = ifp->if_softc;
1756 
1757 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1758 #if 0
1759 	tasklet_disable(&sc->sc_rxtq);
1760 #endif
1761 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1762 }
1763 
1764 static void
1765 ath_key_update_end(struct ieee80211com *ic)
1766 {
1767 	struct ifnet *ifp = ic->ic_ifp;
1768 	struct ath_softc *sc = ifp->if_softc;
1769 
1770 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1771 	IF_UNLOCK(&ifp->if_snd);
1772 #if 0
1773 	tasklet_enable(&sc->sc_rxtq);
1774 #endif
1775 }
1776 
1777 /*
1778  * Calculate the receive filter according to the
1779  * operating mode and state:
1780  *
1781  * o always accept unicast, broadcast, and multicast traffic
1782  * o maintain current state of phy error reception (the hal
1783  *   may enable phy error frames for noise immunity work)
1784  * o probe request frames are accepted only when operating in
1785  *   hostap, adhoc, or monitor modes
1786  * o enable promiscuous mode according to the interface state
1787  * o accept beacons:
1788  *   - when operating in adhoc mode so the 802.11 layer creates
1789  *     node table entries for peers,
1790  *   - when operating in station mode for collecting rssi data when
1791  *     the station is otherwise quiet, or
1792  *   - when scanning
1793  */
1794 static u_int32_t
1795 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1796 {
1797 	struct ieee80211com *ic = &sc->sc_ic;
1798 	struct ath_hal *ah = sc->sc_ah;
1799 	struct ifnet *ifp = &sc->sc_if;
1800 	u_int32_t rfilt;
1801 
1802 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1803 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1804 	if (ic->ic_opmode != IEEE80211_M_STA)
1805 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1806 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1807 	    (ifp->if_flags & IFF_PROMISC))
1808 		rfilt |= HAL_RX_FILTER_PROM;
1809 	if (ic->ic_opmode == IEEE80211_M_STA ||
1810 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1811 	    state == IEEE80211_S_SCAN)
1812 		rfilt |= HAL_RX_FILTER_BEACON;
1813 	return rfilt;
1814 }
1815 
1816 static void
1817 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt)
1818 {
1819 	u_int32_t val;
1820 	u_int8_t pos;
1821 
1822 	/* calculate XOR of eight 6bit values */
1823 	val = LE_READ_4(dl + 0);
1824 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1825 	val = LE_READ_4(dl + 3);
1826 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1827 	pos &= 0x3f;
1828 	mfilt[pos / 32] |= (1 << (pos % 32));
1829 }
1830 
1831 static void
1832 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1833 {
1834 	struct ifnet *ifp = &sc->sc_if;
1835 	struct ether_multi *enm;
1836 	struct ether_multistep estep;
1837 
1838 	mfilt[0] = mfilt[1] = 0;
1839 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1840 	while (enm != NULL) {
1841 		/* XXX Punt on ranges. */
1842 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1843 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1844 			ifp->if_flags |= IFF_ALLMULTI;
1845 			return;
1846 		}
1847 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1848 		ETHER_NEXT_MULTI(estep, enm);
1849 	}
1850 	ifp->if_flags &= ~IFF_ALLMULTI;
1851 }
1852 
1853 static void
1854 ath_mode_init(struct ath_softc *sc)
1855 {
1856 	struct ieee80211com *ic = &sc->sc_ic;
1857 	struct ath_hal *ah = sc->sc_ah;
1858 	u_int32_t rfilt, mfilt[2];
1859 	int i;
1860 
1861 	/* configure rx filter */
1862 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1863 	ath_hal_setrxfilter(ah, rfilt);
1864 
1865 	/* configure operational mode */
1866 	ath_hal_setopmode(ah);
1867 
1868 	/* Write keys to hardware; it may have been powered down. */
1869 	ath_key_update_begin(ic);
1870 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1871 		ath_key_set(ic,
1872 			    &ic->ic_crypto.cs_nw_keys[i],
1873 			    ic->ic_myaddr);
1874 	}
1875 	ath_key_update_end(ic);
1876 
1877 	/*
1878 	 * Handle any link-level address change.  Note that we only
1879 	 * need to force ic_myaddr; any other addresses are handled
1880 	 * as a byproduct of the ifnet code marking the interface
1881 	 * down then up.
1882 	 *
1883 	 * XXX should get from lladdr instead of arpcom but that's more work
1884 	 */
1885 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl));
1886 	ath_hal_setmac(ah, ic->ic_myaddr);
1887 
1888 	/* calculate and install multicast filter */
1889 #ifdef __FreeBSD__
1890 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1891 		mfilt[0] = mfilt[1] = 0;
1892 		IF_ADDR_LOCK(ifp);
1893 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1894 			caddr_t dl;
1895 
1896 			/* calculate XOR of eight 6bit values */
1897 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1898 			val = LE_READ_4(dl + 0);
1899 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1900 			val = LE_READ_4(dl + 3);
1901 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1902 			pos &= 0x3f;
1903 			mfilt[pos / 32] |= (1 << (pos % 32));
1904 		}
1905 		IF_ADDR_UNLOCK(ifp);
1906 	} else {
1907 		mfilt[0] = mfilt[1] = ~0;
1908 	}
1909 #endif
1910 #ifdef __NetBSD__
1911 	ath_mcastfilter_compute(sc, mfilt);
1912 #endif
1913 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1914 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1915 		__func__, rfilt, mfilt[0], mfilt[1]);
1916 }
1917 
1918 /*
1919  * Set the slot time based on the current setting.
1920  */
1921 static void
1922 ath_setslottime(struct ath_softc *sc)
1923 {
1924 	struct ieee80211com *ic = &sc->sc_ic;
1925 	struct ath_hal *ah = sc->sc_ah;
1926 
1927 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1928 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1929 	else
1930 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1931 	sc->sc_updateslot = OK;
1932 }
1933 
1934 /*
1935  * Callback from the 802.11 layer to update the
1936  * slot time based on the current setting.
1937  */
1938 static void
1939 ath_updateslot(struct ifnet *ifp)
1940 {
1941 	struct ath_softc *sc = ifp->if_softc;
1942 	struct ieee80211com *ic = &sc->sc_ic;
1943 
1944 	/*
1945 	 * When not coordinating the BSS, change the hardware
1946 	 * immediately.  For other operation we defer the change
1947 	 * until beacon updates have propagated to the stations.
1948 	 */
1949 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1950 		sc->sc_updateslot = UPDATE;
1951 	else
1952 		ath_setslottime(sc);
1953 }
1954 
1955 /*
1956  * Setup a h/w transmit queue for beacons.
1957  */
1958 static int
1959 ath_beaconq_setup(struct ath_hal *ah)
1960 {
1961 	HAL_TXQ_INFO qi;
1962 
1963 	memset(&qi, 0, sizeof(qi));
1964 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1965 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1966 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1967 	/* NB: for dynamic turbo, don't enable any other interrupts */
1968 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1969 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1970 }
1971 
1972 /*
1973  * Setup the transmit queue parameters for the beacon queue.
1974  */
1975 static int
1976 ath_beaconq_config(struct ath_softc *sc)
1977 {
1978 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1979 	struct ieee80211com *ic = &sc->sc_ic;
1980 	struct ath_hal *ah = sc->sc_ah;
1981 	HAL_TXQ_INFO qi;
1982 
1983 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1984 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1985 		/*
1986 		 * Always burst out beacon and CAB traffic.
1987 		 */
1988 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1989 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1990 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1991 	} else {
1992 		struct wmeParams *wmep =
1993 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1994 		/*
1995 		 * Adhoc mode; important thing is to use 2x cwmin.
1996 		 */
1997 		qi.tqi_aifs = wmep->wmep_aifsn;
1998 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1999 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2000 	}
2001 
2002 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2003 		device_printf(sc->sc_dev, "unable to update parameters for "
2004 			"beacon hardware queue!\n");
2005 		return 0;
2006 	} else {
2007 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2008 		return 1;
2009 	}
2010 #undef ATH_EXPONENT_TO_VALUE
2011 }
2012 
2013 /*
2014  * Allocate and setup an initial beacon frame.
2015  */
2016 static int
2017 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2018 {
2019 	struct ieee80211com *ic = ni->ni_ic;
2020 	struct ath_buf *bf;
2021 	struct mbuf *m;
2022 	int error;
2023 
2024 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2025 	if (bf == NULL) {
2026 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2027 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2028 		return ENOMEM;			/* XXX */
2029 	}
2030 	/*
2031 	 * NB: the beacon data buffer must be 32-bit aligned;
2032 	 * we assume the mbuf routines will return us something
2033 	 * with this alignment (perhaps should assert).
2034 	 */
2035 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2036 	if (m == NULL) {
2037 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2038 			__func__);
2039 		sc->sc_stats.ast_be_nombuf++;
2040 		return ENOMEM;
2041 	}
2042 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2043 				     BUS_DMA_NOWAIT);
2044 	if (error == 0) {
2045 		bf->bf_m = m;
2046 		bf->bf_node = ieee80211_ref_node(ni);
2047 	} else {
2048 		m_freem(m);
2049 	}
2050 	return error;
2051 }
2052 
2053 /*
2054  * Setup the beacon frame for transmit.
2055  */
2056 static void
2057 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2058 {
2059 #define	USE_SHPREAMBLE(_ic) \
2060 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2061 		== IEEE80211_F_SHPREAMBLE)
2062 	struct ieee80211_node *ni = bf->bf_node;
2063 	struct ieee80211com *ic = ni->ni_ic;
2064 	struct mbuf *m = bf->bf_m;
2065 	struct ath_hal *ah = sc->sc_ah;
2066 	struct ath_desc *ds;
2067 	int flags, antenna;
2068 	const HAL_RATE_TABLE *rt;
2069 	u_int8_t rix, rate;
2070 
2071 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2072 		__func__, m, m->m_len);
2073 
2074 	/* setup descriptors */
2075 	ds = bf->bf_desc;
2076 
2077 	flags = HAL_TXDESC_NOACK;
2078 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2079 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2080 		flags |= HAL_TXDESC_VEOL;
2081 		/*
2082 		 * Let hardware handle antenna switching unless
2083 		 * the user has selected a transmit antenna
2084 		 * (sc_txantenna is not 0).
2085 		 */
2086 		antenna = sc->sc_txantenna;
2087 	} else {
2088 		ds->ds_link = 0;
2089 		/*
2090 		 * Switch antenna every 4 beacons, unless the user
2091 		 * has selected a transmit antenna (sc_txantenna
2092 		 * is not 0).
2093 		 *
2094 		 * XXX assumes two antenna
2095 		 */
2096 		if (sc->sc_txantenna == 0)
2097 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2098 		else
2099 			antenna = sc->sc_txantenna;
2100 	}
2101 
2102 	KASSERT(bf->bf_nseg == 1,
2103 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2104 	ds->ds_data = bf->bf_segs[0].ds_addr;
2105 	/*
2106 	 * Calculate rate code.
2107 	 * XXX everything at min xmit rate
2108 	 */
2109 	rix = sc->sc_minrateix;
2110 	rt = sc->sc_currates;
2111 	rate = rt->info[rix].rateCode;
2112 	if (USE_SHPREAMBLE(ic))
2113 		rate |= rt->info[rix].shortPreamble;
2114 	ath_hal_setuptxdesc(ah, ds
2115 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2116 		, sizeof(struct ieee80211_frame)/* header length */
2117 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2118 		, ni->ni_txpower		/* txpower XXX */
2119 		, rate, 1			/* series 0 rate/tries */
2120 		, HAL_TXKEYIX_INVALID		/* no encryption */
2121 		, antenna			/* antenna mode */
2122 		, flags				/* no ack, veol for beacons */
2123 		, 0				/* rts/cts rate */
2124 		, 0				/* rts/cts duration */
2125 	);
2126 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2127 	ath_hal_filltxdesc(ah, ds
2128 		, roundup(m->m_len, 4)		/* buffer length */
2129 		, AH_TRUE			/* first segment */
2130 		, AH_TRUE			/* last segment */
2131 		, ds				/* first descriptor */
2132 	);
2133 
2134 	/* NB: The desc swap function becomes void,
2135 	 * if descriptor swapping is not enabled
2136 	 */
2137 	ath_desc_swap(ds);
2138 
2139 #undef USE_SHPREAMBLE
2140 }
2141 
2142 /*
2143  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2144  * frame contents are done as needed and the slot time is
2145  * also adjusted based on current state.
2146  */
2147 static void
2148 ath_beacon_proc(void *arg, int pending)
2149 {
2150 	struct ath_softc *sc = arg;
2151 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2152 	struct ieee80211_node *ni = bf->bf_node;
2153 	struct ieee80211com *ic = ni->ni_ic;
2154 	struct ath_hal *ah = sc->sc_ah;
2155 	struct mbuf *m;
2156 	int ncabq, error, otherant;
2157 
2158 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2159 		__func__, pending);
2160 
2161 	if (ic->ic_opmode == IEEE80211_M_STA ||
2162 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2163 	    bf == NULL || bf->bf_m == NULL) {
2164 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2165 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2166 		return;
2167 	}
2168 	/*
2169 	 * Check if the previous beacon has gone out.  If
2170 	 * not don't try to post another, skip this period
2171 	 * and wait for the next.  Missed beacons indicate
2172 	 * a problem and should not occur.  If we miss too
2173 	 * many consecutive beacons reset the device.
2174 	 */
2175 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2176 		sc->sc_bmisscount++;
2177 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2178 			"%s: missed %u consecutive beacons\n",
2179 			__func__, sc->sc_bmisscount);
2180 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2181 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2182 		return;
2183 	}
2184 	if (sc->sc_bmisscount != 0) {
2185 		DPRINTF(sc, ATH_DEBUG_BEACON,
2186 			"%s: resume beacon xmit after %u misses\n",
2187 			__func__, sc->sc_bmisscount);
2188 		sc->sc_bmisscount = 0;
2189 	}
2190 
2191 	/*
2192 	 * Update dynamic beacon contents.  If this returns
2193 	 * non-zero then we need to remap the memory because
2194 	 * the beacon frame changed size (probably because
2195 	 * of the TIM bitmap).
2196 	 */
2197 	m = bf->bf_m;
2198 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2199 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2200 		/* XXX too conservative? */
2201 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2202 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2203 					     BUS_DMA_NOWAIT);
2204 		if (error != 0) {
2205 			if_printf(&sc->sc_if,
2206 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2207 			    __func__, error);
2208 			return;
2209 		}
2210 	}
2211 
2212 	/*
2213 	 * Handle slot time change when a non-ERP station joins/leaves
2214 	 * an 11g network.  The 802.11 layer notifies us via callback,
2215 	 * we mark updateslot, then wait one beacon before effecting
2216 	 * the change.  This gives associated stations at least one
2217 	 * beacon interval to note the state change.
2218 	 */
2219 	/* XXX locking */
2220 	if (sc->sc_updateslot == UPDATE)
2221 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2222 	else if (sc->sc_updateslot == COMMIT)
2223 		ath_setslottime(sc);		/* commit change to h/w */
2224 
2225 	/*
2226 	 * Check recent per-antenna transmit statistics and flip
2227 	 * the default antenna if noticeably more frames went out
2228 	 * on the non-default antenna.
2229 	 * XXX assumes 2 anntenae
2230 	 */
2231 	otherant = sc->sc_defant & 1 ? 2 : 1;
2232 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2233 		ath_setdefantenna(sc, otherant);
2234 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2235 
2236 	/*
2237 	 * Construct tx descriptor.
2238 	 */
2239 	ath_beacon_setup(sc, bf);
2240 
2241 	/*
2242 	 * Stop any current dma and put the new frame on the queue.
2243 	 * This should never fail since we check above that no frames
2244 	 * are still pending on the queue.
2245 	 */
2246 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2247 		DPRINTF(sc, ATH_DEBUG_ANY,
2248 			"%s: beacon queue %u did not stop?\n",
2249 			__func__, sc->sc_bhalq);
2250 	}
2251 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2252 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2253 
2254 	/*
2255 	 * Enable the CAB queue before the beacon queue to
2256 	 * insure cab frames are triggered by this beacon.
2257 	 */
2258 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2259 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2260 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2261 	ath_hal_txstart(ah, sc->sc_bhalq);
2262 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2263 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2264 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2265 
2266 	sc->sc_stats.ast_be_xmit++;
2267 }
2268 
2269 /*
2270  * Reset the hardware after detecting beacons have stopped.
2271  */
2272 static void
2273 ath_bstuck_proc(void *arg, int pending __unused)
2274 {
2275 	struct ath_softc *sc = arg;
2276 	struct ifnet *ifp = &sc->sc_if;
2277 
2278 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2279 		sc->sc_bmisscount);
2280 	ath_reset(ifp);
2281 }
2282 
2283 /*
2284  * Reclaim beacon resources.
2285  */
2286 static void
2287 ath_beacon_free(struct ath_softc *sc)
2288 {
2289 	struct ath_buf *bf;
2290 
2291 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2292 		if (bf->bf_m != NULL) {
2293 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2294 			m_freem(bf->bf_m);
2295 			bf->bf_m = NULL;
2296 		}
2297 		if (bf->bf_node != NULL) {
2298 			ieee80211_free_node(bf->bf_node);
2299 			bf->bf_node = NULL;
2300 		}
2301 	}
2302 }
2303 
2304 /*
2305  * Configure the beacon and sleep timers.
2306  *
2307  * When operating as an AP this resets the TSF and sets
2308  * up the hardware to notify us when we need to issue beacons.
2309  *
2310  * When operating in station mode this sets up the beacon
2311  * timers according to the timestamp of the last received
2312  * beacon and the current TSF, configures PCF and DTIM
2313  * handling, programs the sleep registers so the hardware
2314  * will wakeup in time to receive beacons, and configures
2315  * the beacon miss handling so we'll receive a BMISS
2316  * interrupt when we stop seeing beacons from the AP
2317  * we've associated with.
2318  */
2319 static void
2320 ath_beacon_config(struct ath_softc *sc)
2321 {
2322 #define	TSF_TO_TU(_h,_l) \
2323 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2324 #define	FUDGE	2
2325 	struct ath_hal *ah = sc->sc_ah;
2326 	struct ieee80211com *ic = &sc->sc_ic;
2327 	struct ieee80211_node *ni = ic->ic_bss;
2328 	u_int32_t nexttbtt, intval, tsftu;
2329 	u_int64_t tsf;
2330 
2331 	/* extract tstamp from last beacon and convert to TU */
2332 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2333 			     LE_READ_4(ni->ni_tstamp.data));
2334 	/* NB: the beacon interval is kept internally in TU's */
2335 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2336 	if (nexttbtt == 0)		/* e.g. for ap mode */
2337 		nexttbtt = intval;
2338 	else if (intval)		/* NB: can be 0 for monitor mode */
2339 		nexttbtt = roundup(nexttbtt, intval);
2340 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2341 		__func__, nexttbtt, intval, ni->ni_intval);
2342 	if (ic->ic_opmode == IEEE80211_M_STA) {
2343 		HAL_BEACON_STATE bs;
2344 		int dtimperiod, dtimcount;
2345 		int cfpperiod, cfpcount;
2346 
2347 		/*
2348 		 * Setup dtim and cfp parameters according to
2349 		 * last beacon we received (which may be none).
2350 		 */
2351 		dtimperiod = ni->ni_dtim_period;
2352 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2353 			dtimperiod = 1;
2354 		dtimcount = ni->ni_dtim_count;
2355 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2356 			dtimcount = 0;		/* XXX? */
2357 		cfpperiod = 1;			/* NB: no PCF support yet */
2358 		cfpcount = 0;
2359 		/*
2360 		 * Pull nexttbtt forward to reflect the current
2361 		 * TSF and calculate dtim+cfp state for the result.
2362 		 */
2363 		tsf = ath_hal_gettsf64(ah);
2364 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2365 		do {
2366 			nexttbtt += intval;
2367 			if (--dtimcount < 0) {
2368 				dtimcount = dtimperiod - 1;
2369 				if (--cfpcount < 0)
2370 					cfpcount = cfpperiod - 1;
2371 			}
2372 		} while (nexttbtt < tsftu);
2373 		memset(&bs, 0, sizeof(bs));
2374 		bs.bs_intval = intval;
2375 		bs.bs_nexttbtt = nexttbtt;
2376 		bs.bs_dtimperiod = dtimperiod*intval;
2377 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2378 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2379 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2380 		bs.bs_cfpmaxduration = 0;
2381 #if 0
2382 		/*
2383 		 * The 802.11 layer records the offset to the DTIM
2384 		 * bitmap while receiving beacons; use it here to
2385 		 * enable h/w detection of our AID being marked in
2386 		 * the bitmap vector (to indicate frames for us are
2387 		 * pending at the AP).
2388 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2389 		 * XXX enable based on h/w rev for newer chips
2390 		 */
2391 		bs.bs_timoffset = ni->ni_timoff;
2392 #endif
2393 		/*
2394 		 * Calculate the number of consecutive beacons to miss
2395 		 * before taking a BMISS interrupt.  The configuration
2396 		 * is specified in ms, so we need to convert that to
2397 		 * TU's and then calculate based on the beacon interval.
2398 		 * Note that we clamp the result to at most 10 beacons.
2399 		 */
2400 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2401 		if (bs.bs_bmissthreshold > 10)
2402 			bs.bs_bmissthreshold = 10;
2403 		else if (bs.bs_bmissthreshold <= 0)
2404 			bs.bs_bmissthreshold = 1;
2405 
2406 		/*
2407 		 * Calculate sleep duration.  The configuration is
2408 		 * given in ms.  We insure a multiple of the beacon
2409 		 * period is used.  Also, if the sleep duration is
2410 		 * greater than the DTIM period then it makes senses
2411 		 * to make it a multiple of that.
2412 		 *
2413 		 * XXX fixed at 100ms
2414 		 */
2415 		bs.bs_sleepduration =
2416 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2417 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2418 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2419 
2420 		DPRINTF(sc, ATH_DEBUG_BEACON,
2421 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2422 			, __func__
2423 			, tsf, tsftu
2424 			, bs.bs_intval
2425 			, bs.bs_nexttbtt
2426 			, bs.bs_dtimperiod
2427 			, bs.bs_nextdtim
2428 			, bs.bs_bmissthreshold
2429 			, bs.bs_sleepduration
2430 			, bs.bs_cfpperiod
2431 			, bs.bs_cfpmaxduration
2432 			, bs.bs_cfpnext
2433 			, bs.bs_timoffset
2434 		);
2435 		ath_hal_intrset(ah, 0);
2436 		ath_hal_beacontimers(ah, &bs);
2437 		sc->sc_imask |= HAL_INT_BMISS;
2438 		ath_hal_intrset(ah, sc->sc_imask);
2439 	} else {
2440 		ath_hal_intrset(ah, 0);
2441 		if (nexttbtt == intval)
2442 			intval |= HAL_BEACON_RESET_TSF;
2443 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2444 			/*
2445 			 * In IBSS mode enable the beacon timers but only
2446 			 * enable SWBA interrupts if we need to manually
2447 			 * prepare beacon frames.  Otherwise we use a
2448 			 * self-linked tx descriptor and let the hardware
2449 			 * deal with things.
2450 			 */
2451 			intval |= HAL_BEACON_ENA;
2452 			if (!sc->sc_hasveol)
2453 				sc->sc_imask |= HAL_INT_SWBA;
2454 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2455 				/*
2456 				 * Pull nexttbtt forward to reflect
2457 				 * the current TSF.
2458 				 */
2459 				tsf = ath_hal_gettsf64(ah);
2460 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2461 				do {
2462 					nexttbtt += intval;
2463 				} while (nexttbtt < tsftu);
2464 			}
2465 			ath_beaconq_config(sc);
2466 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2467 			/*
2468 			 * In AP mode we enable the beacon timers and
2469 			 * SWBA interrupts to prepare beacon frames.
2470 			 */
2471 			intval |= HAL_BEACON_ENA;
2472 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2473 			ath_beaconq_config(sc);
2474 		}
2475 		ath_hal_beaconinit(ah, nexttbtt, intval);
2476 		sc->sc_bmisscount = 0;
2477 		ath_hal_intrset(ah, sc->sc_imask);
2478 		/*
2479 		 * When using a self-linked beacon descriptor in
2480 		 * ibss mode load it once here.
2481 		 */
2482 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2483 			ath_beacon_proc(sc, 0);
2484 	}
2485 	sc->sc_syncbeacon = 0;
2486 #undef UNDEF
2487 #undef TSF_TO_TU
2488 }
2489 
2490 static int
2491 ath_descdma_setup(struct ath_softc *sc,
2492 	struct ath_descdma *dd, ath_bufhead *head,
2493 	const char *name, int nbuf, int ndesc)
2494 {
2495 #define	DS2PHYS(_dd, _ds) \
2496 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2497 	struct ifnet *ifp = &sc->sc_if;
2498 	struct ath_desc *ds;
2499 	struct ath_buf *bf;
2500 	int i, bsize, error;
2501 
2502 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2503 	    __func__, name, nbuf, ndesc);
2504 
2505 	dd->dd_name = name;
2506 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2507 
2508 	/*
2509 	 * Setup DMA descriptor area.
2510 	 */
2511 	dd->dd_dmat = sc->sc_dmat;
2512 
2513 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2514 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2515 
2516 	if (error != 0) {
2517 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2518 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2519 		goto fail0;
2520 	}
2521 
2522 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2523 	    dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT);
2524 	if (error != 0) {
2525 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2526 		    nbuf * ndesc, dd->dd_name, error);
2527 		goto fail1;
2528 	}
2529 
2530 	/* allocate descriptors */
2531 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2532 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2533 	if (error != 0) {
2534 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2535 			"error %u\n", dd->dd_name, error);
2536 		goto fail2;
2537 	}
2538 
2539 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2540 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2541 	if (error != 0) {
2542 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2543 			dd->dd_name, error);
2544 		goto fail3;
2545 	}
2546 
2547 	ds = dd->dd_desc;
2548 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2549 	DPRINTF(sc, ATH_DEBUG_RESET,
2550 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2551 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2552 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2553 
2554 	/* allocate rx buffers */
2555 	bsize = sizeof(struct ath_buf) * nbuf;
2556 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2557 	if (bf == NULL) {
2558 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2559 			dd->dd_name, bsize);
2560 		goto fail4;
2561 	}
2562 	dd->dd_bufptr = bf;
2563 
2564 	STAILQ_INIT(head);
2565 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2566 		bf->bf_desc = ds;
2567 		bf->bf_daddr = DS2PHYS(dd, ds);
2568 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2569 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2570 		if (error != 0) {
2571 			if_printf(ifp, "unable to create dmamap for %s "
2572 				"buffer %u, error %u\n", dd->dd_name, i, error);
2573 			ath_descdma_cleanup(sc, dd, head);
2574 			return error;
2575 		}
2576 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2577 	}
2578 	return 0;
2579 fail4:
2580 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2581 fail3:
2582 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2583 fail2:
2584 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2585 fail1:
2586 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2587 fail0:
2588 	memset(dd, 0, sizeof(*dd));
2589 	return error;
2590 #undef DS2PHYS
2591 }
2592 
2593 static void
2594 ath_descdma_cleanup(struct ath_softc *sc,
2595 	struct ath_descdma *dd, ath_bufhead *head)
2596 {
2597 	struct ath_buf *bf;
2598 	struct ieee80211_node *ni;
2599 
2600 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2601 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2602 	bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len);
2603 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2604 
2605 	STAILQ_FOREACH(bf, head, bf_list) {
2606 		if (bf->bf_m) {
2607 			m_freem(bf->bf_m);
2608 			bf->bf_m = NULL;
2609 		}
2610 		if (bf->bf_dmamap != NULL) {
2611 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2612 			bf->bf_dmamap = NULL;
2613 		}
2614 		ni = bf->bf_node;
2615 		bf->bf_node = NULL;
2616 		if (ni != NULL) {
2617 			/*
2618 			 * Reclaim node reference.
2619 			 */
2620 			ieee80211_free_node(ni);
2621 		}
2622 	}
2623 
2624 	STAILQ_INIT(head);
2625 	free(dd->dd_bufptr, M_ATHDEV);
2626 	memset(dd, 0, sizeof(*dd));
2627 }
2628 
2629 static int
2630 ath_desc_alloc(struct ath_softc *sc)
2631 {
2632 	int error;
2633 
2634 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2635 			"rx", ath_rxbuf, 1);
2636 	if (error != 0)
2637 		return error;
2638 
2639 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2640 			"tx", ath_txbuf, ATH_TXDESC);
2641 	if (error != 0) {
2642 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2643 		return error;
2644 	}
2645 
2646 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2647 			"beacon", 1, 1);
2648 	if (error != 0) {
2649 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2650 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2651 		return error;
2652 	}
2653 	return 0;
2654 }
2655 
2656 static void
2657 ath_desc_free(struct ath_softc *sc)
2658 {
2659 
2660 	if (sc->sc_bdma.dd_desc_len != 0)
2661 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2662 	if (sc->sc_txdma.dd_desc_len != 0)
2663 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2664 	if (sc->sc_rxdma.dd_desc_len != 0)
2665 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2666 }
2667 
2668 static struct ieee80211_node *
2669 ath_node_alloc(struct ieee80211_node_table *nt)
2670 {
2671 	struct ieee80211com *ic = nt->nt_ic;
2672 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2673 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2674 	struct ath_node *an;
2675 
2676 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2677 	if (an == NULL) {
2678 		/* XXX stat+msg */
2679 		return NULL;
2680 	}
2681 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2682 	ath_rate_node_init(sc, an);
2683 
2684 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2685 	return &an->an_node;
2686 }
2687 
2688 static void
2689 ath_node_free(struct ieee80211_node *ni)
2690 {
2691 	struct ieee80211com *ic = ni->ni_ic;
2692         struct ath_softc *sc = ic->ic_ifp->if_softc;
2693 
2694 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2695 
2696 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2697 	sc->sc_node_free(ni);
2698 }
2699 
2700 static u_int8_t
2701 ath_node_getrssi(const struct ieee80211_node *ni)
2702 {
2703 #define	HAL_EP_RND(x, mul) \
2704 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2705 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2706 	int32_t rssi;
2707 
2708 	/*
2709 	 * When only one frame is received there will be no state in
2710 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2711 	 */
2712 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2713 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2714 	else
2715 		rssi = ni->ni_rssi;
2716 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2717 #undef HAL_EP_RND
2718 }
2719 
2720 static int
2721 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2722 {
2723 	struct ath_hal *ah = sc->sc_ah;
2724 	int error;
2725 	struct mbuf *m;
2726 	struct ath_desc *ds;
2727 
2728 	m = bf->bf_m;
2729 	if (m == NULL) {
2730 		/*
2731 		 * NB: by assigning a page to the rx dma buffer we
2732 		 * implicitly satisfy the Atheros requirement that
2733 		 * this buffer be cache-line-aligned and sized to be
2734 		 * multiple of the cache line size.  Not doing this
2735 		 * causes weird stuff to happen (for the 5210 at least).
2736 		 */
2737 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2738 		if (m == NULL) {
2739 			DPRINTF(sc, ATH_DEBUG_ANY,
2740 				"%s: no mbuf/cluster\n", __func__);
2741 			sc->sc_stats.ast_rx_nombuf++;
2742 			return ENOMEM;
2743 		}
2744 		bf->bf_m = m;
2745 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2746 
2747 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2748 					     bf->bf_dmamap, m,
2749 					     BUS_DMA_NOWAIT);
2750 		if (error != 0) {
2751 			DPRINTF(sc, ATH_DEBUG_ANY,
2752 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2753 			    __func__, error);
2754 			sc->sc_stats.ast_rx_busdma++;
2755 			return error;
2756 		}
2757 		KASSERT(bf->bf_nseg == 1,
2758 			("multi-segment packet; nseg %u", bf->bf_nseg));
2759 	}
2760 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2761 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2762 
2763 	/*
2764 	 * Setup descriptors.  For receive we always terminate
2765 	 * the descriptor list with a self-linked entry so we'll
2766 	 * not get overrun under high load (as can happen with a
2767 	 * 5212 when ANI processing enables PHY error frames).
2768 	 *
2769 	 * To insure the last descriptor is self-linked we create
2770 	 * each descriptor as self-linked and add it to the end.  As
2771 	 * each additional descriptor is added the previous self-linked
2772 	 * entry is ``fixed'' naturally.  This should be safe even
2773 	 * if DMA is happening.  When processing RX interrupts we
2774 	 * never remove/process the last, self-linked, entry on the
2775 	 * descriptor list.  This insures the hardware always has
2776 	 * someplace to write a new frame.
2777 	 */
2778 	ds = bf->bf_desc;
2779 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2780 	ds->ds_data = bf->bf_segs[0].ds_addr;
2781 	ds->ds_vdata = mtod(m, void *);	/* for radar */
2782 	ath_hal_setuprxdesc(ah, ds
2783 		, m->m_len		/* buffer size */
2784 		, 0
2785 	);
2786 
2787 	if (sc->sc_rxlink != NULL)
2788 		*sc->sc_rxlink = bf->bf_daddr;
2789 	sc->sc_rxlink = &ds->ds_link;
2790 	return 0;
2791 }
2792 
2793 /*
2794  * Extend 15-bit time stamp from rx descriptor to
2795  * a full 64-bit TSF using the specified TSF.
2796  */
2797 static inline u_int64_t
2798 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2799 {
2800 	if ((tsf & 0x7fff) < rstamp)
2801 		tsf -= 0x8000;
2802 	return ((tsf &~ 0x7fff) | rstamp);
2803 }
2804 
2805 /*
2806  * Intercept management frames to collect beacon rssi data
2807  * and to do ibss merges.
2808  */
2809 static void
2810 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2811 	struct ieee80211_node *ni,
2812 	int subtype, int rssi, u_int32_t rstamp)
2813 {
2814 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2815 
2816 	/*
2817 	 * Call up first so subsequent work can use information
2818 	 * potentially stored in the node (e.g. for ibss merge).
2819 	 */
2820 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2821 	switch (subtype) {
2822 	case IEEE80211_FC0_SUBTYPE_BEACON:
2823 		/* update rssi statistics for use by the hal */
2824 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2825 		if (sc->sc_syncbeacon &&
2826 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2827 			/*
2828 			 * Resync beacon timers using the tsf of the beacon
2829 			 * frame we just received.
2830 			 */
2831 			ath_beacon_config(sc);
2832 		}
2833 		/* fall thru... */
2834 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2835 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2836 		    ic->ic_state == IEEE80211_S_RUN) {
2837 			u_int64_t tsf = ath_extend_tsf(rstamp,
2838 				ath_hal_gettsf64(sc->sc_ah));
2839 
2840 			/*
2841 			 * Handle ibss merge as needed; check the tsf on the
2842 			 * frame before attempting the merge.  The 802.11 spec
2843 			 * says the station should change it's bssid to match
2844 			 * the oldest station with the same ssid, where oldest
2845 			 * is determined by the tsf.  Note that hardware
2846 			 * reconfiguration happens through callback to
2847 			 * ath_newstate as the state machine will go from
2848 			 * RUN -> RUN when this happens.
2849 			 */
2850 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2851 				DPRINTF(sc, ATH_DEBUG_STATE,
2852 				    "ibss merge, rstamp %u tsf %ju "
2853 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2854 				    (uintmax_t)ni->ni_tstamp.tsf);
2855 				(void) ieee80211_ibss_merge(ni);
2856 			}
2857 		}
2858 		break;
2859 	}
2860 }
2861 
2862 /*
2863  * Set the default antenna.
2864  */
2865 static void
2866 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2867 {
2868 	struct ath_hal *ah = sc->sc_ah;
2869 
2870 	/* XXX block beacon interrupts */
2871 	ath_hal_setdefantenna(ah, antenna);
2872 	if (sc->sc_defant != antenna)
2873 		sc->sc_stats.ast_ant_defswitch++;
2874 	sc->sc_defant = antenna;
2875 	sc->sc_rxotherant = 0;
2876 }
2877 
2878 static void
2879 ath_rx_proc(void *arg, int npending)
2880 {
2881 #define	PA2DESC(_sc, _pa) \
2882 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2883 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2884 	struct ath_softc *sc = arg;
2885 	struct ath_buf *bf;
2886 	struct ieee80211com *ic = &sc->sc_ic;
2887 	struct ifnet *ifp = &sc->sc_if;
2888 	struct ath_hal *ah = sc->sc_ah;
2889 	struct ath_desc *ds;
2890 	struct mbuf *m;
2891 	struct ieee80211_node *ni;
2892 	struct ath_node *an;
2893 	int len, type, ngood;
2894 	u_int phyerr;
2895 	HAL_STATUS status;
2896 	int16_t nf;
2897 	u_int64_t tsf;
2898 
2899 	NET_LOCK_GIANT();		/* XXX */
2900 
2901 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2902 	ngood = 0;
2903 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2904 	tsf = ath_hal_gettsf64(ah);
2905 	do {
2906 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2907 		if (bf == NULL) {		/* NB: shouldn't happen */
2908 			if_printf(ifp, "%s: no buffer!\n", __func__);
2909 			break;
2910 		}
2911 		ds = bf->bf_desc;
2912 		if (ds->ds_link == bf->bf_daddr) {
2913 			/* NB: never process the self-linked entry at the end */
2914 			break;
2915 		}
2916 		m = bf->bf_m;
2917 		if (m == NULL) {		/* NB: shouldn't happen */
2918 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2919 			break;
2920 		}
2921 		/* XXX sync descriptor memory */
2922 		/*
2923 		 * Must provide the virtual address of the current
2924 		 * descriptor, the physical address, and the virtual
2925 		 * address of the next descriptor in the h/w chain.
2926 		 * This allows the HAL to look ahead to see if the
2927 		 * hardware is done with a descriptor by checking the
2928 		 * done bit in the following descriptor and the address
2929 		 * of the current descriptor the DMA engine is working
2930 		 * on.  All this is necessary because of our use of
2931 		 * a self-linked list to avoid rx overruns.
2932 		 */
2933 		status = ath_hal_rxprocdesc(ah, ds,
2934 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2935 #ifdef AR_DEBUG
2936 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2937 			ath_printrxbuf(bf, status == HAL_OK);
2938 #endif
2939 		if (status == HAL_EINPROGRESS)
2940 			break;
2941 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2942 		if (ds->ds_rxstat.rs_more) {
2943 			/*
2944 			 * Frame spans multiple descriptors; this
2945 			 * cannot happen yet as we don't support
2946 			 * jumbograms.  If not in monitor mode,
2947 			 * discard the frame.
2948 			 */
2949 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2950 				sc->sc_stats.ast_rx_toobig++;
2951 				goto rx_next;
2952 			}
2953 			/* fall thru for monitor mode handling... */
2954 		} else if (ds->ds_rxstat.rs_status != 0) {
2955 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2956 				sc->sc_stats.ast_rx_crcerr++;
2957 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2958 				sc->sc_stats.ast_rx_fifoerr++;
2959 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2960 				sc->sc_stats.ast_rx_phyerr++;
2961 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2962 				sc->sc_stats.ast_rx_phy[phyerr]++;
2963 				goto rx_next;
2964 			}
2965 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2966 				/*
2967 				 * Decrypt error.  If the error occurred
2968 				 * because there was no hardware key, then
2969 				 * let the frame through so the upper layers
2970 				 * can process it.  This is necessary for 5210
2971 				 * parts which have no way to setup a ``clear''
2972 				 * key cache entry.
2973 				 *
2974 				 * XXX do key cache faulting
2975 				 */
2976 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2977 					goto rx_accept;
2978 				sc->sc_stats.ast_rx_badcrypt++;
2979 			}
2980 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2981 				sc->sc_stats.ast_rx_badmic++;
2982 				/*
2983 				 * Do minimal work required to hand off
2984 				 * the 802.11 header for notifcation.
2985 				 */
2986 				/* XXX frag's and qos frames */
2987 				len = ds->ds_rxstat.rs_datalen;
2988 				if (len >= sizeof (struct ieee80211_frame)) {
2989 					bus_dmamap_sync(sc->sc_dmat,
2990 					    bf->bf_dmamap,
2991 					    0, bf->bf_dmamap->dm_mapsize,
2992 					    BUS_DMASYNC_POSTREAD);
2993 					ieee80211_notify_michael_failure(ic,
2994 					    mtod(m, struct ieee80211_frame *),
2995 					    sc->sc_splitmic ?
2996 					        ds->ds_rxstat.rs_keyix-32 :
2997 					        ds->ds_rxstat.rs_keyix
2998 					);
2999 				}
3000 			}
3001 			ifp->if_ierrors++;
3002 			/*
3003 			 * Reject error frames, we normally don't want
3004 			 * to see them in monitor mode (in monitor mode
3005 			 * allow through packets that have crypto problems).
3006 			 */
3007 			if ((ds->ds_rxstat.rs_status &~
3008 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3009 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3010 				goto rx_next;
3011 		}
3012 rx_accept:
3013 		/*
3014 		 * Sync and unmap the frame.  At this point we're
3015 		 * committed to passing the mbuf somewhere so clear
3016 		 * bf_m; this means a new sk_buff must be allocated
3017 		 * when the rx descriptor is setup again to receive
3018 		 * another frame.
3019 		 */
3020 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3021 		    0, bf->bf_dmamap->dm_mapsize,
3022 		    BUS_DMASYNC_POSTREAD);
3023 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3024 		bf->bf_m = NULL;
3025 
3026 		m->m_pkthdr.rcvif = ifp;
3027 		len = ds->ds_rxstat.rs_datalen;
3028 		m->m_pkthdr.len = m->m_len = len;
3029 
3030 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3031 
3032 #if NBPFILTER > 0
3033 		if (sc->sc_drvbpf) {
3034 			u_int8_t rix;
3035 
3036 			/*
3037 			 * Discard anything shorter than an ack or cts.
3038 			 */
3039 			if (len < IEEE80211_ACK_LEN) {
3040 				DPRINTF(sc, ATH_DEBUG_RECV,
3041 					"%s: runt packet %d\n",
3042 					__func__, len);
3043 				sc->sc_stats.ast_rx_tooshort++;
3044 				m_freem(m);
3045 				goto rx_next;
3046 			}
3047 			rix = ds->ds_rxstat.rs_rate;
3048 			sc->sc_rx_th.wr_tsf = htole64(
3049 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3050 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3051 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3052 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3053 			sc->sc_rx_th.wr_antnoise = nf;
3054 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3055 
3056 			bpf_mtap2(sc->sc_drvbpf,
3057 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
3058 		}
3059 #endif
3060 
3061 		/*
3062 		 * From this point on we assume the frame is at least
3063 		 * as large as ieee80211_frame_min; verify that.
3064 		 */
3065 		if (len < IEEE80211_MIN_LEN) {
3066 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3067 				__func__, len);
3068 			sc->sc_stats.ast_rx_tooshort++;
3069 			m_freem(m);
3070 			goto rx_next;
3071 		}
3072 
3073 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3074 			ieee80211_dump_pkt(mtod(m, caddr_t), len,
3075 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3076 				   ds->ds_rxstat.rs_rssi);
3077 		}
3078 
3079 		m_adj(m, -IEEE80211_CRC_LEN);
3080 
3081 		/*
3082 		 * Locate the node for sender, track state, and then
3083 		 * pass the (referenced) node up to the 802.11 layer
3084 		 * for its use.
3085 		 */
3086 		ni = ieee80211_find_rxnode_withkey(ic,
3087 			mtod(m, const struct ieee80211_frame_min *),
3088 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3089 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3090 		/*
3091 		 * Track rx rssi and do any rx antenna management.
3092 		 */
3093 		an = ATH_NODE(ni);
3094 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3095 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3096 		/*
3097 		 * Send frame up for processing.
3098 		 */
3099 		type = ieee80211_input(ic, m, ni,
3100 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3101 		ieee80211_free_node(ni);
3102 		if (sc->sc_diversity) {
3103 			/*
3104 			 * When using fast diversity, change the default rx
3105 			 * antenna if diversity chooses the other antenna 3
3106 			 * times in a row.
3107 			 */
3108 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3109 				if (++sc->sc_rxotherant >= 3)
3110 					ath_setdefantenna(sc,
3111 						ds->ds_rxstat.rs_antenna);
3112 			} else
3113 				sc->sc_rxotherant = 0;
3114 		}
3115 		if (sc->sc_softled) {
3116 			/*
3117 			 * Blink for any data frame.  Otherwise do a
3118 			 * heartbeat-style blink when idle.  The latter
3119 			 * is mainly for station mode where we depend on
3120 			 * periodic beacon frames to trigger the poll event.
3121 			 */
3122 			if (type == IEEE80211_FC0_TYPE_DATA) {
3123 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3124 				ath_led_event(sc, ATH_LED_RX);
3125 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3126 				ath_led_event(sc, ATH_LED_POLL);
3127 		}
3128 		/*
3129 		 * Arrange to update the last rx timestamp only for
3130 		 * frames from our ap when operating in station mode.
3131 		 * This assumes the rx key is always setup when associated.
3132 		 */
3133 		if (ic->ic_opmode == IEEE80211_M_STA &&
3134 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3135 			ngood++;
3136 rx_next:
3137 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3138 	} while (ath_rxbuf_init(sc, bf) == 0);
3139 
3140 	/* rx signal state monitoring */
3141 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3142 	if (ath_hal_radar_event(ah))
3143 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3144 	if (ngood)
3145 		sc->sc_lastrx = tsf;
3146 
3147 #ifdef __NetBSD__
3148 	/* XXX Why isn't this necessary in FreeBSD? */
3149 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3150 		ath_start(ifp);
3151 #endif /* __NetBSD__ */
3152 
3153 	NET_UNLOCK_GIANT();		/* XXX */
3154 #undef PA2DESC
3155 }
3156 
3157 /*
3158  * Setup a h/w transmit queue.
3159  */
3160 static struct ath_txq *
3161 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3162 {
3163 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3164 	struct ath_hal *ah = sc->sc_ah;
3165 	HAL_TXQ_INFO qi;
3166 	int qnum;
3167 
3168 	memset(&qi, 0, sizeof(qi));
3169 	qi.tqi_subtype = subtype;
3170 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3171 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3172 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3173 	/*
3174 	 * Enable interrupts only for EOL and DESC conditions.
3175 	 * We mark tx descriptors to receive a DESC interrupt
3176 	 * when a tx queue gets deep; otherwise waiting for the
3177 	 * EOL to reap descriptors.  Note that this is done to
3178 	 * reduce interrupt load and this only defers reaping
3179 	 * descriptors, never transmitting frames.  Aside from
3180 	 * reducing interrupts this also permits more concurrency.
3181 	 * The only potential downside is if the tx queue backs
3182 	 * up in which case the top half of the kernel may backup
3183 	 * due to a lack of tx descriptors.
3184 	 */
3185 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3186 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3187 	if (qnum == -1) {
3188 		/*
3189 		 * NB: don't print a message, this happens
3190 		 * normally on parts with too few tx queues
3191 		 */
3192 		return NULL;
3193 	}
3194 	if (qnum >= N(sc->sc_txq)) {
3195 		device_printf(sc->sc_dev,
3196 			"hal qnum %u out of range, max %zu!\n",
3197 			qnum, N(sc->sc_txq));
3198 		ath_hal_releasetxqueue(ah, qnum);
3199 		return NULL;
3200 	}
3201 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3202 		struct ath_txq *txq = &sc->sc_txq[qnum];
3203 
3204 		txq->axq_qnum = qnum;
3205 		txq->axq_depth = 0;
3206 		txq->axq_intrcnt = 0;
3207 		txq->axq_link = NULL;
3208 		STAILQ_INIT(&txq->axq_q);
3209 		ATH_TXQ_LOCK_INIT(sc, txq);
3210 		sc->sc_txqsetup |= 1<<qnum;
3211 	}
3212 	return &sc->sc_txq[qnum];
3213 #undef N
3214 }
3215 
3216 /*
3217  * Setup a hardware data transmit queue for the specified
3218  * access control.  The hal may not support all requested
3219  * queues in which case it will return a reference to a
3220  * previously setup queue.  We record the mapping from ac's
3221  * to h/w queues for use by ath_tx_start and also track
3222  * the set of h/w queues being used to optimize work in the
3223  * transmit interrupt handler and related routines.
3224  */
3225 static int
3226 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3227 {
3228 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3229 	struct ath_txq *txq;
3230 
3231 	if (ac >= N(sc->sc_ac2q)) {
3232 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3233 			ac, N(sc->sc_ac2q));
3234 		return 0;
3235 	}
3236 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3237 	if (txq != NULL) {
3238 		sc->sc_ac2q[ac] = txq;
3239 		return 1;
3240 	} else
3241 		return 0;
3242 #undef N
3243 }
3244 
3245 /*
3246  * Update WME parameters for a transmit queue.
3247  */
3248 static int
3249 ath_txq_update(struct ath_softc *sc, int ac)
3250 {
3251 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3252 #define	ATH_TXOP_TO_US(v)		(v<<5)
3253 	struct ieee80211com *ic = &sc->sc_ic;
3254 	struct ath_txq *txq = sc->sc_ac2q[ac];
3255 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3256 	struct ath_hal *ah = sc->sc_ah;
3257 	HAL_TXQ_INFO qi;
3258 
3259 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3260 	qi.tqi_aifs = wmep->wmep_aifsn;
3261 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3262 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3263 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3264 
3265 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3266 		device_printf(sc->sc_dev, "unable to update hardware queue "
3267 			"parameters for %s traffic!\n",
3268 			ieee80211_wme_acnames[ac]);
3269 		return 0;
3270 	} else {
3271 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3272 		return 1;
3273 	}
3274 #undef ATH_TXOP_TO_US
3275 #undef ATH_EXPONENT_TO_VALUE
3276 }
3277 
3278 /*
3279  * Callback from the 802.11 layer to update WME parameters.
3280  */
3281 static int
3282 ath_wme_update(struct ieee80211com *ic)
3283 {
3284 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3285 
3286 	return !ath_txq_update(sc, WME_AC_BE) ||
3287 	    !ath_txq_update(sc, WME_AC_BK) ||
3288 	    !ath_txq_update(sc, WME_AC_VI) ||
3289 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3290 }
3291 
3292 /*
3293  * Reclaim resources for a setup queue.
3294  */
3295 static void
3296 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3297 {
3298 
3299 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3300 	ATH_TXQ_LOCK_DESTROY(txq);
3301 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3302 }
3303 
3304 /*
3305  * Reclaim all tx queue resources.
3306  */
3307 static void
3308 ath_tx_cleanup(struct ath_softc *sc)
3309 {
3310 	int i;
3311 
3312 	ATH_TXBUF_LOCK_DESTROY(sc);
3313 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3314 		if (ATH_TXQ_SETUP(sc, i))
3315 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3316 }
3317 
3318 /*
3319  * Defragment an mbuf chain, returning at most maxfrags separate
3320  * mbufs+clusters.  If this is not possible NULL is returned and
3321  * the original mbuf chain is left in it's present (potentially
3322  * modified) state.  We use two techniques: collapsing consecutive
3323  * mbufs and replacing consecutive mbufs by a cluster.
3324  */
3325 static struct mbuf *
3326 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3327 {
3328 	struct mbuf *m, *n, *n2, **prev;
3329 	u_int curfrags;
3330 
3331 	/*
3332 	 * Calculate the current number of frags.
3333 	 */
3334 	curfrags = 0;
3335 	for (m = m0; m != NULL; m = m->m_next)
3336 		curfrags++;
3337 	/*
3338 	 * First, try to collapse mbufs.  Note that we always collapse
3339 	 * towards the front so we don't need to deal with moving the
3340 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3341 	 * less data than the following.
3342 	 */
3343 	m = m0;
3344 again:
3345 	for (;;) {
3346 		n = m->m_next;
3347 		if (n == NULL)
3348 			break;
3349 		if ((m->m_flags & M_RDONLY) == 0 &&
3350 		    n->m_len < M_TRAILINGSPACE(m)) {
3351 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3352 				n->m_len);
3353 			m->m_len += n->m_len;
3354 			m->m_next = n->m_next;
3355 			m_free(n);
3356 			if (--curfrags <= maxfrags)
3357 				return m0;
3358 		} else
3359 			m = n;
3360 	}
3361 	KASSERT(maxfrags > 1,
3362 		("maxfrags %u, but normal collapse failed", maxfrags));
3363 	/*
3364 	 * Collapse consecutive mbufs to a cluster.
3365 	 */
3366 	prev = &m0->m_next;		/* NB: not the first mbuf */
3367 	while ((n = *prev) != NULL) {
3368 		if ((n2 = n->m_next) != NULL &&
3369 		    n->m_len + n2->m_len < MCLBYTES) {
3370 			m = m_getcl(how, MT_DATA, 0);
3371 			if (m == NULL)
3372 				goto bad;
3373 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3374 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3375 				n2->m_len);
3376 			m->m_len = n->m_len + n2->m_len;
3377 			m->m_next = n2->m_next;
3378 			*prev = m;
3379 			m_free(n);
3380 			m_free(n2);
3381 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3382 				return m0;
3383 			/*
3384 			 * Still not there, try the normal collapse
3385 			 * again before we allocate another cluster.
3386 			 */
3387 			goto again;
3388 		}
3389 		prev = &n->m_next;
3390 	}
3391 	/*
3392 	 * No place where we can collapse to a cluster; punt.
3393 	 * This can occur if, for example, you request 2 frags
3394 	 * but the packet requires that both be clusters (we
3395 	 * never reallocate the first mbuf to avoid moving the
3396 	 * packet header).
3397 	 */
3398 bad:
3399 	return NULL;
3400 }
3401 
3402 /*
3403  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3404  */
3405 static int
3406 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3407 {
3408 	int i;
3409 
3410 	for (i = 0; i < rt->rateCount; i++)
3411 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3412 			return i;
3413 	return 0;		/* NB: lowest rate */
3414 }
3415 
3416 static int
3417 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3418     struct mbuf *m0)
3419 {
3420 	struct ieee80211com *ic = &sc->sc_ic;
3421 	struct ath_hal *ah = sc->sc_ah;
3422 	struct ifnet *ifp = &sc->sc_if;
3423 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3424 	int i, error, iswep, ismcast, ismrr;
3425 	int keyix, hdrlen, pktlen, try0;
3426 	u_int8_t rix, txrate, ctsrate;
3427 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3428 	struct ath_desc *ds, *ds0;
3429 	struct ath_txq *txq;
3430 	struct ieee80211_frame *wh;
3431 	u_int subtype, flags, ctsduration;
3432 	HAL_PKT_TYPE atype;
3433 	const HAL_RATE_TABLE *rt;
3434 	HAL_BOOL shortPreamble;
3435 	struct ath_node *an;
3436 	struct mbuf *m;
3437 	u_int pri;
3438 
3439 	wh = mtod(m0, struct ieee80211_frame *);
3440 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3441 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3442 	hdrlen = ieee80211_anyhdrsize(wh);
3443 	/*
3444 	 * Packet length must not include any
3445 	 * pad bytes; deduct them here.
3446 	 */
3447 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3448 
3449 	if (iswep) {
3450 		const struct ieee80211_cipher *cip;
3451 		struct ieee80211_key *k;
3452 
3453 		/*
3454 		 * Construct the 802.11 header+trailer for an encrypted
3455 		 * frame. The only reason this can fail is because of an
3456 		 * unknown or unsupported cipher/key type.
3457 		 */
3458 		k = ieee80211_crypto_encap(ic, ni, m0);
3459 		if (k == NULL) {
3460 			/*
3461 			 * This can happen when the key is yanked after the
3462 			 * frame was queued.  Just discard the frame; the
3463 			 * 802.11 layer counts failures and provides
3464 			 * debugging/diagnostics.
3465 			 */
3466 			m_freem(m0);
3467 			return EIO;
3468 		}
3469 		/*
3470 		 * Adjust the packet + header lengths for the crypto
3471 		 * additions and calculate the h/w key index.  When
3472 		 * a s/w mic is done the frame will have had any mic
3473 		 * added to it prior to entry so skb->len above will
3474 		 * account for it. Otherwise we need to add it to the
3475 		 * packet length.
3476 		 */
3477 		cip = k->wk_cipher;
3478 		hdrlen += cip->ic_header;
3479 		pktlen += cip->ic_header + cip->ic_trailer;
3480 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3481 			pktlen += cip->ic_miclen;
3482 		keyix = k->wk_keyix;
3483 
3484 		/* packet header may have moved, reset our local pointer */
3485 		wh = mtod(m0, struct ieee80211_frame *);
3486 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3487 		/*
3488 		 * Use station key cache slot, if assigned.
3489 		 */
3490 		keyix = ni->ni_ucastkey.wk_keyix;
3491 		if (keyix == IEEE80211_KEYIX_NONE)
3492 			keyix = HAL_TXKEYIX_INVALID;
3493 	} else
3494 		keyix = HAL_TXKEYIX_INVALID;
3495 
3496 	pktlen += IEEE80211_CRC_LEN;
3497 
3498 	/*
3499 	 * Load the DMA map so any coalescing is done.  This
3500 	 * also calculates the number of descriptors we need.
3501 	 */
3502 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3503 				     BUS_DMA_NOWAIT);
3504 	if (error == EFBIG) {
3505 		/* XXX packet requires too many descriptors */
3506 		bf->bf_nseg = ATH_TXDESC+1;
3507 	} else if (error != 0) {
3508 		sc->sc_stats.ast_tx_busdma++;
3509 		m_freem(m0);
3510 		return error;
3511 	}
3512 	/*
3513 	 * Discard null packets and check for packets that
3514 	 * require too many TX descriptors.  We try to convert
3515 	 * the latter to a cluster.
3516 	 */
3517 	if (error == EFBIG) {		/* too many desc's, linearize */
3518 		sc->sc_stats.ast_tx_linear++;
3519 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3520 		if (m == NULL) {
3521 			m_freem(m0);
3522 			sc->sc_stats.ast_tx_nombuf++;
3523 			return ENOMEM;
3524 		}
3525 		m0 = m;
3526 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3527 					     BUS_DMA_NOWAIT);
3528 		if (error != 0) {
3529 			sc->sc_stats.ast_tx_busdma++;
3530 			m_freem(m0);
3531 			return error;
3532 		}
3533 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3534 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3535 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3536 		sc->sc_stats.ast_tx_nodata++;
3537 		m_freem(m0);
3538 		return EIO;
3539 	}
3540 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3541 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3542             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3543 	bf->bf_m = m0;
3544 	bf->bf_node = ni;			/* NB: held reference */
3545 
3546 	/* setup descriptors */
3547 	ds = bf->bf_desc;
3548 	rt = sc->sc_currates;
3549 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3550 
3551 	/*
3552 	 * NB: the 802.11 layer marks whether or not we should
3553 	 * use short preamble based on the current mode and
3554 	 * negotiated parameters.
3555 	 */
3556 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3557 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3558 		shortPreamble = AH_TRUE;
3559 		sc->sc_stats.ast_tx_shortpre++;
3560 	} else {
3561 		shortPreamble = AH_FALSE;
3562 	}
3563 
3564 	an = ATH_NODE(ni);
3565 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3566 	ismrr = 0;				/* default no multi-rate retry*/
3567 	/*
3568 	 * Calculate Atheros packet type from IEEE80211 packet header,
3569 	 * setup for rate calculations, and select h/w transmit queue.
3570 	 */
3571 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3572 	case IEEE80211_FC0_TYPE_MGT:
3573 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3574 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3575 			atype = HAL_PKT_TYPE_BEACON;
3576 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3577 			atype = HAL_PKT_TYPE_PROBE_RESP;
3578 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3579 			atype = HAL_PKT_TYPE_ATIM;
3580 		else
3581 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3582 		rix = sc->sc_minrateix;
3583 		txrate = rt->info[rix].rateCode;
3584 		if (shortPreamble)
3585 			txrate |= rt->info[rix].shortPreamble;
3586 		try0 = ATH_TXMGTTRY;
3587 		/* NB: force all management frames to highest queue */
3588 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3589 			/* NB: force all management frames to highest queue */
3590 			pri = WME_AC_VO;
3591 		} else
3592 			pri = WME_AC_BE;
3593 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3594 		break;
3595 	case IEEE80211_FC0_TYPE_CTL:
3596 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3597 		rix = sc->sc_minrateix;
3598 		txrate = rt->info[rix].rateCode;
3599 		if (shortPreamble)
3600 			txrate |= rt->info[rix].shortPreamble;
3601 		try0 = ATH_TXMGTTRY;
3602 		/* NB: force all ctl frames to highest queue */
3603 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3604 			/* NB: force all ctl frames to highest queue */
3605 			pri = WME_AC_VO;
3606 		} else
3607 			pri = WME_AC_BE;
3608 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3609 		break;
3610 	case IEEE80211_FC0_TYPE_DATA:
3611 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3612 		/*
3613 		 * Data frames: multicast frames go out at a fixed rate,
3614 		 * otherwise consult the rate control module for the
3615 		 * rate to use.
3616 		 */
3617 		if (ismcast) {
3618 			/*
3619 			 * Check mcast rate setting in case it's changed.
3620 			 * XXX move out of fastpath
3621 			 */
3622 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3623 				sc->sc_mcastrix =
3624 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3625 				sc->sc_mcastrate = ic->ic_mcast_rate;
3626 			}
3627 			rix = sc->sc_mcastrix;
3628 			txrate = rt->info[rix].rateCode;
3629 			try0 = 1;
3630 		} else {
3631 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3632 				&rix, &try0, &txrate);
3633 			sc->sc_txrate = txrate;		/* for LED blinking */
3634 			if (try0 != ATH_TXMAXTRY)
3635 				ismrr = 1;
3636 		}
3637 		pri = M_WME_GETAC(m0);
3638 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3639 			flags |= HAL_TXDESC_NOACK;
3640 		break;
3641 	default:
3642 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3643 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3644 		/* XXX statistic */
3645 		m_freem(m0);
3646 		return EIO;
3647 	}
3648 	txq = sc->sc_ac2q[pri];
3649 
3650 	/*
3651 	 * When servicing one or more stations in power-save mode
3652 	 * multicast frames must be buffered until after the beacon.
3653 	 * We use the CAB queue for that.
3654 	 */
3655 	if (ismcast && ic->ic_ps_sta) {
3656 		txq = sc->sc_cabq;
3657 		/* XXX? more bit in 802.11 frame header */
3658 	}
3659 
3660 	/*
3661 	 * Calculate miscellaneous flags.
3662 	 */
3663 	if (ismcast) {
3664 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3665 	} else if (pktlen > ic->ic_rtsthreshold) {
3666 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3667 		cix = rt->info[rix].controlRate;
3668 		sc->sc_stats.ast_tx_rts++;
3669 	}
3670 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3671 		sc->sc_stats.ast_tx_noack++;
3672 
3673 	/*
3674 	 * If 802.11g protection is enabled, determine whether
3675 	 * to use RTS/CTS or just CTS.  Note that this is only
3676 	 * done for OFDM unicast frames.
3677 	 */
3678 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3679 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3680 	    (flags & HAL_TXDESC_NOACK) == 0) {
3681 		/* XXX fragments must use CCK rates w/ protection */
3682 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3683 			flags |= HAL_TXDESC_RTSENA;
3684 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3685 			flags |= HAL_TXDESC_CTSENA;
3686 		cix = rt->info[sc->sc_protrix].controlRate;
3687 		sc->sc_stats.ast_tx_protect++;
3688 	}
3689 
3690 	/*
3691 	 * Calculate duration.  This logically belongs in the 802.11
3692 	 * layer but it lacks sufficient information to calculate it.
3693 	 */
3694 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3695 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3696 		u_int16_t dur;
3697 		/*
3698 		 * XXX not right with fragmentation.
3699 		 */
3700 		if (shortPreamble)
3701 			dur = rt->info[rix].spAckDuration;
3702 		else
3703 			dur = rt->info[rix].lpAckDuration;
3704 		*(u_int16_t *)wh->i_dur = htole16(dur);
3705 	}
3706 
3707 	/*
3708 	 * Calculate RTS/CTS rate and duration if needed.
3709 	 */
3710 	ctsduration = 0;
3711 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3712 		/*
3713 		 * CTS transmit rate is derived from the transmit rate
3714 		 * by looking in the h/w rate table.  We must also factor
3715 		 * in whether or not a short preamble is to be used.
3716 		 */
3717 		/* NB: cix is set above where RTS/CTS is enabled */
3718 		KASSERT(cix != 0xff, ("cix not setup"));
3719 		ctsrate = rt->info[cix].rateCode;
3720 		/*
3721 		 * Compute the transmit duration based on the frame
3722 		 * size and the size of an ACK frame.  We call into the
3723 		 * HAL to do the computation since it depends on the
3724 		 * characteristics of the actual PHY being used.
3725 		 *
3726 		 * NB: CTS is assumed the same size as an ACK so we can
3727 		 *     use the precalculated ACK durations.
3728 		 */
3729 		if (shortPreamble) {
3730 			ctsrate |= rt->info[cix].shortPreamble;
3731 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3732 				ctsduration += rt->info[cix].spAckDuration;
3733 			ctsduration += ath_hal_computetxtime(ah,
3734 				rt, pktlen, rix, AH_TRUE);
3735 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3736 				ctsduration += rt->info[rix].spAckDuration;
3737 		} else {
3738 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3739 				ctsduration += rt->info[cix].lpAckDuration;
3740 			ctsduration += ath_hal_computetxtime(ah,
3741 				rt, pktlen, rix, AH_FALSE);
3742 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3743 				ctsduration += rt->info[rix].lpAckDuration;
3744 		}
3745 		/*
3746 		 * Must disable multi-rate retry when using RTS/CTS.
3747 		 */
3748 		ismrr = 0;
3749 		try0 = ATH_TXMGTTRY;		/* XXX */
3750 	} else
3751 		ctsrate = 0;
3752 
3753 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3754 		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3755 			sc->sc_hwmap[txrate].ieeerate, -1);
3756 #if NBPFILTER > 0
3757 	if (ic->ic_rawbpf)
3758 		bpf_mtap(ic->ic_rawbpf, m0);
3759 	if (sc->sc_drvbpf) {
3760 		u_int64_t tsf = ath_hal_gettsf64(ah);
3761 
3762 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3763 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3764 		if (iswep)
3765 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3766 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3767 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3768 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3769 
3770 		bpf_mtap2(sc->sc_drvbpf,
3771 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3772 	}
3773 #endif
3774 
3775 	/*
3776 	 * Determine if a tx interrupt should be generated for
3777 	 * this descriptor.  We take a tx interrupt to reap
3778 	 * descriptors when the h/w hits an EOL condition or
3779 	 * when the descriptor is specifically marked to generate
3780 	 * an interrupt.  We periodically mark descriptors in this
3781 	 * way to insure timely replenishing of the supply needed
3782 	 * for sending frames.  Defering interrupts reduces system
3783 	 * load and potentially allows more concurrent work to be
3784 	 * done but if done to aggressively can cause senders to
3785 	 * backup.
3786 	 *
3787 	 * NB: use >= to deal with sc_txintrperiod changing
3788 	 *     dynamically through sysctl.
3789 	 */
3790 	if (flags & HAL_TXDESC_INTREQ) {
3791 		txq->axq_intrcnt = 0;
3792 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3793 		flags |= HAL_TXDESC_INTREQ;
3794 		txq->axq_intrcnt = 0;
3795 	}
3796 
3797 	/*
3798 	 * Formulate first tx descriptor with tx controls.
3799 	 */
3800 	/* XXX check return value? */
3801 	ath_hal_setuptxdesc(ah, ds
3802 		, pktlen		/* packet length */
3803 		, hdrlen		/* header length */
3804 		, atype			/* Atheros packet type */
3805 		, ni->ni_txpower	/* txpower */
3806 		, txrate, try0		/* series 0 rate/tries */
3807 		, keyix			/* key cache index */
3808 		, sc->sc_txantenna	/* antenna mode */
3809 		, flags			/* flags */
3810 		, ctsrate		/* rts/cts rate */
3811 		, ctsduration		/* rts/cts duration */
3812 	);
3813 	bf->bf_flags = flags;
3814 	/*
3815 	 * Setup the multi-rate retry state only when we're
3816 	 * going to use it.  This assumes ath_hal_setuptxdesc
3817 	 * initializes the descriptors (so we don't have to)
3818 	 * when the hardware supports multi-rate retry and
3819 	 * we don't use it.
3820 	 */
3821 	if (ismrr)
3822 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3823 
3824 	/*
3825 	 * Fillin the remainder of the descriptor info.
3826 	 */
3827 	ds0 = ds;
3828 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3829 		ds->ds_data = bf->bf_segs[i].ds_addr;
3830 		if (i == bf->bf_nseg - 1)
3831 			ds->ds_link = 0;
3832 		else
3833 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3834 		ath_hal_filltxdesc(ah, ds
3835 			, bf->bf_segs[i].ds_len	/* segment length */
3836 			, i == 0		/* first segment */
3837 			, i == bf->bf_nseg - 1	/* last segment */
3838 			, ds0			/* first descriptor */
3839 		);
3840 
3841 		/* NB: The desc swap function becomes void,
3842 		 * if descriptor swapping is not enabled
3843 		 */
3844 		ath_desc_swap(ds);
3845 
3846 		DPRINTF(sc, ATH_DEBUG_XMIT,
3847 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3848 			__func__, i, ds->ds_link, ds->ds_data,
3849 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3850 	}
3851 	/*
3852 	 * Insert the frame on the outbound list and
3853 	 * pass it on to the hardware.
3854 	 */
3855 	ATH_TXQ_LOCK(txq);
3856 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3857 	if (txq->axq_link == NULL) {
3858 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3859 		DPRINTF(sc, ATH_DEBUG_XMIT,
3860 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3861 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3862 		    txq->axq_depth);
3863 	} else {
3864 		*txq->axq_link = HTOAH32(bf->bf_daddr);
3865 		DPRINTF(sc, ATH_DEBUG_XMIT,
3866 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3867 		    __func__, txq->axq_qnum, txq->axq_link,
3868 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3869 	}
3870 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3871 	/*
3872 	 * The CAB queue is started from the SWBA handler since
3873 	 * frames only go out on DTIM and to avoid possible races.
3874 	 */
3875 	if (txq != sc->sc_cabq)
3876 		ath_hal_txstart(ah, txq->axq_qnum);
3877 	ATH_TXQ_UNLOCK(txq);
3878 
3879 	return 0;
3880 }
3881 
3882 /*
3883  * Process completed xmit descriptors from the specified queue.
3884  */
3885 static int
3886 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3887 {
3888 	struct ath_hal *ah = sc->sc_ah;
3889 	struct ieee80211com *ic = &sc->sc_ic;
3890 	struct ath_buf *bf;
3891 	struct ath_desc *ds, *ds0;
3892 	struct ieee80211_node *ni;
3893 	struct ath_node *an;
3894 	int sr, lr, pri, nacked;
3895 	HAL_STATUS status;
3896 
3897 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3898 		__func__, txq->axq_qnum,
3899 		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3900 		txq->axq_link);
3901 	nacked = 0;
3902 	for (;;) {
3903 		ATH_TXQ_LOCK(txq);
3904 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3905 		bf = STAILQ_FIRST(&txq->axq_q);
3906 		if (bf == NULL) {
3907 			txq->axq_link = NULL;
3908 			ATH_TXQ_UNLOCK(txq);
3909 			break;
3910 		}
3911 		ds0 = &bf->bf_desc[0];
3912 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3913 		status = ath_hal_txprocdesc(ah, ds);
3914 #ifdef AR_DEBUG
3915 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3916 			ath_printtxbuf(bf, status == HAL_OK);
3917 #endif
3918 		if (status == HAL_EINPROGRESS) {
3919 			ATH_TXQ_UNLOCK(txq);
3920 			break;
3921 		}
3922 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3923 		ATH_TXQ_UNLOCK(txq);
3924 
3925 		ni = bf->bf_node;
3926 		if (ni != NULL) {
3927 			an = ATH_NODE(ni);
3928 			if (ds->ds_txstat.ts_status == 0) {
3929 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3930 				sc->sc_stats.ast_ant_tx[txant]++;
3931 				sc->sc_ant_tx[txant]++;
3932 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3933 					sc->sc_stats.ast_tx_altrate++;
3934 				sc->sc_stats.ast_tx_rssi =
3935 					ds->ds_txstat.ts_rssi;
3936 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3937 					ds->ds_txstat.ts_rssi);
3938 				pri = M_WME_GETAC(bf->bf_m);
3939 				if (pri >= WME_AC_VO)
3940 					ic->ic_wme.wme_hipri_traffic++;
3941 				ni->ni_inact = ni->ni_inact_reload;
3942 			} else {
3943 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3944 					sc->sc_stats.ast_tx_xretries++;
3945 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3946 					sc->sc_stats.ast_tx_fifoerr++;
3947 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3948 					sc->sc_stats.ast_tx_filtered++;
3949 			}
3950 			sr = ds->ds_txstat.ts_shortretry;
3951 			lr = ds->ds_txstat.ts_longretry;
3952 			sc->sc_stats.ast_tx_shortretry += sr;
3953 			sc->sc_stats.ast_tx_longretry += lr;
3954 			/*
3955 			 * Hand the descriptor to the rate control algorithm.
3956 			 */
3957 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3958 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3959 				/*
3960 				 * If frame was ack'd update the last rx time
3961 				 * used to workaround phantom bmiss interrupts.
3962 				 */
3963 				if (ds->ds_txstat.ts_status == 0)
3964 					nacked++;
3965 				ath_rate_tx_complete(sc, an, ds, ds0);
3966 			}
3967 			/*
3968 			 * Reclaim reference to node.
3969 			 *
3970 			 * NB: the node may be reclaimed here if, for example
3971 			 *     this is a DEAUTH message that was sent and the
3972 			 *     node was timed out due to inactivity.
3973 			 */
3974 			ieee80211_free_node(ni);
3975 		}
3976 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3977 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3978 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3979 		m_freem(bf->bf_m);
3980 		bf->bf_m = NULL;
3981 		bf->bf_node = NULL;
3982 
3983 		ATH_TXBUF_LOCK(sc);
3984 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3985 		ATH_TXBUF_UNLOCK(sc);
3986 	}
3987 	return nacked;
3988 }
3989 
3990 static inline int
3991 txqactive(struct ath_hal *ah, int qnum)
3992 {
3993 	u_int32_t txqs = 1<<qnum;
3994 	ath_hal_gettxintrtxqs(ah, &txqs);
3995 	return (txqs & (1<<qnum));
3996 }
3997 
3998 /*
3999  * Deferred processing of transmit interrupt; special-cased
4000  * for a single hardware transmit queue (e.g. 5210 and 5211).
4001  */
4002 static void
4003 ath_tx_proc_q0(void *arg, int npending __unused)
4004 {
4005 	struct ath_softc *sc = arg;
4006 	struct ifnet *ifp = &sc->sc_if;
4007 
4008 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4009 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4010 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4011 		ath_tx_processq(sc, sc->sc_cabq);
4012 	ifp->if_flags &= ~IFF_OACTIVE;
4013 	sc->sc_tx_timer = 0;
4014 
4015 	if (sc->sc_softled)
4016 		ath_led_event(sc, ATH_LED_TX);
4017 
4018 	ath_start(ifp);
4019 }
4020 
4021 /*
4022  * Deferred processing of transmit interrupt; special-cased
4023  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4024  */
4025 static void
4026 ath_tx_proc_q0123(void *arg, int npending __unused)
4027 {
4028 	struct ath_softc *sc = arg;
4029 	struct ifnet *ifp = &sc->sc_if;
4030 	int nacked;
4031 
4032 	/*
4033 	 * Process each active queue.
4034 	 */
4035 	nacked = 0;
4036 	if (txqactive(sc->sc_ah, 0))
4037 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4038 	if (txqactive(sc->sc_ah, 1))
4039 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4040 	if (txqactive(sc->sc_ah, 2))
4041 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4042 	if (txqactive(sc->sc_ah, 3))
4043 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4044 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4045 		ath_tx_processq(sc, sc->sc_cabq);
4046 	if (nacked)
4047 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4048 	ath_tx_processq(sc, sc->sc_cabq);
4049 
4050 	ifp->if_flags &= ~IFF_OACTIVE;
4051 	sc->sc_tx_timer = 0;
4052 
4053 	if (sc->sc_softled)
4054 		ath_led_event(sc, ATH_LED_TX);
4055 
4056 	ath_start(ifp);
4057 }
4058 
4059 /*
4060  * Deferred processing of transmit interrupt.
4061  */
4062 static void
4063 ath_tx_proc(void *arg, int npending __unused)
4064 {
4065 	struct ath_softc *sc = arg;
4066 	struct ifnet *ifp = &sc->sc_if;
4067 	int i, nacked;
4068 
4069 	/*
4070 	 * Process each active queue.
4071 	 */
4072 	nacked = 0;
4073 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4074 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4075 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4076 	if (nacked)
4077 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4078 
4079 	ifp->if_flags &= ~IFF_OACTIVE;
4080 	sc->sc_tx_timer = 0;
4081 
4082 	if (sc->sc_softled)
4083 		ath_led_event(sc, ATH_LED_TX);
4084 
4085 	ath_start(ifp);
4086 }
4087 
4088 static void
4089 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4090 {
4091 	struct ath_hal *ah = sc->sc_ah;
4092 	struct ieee80211_node *ni;
4093 	struct ath_buf *bf;
4094 
4095 	/*
4096 	 * NB: this assumes output has been stopped and
4097 	 *     we do not need to block ath_tx_tasklet
4098 	 */
4099 	for (;;) {
4100 		ATH_TXQ_LOCK(txq);
4101 		bf = STAILQ_FIRST(&txq->axq_q);
4102 		if (bf == NULL) {
4103 			txq->axq_link = NULL;
4104 			ATH_TXQ_UNLOCK(txq);
4105 			break;
4106 		}
4107 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4108 		ATH_TXQ_UNLOCK(txq);
4109 #ifdef AR_DEBUG
4110 		if (sc->sc_debug & ATH_DEBUG_RESET)
4111 			ath_printtxbuf(bf,
4112 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4113 #endif /* AR_DEBUG */
4114 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4115 		m_freem(bf->bf_m);
4116 		bf->bf_m = NULL;
4117 		ni = bf->bf_node;
4118 		bf->bf_node = NULL;
4119 		if (ni != NULL) {
4120 			/*
4121 			 * Reclaim node reference.
4122 			 */
4123 			ieee80211_free_node(ni);
4124 		}
4125 		ATH_TXBUF_LOCK(sc);
4126 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4127 		ATH_TXBUF_UNLOCK(sc);
4128 	}
4129 }
4130 
4131 static void
4132 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4133 {
4134 	struct ath_hal *ah = sc->sc_ah;
4135 
4136 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4137 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4138 	    __func__, txq->axq_qnum,
4139 	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4140 	    txq->axq_link);
4141 }
4142 
4143 /*
4144  * Drain the transmit queues and reclaim resources.
4145  */
4146 static void
4147 ath_draintxq(struct ath_softc *sc)
4148 {
4149 	struct ath_hal *ah = sc->sc_ah;
4150 	struct ifnet *ifp = &sc->sc_if;
4151 	int i;
4152 
4153 	/* XXX return value */
4154 	if (!sc->sc_invalid) {
4155 		/* don't touch the hardware if marked invalid */
4156 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4157 		DPRINTF(sc, ATH_DEBUG_RESET,
4158 		    "%s: beacon queue %p\n", __func__,
4159 		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4160 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4161 			if (ATH_TXQ_SETUP(sc, i))
4162 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4163 	}
4164 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4165 		if (ATH_TXQ_SETUP(sc, i))
4166 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4167 	ifp->if_flags &= ~IFF_OACTIVE;
4168 	sc->sc_tx_timer = 0;
4169 }
4170 
4171 /*
4172  * Disable the receive h/w in preparation for a reset.
4173  */
4174 static void
4175 ath_stoprecv(struct ath_softc *sc)
4176 {
4177 #define	PA2DESC(_sc, _pa) \
4178 	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4179 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4180 	struct ath_hal *ah = sc->sc_ah;
4181 
4182 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4183 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4184 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4185 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4186 #ifdef AR_DEBUG
4187 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4188 		struct ath_buf *bf;
4189 
4190 		printf("%s: rx queue %p, link %p\n", __func__,
4191 			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4192 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4193 			struct ath_desc *ds = bf->bf_desc;
4194 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4195 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4196 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4197 				ath_printrxbuf(bf, status == HAL_OK);
4198 		}
4199 	}
4200 #endif
4201 	sc->sc_rxlink = NULL;		/* just in case */
4202 #undef PA2DESC
4203 }
4204 
4205 /*
4206  * Enable the receive h/w following a reset.
4207  */
4208 static int
4209 ath_startrecv(struct ath_softc *sc)
4210 {
4211 	struct ath_hal *ah = sc->sc_ah;
4212 	struct ath_buf *bf;
4213 
4214 	sc->sc_rxlink = NULL;
4215 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4216 		int error = ath_rxbuf_init(sc, bf);
4217 		if (error != 0) {
4218 			DPRINTF(sc, ATH_DEBUG_RECV,
4219 				"%s: ath_rxbuf_init failed %d\n",
4220 				__func__, error);
4221 			return error;
4222 		}
4223 	}
4224 
4225 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4226 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4227 	ath_hal_rxena(ah);		/* enable recv descriptors */
4228 	ath_mode_init(sc);		/* set filters, etc. */
4229 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4230 	return 0;
4231 }
4232 
4233 /*
4234  * Update internal state after a channel change.
4235  */
4236 static void
4237 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4238 {
4239 	struct ieee80211com *ic = &sc->sc_ic;
4240 	enum ieee80211_phymode mode;
4241 	u_int16_t flags;
4242 
4243 	/*
4244 	 * Change channels and update the h/w rate map
4245 	 * if we're switching; e.g. 11a to 11b/g.
4246 	 */
4247 	mode = ieee80211_chan2mode(ic, chan);
4248 	if (mode != sc->sc_curmode)
4249 		ath_setcurmode(sc, mode);
4250 	/*
4251 	 * Update BPF state.  NB: ethereal et. al. don't handle
4252 	 * merged flags well so pick a unique mode for their use.
4253 	 */
4254 	if (IEEE80211_IS_CHAN_A(chan))
4255 		flags = IEEE80211_CHAN_A;
4256 	/* XXX 11g schizophrenia */
4257 	else if (IEEE80211_IS_CHAN_G(chan) ||
4258 	    IEEE80211_IS_CHAN_PUREG(chan))
4259 		flags = IEEE80211_CHAN_G;
4260 	else
4261 		flags = IEEE80211_CHAN_B;
4262 	if (IEEE80211_IS_CHAN_T(chan))
4263 		flags |= IEEE80211_CHAN_TURBO;
4264 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4265 		htole16(chan->ic_freq);
4266 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4267 		htole16(flags);
4268 }
4269 
4270 /*
4271  * Poll for a channel clear indication; this is required
4272  * for channels requiring DFS and not previously visited
4273  * and/or with a recent radar detection.
4274  */
4275 static void
4276 ath_dfswait(void *arg)
4277 {
4278 	struct ath_softc *sc = arg;
4279 	struct ath_hal *ah = sc->sc_ah;
4280 	HAL_CHANNEL hchan;
4281 
4282 	ath_hal_radar_wait(ah, &hchan);
4283 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4284 		if_printf(&sc->sc_if,
4285 		    "channel %u/0x%x/0x%x has interference\n",
4286 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4287 		return;
4288 	}
4289 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4290 		/* XXX should not happen */
4291 		return;
4292 	}
4293 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4294 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4295 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4296 		if_printf(&sc->sc_if,
4297 		    "channel %u/0x%x/0x%x marked clear\n",
4298 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4299 	} else
4300 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4301 }
4302 
4303 /*
4304  * Set/change channels.  If the channel is really being changed,
4305  * it's done by reseting the chip.  To accomplish this we must
4306  * first cleanup any pending DMA, then restart stuff after a la
4307  * ath_init.
4308  */
4309 static int
4310 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4311 {
4312 	struct ath_hal *ah = sc->sc_ah;
4313 	struct ieee80211com *ic = &sc->sc_ic;
4314 	HAL_CHANNEL hchan;
4315 
4316 	/*
4317 	 * Convert to a HAL channel description with
4318 	 * the flags constrained to reflect the current
4319 	 * operating mode.
4320 	 */
4321 	hchan.channel = chan->ic_freq;
4322 	hchan.channelFlags = ath_chan2flags(ic, chan);
4323 
4324 	DPRINTF(sc, ATH_DEBUG_RESET,
4325 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4326 	    __func__,
4327 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4328 		sc->sc_curchan.channelFlags),
4329 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4330 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4331 	        hchan.channel, hchan.channelFlags);
4332 	if (hchan.channel != sc->sc_curchan.channel ||
4333 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4334 		HAL_STATUS status;
4335 
4336 		/*
4337 		 * To switch channels clear any pending DMA operations;
4338 		 * wait long enough for the RX fifo to drain, reset the
4339 		 * hardware at the new frequency, and then re-enable
4340 		 * the relevant bits of the h/w.
4341 		 */
4342 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4343 		ath_draintxq(sc);		/* clear pending tx frames */
4344 		ath_stoprecv(sc);		/* turn off frame recv */
4345 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4346 			if_printf(ic->ic_ifp, "%s: unable to reset "
4347 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4348 			    __func__, ieee80211_chan2ieee(ic, chan),
4349 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4350 			return EIO;
4351 		}
4352 		sc->sc_curchan = hchan;
4353 		ath_update_txpow(sc);		/* update tx power state */
4354 		sc->sc_diversity = ath_hal_getdiversity(ah);
4355 		sc->sc_calinterval = 1;
4356 		sc->sc_caltries = 0;
4357 
4358 		/*
4359 		 * Re-enable rx framework.
4360 		 */
4361 		if (ath_startrecv(sc) != 0) {
4362 			if_printf(&sc->sc_if,
4363 				"%s: unable to restart recv logic\n", __func__);
4364 			return EIO;
4365 		}
4366 
4367 		/*
4368 		 * Change channels and update the h/w rate map
4369 		 * if we're switching; e.g. 11a to 11b/g.
4370 		 */
4371 		ic->ic_ibss_chan = chan;
4372 		ath_chan_change(sc, chan);
4373 
4374 		/*
4375 		 * Handle DFS required waiting period to determine
4376 		 * if channel is clear of radar traffic.
4377 		 */
4378 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4379 #define	DFS_AND_NOT_CLEAR(_c) \
4380 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4381 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4382 				if_printf(&sc->sc_if,
4383 					"wait for DFS clear channel signal\n");
4384 				/* XXX stop sndq */
4385 				sc->sc_if.if_flags |= IFF_OACTIVE;
4386 				callout_reset(&sc->sc_dfs_ch,
4387 					2 * hz, ath_dfswait, sc);
4388 			} else
4389 				callout_stop(&sc->sc_dfs_ch);
4390 #undef DFS_NOT_CLEAR
4391 		}
4392 
4393 		/*
4394 		 * Re-enable interrupts.
4395 		 */
4396 		ath_hal_intrset(ah, sc->sc_imask);
4397 	}
4398 	return 0;
4399 }
4400 
4401 static void
4402 ath_next_scan(void *arg)
4403 {
4404 	struct ath_softc *sc = arg;
4405 	struct ieee80211com *ic = &sc->sc_ic;
4406 	int s;
4407 
4408 	/* don't call ath_start w/o network interrupts blocked */
4409 	s = splnet();
4410 
4411 	if (ic->ic_state == IEEE80211_S_SCAN)
4412 		ieee80211_next_scan(ic);
4413 	splx(s);
4414 }
4415 
4416 /*
4417  * Periodically recalibrate the PHY to account
4418  * for temperature/environment changes.
4419  */
4420 static void
4421 ath_calibrate(void *arg)
4422 {
4423 	struct ath_softc *sc = arg;
4424 	struct ath_hal *ah = sc->sc_ah;
4425 	HAL_BOOL iqCalDone;
4426 
4427 	sc->sc_stats.ast_per_cal++;
4428 
4429 	ATH_LOCK(sc);
4430 
4431 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4432 		/*
4433 		 * Rfgain is out of bounds, reset the chip
4434 		 * to load new gain values.
4435 		 */
4436 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4437 			"%s: rfgain change\n", __func__);
4438 		sc->sc_stats.ast_per_rfgain++;
4439 		ath_reset(&sc->sc_if);
4440 	}
4441 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4442 		DPRINTF(sc, ATH_DEBUG_ANY,
4443 			"%s: calibration of channel %u failed\n",
4444 			__func__, sc->sc_curchan.channel);
4445 		sc->sc_stats.ast_per_calfail++;
4446 	}
4447 	/*
4448 	 * Calibrate noise floor data again in case of change.
4449 	 */
4450 	ath_hal_process_noisefloor(ah);
4451 	/*
4452 	 * Poll more frequently when the IQ calibration is in
4453 	 * progress to speedup loading the final settings.
4454 	 * We temper this aggressive polling with an exponential
4455 	 * back off after 4 tries up to ath_calinterval.
4456 	 */
4457 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4458 		sc->sc_caltries = 0;
4459 		sc->sc_calinterval = ath_calinterval;
4460 	} else if (sc->sc_caltries > 4) {
4461 		sc->sc_caltries = 0;
4462 		sc->sc_calinterval <<= 1;
4463 		if (sc->sc_calinterval > ath_calinterval)
4464 			sc->sc_calinterval = ath_calinterval;
4465 	}
4466 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4467 		("bad calibration interval %u", sc->sc_calinterval));
4468 
4469 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4470 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4471 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4472 	sc->sc_caltries++;
4473 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4474 		ath_calibrate, sc);
4475 	ATH_UNLOCK(sc);
4476 }
4477 
4478 static int
4479 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4480 {
4481 	struct ifnet *ifp = ic->ic_ifp;
4482 	struct ath_softc *sc = ifp->if_softc;
4483 	struct ath_hal *ah = sc->sc_ah;
4484 	struct ieee80211_node *ni;
4485 	int i, error;
4486 	const u_int8_t *bssid;
4487 	u_int32_t rfilt;
4488 	static const HAL_LED_STATE leds[] = {
4489 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4490 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4491 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4492 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4493 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4494 	};
4495 
4496 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4497 		ieee80211_state_name[ic->ic_state],
4498 		ieee80211_state_name[nstate]);
4499 
4500 	callout_stop(&sc->sc_scan_ch);
4501 	callout_stop(&sc->sc_cal_ch);
4502 	callout_stop(&sc->sc_dfs_ch);
4503 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4504 
4505 	if (nstate == IEEE80211_S_INIT) {
4506 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4507 		/*
4508 		 * NB: disable interrupts so we don't rx frames.
4509 		 */
4510 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4511 		/*
4512 		 * Notify the rate control algorithm.
4513 		 */
4514 		ath_rate_newstate(sc, nstate);
4515 		goto done;
4516 	}
4517 	ni = ic->ic_bss;
4518 	error = ath_chan_set(sc, ic->ic_curchan);
4519 	if (error != 0)
4520 		goto bad;
4521 	rfilt = ath_calcrxfilter(sc, nstate);
4522 	if (nstate == IEEE80211_S_SCAN)
4523 		bssid = ifp->if_broadcastaddr;
4524 	else
4525 		bssid = ni->ni_bssid;
4526 	ath_hal_setrxfilter(ah, rfilt);
4527 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4528 		 __func__, rfilt, ether_sprintf(bssid));
4529 
4530 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4531 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4532 	else
4533 		ath_hal_setassocid(ah, bssid, 0);
4534 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4535 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4536 			if (ath_hal_keyisvalid(ah, i))
4537 				ath_hal_keysetmac(ah, i, bssid);
4538 	}
4539 
4540 	/*
4541 	 * Notify the rate control algorithm so rates
4542 	 * are setup should ath_beacon_alloc be called.
4543 	 */
4544 	ath_rate_newstate(sc, nstate);
4545 
4546 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4547 		/* nothing to do */;
4548 	} else if (nstate == IEEE80211_S_RUN) {
4549 		DPRINTF(sc, ATH_DEBUG_STATE,
4550 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4551 			"capinfo=0x%04x chan=%d\n"
4552 			 , __func__
4553 			 , ic->ic_flags
4554 			 , ni->ni_intval
4555 			 , ether_sprintf(ni->ni_bssid)
4556 			 , ni->ni_capinfo
4557 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4558 
4559 		switch (ic->ic_opmode) {
4560 		case IEEE80211_M_HOSTAP:
4561 		case IEEE80211_M_IBSS:
4562 			/*
4563 			 * Allocate and setup the beacon frame.
4564 			 *
4565 			 * Stop any previous beacon DMA.  This may be
4566 			 * necessary, for example, when an ibss merge
4567 			 * causes reconfiguration; there will be a state
4568 			 * transition from RUN->RUN that means we may
4569 			 * be called with beacon transmission active.
4570 			 */
4571 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4572 			ath_beacon_free(sc);
4573 			error = ath_beacon_alloc(sc, ni);
4574 			if (error != 0)
4575 				goto bad;
4576 			/*
4577 			 * If joining an adhoc network defer beacon timer
4578 			 * configuration to the next beacon frame so we
4579 			 * have a current TSF to use.  Otherwise we're
4580 			 * starting an ibss/bss so there's no need to delay.
4581 			 */
4582 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4583 			    ic->ic_bss->ni_tstamp.tsf != 0)
4584 				sc->sc_syncbeacon = 1;
4585 			else
4586 				ath_beacon_config(sc);
4587 			break;
4588 		case IEEE80211_M_STA:
4589 			/*
4590 			 * Allocate a key cache slot to the station.
4591 			 */
4592 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4593 			    sc->sc_hasclrkey &&
4594 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4595 				ath_setup_stationkey(ni);
4596 			/*
4597 			 * Defer beacon timer configuration to the next
4598 			 * beacon frame so we have a current TSF to use
4599 			 * (any TSF collected when scanning is likely old).
4600 			 */
4601 			sc->sc_syncbeacon = 1;
4602 			break;
4603 		default:
4604 			break;
4605 		}
4606 		/*
4607 		 * Let the hal process statistics collected during a
4608 		 * scan so it can provide calibrated noise floor data.
4609 		 */
4610 		ath_hal_process_noisefloor(ah);
4611 		/*
4612 		 * Reset rssi stats; maybe not the best place...
4613 		 */
4614 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4615 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4616 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4617 	} else {
4618 		ath_hal_intrset(ah,
4619 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4620 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4621 	}
4622 done:
4623 	/*
4624 	 * Invoke the parent method to complete the work.
4625 	 */
4626 	error = sc->sc_newstate(ic, nstate, arg);
4627 	/*
4628 	 * Finally, start any timers.
4629 	 */
4630 	if (nstate == IEEE80211_S_RUN) {
4631 		/* start periodic recalibration timer */
4632 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4633 			ath_calibrate, sc);
4634 	} else if (nstate == IEEE80211_S_SCAN) {
4635 		/* start ap/neighbor scan timer */
4636 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4637 			ath_next_scan, sc);
4638 	}
4639 bad:
4640 	return error;
4641 }
4642 
4643 /*
4644  * Allocate a key cache slot to the station so we can
4645  * setup a mapping from key index to node. The key cache
4646  * slot is needed for managing antenna state and for
4647  * compression when stations do not use crypto.  We do
4648  * it uniliaterally here; if crypto is employed this slot
4649  * will be reassigned.
4650  */
4651 static void
4652 ath_setup_stationkey(struct ieee80211_node *ni)
4653 {
4654 	struct ieee80211com *ic = ni->ni_ic;
4655 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4656 	ieee80211_keyix keyix, rxkeyix;
4657 
4658 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4659 		/*
4660 		 * Key cache is full; we'll fall back to doing
4661 		 * the more expensive lookup in software.  Note
4662 		 * this also means no h/w compression.
4663 		 */
4664 		/* XXX msg+statistic */
4665 	} else {
4666 		/* XXX locking? */
4667 		ni->ni_ucastkey.wk_keyix = keyix;
4668 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4669 		/* NB: this will create a pass-thru key entry */
4670 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4671 	}
4672 }
4673 
4674 /*
4675  * Setup driver-specific state for a newly associated node.
4676  * Note that we're called also on a re-associate, the isnew
4677  * param tells us if this is the first time or not.
4678  */
4679 static void
4680 ath_newassoc(struct ieee80211_node *ni, int isnew)
4681 {
4682 	struct ieee80211com *ic = ni->ni_ic;
4683 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4684 
4685 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4686 	if (isnew &&
4687 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4688 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4689 		    ("new assoc with a unicast key already setup (keyix %u)",
4690 		    ni->ni_ucastkey.wk_keyix));
4691 		ath_setup_stationkey(ni);
4692 	}
4693 }
4694 
4695 static int
4696 ath_getchannels(struct ath_softc *sc, u_int cc,
4697 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4698 {
4699 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4700 	struct ieee80211com *ic = &sc->sc_ic;
4701 	struct ifnet *ifp = &sc->sc_if;
4702 	struct ath_hal *ah = sc->sc_ah;
4703 	HAL_CHANNEL *chans;
4704 	int i, ix, nchan;
4705 
4706 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4707 			M_TEMP, M_NOWAIT);
4708 	if (chans == NULL) {
4709 		if_printf(ifp, "unable to allocate channel table\n");
4710 		return ENOMEM;
4711 	}
4712 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4713 	    NULL, 0, NULL,
4714 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4715 		u_int32_t rd;
4716 
4717 		(void)ath_hal_getregdomain(ah, &rd);
4718 		if_printf(ifp, "unable to collect channel list from hal; "
4719 			"regdomain likely %u country code %u\n", rd, cc);
4720 		free(chans, M_TEMP);
4721 		return EINVAL;
4722 	}
4723 
4724 	/*
4725 	 * Convert HAL channels to ieee80211 ones and insert
4726 	 * them in the table according to their channel number.
4727 	 */
4728 	for (i = 0; i < nchan; i++) {
4729 		HAL_CHANNEL *c = &chans[i];
4730 		u_int16_t flags;
4731 
4732 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4733 		if (ix > IEEE80211_CHAN_MAX) {
4734 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4735 				ix, c->channel, c->channelFlags);
4736 			continue;
4737 		}
4738 		if (ix < 0) {
4739 			/* XXX can't handle stuff <2400 right now */
4740 			if (bootverbose)
4741 				if_printf(ifp, "hal channel %d (%u/%x) "
4742 				    "cannot be handled; ignored\n",
4743 				    ix, c->channel, c->channelFlags);
4744 			continue;
4745 		}
4746 		/*
4747 		 * Calculate net80211 flags; most are compatible
4748 		 * but some need massaging.  Note the static turbo
4749 		 * conversion can be removed once net80211 is updated
4750 		 * to understand static vs. dynamic turbo.
4751 		 */
4752 		flags = c->channelFlags & COMPAT;
4753 		if (c->channelFlags & CHANNEL_STURBO)
4754 			flags |= IEEE80211_CHAN_TURBO;
4755 		if (ic->ic_channels[ix].ic_freq == 0) {
4756 			ic->ic_channels[ix].ic_freq = c->channel;
4757 			ic->ic_channels[ix].ic_flags = flags;
4758 		} else {
4759 			/* channels overlap; e.g. 11g and 11b */
4760 			ic->ic_channels[ix].ic_flags |= flags;
4761 		}
4762 	}
4763 	free(chans, M_TEMP);
4764 	return 0;
4765 #undef COMPAT
4766 }
4767 
4768 static void
4769 ath_led_done(void *arg)
4770 {
4771 	struct ath_softc *sc = arg;
4772 
4773 	sc->sc_blinking = 0;
4774 }
4775 
4776 /*
4777  * Turn the LED off: flip the pin and then set a timer so no
4778  * update will happen for the specified duration.
4779  */
4780 static void
4781 ath_led_off(void *arg)
4782 {
4783 	struct ath_softc *sc = arg;
4784 
4785 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4786 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4787 }
4788 
4789 /*
4790  * Blink the LED according to the specified on/off times.
4791  */
4792 static void
4793 ath_led_blink(struct ath_softc *sc, int on, int off)
4794 {
4795 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4796 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4797 	sc->sc_blinking = 1;
4798 	sc->sc_ledoff = off;
4799 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4800 }
4801 
4802 static void
4803 ath_led_event(struct ath_softc *sc, int event)
4804 {
4805 
4806 	sc->sc_ledevent = ticks;	/* time of last event */
4807 	if (sc->sc_blinking)		/* don't interrupt active blink */
4808 		return;
4809 	switch (event) {
4810 	case ATH_LED_POLL:
4811 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4812 			sc->sc_hwmap[0].ledoff);
4813 		break;
4814 	case ATH_LED_TX:
4815 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4816 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4817 		break;
4818 	case ATH_LED_RX:
4819 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4820 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4821 		break;
4822 	}
4823 }
4824 
4825 static void
4826 ath_update_txpow(struct ath_softc *sc)
4827 {
4828 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4829 	struct ieee80211com *ic = &sc->sc_ic;
4830 	struct ath_hal *ah = sc->sc_ah;
4831 	u_int32_t txpow;
4832 
4833 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4834 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4835 		/* read back in case value is clamped */
4836 		(void)ath_hal_gettxpowlimit(ah, &txpow);
4837 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4838 	}
4839 	/*
4840 	 * Fetch max tx power level for status requests.
4841 	 */
4842 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4843 	ic->ic_bss->ni_txpower = txpow;
4844 }
4845 
4846 static void
4847 rate_setup(struct ath_softc *sc,
4848 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4849 {
4850 	int i, maxrates;
4851 
4852 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4853 		DPRINTF(sc, ATH_DEBUG_ANY,
4854 			"%s: rate table too small (%u > %u)\n",
4855 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4856 		maxrates = IEEE80211_RATE_MAXSIZE;
4857 	} else
4858 		maxrates = rt->rateCount;
4859 	for (i = 0; i < maxrates; i++)
4860 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4861 	rs->rs_nrates = maxrates;
4862 }
4863 
4864 static int
4865 ath_rate_setup(struct ath_softc *sc, u_int mode)
4866 {
4867 	struct ath_hal *ah = sc->sc_ah;
4868 	struct ieee80211com *ic = &sc->sc_ic;
4869 	const HAL_RATE_TABLE *rt;
4870 
4871 	switch (mode) {
4872 	case IEEE80211_MODE_11A:
4873 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4874 		break;
4875 	case IEEE80211_MODE_11B:
4876 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4877 		break;
4878 	case IEEE80211_MODE_11G:
4879 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4880 		break;
4881 	case IEEE80211_MODE_TURBO_A:
4882 		/* XXX until static/dynamic turbo is fixed */
4883 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4884 		break;
4885 	case IEEE80211_MODE_TURBO_G:
4886 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4887 		break;
4888 	default:
4889 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4890 			__func__, mode);
4891 		return 0;
4892 	}
4893 	sc->sc_rates[mode] = rt;
4894 	if (rt != NULL) {
4895 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4896 		return 1;
4897 	} else
4898 		return 0;
4899 }
4900 
4901 static void
4902 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4903 {
4904 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4905 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4906 	static const struct {
4907 		u_int		rate;		/* tx/rx 802.11 rate */
4908 		u_int16_t	timeOn;		/* LED on time (ms) */
4909 		u_int16_t	timeOff;	/* LED off time (ms) */
4910 	} blinkrates[] = {
4911 		{ 108,  40,  10 },
4912 		{  96,  44,  11 },
4913 		{  72,  50,  13 },
4914 		{  48,  57,  14 },
4915 		{  36,  67,  16 },
4916 		{  24,  80,  20 },
4917 		{  22, 100,  25 },
4918 		{  18, 133,  34 },
4919 		{  12, 160,  40 },
4920 		{  10, 200,  50 },
4921 		{   6, 240,  58 },
4922 		{   4, 267,  66 },
4923 		{   2, 400, 100 },
4924 		{   0, 500, 130 },
4925 	};
4926 	const HAL_RATE_TABLE *rt;
4927 	int i, j;
4928 
4929 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4930 	rt = sc->sc_rates[mode];
4931 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4932 	for (i = 0; i < rt->rateCount; i++)
4933 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4934 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4935 	for (i = 0; i < 32; i++) {
4936 		u_int8_t ix = rt->rateCodeToIndex[i];
4937 		if (ix == 0xff) {
4938 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4939 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4940 			continue;
4941 		}
4942 		sc->sc_hwmap[i].ieeerate =
4943 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4944 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4945 		if (rt->info[ix].shortPreamble ||
4946 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4947 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4948 		/* NB: receive frames include FCS */
4949 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4950 			IEEE80211_RADIOTAP_F_FCS;
4951 		/* setup blink rate table to avoid per-packet lookup */
4952 		for (j = 0; j < N(blinkrates)-1; j++)
4953 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4954 				break;
4955 		/* NB: this uses the last entry if the rate isn't found */
4956 		/* XXX beware of overlow */
4957 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4958 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4959 	}
4960 	sc->sc_currates = rt;
4961 	sc->sc_curmode = mode;
4962 	/*
4963 	 * All protection frames are transmited at 2Mb/s for
4964 	 * 11g, otherwise at 1Mb/s.
4965 	 */
4966 	if (mode == IEEE80211_MODE_11G)
4967 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4968 	else
4969 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4970 	/* rate index used to send management frames */
4971 	sc->sc_minrateix = 0;
4972 	/*
4973 	 * Setup multicast rate state.
4974 	 */
4975 	/* XXX layering violation */
4976 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4977 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4978 	/* NB: caller is responsible for reseting rate control state */
4979 #undef N
4980 }
4981 
4982 #ifdef AR_DEBUG
4983 static void
4984 ath_printrxbuf(struct ath_buf *bf, int done)
4985 {
4986 	struct ath_desc *ds;
4987 	int i;
4988 
4989 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4990 		printf("R%d (%p %" PRIx64
4991 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
4992 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
4993 		    ds->ds_link, ds->ds_data,
4994 		    ds->ds_ctl0, ds->ds_ctl1,
4995 		    ds->ds_hw[0], ds->ds_hw[1],
4996 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4997 	}
4998 }
4999 
5000 static void
5001 ath_printtxbuf(struct ath_buf *bf, int done)
5002 {
5003 	struct ath_desc *ds;
5004 	int i;
5005 
5006 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5007 		printf("T%d (%p %" PRIx64
5008 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5009 		    i, ds,
5010 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5011 		    ds->ds_link, ds->ds_data,
5012 		    ds->ds_ctl0, ds->ds_ctl1,
5013 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5014 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5015 	}
5016 }
5017 #endif /* AR_DEBUG */
5018 
5019 static void
5020 ath_watchdog(struct ifnet *ifp)
5021 {
5022 	struct ath_softc *sc = ifp->if_softc;
5023 	struct ieee80211com *ic = &sc->sc_ic;
5024 
5025 	ifp->if_timer = 0;
5026 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5027 		return;
5028 	if (sc->sc_tx_timer) {
5029 		if (--sc->sc_tx_timer == 0) {
5030 			if_printf(ifp, "device timeout\n");
5031 			ath_reset(ifp);
5032 			ifp->if_oerrors++;
5033 			sc->sc_stats.ast_watchdog++;
5034 		} else
5035 			ifp->if_timer = 1;
5036 	}
5037 	ieee80211_watchdog(ic);
5038 }
5039 
5040 /*
5041  * Diagnostic interface to the HAL.  This is used by various
5042  * tools to do things like retrieve register contents for
5043  * debugging.  The mechanism is intentionally opaque so that
5044  * it can change frequently w/o concern for compatiblity.
5045  */
5046 static int
5047 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5048 {
5049 	struct ath_hal *ah = sc->sc_ah;
5050 	u_int id = ad->ad_id & ATH_DIAG_ID;
5051 	void *indata = NULL;
5052 	void *outdata = NULL;
5053 	u_int32_t insize = ad->ad_in_size;
5054 	u_int32_t outsize = ad->ad_out_size;
5055 	int error = 0;
5056 
5057 	if (ad->ad_id & ATH_DIAG_IN) {
5058 		/*
5059 		 * Copy in data.
5060 		 */
5061 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5062 		if (indata == NULL) {
5063 			error = ENOMEM;
5064 			goto bad;
5065 		}
5066 		error = copyin(ad->ad_in_data, indata, insize);
5067 		if (error)
5068 			goto bad;
5069 	}
5070 	if (ad->ad_id & ATH_DIAG_DYN) {
5071 		/*
5072 		 * Allocate a buffer for the results (otherwise the HAL
5073 		 * returns a pointer to a buffer where we can read the
5074 		 * results).  Note that we depend on the HAL leaving this
5075 		 * pointer for us to use below in reclaiming the buffer;
5076 		 * may want to be more defensive.
5077 		 */
5078 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5079 		if (outdata == NULL) {
5080 			error = ENOMEM;
5081 			goto bad;
5082 		}
5083 	}
5084 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5085 		if (outsize < ad->ad_out_size)
5086 			ad->ad_out_size = outsize;
5087 		if (outdata != NULL)
5088 			error = copyout(outdata, ad->ad_out_data,
5089 					ad->ad_out_size);
5090 	} else {
5091 		error = EINVAL;
5092 	}
5093 bad:
5094 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5095 		free(indata, M_TEMP);
5096 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5097 		free(outdata, M_TEMP);
5098 	return error;
5099 }
5100 
5101 static int
5102 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5103 {
5104 #define	IS_RUNNING(ifp) \
5105 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5106 	struct ath_softc *sc = ifp->if_softc;
5107 	struct ieee80211com *ic = &sc->sc_ic;
5108 	struct ifreq *ifr = (struct ifreq *)data;
5109 	int error = 0;
5110 
5111 	ATH_LOCK(sc);
5112 	switch (cmd) {
5113 	case SIOCSIFFLAGS:
5114 		if (IS_RUNNING(ifp)) {
5115 			/*
5116 			 * To avoid rescanning another access point,
5117 			 * do not call ath_init() here.  Instead,
5118 			 * only reflect promisc mode settings.
5119 			 */
5120 			ath_mode_init(sc);
5121 		} else if (ifp->if_flags & IFF_UP) {
5122 			/*
5123 			 * Beware of being called during attach/detach
5124 			 * to reset promiscuous mode.  In that case we
5125 			 * will still be marked UP but not RUNNING.
5126 			 * However trying to re-init the interface
5127 			 * is the wrong thing to do as we've already
5128 			 * torn down much of our state.  There's
5129 			 * probably a better way to deal with this.
5130 			 */
5131 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5132 				ath_init(sc);	/* XXX lose error */
5133 		} else
5134 			ath_stop_locked(ifp, 1);
5135 		break;
5136 	case SIOCADDMULTI:
5137 	case SIOCDELMULTI:
5138 		error = (cmd == SIOCADDMULTI) ?
5139 		    ether_addmulti(ifr, &sc->sc_ec) :
5140 		    ether_delmulti(ifr, &sc->sc_ec);
5141 		if (error == ENETRESET) {
5142 			if (ifp->if_flags & IFF_RUNNING)
5143 				ath_mode_init(sc);
5144 			error = 0;
5145 		}
5146 		break;
5147 	case SIOCGATHSTATS:
5148 		/* NB: embed these numbers to get a consistent view */
5149 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5150 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5151 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5152 		ATH_UNLOCK(sc);
5153 		/*
5154 		 * NB: Drop the softc lock in case of a page fault;
5155 		 * we'll accept any potential inconsisentcy in the
5156 		 * statistics.  The alternative is to copy the data
5157 		 * to a local structure.
5158 		 */
5159 		return copyout(&sc->sc_stats,
5160 				ifr->ifr_data, sizeof (sc->sc_stats));
5161 	case SIOCGATHDIAG:
5162 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5163 		break;
5164 	default:
5165 		error = ieee80211_ioctl(ic, cmd, data);
5166 		if (error == ENETRESET) {
5167 			if (IS_RUNNING(ifp) &&
5168 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5169 				ath_init(sc);	/* XXX lose error */
5170 			error = 0;
5171 		}
5172 		if (error == ERESTART)
5173 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5174 		break;
5175 	}
5176 	ATH_UNLOCK(sc);
5177 	return error;
5178 #undef IS_RUNNING
5179 }
5180 
5181 #if NBPFILTER > 0
5182 static void
5183 ath_bpfattach(struct ath_softc *sc)
5184 {
5185 	struct ifnet *ifp = &sc->sc_if;
5186 
5187 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5188 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5189 		&sc->sc_drvbpf);
5190 	/*
5191 	 * Initialize constant fields.
5192 	 * XXX make header lengths a multiple of 32-bits so subsequent
5193 	 *     headers are properly aligned; this is a kludge to keep
5194 	 *     certain applications happy.
5195 	 *
5196 	 * NB: the channel is setup each time we transition to the
5197 	 *     RUN state to avoid filling it in for each frame.
5198 	 */
5199 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5200 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5201 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5202 
5203 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5204 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5205 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5206 }
5207 #endif
5208 
5209 /*
5210  * Announce various information on device/driver attach.
5211  */
5212 static void
5213 ath_announce(struct ath_softc *sc)
5214 {
5215 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5216 	struct ifnet *ifp = &sc->sc_if;
5217 	struct ath_hal *ah = sc->sc_ah;
5218 	u_int modes, cc;
5219 
5220 	if_printf(ifp, "mac %d.%d phy %d.%d",
5221 		ah->ah_macVersion, ah->ah_macRev,
5222 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5223 	/*
5224 	 * Print radio revision(s).  We check the wireless modes
5225 	 * to avoid falsely printing revs for inoperable parts.
5226 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5227 	 */
5228 	ath_hal_getcountrycode(ah, &cc);
5229 	modes = ath_hal_getwirelessmodes(ah, cc);
5230 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5231 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5232 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5233 				ah->ah_analog5GhzRev >> 4,
5234 				ah->ah_analog5GhzRev & 0xf,
5235 				ah->ah_analog2GhzRev >> 4,
5236 				ah->ah_analog2GhzRev & 0xf);
5237 		else
5238 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5239 				ah->ah_analog5GhzRev & 0xf);
5240 	} else
5241 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5242 			ah->ah_analog5GhzRev & 0xf);
5243 	printf("\n");
5244 	if (bootverbose) {
5245 		int i;
5246 		for (i = 0; i <= WME_AC_VO; i++) {
5247 			struct ath_txq *txq = sc->sc_ac2q[i];
5248 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5249 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5250 		}
5251 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5252 			sc->sc_cabq->axq_qnum);
5253 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5254 	}
5255 	if (ath_rxbuf != ATH_RXBUF)
5256 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5257 	if (ath_txbuf != ATH_TXBUF)
5258 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5259 #undef HAL_MODE_DUALBAND
5260 }
5261