xref: /netbsd-src/sys/dev/ic/ath.c (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1 /*	$NetBSD: ath.c,v 1.102 2008/07/09 19:47:24 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.102 2008/07/09 19:47:24 joerg Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/kernel.h>
68 #include <sys/socket.h>
69 #include <sys/sockio.h>
70 #include <sys/errno.h>
71 #include <sys/callout.h>
72 #include <sys/bus.h>
73 #include <sys/endian.h>
74 
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_media.h>
78 #include <net/if_types.h>
79 #include <net/if_arp.h>
80 #include <net/if_ether.h>
81 #include <net/if_llc.h>
82 
83 #include <net80211/ieee80211_netbsd.h>
84 #include <net80211/ieee80211_var.h>
85 
86 #if NBPFILTER > 0
87 #include <net/bpf.h>
88 #endif
89 
90 #ifdef INET
91 #include <netinet/in.h>
92 #endif
93 
94 #include <sys/device.h>
95 #include <dev/ic/ath_netbsd.h>
96 
97 #define	AR_DEBUG
98 #include <dev/ic/athvar.h>
99 #include <contrib/dev/ath/ah_desc.h>
100 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
101 #include "athhal_options.h"
102 
103 #ifdef ATH_TX99_DIAG
104 #include <dev/ath/ath_tx99/ath_tx99.h>
105 #endif
106 
107 /* unaligned little endian access */
108 #define LE_READ_2(p)							\
109 	((u_int16_t)							\
110 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
111 #define LE_READ_4(p)							\
112 	((u_int32_t)							\
113 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
114 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
115 
116 enum {
117 	ATH_LED_TX,
118 	ATH_LED_RX,
119 	ATH_LED_POLL,
120 };
121 
122 #ifdef	AH_NEED_DESC_SWAP
123 #define	HTOAH32(x)	htole32(x)
124 #else
125 #define	HTOAH32(x)	(x)
126 #endif
127 
128 static int	ath_ifinit(struct ifnet *);
129 static int	ath_init(struct ath_softc *);
130 static void	ath_stop_locked(struct ifnet *, int);
131 static void	ath_stop(struct ifnet *, int);
132 static void	ath_start(struct ifnet *);
133 static int	ath_media_change(struct ifnet *);
134 static void	ath_watchdog(struct ifnet *);
135 static int	ath_ioctl(struct ifnet *, u_long, void *);
136 static void	ath_fatal_proc(void *, int);
137 static void	ath_rxorn_proc(void *, int);
138 static void	ath_bmiss_proc(void *, int);
139 static void	ath_radar_proc(void *, int);
140 static int	ath_key_alloc(struct ieee80211com *,
141 			const struct ieee80211_key *,
142 			ieee80211_keyix *, ieee80211_keyix *);
143 static int	ath_key_delete(struct ieee80211com *,
144 			const struct ieee80211_key *);
145 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
146 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
147 static void	ath_key_update_begin(struct ieee80211com *);
148 static void	ath_key_update_end(struct ieee80211com *);
149 static void	ath_mode_init(struct ath_softc *);
150 static void	ath_setslottime(struct ath_softc *);
151 static void	ath_updateslot(struct ifnet *);
152 static int	ath_beaconq_setup(struct ath_hal *);
153 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
154 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
155 static void	ath_beacon_proc(void *, int);
156 static void	ath_bstuck_proc(void *, int);
157 static void	ath_beacon_free(struct ath_softc *);
158 static void	ath_beacon_config(struct ath_softc *);
159 static void	ath_descdma_cleanup(struct ath_softc *sc,
160 			struct ath_descdma *, ath_bufhead *);
161 static int	ath_desc_alloc(struct ath_softc *);
162 static void	ath_desc_free(struct ath_softc *);
163 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
164 static void	ath_node_free(struct ieee80211_node *);
165 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
166 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
167 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
168 			struct ieee80211_node *ni,
169 			int subtype, int rssi, u_int32_t rstamp);
170 static void	ath_setdefantenna(struct ath_softc *, u_int);
171 static void	ath_rx_proc(void *, int);
172 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
173 static int	ath_tx_setup(struct ath_softc *, int, int);
174 static int	ath_wme_update(struct ieee80211com *);
175 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
176 static void	ath_tx_cleanup(struct ath_softc *);
177 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
178 			     struct ath_buf *, struct mbuf *);
179 static void	ath_tx_proc_q0(void *, int);
180 static void	ath_tx_proc_q0123(void *, int);
181 static void	ath_tx_proc(void *, int);
182 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
183 static void	ath_draintxq(struct ath_softc *);
184 static void	ath_stoprecv(struct ath_softc *);
185 static int	ath_startrecv(struct ath_softc *);
186 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
187 static void	ath_next_scan(void *);
188 static void	ath_calibrate(void *);
189 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
190 static void	ath_setup_stationkey(struct ieee80211_node *);
191 static void	ath_newassoc(struct ieee80211_node *, int);
192 static int	ath_getchannels(struct ath_softc *, u_int cc,
193 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
194 static void	ath_led_event(struct ath_softc *, int);
195 static void	ath_update_txpow(struct ath_softc *);
196 static void	ath_freetx(struct mbuf *);
197 static void	ath_restore_diversity(struct ath_softc *);
198 
199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201 
202 #if NBPFILTER > 0
203 static void	ath_bpfattach(struct ath_softc *);
204 #endif
205 static void	ath_announce(struct ath_softc *);
206 
207 int ath_dwelltime = 200;		/* 5 channels/second */
208 int ath_calinterval = 30;		/* calibrate every 30 secs */
209 int ath_outdoor = AH_TRUE;		/* outdoor operation */
210 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
211 int ath_countrycode = CTRY_DEFAULT;	/* country code */
212 int ath_regdomain = 0;			/* regulatory domain */
213 int ath_debug = 0;
214 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
215 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
216 
217 #ifdef AR_DEBUG
218 enum {
219 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
220 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
221 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
222 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
223 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
224 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
225 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
226 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
227 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
228 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
229 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
230 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
231 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
232 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
233 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
234 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
235 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
236 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
237 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
238 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
239 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
240 	ATH_DEBUG_ANY		= 0xffffffff
241 };
242 #define	IFF_DUMPPKTS(sc, m) \
243 	((sc->sc_debug & (m)) || \
244 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245 #define	DPRINTF(sc, m, fmt, ...) do {				\
246 	if (sc->sc_debug & (m))					\
247 		printf(fmt, __VA_ARGS__);			\
248 } while (0)
249 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
250 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
251 		ath_keyprint(__func__, ix, hk, mac);		\
252 } while (0)
253 static	void ath_printrxbuf(struct ath_buf *bf, int);
254 static	void ath_printtxbuf(struct ath_buf *bf, int);
255 #else
256 #define	IFF_DUMPPKTS(sc, m) \
257 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
258 #define	DPRINTF(m, fmt, ...)
259 #define	KEYPRINTF(sc, k, ix, mac)
260 #endif
261 
262 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
263 
264 int
265 ath_attach(u_int16_t devid, struct ath_softc *sc)
266 {
267 	struct ifnet *ifp = &sc->sc_if;
268 	struct ieee80211com *ic = &sc->sc_ic;
269 	struct ath_hal *ah = NULL;
270 	HAL_STATUS status;
271 	int error = 0, i;
272 
273 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
274 
275 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
276 
277 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
278 	if (ah == NULL) {
279 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
280 			status);
281 		error = ENXIO;
282 		goto bad;
283 	}
284 	if (ah->ah_abi != HAL_ABI_VERSION) {
285 		if_printf(ifp, "HAL ABI mismatch detected "
286 			"(HAL:0x%x != driver:0x%x)\n",
287 			ah->ah_abi, HAL_ABI_VERSION);
288 		error = ENXIO;
289 		goto bad;
290 	}
291 	sc->sc_ah = ah;
292 
293 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
294 	    "pmf-powerdown", false))
295 		goto bad;
296 
297 	/*
298 	 * Check if the MAC has multi-rate retry support.
299 	 * We do this by trying to setup a fake extended
300 	 * descriptor.  MAC's that don't have support will
301 	 * return false w/o doing anything.  MAC's that do
302 	 * support it will return true w/o doing anything.
303 	 */
304 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
305 
306 	/*
307 	 * Check if the device has hardware counters for PHY
308 	 * errors.  If so we need to enable the MIB interrupt
309 	 * so we can act on stat triggers.
310 	 */
311 	if (ath_hal_hwphycounters(ah))
312 		sc->sc_needmib = 1;
313 
314 	/*
315 	 * Get the hardware key cache size.
316 	 */
317 	sc->sc_keymax = ath_hal_keycachesize(ah);
318 	if (sc->sc_keymax > ATH_KEYMAX) {
319 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
320 			ATH_KEYMAX, sc->sc_keymax);
321 		sc->sc_keymax = ATH_KEYMAX;
322 	}
323 	/*
324 	 * Reset the key cache since some parts do not
325 	 * reset the contents on initial power up.
326 	 */
327 	for (i = 0; i < sc->sc_keymax; i++)
328 		ath_hal_keyreset(ah, i);
329 	/*
330 	 * Mark key cache slots associated with global keys
331 	 * as in use.  If we knew TKIP was not to be used we
332 	 * could leave the +32, +64, and +32+64 slots free.
333 	 * XXX only for splitmic.
334 	 */
335 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
336 		setbit(sc->sc_keymap, i);
337 		setbit(sc->sc_keymap, i+32);
338 		setbit(sc->sc_keymap, i+64);
339 		setbit(sc->sc_keymap, i+32+64);
340 	}
341 
342 	/*
343 	 * Collect the channel list using the default country
344 	 * code and including outdoor channels.  The 802.11 layer
345 	 * is resposible for filtering this list based on settings
346 	 * like the phy mode.
347 	 */
348 	error = ath_getchannels(sc, ath_countrycode,
349 			ath_outdoor, ath_xchanmode);
350 	if (error != 0)
351 		goto bad;
352 
353 	/*
354 	 * Setup rate tables for all potential media types.
355 	 */
356 	ath_rate_setup(sc, IEEE80211_MODE_11A);
357 	ath_rate_setup(sc, IEEE80211_MODE_11B);
358 	ath_rate_setup(sc, IEEE80211_MODE_11G);
359 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
360 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
361 	/* NB: setup here so ath_rate_update is happy */
362 	ath_setcurmode(sc, IEEE80211_MODE_11A);
363 
364 	/*
365 	 * Allocate tx+rx descriptors and populate the lists.
366 	 */
367 	error = ath_desc_alloc(sc);
368 	if (error != 0) {
369 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
370 		goto bad;
371 	}
372 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
373 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
374 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
375 
376 	ATH_TXBUF_LOCK_INIT(sc);
377 
378 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
379 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
380 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
381 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
382 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
383 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
384 
385 	/*
386 	 * Allocate hardware transmit queues: one queue for
387 	 * beacon frames and one data queue for each QoS
388 	 * priority.  Note that the hal handles reseting
389 	 * these queues at the needed time.
390 	 *
391 	 * XXX PS-Poll
392 	 */
393 	sc->sc_bhalq = ath_beaconq_setup(ah);
394 	if (sc->sc_bhalq == (u_int) -1) {
395 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
396 		error = EIO;
397 		goto bad2;
398 	}
399 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
400 	if (sc->sc_cabq == NULL) {
401 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
402 		error = EIO;
403 		goto bad2;
404 	}
405 	/* NB: insure BK queue is the lowest priority h/w queue */
406 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
407 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
408 			ieee80211_wme_acnames[WME_AC_BK]);
409 		error = EIO;
410 		goto bad2;
411 	}
412 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
413 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
414 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
415 		/*
416 		 * Not enough hardware tx queues to properly do WME;
417 		 * just punt and assign them all to the same h/w queue.
418 		 * We could do a better job of this if, for example,
419 		 * we allocate queues when we switch from station to
420 		 * AP mode.
421 		 */
422 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
423 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
424 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
425 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
426 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
427 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
428 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
429 	}
430 
431 	/*
432 	 * Special case certain configurations.  Note the
433 	 * CAB queue is handled by these specially so don't
434 	 * include them when checking the txq setup mask.
435 	 */
436 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
437 	case 0x01:
438 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
439 		break;
440 	case 0x0f:
441 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
442 		break;
443 	default:
444 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
445 		break;
446 	}
447 
448 	/*
449 	 * Setup rate control.  Some rate control modules
450 	 * call back to change the anntena state so expose
451 	 * the necessary entry points.
452 	 * XXX maybe belongs in struct ath_ratectrl?
453 	 */
454 	sc->sc_setdefantenna = ath_setdefantenna;
455 	sc->sc_rc = ath_rate_attach(sc);
456 	if (sc->sc_rc == NULL) {
457 		error = EIO;
458 		goto bad2;
459 	}
460 
461 	sc->sc_blinking = 0;
462 	sc->sc_ledstate = 1;
463 	sc->sc_ledon = 0;			/* low true */
464 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
465 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
466 	/*
467 	 * Auto-enable soft led processing for IBM cards and for
468 	 * 5211 minipci cards.  Users can also manually enable/disable
469 	 * support with a sysctl.
470 	 */
471 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
472 	if (sc->sc_softled) {
473 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
474 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
475 	}
476 
477 	ifp->if_softc = sc;
478 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
479 	ifp->if_start = ath_start;
480 	ifp->if_stop = ath_stop;
481 	ifp->if_watchdog = ath_watchdog;
482 	ifp->if_ioctl = ath_ioctl;
483 	ifp->if_init = ath_ifinit;
484 	IFQ_SET_READY(&ifp->if_snd);
485 
486 	ic->ic_ifp = ifp;
487 	ic->ic_reset = ath_reset;
488 	ic->ic_newassoc = ath_newassoc;
489 	ic->ic_updateslot = ath_updateslot;
490 	ic->ic_wme.wme_update = ath_wme_update;
491 	/* XXX not right but it's not used anywhere important */
492 	ic->ic_phytype = IEEE80211_T_OFDM;
493 	ic->ic_opmode = IEEE80211_M_STA;
494 	ic->ic_caps =
495 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
496 		| IEEE80211_C_HOSTAP		/* hostap mode */
497 		| IEEE80211_C_MONITOR		/* monitor mode */
498 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
499 		| IEEE80211_C_SHSLOT		/* short slot time supported */
500 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
501 		| IEEE80211_C_TXFRAG		/* handle tx frags */
502 		;
503 	/*
504 	 * Query the hal to figure out h/w crypto support.
505 	 */
506 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
507 		ic->ic_caps |= IEEE80211_C_WEP;
508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
509 		ic->ic_caps |= IEEE80211_C_AES;
510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
511 		ic->ic_caps |= IEEE80211_C_AES_CCM;
512 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
513 		ic->ic_caps |= IEEE80211_C_CKIP;
514 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
515 		ic->ic_caps |= IEEE80211_C_TKIP;
516 		/*
517 		 * Check if h/w does the MIC and/or whether the
518 		 * separate key cache entries are required to
519 		 * handle both tx+rx MIC keys.
520 		 */
521 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
522 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
523 		if (ath_hal_tkipsplit(ah))
524 			sc->sc_splitmic = 1;
525 	}
526 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
527 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
528 	/*
529 	 * TPC support can be done either with a global cap or
530 	 * per-packet support.  The latter is not available on
531 	 * all parts.  We're a bit pedantic here as all parts
532 	 * support a global cap.
533 	 */
534 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
535 		ic->ic_caps |= IEEE80211_C_TXPMGT;
536 
537 	/*
538 	 * Mark WME capability only if we have sufficient
539 	 * hardware queues to do proper priority scheduling.
540 	 */
541 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
542 		ic->ic_caps |= IEEE80211_C_WME;
543 	/*
544 	 * Check for misc other capabilities.
545 	 */
546 	if (ath_hal_hasbursting(ah))
547 		ic->ic_caps |= IEEE80211_C_BURST;
548 
549 	/*
550 	 * Indicate we need the 802.11 header padded to a
551 	 * 32-bit boundary for 4-address and QoS frames.
552 	 */
553 	ic->ic_flags |= IEEE80211_F_DATAPAD;
554 
555 	/*
556 	 * Query the hal about antenna support.
557 	 */
558 	sc->sc_defant = ath_hal_getdefantenna(ah);
559 
560 	/*
561 	 * Not all chips have the VEOL support we want to
562 	 * use with IBSS beacons; check here for it.
563 	 */
564 	sc->sc_hasveol = ath_hal_hasveol(ah);
565 
566 	/* get mac address from hardware */
567 	ath_hal_getmac(ah, ic->ic_myaddr);
568 
569 	if_attach(ifp);
570 	/* call MI attach routine. */
571 	ieee80211_ifattach(ic);
572 	/* override default methods */
573 	ic->ic_node_alloc = ath_node_alloc;
574 	sc->sc_node_free = ic->ic_node_free;
575 	ic->ic_node_free = ath_node_free;
576 	ic->ic_node_getrssi = ath_node_getrssi;
577 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
578 	ic->ic_recv_mgmt = ath_recv_mgmt;
579 	sc->sc_newstate = ic->ic_newstate;
580 	ic->ic_newstate = ath_newstate;
581 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
582 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
583 	ic->ic_crypto.cs_key_delete = ath_key_delete;
584 	ic->ic_crypto.cs_key_set = ath_key_set;
585 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
586 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
587 	/* complete initialization */
588 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
589 
590 #if NBPFILTER > 0
591 	ath_bpfattach(sc);
592 #endif
593 
594 	sc->sc_flags |= ATH_ATTACHED;
595 
596 	/*
597 	 * Setup dynamic sysctl's now that country code and
598 	 * regdomain are available from the hal.
599 	 */
600 	ath_sysctlattach(sc);
601 
602 	ieee80211_announce(ic);
603 	ath_announce(sc);
604 	return 0;
605 bad2:
606 	ath_tx_cleanup(sc);
607 	ath_desc_free(sc);
608 bad:
609 	if (ah)
610 		ath_hal_detach(ah);
611 	/* XXX don't get under the abstraction like this */
612 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
613 	return error;
614 }
615 
616 int
617 ath_detach(struct ath_softc *sc)
618 {
619 	struct ifnet *ifp = &sc->sc_if;
620 	int s;
621 
622 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
623 		return (0);
624 
625 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
626 		__func__, ifp->if_flags);
627 
628 	s = splnet();
629 	ath_stop(ifp, 1);
630 #if NBPFILTER > 0
631 	bpfdetach(ifp);
632 #endif
633 	/*
634 	 * NB: the order of these is important:
635 	 * o call the 802.11 layer before detaching the hal to
636 	 *   insure callbacks into the driver to delete global
637 	 *   key cache entries can be handled
638 	 * o reclaim the tx queue data structures after calling
639 	 *   the 802.11 layer as we'll get called back to reclaim
640 	 *   node state and potentially want to use them
641 	 * o to cleanup the tx queues the hal is called, so detach
642 	 *   it last
643 	 * Other than that, it's straightforward...
644 	 */
645 	ieee80211_ifdetach(&sc->sc_ic);
646 #ifdef ATH_TX99_DIAG
647 	if (sc->sc_tx99 != NULL)
648 		sc->sc_tx99->detach(sc->sc_tx99);
649 #endif
650 	ath_rate_detach(sc->sc_rc);
651 	ath_desc_free(sc);
652 	ath_tx_cleanup(sc);
653 	sysctl_teardown(&sc->sc_sysctllog);
654 	ath_hal_detach(sc->sc_ah);
655 	if_detach(ifp);
656 	splx(s);
657 
658 	return 0;
659 }
660 
661 void
662 ath_suspend(struct ath_softc *sc)
663 {
664 	/*
665 	 * Set the chip in full sleep mode.  Note that we are
666 	 * careful to do this only when bringing the interface
667 	 * completely to a stop.  When the chip is in this state
668 	 * it must be carefully woken up or references to
669 	 * registers in the PCI clock domain may freeze the bus
670 	 * (and system).  This varies by chip and is mostly an
671 	 * issue with newer parts that go to sleep more quickly.
672 	 */
673 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
674 }
675 
676 bool
677 ath_resume(struct ath_softc *sc)
678 {
679 	int i;
680 	struct ath_hal *ah = sc->sc_ah;
681 
682 	ath_hal_setpower(ah, HAL_PM_AWAKE);
683 
684 	/*
685 	 * Reset the key cache since some parts do not
686 	 * reset the contents on initial power up.
687 	 */
688 	for (i = 0; i < sc->sc_keymax; i++)
689 		ath_hal_keyreset(ah, i);
690 
691 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
692 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
693 		if (ATH_TXQ_SETUP(sc, i))
694 			ath_hal_resettxqueue(ah, i);
695 
696 	if (sc->sc_softled) {
697 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
698 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
699 	}
700 	return true;
701 }
702 
703 /*
704  * Interrupt handler.  Most of the actual processing is deferred.
705  */
706 int
707 ath_intr(void *arg)
708 {
709 	struct ath_softc *sc = arg;
710 	struct ifnet *ifp = &sc->sc_if;
711 	struct ath_hal *ah = sc->sc_ah;
712 	HAL_INT status;
713 
714 	if (!device_is_active(sc->sc_dev)) {
715 		/*
716 		 * The hardware is not ready/present, don't touch anything.
717 		 * Note this can happen early on if the IRQ is shared.
718 		 */
719 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
720 		return 0;
721 	}
722 
723 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
724 		return 0;
725 
726 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
727 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
728 			__func__, ifp->if_flags);
729 		ath_hal_getisr(ah, &status);	/* clear ISR */
730 		ath_hal_intrset(ah, 0);		/* disable further intr's */
731 		return 1; /* XXX */
732 	}
733 	/*
734 	 * Figure out the reason(s) for the interrupt.  Note
735 	 * that the hal returns a pseudo-ISR that may include
736 	 * bits we haven't explicitly enabled so we mask the
737 	 * value to insure we only process bits we requested.
738 	 */
739 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
740 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
741 	status &= sc->sc_imask;			/* discard unasked for bits */
742 	if (status & HAL_INT_FATAL) {
743 		/*
744 		 * Fatal errors are unrecoverable.  Typically
745 		 * these are caused by DMA errors.  Unfortunately
746 		 * the exact reason is not (presently) returned
747 		 * by the hal.
748 		 */
749 		sc->sc_stats.ast_hardware++;
750 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
751 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
752 	} else if (status & HAL_INT_RXORN) {
753 		sc->sc_stats.ast_rxorn++;
754 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
755 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
756 	} else {
757 		if (status & HAL_INT_SWBA) {
758 			/*
759 			 * Software beacon alert--time to send a beacon.
760 			 * Handle beacon transmission directly; deferring
761 			 * this is too slow to meet timing constraints
762 			 * under load.
763 			 */
764 			ath_beacon_proc(sc, 0);
765 		}
766 		if (status & HAL_INT_RXEOL) {
767 			/*
768 			 * NB: the hardware should re-read the link when
769 			 *     RXE bit is written, but it doesn't work at
770 			 *     least on older hardware revs.
771 			 */
772 			sc->sc_stats.ast_rxeol++;
773 			sc->sc_rxlink = NULL;
774 		}
775 		if (status & HAL_INT_TXURN) {
776 			sc->sc_stats.ast_txurn++;
777 			/* bump tx trigger level */
778 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
779 		}
780 		if (status & HAL_INT_RX)
781 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
782 		if (status & HAL_INT_TX)
783 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
784 		if (status & HAL_INT_BMISS) {
785 			sc->sc_stats.ast_bmiss++;
786 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
787 		}
788 		if (status & HAL_INT_MIB) {
789 			sc->sc_stats.ast_mib++;
790 			/*
791 			 * Disable interrupts until we service the MIB
792 			 * interrupt; otherwise it will continue to fire.
793 			 */
794 			ath_hal_intrset(ah, 0);
795 			/*
796 			 * Let the hal handle the event.  We assume it will
797 			 * clear whatever condition caused the interrupt.
798 			 */
799 			ath_hal_mibevent(ah, &sc->sc_halstats);
800 			ath_hal_intrset(ah, sc->sc_imask);
801 		}
802 	}
803 	return 1;
804 }
805 
806 /* Swap transmit descriptor.
807  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
808  * function.
809  */
810 static inline void
811 ath_desc_swap(struct ath_desc *ds)
812 {
813 #ifdef AH_NEED_DESC_SWAP
814 	ds->ds_link = htole32(ds->ds_link);
815 	ds->ds_data = htole32(ds->ds_data);
816 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
817 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
818 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
819 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
820 #endif
821 }
822 
823 static void
824 ath_fatal_proc(void *arg, int pending)
825 {
826 	struct ath_softc *sc = arg;
827 	struct ifnet *ifp = &sc->sc_if;
828 
829 	if_printf(ifp, "hardware error; resetting\n");
830 	ath_reset(ifp);
831 }
832 
833 static void
834 ath_rxorn_proc(void *arg, int pending)
835 {
836 	struct ath_softc *sc = arg;
837 	struct ifnet *ifp = &sc->sc_if;
838 
839 	if_printf(ifp, "rx FIFO overrun; resetting\n");
840 	ath_reset(ifp);
841 }
842 
843 static void
844 ath_bmiss_proc(void *arg, int pending)
845 {
846 	struct ath_softc *sc = arg;
847 	struct ieee80211com *ic = &sc->sc_ic;
848 
849 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
850 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
851 		("unexpect operating mode %u", ic->ic_opmode));
852 	if (ic->ic_state == IEEE80211_S_RUN) {
853 		u_int64_t lastrx = sc->sc_lastrx;
854 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
855 
856 		DPRINTF(sc, ATH_DEBUG_BEACON,
857 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
858 		    " (%" PRIu64 ") bmiss %u\n",
859 		    __func__, tsf, tsf - lastrx, lastrx,
860 		    ic->ic_bmisstimeout*1024);
861 		/*
862 		 * Workaround phantom bmiss interrupts by sanity-checking
863 		 * the time of our last rx'd frame.  If it is within the
864 		 * beacon miss interval then ignore the interrupt.  If it's
865 		 * truly a bmiss we'll get another interrupt soon and that'll
866 		 * be dispatched up for processing.
867 		 */
868 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
869 			NET_LOCK_GIANT();
870 			ieee80211_beacon_miss(ic);
871 			NET_UNLOCK_GIANT();
872 		} else
873 			sc->sc_stats.ast_bmiss_phantom++;
874 	}
875 }
876 
877 static void
878 ath_radar_proc(void *arg, int pending)
879 {
880 	struct ath_softc *sc = arg;
881 	struct ifnet *ifp = &sc->sc_if;
882 	struct ath_hal *ah = sc->sc_ah;
883 	HAL_CHANNEL hchan;
884 
885 	if (ath_hal_procdfs(ah, &hchan)) {
886 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
887 			hchan.channel, hchan.channelFlags, hchan.privFlags);
888 		/*
889 		 * Initiate channel change.
890 		 */
891 		/* XXX not yet */
892 	}
893 }
894 
895 static u_int
896 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
897 {
898 #define	N(a)	(sizeof(a) / sizeof(a[0]))
899 	static const u_int modeflags[] = {
900 		0,			/* IEEE80211_MODE_AUTO */
901 		CHANNEL_A,		/* IEEE80211_MODE_11A */
902 		CHANNEL_B,		/* IEEE80211_MODE_11B */
903 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
904 		0,			/* IEEE80211_MODE_FH */
905 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
906 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
907 	};
908 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
909 
910 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
911 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
912 	return modeflags[mode];
913 #undef N
914 }
915 
916 static int
917 ath_ifinit(struct ifnet *ifp)
918 {
919 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
920 
921 	return ath_init(sc);
922 }
923 
924 static int
925 ath_init(struct ath_softc *sc)
926 {
927 	struct ifnet *ifp = &sc->sc_if;
928 	struct ieee80211com *ic = &sc->sc_ic;
929 	struct ath_hal *ah = sc->sc_ah;
930 	HAL_STATUS status;
931 	int error = 0;
932 
933 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
934 		__func__, ifp->if_flags);
935 
936 	if (device_is_active(sc->sc_dev)) {
937 		ATH_LOCK(sc);
938 	} else if (!pmf_device_resume_self(sc->sc_dev))
939 		return ENXIO;
940 	else
941 		ATH_LOCK(sc);
942 
943 	/*
944 	 * Stop anything previously setup.  This is safe
945 	 * whether this is the first time through or not.
946 	 */
947 	ath_stop_locked(ifp, 0);
948 
949 	/*
950 	 * The basic interface to setting the hardware in a good
951 	 * state is ``reset''.  On return the hardware is known to
952 	 * be powered up and with interrupts disabled.  This must
953 	 * be followed by initialization of the appropriate bits
954 	 * and then setup of the interrupt mask.
955 	 */
956 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
957 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
958 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
959 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
960 			status);
961 		error = EIO;
962 		goto done;
963 	}
964 
965 	/*
966 	 * This is needed only to setup initial state
967 	 * but it's best done after a reset.
968 	 */
969 	ath_update_txpow(sc);
970 	/*
971 	 * Likewise this is set during reset so update
972 	 * state cached in the driver.
973 	 */
974 	ath_restore_diversity(sc);
975 	sc->sc_calinterval = 1;
976 	sc->sc_caltries = 0;
977 
978 	/*
979 	 * Setup the hardware after reset: the key cache
980 	 * is filled as needed and the receive engine is
981 	 * set going.  Frame transmit is handled entirely
982 	 * in the frame output path; there's nothing to do
983 	 * here except setup the interrupt mask.
984 	 */
985 	if ((error = ath_startrecv(sc)) != 0) {
986 		if_printf(ifp, "unable to start recv logic\n");
987 		goto done;
988 	}
989 
990 	/*
991 	 * Enable interrupts.
992 	 */
993 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
994 		  | HAL_INT_RXEOL | HAL_INT_RXORN
995 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
996 	/*
997 	 * Enable MIB interrupts when there are hardware phy counters.
998 	 * Note we only do this (at the moment) for station mode.
999 	 */
1000 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1001 		sc->sc_imask |= HAL_INT_MIB;
1002 	ath_hal_intrset(ah, sc->sc_imask);
1003 
1004 	ifp->if_flags |= IFF_RUNNING;
1005 	ic->ic_state = IEEE80211_S_INIT;
1006 
1007 	/*
1008 	 * The hardware should be ready to go now so it's safe
1009 	 * to kick the 802.11 state machine as it's likely to
1010 	 * immediately call back to us to send mgmt frames.
1011 	 */
1012 	ath_chan_change(sc, ic->ic_curchan);
1013 #ifdef ATH_TX99_DIAG
1014 	if (sc->sc_tx99 != NULL)
1015 		sc->sc_tx99->start(sc->sc_tx99);
1016 	else
1017 #endif
1018 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1019 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1020 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1021 	} else
1022 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1023 done:
1024 	ATH_UNLOCK(sc);
1025 	return error;
1026 }
1027 
1028 static void
1029 ath_stop_locked(struct ifnet *ifp, int disable)
1030 {
1031 	struct ath_softc *sc = ifp->if_softc;
1032 	struct ieee80211com *ic = &sc->sc_ic;
1033 	struct ath_hal *ah = sc->sc_ah;
1034 
1035 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1036 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1037 
1038 	ATH_LOCK_ASSERT(sc);
1039 	if (ifp->if_flags & IFF_RUNNING) {
1040 		/*
1041 		 * Shutdown the hardware and driver:
1042 		 *    reset 802.11 state machine
1043 		 *    turn off timers
1044 		 *    disable interrupts
1045 		 *    turn off the radio
1046 		 *    clear transmit machinery
1047 		 *    clear receive machinery
1048 		 *    drain and release tx queues
1049 		 *    reclaim beacon resources
1050 		 *    power down hardware
1051 		 *
1052 		 * Note that some of this work is not possible if the
1053 		 * hardware is gone (invalid).
1054 		 */
1055 #ifdef ATH_TX99_DIAG
1056 		if (sc->sc_tx99 != NULL)
1057 			sc->sc_tx99->stop(sc->sc_tx99);
1058 #endif
1059 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1060 		ifp->if_flags &= ~IFF_RUNNING;
1061 		ifp->if_timer = 0;
1062 		if (device_is_enabled(sc->sc_dev)) {
1063 			if (sc->sc_softled) {
1064 				callout_stop(&sc->sc_ledtimer);
1065 				ath_hal_gpioset(ah, sc->sc_ledpin,
1066 					!sc->sc_ledon);
1067 				sc->sc_blinking = 0;
1068 			}
1069 			ath_hal_intrset(ah, 0);
1070 		}
1071 		ath_draintxq(sc);
1072 		if (device_is_enabled(sc->sc_dev)) {
1073 			ath_stoprecv(sc);
1074 			ath_hal_phydisable(ah);
1075 		} else
1076 			sc->sc_rxlink = NULL;
1077 		IF_PURGE(&ifp->if_snd);
1078 		ath_beacon_free(sc);
1079 		if (disable)
1080 			pmf_device_suspend_self(sc->sc_dev);
1081 	}
1082 }
1083 
1084 static void
1085 ath_stop(struct ifnet *ifp, int disable)
1086 {
1087 	struct ath_softc *sc = ifp->if_softc;
1088 
1089 	ATH_LOCK(sc);
1090 	ath_stop_locked(ifp, disable);
1091 	ATH_UNLOCK(sc);
1092 }
1093 
1094 static void
1095 ath_restore_diversity(struct ath_softc *sc)
1096 {
1097 	struct ifnet *ifp = &sc->sc_if;
1098 	struct ath_hal *ah = sc->sc_ah;
1099 
1100 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1101 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1102 		if_printf(ifp, "could not restore diversity setting %d\n",
1103 		    sc->sc_diversity);
1104 		sc->sc_diversity = ath_hal_getdiversity(ah);
1105 	}
1106 }
1107 
1108 /*
1109  * Reset the hardware w/o losing operational state.  This is
1110  * basically a more efficient way of doing ath_stop, ath_init,
1111  * followed by state transitions to the current 802.11
1112  * operational state.  Used to recover from various errors and
1113  * to reset or reload hardware state.
1114  */
1115 int
1116 ath_reset(struct ifnet *ifp)
1117 {
1118 	struct ath_softc *sc = ifp->if_softc;
1119 	struct ieee80211com *ic = &sc->sc_ic;
1120 	struct ath_hal *ah = sc->sc_ah;
1121 	struct ieee80211_channel *c;
1122 	HAL_STATUS status;
1123 
1124 	/*
1125 	 * Convert to a HAL channel description with the flags
1126 	 * constrained to reflect the current operating mode.
1127 	 */
1128 	c = ic->ic_curchan;
1129 	sc->sc_curchan.channel = c->ic_freq;
1130 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1131 
1132 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1133 	ath_draintxq(sc);		/* stop xmit side */
1134 	ath_stoprecv(sc);		/* stop recv side */
1135 	/* NB: indicate channel change so we do a full reset */
1136 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1137 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1138 			__func__, status);
1139 	ath_update_txpow(sc);		/* update tx power state */
1140 	ath_restore_diversity(sc);
1141 	sc->sc_calinterval = 1;
1142 	sc->sc_caltries = 0;
1143 	if (ath_startrecv(sc) != 0)	/* restart recv */
1144 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1145 	/*
1146 	 * We may be doing a reset in response to an ioctl
1147 	 * that changes the channel so update any state that
1148 	 * might change as a result.
1149 	 */
1150 	ath_chan_change(sc, c);
1151 	if (ic->ic_state == IEEE80211_S_RUN)
1152 		ath_beacon_config(sc);	/* restart beacons */
1153 	ath_hal_intrset(ah, sc->sc_imask);
1154 
1155 	ath_start(ifp);			/* restart xmit */
1156 	return 0;
1157 }
1158 
1159 /*
1160  * Cleanup driver resources when we run out of buffers
1161  * while processing fragments; return the tx buffers
1162  * allocated and drop node references.
1163  */
1164 static void
1165 ath_txfrag_cleanup(struct ath_softc *sc,
1166 	ath_bufhead *frags, struct ieee80211_node *ni)
1167 {
1168 	struct ath_buf *bf;
1169 
1170 	ATH_TXBUF_LOCK_ASSERT(sc);
1171 
1172 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1173 		STAILQ_REMOVE_HEAD(frags, bf_list);
1174 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1175 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1176 		ieee80211_node_decref(ni);
1177 	}
1178 }
1179 
1180 /*
1181  * Setup xmit of a fragmented frame.  Allocate a buffer
1182  * for each frag and bump the node reference count to
1183  * reflect the held reference to be setup by ath_tx_start.
1184  */
1185 static int
1186 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1187 	struct mbuf *m0, struct ieee80211_node *ni)
1188 {
1189 	struct mbuf *m;
1190 	struct ath_buf *bf;
1191 
1192 	ATH_TXBUF_LOCK(sc);
1193 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1194 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1195 		if (bf == NULL) {       /* out of buffers, cleanup */
1196 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1197 				__func__);
1198 			sc->sc_if.if_flags |= IFF_OACTIVE;
1199 			ath_txfrag_cleanup(sc, frags, ni);
1200 			break;
1201 		}
1202 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1203 		ieee80211_node_incref(ni);
1204 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1205 	}
1206 	ATH_TXBUF_UNLOCK(sc);
1207 
1208 	return !STAILQ_EMPTY(frags);
1209 }
1210 
1211 static void
1212 ath_start(struct ifnet *ifp)
1213 {
1214 	struct ath_softc *sc = ifp->if_softc;
1215 	struct ath_hal *ah = sc->sc_ah;
1216 	struct ieee80211com *ic = &sc->sc_ic;
1217 	struct ieee80211_node *ni;
1218 	struct ath_buf *bf;
1219 	struct mbuf *m, *next;
1220 	struct ieee80211_frame *wh;
1221 	struct ether_header *eh;
1222 	ath_bufhead frags;
1223 
1224 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1225 	    !device_is_active(sc->sc_dev))
1226 		return;
1227 	for (;;) {
1228 		/*
1229 		 * Grab a TX buffer and associated resources.
1230 		 */
1231 		ATH_TXBUF_LOCK(sc);
1232 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1233 		if (bf != NULL)
1234 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1235 		ATH_TXBUF_UNLOCK(sc);
1236 		if (bf == NULL) {
1237 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1238 				__func__);
1239 			sc->sc_stats.ast_tx_qstop++;
1240 			ifp->if_flags |= IFF_OACTIVE;
1241 			break;
1242 		}
1243 		/*
1244 		 * Poll the management queue for frames; they
1245 		 * have priority over normal data frames.
1246 		 */
1247 		IF_DEQUEUE(&ic->ic_mgtq, m);
1248 		if (m == NULL) {
1249 			/*
1250 			 * No data frames go out unless we're associated.
1251 			 */
1252 			if (ic->ic_state != IEEE80211_S_RUN) {
1253 				DPRINTF(sc, ATH_DEBUG_XMIT,
1254 				    "%s: discard data packet, state %s\n",
1255 				    __func__,
1256 				    ieee80211_state_name[ic->ic_state]);
1257 				sc->sc_stats.ast_tx_discard++;
1258 				ATH_TXBUF_LOCK(sc);
1259 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1260 				ATH_TXBUF_UNLOCK(sc);
1261 				break;
1262 			}
1263 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1264 			if (m == NULL) {
1265 				ATH_TXBUF_LOCK(sc);
1266 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1267 				ATH_TXBUF_UNLOCK(sc);
1268 				break;
1269 			}
1270 			STAILQ_INIT(&frags);
1271 			/*
1272 			 * Find the node for the destination so we can do
1273 			 * things like power save and fast frames aggregation.
1274 			 */
1275 			if (m->m_len < sizeof(struct ether_header) &&
1276 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1277 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1278 				ni = NULL;
1279 				goto bad;
1280 			}
1281 			eh = mtod(m, struct ether_header *);
1282 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1283 			if (ni == NULL) {
1284 				/* NB: ieee80211_find_txnode does stat+msg */
1285 				m_freem(m);
1286 				goto bad;
1287 			}
1288 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1289 			    (m->m_flags & M_PWR_SAV) == 0) {
1290 				/*
1291 				 * Station in power save mode; pass the frame
1292 				 * to the 802.11 layer and continue.  We'll get
1293 				 * the frame back when the time is right.
1294 				 */
1295 				ieee80211_pwrsave(ic, ni, m);
1296 				goto reclaim;
1297 			}
1298 			/* calculate priority so we can find the tx queue */
1299 			if (ieee80211_classify(ic, m, ni)) {
1300 				DPRINTF(sc, ATH_DEBUG_XMIT,
1301 					"%s: discard, classification failure\n",
1302 					__func__);
1303 				m_freem(m);
1304 				goto bad;
1305 			}
1306 			ifp->if_opackets++;
1307 
1308 #if NBPFILTER > 0
1309 			if (ifp->if_bpf)
1310 				bpf_mtap(ifp->if_bpf, m);
1311 #endif
1312 			/*
1313 			 * Encapsulate the packet in prep for transmission.
1314 			 */
1315 			m = ieee80211_encap(ic, m, ni);
1316 			if (m == NULL) {
1317 				DPRINTF(sc, ATH_DEBUG_XMIT,
1318 					"%s: encapsulation failure\n",
1319 					__func__);
1320 				sc->sc_stats.ast_tx_encap++;
1321 				goto bad;
1322 			}
1323 			/*
1324 			 * Check for fragmentation.  If this has frame
1325 			 * has been broken up verify we have enough
1326 			 * buffers to send all the fragments so all
1327 			 * go out or none...
1328 			 */
1329 			if ((m->m_flags & M_FRAG) &&
1330 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1331 				DPRINTF(sc, ATH_DEBUG_ANY,
1332 				    "%s: out of txfrag buffers\n", __func__);
1333 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1334 				ath_freetx(m);
1335 				goto bad;
1336 			}
1337 		} else {
1338 			/*
1339 			 * Hack!  The referenced node pointer is in the
1340 			 * rcvif field of the packet header.  This is
1341 			 * placed there by ieee80211_mgmt_output because
1342 			 * we need to hold the reference with the frame
1343 			 * and there's no other way (other than packet
1344 			 * tags which we consider too expensive to use)
1345 			 * to pass it along.
1346 			 */
1347 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1348 			m->m_pkthdr.rcvif = NULL;
1349 
1350 			wh = mtod(m, struct ieee80211_frame *);
1351 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1352 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1353 				/* fill time stamp */
1354 				u_int64_t tsf;
1355 				u_int32_t *tstamp;
1356 
1357 				tsf = ath_hal_gettsf64(ah);
1358 				/* XXX: adjust 100us delay to xmit */
1359 				tsf += 100;
1360 				tstamp = (u_int32_t *)&wh[1];
1361 				tstamp[0] = htole32(tsf & 0xffffffff);
1362 				tstamp[1] = htole32(tsf >> 32);
1363 			}
1364 			sc->sc_stats.ast_tx_mgmt++;
1365 		}
1366 
1367 	nextfrag:
1368 		next = m->m_nextpkt;
1369 		if (ath_tx_start(sc, ni, bf, m)) {
1370 	bad:
1371 			ifp->if_oerrors++;
1372 	reclaim:
1373 			ATH_TXBUF_LOCK(sc);
1374 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1375 			ath_txfrag_cleanup(sc, &frags, ni);
1376 			ATH_TXBUF_UNLOCK(sc);
1377 			if (ni != NULL)
1378 				ieee80211_free_node(ni);
1379 			continue;
1380 		}
1381 		if (next != NULL) {
1382 			m = next;
1383 			bf = STAILQ_FIRST(&frags);
1384 			KASSERT(bf != NULL, ("no buf for txfrag"));
1385 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1386 			goto nextfrag;
1387 		}
1388 
1389 		ifp->if_timer = 1;
1390 	}
1391 }
1392 
1393 static int
1394 ath_media_change(struct ifnet *ifp)
1395 {
1396 #define	IS_UP(ifp) \
1397 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1398 	int error;
1399 
1400 	error = ieee80211_media_change(ifp);
1401 	if (error == ENETRESET) {
1402 		if (IS_UP(ifp))
1403 			ath_init(ifp->if_softc);	/* XXX lose error */
1404 		error = 0;
1405 	}
1406 	return error;
1407 #undef IS_UP
1408 }
1409 
1410 #ifdef AR_DEBUG
1411 static void
1412 ath_keyprint(const char *tag, u_int ix,
1413 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1414 {
1415 	static const char *ciphers[] = {
1416 		"WEP",
1417 		"AES-OCB",
1418 		"AES-CCM",
1419 		"CKIP",
1420 		"TKIP",
1421 		"CLR",
1422 	};
1423 	int i, n;
1424 
1425 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1426 	for (i = 0, n = hk->kv_len; i < n; i++)
1427 		printf("%02x", hk->kv_val[i]);
1428 	printf(" mac %s", ether_sprintf(mac));
1429 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1430 		printf(" mic ");
1431 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1432 			printf("%02x", hk->kv_mic[i]);
1433 	}
1434 	printf("\n");
1435 }
1436 #endif
1437 
1438 /*
1439  * Set a TKIP key into the hardware.  This handles the
1440  * potential distribution of key state to multiple key
1441  * cache slots for TKIP.
1442  */
1443 static int
1444 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1445 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1446 {
1447 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1448 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1449 	struct ath_hal *ah = sc->sc_ah;
1450 
1451 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1452 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1453 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1454 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1455 		/*
1456 		 * TX key goes at first index, RX key at the rx index.
1457 		 * The hal handles the MIC keys at index+64.
1458 		 */
1459 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1460 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1461 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1462 			return 0;
1463 
1464 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1465 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1466 		/* XXX delete tx key on failure? */
1467 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1468 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1469 		/*
1470 		 * TX/RX key goes at first index.
1471 		 * The hal handles the MIC keys are index+64.
1472 		 */
1473 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1474 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1475 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1476 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1477 	}
1478 	return 0;
1479 #undef IEEE80211_KEY_XR
1480 }
1481 
1482 /*
1483  * Set a net80211 key into the hardware.  This handles the
1484  * potential distribution of key state to multiple key
1485  * cache slots for TKIP with hardware MIC support.
1486  */
1487 static int
1488 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1489 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1490 	struct ieee80211_node *bss)
1491 {
1492 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1493 	static const u_int8_t ciphermap[] = {
1494 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1495 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1496 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1497 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1498 		(u_int8_t) -1,		/* 4 is not allocated */
1499 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1500 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1501 	};
1502 	struct ath_hal *ah = sc->sc_ah;
1503 	const struct ieee80211_cipher *cip = k->wk_cipher;
1504 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1505 	const u_int8_t *mac;
1506 	HAL_KEYVAL hk;
1507 
1508 	memset(&hk, 0, sizeof(hk));
1509 	/*
1510 	 * Software crypto uses a "clear key" so non-crypto
1511 	 * state kept in the key cache are maintained and
1512 	 * so that rx frames have an entry to match.
1513 	 */
1514 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1515 		KASSERT(cip->ic_cipher < N(ciphermap),
1516 			("invalid cipher type %u", cip->ic_cipher));
1517 		hk.kv_type = ciphermap[cip->ic_cipher];
1518 		hk.kv_len = k->wk_keylen;
1519 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1520 	} else
1521 		hk.kv_type = HAL_CIPHER_CLR;
1522 
1523 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1524 		/*
1525 		 * Group keys on hardware that supports multicast frame
1526 		 * key search use a mac that is the sender's address with
1527 		 * the high bit set instead of the app-specified address.
1528 		 */
1529 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1530 		gmac[0] |= 0x80;
1531 		mac = gmac;
1532 	} else
1533 		mac = mac0;
1534 
1535 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1536 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1537 	    sc->sc_splitmic) {
1538 		return ath_keyset_tkip(sc, k, &hk, mac);
1539 	} else {
1540 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1541 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1542 	}
1543 #undef N
1544 }
1545 
1546 /*
1547  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1548  * each key, one for decrypt/encrypt and the other for the MIC.
1549  */
1550 static u_int16_t
1551 key_alloc_2pair(struct ath_softc *sc,
1552 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1553 {
1554 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1555 	u_int i, keyix;
1556 
1557 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1558 	/* XXX could optimize */
1559 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1560 		u_int8_t b = sc->sc_keymap[i];
1561 		if (b != 0xff) {
1562 			/*
1563 			 * One or more slots in this byte are free.
1564 			 */
1565 			keyix = i*NBBY;
1566 			while (b & 1) {
1567 		again:
1568 				keyix++;
1569 				b >>= 1;
1570 			}
1571 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1572 			if (isset(sc->sc_keymap, keyix+32) ||
1573 			    isset(sc->sc_keymap, keyix+64) ||
1574 			    isset(sc->sc_keymap, keyix+32+64)) {
1575 				/* full pair unavailable */
1576 				/* XXX statistic */
1577 				if (keyix == (i+1)*NBBY) {
1578 					/* no slots were appropriate, advance */
1579 					continue;
1580 				}
1581 				goto again;
1582 			}
1583 			setbit(sc->sc_keymap, keyix);
1584 			setbit(sc->sc_keymap, keyix+64);
1585 			setbit(sc->sc_keymap, keyix+32);
1586 			setbit(sc->sc_keymap, keyix+32+64);
1587 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1588 				"%s: key pair %u,%u %u,%u\n",
1589 				__func__, keyix, keyix+64,
1590 				keyix+32, keyix+32+64);
1591 			*txkeyix = keyix;
1592 			*rxkeyix = keyix+32;
1593 			return 1;
1594 		}
1595 	}
1596 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1597 	return 0;
1598 #undef N
1599 }
1600 
1601 /*
1602  * Allocate a single key cache slot.
1603  */
1604 static int
1605 key_alloc_single(struct ath_softc *sc,
1606 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1607 {
1608 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1609 	u_int i, keyix;
1610 
1611 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1612 	for (i = 0; i < N(sc->sc_keymap); i++) {
1613 		u_int8_t b = sc->sc_keymap[i];
1614 		if (b != 0xff) {
1615 			/*
1616 			 * One or more slots are free.
1617 			 */
1618 			keyix = i*NBBY;
1619 			while (b & 1)
1620 				keyix++, b >>= 1;
1621 			setbit(sc->sc_keymap, keyix);
1622 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1623 				__func__, keyix);
1624 			*txkeyix = *rxkeyix = keyix;
1625 			return 1;
1626 		}
1627 	}
1628 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1629 	return 0;
1630 #undef N
1631 }
1632 
1633 /*
1634  * Allocate one or more key cache slots for a uniacst key.  The
1635  * key itself is needed only to identify the cipher.  For hardware
1636  * TKIP with split cipher+MIC keys we allocate two key cache slot
1637  * pairs so that we can setup separate TX and RX MIC keys.  Note
1638  * that the MIC key for a TKIP key at slot i is assumed by the
1639  * hardware to be at slot i+64.  This limits TKIP keys to the first
1640  * 64 entries.
1641  */
1642 static int
1643 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1644 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1645 {
1646 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1647 
1648 	/*
1649 	 * Group key allocation must be handled specially for
1650 	 * parts that do not support multicast key cache search
1651 	 * functionality.  For those parts the key id must match
1652 	 * the h/w key index so lookups find the right key.  On
1653 	 * parts w/ the key search facility we install the sender's
1654 	 * mac address (with the high bit set) and let the hardware
1655 	 * find the key w/o using the key id.  This is preferred as
1656 	 * it permits us to support multiple users for adhoc and/or
1657 	 * multi-station operation.
1658 	 */
1659 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1660 		if (!(&ic->ic_nw_keys[0] <= k &&
1661 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1662 			/* should not happen */
1663 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1664 				"%s: bogus group key\n", __func__);
1665 			return 0;
1666 		}
1667 		/*
1668 		 * XXX we pre-allocate the global keys so
1669 		 * have no way to check if they've already been allocated.
1670 		 */
1671 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1672 		return 1;
1673 	}
1674 
1675 	/*
1676 	 * We allocate two pair for TKIP when using the h/w to do
1677 	 * the MIC.  For everything else, including software crypto,
1678 	 * we allocate a single entry.  Note that s/w crypto requires
1679 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1680 	 * not support pass-through cache entries and we map all
1681 	 * those requests to slot 0.
1682 	 */
1683 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1684 		return key_alloc_single(sc, keyix, rxkeyix);
1685 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1686 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1687 		return key_alloc_2pair(sc, keyix, rxkeyix);
1688 	} else {
1689 		return key_alloc_single(sc, keyix, rxkeyix);
1690 	}
1691 }
1692 
1693 /*
1694  * Delete an entry in the key cache allocated by ath_key_alloc.
1695  */
1696 static int
1697 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1698 {
1699 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1700 	struct ath_hal *ah = sc->sc_ah;
1701 	const struct ieee80211_cipher *cip = k->wk_cipher;
1702 	u_int keyix = k->wk_keyix;
1703 
1704 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1705 
1706 	if (!device_has_power(sc->sc_dev)) {
1707 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1708 		    k->wk_keyix);
1709 	}
1710 
1711 	ath_hal_keyreset(ah, keyix);
1712 	/*
1713 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1714 	 */
1715 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1716 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1717 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1718 	if (keyix >= IEEE80211_WEP_NKID) {
1719 		/*
1720 		 * Don't touch keymap entries for global keys so
1721 		 * they are never considered for dynamic allocation.
1722 		 */
1723 		clrbit(sc->sc_keymap, keyix);
1724 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1725 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1726 		    sc->sc_splitmic) {
1727 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1728 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1729 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1730 		}
1731 	}
1732 	return 1;
1733 }
1734 
1735 /*
1736  * Set the key cache contents for the specified key.  Key cache
1737  * slot(s) must already have been allocated by ath_key_alloc.
1738  */
1739 static int
1740 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1741 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1742 {
1743 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1744 
1745 	if (!device_has_power(sc->sc_dev)) {
1746 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1747 		    k->wk_keyix);
1748 	}
1749 	return ath_keyset(sc, k, mac, ic->ic_bss);
1750 }
1751 
1752 /*
1753  * Block/unblock tx+rx processing while a key change is done.
1754  * We assume the caller serializes key management operations
1755  * so we only need to worry about synchronization with other
1756  * uses that originate in the driver.
1757  */
1758 static void
1759 ath_key_update_begin(struct ieee80211com *ic)
1760 {
1761 	struct ifnet *ifp = ic->ic_ifp;
1762 	struct ath_softc *sc = ifp->if_softc;
1763 
1764 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1765 #if 0
1766 	tasklet_disable(&sc->sc_rxtq);
1767 #endif
1768 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1769 }
1770 
1771 static void
1772 ath_key_update_end(struct ieee80211com *ic)
1773 {
1774 	struct ifnet *ifp = ic->ic_ifp;
1775 	struct ath_softc *sc = ifp->if_softc;
1776 
1777 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1778 	IF_UNLOCK(&ifp->if_snd);
1779 #if 0
1780 	tasklet_enable(&sc->sc_rxtq);
1781 #endif
1782 }
1783 
1784 /*
1785  * Calculate the receive filter according to the
1786  * operating mode and state:
1787  *
1788  * o always accept unicast, broadcast, and multicast traffic
1789  * o maintain current state of phy error reception (the hal
1790  *   may enable phy error frames for noise immunity work)
1791  * o probe request frames are accepted only when operating in
1792  *   hostap, adhoc, or monitor modes
1793  * o enable promiscuous mode according to the interface state
1794  * o accept beacons:
1795  *   - when operating in adhoc mode so the 802.11 layer creates
1796  *     node table entries for peers,
1797  *   - when operating in station mode for collecting rssi data when
1798  *     the station is otherwise quiet, or
1799  *   - when scanning
1800  */
1801 static u_int32_t
1802 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1803 {
1804 	struct ieee80211com *ic = &sc->sc_ic;
1805 	struct ath_hal *ah = sc->sc_ah;
1806 	struct ifnet *ifp = &sc->sc_if;
1807 	u_int32_t rfilt;
1808 
1809 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1810 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1811 	if (ic->ic_opmode != IEEE80211_M_STA)
1812 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1813 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1814 	    (ifp->if_flags & IFF_PROMISC))
1815 		rfilt |= HAL_RX_FILTER_PROM;
1816 	if (ic->ic_opmode == IEEE80211_M_STA ||
1817 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1818 	    state == IEEE80211_S_SCAN)
1819 		rfilt |= HAL_RX_FILTER_BEACON;
1820 	return rfilt;
1821 }
1822 
1823 static void
1824 ath_mode_init(struct ath_softc *sc)
1825 {
1826 	struct ifnet *ifp = &sc->sc_if;
1827 	struct ieee80211com *ic = &sc->sc_ic;
1828 	struct ath_hal *ah = sc->sc_ah;
1829 	struct ether_multi *enm;
1830 	struct ether_multistep estep;
1831 	u_int32_t rfilt, mfilt[2], val;
1832 	int i;
1833 	uint8_t pos;
1834 
1835 	/* configure rx filter */
1836 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1837 	ath_hal_setrxfilter(ah, rfilt);
1838 
1839 	/* configure operational mode */
1840 	ath_hal_setopmode(ah);
1841 
1842 	/* Write keys to hardware; it may have been powered down. */
1843 	ath_key_update_begin(ic);
1844 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1845 		ath_key_set(ic,
1846 			    &ic->ic_crypto.cs_nw_keys[i],
1847 			    ic->ic_myaddr);
1848 	}
1849 	ath_key_update_end(ic);
1850 
1851 	/*
1852 	 * Handle any link-level address change.  Note that we only
1853 	 * need to force ic_myaddr; any other addresses are handled
1854 	 * as a byproduct of the ifnet code marking the interface
1855 	 * down then up.
1856 	 *
1857 	 * XXX should get from lladdr instead of arpcom but that's more work
1858 	 */
1859 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1860 	ath_hal_setmac(ah, ic->ic_myaddr);
1861 
1862 	/* calculate and install multicast filter */
1863 	ifp->if_flags &= ~IFF_ALLMULTI;
1864 	mfilt[0] = mfilt[1] = 0;
1865 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1866 	while (enm != NULL) {
1867 		void *dl;
1868 		/* XXX Punt on ranges. */
1869 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1870 			mfilt[0] = mfilt[1] = 0xffffffff;
1871 			ifp->if_flags |= IFF_ALLMULTI;
1872 			break;
1873 		}
1874 		dl = enm->enm_addrlo;
1875 		val = LE_READ_4((char *)dl + 0);
1876 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1877 		val = LE_READ_4((char *)dl + 3);
1878 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1879 		pos &= 0x3f;
1880 		mfilt[pos / 32] |= (1 << (pos % 32));
1881 
1882 		ETHER_NEXT_MULTI(estep, enm);
1883 	}
1884 
1885 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1886 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1887 		__func__, rfilt, mfilt[0], mfilt[1]);
1888 }
1889 
1890 /*
1891  * Set the slot time based on the current setting.
1892  */
1893 static void
1894 ath_setslottime(struct ath_softc *sc)
1895 {
1896 	struct ieee80211com *ic = &sc->sc_ic;
1897 	struct ath_hal *ah = sc->sc_ah;
1898 
1899 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1900 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1901 	else
1902 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1903 	sc->sc_updateslot = OK;
1904 }
1905 
1906 /*
1907  * Callback from the 802.11 layer to update the
1908  * slot time based on the current setting.
1909  */
1910 static void
1911 ath_updateslot(struct ifnet *ifp)
1912 {
1913 	struct ath_softc *sc = ifp->if_softc;
1914 	struct ieee80211com *ic = &sc->sc_ic;
1915 
1916 	/*
1917 	 * When not coordinating the BSS, change the hardware
1918 	 * immediately.  For other operation we defer the change
1919 	 * until beacon updates have propagated to the stations.
1920 	 */
1921 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1922 		sc->sc_updateslot = UPDATE;
1923 	else
1924 		ath_setslottime(sc);
1925 }
1926 
1927 /*
1928  * Setup a h/w transmit queue for beacons.
1929  */
1930 static int
1931 ath_beaconq_setup(struct ath_hal *ah)
1932 {
1933 	HAL_TXQ_INFO qi;
1934 
1935 	memset(&qi, 0, sizeof(qi));
1936 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1937 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1938 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1939 	/* NB: for dynamic turbo, don't enable any other interrupts */
1940 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1941 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1942 }
1943 
1944 /*
1945  * Setup the transmit queue parameters for the beacon queue.
1946  */
1947 static int
1948 ath_beaconq_config(struct ath_softc *sc)
1949 {
1950 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1951 	struct ieee80211com *ic = &sc->sc_ic;
1952 	struct ath_hal *ah = sc->sc_ah;
1953 	HAL_TXQ_INFO qi;
1954 
1955 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1956 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1957 		/*
1958 		 * Always burst out beacon and CAB traffic.
1959 		 */
1960 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1961 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1962 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1963 	} else {
1964 		struct wmeParams *wmep =
1965 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1966 		/*
1967 		 * Adhoc mode; important thing is to use 2x cwmin.
1968 		 */
1969 		qi.tqi_aifs = wmep->wmep_aifsn;
1970 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1971 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1972 	}
1973 
1974 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1975 		device_printf(sc->sc_dev, "unable to update parameters for "
1976 			"beacon hardware queue!\n");
1977 		return 0;
1978 	} else {
1979 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1980 		return 1;
1981 	}
1982 #undef ATH_EXPONENT_TO_VALUE
1983 }
1984 
1985 /*
1986  * Allocate and setup an initial beacon frame.
1987  */
1988 static int
1989 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1990 {
1991 	struct ieee80211com *ic = ni->ni_ic;
1992 	struct ath_buf *bf;
1993 	struct mbuf *m;
1994 	int error;
1995 
1996 	bf = STAILQ_FIRST(&sc->sc_bbuf);
1997 	if (bf == NULL) {
1998 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1999 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2000 		return ENOMEM;			/* XXX */
2001 	}
2002 	/*
2003 	 * NB: the beacon data buffer must be 32-bit aligned;
2004 	 * we assume the mbuf routines will return us something
2005 	 * with this alignment (perhaps should assert).
2006 	 */
2007 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2008 	if (m == NULL) {
2009 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2010 			__func__);
2011 		sc->sc_stats.ast_be_nombuf++;
2012 		return ENOMEM;
2013 	}
2014 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2015 				     BUS_DMA_NOWAIT);
2016 	if (error == 0) {
2017 		bf->bf_m = m;
2018 		bf->bf_node = ieee80211_ref_node(ni);
2019 	} else {
2020 		m_freem(m);
2021 	}
2022 	return error;
2023 }
2024 
2025 /*
2026  * Setup the beacon frame for transmit.
2027  */
2028 static void
2029 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2030 {
2031 #define	USE_SHPREAMBLE(_ic) \
2032 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2033 		== IEEE80211_F_SHPREAMBLE)
2034 	struct ieee80211_node *ni = bf->bf_node;
2035 	struct ieee80211com *ic = ni->ni_ic;
2036 	struct mbuf *m = bf->bf_m;
2037 	struct ath_hal *ah = sc->sc_ah;
2038 	struct ath_desc *ds;
2039 	int flags, antenna;
2040 	const HAL_RATE_TABLE *rt;
2041 	u_int8_t rix, rate;
2042 
2043 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2044 		__func__, m, m->m_len);
2045 
2046 	/* setup descriptors */
2047 	ds = bf->bf_desc;
2048 
2049 	flags = HAL_TXDESC_NOACK;
2050 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2051 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2052 		flags |= HAL_TXDESC_VEOL;
2053 		/*
2054 		 * Let hardware handle antenna switching unless
2055 		 * the user has selected a transmit antenna
2056 		 * (sc_txantenna is not 0).
2057 		 */
2058 		antenna = sc->sc_txantenna;
2059 	} else {
2060 		ds->ds_link = 0;
2061 		/*
2062 		 * Switch antenna every 4 beacons, unless the user
2063 		 * has selected a transmit antenna (sc_txantenna
2064 		 * is not 0).
2065 		 *
2066 		 * XXX assumes two antenna
2067 		 */
2068 		if (sc->sc_txantenna == 0)
2069 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2070 		else
2071 			antenna = sc->sc_txantenna;
2072 	}
2073 
2074 	KASSERT(bf->bf_nseg == 1,
2075 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2076 	ds->ds_data = bf->bf_segs[0].ds_addr;
2077 	/*
2078 	 * Calculate rate code.
2079 	 * XXX everything at min xmit rate
2080 	 */
2081 	rix = sc->sc_minrateix;
2082 	rt = sc->sc_currates;
2083 	rate = rt->info[rix].rateCode;
2084 	if (USE_SHPREAMBLE(ic))
2085 		rate |= rt->info[rix].shortPreamble;
2086 	ath_hal_setuptxdesc(ah, ds
2087 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2088 		, sizeof(struct ieee80211_frame)/* header length */
2089 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2090 		, ni->ni_txpower		/* txpower XXX */
2091 		, rate, 1			/* series 0 rate/tries */
2092 		, HAL_TXKEYIX_INVALID		/* no encryption */
2093 		, antenna			/* antenna mode */
2094 		, flags				/* no ack, veol for beacons */
2095 		, 0				/* rts/cts rate */
2096 		, 0				/* rts/cts duration */
2097 	);
2098 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2099 	ath_hal_filltxdesc(ah, ds
2100 		, roundup(m->m_len, 4)		/* buffer length */
2101 		, AH_TRUE			/* first segment */
2102 		, AH_TRUE			/* last segment */
2103 		, ds				/* first descriptor */
2104 	);
2105 
2106 	/* NB: The desc swap function becomes void,
2107 	 * if descriptor swapping is not enabled
2108 	 */
2109 	ath_desc_swap(ds);
2110 
2111 #undef USE_SHPREAMBLE
2112 }
2113 
2114 /*
2115  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2116  * frame contents are done as needed and the slot time is
2117  * also adjusted based on current state.
2118  */
2119 static void
2120 ath_beacon_proc(void *arg, int pending)
2121 {
2122 	struct ath_softc *sc = arg;
2123 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2124 	struct ieee80211_node *ni = bf->bf_node;
2125 	struct ieee80211com *ic = ni->ni_ic;
2126 	struct ath_hal *ah = sc->sc_ah;
2127 	struct mbuf *m;
2128 	int ncabq, error, otherant;
2129 
2130 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2131 		__func__, pending);
2132 
2133 	if (ic->ic_opmode == IEEE80211_M_STA ||
2134 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2135 	    bf == NULL || bf->bf_m == NULL) {
2136 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2137 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2138 		return;
2139 	}
2140 	/*
2141 	 * Check if the previous beacon has gone out.  If
2142 	 * not don't try to post another, skip this period
2143 	 * and wait for the next.  Missed beacons indicate
2144 	 * a problem and should not occur.  If we miss too
2145 	 * many consecutive beacons reset the device.
2146 	 */
2147 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2148 		sc->sc_bmisscount++;
2149 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2150 			"%s: missed %u consecutive beacons\n",
2151 			__func__, sc->sc_bmisscount);
2152 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2153 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2154 		return;
2155 	}
2156 	if (sc->sc_bmisscount != 0) {
2157 		DPRINTF(sc, ATH_DEBUG_BEACON,
2158 			"%s: resume beacon xmit after %u misses\n",
2159 			__func__, sc->sc_bmisscount);
2160 		sc->sc_bmisscount = 0;
2161 	}
2162 
2163 	/*
2164 	 * Update dynamic beacon contents.  If this returns
2165 	 * non-zero then we need to remap the memory because
2166 	 * the beacon frame changed size (probably because
2167 	 * of the TIM bitmap).
2168 	 */
2169 	m = bf->bf_m;
2170 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2171 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2172 		/* XXX too conservative? */
2173 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2174 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2175 					     BUS_DMA_NOWAIT);
2176 		if (error != 0) {
2177 			if_printf(&sc->sc_if,
2178 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2179 			    __func__, error);
2180 			return;
2181 		}
2182 	}
2183 
2184 	/*
2185 	 * Handle slot time change when a non-ERP station joins/leaves
2186 	 * an 11g network.  The 802.11 layer notifies us via callback,
2187 	 * we mark updateslot, then wait one beacon before effecting
2188 	 * the change.  This gives associated stations at least one
2189 	 * beacon interval to note the state change.
2190 	 */
2191 	/* XXX locking */
2192 	if (sc->sc_updateslot == UPDATE)
2193 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2194 	else if (sc->sc_updateslot == COMMIT)
2195 		ath_setslottime(sc);		/* commit change to h/w */
2196 
2197 	/*
2198 	 * Check recent per-antenna transmit statistics and flip
2199 	 * the default antenna if noticeably more frames went out
2200 	 * on the non-default antenna.
2201 	 * XXX assumes 2 anntenae
2202 	 */
2203 	otherant = sc->sc_defant & 1 ? 2 : 1;
2204 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2205 		ath_setdefantenna(sc, otherant);
2206 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2207 
2208 	/*
2209 	 * Construct tx descriptor.
2210 	 */
2211 	ath_beacon_setup(sc, bf);
2212 
2213 	/*
2214 	 * Stop any current dma and put the new frame on the queue.
2215 	 * This should never fail since we check above that no frames
2216 	 * are still pending on the queue.
2217 	 */
2218 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2219 		DPRINTF(sc, ATH_DEBUG_ANY,
2220 			"%s: beacon queue %u did not stop?\n",
2221 			__func__, sc->sc_bhalq);
2222 	}
2223 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2224 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2225 
2226 	/*
2227 	 * Enable the CAB queue before the beacon queue to
2228 	 * insure cab frames are triggered by this beacon.
2229 	 */
2230 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2231 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2232 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2233 	ath_hal_txstart(ah, sc->sc_bhalq);
2234 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2235 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2236 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2237 
2238 	sc->sc_stats.ast_be_xmit++;
2239 }
2240 
2241 /*
2242  * Reset the hardware after detecting beacons have stopped.
2243  */
2244 static void
2245 ath_bstuck_proc(void *arg, int pending)
2246 {
2247 	struct ath_softc *sc = arg;
2248 	struct ifnet *ifp = &sc->sc_if;
2249 
2250 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2251 		sc->sc_bmisscount);
2252 	ath_reset(ifp);
2253 }
2254 
2255 /*
2256  * Reclaim beacon resources.
2257  */
2258 static void
2259 ath_beacon_free(struct ath_softc *sc)
2260 {
2261 	struct ath_buf *bf;
2262 
2263 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2264 		if (bf->bf_m != NULL) {
2265 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2266 			m_freem(bf->bf_m);
2267 			bf->bf_m = NULL;
2268 		}
2269 		if (bf->bf_node != NULL) {
2270 			ieee80211_free_node(bf->bf_node);
2271 			bf->bf_node = NULL;
2272 		}
2273 	}
2274 }
2275 
2276 /*
2277  * Configure the beacon and sleep timers.
2278  *
2279  * When operating as an AP this resets the TSF and sets
2280  * up the hardware to notify us when we need to issue beacons.
2281  *
2282  * When operating in station mode this sets up the beacon
2283  * timers according to the timestamp of the last received
2284  * beacon and the current TSF, configures PCF and DTIM
2285  * handling, programs the sleep registers so the hardware
2286  * will wakeup in time to receive beacons, and configures
2287  * the beacon miss handling so we'll receive a BMISS
2288  * interrupt when we stop seeing beacons from the AP
2289  * we've associated with.
2290  */
2291 static void
2292 ath_beacon_config(struct ath_softc *sc)
2293 {
2294 #define	TSF_TO_TU(_h,_l) \
2295 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2296 #define	FUDGE	2
2297 	struct ath_hal *ah = sc->sc_ah;
2298 	struct ieee80211com *ic = &sc->sc_ic;
2299 	struct ieee80211_node *ni = ic->ic_bss;
2300 	u_int32_t nexttbtt, intval, tsftu;
2301 	u_int64_t tsf;
2302 
2303 	/* extract tstamp from last beacon and convert to TU */
2304 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2305 			     LE_READ_4(ni->ni_tstamp.data));
2306 	/* NB: the beacon interval is kept internally in TU's */
2307 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2308 	if (nexttbtt == 0)		/* e.g. for ap mode */
2309 		nexttbtt = intval;
2310 	else if (intval)		/* NB: can be 0 for monitor mode */
2311 		nexttbtt = roundup(nexttbtt, intval);
2312 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2313 		__func__, nexttbtt, intval, ni->ni_intval);
2314 	if (ic->ic_opmode == IEEE80211_M_STA) {
2315 		HAL_BEACON_STATE bs;
2316 		int dtimperiod, dtimcount;
2317 		int cfpperiod, cfpcount;
2318 
2319 		/*
2320 		 * Setup dtim and cfp parameters according to
2321 		 * last beacon we received (which may be none).
2322 		 */
2323 		dtimperiod = ni->ni_dtim_period;
2324 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2325 			dtimperiod = 1;
2326 		dtimcount = ni->ni_dtim_count;
2327 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2328 			dtimcount = 0;		/* XXX? */
2329 		cfpperiod = 1;			/* NB: no PCF support yet */
2330 		cfpcount = 0;
2331 		/*
2332 		 * Pull nexttbtt forward to reflect the current
2333 		 * TSF and calculate dtim+cfp state for the result.
2334 		 */
2335 		tsf = ath_hal_gettsf64(ah);
2336 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2337 		do {
2338 			nexttbtt += intval;
2339 			if (--dtimcount < 0) {
2340 				dtimcount = dtimperiod - 1;
2341 				if (--cfpcount < 0)
2342 					cfpcount = cfpperiod - 1;
2343 			}
2344 		} while (nexttbtt < tsftu);
2345 		memset(&bs, 0, sizeof(bs));
2346 		bs.bs_intval = intval;
2347 		bs.bs_nexttbtt = nexttbtt;
2348 		bs.bs_dtimperiod = dtimperiod*intval;
2349 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2350 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2351 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2352 		bs.bs_cfpmaxduration = 0;
2353 #if 0
2354 		/*
2355 		 * The 802.11 layer records the offset to the DTIM
2356 		 * bitmap while receiving beacons; use it here to
2357 		 * enable h/w detection of our AID being marked in
2358 		 * the bitmap vector (to indicate frames for us are
2359 		 * pending at the AP).
2360 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2361 		 * XXX enable based on h/w rev for newer chips
2362 		 */
2363 		bs.bs_timoffset = ni->ni_timoff;
2364 #endif
2365 		/*
2366 		 * Calculate the number of consecutive beacons to miss
2367 		 * before taking a BMISS interrupt.  The configuration
2368 		 * is specified in ms, so we need to convert that to
2369 		 * TU's and then calculate based on the beacon interval.
2370 		 * Note that we clamp the result to at most 10 beacons.
2371 		 */
2372 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2373 		if (bs.bs_bmissthreshold > 10)
2374 			bs.bs_bmissthreshold = 10;
2375 		else if (bs.bs_bmissthreshold <= 0)
2376 			bs.bs_bmissthreshold = 1;
2377 
2378 		/*
2379 		 * Calculate sleep duration.  The configuration is
2380 		 * given in ms.  We insure a multiple of the beacon
2381 		 * period is used.  Also, if the sleep duration is
2382 		 * greater than the DTIM period then it makes senses
2383 		 * to make it a multiple of that.
2384 		 *
2385 		 * XXX fixed at 100ms
2386 		 */
2387 		bs.bs_sleepduration =
2388 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2389 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2390 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2391 
2392 		DPRINTF(sc, ATH_DEBUG_BEACON,
2393 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2394 			, __func__
2395 			, tsf, tsftu
2396 			, bs.bs_intval
2397 			, bs.bs_nexttbtt
2398 			, bs.bs_dtimperiod
2399 			, bs.bs_nextdtim
2400 			, bs.bs_bmissthreshold
2401 			, bs.bs_sleepduration
2402 			, bs.bs_cfpperiod
2403 			, bs.bs_cfpmaxduration
2404 			, bs.bs_cfpnext
2405 			, bs.bs_timoffset
2406 		);
2407 		ath_hal_intrset(ah, 0);
2408 		ath_hal_beacontimers(ah, &bs);
2409 		sc->sc_imask |= HAL_INT_BMISS;
2410 		ath_hal_intrset(ah, sc->sc_imask);
2411 	} else {
2412 		ath_hal_intrset(ah, 0);
2413 		if (nexttbtt == intval)
2414 			intval |= HAL_BEACON_RESET_TSF;
2415 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2416 			/*
2417 			 * In IBSS mode enable the beacon timers but only
2418 			 * enable SWBA interrupts if we need to manually
2419 			 * prepare beacon frames.  Otherwise we use a
2420 			 * self-linked tx descriptor and let the hardware
2421 			 * deal with things.
2422 			 */
2423 			intval |= HAL_BEACON_ENA;
2424 			if (!sc->sc_hasveol)
2425 				sc->sc_imask |= HAL_INT_SWBA;
2426 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2427 				/*
2428 				 * Pull nexttbtt forward to reflect
2429 				 * the current TSF.
2430 				 */
2431 				tsf = ath_hal_gettsf64(ah);
2432 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2433 				do {
2434 					nexttbtt += intval;
2435 				} while (nexttbtt < tsftu);
2436 			}
2437 			ath_beaconq_config(sc);
2438 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2439 			/*
2440 			 * In AP mode we enable the beacon timers and
2441 			 * SWBA interrupts to prepare beacon frames.
2442 			 */
2443 			intval |= HAL_BEACON_ENA;
2444 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2445 			ath_beaconq_config(sc);
2446 		}
2447 		ath_hal_beaconinit(ah, nexttbtt, intval);
2448 		sc->sc_bmisscount = 0;
2449 		ath_hal_intrset(ah, sc->sc_imask);
2450 		/*
2451 		 * When using a self-linked beacon descriptor in
2452 		 * ibss mode load it once here.
2453 		 */
2454 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2455 			ath_beacon_proc(sc, 0);
2456 	}
2457 	sc->sc_syncbeacon = 0;
2458 #undef UNDEF
2459 #undef TSF_TO_TU
2460 }
2461 
2462 static int
2463 ath_descdma_setup(struct ath_softc *sc,
2464 	struct ath_descdma *dd, ath_bufhead *head,
2465 	const char *name, int nbuf, int ndesc)
2466 {
2467 #define	DS2PHYS(_dd, _ds) \
2468 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2469 	struct ifnet *ifp = &sc->sc_if;
2470 	struct ath_desc *ds;
2471 	struct ath_buf *bf;
2472 	int i, bsize, error;
2473 
2474 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2475 	    __func__, name, nbuf, ndesc);
2476 
2477 	dd->dd_name = name;
2478 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2479 
2480 	/*
2481 	 * Setup DMA descriptor area.
2482 	 */
2483 	dd->dd_dmat = sc->sc_dmat;
2484 
2485 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2486 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2487 
2488 	if (error != 0) {
2489 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2490 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2491 		goto fail0;
2492 	}
2493 
2494 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2495 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2496 	if (error != 0) {
2497 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2498 		    nbuf * ndesc, dd->dd_name, error);
2499 		goto fail1;
2500 	}
2501 
2502 	/* allocate descriptors */
2503 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2504 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2505 	if (error != 0) {
2506 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2507 			"error %u\n", dd->dd_name, error);
2508 		goto fail2;
2509 	}
2510 
2511 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2512 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2513 	if (error != 0) {
2514 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2515 			dd->dd_name, error);
2516 		goto fail3;
2517 	}
2518 
2519 	ds = dd->dd_desc;
2520 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2521 	DPRINTF(sc, ATH_DEBUG_RESET,
2522 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2523 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2524 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2525 
2526 	/* allocate rx buffers */
2527 	bsize = sizeof(struct ath_buf) * nbuf;
2528 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2529 	if (bf == NULL) {
2530 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2531 			dd->dd_name, bsize);
2532 		goto fail4;
2533 	}
2534 	dd->dd_bufptr = bf;
2535 
2536 	STAILQ_INIT(head);
2537 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2538 		bf->bf_desc = ds;
2539 		bf->bf_daddr = DS2PHYS(dd, ds);
2540 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2541 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2542 		if (error != 0) {
2543 			if_printf(ifp, "unable to create dmamap for %s "
2544 				"buffer %u, error %u\n", dd->dd_name, i, error);
2545 			ath_descdma_cleanup(sc, dd, head);
2546 			return error;
2547 		}
2548 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2549 	}
2550 	return 0;
2551 fail4:
2552 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2553 fail3:
2554 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2555 fail2:
2556 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2557 fail1:
2558 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2559 fail0:
2560 	memset(dd, 0, sizeof(*dd));
2561 	return error;
2562 #undef DS2PHYS
2563 }
2564 
2565 static void
2566 ath_descdma_cleanup(struct ath_softc *sc,
2567 	struct ath_descdma *dd, ath_bufhead *head)
2568 {
2569 	struct ath_buf *bf;
2570 	struct ieee80211_node *ni;
2571 
2572 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2573 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2574 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2575 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2576 
2577 	STAILQ_FOREACH(bf, head, bf_list) {
2578 		if (bf->bf_m) {
2579 			m_freem(bf->bf_m);
2580 			bf->bf_m = NULL;
2581 		}
2582 		if (bf->bf_dmamap != NULL) {
2583 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2584 			bf->bf_dmamap = NULL;
2585 		}
2586 		ni = bf->bf_node;
2587 		bf->bf_node = NULL;
2588 		if (ni != NULL) {
2589 			/*
2590 			 * Reclaim node reference.
2591 			 */
2592 			ieee80211_free_node(ni);
2593 		}
2594 	}
2595 
2596 	STAILQ_INIT(head);
2597 	free(dd->dd_bufptr, M_ATHDEV);
2598 	memset(dd, 0, sizeof(*dd));
2599 }
2600 
2601 static int
2602 ath_desc_alloc(struct ath_softc *sc)
2603 {
2604 	int error;
2605 
2606 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2607 			"rx", ath_rxbuf, 1);
2608 	if (error != 0)
2609 		return error;
2610 
2611 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2612 			"tx", ath_txbuf, ATH_TXDESC);
2613 	if (error != 0) {
2614 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2615 		return error;
2616 	}
2617 
2618 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2619 			"beacon", 1, 1);
2620 	if (error != 0) {
2621 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2622 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2623 		return error;
2624 	}
2625 	return 0;
2626 }
2627 
2628 static void
2629 ath_desc_free(struct ath_softc *sc)
2630 {
2631 
2632 	if (sc->sc_bdma.dd_desc_len != 0)
2633 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2634 	if (sc->sc_txdma.dd_desc_len != 0)
2635 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2636 	if (sc->sc_rxdma.dd_desc_len != 0)
2637 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2638 }
2639 
2640 static struct ieee80211_node *
2641 ath_node_alloc(struct ieee80211_node_table *nt)
2642 {
2643 	struct ieee80211com *ic = nt->nt_ic;
2644 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2645 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2646 	struct ath_node *an;
2647 
2648 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2649 	if (an == NULL) {
2650 		/* XXX stat+msg */
2651 		return NULL;
2652 	}
2653 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2654 	ath_rate_node_init(sc, an);
2655 
2656 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2657 	return &an->an_node;
2658 }
2659 
2660 static void
2661 ath_node_free(struct ieee80211_node *ni)
2662 {
2663 	struct ieee80211com *ic = ni->ni_ic;
2664         struct ath_softc *sc = ic->ic_ifp->if_softc;
2665 
2666 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2667 
2668 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2669 	sc->sc_node_free(ni);
2670 }
2671 
2672 static u_int8_t
2673 ath_node_getrssi(const struct ieee80211_node *ni)
2674 {
2675 #define	HAL_EP_RND(x, mul) \
2676 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2677 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2678 	int32_t rssi;
2679 
2680 	/*
2681 	 * When only one frame is received there will be no state in
2682 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2683 	 */
2684 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2685 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2686 	else
2687 		rssi = ni->ni_rssi;
2688 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2689 #undef HAL_EP_RND
2690 }
2691 
2692 static int
2693 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2694 {
2695 	struct ath_hal *ah = sc->sc_ah;
2696 	int error;
2697 	struct mbuf *m;
2698 	struct ath_desc *ds;
2699 
2700 	m = bf->bf_m;
2701 	if (m == NULL) {
2702 		/*
2703 		 * NB: by assigning a page to the rx dma buffer we
2704 		 * implicitly satisfy the Atheros requirement that
2705 		 * this buffer be cache-line-aligned and sized to be
2706 		 * multiple of the cache line size.  Not doing this
2707 		 * causes weird stuff to happen (for the 5210 at least).
2708 		 */
2709 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2710 		if (m == NULL) {
2711 			DPRINTF(sc, ATH_DEBUG_ANY,
2712 				"%s: no mbuf/cluster\n", __func__);
2713 			sc->sc_stats.ast_rx_nombuf++;
2714 			return ENOMEM;
2715 		}
2716 		bf->bf_m = m;
2717 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2718 
2719 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2720 					     bf->bf_dmamap, m,
2721 					     BUS_DMA_NOWAIT);
2722 		if (error != 0) {
2723 			DPRINTF(sc, ATH_DEBUG_ANY,
2724 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2725 			    __func__, error);
2726 			sc->sc_stats.ast_rx_busdma++;
2727 			return error;
2728 		}
2729 		KASSERT(bf->bf_nseg == 1,
2730 			("multi-segment packet; nseg %u", bf->bf_nseg));
2731 	}
2732 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2733 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2734 
2735 	/*
2736 	 * Setup descriptors.  For receive we always terminate
2737 	 * the descriptor list with a self-linked entry so we'll
2738 	 * not get overrun under high load (as can happen with a
2739 	 * 5212 when ANI processing enables PHY error frames).
2740 	 *
2741 	 * To insure the last descriptor is self-linked we create
2742 	 * each descriptor as self-linked and add it to the end.  As
2743 	 * each additional descriptor is added the previous self-linked
2744 	 * entry is ``fixed'' naturally.  This should be safe even
2745 	 * if DMA is happening.  When processing RX interrupts we
2746 	 * never remove/process the last, self-linked, entry on the
2747 	 * descriptor list.  This insures the hardware always has
2748 	 * someplace to write a new frame.
2749 	 */
2750 	ds = bf->bf_desc;
2751 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2752 	ds->ds_data = bf->bf_segs[0].ds_addr;
2753 	ds->ds_vdata = mtod(m, void *);	/* for radar */
2754 	ath_hal_setuprxdesc(ah, ds
2755 		, m->m_len		/* buffer size */
2756 		, 0
2757 	);
2758 
2759 	if (sc->sc_rxlink != NULL)
2760 		*sc->sc_rxlink = bf->bf_daddr;
2761 	sc->sc_rxlink = &ds->ds_link;
2762 	return 0;
2763 }
2764 
2765 /*
2766  * Extend 15-bit time stamp from rx descriptor to
2767  * a full 64-bit TSF using the specified TSF.
2768  */
2769 static inline u_int64_t
2770 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2771 {
2772 	if ((tsf & 0x7fff) < rstamp)
2773 		tsf -= 0x8000;
2774 	return ((tsf &~ 0x7fff) | rstamp);
2775 }
2776 
2777 /*
2778  * Intercept management frames to collect beacon rssi data
2779  * and to do ibss merges.
2780  */
2781 static void
2782 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2783 	struct ieee80211_node *ni,
2784 	int subtype, int rssi, u_int32_t rstamp)
2785 {
2786 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2787 
2788 	/*
2789 	 * Call up first so subsequent work can use information
2790 	 * potentially stored in the node (e.g. for ibss merge).
2791 	 */
2792 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2793 	switch (subtype) {
2794 	case IEEE80211_FC0_SUBTYPE_BEACON:
2795 		/* update rssi statistics for use by the hal */
2796 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2797 		if (sc->sc_syncbeacon &&
2798 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2799 			/*
2800 			 * Resync beacon timers using the tsf of the beacon
2801 			 * frame we just received.
2802 			 */
2803 			ath_beacon_config(sc);
2804 		}
2805 		/* fall thru... */
2806 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2807 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2808 		    ic->ic_state == IEEE80211_S_RUN) {
2809 			u_int64_t tsf = ath_extend_tsf(rstamp,
2810 				ath_hal_gettsf64(sc->sc_ah));
2811 
2812 			/*
2813 			 * Handle ibss merge as needed; check the tsf on the
2814 			 * frame before attempting the merge.  The 802.11 spec
2815 			 * says the station should change it's bssid to match
2816 			 * the oldest station with the same ssid, where oldest
2817 			 * is determined by the tsf.  Note that hardware
2818 			 * reconfiguration happens through callback to
2819 			 * ath_newstate as the state machine will go from
2820 			 * RUN -> RUN when this happens.
2821 			 */
2822 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2823 				DPRINTF(sc, ATH_DEBUG_STATE,
2824 				    "ibss merge, rstamp %u tsf %ju "
2825 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2826 				    (uintmax_t)ni->ni_tstamp.tsf);
2827 				(void) ieee80211_ibss_merge(ni);
2828 			}
2829 		}
2830 		break;
2831 	}
2832 }
2833 
2834 /*
2835  * Set the default antenna.
2836  */
2837 static void
2838 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2839 {
2840 	struct ath_hal *ah = sc->sc_ah;
2841 
2842 	/* XXX block beacon interrupts */
2843 	ath_hal_setdefantenna(ah, antenna);
2844 	if (sc->sc_defant != antenna)
2845 		sc->sc_stats.ast_ant_defswitch++;
2846 	sc->sc_defant = antenna;
2847 	sc->sc_rxotherant = 0;
2848 }
2849 
2850 static void
2851 ath_rx_proc(void *arg, int npending)
2852 {
2853 #define	PA2DESC(_sc, _pa) \
2854 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2855 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2856 	struct ath_softc *sc = arg;
2857 	struct ath_buf *bf;
2858 	struct ieee80211com *ic = &sc->sc_ic;
2859 	struct ifnet *ifp = &sc->sc_if;
2860 	struct ath_hal *ah = sc->sc_ah;
2861 	struct ath_desc *ds;
2862 	struct mbuf *m;
2863 	struct ieee80211_node *ni;
2864 	struct ath_node *an;
2865 	int len, type, ngood;
2866 	u_int phyerr;
2867 	HAL_STATUS status;
2868 	int16_t nf;
2869 	u_int64_t tsf;
2870 
2871 	NET_LOCK_GIANT();		/* XXX */
2872 
2873 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2874 	ngood = 0;
2875 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2876 	tsf = ath_hal_gettsf64(ah);
2877 	do {
2878 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2879 		if (bf == NULL) {		/* NB: shouldn't happen */
2880 			if_printf(ifp, "%s: no buffer!\n", __func__);
2881 			break;
2882 		}
2883 		ds = bf->bf_desc;
2884 		if (ds->ds_link == bf->bf_daddr) {
2885 			/* NB: never process the self-linked entry at the end */
2886 			break;
2887 		}
2888 		m = bf->bf_m;
2889 		if (m == NULL) {		/* NB: shouldn't happen */
2890 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2891 			break;
2892 		}
2893 		/* XXX sync descriptor memory */
2894 		/*
2895 		 * Must provide the virtual address of the current
2896 		 * descriptor, the physical address, and the virtual
2897 		 * address of the next descriptor in the h/w chain.
2898 		 * This allows the HAL to look ahead to see if the
2899 		 * hardware is done with a descriptor by checking the
2900 		 * done bit in the following descriptor and the address
2901 		 * of the current descriptor the DMA engine is working
2902 		 * on.  All this is necessary because of our use of
2903 		 * a self-linked list to avoid rx overruns.
2904 		 */
2905 		status = ath_hal_rxprocdesc(ah, ds,
2906 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2907 #ifdef AR_DEBUG
2908 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2909 			ath_printrxbuf(bf, status == HAL_OK);
2910 #endif
2911 		if (status == HAL_EINPROGRESS)
2912 			break;
2913 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2914 		if (ds->ds_rxstat.rs_more) {
2915 			/*
2916 			 * Frame spans multiple descriptors; this
2917 			 * cannot happen yet as we don't support
2918 			 * jumbograms.  If not in monitor mode,
2919 			 * discard the frame.
2920 			 */
2921 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2922 				sc->sc_stats.ast_rx_toobig++;
2923 				goto rx_next;
2924 			}
2925 			/* fall thru for monitor mode handling... */
2926 		} else if (ds->ds_rxstat.rs_status != 0) {
2927 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2928 				sc->sc_stats.ast_rx_crcerr++;
2929 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2930 				sc->sc_stats.ast_rx_fifoerr++;
2931 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2932 				sc->sc_stats.ast_rx_phyerr++;
2933 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2934 				sc->sc_stats.ast_rx_phy[phyerr]++;
2935 				goto rx_next;
2936 			}
2937 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2938 				/*
2939 				 * Decrypt error.  If the error occurred
2940 				 * because there was no hardware key, then
2941 				 * let the frame through so the upper layers
2942 				 * can process it.  This is necessary for 5210
2943 				 * parts which have no way to setup a ``clear''
2944 				 * key cache entry.
2945 				 *
2946 				 * XXX do key cache faulting
2947 				 */
2948 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2949 					goto rx_accept;
2950 				sc->sc_stats.ast_rx_badcrypt++;
2951 			}
2952 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2953 				sc->sc_stats.ast_rx_badmic++;
2954 				/*
2955 				 * Do minimal work required to hand off
2956 				 * the 802.11 header for notifcation.
2957 				 */
2958 				/* XXX frag's and qos frames */
2959 				len = ds->ds_rxstat.rs_datalen;
2960 				if (len >= sizeof (struct ieee80211_frame)) {
2961 					bus_dmamap_sync(sc->sc_dmat,
2962 					    bf->bf_dmamap,
2963 					    0, bf->bf_dmamap->dm_mapsize,
2964 					    BUS_DMASYNC_POSTREAD);
2965 					ieee80211_notify_michael_failure(ic,
2966 					    mtod(m, struct ieee80211_frame *),
2967 					    sc->sc_splitmic ?
2968 					        ds->ds_rxstat.rs_keyix-32 :
2969 					        ds->ds_rxstat.rs_keyix
2970 					);
2971 				}
2972 			}
2973 			ifp->if_ierrors++;
2974 			/*
2975 			 * Reject error frames, we normally don't want
2976 			 * to see them in monitor mode (in monitor mode
2977 			 * allow through packets that have crypto problems).
2978 			 */
2979 			if ((ds->ds_rxstat.rs_status &~
2980 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2981 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2982 				goto rx_next;
2983 		}
2984 rx_accept:
2985 		/*
2986 		 * Sync and unmap the frame.  At this point we're
2987 		 * committed to passing the mbuf somewhere so clear
2988 		 * bf_m; this means a new sk_buff must be allocated
2989 		 * when the rx descriptor is setup again to receive
2990 		 * another frame.
2991 		 */
2992 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2993 		    0, bf->bf_dmamap->dm_mapsize,
2994 		    BUS_DMASYNC_POSTREAD);
2995 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2996 		bf->bf_m = NULL;
2997 
2998 		m->m_pkthdr.rcvif = ifp;
2999 		len = ds->ds_rxstat.rs_datalen;
3000 		m->m_pkthdr.len = m->m_len = len;
3001 
3002 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3003 
3004 #if NBPFILTER > 0
3005 		if (sc->sc_drvbpf) {
3006 			u_int8_t rix;
3007 
3008 			/*
3009 			 * Discard anything shorter than an ack or cts.
3010 			 */
3011 			if (len < IEEE80211_ACK_LEN) {
3012 				DPRINTF(sc, ATH_DEBUG_RECV,
3013 					"%s: runt packet %d\n",
3014 					__func__, len);
3015 				sc->sc_stats.ast_rx_tooshort++;
3016 				m_freem(m);
3017 				goto rx_next;
3018 			}
3019 			rix = ds->ds_rxstat.rs_rate;
3020 			sc->sc_rx_th.wr_tsf = htole64(
3021 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3022 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3023 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3024 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3025 			sc->sc_rx_th.wr_antnoise = nf;
3026 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3027 
3028 			bpf_mtap2(sc->sc_drvbpf,
3029 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
3030 		}
3031 #endif
3032 
3033 		/*
3034 		 * From this point on we assume the frame is at least
3035 		 * as large as ieee80211_frame_min; verify that.
3036 		 */
3037 		if (len < IEEE80211_MIN_LEN) {
3038 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3039 				__func__, len);
3040 			sc->sc_stats.ast_rx_tooshort++;
3041 			m_freem(m);
3042 			goto rx_next;
3043 		}
3044 
3045 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3046 			ieee80211_dump_pkt(mtod(m, void *), len,
3047 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3048 				   ds->ds_rxstat.rs_rssi);
3049 		}
3050 
3051 		m_adj(m, -IEEE80211_CRC_LEN);
3052 
3053 		/*
3054 		 * Locate the node for sender, track state, and then
3055 		 * pass the (referenced) node up to the 802.11 layer
3056 		 * for its use.
3057 		 */
3058 		ni = ieee80211_find_rxnode_withkey(ic,
3059 			mtod(m, const struct ieee80211_frame_min *),
3060 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3061 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3062 		/*
3063 		 * Track rx rssi and do any rx antenna management.
3064 		 */
3065 		an = ATH_NODE(ni);
3066 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3067 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3068 		/*
3069 		 * Send frame up for processing.
3070 		 */
3071 		type = ieee80211_input(ic, m, ni,
3072 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3073 		ieee80211_free_node(ni);
3074 		if (sc->sc_diversity) {
3075 			/*
3076 			 * When using fast diversity, change the default rx
3077 			 * antenna if diversity chooses the other antenna 3
3078 			 * times in a row.
3079 			 */
3080 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3081 				if (++sc->sc_rxotherant >= 3)
3082 					ath_setdefantenna(sc,
3083 						ds->ds_rxstat.rs_antenna);
3084 			} else
3085 				sc->sc_rxotherant = 0;
3086 		}
3087 		if (sc->sc_softled) {
3088 			/*
3089 			 * Blink for any data frame.  Otherwise do a
3090 			 * heartbeat-style blink when idle.  The latter
3091 			 * is mainly for station mode where we depend on
3092 			 * periodic beacon frames to trigger the poll event.
3093 			 */
3094 			if (type == IEEE80211_FC0_TYPE_DATA) {
3095 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3096 				ath_led_event(sc, ATH_LED_RX);
3097 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3098 				ath_led_event(sc, ATH_LED_POLL);
3099 		}
3100 		/*
3101 		 * Arrange to update the last rx timestamp only for
3102 		 * frames from our ap when operating in station mode.
3103 		 * This assumes the rx key is always setup when associated.
3104 		 */
3105 		if (ic->ic_opmode == IEEE80211_M_STA &&
3106 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3107 			ngood++;
3108 rx_next:
3109 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3110 	} while (ath_rxbuf_init(sc, bf) == 0);
3111 
3112 	/* rx signal state monitoring */
3113 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3114 	if (ath_hal_radar_event(ah))
3115 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3116 	if (ngood)
3117 		sc->sc_lastrx = tsf;
3118 
3119 #ifdef __NetBSD__
3120 	/* XXX Why isn't this necessary in FreeBSD? */
3121 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3122 		ath_start(ifp);
3123 #endif /* __NetBSD__ */
3124 
3125 	NET_UNLOCK_GIANT();		/* XXX */
3126 #undef PA2DESC
3127 }
3128 
3129 /*
3130  * Setup a h/w transmit queue.
3131  */
3132 static struct ath_txq *
3133 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3134 {
3135 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3136 	struct ath_hal *ah = sc->sc_ah;
3137 	HAL_TXQ_INFO qi;
3138 	int qnum;
3139 
3140 	memset(&qi, 0, sizeof(qi));
3141 	qi.tqi_subtype = subtype;
3142 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3143 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3144 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3145 	/*
3146 	 * Enable interrupts only for EOL and DESC conditions.
3147 	 * We mark tx descriptors to receive a DESC interrupt
3148 	 * when a tx queue gets deep; otherwise waiting for the
3149 	 * EOL to reap descriptors.  Note that this is done to
3150 	 * reduce interrupt load and this only defers reaping
3151 	 * descriptors, never transmitting frames.  Aside from
3152 	 * reducing interrupts this also permits more concurrency.
3153 	 * The only potential downside is if the tx queue backs
3154 	 * up in which case the top half of the kernel may backup
3155 	 * due to a lack of tx descriptors.
3156 	 */
3157 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3158 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3159 	if (qnum == -1) {
3160 		/*
3161 		 * NB: don't print a message, this happens
3162 		 * normally on parts with too few tx queues
3163 		 */
3164 		return NULL;
3165 	}
3166 	if (qnum >= N(sc->sc_txq)) {
3167 		device_printf(sc->sc_dev,
3168 			"hal qnum %u out of range, max %zu!\n",
3169 			qnum, N(sc->sc_txq));
3170 		ath_hal_releasetxqueue(ah, qnum);
3171 		return NULL;
3172 	}
3173 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3174 		struct ath_txq *txq = &sc->sc_txq[qnum];
3175 
3176 		txq->axq_qnum = qnum;
3177 		txq->axq_depth = 0;
3178 		txq->axq_intrcnt = 0;
3179 		txq->axq_link = NULL;
3180 		STAILQ_INIT(&txq->axq_q);
3181 		ATH_TXQ_LOCK_INIT(sc, txq);
3182 		sc->sc_txqsetup |= 1<<qnum;
3183 	}
3184 	return &sc->sc_txq[qnum];
3185 #undef N
3186 }
3187 
3188 /*
3189  * Setup a hardware data transmit queue for the specified
3190  * access control.  The hal may not support all requested
3191  * queues in which case it will return a reference to a
3192  * previously setup queue.  We record the mapping from ac's
3193  * to h/w queues for use by ath_tx_start and also track
3194  * the set of h/w queues being used to optimize work in the
3195  * transmit interrupt handler and related routines.
3196  */
3197 static int
3198 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3199 {
3200 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3201 	struct ath_txq *txq;
3202 
3203 	if (ac >= N(sc->sc_ac2q)) {
3204 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3205 			ac, N(sc->sc_ac2q));
3206 		return 0;
3207 	}
3208 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3209 	if (txq != NULL) {
3210 		sc->sc_ac2q[ac] = txq;
3211 		return 1;
3212 	} else
3213 		return 0;
3214 #undef N
3215 }
3216 
3217 /*
3218  * Update WME parameters for a transmit queue.
3219  */
3220 static int
3221 ath_txq_update(struct ath_softc *sc, int ac)
3222 {
3223 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3224 #define	ATH_TXOP_TO_US(v)		(v<<5)
3225 	struct ieee80211com *ic = &sc->sc_ic;
3226 	struct ath_txq *txq = sc->sc_ac2q[ac];
3227 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3228 	struct ath_hal *ah = sc->sc_ah;
3229 	HAL_TXQ_INFO qi;
3230 
3231 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3232 	qi.tqi_aifs = wmep->wmep_aifsn;
3233 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3234 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3235 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3236 
3237 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3238 		device_printf(sc->sc_dev, "unable to update hardware queue "
3239 			"parameters for %s traffic!\n",
3240 			ieee80211_wme_acnames[ac]);
3241 		return 0;
3242 	} else {
3243 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3244 		return 1;
3245 	}
3246 #undef ATH_TXOP_TO_US
3247 #undef ATH_EXPONENT_TO_VALUE
3248 }
3249 
3250 /*
3251  * Callback from the 802.11 layer to update WME parameters.
3252  */
3253 static int
3254 ath_wme_update(struct ieee80211com *ic)
3255 {
3256 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3257 
3258 	return !ath_txq_update(sc, WME_AC_BE) ||
3259 	    !ath_txq_update(sc, WME_AC_BK) ||
3260 	    !ath_txq_update(sc, WME_AC_VI) ||
3261 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3262 }
3263 
3264 /*
3265  * Reclaim resources for a setup queue.
3266  */
3267 static void
3268 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3269 {
3270 
3271 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3272 	ATH_TXQ_LOCK_DESTROY(txq);
3273 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3274 }
3275 
3276 /*
3277  * Reclaim all tx queue resources.
3278  */
3279 static void
3280 ath_tx_cleanup(struct ath_softc *sc)
3281 {
3282 	int i;
3283 
3284 	ATH_TXBUF_LOCK_DESTROY(sc);
3285 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3286 		if (ATH_TXQ_SETUP(sc, i))
3287 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3288 }
3289 
3290 /*
3291  * Defragment an mbuf chain, returning at most maxfrags separate
3292  * mbufs+clusters.  If this is not possible NULL is returned and
3293  * the original mbuf chain is left in it's present (potentially
3294  * modified) state.  We use two techniques: collapsing consecutive
3295  * mbufs and replacing consecutive mbufs by a cluster.
3296  */
3297 static struct mbuf *
3298 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3299 {
3300 	struct mbuf *m, *n, *n2, **prev;
3301 	u_int curfrags;
3302 
3303 	/*
3304 	 * Calculate the current number of frags.
3305 	 */
3306 	curfrags = 0;
3307 	for (m = m0; m != NULL; m = m->m_next)
3308 		curfrags++;
3309 	/*
3310 	 * First, try to collapse mbufs.  Note that we always collapse
3311 	 * towards the front so we don't need to deal with moving the
3312 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3313 	 * less data than the following.
3314 	 */
3315 	m = m0;
3316 again:
3317 	for (;;) {
3318 		n = m->m_next;
3319 		if (n == NULL)
3320 			break;
3321 		if (n->m_len < M_TRAILINGSPACE(m)) {
3322 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3323 				n->m_len);
3324 			m->m_len += n->m_len;
3325 			m->m_next = n->m_next;
3326 			m_free(n);
3327 			if (--curfrags <= maxfrags)
3328 				return m0;
3329 		} else
3330 			m = n;
3331 	}
3332 	KASSERT(maxfrags > 1,
3333 		("maxfrags %u, but normal collapse failed", maxfrags));
3334 	/*
3335 	 * Collapse consecutive mbufs to a cluster.
3336 	 */
3337 	prev = &m0->m_next;		/* NB: not the first mbuf */
3338 	while ((n = *prev) != NULL) {
3339 		if ((n2 = n->m_next) != NULL &&
3340 		    n->m_len + n2->m_len < MCLBYTES) {
3341 			m = m_getcl(how, MT_DATA, 0);
3342 			if (m == NULL)
3343 				goto bad;
3344 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3345 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3346 				n2->m_len);
3347 			m->m_len = n->m_len + n2->m_len;
3348 			m->m_next = n2->m_next;
3349 			*prev = m;
3350 			m_free(n);
3351 			m_free(n2);
3352 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3353 				return m0;
3354 			/*
3355 			 * Still not there, try the normal collapse
3356 			 * again before we allocate another cluster.
3357 			 */
3358 			goto again;
3359 		}
3360 		prev = &n->m_next;
3361 	}
3362 	/*
3363 	 * No place where we can collapse to a cluster; punt.
3364 	 * This can occur if, for example, you request 2 frags
3365 	 * but the packet requires that both be clusters (we
3366 	 * never reallocate the first mbuf to avoid moving the
3367 	 * packet header).
3368 	 */
3369 bad:
3370 	return NULL;
3371 }
3372 
3373 /*
3374  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3375  */
3376 static int
3377 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3378 {
3379 	int i;
3380 
3381 	for (i = 0; i < rt->rateCount; i++)
3382 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3383 			return i;
3384 	return 0;		/* NB: lowest rate */
3385 }
3386 
3387 static void
3388 ath_freetx(struct mbuf *m)
3389 {
3390 	struct mbuf *next;
3391 
3392 	do {
3393 		next = m->m_nextpkt;
3394 		m->m_nextpkt = NULL;
3395 		m_freem(m);
3396 	} while ((m = next) != NULL);
3397 }
3398 
3399 static int
3400 deduct_pad_bytes(int len, int hdrlen)
3401 {
3402 	/* XXX I am suspicious that this code, which I extracted
3403 	 * XXX from ath_tx_start() for reuse, does the right thing.
3404 	 */
3405 	return len - (hdrlen & 3);
3406 }
3407 
3408 static int
3409 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3410     struct mbuf *m0)
3411 {
3412 	struct ieee80211com *ic = &sc->sc_ic;
3413 	struct ath_hal *ah = sc->sc_ah;
3414 	struct ifnet *ifp = &sc->sc_if;
3415 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3416 	int i, error, iswep, ismcast, isfrag, ismrr;
3417 	int keyix, hdrlen, pktlen, try0;
3418 	u_int8_t rix, txrate, ctsrate;
3419 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3420 	struct ath_desc *ds, *ds0;
3421 	struct ath_txq *txq;
3422 	struct ieee80211_frame *wh;
3423 	u_int subtype, flags, ctsduration;
3424 	HAL_PKT_TYPE atype;
3425 	const HAL_RATE_TABLE *rt;
3426 	HAL_BOOL shortPreamble;
3427 	struct ath_node *an;
3428 	struct mbuf *m;
3429 	u_int pri;
3430 
3431 	wh = mtod(m0, struct ieee80211_frame *);
3432 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3433 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3434 	isfrag = m0->m_flags & M_FRAG;
3435 	hdrlen = ieee80211_anyhdrsize(wh);
3436 	/*
3437 	 * Packet length must not include any
3438 	 * pad bytes; deduct them here.
3439 	 */
3440 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3441 
3442 	if (iswep) {
3443 		const struct ieee80211_cipher *cip;
3444 		struct ieee80211_key *k;
3445 
3446 		/*
3447 		 * Construct the 802.11 header+trailer for an encrypted
3448 		 * frame. The only reason this can fail is because of an
3449 		 * unknown or unsupported cipher/key type.
3450 		 */
3451 		k = ieee80211_crypto_encap(ic, ni, m0);
3452 		if (k == NULL) {
3453 			/*
3454 			 * This can happen when the key is yanked after the
3455 			 * frame was queued.  Just discard the frame; the
3456 			 * 802.11 layer counts failures and provides
3457 			 * debugging/diagnostics.
3458 			 */
3459 			ath_freetx(m0);
3460 			return EIO;
3461 		}
3462 		/*
3463 		 * Adjust the packet + header lengths for the crypto
3464 		 * additions and calculate the h/w key index.  When
3465 		 * a s/w mic is done the frame will have had any mic
3466 		 * added to it prior to entry so m0->m_pkthdr.len above will
3467 		 * account for it. Otherwise we need to add it to the
3468 		 * packet length.
3469 		 */
3470 		cip = k->wk_cipher;
3471 		hdrlen += cip->ic_header;
3472 		pktlen += cip->ic_header + cip->ic_trailer;
3473 		/* NB: frags always have any TKIP MIC done in s/w */
3474 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3475 			pktlen += cip->ic_miclen;
3476 		keyix = k->wk_keyix;
3477 
3478 		/* packet header may have moved, reset our local pointer */
3479 		wh = mtod(m0, struct ieee80211_frame *);
3480 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3481 		/*
3482 		 * Use station key cache slot, if assigned.
3483 		 */
3484 		keyix = ni->ni_ucastkey.wk_keyix;
3485 		if (keyix == IEEE80211_KEYIX_NONE)
3486 			keyix = HAL_TXKEYIX_INVALID;
3487 	} else
3488 		keyix = HAL_TXKEYIX_INVALID;
3489 
3490 	pktlen += IEEE80211_CRC_LEN;
3491 
3492 	/*
3493 	 * Load the DMA map so any coalescing is done.  This
3494 	 * also calculates the number of descriptors we need.
3495 	 */
3496 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3497 				     BUS_DMA_NOWAIT);
3498 	if (error == EFBIG) {
3499 		/* XXX packet requires too many descriptors */
3500 		bf->bf_nseg = ATH_TXDESC+1;
3501 	} else if (error != 0) {
3502 		sc->sc_stats.ast_tx_busdma++;
3503 		ath_freetx(m0);
3504 		return error;
3505 	}
3506 	/*
3507 	 * Discard null packets and check for packets that
3508 	 * require too many TX descriptors.  We try to convert
3509 	 * the latter to a cluster.
3510 	 */
3511 	if (error == EFBIG) {		/* too many desc's, linearize */
3512 		sc->sc_stats.ast_tx_linear++;
3513 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3514 		if (m == NULL) {
3515 			ath_freetx(m0);
3516 			sc->sc_stats.ast_tx_nombuf++;
3517 			return ENOMEM;
3518 		}
3519 		m0 = m;
3520 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3521 					     BUS_DMA_NOWAIT);
3522 		if (error != 0) {
3523 			sc->sc_stats.ast_tx_busdma++;
3524 			ath_freetx(m0);
3525 			return error;
3526 		}
3527 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3528 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3529 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3530 		sc->sc_stats.ast_tx_nodata++;
3531 		ath_freetx(m0);
3532 		return EIO;
3533 	}
3534 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3535 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3536             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3537 	bf->bf_m = m0;
3538 	bf->bf_node = ni;			/* NB: held reference */
3539 
3540 	/* setup descriptors */
3541 	ds = bf->bf_desc;
3542 	rt = sc->sc_currates;
3543 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3544 
3545 	/*
3546 	 * NB: the 802.11 layer marks whether or not we should
3547 	 * use short preamble based on the current mode and
3548 	 * negotiated parameters.
3549 	 */
3550 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3551 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3552 		shortPreamble = AH_TRUE;
3553 		sc->sc_stats.ast_tx_shortpre++;
3554 	} else {
3555 		shortPreamble = AH_FALSE;
3556 	}
3557 
3558 	an = ATH_NODE(ni);
3559 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3560 	ismrr = 0;				/* default no multi-rate retry*/
3561 	/*
3562 	 * Calculate Atheros packet type from IEEE80211 packet header,
3563 	 * setup for rate calculations, and select h/w transmit queue.
3564 	 */
3565 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3566 	case IEEE80211_FC0_TYPE_MGT:
3567 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3568 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3569 			atype = HAL_PKT_TYPE_BEACON;
3570 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3571 			atype = HAL_PKT_TYPE_PROBE_RESP;
3572 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3573 			atype = HAL_PKT_TYPE_ATIM;
3574 		else
3575 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3576 		rix = sc->sc_minrateix;
3577 		txrate = rt->info[rix].rateCode;
3578 		if (shortPreamble)
3579 			txrate |= rt->info[rix].shortPreamble;
3580 		try0 = ATH_TXMGTTRY;
3581 		/* NB: force all management frames to highest queue */
3582 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3583 			/* NB: force all management frames to highest queue */
3584 			pri = WME_AC_VO;
3585 		} else
3586 			pri = WME_AC_BE;
3587 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3588 		break;
3589 	case IEEE80211_FC0_TYPE_CTL:
3590 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3591 		rix = sc->sc_minrateix;
3592 		txrate = rt->info[rix].rateCode;
3593 		if (shortPreamble)
3594 			txrate |= rt->info[rix].shortPreamble;
3595 		try0 = ATH_TXMGTTRY;
3596 		/* NB: force all ctl frames to highest queue */
3597 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3598 			/* NB: force all ctl frames to highest queue */
3599 			pri = WME_AC_VO;
3600 		} else
3601 			pri = WME_AC_BE;
3602 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3603 		break;
3604 	case IEEE80211_FC0_TYPE_DATA:
3605 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3606 		/*
3607 		 * Data frames: multicast frames go out at a fixed rate,
3608 		 * otherwise consult the rate control module for the
3609 		 * rate to use.
3610 		 */
3611 		if (ismcast) {
3612 			/*
3613 			 * Check mcast rate setting in case it's changed.
3614 			 * XXX move out of fastpath
3615 			 */
3616 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3617 				sc->sc_mcastrix =
3618 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3619 				sc->sc_mcastrate = ic->ic_mcast_rate;
3620 			}
3621 			rix = sc->sc_mcastrix;
3622 			txrate = rt->info[rix].rateCode;
3623 			try0 = 1;
3624 		} else {
3625 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3626 				&rix, &try0, &txrate);
3627 			sc->sc_txrate = txrate;		/* for LED blinking */
3628 			if (try0 != ATH_TXMAXTRY)
3629 				ismrr = 1;
3630 		}
3631 		pri = M_WME_GETAC(m0);
3632 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3633 			flags |= HAL_TXDESC_NOACK;
3634 		break;
3635 	default:
3636 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3637 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3638 		/* XXX statistic */
3639 		ath_freetx(m0);
3640 		return EIO;
3641 	}
3642 	txq = sc->sc_ac2q[pri];
3643 
3644 	/*
3645 	 * When servicing one or more stations in power-save mode
3646 	 * multicast frames must be buffered until after the beacon.
3647 	 * We use the CAB queue for that.
3648 	 */
3649 	if (ismcast && ic->ic_ps_sta) {
3650 		txq = sc->sc_cabq;
3651 		/* XXX? more bit in 802.11 frame header */
3652 	}
3653 
3654 	/*
3655 	 * Calculate miscellaneous flags.
3656 	 */
3657 	if (ismcast) {
3658 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3659 	} else if (pktlen > ic->ic_rtsthreshold) {
3660 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3661 		cix = rt->info[rix].controlRate;
3662 		sc->sc_stats.ast_tx_rts++;
3663 	}
3664 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3665 		sc->sc_stats.ast_tx_noack++;
3666 
3667 	/*
3668 	 * If 802.11g protection is enabled, determine whether
3669 	 * to use RTS/CTS or just CTS.  Note that this is only
3670 	 * done for OFDM unicast frames.
3671 	 */
3672 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3673 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3674 	    (flags & HAL_TXDESC_NOACK) == 0) {
3675 		/* XXX fragments must use CCK rates w/ protection */
3676 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3677 			flags |= HAL_TXDESC_RTSENA;
3678 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3679 			flags |= HAL_TXDESC_CTSENA;
3680 		if (isfrag) {
3681 			/*
3682 			 * For frags it would be desirable to use the
3683 			 * highest CCK rate for RTS/CTS.  But stations
3684 			 * farther away may detect it at a lower CCK rate
3685 			 * so use the configured protection rate instead
3686 			 * (for now).
3687 			 */
3688 			cix = rt->info[sc->sc_protrix].controlRate;
3689 		} else
3690 			cix = rt->info[sc->sc_protrix].controlRate;
3691 		sc->sc_stats.ast_tx_protect++;
3692 	}
3693 
3694 	/*
3695 	 * Calculate duration.  This logically belongs in the 802.11
3696 	 * layer but it lacks sufficient information to calculate it.
3697 	 */
3698 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3699 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3700 		u_int16_t dur;
3701 		/*
3702 		 * XXX not right with fragmentation.
3703 		 */
3704 		if (shortPreamble)
3705 			dur = rt->info[rix].spAckDuration;
3706 		else
3707 			dur = rt->info[rix].lpAckDuration;
3708 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3709 			dur += dur;             /* additional SIFS+ACK */
3710 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3711 			/*
3712 			 * Include the size of next fragment so NAV is
3713 			 * updated properly.  The last fragment uses only
3714 			 * the ACK duration
3715 			 */
3716 			dur += ath_hal_computetxtime(ah, rt,
3717 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3718 			        hdrlen) -
3719 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3720 			    rix, shortPreamble);
3721 		}
3722 		if (isfrag) {
3723 			/*
3724 			 * Force hardware to use computed duration for next
3725 			 * fragment by disabling multi-rate retry which updates
3726 			 * duration based on the multi-rate duration table.
3727 			 */
3728 			try0 = ATH_TXMAXTRY;
3729 		}
3730 		*(u_int16_t *)wh->i_dur = htole16(dur);
3731 	}
3732 
3733 	/*
3734 	 * Calculate RTS/CTS rate and duration if needed.
3735 	 */
3736 	ctsduration = 0;
3737 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3738 		/*
3739 		 * CTS transmit rate is derived from the transmit rate
3740 		 * by looking in the h/w rate table.  We must also factor
3741 		 * in whether or not a short preamble is to be used.
3742 		 */
3743 		/* NB: cix is set above where RTS/CTS is enabled */
3744 		KASSERT(cix != 0xff, ("cix not setup"));
3745 		ctsrate = rt->info[cix].rateCode;
3746 		/*
3747 		 * Compute the transmit duration based on the frame
3748 		 * size and the size of an ACK frame.  We call into the
3749 		 * HAL to do the computation since it depends on the
3750 		 * characteristics of the actual PHY being used.
3751 		 *
3752 		 * NB: CTS is assumed the same size as an ACK so we can
3753 		 *     use the precalculated ACK durations.
3754 		 */
3755 		if (shortPreamble) {
3756 			ctsrate |= rt->info[cix].shortPreamble;
3757 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3758 				ctsduration += rt->info[cix].spAckDuration;
3759 			ctsduration += ath_hal_computetxtime(ah,
3760 				rt, pktlen, rix, AH_TRUE);
3761 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3762 				ctsduration += rt->info[rix].spAckDuration;
3763 		} else {
3764 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3765 				ctsduration += rt->info[cix].lpAckDuration;
3766 			ctsduration += ath_hal_computetxtime(ah,
3767 				rt, pktlen, rix, AH_FALSE);
3768 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3769 				ctsduration += rt->info[rix].lpAckDuration;
3770 		}
3771 		/*
3772 		 * Must disable multi-rate retry when using RTS/CTS.
3773 		 */
3774 		ismrr = 0;
3775 		try0 = ATH_TXMGTTRY;		/* XXX */
3776 	} else
3777 		ctsrate = 0;
3778 
3779 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3780 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3781 			sc->sc_hwmap[txrate].ieeerate, -1);
3782 #if NBPFILTER > 0
3783 	if (ic->ic_rawbpf)
3784 		bpf_mtap(ic->ic_rawbpf, m0);
3785 	if (sc->sc_drvbpf) {
3786 		u_int64_t tsf = ath_hal_gettsf64(ah);
3787 
3788 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3789 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3790 		if (iswep)
3791 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3792 		if (isfrag)
3793 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3794 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3795 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3796 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3797 
3798 		bpf_mtap2(sc->sc_drvbpf,
3799 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3800 	}
3801 #endif
3802 
3803 	/*
3804 	 * Determine if a tx interrupt should be generated for
3805 	 * this descriptor.  We take a tx interrupt to reap
3806 	 * descriptors when the h/w hits an EOL condition or
3807 	 * when the descriptor is specifically marked to generate
3808 	 * an interrupt.  We periodically mark descriptors in this
3809 	 * way to insure timely replenishing of the supply needed
3810 	 * for sending frames.  Defering interrupts reduces system
3811 	 * load and potentially allows more concurrent work to be
3812 	 * done but if done to aggressively can cause senders to
3813 	 * backup.
3814 	 *
3815 	 * NB: use >= to deal with sc_txintrperiod changing
3816 	 *     dynamically through sysctl.
3817 	 */
3818 	if (flags & HAL_TXDESC_INTREQ) {
3819 		txq->axq_intrcnt = 0;
3820 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3821 		flags |= HAL_TXDESC_INTREQ;
3822 		txq->axq_intrcnt = 0;
3823 	}
3824 
3825 	/*
3826 	 * Formulate first tx descriptor with tx controls.
3827 	 */
3828 	/* XXX check return value? */
3829 	ath_hal_setuptxdesc(ah, ds
3830 		, pktlen		/* packet length */
3831 		, hdrlen		/* header length */
3832 		, atype			/* Atheros packet type */
3833 		, ni->ni_txpower	/* txpower */
3834 		, txrate, try0		/* series 0 rate/tries */
3835 		, keyix			/* key cache index */
3836 		, sc->sc_txantenna	/* antenna mode */
3837 		, flags			/* flags */
3838 		, ctsrate		/* rts/cts rate */
3839 		, ctsduration		/* rts/cts duration */
3840 	);
3841 	bf->bf_flags = flags;
3842 	/*
3843 	 * Setup the multi-rate retry state only when we're
3844 	 * going to use it.  This assumes ath_hal_setuptxdesc
3845 	 * initializes the descriptors (so we don't have to)
3846 	 * when the hardware supports multi-rate retry and
3847 	 * we don't use it.
3848 	 */
3849 	if (ismrr)
3850 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3851 
3852 	/*
3853 	 * Fillin the remainder of the descriptor info.
3854 	 */
3855 	ds0 = ds;
3856 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3857 		ds->ds_data = bf->bf_segs[i].ds_addr;
3858 		if (i == bf->bf_nseg - 1)
3859 			ds->ds_link = 0;
3860 		else
3861 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3862 		ath_hal_filltxdesc(ah, ds
3863 			, bf->bf_segs[i].ds_len	/* segment length */
3864 			, i == 0		/* first segment */
3865 			, i == bf->bf_nseg - 1	/* last segment */
3866 			, ds0			/* first descriptor */
3867 		);
3868 
3869 		/* NB: The desc swap function becomes void,
3870 		 * if descriptor swapping is not enabled
3871 		 */
3872 		ath_desc_swap(ds);
3873 
3874 		DPRINTF(sc, ATH_DEBUG_XMIT,
3875 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3876 			__func__, i, ds->ds_link, ds->ds_data,
3877 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3878 	}
3879 	/*
3880 	 * Insert the frame on the outbound list and
3881 	 * pass it on to the hardware.
3882 	 */
3883 	ATH_TXQ_LOCK(txq);
3884 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3885 	if (txq->axq_link == NULL) {
3886 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3887 		DPRINTF(sc, ATH_DEBUG_XMIT,
3888 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3889 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3890 		    txq->axq_depth);
3891 	} else {
3892 		*txq->axq_link = HTOAH32(bf->bf_daddr);
3893 		DPRINTF(sc, ATH_DEBUG_XMIT,
3894 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3895 		    __func__, txq->axq_qnum, txq->axq_link,
3896 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3897 	}
3898 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3899 	/*
3900 	 * The CAB queue is started from the SWBA handler since
3901 	 * frames only go out on DTIM and to avoid possible races.
3902 	 */
3903 	if (txq != sc->sc_cabq)
3904 		ath_hal_txstart(ah, txq->axq_qnum);
3905 	ATH_TXQ_UNLOCK(txq);
3906 
3907 	return 0;
3908 }
3909 
3910 /*
3911  * Process completed xmit descriptors from the specified queue.
3912  */
3913 static int
3914 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3915 {
3916 	struct ath_hal *ah = sc->sc_ah;
3917 	struct ieee80211com *ic = &sc->sc_ic;
3918 	struct ath_buf *bf;
3919 	struct ath_desc *ds, *ds0;
3920 	struct ieee80211_node *ni;
3921 	struct ath_node *an;
3922 	int sr, lr, pri, nacked;
3923 	HAL_STATUS status;
3924 
3925 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3926 		__func__, txq->axq_qnum,
3927 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3928 		txq->axq_link);
3929 	nacked = 0;
3930 	for (;;) {
3931 		ATH_TXQ_LOCK(txq);
3932 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3933 		bf = STAILQ_FIRST(&txq->axq_q);
3934 		if (bf == NULL) {
3935 			txq->axq_link = NULL;
3936 			ATH_TXQ_UNLOCK(txq);
3937 			break;
3938 		}
3939 		ds0 = &bf->bf_desc[0];
3940 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3941 		status = ath_hal_txprocdesc(ah, ds);
3942 #ifdef AR_DEBUG
3943 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3944 			ath_printtxbuf(bf, status == HAL_OK);
3945 #endif
3946 		if (status == HAL_EINPROGRESS) {
3947 			ATH_TXQ_UNLOCK(txq);
3948 			break;
3949 		}
3950 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3951 		ATH_TXQ_UNLOCK(txq);
3952 
3953 		ni = bf->bf_node;
3954 		if (ni != NULL) {
3955 			an = ATH_NODE(ni);
3956 			if (ds->ds_txstat.ts_status == 0) {
3957 				u_int8_t txant = ds->ds_txstat.ts_antenna;
3958 				sc->sc_stats.ast_ant_tx[txant]++;
3959 				sc->sc_ant_tx[txant]++;
3960 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3961 					sc->sc_stats.ast_tx_altrate++;
3962 				sc->sc_stats.ast_tx_rssi =
3963 					ds->ds_txstat.ts_rssi;
3964 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3965 					ds->ds_txstat.ts_rssi);
3966 				pri = M_WME_GETAC(bf->bf_m);
3967 				if (pri >= WME_AC_VO)
3968 					ic->ic_wme.wme_hipri_traffic++;
3969 				ni->ni_inact = ni->ni_inact_reload;
3970 			} else {
3971 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3972 					sc->sc_stats.ast_tx_xretries++;
3973 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3974 					sc->sc_stats.ast_tx_fifoerr++;
3975 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3976 					sc->sc_stats.ast_tx_filtered++;
3977 			}
3978 			sr = ds->ds_txstat.ts_shortretry;
3979 			lr = ds->ds_txstat.ts_longretry;
3980 			sc->sc_stats.ast_tx_shortretry += sr;
3981 			sc->sc_stats.ast_tx_longretry += lr;
3982 			/*
3983 			 * Hand the descriptor to the rate control algorithm.
3984 			 */
3985 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3986 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3987 				/*
3988 				 * If frame was ack'd update the last rx time
3989 				 * used to workaround phantom bmiss interrupts.
3990 				 */
3991 				if (ds->ds_txstat.ts_status == 0)
3992 					nacked++;
3993 				ath_rate_tx_complete(sc, an, ds, ds0);
3994 			}
3995 			/*
3996 			 * Reclaim reference to node.
3997 			 *
3998 			 * NB: the node may be reclaimed here if, for example
3999 			 *     this is a DEAUTH message that was sent and the
4000 			 *     node was timed out due to inactivity.
4001 			 */
4002 			ieee80211_free_node(ni);
4003 		}
4004 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4005 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4006 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4007 		m_freem(bf->bf_m);
4008 		bf->bf_m = NULL;
4009 		bf->bf_node = NULL;
4010 
4011 		ATH_TXBUF_LOCK(sc);
4012 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4013 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4014 		ATH_TXBUF_UNLOCK(sc);
4015 	}
4016 	return nacked;
4017 }
4018 
4019 static inline int
4020 txqactive(struct ath_hal *ah, int qnum)
4021 {
4022 	u_int32_t txqs = 1<<qnum;
4023 	ath_hal_gettxintrtxqs(ah, &txqs);
4024 	return (txqs & (1<<qnum));
4025 }
4026 
4027 /*
4028  * Deferred processing of transmit interrupt; special-cased
4029  * for a single hardware transmit queue (e.g. 5210 and 5211).
4030  */
4031 static void
4032 ath_tx_proc_q0(void *arg, int npending)
4033 {
4034 	struct ath_softc *sc = arg;
4035 	struct ifnet *ifp = &sc->sc_if;
4036 
4037 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4038 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4039 	}
4040 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4041 		ath_tx_processq(sc, sc->sc_cabq);
4042 
4043 	if (sc->sc_softled)
4044 		ath_led_event(sc, ATH_LED_TX);
4045 
4046 	ath_start(ifp);
4047 }
4048 
4049 /*
4050  * Deferred processing of transmit interrupt; special-cased
4051  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4052  */
4053 static void
4054 ath_tx_proc_q0123(void *arg, int npending)
4055 {
4056 	struct ath_softc *sc = arg;
4057 	struct ifnet *ifp = &sc->sc_if;
4058 	int nacked;
4059 
4060 	/*
4061 	 * Process each active queue.
4062 	 */
4063 	nacked = 0;
4064 	if (txqactive(sc->sc_ah, 0))
4065 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4066 	if (txqactive(sc->sc_ah, 1))
4067 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4068 	if (txqactive(sc->sc_ah, 2))
4069 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4070 	if (txqactive(sc->sc_ah, 3))
4071 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4072 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4073 		ath_tx_processq(sc, sc->sc_cabq);
4074 	if (nacked) {
4075 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4076 	}
4077 
4078 	if (sc->sc_softled)
4079 		ath_led_event(sc, ATH_LED_TX);
4080 
4081 	ath_start(ifp);
4082 }
4083 
4084 /*
4085  * Deferred processing of transmit interrupt.
4086  */
4087 static void
4088 ath_tx_proc(void *arg, int npending)
4089 {
4090 	struct ath_softc *sc = arg;
4091 	struct ifnet *ifp = &sc->sc_if;
4092 	int i, nacked;
4093 
4094 	/*
4095 	 * Process each active queue.
4096 	 */
4097 	nacked = 0;
4098 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4099 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4100 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4101 	if (nacked) {
4102 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4103 	}
4104 
4105 	if (sc->sc_softled)
4106 		ath_led_event(sc, ATH_LED_TX);
4107 
4108 	ath_start(ifp);
4109 }
4110 
4111 static void
4112 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4113 {
4114 	struct ath_hal *ah = sc->sc_ah;
4115 	struct ieee80211_node *ni;
4116 	struct ath_buf *bf;
4117 
4118 	/*
4119 	 * NB: this assumes output has been stopped and
4120 	 *     we do not need to block ath_tx_tasklet
4121 	 */
4122 	for (;;) {
4123 		ATH_TXQ_LOCK(txq);
4124 		bf = STAILQ_FIRST(&txq->axq_q);
4125 		if (bf == NULL) {
4126 			txq->axq_link = NULL;
4127 			ATH_TXQ_UNLOCK(txq);
4128 			break;
4129 		}
4130 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4131 		ATH_TXQ_UNLOCK(txq);
4132 #ifdef AR_DEBUG
4133 		if (sc->sc_debug & ATH_DEBUG_RESET)
4134 			ath_printtxbuf(bf,
4135 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4136 #endif /* AR_DEBUG */
4137 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4138 		m_freem(bf->bf_m);
4139 		bf->bf_m = NULL;
4140 		ni = bf->bf_node;
4141 		bf->bf_node = NULL;
4142 		if (ni != NULL) {
4143 			/*
4144 			 * Reclaim node reference.
4145 			 */
4146 			ieee80211_free_node(ni);
4147 		}
4148 		ATH_TXBUF_LOCK(sc);
4149 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4150 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4151 		ATH_TXBUF_UNLOCK(sc);
4152 	}
4153 }
4154 
4155 static void
4156 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4157 {
4158 	struct ath_hal *ah = sc->sc_ah;
4159 
4160 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4161 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4162 	    __func__, txq->axq_qnum,
4163 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4164 	    txq->axq_link);
4165 }
4166 
4167 /*
4168  * Drain the transmit queues and reclaim resources.
4169  */
4170 static void
4171 ath_draintxq(struct ath_softc *sc)
4172 {
4173 	struct ath_hal *ah = sc->sc_ah;
4174 	int i;
4175 
4176 	/* XXX return value */
4177 	if (device_is_active(sc->sc_dev)) {
4178 		/* don't touch the hardware if marked invalid */
4179 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4180 		DPRINTF(sc, ATH_DEBUG_RESET,
4181 		    "%s: beacon queue %p\n", __func__,
4182 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4183 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4184 			if (ATH_TXQ_SETUP(sc, i))
4185 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4186 	}
4187 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4188 		if (ATH_TXQ_SETUP(sc, i))
4189 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4190 }
4191 
4192 /*
4193  * Disable the receive h/w in preparation for a reset.
4194  */
4195 static void
4196 ath_stoprecv(struct ath_softc *sc)
4197 {
4198 #define	PA2DESC(_sc, _pa) \
4199 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4200 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4201 	struct ath_hal *ah = sc->sc_ah;
4202 
4203 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4204 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4205 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4206 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4207 #ifdef AR_DEBUG
4208 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4209 		struct ath_buf *bf;
4210 
4211 		printf("%s: rx queue %p, link %p\n", __func__,
4212 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4213 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4214 			struct ath_desc *ds = bf->bf_desc;
4215 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4216 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4217 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4218 				ath_printrxbuf(bf, status == HAL_OK);
4219 		}
4220 	}
4221 #endif
4222 	sc->sc_rxlink = NULL;		/* just in case */
4223 #undef PA2DESC
4224 }
4225 
4226 /*
4227  * Enable the receive h/w following a reset.
4228  */
4229 static int
4230 ath_startrecv(struct ath_softc *sc)
4231 {
4232 	struct ath_hal *ah = sc->sc_ah;
4233 	struct ath_buf *bf;
4234 
4235 	sc->sc_rxlink = NULL;
4236 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4237 		int error = ath_rxbuf_init(sc, bf);
4238 		if (error != 0) {
4239 			DPRINTF(sc, ATH_DEBUG_RECV,
4240 				"%s: ath_rxbuf_init failed %d\n",
4241 				__func__, error);
4242 			return error;
4243 		}
4244 	}
4245 
4246 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4247 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4248 	ath_hal_rxena(ah);		/* enable recv descriptors */
4249 	ath_mode_init(sc);		/* set filters, etc. */
4250 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4251 	return 0;
4252 }
4253 
4254 /*
4255  * Update internal state after a channel change.
4256  */
4257 static void
4258 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4259 {
4260 	struct ieee80211com *ic = &sc->sc_ic;
4261 	enum ieee80211_phymode mode;
4262 	u_int16_t flags;
4263 
4264 	/*
4265 	 * Change channels and update the h/w rate map
4266 	 * if we're switching; e.g. 11a to 11b/g.
4267 	 */
4268 	mode = ieee80211_chan2mode(ic, chan);
4269 	if (mode != sc->sc_curmode)
4270 		ath_setcurmode(sc, mode);
4271 	/*
4272 	 * Update BPF state.  NB: ethereal et. al. don't handle
4273 	 * merged flags well so pick a unique mode for their use.
4274 	 */
4275 	if (IEEE80211_IS_CHAN_A(chan))
4276 		flags = IEEE80211_CHAN_A;
4277 	/* XXX 11g schizophrenia */
4278 	else if (IEEE80211_IS_CHAN_G(chan) ||
4279 	    IEEE80211_IS_CHAN_PUREG(chan))
4280 		flags = IEEE80211_CHAN_G;
4281 	else
4282 		flags = IEEE80211_CHAN_B;
4283 	if (IEEE80211_IS_CHAN_T(chan))
4284 		flags |= IEEE80211_CHAN_TURBO;
4285 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4286 		htole16(chan->ic_freq);
4287 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4288 		htole16(flags);
4289 }
4290 
4291 /*
4292  * Poll for a channel clear indication; this is required
4293  * for channels requiring DFS and not previously visited
4294  * and/or with a recent radar detection.
4295  */
4296 static void
4297 ath_dfswait(void *arg)
4298 {
4299 	struct ath_softc *sc = arg;
4300 	struct ath_hal *ah = sc->sc_ah;
4301 	HAL_CHANNEL hchan;
4302 
4303 	ath_hal_radar_wait(ah, &hchan);
4304 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4305 		if_printf(&sc->sc_if,
4306 		    "channel %u/0x%x/0x%x has interference\n",
4307 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4308 		return;
4309 	}
4310 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4311 		/* XXX should not happen */
4312 		return;
4313 	}
4314 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4315 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4316 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4317 		if_printf(&sc->sc_if,
4318 		    "channel %u/0x%x/0x%x marked clear\n",
4319 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4320 	} else
4321 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4322 }
4323 
4324 /*
4325  * Set/change channels.  If the channel is really being changed,
4326  * it's done by reseting the chip.  To accomplish this we must
4327  * first cleanup any pending DMA, then restart stuff after a la
4328  * ath_init.
4329  */
4330 static int
4331 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4332 {
4333 	struct ath_hal *ah = sc->sc_ah;
4334 	struct ieee80211com *ic = &sc->sc_ic;
4335 	HAL_CHANNEL hchan;
4336 
4337 	/*
4338 	 * Convert to a HAL channel description with
4339 	 * the flags constrained to reflect the current
4340 	 * operating mode.
4341 	 */
4342 	hchan.channel = chan->ic_freq;
4343 	hchan.channelFlags = ath_chan2flags(ic, chan);
4344 
4345 	DPRINTF(sc, ATH_DEBUG_RESET,
4346 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4347 	    __func__,
4348 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4349 		sc->sc_curchan.channelFlags),
4350 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4351 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4352 	        hchan.channel, hchan.channelFlags);
4353 	if (hchan.channel != sc->sc_curchan.channel ||
4354 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4355 		HAL_STATUS status;
4356 
4357 		/*
4358 		 * To switch channels clear any pending DMA operations;
4359 		 * wait long enough for the RX fifo to drain, reset the
4360 		 * hardware at the new frequency, and then re-enable
4361 		 * the relevant bits of the h/w.
4362 		 */
4363 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4364 		ath_draintxq(sc);		/* clear pending tx frames */
4365 		ath_stoprecv(sc);		/* turn off frame recv */
4366 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4367 			if_printf(ic->ic_ifp, "%s: unable to reset "
4368 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4369 			    __func__, ieee80211_chan2ieee(ic, chan),
4370 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4371 			return EIO;
4372 		}
4373 		sc->sc_curchan = hchan;
4374 		ath_update_txpow(sc);		/* update tx power state */
4375 		ath_restore_diversity(sc);
4376 		sc->sc_calinterval = 1;
4377 		sc->sc_caltries = 0;
4378 
4379 		/*
4380 		 * Re-enable rx framework.
4381 		 */
4382 		if (ath_startrecv(sc) != 0) {
4383 			if_printf(&sc->sc_if,
4384 				"%s: unable to restart recv logic\n", __func__);
4385 			return EIO;
4386 		}
4387 
4388 		/*
4389 		 * Change channels and update the h/w rate map
4390 		 * if we're switching; e.g. 11a to 11b/g.
4391 		 */
4392 		ic->ic_ibss_chan = chan;
4393 		ath_chan_change(sc, chan);
4394 
4395 		/*
4396 		 * Handle DFS required waiting period to determine
4397 		 * if channel is clear of radar traffic.
4398 		 */
4399 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4400 #define	DFS_AND_NOT_CLEAR(_c) \
4401 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4402 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4403 				if_printf(&sc->sc_if,
4404 					"wait for DFS clear channel signal\n");
4405 				/* XXX stop sndq */
4406 				sc->sc_if.if_flags |= IFF_OACTIVE;
4407 				callout_reset(&sc->sc_dfs_ch,
4408 					2 * hz, ath_dfswait, sc);
4409 			} else
4410 				callout_stop(&sc->sc_dfs_ch);
4411 #undef DFS_NOT_CLEAR
4412 		}
4413 
4414 		/*
4415 		 * Re-enable interrupts.
4416 		 */
4417 		ath_hal_intrset(ah, sc->sc_imask);
4418 	}
4419 	return 0;
4420 }
4421 
4422 static void
4423 ath_next_scan(void *arg)
4424 {
4425 	struct ath_softc *sc = arg;
4426 	struct ieee80211com *ic = &sc->sc_ic;
4427 	int s;
4428 
4429 	/* don't call ath_start w/o network interrupts blocked */
4430 	s = splnet();
4431 
4432 	if (ic->ic_state == IEEE80211_S_SCAN)
4433 		ieee80211_next_scan(ic);
4434 	splx(s);
4435 }
4436 
4437 /*
4438  * Periodically recalibrate the PHY to account
4439  * for temperature/environment changes.
4440  */
4441 static void
4442 ath_calibrate(void *arg)
4443 {
4444 	struct ath_softc *sc = arg;
4445 	struct ath_hal *ah = sc->sc_ah;
4446 	HAL_BOOL iqCalDone;
4447 
4448 	sc->sc_stats.ast_per_cal++;
4449 
4450 	ATH_LOCK(sc);
4451 
4452 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4453 		/*
4454 		 * Rfgain is out of bounds, reset the chip
4455 		 * to load new gain values.
4456 		 */
4457 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4458 			"%s: rfgain change\n", __func__);
4459 		sc->sc_stats.ast_per_rfgain++;
4460 		ath_reset(&sc->sc_if);
4461 	}
4462 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4463 		DPRINTF(sc, ATH_DEBUG_ANY,
4464 			"%s: calibration of channel %u failed\n",
4465 			__func__, sc->sc_curchan.channel);
4466 		sc->sc_stats.ast_per_calfail++;
4467 	}
4468 	/*
4469 	 * Calibrate noise floor data again in case of change.
4470 	 */
4471 	ath_hal_process_noisefloor(ah);
4472 	/*
4473 	 * Poll more frequently when the IQ calibration is in
4474 	 * progress to speedup loading the final settings.
4475 	 * We temper this aggressive polling with an exponential
4476 	 * back off after 4 tries up to ath_calinterval.
4477 	 */
4478 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4479 		sc->sc_caltries = 0;
4480 		sc->sc_calinterval = ath_calinterval;
4481 	} else if (sc->sc_caltries > 4) {
4482 		sc->sc_caltries = 0;
4483 		sc->sc_calinterval <<= 1;
4484 		if (sc->sc_calinterval > ath_calinterval)
4485 			sc->sc_calinterval = ath_calinterval;
4486 	}
4487 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4488 		("bad calibration interval %u", sc->sc_calinterval));
4489 
4490 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4491 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4492 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4493 	sc->sc_caltries++;
4494 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4495 		ath_calibrate, sc);
4496 	ATH_UNLOCK(sc);
4497 }
4498 
4499 static int
4500 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4501 {
4502 	struct ifnet *ifp = ic->ic_ifp;
4503 	struct ath_softc *sc = ifp->if_softc;
4504 	struct ath_hal *ah = sc->sc_ah;
4505 	struct ieee80211_node *ni;
4506 	int i, error;
4507 	const u_int8_t *bssid;
4508 	u_int32_t rfilt;
4509 	static const HAL_LED_STATE leds[] = {
4510 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4511 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4512 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4513 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4514 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4515 	};
4516 
4517 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4518 		ieee80211_state_name[ic->ic_state],
4519 		ieee80211_state_name[nstate]);
4520 
4521 	callout_stop(&sc->sc_scan_ch);
4522 	callout_stop(&sc->sc_cal_ch);
4523 	callout_stop(&sc->sc_dfs_ch);
4524 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4525 
4526 	if (nstate == IEEE80211_S_INIT) {
4527 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4528 		/*
4529 		 * NB: disable interrupts so we don't rx frames.
4530 		 */
4531 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4532 		/*
4533 		 * Notify the rate control algorithm.
4534 		 */
4535 		ath_rate_newstate(sc, nstate);
4536 		goto done;
4537 	}
4538 	ni = ic->ic_bss;
4539 	error = ath_chan_set(sc, ic->ic_curchan);
4540 	if (error != 0)
4541 		goto bad;
4542 	rfilt = ath_calcrxfilter(sc, nstate);
4543 	if (nstate == IEEE80211_S_SCAN)
4544 		bssid = ifp->if_broadcastaddr;
4545 	else
4546 		bssid = ni->ni_bssid;
4547 	ath_hal_setrxfilter(ah, rfilt);
4548 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4549 		 __func__, rfilt, ether_sprintf(bssid));
4550 
4551 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4552 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4553 	else
4554 		ath_hal_setassocid(ah, bssid, 0);
4555 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4556 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4557 			if (ath_hal_keyisvalid(ah, i))
4558 				ath_hal_keysetmac(ah, i, bssid);
4559 	}
4560 
4561 	/*
4562 	 * Notify the rate control algorithm so rates
4563 	 * are setup should ath_beacon_alloc be called.
4564 	 */
4565 	ath_rate_newstate(sc, nstate);
4566 
4567 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4568 		/* nothing to do */;
4569 	} else if (nstate == IEEE80211_S_RUN) {
4570 		DPRINTF(sc, ATH_DEBUG_STATE,
4571 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4572 			"capinfo=0x%04x chan=%d\n"
4573 			 , __func__
4574 			 , ic->ic_flags
4575 			 , ni->ni_intval
4576 			 , ether_sprintf(ni->ni_bssid)
4577 			 , ni->ni_capinfo
4578 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4579 
4580 		switch (ic->ic_opmode) {
4581 		case IEEE80211_M_HOSTAP:
4582 		case IEEE80211_M_IBSS:
4583 			/*
4584 			 * Allocate and setup the beacon frame.
4585 			 *
4586 			 * Stop any previous beacon DMA.  This may be
4587 			 * necessary, for example, when an ibss merge
4588 			 * causes reconfiguration; there will be a state
4589 			 * transition from RUN->RUN that means we may
4590 			 * be called with beacon transmission active.
4591 			 */
4592 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4593 			ath_beacon_free(sc);
4594 			error = ath_beacon_alloc(sc, ni);
4595 			if (error != 0)
4596 				goto bad;
4597 			/*
4598 			 * If joining an adhoc network defer beacon timer
4599 			 * configuration to the next beacon frame so we
4600 			 * have a current TSF to use.  Otherwise we're
4601 			 * starting an ibss/bss so there's no need to delay.
4602 			 */
4603 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4604 			    ic->ic_bss->ni_tstamp.tsf != 0)
4605 				sc->sc_syncbeacon = 1;
4606 			else
4607 				ath_beacon_config(sc);
4608 			break;
4609 		case IEEE80211_M_STA:
4610 			/*
4611 			 * Allocate a key cache slot to the station.
4612 			 */
4613 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4614 			    sc->sc_hasclrkey &&
4615 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4616 				ath_setup_stationkey(ni);
4617 			/*
4618 			 * Defer beacon timer configuration to the next
4619 			 * beacon frame so we have a current TSF to use
4620 			 * (any TSF collected when scanning is likely old).
4621 			 */
4622 			sc->sc_syncbeacon = 1;
4623 			break;
4624 		default:
4625 			break;
4626 		}
4627 		/*
4628 		 * Let the hal process statistics collected during a
4629 		 * scan so it can provide calibrated noise floor data.
4630 		 */
4631 		ath_hal_process_noisefloor(ah);
4632 		/*
4633 		 * Reset rssi stats; maybe not the best place...
4634 		 */
4635 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4636 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4637 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4638 	} else {
4639 		ath_hal_intrset(ah,
4640 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4641 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4642 	}
4643 done:
4644 	/*
4645 	 * Invoke the parent method to complete the work.
4646 	 */
4647 	error = sc->sc_newstate(ic, nstate, arg);
4648 	/*
4649 	 * Finally, start any timers.
4650 	 */
4651 	if (nstate == IEEE80211_S_RUN) {
4652 		/* start periodic recalibration timer */
4653 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4654 			ath_calibrate, sc);
4655 	} else if (nstate == IEEE80211_S_SCAN) {
4656 		/* start ap/neighbor scan timer */
4657 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4658 			ath_next_scan, sc);
4659 	}
4660 bad:
4661 	return error;
4662 }
4663 
4664 /*
4665  * Allocate a key cache slot to the station so we can
4666  * setup a mapping from key index to node. The key cache
4667  * slot is needed for managing antenna state and for
4668  * compression when stations do not use crypto.  We do
4669  * it uniliaterally here; if crypto is employed this slot
4670  * will be reassigned.
4671  */
4672 static void
4673 ath_setup_stationkey(struct ieee80211_node *ni)
4674 {
4675 	struct ieee80211com *ic = ni->ni_ic;
4676 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4677 	ieee80211_keyix keyix, rxkeyix;
4678 
4679 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4680 		/*
4681 		 * Key cache is full; we'll fall back to doing
4682 		 * the more expensive lookup in software.  Note
4683 		 * this also means no h/w compression.
4684 		 */
4685 		/* XXX msg+statistic */
4686 	} else {
4687 		/* XXX locking? */
4688 		ni->ni_ucastkey.wk_keyix = keyix;
4689 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4690 		/* NB: this will create a pass-thru key entry */
4691 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4692 	}
4693 }
4694 
4695 /*
4696  * Setup driver-specific state for a newly associated node.
4697  * Note that we're called also on a re-associate, the isnew
4698  * param tells us if this is the first time or not.
4699  */
4700 static void
4701 ath_newassoc(struct ieee80211_node *ni, int isnew)
4702 {
4703 	struct ieee80211com *ic = ni->ni_ic;
4704 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4705 
4706 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4707 	if (isnew &&
4708 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4709 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4710 		    ("new assoc with a unicast key already setup (keyix %u)",
4711 		    ni->ni_ucastkey.wk_keyix));
4712 		ath_setup_stationkey(ni);
4713 	}
4714 }
4715 
4716 static int
4717 ath_getchannels(struct ath_softc *sc, u_int cc,
4718 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4719 {
4720 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4721 	struct ieee80211com *ic = &sc->sc_ic;
4722 	struct ifnet *ifp = &sc->sc_if;
4723 	struct ath_hal *ah = sc->sc_ah;
4724 	HAL_CHANNEL *chans;
4725 	int i, ix, nchan;
4726 
4727 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4728 			M_TEMP, M_NOWAIT);
4729 	if (chans == NULL) {
4730 		if_printf(ifp, "unable to allocate channel table\n");
4731 		return ENOMEM;
4732 	}
4733 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4734 	    NULL, 0, NULL,
4735 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4736 		u_int32_t rd;
4737 
4738 		(void)ath_hal_getregdomain(ah, &rd);
4739 		if_printf(ifp, "unable to collect channel list from hal; "
4740 			"regdomain likely %u country code %u\n", rd, cc);
4741 		free(chans, M_TEMP);
4742 		return EINVAL;
4743 	}
4744 
4745 	/*
4746 	 * Convert HAL channels to ieee80211 ones and insert
4747 	 * them in the table according to their channel number.
4748 	 */
4749 	for (i = 0; i < nchan; i++) {
4750 		HAL_CHANNEL *c = &chans[i];
4751 		u_int16_t flags;
4752 
4753 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4754 		if (ix > IEEE80211_CHAN_MAX) {
4755 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4756 				ix, c->channel, c->channelFlags);
4757 			continue;
4758 		}
4759 		if (ix < 0) {
4760 			/* XXX can't handle stuff <2400 right now */
4761 			if (bootverbose)
4762 				if_printf(ifp, "hal channel %d (%u/%x) "
4763 				    "cannot be handled; ignored\n",
4764 				    ix, c->channel, c->channelFlags);
4765 			continue;
4766 		}
4767 		/*
4768 		 * Calculate net80211 flags; most are compatible
4769 		 * but some need massaging.  Note the static turbo
4770 		 * conversion can be removed once net80211 is updated
4771 		 * to understand static vs. dynamic turbo.
4772 		 */
4773 		flags = c->channelFlags & COMPAT;
4774 		if (c->channelFlags & CHANNEL_STURBO)
4775 			flags |= IEEE80211_CHAN_TURBO;
4776 		if (ic->ic_channels[ix].ic_freq == 0) {
4777 			ic->ic_channels[ix].ic_freq = c->channel;
4778 			ic->ic_channels[ix].ic_flags = flags;
4779 		} else {
4780 			/* channels overlap; e.g. 11g and 11b */
4781 			ic->ic_channels[ix].ic_flags |= flags;
4782 		}
4783 	}
4784 	free(chans, M_TEMP);
4785 	return 0;
4786 #undef COMPAT
4787 }
4788 
4789 static void
4790 ath_led_done(void *arg)
4791 {
4792 	struct ath_softc *sc = arg;
4793 
4794 	sc->sc_blinking = 0;
4795 }
4796 
4797 /*
4798  * Turn the LED off: flip the pin and then set a timer so no
4799  * update will happen for the specified duration.
4800  */
4801 static void
4802 ath_led_off(void *arg)
4803 {
4804 	struct ath_softc *sc = arg;
4805 
4806 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4807 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4808 }
4809 
4810 /*
4811  * Blink the LED according to the specified on/off times.
4812  */
4813 static void
4814 ath_led_blink(struct ath_softc *sc, int on, int off)
4815 {
4816 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4817 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4818 	sc->sc_blinking = 1;
4819 	sc->sc_ledoff = off;
4820 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4821 }
4822 
4823 static void
4824 ath_led_event(struct ath_softc *sc, int event)
4825 {
4826 
4827 	sc->sc_ledevent = ticks;	/* time of last event */
4828 	if (sc->sc_blinking)		/* don't interrupt active blink */
4829 		return;
4830 	switch (event) {
4831 	case ATH_LED_POLL:
4832 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4833 			sc->sc_hwmap[0].ledoff);
4834 		break;
4835 	case ATH_LED_TX:
4836 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4837 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4838 		break;
4839 	case ATH_LED_RX:
4840 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4841 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4842 		break;
4843 	}
4844 }
4845 
4846 static void
4847 ath_update_txpow(struct ath_softc *sc)
4848 {
4849 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4850 	struct ieee80211com *ic = &sc->sc_ic;
4851 	struct ath_hal *ah = sc->sc_ah;
4852 	u_int32_t txpow;
4853 
4854 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4855 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4856 		/* read back in case value is clamped */
4857 		(void)ath_hal_gettxpowlimit(ah, &txpow);
4858 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4859 	}
4860 	/*
4861 	 * Fetch max tx power level for status requests.
4862 	 */
4863 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4864 	ic->ic_bss->ni_txpower = txpow;
4865 }
4866 
4867 static void
4868 rate_setup(struct ath_softc *sc,
4869 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4870 {
4871 	int i, maxrates;
4872 
4873 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4874 		DPRINTF(sc, ATH_DEBUG_ANY,
4875 			"%s: rate table too small (%u > %u)\n",
4876 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4877 		maxrates = IEEE80211_RATE_MAXSIZE;
4878 	} else
4879 		maxrates = rt->rateCount;
4880 	for (i = 0; i < maxrates; i++)
4881 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4882 	rs->rs_nrates = maxrates;
4883 }
4884 
4885 static int
4886 ath_rate_setup(struct ath_softc *sc, u_int mode)
4887 {
4888 	struct ath_hal *ah = sc->sc_ah;
4889 	struct ieee80211com *ic = &sc->sc_ic;
4890 	const HAL_RATE_TABLE *rt;
4891 
4892 	switch (mode) {
4893 	case IEEE80211_MODE_11A:
4894 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4895 		break;
4896 	case IEEE80211_MODE_11B:
4897 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4898 		break;
4899 	case IEEE80211_MODE_11G:
4900 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4901 		break;
4902 	case IEEE80211_MODE_TURBO_A:
4903 		/* XXX until static/dynamic turbo is fixed */
4904 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4905 		break;
4906 	case IEEE80211_MODE_TURBO_G:
4907 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4908 		break;
4909 	default:
4910 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4911 			__func__, mode);
4912 		return 0;
4913 	}
4914 	sc->sc_rates[mode] = rt;
4915 	if (rt != NULL) {
4916 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4917 		return 1;
4918 	} else
4919 		return 0;
4920 }
4921 
4922 static void
4923 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4924 {
4925 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4926 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4927 	static const struct {
4928 		u_int		rate;		/* tx/rx 802.11 rate */
4929 		u_int16_t	timeOn;		/* LED on time (ms) */
4930 		u_int16_t	timeOff;	/* LED off time (ms) */
4931 	} blinkrates[] = {
4932 		{ 108,  40,  10 },
4933 		{  96,  44,  11 },
4934 		{  72,  50,  13 },
4935 		{  48,  57,  14 },
4936 		{  36,  67,  16 },
4937 		{  24,  80,  20 },
4938 		{  22, 100,  25 },
4939 		{  18, 133,  34 },
4940 		{  12, 160,  40 },
4941 		{  10, 200,  50 },
4942 		{   6, 240,  58 },
4943 		{   4, 267,  66 },
4944 		{   2, 400, 100 },
4945 		{   0, 500, 130 },
4946 	};
4947 	const HAL_RATE_TABLE *rt;
4948 	int i, j;
4949 
4950 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4951 	rt = sc->sc_rates[mode];
4952 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4953 	for (i = 0; i < rt->rateCount; i++)
4954 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4955 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4956 	for (i = 0; i < 32; i++) {
4957 		u_int8_t ix = rt->rateCodeToIndex[i];
4958 		if (ix == 0xff) {
4959 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4960 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4961 			continue;
4962 		}
4963 		sc->sc_hwmap[i].ieeerate =
4964 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4965 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4966 		if (rt->info[ix].shortPreamble ||
4967 		    rt->info[ix].phy == IEEE80211_T_OFDM)
4968 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4969 		/* NB: receive frames include FCS */
4970 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4971 			IEEE80211_RADIOTAP_F_FCS;
4972 		/* setup blink rate table to avoid per-packet lookup */
4973 		for (j = 0; j < N(blinkrates)-1; j++)
4974 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4975 				break;
4976 		/* NB: this uses the last entry if the rate isn't found */
4977 		/* XXX beware of overlow */
4978 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4979 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4980 	}
4981 	sc->sc_currates = rt;
4982 	sc->sc_curmode = mode;
4983 	/*
4984 	 * All protection frames are transmited at 2Mb/s for
4985 	 * 11g, otherwise at 1Mb/s.
4986 	 */
4987 	if (mode == IEEE80211_MODE_11G)
4988 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4989 	else
4990 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4991 	/* rate index used to send management frames */
4992 	sc->sc_minrateix = 0;
4993 	/*
4994 	 * Setup multicast rate state.
4995 	 */
4996 	/* XXX layering violation */
4997 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4998 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4999 	/* NB: caller is responsible for reseting rate control state */
5000 #undef N
5001 }
5002 
5003 #ifdef AR_DEBUG
5004 static void
5005 ath_printrxbuf(struct ath_buf *bf, int done)
5006 {
5007 	struct ath_desc *ds;
5008 	int i;
5009 
5010 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5011 		printf("R%d (%p %" PRIx64
5012 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5013 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5014 		    ds->ds_link, ds->ds_data,
5015 		    ds->ds_ctl0, ds->ds_ctl1,
5016 		    ds->ds_hw[0], ds->ds_hw[1],
5017 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5018 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5019 	}
5020 }
5021 
5022 static void
5023 ath_printtxbuf(struct ath_buf *bf, int done)
5024 {
5025 	struct ath_desc *ds;
5026 	int i;
5027 
5028 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5029 		printf("T%d (%p %" PRIx64
5030 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5031 		    i, ds,
5032 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5033 		    ds->ds_link, ds->ds_data,
5034 		    ds->ds_ctl0, ds->ds_ctl1,
5035 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5036 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5037 	}
5038 }
5039 #endif /* AR_DEBUG */
5040 
5041 static void
5042 ath_watchdog(struct ifnet *ifp)
5043 {
5044 	struct ath_softc *sc = ifp->if_softc;
5045 	struct ieee80211com *ic = &sc->sc_ic;
5046 	struct ath_txq *axq;
5047 	int i;
5048 
5049 	ifp->if_timer = 0;
5050 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5051 	    !device_is_active(sc->sc_dev))
5052 		return;
5053 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5054 		if (!ATH_TXQ_SETUP(sc, i))
5055 			continue;
5056 		axq = &sc->sc_txq[i];
5057 		ATH_TXQ_LOCK(axq);
5058 		if (axq->axq_timer == 0)
5059 			;
5060 		else if (--axq->axq_timer == 0) {
5061 			ATH_TXQ_UNLOCK(axq);
5062 			if_printf(ifp, "device timeout (txq %d, "
5063 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5064 			if (sc->sc_txintrperiod > 1)
5065 				sc->sc_txintrperiod--;
5066 			ath_reset(ifp);
5067 			ifp->if_oerrors++;
5068 			sc->sc_stats.ast_watchdog++;
5069 			break;
5070 		} else
5071 			ifp->if_timer = 1;
5072 		ATH_TXQ_UNLOCK(axq);
5073 	}
5074 	ieee80211_watchdog(ic);
5075 }
5076 
5077 /*
5078  * Diagnostic interface to the HAL.  This is used by various
5079  * tools to do things like retrieve register contents for
5080  * debugging.  The mechanism is intentionally opaque so that
5081  * it can change frequently w/o concern for compatiblity.
5082  */
5083 static int
5084 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5085 {
5086 	struct ath_hal *ah = sc->sc_ah;
5087 	u_int id = ad->ad_id & ATH_DIAG_ID;
5088 	void *indata = NULL;
5089 	void *outdata = NULL;
5090 	u_int32_t insize = ad->ad_in_size;
5091 	u_int32_t outsize = ad->ad_out_size;
5092 	int error = 0;
5093 
5094 	if (ad->ad_id & ATH_DIAG_IN) {
5095 		/*
5096 		 * Copy in data.
5097 		 */
5098 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5099 		if (indata == NULL) {
5100 			error = ENOMEM;
5101 			goto bad;
5102 		}
5103 		error = copyin(ad->ad_in_data, indata, insize);
5104 		if (error)
5105 			goto bad;
5106 	}
5107 	if (ad->ad_id & ATH_DIAG_DYN) {
5108 		/*
5109 		 * Allocate a buffer for the results (otherwise the HAL
5110 		 * returns a pointer to a buffer where we can read the
5111 		 * results).  Note that we depend on the HAL leaving this
5112 		 * pointer for us to use below in reclaiming the buffer;
5113 		 * may want to be more defensive.
5114 		 */
5115 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5116 		if (outdata == NULL) {
5117 			error = ENOMEM;
5118 			goto bad;
5119 		}
5120 	}
5121 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5122 		if (outsize < ad->ad_out_size)
5123 			ad->ad_out_size = outsize;
5124 		if (outdata != NULL)
5125 			error = copyout(outdata, ad->ad_out_data,
5126 					ad->ad_out_size);
5127 	} else {
5128 		error = EINVAL;
5129 	}
5130 bad:
5131 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5132 		free(indata, M_TEMP);
5133 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5134 		free(outdata, M_TEMP);
5135 	return error;
5136 }
5137 
5138 static int
5139 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5140 {
5141 #define	IS_RUNNING(ifp) \
5142 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5143 	struct ath_softc *sc = ifp->if_softc;
5144 	struct ieee80211com *ic = &sc->sc_ic;
5145 	struct ifreq *ifr = (struct ifreq *)data;
5146 	int error = 0;
5147 
5148 	ATH_LOCK(sc);
5149 	switch (cmd) {
5150 	case SIOCSIFFLAGS:
5151 		if (IS_RUNNING(ifp)) {
5152 			/*
5153 			 * To avoid rescanning another access point,
5154 			 * do not call ath_init() here.  Instead,
5155 			 * only reflect promisc mode settings.
5156 			 */
5157 			ath_mode_init(sc);
5158 		} else if (ifp->if_flags & IFF_UP) {
5159 			/*
5160 			 * Beware of being called during attach/detach
5161 			 * to reset promiscuous mode.  In that case we
5162 			 * will still be marked UP but not RUNNING.
5163 			 * However trying to re-init the interface
5164 			 * is the wrong thing to do as we've already
5165 			 * torn down much of our state.  There's
5166 			 * probably a better way to deal with this.
5167 			 */
5168 			error = ath_init(sc);
5169 		} else if (device_is_active(sc->sc_dev))
5170 			ath_stop_locked(ifp, 1);
5171 		break;
5172 	case SIOCADDMULTI:
5173 	case SIOCDELMULTI:
5174 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5175 			if (ifp->if_flags & IFF_RUNNING)
5176 				ath_mode_init(sc);
5177 			error = 0;
5178 		}
5179 		break;
5180 	case SIOCGATHSTATS:
5181 		/* NB: embed these numbers to get a consistent view */
5182 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5183 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5184 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5185 		ATH_UNLOCK(sc);
5186 		/*
5187 		 * NB: Drop the softc lock in case of a page fault;
5188 		 * we'll accept any potential inconsisentcy in the
5189 		 * statistics.  The alternative is to copy the data
5190 		 * to a local structure.
5191 		 */
5192 		return copyout(&sc->sc_stats,
5193 				ifr->ifr_data, sizeof (sc->sc_stats));
5194 	case SIOCGATHDIAG:
5195 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5196 		break;
5197 	default:
5198 		error = ieee80211_ioctl(ic, cmd, data);
5199 		if (error != ENETRESET)
5200 			;
5201 		else if (IS_RUNNING(ifp) &&
5202 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5203 			error = ath_init(sc);
5204 		else
5205 			error = 0;
5206 		break;
5207 	}
5208 	ATH_UNLOCK(sc);
5209 	return error;
5210 #undef IS_RUNNING
5211 }
5212 
5213 #if NBPFILTER > 0
5214 static void
5215 ath_bpfattach(struct ath_softc *sc)
5216 {
5217 	struct ifnet *ifp = &sc->sc_if;
5218 
5219 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5220 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5221 		&sc->sc_drvbpf);
5222 	/*
5223 	 * Initialize constant fields.
5224 	 * XXX make header lengths a multiple of 32-bits so subsequent
5225 	 *     headers are properly aligned; this is a kludge to keep
5226 	 *     certain applications happy.
5227 	 *
5228 	 * NB: the channel is setup each time we transition to the
5229 	 *     RUN state to avoid filling it in for each frame.
5230 	 */
5231 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5232 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5233 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5234 
5235 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5236 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5237 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5238 }
5239 #endif
5240 
5241 /*
5242  * Announce various information on device/driver attach.
5243  */
5244 static void
5245 ath_announce(struct ath_softc *sc)
5246 {
5247 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5248 	struct ifnet *ifp = &sc->sc_if;
5249 	struct ath_hal *ah = sc->sc_ah;
5250 	u_int modes, cc;
5251 
5252 	if_printf(ifp, "mac %d.%d phy %d.%d",
5253 		ah->ah_macVersion, ah->ah_macRev,
5254 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5255 	/*
5256 	 * Print radio revision(s).  We check the wireless modes
5257 	 * to avoid falsely printing revs for inoperable parts.
5258 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5259 	 */
5260 	ath_hal_getcountrycode(ah, &cc);
5261 	modes = ath_hal_getwirelessmodes(ah, cc);
5262 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5263 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5264 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5265 				ah->ah_analog5GhzRev >> 4,
5266 				ah->ah_analog5GhzRev & 0xf,
5267 				ah->ah_analog2GhzRev >> 4,
5268 				ah->ah_analog2GhzRev & 0xf);
5269 		else
5270 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5271 				ah->ah_analog5GhzRev & 0xf);
5272 	} else
5273 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5274 			ah->ah_analog5GhzRev & 0xf);
5275 	printf("\n");
5276 	if (bootverbose) {
5277 		int i;
5278 		for (i = 0; i <= WME_AC_VO; i++) {
5279 			struct ath_txq *txq = sc->sc_ac2q[i];
5280 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5281 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5282 		}
5283 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5284 			sc->sc_cabq->axq_qnum);
5285 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5286 	}
5287 	if (ath_rxbuf != ATH_RXBUF)
5288 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5289 	if (ath_txbuf != ATH_TXBUF)
5290 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5291 #undef HAL_MODE_DUALBAND
5292 }
5293