xref: /netbsd-src/sys/dev/ic/ath.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: ath.c,v 1.124 2018/06/26 06:48:00 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.124 2018/06/26 06:48:00 msaitoh Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #ifdef _KERNEL_OPT
55 #include "opt_inet.h"
56 #endif
57 
58 #include <sys/param.h>
59 #include <sys/reboot.h>
60 #include <sys/systm.h>
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #include <sys/mbuf.h>
64 #include <sys/malloc.h>
65 #include <sys/kernel.h>
66 #include <sys/socket.h>
67 #include <sys/sockio.h>
68 #include <sys/errno.h>
69 #include <sys/callout.h>
70 #include <sys/bus.h>
71 #include <sys/endian.h>
72 
73 #include <net/if.h>
74 #include <net/if_dl.h>
75 #include <net/if_media.h>
76 #include <net/if_types.h>
77 #include <net/if_arp.h>
78 #include <net/if_ether.h>
79 #include <net/if_llc.h>
80 
81 #include <net80211/ieee80211_netbsd.h>
82 #include <net80211/ieee80211_var.h>
83 
84 #include <net/bpf.h>
85 
86 #ifdef INET
87 #include <netinet/in.h>
88 #endif
89 
90 #include <sys/device.h>
91 #include <dev/ic/ath_netbsd.h>
92 
93 #define	AR_DEBUG
94 #include <dev/ic/athvar.h>
95 #include "ah_desc.h"
96 #include "ah_devid.h"	/* XXX for softled */
97 #include "opt_ah.h"
98 
99 #ifdef ATH_TX99_DIAG
100 #include <dev/ath/ath_tx99/ath_tx99.h>
101 #endif
102 
103 /* unaligned little endian access */
104 #define LE_READ_2(p)							\
105 	((u_int16_t)							\
106 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
107 #define LE_READ_4(p)							\
108 	((u_int32_t)							\
109 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
110 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
111 
112 enum {
113 	ATH_LED_TX,
114 	ATH_LED_RX,
115 	ATH_LED_POLL,
116 };
117 
118 #ifdef	AH_NEED_DESC_SWAP
119 #define	HTOAH32(x)	htole32(x)
120 #else
121 #define	HTOAH32(x)	(x)
122 #endif
123 
124 static int	ath_ifinit(struct ifnet *);
125 static int	ath_init(struct ath_softc *);
126 static void	ath_stop_locked(struct ifnet *, int);
127 static void	ath_stop(struct ifnet *, int);
128 static void	ath_start(struct ifnet *);
129 static int	ath_media_change(struct ifnet *);
130 static void	ath_watchdog(struct ifnet *);
131 static int	ath_ioctl(struct ifnet *, u_long, void *);
132 static void	ath_fatal_proc(void *, int);
133 static void	ath_rxorn_proc(void *, int);
134 static void	ath_bmiss_proc(void *, int);
135 static void	ath_radar_proc(void *, int);
136 static int	ath_key_alloc(struct ieee80211com *,
137 			const struct ieee80211_key *,
138 			ieee80211_keyix *, ieee80211_keyix *);
139 static int	ath_key_delete(struct ieee80211com *,
140 			const struct ieee80211_key *);
141 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
142 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
143 static void	ath_key_update_begin(struct ieee80211com *);
144 static void	ath_key_update_end(struct ieee80211com *);
145 static void	ath_mode_init(struct ath_softc *);
146 static void	ath_setslottime(struct ath_softc *);
147 static void	ath_updateslot(struct ifnet *);
148 static int	ath_beaconq_setup(struct ath_hal *);
149 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
150 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
151 static void	ath_beacon_proc(void *, int);
152 static void	ath_bstuck_proc(void *, int);
153 static void	ath_beacon_free(struct ath_softc *);
154 static void	ath_beacon_config(struct ath_softc *);
155 static void	ath_descdma_cleanup(struct ath_softc *sc,
156 			struct ath_descdma *, ath_bufhead *);
157 static int	ath_desc_alloc(struct ath_softc *);
158 static void	ath_desc_free(struct ath_softc *);
159 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
160 static void	ath_node_free(struct ieee80211_node *);
161 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
162 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
163 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
164 			struct ieee80211_node *ni,
165 			int subtype, int rssi, u_int32_t rstamp);
166 static void	ath_setdefantenna(struct ath_softc *, u_int);
167 static void	ath_rx_proc(void *, int);
168 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
169 static int	ath_tx_setup(struct ath_softc *, int, int);
170 static int	ath_wme_update(struct ieee80211com *);
171 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
172 static void	ath_tx_cleanup(struct ath_softc *);
173 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
174 			     struct ath_buf *, struct mbuf *);
175 static void	ath_tx_proc_q0(void *, int);
176 static void	ath_tx_proc_q0123(void *, int);
177 static void	ath_tx_proc(void *, int);
178 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179 static void	ath_draintxq(struct ath_softc *);
180 static void	ath_stoprecv(struct ath_softc *);
181 static int	ath_startrecv(struct ath_softc *);
182 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
183 static void	ath_next_scan(void *);
184 static void	ath_calibrate(void *);
185 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
186 static void	ath_setup_stationkey(struct ieee80211_node *);
187 static void	ath_newassoc(struct ieee80211_node *, int);
188 static int	ath_getchannels(struct ath_softc *, u_int cc,
189 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
190 static void	ath_led_event(struct ath_softc *, int);
191 static void	ath_update_txpow(struct ath_softc *);
192 static void	ath_freetx(struct mbuf *);
193 static void	ath_restore_diversity(struct ath_softc *);
194 
195 static int	ath_rate_setup(struct ath_softc *, u_int mode);
196 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
197 
198 static void	ath_bpfattach(struct ath_softc *);
199 static void	ath_announce(struct ath_softc *);
200 
201 #ifdef __NetBSD__
202 #define	ATH_TASK_FUNC(__func)						\
203 static void __CONCAT(__func, _si)(void *arg)				\
204 {									\
205 	__func(arg, 1);							\
206 }
207 ATH_TASK_FUNC(ath_rx_proc);
208 ATH_TASK_FUNC(ath_rxorn_proc);
209 ATH_TASK_FUNC(ath_fatal_proc);
210 ATH_TASK_FUNC(ath_bmiss_proc);
211 ATH_TASK_FUNC(ath_bstuck_proc);
212 ATH_TASK_FUNC(ath_radar_proc);
213 ATH_TASK_FUNC(ath_tx_proc_q0);
214 ATH_TASK_FUNC(ath_tx_proc_q0123);
215 ATH_TASK_FUNC(ath_tx_proc);
216 #endif
217 
218 int ath_dwelltime = 200;		/* 5 channels/second */
219 int ath_calinterval = 30;		/* calibrate every 30 secs */
220 int ath_outdoor = AH_TRUE;		/* outdoor operation */
221 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
222 int ath_countrycode = CTRY_DEFAULT;	/* country code */
223 int ath_regdomain = 0;			/* regulatory domain */
224 int ath_debug = 0;
225 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
226 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
227 
228 #ifdef AR_DEBUG
229 enum {
230 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
231 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
232 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
233 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
234 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
235 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
236 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
237 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
238 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
239 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
240 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
241 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
242 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
243 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
244 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
245 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
246 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
247 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
248 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
249 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
250 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
251 	ATH_DEBUG_ANY		= 0xffffffff
252 };
253 #define	IFF_DUMPPKTS(sc, m) \
254 	((sc->sc_debug & (m)) || \
255 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
256 #define	DPRINTF(sc, m, fmt, ...) do {				\
257 	if (sc->sc_debug & (m))					\
258 		printf(fmt, __VA_ARGS__);			\
259 } while (0)
260 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
261 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
262 		ath_keyprint(__func__, ix, hk, mac);		\
263 } while (0)
264 static	void ath_printrxbuf(struct ath_buf *bf, int);
265 static	void ath_printtxbuf(struct ath_buf *bf, int);
266 #else
267 #define        IFF_DUMPPKTS(sc, m) \
268 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
269 #define        DPRINTF(m, fmt, ...)
270 #define        KEYPRINTF(sc, k, ix, mac)
271 #endif
272 
273 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
274 
275 int
276 ath_attach(u_int16_t devid, struct ath_softc *sc)
277 {
278 	struct ifnet *ifp = &sc->sc_if;
279 	struct ieee80211com *ic = &sc->sc_ic;
280 	struct ath_hal *ah = NULL;
281 	HAL_STATUS status;
282 	int error = 0, i;
283 
284 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
285 
286 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
287 
288 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
289 
290 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
291 	if (ah == NULL) {
292 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
293 			status);
294 		error = ENXIO;
295 		goto bad;
296 	}
297 	if (ah->ah_abi != HAL_ABI_VERSION) {
298 		if_printf(ifp, "HAL ABI mismatch detected "
299 			"(HAL:0x%x != driver:0x%x)\n",
300 			ah->ah_abi, HAL_ABI_VERSION);
301 		error = ENXIO;
302 		goto bad;
303 	}
304 	sc->sc_ah = ah;
305 
306 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
307 	    "pmf-powerdown", false))
308 		goto bad;
309 
310 	/*
311 	 * Check if the MAC has multi-rate retry support.
312 	 * We do this by trying to setup a fake extended
313 	 * descriptor.  MAC's that don't have support will
314 	 * return false w/o doing anything.  MAC's that do
315 	 * support it will return true w/o doing anything.
316 	 */
317 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
318 
319 	/*
320 	 * Check if the device has hardware counters for PHY
321 	 * errors.  If so we need to enable the MIB interrupt
322 	 * so we can act on stat triggers.
323 	 */
324 	if (ath_hal_hwphycounters(ah))
325 		sc->sc_needmib = 1;
326 
327 	/*
328 	 * Get the hardware key cache size.
329 	 */
330 	sc->sc_keymax = ath_hal_keycachesize(ah);
331 	if (sc->sc_keymax > ATH_KEYMAX) {
332 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
333 			ATH_KEYMAX, sc->sc_keymax);
334 		sc->sc_keymax = ATH_KEYMAX;
335 	}
336 	/*
337 	 * Reset the key cache since some parts do not
338 	 * reset the contents on initial power up.
339 	 */
340 	for (i = 0; i < sc->sc_keymax; i++)
341 		ath_hal_keyreset(ah, i);
342 	/*
343 	 * Mark key cache slots associated with global keys
344 	 * as in use.  If we knew TKIP was not to be used we
345 	 * could leave the +32, +64, and +32+64 slots free.
346 	 * XXX only for splitmic.
347 	 */
348 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
349 		setbit(sc->sc_keymap, i);
350 		setbit(sc->sc_keymap, i+32);
351 		setbit(sc->sc_keymap, i+64);
352 		setbit(sc->sc_keymap, i+32+64);
353 	}
354 
355 	/*
356 	 * Collect the channel list using the default country
357 	 * code and including outdoor channels.  The 802.11 layer
358 	 * is resposible for filtering this list based on settings
359 	 * like the phy mode.
360 	 */
361 	error = ath_getchannels(sc, ath_countrycode,
362 			ath_outdoor, ath_xchanmode);
363 	if (error != 0)
364 		goto bad;
365 
366 	/*
367 	 * Setup rate tables for all potential media types.
368 	 */
369 	ath_rate_setup(sc, IEEE80211_MODE_11A);
370 	ath_rate_setup(sc, IEEE80211_MODE_11B);
371 	ath_rate_setup(sc, IEEE80211_MODE_11G);
372 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
373 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
374 	/* NB: setup here so ath_rate_update is happy */
375 	ath_setcurmode(sc, IEEE80211_MODE_11A);
376 
377 	/*
378 	 * Allocate tx+rx descriptors and populate the lists.
379 	 */
380 	error = ath_desc_alloc(sc);
381 	if (error != 0) {
382 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
383 		goto bad;
384 	}
385 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
386 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
387 #if 0
388 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
389 #endif
390 
391 	ATH_TXBUF_LOCK_INIT(sc);
392 
393 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
394 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
395 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
396 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
397 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
398 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
399 
400 	/*
401 	 * Allocate hardware transmit queues: one queue for
402 	 * beacon frames and one data queue for each QoS
403 	 * priority.  Note that the hal handles reseting
404 	 * these queues at the needed time.
405 	 *
406 	 * XXX PS-Poll
407 	 */
408 	sc->sc_bhalq = ath_beaconq_setup(ah);
409 	if (sc->sc_bhalq == (u_int) -1) {
410 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
411 		error = EIO;
412 		goto bad2;
413 	}
414 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
415 	if (sc->sc_cabq == NULL) {
416 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
417 		error = EIO;
418 		goto bad2;
419 	}
420 	/* NB: insure BK queue is the lowest priority h/w queue */
421 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
422 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
423 			ieee80211_wme_acnames[WME_AC_BK]);
424 		error = EIO;
425 		goto bad2;
426 	}
427 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
428 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
429 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
430 		/*
431 		 * Not enough hardware tx queues to properly do WME;
432 		 * just punt and assign them all to the same h/w queue.
433 		 * We could do a better job of this if, for example,
434 		 * we allocate queues when we switch from station to
435 		 * AP mode.
436 		 */
437 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
438 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
439 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
440 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
441 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
442 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
443 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
444 	}
445 
446 	/*
447 	 * Special case certain configurations.  Note the
448 	 * CAB queue is handled by these specially so don't
449 	 * include them when checking the txq setup mask.
450 	 */
451 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
452 	case 0x01:
453 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
454 		break;
455 	case 0x0f:
456 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
457 		break;
458 	default:
459 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
460 		break;
461 	}
462 
463 	/*
464 	 * Setup rate control.  Some rate control modules
465 	 * call back to change the anntena state so expose
466 	 * the necessary entry points.
467 	 * XXX maybe belongs in struct ath_ratectrl?
468 	 */
469 	sc->sc_setdefantenna = ath_setdefantenna;
470 	sc->sc_rc = ath_rate_attach(sc);
471 	if (sc->sc_rc == NULL) {
472 		error = EIO;
473 		goto bad2;
474 	}
475 
476 	sc->sc_blinking = 0;
477 	sc->sc_ledstate = 1;
478 	sc->sc_ledon = 0;			/* low true */
479 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
480 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
481 	/*
482 	 * Auto-enable soft led processing for IBM cards and for
483 	 * 5211 minipci cards.  Users can also manually enable/disable
484 	 * support with a sysctl.
485 	 */
486 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
487 	if (sc->sc_softled) {
488 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
489 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
490 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
491 	}
492 
493 	ifp->if_softc = sc;
494 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
495 	ifp->if_start = ath_start;
496 	ifp->if_stop = ath_stop;
497 	ifp->if_watchdog = ath_watchdog;
498 	ifp->if_ioctl = ath_ioctl;
499 	ifp->if_init = ath_ifinit;
500 	IFQ_SET_READY(&ifp->if_snd);
501 
502 	ic->ic_ifp = ifp;
503 	ic->ic_reset = ath_reset;
504 	ic->ic_newassoc = ath_newassoc;
505 	ic->ic_updateslot = ath_updateslot;
506 	ic->ic_wme.wme_update = ath_wme_update;
507 	/* XXX not right but it's not used anywhere important */
508 	ic->ic_phytype = IEEE80211_T_OFDM;
509 	ic->ic_opmode = IEEE80211_M_STA;
510 	ic->ic_caps =
511 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
512 		| IEEE80211_C_HOSTAP		/* hostap mode */
513 		| IEEE80211_C_MONITOR		/* monitor mode */
514 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
515 		| IEEE80211_C_SHSLOT		/* short slot time supported */
516 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
517 		| IEEE80211_C_TXFRAG		/* handle tx frags */
518 		;
519 	/*
520 	 * Query the hal to figure out h/w crypto support.
521 	 */
522 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
523 		ic->ic_caps |= IEEE80211_C_WEP;
524 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
525 		ic->ic_caps |= IEEE80211_C_AES;
526 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
527 		ic->ic_caps |= IEEE80211_C_AES_CCM;
528 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
529 		ic->ic_caps |= IEEE80211_C_CKIP;
530 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
531 		ic->ic_caps |= IEEE80211_C_TKIP;
532 		/*
533 		 * Check if h/w does the MIC and/or whether the
534 		 * separate key cache entries are required to
535 		 * handle both tx+rx MIC keys.
536 		 */
537 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
538 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
539 
540 		/*
541 		 * If the h/w supports storing tx+rx MIC keys
542 		 * in one cache slot automatically enable use.
543 		 */
544 		if (ath_hal_hastkipsplit(ah) ||
545 		    !ath_hal_settkipsplit(ah, AH_FALSE))
546 			sc->sc_splitmic = 1;
547 
548 		/*
549 		 * If the h/w can do TKIP MIC together with WME then
550 		 * we use it; otherwise we force the MIC to be done
551 		 * in software by the net80211 layer.
552 		 */
553 		if (ath_hal_haswmetkipmic(ah))
554 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
555 	}
556 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
557 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
558 	/*
559 	 * Mark key cache slots associated with global keys
560 	 * as in use.  If we knew TKIP was not to be used we
561 	 * could leave the +32, +64, and +32+64 slots free.
562 	 */
563 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
564 		setbit(sc->sc_keymap, i);
565 		setbit(sc->sc_keymap, i+64);
566 		if (sc->sc_splitmic) {
567 			setbit(sc->sc_keymap, i+32);
568 			setbit(sc->sc_keymap, i+32+64);
569 		}
570 	}
571 	/*
572 	 * TPC support can be done either with a global cap or
573 	 * per-packet support.  The latter is not available on
574 	 * all parts.  We're a bit pedantic here as all parts
575 	 * support a global cap.
576 	 */
577 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
578 		ic->ic_caps |= IEEE80211_C_TXPMGT;
579 
580 	/*
581 	 * Mark WME capability only if we have sufficient
582 	 * hardware queues to do proper priority scheduling.
583 	 */
584 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
585 		ic->ic_caps |= IEEE80211_C_WME;
586 	/*
587 	 * Check for misc other capabilities.
588 	 */
589 	if (ath_hal_hasbursting(ah))
590 		ic->ic_caps |= IEEE80211_C_BURST;
591 
592 	/*
593 	 * Indicate we need the 802.11 header padded to a
594 	 * 32-bit boundary for 4-address and QoS frames.
595 	 */
596 	ic->ic_flags |= IEEE80211_F_DATAPAD;
597 
598 	/*
599 	 * Query the hal about antenna support.
600 	 */
601 	sc->sc_defant = ath_hal_getdefantenna(ah);
602 
603 	/*
604 	 * Not all chips have the VEOL support we want to
605 	 * use with IBSS beacons; check here for it.
606 	 */
607 	sc->sc_hasveol = ath_hal_hasveol(ah);
608 
609 	/* get mac address from hardware */
610 	ath_hal_getmac(ah, ic->ic_myaddr);
611 
612 	if_attach(ifp);
613 	/* call MI attach routine. */
614 	ieee80211_ifattach(ic);
615 	/* override default methods */
616 	ic->ic_node_alloc = ath_node_alloc;
617 	sc->sc_node_free = ic->ic_node_free;
618 	ic->ic_node_free = ath_node_free;
619 	ic->ic_node_getrssi = ath_node_getrssi;
620 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
621 	ic->ic_recv_mgmt = ath_recv_mgmt;
622 	sc->sc_newstate = ic->ic_newstate;
623 	ic->ic_newstate = ath_newstate;
624 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
625 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
626 	ic->ic_crypto.cs_key_delete = ath_key_delete;
627 	ic->ic_crypto.cs_key_set = ath_key_set;
628 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
629 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
630 	/* complete initialization */
631 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
632 
633 	ath_bpfattach(sc);
634 
635 	sc->sc_flags |= ATH_ATTACHED;
636 
637 	/*
638 	 * Setup dynamic sysctl's now that country code and
639 	 * regdomain are available from the hal.
640 	 */
641 	ath_sysctlattach(sc);
642 
643 	ieee80211_announce(ic);
644 	ath_announce(sc);
645 	return 0;
646 bad2:
647 	ath_tx_cleanup(sc);
648 	ath_desc_free(sc);
649 bad:
650 	if (ah)
651 		ath_hal_detach(ah);
652 	/* XXX don't get under the abstraction like this */
653 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
654 	return error;
655 }
656 
657 int
658 ath_detach(struct ath_softc *sc)
659 {
660 	struct ifnet *ifp = &sc->sc_if;
661 	int s;
662 
663 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
664 		return (0);
665 
666 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
667 		__func__, ifp->if_flags);
668 
669 	s = splnet();
670 	ath_stop(ifp, 1);
671 	bpf_detach(ifp);
672 	/*
673 	 * NB: the order of these is important:
674 	 * o call the 802.11 layer before detaching the hal to
675 	 *   insure callbacks into the driver to delete global
676 	 *   key cache entries can be handled
677 	 * o reclaim the tx queue data structures after calling
678 	 *   the 802.11 layer as we'll get called back to reclaim
679 	 *   node state and potentially want to use them
680 	 * o to cleanup the tx queues the hal is called, so detach
681 	 *   it last
682 	 * Other than that, it's straightforward...
683 	 */
684 	ieee80211_ifdetach(&sc->sc_ic);
685 #ifdef ATH_TX99_DIAG
686 	if (sc->sc_tx99 != NULL)
687 		sc->sc_tx99->detach(sc->sc_tx99);
688 #endif
689 	ath_rate_detach(sc->sc_rc);
690 	ath_desc_free(sc);
691 	ath_tx_cleanup(sc);
692 	sysctl_teardown(&sc->sc_sysctllog);
693 	ath_hal_detach(sc->sc_ah);
694 	if_detach(ifp);
695 	splx(s);
696 
697 	return 0;
698 }
699 
700 void
701 ath_suspend(struct ath_softc *sc)
702 {
703 #if notyet
704 	/*
705 	 * Set the chip in full sleep mode.  Note that we are
706 	 * careful to do this only when bringing the interface
707 	 * completely to a stop.  When the chip is in this state
708 	 * it must be carefully woken up or references to
709 	 * registers in the PCI clock domain may freeze the bus
710 	 * (and system).  This varies by chip and is mostly an
711 	 * issue with newer parts that go to sleep more quickly.
712 	 */
713 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
714 #endif
715 }
716 
717 bool
718 ath_resume(struct ath_softc *sc)
719 {
720 	struct ath_hal *ah = sc->sc_ah;
721 	struct ieee80211com *ic = &sc->sc_ic;
722 	HAL_STATUS status;
723 	int i;
724 
725 #if notyet
726 	ath_hal_setpower(ah, HAL_PM_AWAKE);
727 #else
728 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
729 #endif
730 
731 	/*
732 	 * Reset the key cache since some parts do not
733 	 * reset the contents on initial power up.
734 	 */
735 	for (i = 0; i < sc->sc_keymax; i++)
736 		ath_hal_keyreset(ah, i);
737 
738 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
739 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
740 		if (ATH_TXQ_SETUP(sc, i))
741 			ath_hal_resettxqueue(ah, i);
742 
743 	if (sc->sc_softled) {
744 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
745 		    HAL_GPIO_MUX_MAC_NETWORK_LED);
746 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
747 	}
748 	return true;
749 }
750 
751 /*
752  * Interrupt handler.  Most of the actual processing is deferred.
753  */
754 int
755 ath_intr(void *arg)
756 {
757 	struct ath_softc *sc = arg;
758 	struct ifnet *ifp = &sc->sc_if;
759 	struct ath_hal *ah = sc->sc_ah;
760 	HAL_INT status = 0;
761 
762 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
763 		/*
764 		 * The hardware is not ready/present, don't touch anything.
765 		 * Note this can happen early on if the IRQ is shared.
766 		 */
767 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
768 		return 0;
769 	}
770 
771 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
772 		return 0;
773 
774 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
775 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
776 			__func__, ifp->if_flags);
777 		ath_hal_getisr(ah, &status);	/* clear ISR */
778 		ath_hal_intrset(ah, 0);		/* disable further intr's */
779 		return 1; /* XXX */
780 	}
781 	/*
782 	 * Figure out the reason(s) for the interrupt.  Note
783 	 * that the hal returns a pseudo-ISR that may include
784 	 * bits we haven't explicitly enabled so we mask the
785 	 * value to insure we only process bits we requested.
786 	 */
787 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
788 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
789 	status &= sc->sc_imask;			/* discard unasked for bits */
790 	if (status & HAL_INT_FATAL) {
791 		/*
792 		 * Fatal errors are unrecoverable.  Typically
793 		 * these are caused by DMA errors.  Unfortunately
794 		 * the exact reason is not (presently) returned
795 		 * by the hal.
796 		 */
797 		sc->sc_stats.ast_hardware++;
798 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
799 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
800 	} else if (status & HAL_INT_RXORN) {
801 		sc->sc_stats.ast_rxorn++;
802 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
803 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
804 	} else {
805 		if (status & HAL_INT_SWBA) {
806 			/*
807 			 * Software beacon alert--time to send a beacon.
808 			 * Handle beacon transmission directly; deferring
809 			 * this is too slow to meet timing constraints
810 			 * under load.
811 			 */
812 			ath_beacon_proc(sc, 0);
813 		}
814 		if (status & HAL_INT_RXEOL) {
815 			/*
816 			 * NB: the hardware should re-read the link when
817 			 *     RXE bit is written, but it doesn't work at
818 			 *     least on older hardware revs.
819 			 */
820 			sc->sc_stats.ast_rxeol++;
821 			sc->sc_rxlink = NULL;
822 		}
823 		if (status & HAL_INT_TXURN) {
824 			sc->sc_stats.ast_txurn++;
825 			/* bump tx trigger level */
826 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
827 		}
828 		if (status & HAL_INT_RX)
829 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
830 		if (status & HAL_INT_TX)
831 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
832 		if (status & HAL_INT_BMISS) {
833 			sc->sc_stats.ast_bmiss++;
834 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
835 		}
836 		if (status & HAL_INT_MIB) {
837 			sc->sc_stats.ast_mib++;
838 			/*
839 			 * Disable interrupts until we service the MIB
840 			 * interrupt; otherwise it will continue to fire.
841 			 */
842 			ath_hal_intrset(ah, 0);
843 			/*
844 			 * Let the hal handle the event.  We assume it will
845 			 * clear whatever condition caused the interrupt.
846 			 */
847 			ath_hal_mibevent(ah, &sc->sc_halstats);
848 			ath_hal_intrset(ah, sc->sc_imask);
849 		}
850 	}
851 	return 1;
852 }
853 
854 /* Swap transmit descriptor.
855  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
856  * function.
857  */
858 static inline void
859 ath_desc_swap(struct ath_desc *ds)
860 {
861 #ifdef AH_NEED_DESC_SWAP
862 	ds->ds_link = htole32(ds->ds_link);
863 	ds->ds_data = htole32(ds->ds_data);
864 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
865 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
866 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
867 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
868 #endif
869 }
870 
871 static void
872 ath_fatal_proc(void *arg, int pending)
873 {
874 	struct ath_softc *sc = arg;
875 	struct ifnet *ifp = &sc->sc_if;
876 #ifdef __NetBSD__
877 	int s;
878 #endif
879 
880 	if_printf(ifp, "hardware error; resetting\n");
881 #ifdef __NetBSD__
882 	s = splnet();
883 #endif
884 	ath_reset(ifp);
885 #ifdef __NetBSD__
886 	splx(s);
887 #endif
888 }
889 
890 static void
891 ath_rxorn_proc(void *arg, int pending)
892 {
893 	struct ath_softc *sc = arg;
894 	struct ifnet *ifp = &sc->sc_if;
895 #ifdef __NetBSD__
896 	int s;
897 #endif
898 
899 	if_printf(ifp, "rx FIFO overrun; resetting\n");
900 #ifdef __NetBSD__
901 	s = splnet();
902 #endif
903 	ath_reset(ifp);
904 #ifdef __NetBSD__
905 	splx(s);
906 #endif
907 }
908 
909 static void
910 ath_bmiss_proc(void *arg, int pending)
911 {
912 	struct ath_softc *sc = arg;
913 	struct ieee80211com *ic = &sc->sc_ic;
914 	NET_LOCK_GIANT_FUNC_INIT();
915 
916 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
917 	KASSERTMSG(ic->ic_opmode == IEEE80211_M_STA,
918 		"unexpect operating mode %u", ic->ic_opmode);
919 	if (ic->ic_state == IEEE80211_S_RUN) {
920 		u_int64_t lastrx = sc->sc_lastrx;
921 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
922 
923 		DPRINTF(sc, ATH_DEBUG_BEACON,
924 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
925 		    " (%" PRIu64 ") bmiss %u\n",
926 		    __func__, tsf, tsf - lastrx, lastrx,
927 		    ic->ic_bmisstimeout*1024);
928 		/*
929 		 * Workaround phantom bmiss interrupts by sanity-checking
930 		 * the time of our last rx'd frame.  If it is within the
931 		 * beacon miss interval then ignore the interrupt.  If it's
932 		 * truly a bmiss we'll get another interrupt soon and that'll
933 		 * be dispatched up for processing.
934 		 */
935 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
936 			NET_LOCK_GIANT();
937 			ieee80211_beacon_miss(ic);
938 			NET_UNLOCK_GIANT();
939 		} else
940 			sc->sc_stats.ast_bmiss_phantom++;
941 	}
942 }
943 
944 static void
945 ath_radar_proc(void *arg, int pending)
946 {
947 #if 0
948 	struct ath_softc *sc = arg;
949 	struct ifnet *ifp = &sc->sc_if;
950 	struct ath_hal *ah = sc->sc_ah;
951 	HAL_CHANNEL hchan;
952 
953 	if (ath_hal_procdfs(ah, &hchan)) {
954 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
955 			hchan.channel, hchan.channelFlags, hchan.privFlags);
956 		/*
957 		 * Initiate channel change.
958 		 */
959 		/* XXX not yet */
960 	}
961 #endif
962 }
963 
964 static u_int
965 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
966 {
967 #define	N(a)	(sizeof(a) / sizeof(a[0]))
968 	static const u_int modeflags[] = {
969 		0,			/* IEEE80211_MODE_AUTO */
970 		CHANNEL_A,		/* IEEE80211_MODE_11A */
971 		CHANNEL_B,		/* IEEE80211_MODE_11B */
972 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
973 		0,			/* IEEE80211_MODE_FH */
974 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
975 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
976 	};
977 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
978 
979 	KASSERTMSG(mode < N(modeflags), "unexpected phy mode %u", mode);
980 	KASSERTMSG(modeflags[mode] != 0, "mode %u undefined", mode);
981 	return modeflags[mode];
982 #undef N
983 }
984 
985 static int
986 ath_ifinit(struct ifnet *ifp)
987 {
988 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
989 
990 	return ath_init(sc);
991 }
992 
993 static void
994 ath_settkipmic(struct ath_softc *sc)
995 {
996 	struct ieee80211com *ic = &sc->sc_ic;
997 	struct ath_hal *ah = sc->sc_ah;
998 
999 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
1000 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
1001 		if (ic->ic_flags & IEEE80211_F_WME) {
1002 			(void)ath_hal_settkipmic(ah, AH_FALSE);
1003 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
1004 		} else {
1005 			(void)ath_hal_settkipmic(ah, AH_TRUE);
1006 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
1007 		}
1008 	}
1009 }
1010 
1011 static int
1012 ath_init(struct ath_softc *sc)
1013 {
1014 	struct ifnet *ifp = &sc->sc_if;
1015 	struct ieee80211com *ic = &sc->sc_ic;
1016 	struct ath_hal *ah = sc->sc_ah;
1017 	HAL_STATUS status;
1018 	int error = 0, s;
1019 
1020 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1021 		__func__, ifp->if_flags);
1022 
1023 	if (device_is_active(sc->sc_dev)) {
1024 		s = splnet();
1025 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
1026 	           !device_is_active(sc->sc_dev))
1027 		return 0;
1028 	else
1029 		s = splnet();
1030 
1031 	/*
1032 	 * Stop anything previously setup.  This is safe
1033 	 * whether this is the first time through or not.
1034 	 */
1035 	ath_stop_locked(ifp, 0);
1036 
1037 	/*
1038 	 * The basic interface to setting the hardware in a good
1039 	 * state is ``reset''.  On return the hardware is known to
1040 	 * be powered up and with interrupts disabled.  This must
1041 	 * be followed by initialization of the appropriate bits
1042 	 * and then setup of the interrupt mask.
1043 	 */
1044 	ath_settkipmic(sc);
1045 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1046 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1047 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1048 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1049 			status);
1050 		error = EIO;
1051 		goto done;
1052 	}
1053 
1054 	/*
1055 	 * This is needed only to setup initial state
1056 	 * but it's best done after a reset.
1057 	 */
1058 	ath_update_txpow(sc);
1059 	/*
1060 	 * Likewise this is set during reset so update
1061 	 * state cached in the driver.
1062 	 */
1063 	ath_restore_diversity(sc);
1064 	sc->sc_calinterval = 1;
1065 	sc->sc_caltries = 0;
1066 
1067 	/*
1068 	 * Setup the hardware after reset: the key cache
1069 	 * is filled as needed and the receive engine is
1070 	 * set going.  Frame transmit is handled entirely
1071 	 * in the frame output path; there's nothing to do
1072 	 * here except setup the interrupt mask.
1073 	 */
1074 	if ((error = ath_startrecv(sc)) != 0) {
1075 		if_printf(ifp, "unable to start recv logic\n");
1076 		goto done;
1077 	}
1078 
1079 	/*
1080 	 * Enable interrupts.
1081 	 */
1082 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1083 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1084 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1085 	/*
1086 	 * Enable MIB interrupts when there are hardware phy counters.
1087 	 * Note we only do this (at the moment) for station mode.
1088 	 */
1089 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1090 		sc->sc_imask |= HAL_INT_MIB;
1091 	ath_hal_intrset(ah, sc->sc_imask);
1092 
1093 	ifp->if_flags |= IFF_RUNNING;
1094 	ic->ic_state = IEEE80211_S_INIT;
1095 
1096 	/*
1097 	 * The hardware should be ready to go now so it's safe
1098 	 * to kick the 802.11 state machine as it's likely to
1099 	 * immediately call back to us to send mgmt frames.
1100 	 */
1101 	ath_chan_change(sc, ic->ic_curchan);
1102 #ifdef ATH_TX99_DIAG
1103 	if (sc->sc_tx99 != NULL)
1104 		sc->sc_tx99->start(sc->sc_tx99);
1105 	else
1106 #endif
1107 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1108 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1109 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1110 	} else
1111 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1112 done:
1113 	splx(s);
1114 	return error;
1115 }
1116 
1117 static void
1118 ath_stop_locked(struct ifnet *ifp, int disable)
1119 {
1120 	struct ath_softc *sc = ifp->if_softc;
1121 	struct ieee80211com *ic = &sc->sc_ic;
1122 	struct ath_hal *ah = sc->sc_ah;
1123 
1124 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1125 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1126 
1127 	/* KASSERT() IPL_NET */
1128 	if (ifp->if_flags & IFF_RUNNING) {
1129 		/*
1130 		 * Shutdown the hardware and driver:
1131 		 *    reset 802.11 state machine
1132 		 *    turn off timers
1133 		 *    disable interrupts
1134 		 *    turn off the radio
1135 		 *    clear transmit machinery
1136 		 *    clear receive machinery
1137 		 *    drain and release tx queues
1138 		 *    reclaim beacon resources
1139 		 *    power down hardware
1140 		 *
1141 		 * Note that some of this work is not possible if the
1142 		 * hardware is gone (invalid).
1143 		 */
1144 #ifdef ATH_TX99_DIAG
1145 		if (sc->sc_tx99 != NULL)
1146 			sc->sc_tx99->stop(sc->sc_tx99);
1147 #endif
1148 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1149 		ifp->if_flags &= ~IFF_RUNNING;
1150 		ifp->if_timer = 0;
1151 		if (device_is_enabled(sc->sc_dev)) {
1152 			if (sc->sc_softled) {
1153 				callout_stop(&sc->sc_ledtimer);
1154 				ath_hal_gpioset(ah, sc->sc_ledpin,
1155 					!sc->sc_ledon);
1156 				sc->sc_blinking = 0;
1157 			}
1158 			ath_hal_intrset(ah, 0);
1159 		}
1160 		ath_draintxq(sc);
1161 		if (device_is_enabled(sc->sc_dev)) {
1162 			ath_stoprecv(sc);
1163 			ath_hal_phydisable(ah);
1164 		} else
1165 			sc->sc_rxlink = NULL;
1166 		IF_PURGE(&ifp->if_snd);
1167 		ath_beacon_free(sc);
1168 	}
1169 	if (disable)
1170 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1171 }
1172 
1173 static void
1174 ath_stop(struct ifnet *ifp, int disable)
1175 {
1176 	int s;
1177 
1178 	s = splnet();
1179 	ath_stop_locked(ifp, disable);
1180 	splx(s);
1181 }
1182 
1183 static void
1184 ath_restore_diversity(struct ath_softc *sc)
1185 {
1186 	struct ifnet *ifp = &sc->sc_if;
1187 	struct ath_hal *ah = sc->sc_ah;
1188 
1189 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1190 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1191 		if_printf(ifp, "could not restore diversity setting %d\n",
1192 		    sc->sc_diversity);
1193 		sc->sc_diversity = ath_hal_getdiversity(ah);
1194 	}
1195 }
1196 
1197 /*
1198  * Reset the hardware w/o losing operational state.  This is
1199  * basically a more efficient way of doing ath_stop, ath_init,
1200  * followed by state transitions to the current 802.11
1201  * operational state.  Used to recover from various errors and
1202  * to reset or reload hardware state.
1203  */
1204 int
1205 ath_reset(struct ifnet *ifp)
1206 {
1207 	struct ath_softc *sc = ifp->if_softc;
1208 	struct ieee80211com *ic = &sc->sc_ic;
1209 	struct ath_hal *ah = sc->sc_ah;
1210 	struct ieee80211_channel *c;
1211 	HAL_STATUS status;
1212 
1213 	/*
1214 	 * Convert to a HAL channel description with the flags
1215 	 * constrained to reflect the current operating mode.
1216 	 */
1217 	c = ic->ic_curchan;
1218 	sc->sc_curchan.channel = c->ic_freq;
1219 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1220 
1221 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1222 	ath_draintxq(sc);		/* stop xmit side */
1223 	ath_stoprecv(sc);		/* stop recv side */
1224 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1225 	/* NB: indicate channel change so we do a full reset */
1226 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1227 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1228 			__func__, status);
1229 	ath_update_txpow(sc);		/* update tx power state */
1230 	ath_restore_diversity(sc);
1231 	sc->sc_calinterval = 1;
1232 	sc->sc_caltries = 0;
1233 	if (ath_startrecv(sc) != 0)	/* restart recv */
1234 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1235 	/*
1236 	 * We may be doing a reset in response to an ioctl
1237 	 * that changes the channel so update any state that
1238 	 * might change as a result.
1239 	 */
1240 	ath_chan_change(sc, c);
1241 	if (ic->ic_state == IEEE80211_S_RUN)
1242 		ath_beacon_config(sc);	/* restart beacons */
1243 	ath_hal_intrset(ah, sc->sc_imask);
1244 
1245 	ath_start(ifp);			/* restart xmit */
1246 	return 0;
1247 }
1248 
1249 /*
1250  * Cleanup driver resources when we run out of buffers
1251  * while processing fragments; return the tx buffers
1252  * allocated and drop node references.
1253  */
1254 static void
1255 ath_txfrag_cleanup(struct ath_softc *sc,
1256 	ath_bufhead *frags, struct ieee80211_node *ni)
1257 {
1258 	struct ath_buf *bf;
1259 
1260 	ATH_TXBUF_LOCK_ASSERT(sc);
1261 
1262 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1263 		STAILQ_REMOVE_HEAD(frags, bf_list);
1264 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1265 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1266 		ieee80211_node_decref(ni);
1267 	}
1268 }
1269 
1270 /*
1271  * Setup xmit of a fragmented frame.  Allocate a buffer
1272  * for each frag and bump the node reference count to
1273  * reflect the held reference to be setup by ath_tx_start.
1274  */
1275 static int
1276 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1277 	struct mbuf *m0, struct ieee80211_node *ni)
1278 {
1279 	struct mbuf *m;
1280 	struct ath_buf *bf;
1281 
1282 	ATH_TXBUF_LOCK(sc);
1283 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1284 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1285 		if (bf == NULL) {       /* out of buffers, cleanup */
1286 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1287 				__func__);
1288 			sc->sc_if.if_flags |= IFF_OACTIVE;
1289 			ath_txfrag_cleanup(sc, frags, ni);
1290 			break;
1291 		}
1292 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1293 		ieee80211_node_incref(ni);
1294 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1295 	}
1296 	ATH_TXBUF_UNLOCK(sc);
1297 
1298 	return !STAILQ_EMPTY(frags);
1299 }
1300 
1301 static void
1302 ath_start(struct ifnet *ifp)
1303 {
1304 	struct ath_softc *sc = ifp->if_softc;
1305 	struct ath_hal *ah = sc->sc_ah;
1306 	struct ieee80211com *ic = &sc->sc_ic;
1307 	struct ieee80211_node *ni;
1308 	struct ath_buf *bf;
1309 	struct mbuf *m, *next;
1310 	struct ieee80211_frame *wh;
1311 	struct ether_header *eh;
1312 	ath_bufhead frags;
1313 
1314 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1315 	    !device_is_active(sc->sc_dev))
1316 		return;
1317 
1318 	if (sc->sc_flags & ATH_KEY_UPDATING)
1319 		return;
1320 
1321 	for (;;) {
1322 		/*
1323 		 * Grab a TX buffer and associated resources.
1324 		 */
1325 		ATH_TXBUF_LOCK(sc);
1326 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1327 		if (bf != NULL)
1328 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1329 		ATH_TXBUF_UNLOCK(sc);
1330 		if (bf == NULL) {
1331 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1332 				__func__);
1333 			sc->sc_stats.ast_tx_qstop++;
1334 			ifp->if_flags |= IFF_OACTIVE;
1335 			break;
1336 		}
1337 		/*
1338 		 * Poll the management queue for frames; they
1339 		 * have priority over normal data frames.
1340 		 */
1341 		IF_DEQUEUE(&ic->ic_mgtq, m);
1342 		if (m == NULL) {
1343 			/*
1344 			 * No data frames go out unless we're associated.
1345 			 */
1346 			if (ic->ic_state != IEEE80211_S_RUN) {
1347 				DPRINTF(sc, ATH_DEBUG_XMIT,
1348 				    "%s: discard data packet, state %s\n",
1349 				    __func__,
1350 				    ieee80211_state_name[ic->ic_state]);
1351 				sc->sc_stats.ast_tx_discard++;
1352 				ATH_TXBUF_LOCK(sc);
1353 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1354 				ATH_TXBUF_UNLOCK(sc);
1355 				break;
1356 			}
1357 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1358 			if (m == NULL) {
1359 				ATH_TXBUF_LOCK(sc);
1360 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1361 				ATH_TXBUF_UNLOCK(sc);
1362 				break;
1363 			}
1364 			STAILQ_INIT(&frags);
1365 			/*
1366 			 * Find the node for the destination so we can do
1367 			 * things like power save and fast frames aggregation.
1368 			 */
1369 			if (m->m_len < sizeof(struct ether_header) &&
1370 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1371 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1372 				ni = NULL;
1373 				goto bad;
1374 			}
1375 			eh = mtod(m, struct ether_header *);
1376 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1377 			if (ni == NULL) {
1378 				/* NB: ieee80211_find_txnode does stat+msg */
1379 				m_freem(m);
1380 				goto bad;
1381 			}
1382 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1383 			    (m->m_flags & M_PWR_SAV) == 0) {
1384 				/*
1385 				 * Station in power save mode; pass the frame
1386 				 * to the 802.11 layer and continue.  We'll get
1387 				 * the frame back when the time is right.
1388 				 */
1389 				ieee80211_pwrsave(ic, ni, m);
1390 				goto reclaim;
1391 			}
1392 			/* calculate priority so we can find the tx queue */
1393 			if (ieee80211_classify(ic, m, ni)) {
1394 				DPRINTF(sc, ATH_DEBUG_XMIT,
1395 					"%s: discard, classification failure\n",
1396 					__func__);
1397 				m_freem(m);
1398 				goto bad;
1399 			}
1400 			ifp->if_opackets++;
1401 
1402 			bpf_mtap(ifp, m, BPF_D_OUT);
1403 			/*
1404 			 * Encapsulate the packet in prep for transmission.
1405 			 */
1406 			m = ieee80211_encap(ic, m, ni);
1407 			if (m == NULL) {
1408 				DPRINTF(sc, ATH_DEBUG_XMIT,
1409 					"%s: encapsulation failure\n",
1410 					__func__);
1411 				sc->sc_stats.ast_tx_encap++;
1412 				goto bad;
1413 			}
1414 			/*
1415 			 * Check for fragmentation.  If this has frame
1416 			 * has been broken up verify we have enough
1417 			 * buffers to send all the fragments so all
1418 			 * go out or none...
1419 			 */
1420 			if ((m->m_flags & M_FRAG) &&
1421 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1422 				DPRINTF(sc, ATH_DEBUG_ANY,
1423 				    "%s: out of txfrag buffers\n", __func__);
1424 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1425 				ath_freetx(m);
1426 				goto bad;
1427 			}
1428 		} else {
1429 			/*
1430 			 * Hack!  The referenced node pointer is in the
1431 			 * rcvif field of the packet header.  This is
1432 			 * placed there by ieee80211_mgmt_output because
1433 			 * we need to hold the reference with the frame
1434 			 * and there's no other way (other than packet
1435 			 * tags which we consider too expensive to use)
1436 			 * to pass it along.
1437 			 */
1438 			ni = M_GETCTX(m, struct ieee80211_node *);
1439 			M_CLEARCTX(m);
1440 
1441 			wh = mtod(m, struct ieee80211_frame *);
1442 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1443 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1444 				/* fill time stamp */
1445 				u_int64_t tsf;
1446 				u_int32_t *tstamp;
1447 
1448 				tsf = ath_hal_gettsf64(ah);
1449 				/* XXX: adjust 100us delay to xmit */
1450 				tsf += 100;
1451 				tstamp = (u_int32_t *)&wh[1];
1452 				tstamp[0] = htole32(tsf & 0xffffffff);
1453 				tstamp[1] = htole32(tsf >> 32);
1454 			}
1455 			sc->sc_stats.ast_tx_mgmt++;
1456 		}
1457 
1458 	nextfrag:
1459 		next = m->m_nextpkt;
1460 		if (ath_tx_start(sc, ni, bf, m)) {
1461 	bad:
1462 			ifp->if_oerrors++;
1463 	reclaim:
1464 			ATH_TXBUF_LOCK(sc);
1465 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1466 			ath_txfrag_cleanup(sc, &frags, ni);
1467 			ATH_TXBUF_UNLOCK(sc);
1468 			if (ni != NULL)
1469 				ieee80211_free_node(ni);
1470 			continue;
1471 		}
1472 		if (next != NULL) {
1473 			m = next;
1474 			bf = STAILQ_FIRST(&frags);
1475 			KASSERTMSG(bf != NULL, "no buf for txfrag");
1476 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1477 			goto nextfrag;
1478 		}
1479 
1480 		ifp->if_timer = 1;
1481 	}
1482 }
1483 
1484 static int
1485 ath_media_change(struct ifnet *ifp)
1486 {
1487 #define	IS_UP(ifp) \
1488 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1489 	int error;
1490 
1491 	error = ieee80211_media_change(ifp);
1492 	if (error == ENETRESET) {
1493 		if (IS_UP(ifp))
1494 			ath_init(ifp->if_softc);	/* XXX lose error */
1495 		error = 0;
1496 	}
1497 	return error;
1498 #undef IS_UP
1499 }
1500 
1501 #ifdef AR_DEBUG
1502 static void
1503 ath_keyprint(const char *tag, u_int ix,
1504 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1505 {
1506 	static const char *ciphers[] = {
1507 		"WEP",
1508 		"AES-OCB",
1509 		"AES-CCM",
1510 		"CKIP",
1511 		"TKIP",
1512 		"CLR",
1513 	};
1514 	int i, n;
1515 
1516 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1517 	for (i = 0, n = hk->kv_len; i < n; i++)
1518 		printf("%02x", hk->kv_val[i]);
1519 	printf(" mac %s", ether_sprintf(mac));
1520 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1521 		printf(" mic ");
1522 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1523 			printf("%02x", hk->kv_mic[i]);
1524 	}
1525 	printf("\n");
1526 }
1527 #endif
1528 
1529 /*
1530  * Set a TKIP key into the hardware.  This handles the
1531  * potential distribution of key state to multiple key
1532  * cache slots for TKIP.
1533  */
1534 static int
1535 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1536 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1537 {
1538 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1539 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1540 	struct ath_hal *ah = sc->sc_ah;
1541 
1542 	KASSERTMSG(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1543 		"got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher);
1544 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1545 		if (sc->sc_splitmic) {
1546 			/*
1547 			 * TX key goes at first index, RX key at the rx index.
1548 			 * The hal handles the MIC keys at index+64.
1549 			 */
1550 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1551 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1552 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1553 						zerobssid))
1554 				return 0;
1555 
1556 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1557 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1558 			/* XXX delete tx key on failure? */
1559 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1560 					hk, mac);
1561 		} else {
1562 			/*
1563 			 * Room for both TX+RX MIC keys in one key cache
1564 			 * slot, just set key at the first index; the HAL
1565 			 * will handle the reset.
1566 			 */
1567 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1568 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1569 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1570 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1571 		}
1572 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1573 		if (sc->sc_splitmic) {
1574 			/*
1575 			 * NB: must pass MIC key in expected location when
1576 			 * the keycache only holds one MIC key per entry.
1577 			 */
1578 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1579 		} else
1580 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1581 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1582 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1583 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1584 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1585 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1586 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1587 	}
1588 	return 0;
1589 #undef IEEE80211_KEY_XR
1590 }
1591 
1592 /*
1593  * Set a net80211 key into the hardware.  This handles the
1594  * potential distribution of key state to multiple key
1595  * cache slots for TKIP with hardware MIC support.
1596  */
1597 static int
1598 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1599 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1600 	struct ieee80211_node *bss)
1601 {
1602 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1603 	static const u_int8_t ciphermap[] = {
1604 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1605 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1606 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1607 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1608 		(u_int8_t) -1,		/* 4 is not allocated */
1609 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1610 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1611 	};
1612 	struct ath_hal *ah = sc->sc_ah;
1613 	const struct ieee80211_cipher *cip = k->wk_cipher;
1614 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1615 	const u_int8_t *mac;
1616 	HAL_KEYVAL hk;
1617 
1618 	memset(&hk, 0, sizeof(hk));
1619 	/*
1620 	 * Software crypto uses a "clear key" so non-crypto
1621 	 * state kept in the key cache are maintained and
1622 	 * so that rx frames have an entry to match.
1623 	 */
1624 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1625 		KASSERTMSG(cip->ic_cipher < N(ciphermap),
1626 			"invalid cipher type %u", cip->ic_cipher);
1627 		hk.kv_type = ciphermap[cip->ic_cipher];
1628 		hk.kv_len = k->wk_keylen;
1629 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1630 	} else
1631 		hk.kv_type = HAL_CIPHER_CLR;
1632 
1633 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1634 		/*
1635 		 * Group keys on hardware that supports multicast frame
1636 		 * key search use a mac that is the sender's address with
1637 		 * the high bit set instead of the app-specified address.
1638 		 */
1639 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1640 		gmac[0] |= 0x80;
1641 		mac = gmac;
1642 	} else
1643 		mac = mac0;
1644 
1645 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1646 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1647 		return ath_keyset_tkip(sc, k, &hk, mac);
1648 	} else {
1649 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1650 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1651 	}
1652 #undef N
1653 }
1654 
1655 /*
1656  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1657  * each key, one for decrypt/encrypt and the other for the MIC.
1658  */
1659 static u_int16_t
1660 key_alloc_2pair(struct ath_softc *sc,
1661 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1662 {
1663 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1664 	u_int i, keyix;
1665 
1666 	KASSERTMSG(sc->sc_splitmic, "key cache !split");
1667 	/* XXX could optimize */
1668 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1669 		u_int8_t b = sc->sc_keymap[i];
1670 		if (b != 0xff) {
1671 			/*
1672 			 * One or more slots in this byte are free.
1673 			 */
1674 			keyix = i*NBBY;
1675 			while (b & 1) {
1676 		again:
1677 				keyix++;
1678 				b >>= 1;
1679 			}
1680 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1681 			if (isset(sc->sc_keymap, keyix+32) ||
1682 			    isset(sc->sc_keymap, keyix+64) ||
1683 			    isset(sc->sc_keymap, keyix+32+64)) {
1684 				/* full pair unavailable */
1685 				/* XXX statistic */
1686 				if (keyix == (i+1)*NBBY) {
1687 					/* no slots were appropriate, advance */
1688 					continue;
1689 				}
1690 				goto again;
1691 			}
1692 			setbit(sc->sc_keymap, keyix);
1693 			setbit(sc->sc_keymap, keyix+64);
1694 			setbit(sc->sc_keymap, keyix+32);
1695 			setbit(sc->sc_keymap, keyix+32+64);
1696 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1697 				"%s: key pair %u,%u %u,%u\n",
1698 				__func__, keyix, keyix+64,
1699 				keyix+32, keyix+32+64);
1700 			*txkeyix = keyix;
1701 			*rxkeyix = keyix+32;
1702 			return keyix;
1703 		}
1704 	}
1705 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1706 	return IEEE80211_KEYIX_NONE;
1707 #undef N
1708 }
1709 
1710 /*
1711  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1712  * each key, one for decrypt/encrypt and the other for the MIC.
1713  */
1714 static int
1715 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1716     ieee80211_keyix *rxkeyix)
1717 {
1718 #define N(a)	(sizeof(a)/sizeof(a[0]))
1719 	u_int i, keyix;
1720 
1721 	KASSERTMSG(!sc->sc_splitmic, "key cache split");
1722 	/* XXX could optimize */
1723 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1724 		uint8_t b = sc->sc_keymap[i];
1725 		if (b != 0xff) {
1726 			/*
1727 			 * One or more slots in this byte are free.
1728 			 */
1729 			keyix = i*NBBY;
1730 			while (b & 1) {
1731 		again:
1732 				keyix++;
1733 				b >>= 1;
1734 			}
1735 			if (isset(sc->sc_keymap, keyix+64)) {
1736 				/* full pair unavailable */
1737 				/* XXX statistic */
1738 				if (keyix == (i+1)*NBBY) {
1739 					/* no slots were appropriate, advance */
1740 					continue;
1741 				}
1742 				goto again;
1743 			}
1744 			setbit(sc->sc_keymap, keyix);
1745 			setbit(sc->sc_keymap, keyix+64);
1746 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1747 				"%s: key pair %u,%u\n",
1748 				__func__, keyix, keyix+64);
1749 			*txkeyix = *rxkeyix = keyix;
1750 			return 1;
1751 		}
1752 	}
1753 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1754 	return 0;
1755 #undef N
1756 }
1757 
1758 /*
1759  * Allocate a single key cache slot.
1760  */
1761 static int
1762 key_alloc_single(struct ath_softc *sc,
1763 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1764 {
1765 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1766 	u_int i, keyix;
1767 
1768 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1769 	for (i = 0; i < N(sc->sc_keymap); i++) {
1770 		u_int8_t b = sc->sc_keymap[i];
1771 		if (b != 0xff) {
1772 			/*
1773 			 * One or more slots are free.
1774 			 */
1775 			keyix = i*NBBY;
1776 			while (b & 1)
1777 				keyix++, b >>= 1;
1778 			setbit(sc->sc_keymap, keyix);
1779 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1780 				__func__, keyix);
1781 			*txkeyix = *rxkeyix = keyix;
1782 			return 1;
1783 		}
1784 	}
1785 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1786 	return 0;
1787 #undef N
1788 }
1789 
1790 /*
1791  * Allocate one or more key cache slots for a uniacst key.  The
1792  * key itself is needed only to identify the cipher.  For hardware
1793  * TKIP with split cipher+MIC keys we allocate two key cache slot
1794  * pairs so that we can setup separate TX and RX MIC keys.  Note
1795  * that the MIC key for a TKIP key at slot i is assumed by the
1796  * hardware to be at slot i+64.  This limits TKIP keys to the first
1797  * 64 entries.
1798  */
1799 static int
1800 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1801 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1802 {
1803 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1804 
1805 	/*
1806 	 * Group key allocation must be handled specially for
1807 	 * parts that do not support multicast key cache search
1808 	 * functionality.  For those parts the key id must match
1809 	 * the h/w key index so lookups find the right key.  On
1810 	 * parts w/ the key search facility we install the sender's
1811 	 * mac address (with the high bit set) and let the hardware
1812 	 * find the key w/o using the key id.  This is preferred as
1813 	 * it permits us to support multiple users for adhoc and/or
1814 	 * multi-station operation.
1815 	 */
1816 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1817 		if (!(&ic->ic_nw_keys[0] <= k &&
1818 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1819 			/* should not happen */
1820 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1821 				"%s: bogus group key\n", __func__);
1822 			return 0;
1823 		}
1824 		/*
1825 		 * XXX we pre-allocate the global keys so
1826 		 * have no way to check if they've already been allocated.
1827 		 */
1828 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1829 		return 1;
1830 	}
1831 
1832 	/*
1833 	 * We allocate two pair for TKIP when using the h/w to do
1834 	 * the MIC.  For everything else, including software crypto,
1835 	 * we allocate a single entry.  Note that s/w crypto requires
1836 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1837 	 * not support pass-through cache entries and we map all
1838 	 * those requests to slot 0.
1839 	 */
1840 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1841 		return key_alloc_single(sc, keyix, rxkeyix);
1842 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1843 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1844 		if (sc->sc_splitmic)
1845 			return key_alloc_2pair(sc, keyix, rxkeyix);
1846 		else
1847 			return key_alloc_pair(sc, keyix, rxkeyix);
1848 	} else {
1849 		return key_alloc_single(sc, keyix, rxkeyix);
1850 	}
1851 }
1852 
1853 /*
1854  * Delete an entry in the key cache allocated by ath_key_alloc.
1855  */
1856 static int
1857 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1858 {
1859 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1860 	struct ath_hal *ah = sc->sc_ah;
1861 	const struct ieee80211_cipher *cip = k->wk_cipher;
1862 	u_int keyix = k->wk_keyix;
1863 
1864 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1865 
1866 	if (!device_has_power(sc->sc_dev)) {
1867 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1868 		    k->wk_keyix);
1869 	}
1870 
1871 	ath_hal_keyreset(ah, keyix);
1872 	/*
1873 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1874 	 */
1875 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1876 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1877 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1878 	if (keyix >= IEEE80211_WEP_NKID) {
1879 		/*
1880 		 * Don't touch keymap entries for global keys so
1881 		 * they are never considered for dynamic allocation.
1882 		 */
1883 		clrbit(sc->sc_keymap, keyix);
1884 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1885 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1886 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1887 			if (sc->sc_splitmic) {
1888 				/* +32 for RX key, +32+64 for RX key MIC */
1889 				clrbit(sc->sc_keymap, keyix+32);
1890 				clrbit(sc->sc_keymap, keyix+32+64);
1891 			}
1892 		}
1893 	}
1894 	return 1;
1895 }
1896 
1897 /*
1898  * Set the key cache contents for the specified key.  Key cache
1899  * slot(s) must already have been allocated by ath_key_alloc.
1900  */
1901 static int
1902 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1903 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1904 {
1905 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1906 
1907 	if (!device_has_power(sc->sc_dev)) {
1908 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1909 		    k->wk_keyix);
1910 	}
1911 	return ath_keyset(sc, k, mac, ic->ic_bss);
1912 }
1913 
1914 /*
1915  * Block/unblock tx+rx processing while a key change is done.
1916  * We assume the caller serializes key management operations
1917  * so we only need to worry about synchronization with other
1918  * uses that originate in the driver.
1919  */
1920 static void
1921 ath_key_update_begin(struct ieee80211com *ic)
1922 {
1923 	struct ifnet *ifp = ic->ic_ifp;
1924 	struct ath_softc *sc = ifp->if_softc;
1925 
1926 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1927 #if 0
1928 	tasklet_disable(&sc->sc_rxtq);
1929 #endif
1930 	sc->sc_flags |= ATH_KEY_UPDATING;
1931 }
1932 
1933 static void
1934 ath_key_update_end(struct ieee80211com *ic)
1935 {
1936 	struct ifnet *ifp = ic->ic_ifp;
1937 	struct ath_softc *sc = ifp->if_softc;
1938 
1939 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1940 	sc->sc_flags &= ~ATH_KEY_UPDATING;
1941 #if 0
1942 	tasklet_enable(&sc->sc_rxtq);
1943 #endif
1944 }
1945 
1946 /*
1947  * Calculate the receive filter according to the
1948  * operating mode and state:
1949  *
1950  * o always accept unicast, broadcast, and multicast traffic
1951  * o maintain current state of phy error reception (the hal
1952  *   may enable phy error frames for noise immunity work)
1953  * o probe request frames are accepted only when operating in
1954  *   hostap, adhoc, or monitor modes
1955  * o enable promiscuous mode according to the interface state
1956  * o accept beacons:
1957  *   - when operating in adhoc mode so the 802.11 layer creates
1958  *     node table entries for peers,
1959  *   - when operating in station mode for collecting rssi data when
1960  *     the station is otherwise quiet, or
1961  *   - when scanning
1962  */
1963 static u_int32_t
1964 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1965 {
1966 	struct ieee80211com *ic = &sc->sc_ic;
1967 	struct ath_hal *ah = sc->sc_ah;
1968 	struct ifnet *ifp = &sc->sc_if;
1969 	u_int32_t rfilt;
1970 
1971 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1972 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1973 	if (ic->ic_opmode != IEEE80211_M_STA)
1974 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1975 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1976 	    (ifp->if_flags & IFF_PROMISC))
1977 		rfilt |= HAL_RX_FILTER_PROM;
1978 	if (ifp->if_flags & IFF_PROMISC)
1979 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1980 	if (ic->ic_opmode == IEEE80211_M_STA ||
1981 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1982 	    state == IEEE80211_S_SCAN)
1983 		rfilt |= HAL_RX_FILTER_BEACON;
1984 	return rfilt;
1985 }
1986 
1987 static void
1988 ath_mode_init(struct ath_softc *sc)
1989 {
1990 	struct ifnet *ifp = &sc->sc_if;
1991 	struct ieee80211com *ic = &sc->sc_ic;
1992 	struct ath_hal *ah = sc->sc_ah;
1993 	struct ether_multi *enm;
1994 	struct ether_multistep estep;
1995 	u_int32_t rfilt, mfilt[2], val;
1996 	int i;
1997 	uint8_t pos;
1998 
1999 	/* configure rx filter */
2000 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
2001 	ath_hal_setrxfilter(ah, rfilt);
2002 
2003 	/* configure operational mode */
2004 	ath_hal_setopmode(ah);
2005 
2006 	/* Write keys to hardware; it may have been powered down. */
2007 	ath_key_update_begin(ic);
2008 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2009 		ath_key_set(ic,
2010 			    &ic->ic_crypto.cs_nw_keys[i],
2011 			    ic->ic_myaddr);
2012 	}
2013 	ath_key_update_end(ic);
2014 
2015 	/*
2016 	 * Handle any link-level address change.  Note that we only
2017 	 * need to force ic_myaddr; any other addresses are handled
2018 	 * as a byproduct of the ifnet code marking the interface
2019 	 * down then up.
2020 	 *
2021 	 * XXX should get from lladdr instead of arpcom but that's more work
2022 	 */
2023 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
2024 	ath_hal_setmac(ah, ic->ic_myaddr);
2025 
2026 	/* calculate and install multicast filter */
2027 	ifp->if_flags &= ~IFF_ALLMULTI;
2028 	mfilt[0] = mfilt[1] = 0;
2029 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
2030 	while (enm != NULL) {
2031 		void *dl;
2032 		/* XXX Punt on ranges. */
2033 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
2034 			mfilt[0] = mfilt[1] = 0xffffffff;
2035 			ifp->if_flags |= IFF_ALLMULTI;
2036 			break;
2037 		}
2038 		dl = enm->enm_addrlo;
2039 		val = LE_READ_4((char *)dl + 0);
2040 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2041 		val = LE_READ_4((char *)dl + 3);
2042 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2043 		pos &= 0x3f;
2044 		mfilt[pos / 32] |= (1 << (pos % 32));
2045 
2046 		ETHER_NEXT_MULTI(estep, enm);
2047 	}
2048 
2049 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2050 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2051 		__func__, rfilt, mfilt[0], mfilt[1]);
2052 }
2053 
2054 /*
2055  * Set the slot time based on the current setting.
2056  */
2057 static void
2058 ath_setslottime(struct ath_softc *sc)
2059 {
2060 	struct ieee80211com *ic = &sc->sc_ic;
2061 	struct ath_hal *ah = sc->sc_ah;
2062 
2063 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2064 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2065 	else
2066 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2067 	sc->sc_updateslot = OK;
2068 }
2069 
2070 /*
2071  * Callback from the 802.11 layer to update the
2072  * slot time based on the current setting.
2073  */
2074 static void
2075 ath_updateslot(struct ifnet *ifp)
2076 {
2077 	struct ath_softc *sc = ifp->if_softc;
2078 	struct ieee80211com *ic = &sc->sc_ic;
2079 
2080 	/*
2081 	 * When not coordinating the BSS, change the hardware
2082 	 * immediately.  For other operation we defer the change
2083 	 * until beacon updates have propagated to the stations.
2084 	 */
2085 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2086 		sc->sc_updateslot = UPDATE;
2087 	else
2088 		ath_setslottime(sc);
2089 }
2090 
2091 /*
2092  * Setup a h/w transmit queue for beacons.
2093  */
2094 static int
2095 ath_beaconq_setup(struct ath_hal *ah)
2096 {
2097 	HAL_TXQ_INFO qi;
2098 
2099 	memset(&qi, 0, sizeof(qi));
2100 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2101 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2102 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2103 	/* NB: for dynamic turbo, don't enable any other interrupts */
2104 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2105 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2106 }
2107 
2108 /*
2109  * Setup the transmit queue parameters for the beacon queue.
2110  */
2111 static int
2112 ath_beaconq_config(struct ath_softc *sc)
2113 {
2114 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2115 	struct ieee80211com *ic = &sc->sc_ic;
2116 	struct ath_hal *ah = sc->sc_ah;
2117 	HAL_TXQ_INFO qi;
2118 
2119 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2120 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2121 		/*
2122 		 * Always burst out beacon and CAB traffic.
2123 		 */
2124 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2125 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2126 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2127 	} else {
2128 		struct wmeParams *wmep =
2129 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2130 		/*
2131 		 * Adhoc mode; important thing is to use 2x cwmin.
2132 		 */
2133 		qi.tqi_aifs = wmep->wmep_aifsn;
2134 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2135 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2136 	}
2137 
2138 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2139 		device_printf(sc->sc_dev, "unable to update parameters for "
2140 			"beacon hardware queue!\n");
2141 		return 0;
2142 	} else {
2143 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2144 		return 1;
2145 	}
2146 #undef ATH_EXPONENT_TO_VALUE
2147 }
2148 
2149 /*
2150  * Allocate and setup an initial beacon frame.
2151  */
2152 static int
2153 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2154 {
2155 	struct ieee80211com *ic = ni->ni_ic;
2156 	struct ath_buf *bf;
2157 	struct mbuf *m;
2158 	int error;
2159 
2160 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2161 	if (bf == NULL) {
2162 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2163 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2164 		return ENOMEM;			/* XXX */
2165 	}
2166 	/*
2167 	 * NB: the beacon data buffer must be 32-bit aligned;
2168 	 * we assume the mbuf routines will return us something
2169 	 * with this alignment (perhaps should assert).
2170 	 */
2171 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2172 	if (m == NULL) {
2173 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2174 			__func__);
2175 		sc->sc_stats.ast_be_nombuf++;
2176 		return ENOMEM;
2177 	}
2178 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2179 				     BUS_DMA_NOWAIT);
2180 	if (error == 0) {
2181 		bf->bf_m = m;
2182 		bf->bf_node = ieee80211_ref_node(ni);
2183 	} else {
2184 		m_freem(m);
2185 	}
2186 	return error;
2187 }
2188 
2189 /*
2190  * Setup the beacon frame for transmit.
2191  */
2192 static void
2193 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2194 {
2195 #define	USE_SHPREAMBLE(_ic) \
2196 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2197 		== IEEE80211_F_SHPREAMBLE)
2198 	struct ieee80211_node *ni = bf->bf_node;
2199 	struct ieee80211com *ic = ni->ni_ic;
2200 	struct mbuf *m = bf->bf_m;
2201 	struct ath_hal *ah = sc->sc_ah;
2202 	struct ath_desc *ds;
2203 	int flags, antenna;
2204 	const HAL_RATE_TABLE *rt;
2205 	u_int8_t rix, rate;
2206 
2207 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2208 		__func__, m, m->m_len);
2209 
2210 	/* setup descriptors */
2211 	ds = bf->bf_desc;
2212 
2213 	flags = HAL_TXDESC_NOACK;
2214 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2215 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2216 		flags |= HAL_TXDESC_VEOL;
2217 		/*
2218 		 * Let hardware handle antenna switching unless
2219 		 * the user has selected a transmit antenna
2220 		 * (sc_txantenna is not 0).
2221 		 */
2222 		antenna = sc->sc_txantenna;
2223 	} else {
2224 		ds->ds_link = 0;
2225 		/*
2226 		 * Switch antenna every 4 beacons, unless the user
2227 		 * has selected a transmit antenna (sc_txantenna
2228 		 * is not 0).
2229 		 *
2230 		 * XXX assumes two antenna
2231 		 */
2232 		if (sc->sc_txantenna == 0)
2233 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2234 		else
2235 			antenna = sc->sc_txantenna;
2236 	}
2237 
2238 	KASSERTMSG(bf->bf_nseg == 1,
2239 		"multi-segment beacon frame; nseg %u", bf->bf_nseg);
2240 	ds->ds_data = bf->bf_segs[0].ds_addr;
2241 	/*
2242 	 * Calculate rate code.
2243 	 * XXX everything at min xmit rate
2244 	 */
2245 	rix = sc->sc_minrateix;
2246 	rt = sc->sc_currates;
2247 	rate = rt->info[rix].rateCode;
2248 	if (USE_SHPREAMBLE(ic))
2249 		rate |= rt->info[rix].shortPreamble;
2250 	ath_hal_setuptxdesc(ah, ds
2251 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2252 		, sizeof(struct ieee80211_frame)/* header length */
2253 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2254 		, ni->ni_txpower		/* txpower XXX */
2255 		, rate, 1			/* series 0 rate/tries */
2256 		, HAL_TXKEYIX_INVALID		/* no encryption */
2257 		, antenna			/* antenna mode */
2258 		, flags				/* no ack, veol for beacons */
2259 		, 0				/* rts/cts rate */
2260 		, 0				/* rts/cts duration */
2261 	);
2262 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2263 	ath_hal_filltxdesc(ah, ds
2264 		, roundup(m->m_len, 4)		/* buffer length */
2265 		, AH_TRUE			/* first segment */
2266 		, AH_TRUE			/* last segment */
2267 		, ds				/* first descriptor */
2268 	);
2269 
2270 	/* NB: The desc swap function becomes void, if descriptor swapping
2271 	 * is not enabled
2272 	 */
2273 	ath_desc_swap(ds);
2274 
2275 #undef USE_SHPREAMBLE
2276 }
2277 
2278 /*
2279  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2280  * frame contents are done as needed and the slot time is
2281  * also adjusted based on current state.
2282  */
2283 static void
2284 ath_beacon_proc(void *arg, int pending)
2285 {
2286 	struct ath_softc *sc = arg;
2287 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2288 	struct ieee80211_node *ni = bf->bf_node;
2289 	struct ieee80211com *ic = ni->ni_ic;
2290 	struct ath_hal *ah = sc->sc_ah;
2291 	struct mbuf *m;
2292 	int ncabq, error, otherant;
2293 
2294 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2295 		__func__, pending);
2296 
2297 	if (ic->ic_opmode == IEEE80211_M_STA ||
2298 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2299 	    bf == NULL || bf->bf_m == NULL) {
2300 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2301 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2302 		return;
2303 	}
2304 	/*
2305 	 * Check if the previous beacon has gone out.  If
2306 	 * not don't try to post another, skip this period
2307 	 * and wait for the next.  Missed beacons indicate
2308 	 * a problem and should not occur.  If we miss too
2309 	 * many consecutive beacons reset the device.
2310 	 */
2311 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2312 		sc->sc_bmisscount++;
2313 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2314 			"%s: missed %u consecutive beacons\n",
2315 			__func__, sc->sc_bmisscount);
2316 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2317 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2318 		return;
2319 	}
2320 	if (sc->sc_bmisscount != 0) {
2321 		DPRINTF(sc, ATH_DEBUG_BEACON,
2322 			"%s: resume beacon xmit after %u misses\n",
2323 			__func__, sc->sc_bmisscount);
2324 		sc->sc_bmisscount = 0;
2325 	}
2326 
2327 	/*
2328 	 * Update dynamic beacon contents.  If this returns
2329 	 * non-zero then we need to remap the memory because
2330 	 * the beacon frame changed size (probably because
2331 	 * of the TIM bitmap).
2332 	 */
2333 	m = bf->bf_m;
2334 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2335 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2336 		/* XXX too conservative? */
2337 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2338 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2339 					     BUS_DMA_NOWAIT);
2340 		if (error != 0) {
2341 			if_printf(&sc->sc_if,
2342 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2343 			    __func__, error);
2344 			return;
2345 		}
2346 	}
2347 
2348 	/*
2349 	 * Handle slot time change when a non-ERP station joins/leaves
2350 	 * an 11g network.  The 802.11 layer notifies us via callback,
2351 	 * we mark updateslot, then wait one beacon before effecting
2352 	 * the change.  This gives associated stations at least one
2353 	 * beacon interval to note the state change.
2354 	 */
2355 	/* XXX locking */
2356 	if (sc->sc_updateslot == UPDATE)
2357 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2358 	else if (sc->sc_updateslot == COMMIT)
2359 		ath_setslottime(sc);		/* commit change to h/w */
2360 
2361 	/*
2362 	 * Check recent per-antenna transmit statistics and flip
2363 	 * the default antenna if noticeably more frames went out
2364 	 * on the non-default antenna.
2365 	 * XXX assumes 2 anntenae
2366 	 */
2367 	otherant = sc->sc_defant & 1 ? 2 : 1;
2368 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2369 		ath_setdefantenna(sc, otherant);
2370 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2371 
2372 	/*
2373 	 * Construct tx descriptor.
2374 	 */
2375 	ath_beacon_setup(sc, bf);
2376 
2377 	/*
2378 	 * Stop any current dma and put the new frame on the queue.
2379 	 * This should never fail since we check above that no frames
2380 	 * are still pending on the queue.
2381 	 */
2382 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2383 		DPRINTF(sc, ATH_DEBUG_ANY,
2384 			"%s: beacon queue %u did not stop?\n",
2385 			__func__, sc->sc_bhalq);
2386 	}
2387 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2388 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2389 
2390 	/*
2391 	 * Enable the CAB queue before the beacon queue to
2392 	 * insure cab frames are triggered by this beacon.
2393 	 */
2394 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2395 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2396 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2397 	ath_hal_txstart(ah, sc->sc_bhalq);
2398 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2399 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2400 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2401 
2402 	sc->sc_stats.ast_be_xmit++;
2403 }
2404 
2405 /*
2406  * Reset the hardware after detecting beacons have stopped.
2407  */
2408 static void
2409 ath_bstuck_proc(void *arg, int pending)
2410 {
2411 	struct ath_softc *sc = arg;
2412 	struct ifnet *ifp = &sc->sc_if;
2413 #ifdef __NetBSD__
2414 	int s;
2415 #endif
2416 
2417 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2418 		sc->sc_bmisscount);
2419 #ifdef __NetBSD__
2420 	s = splnet();
2421 #endif
2422 	ath_reset(ifp);
2423 #ifdef __NetBSD__
2424 	splx(s);
2425 #endif
2426 }
2427 
2428 /*
2429  * Reclaim beacon resources.
2430  */
2431 static void
2432 ath_beacon_free(struct ath_softc *sc)
2433 {
2434 	struct ath_buf *bf;
2435 
2436 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2437 		if (bf->bf_m != NULL) {
2438 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2439 			m_freem(bf->bf_m);
2440 			bf->bf_m = NULL;
2441 		}
2442 		if (bf->bf_node != NULL) {
2443 			ieee80211_free_node(bf->bf_node);
2444 			bf->bf_node = NULL;
2445 		}
2446 	}
2447 }
2448 
2449 /*
2450  * Configure the beacon and sleep timers.
2451  *
2452  * When operating as an AP this resets the TSF and sets
2453  * up the hardware to notify us when we need to issue beacons.
2454  *
2455  * When operating in station mode this sets up the beacon
2456  * timers according to the timestamp of the last received
2457  * beacon and the current TSF, configures PCF and DTIM
2458  * handling, programs the sleep registers so the hardware
2459  * will wakeup in time to receive beacons, and configures
2460  * the beacon miss handling so we'll receive a BMISS
2461  * interrupt when we stop seeing beacons from the AP
2462  * we've associated with.
2463  */
2464 static void
2465 ath_beacon_config(struct ath_softc *sc)
2466 {
2467 #define	TSF_TO_TU(_h,_l) \
2468 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2469 #define	FUDGE	2
2470 	struct ath_hal *ah = sc->sc_ah;
2471 	struct ieee80211com *ic = &sc->sc_ic;
2472 	struct ieee80211_node *ni = ic->ic_bss;
2473 	u_int32_t nexttbtt, intval, tsftu;
2474 	u_int64_t tsf;
2475 
2476 	/* extract tstamp from last beacon and convert to TU */
2477 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2478 			     LE_READ_4(ni->ni_tstamp.data));
2479 	/* NB: the beacon interval is kept internally in TU's */
2480 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2481 	if (nexttbtt == 0)		/* e.g. for ap mode */
2482 		nexttbtt = intval;
2483 	else if (intval)		/* NB: can be 0 for monitor mode */
2484 		nexttbtt = roundup(nexttbtt, intval);
2485 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2486 		__func__, nexttbtt, intval, ni->ni_intval);
2487 	if (ic->ic_opmode == IEEE80211_M_STA) {
2488 		HAL_BEACON_STATE bs;
2489 		int dtimperiod, dtimcount;
2490 		int cfpperiod, cfpcount;
2491 
2492 		/*
2493 		 * Setup dtim and cfp parameters according to
2494 		 * last beacon we received (which may be none).
2495 		 */
2496 		dtimperiod = ni->ni_dtim_period;
2497 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2498 			dtimperiod = 1;
2499 		dtimcount = ni->ni_dtim_count;
2500 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2501 			dtimcount = 0;		/* XXX? */
2502 		cfpperiod = 1;			/* NB: no PCF support yet */
2503 		cfpcount = 0;
2504 		/*
2505 		 * Pull nexttbtt forward to reflect the current
2506 		 * TSF and calculate dtim+cfp state for the result.
2507 		 */
2508 		tsf = ath_hal_gettsf64(ah);
2509 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2510 		do {
2511 			nexttbtt += intval;
2512 			if (--dtimcount < 0) {
2513 				dtimcount = dtimperiod - 1;
2514 				if (--cfpcount < 0)
2515 					cfpcount = cfpperiod - 1;
2516 			}
2517 		} while (nexttbtt < tsftu);
2518 		memset(&bs, 0, sizeof(bs));
2519 		bs.bs_intval = intval;
2520 		bs.bs_nexttbtt = nexttbtt;
2521 		bs.bs_dtimperiod = dtimperiod*intval;
2522 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2523 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2524 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2525 		bs.bs_cfpmaxduration = 0;
2526 #if 0
2527 		/*
2528 		 * The 802.11 layer records the offset to the DTIM
2529 		 * bitmap while receiving beacons; use it here to
2530 		 * enable h/w detection of our AID being marked in
2531 		 * the bitmap vector (to indicate frames for us are
2532 		 * pending at the AP).
2533 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2534 		 * XXX enable based on h/w rev for newer chips
2535 		 */
2536 		bs.bs_timoffset = ni->ni_timoff;
2537 #endif
2538 		/*
2539 		 * Calculate the number of consecutive beacons to miss
2540 		 * before taking a BMISS interrupt.  The configuration
2541 		 * is specified in ms, so we need to convert that to
2542 		 * TU's and then calculate based on the beacon interval.
2543 		 * Note that we clamp the result to at most 10 beacons.
2544 		 */
2545 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2546 		if (bs.bs_bmissthreshold > 10)
2547 			bs.bs_bmissthreshold = 10;
2548 		else if (bs.bs_bmissthreshold <= 0)
2549 			bs.bs_bmissthreshold = 1;
2550 
2551 		/*
2552 		 * Calculate sleep duration.  The configuration is
2553 		 * given in ms.  We insure a multiple of the beacon
2554 		 * period is used.  Also, if the sleep duration is
2555 		 * greater than the DTIM period then it makes senses
2556 		 * to make it a multiple of that.
2557 		 *
2558 		 * XXX fixed at 100ms
2559 		 */
2560 		bs.bs_sleepduration =
2561 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2562 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2563 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2564 
2565 		DPRINTF(sc, ATH_DEBUG_BEACON,
2566 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2567 			, __func__
2568 			, tsf, tsftu
2569 			, bs.bs_intval
2570 			, bs.bs_nexttbtt
2571 			, bs.bs_dtimperiod
2572 			, bs.bs_nextdtim
2573 			, bs.bs_bmissthreshold
2574 			, bs.bs_sleepduration
2575 			, bs.bs_cfpperiod
2576 			, bs.bs_cfpmaxduration
2577 			, bs.bs_cfpnext
2578 			, bs.bs_timoffset
2579 		);
2580 		ath_hal_intrset(ah, 0);
2581 		ath_hal_beacontimers(ah, &bs);
2582 		sc->sc_imask |= HAL_INT_BMISS;
2583 		ath_hal_intrset(ah, sc->sc_imask);
2584 	} else {
2585 		ath_hal_intrset(ah, 0);
2586 		if (nexttbtt == intval)
2587 			intval |= HAL_BEACON_RESET_TSF;
2588 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2589 			/*
2590 			 * In IBSS mode enable the beacon timers but only
2591 			 * enable SWBA interrupts if we need to manually
2592 			 * prepare beacon frames.  Otherwise we use a
2593 			 * self-linked tx descriptor and let the hardware
2594 			 * deal with things.
2595 			 */
2596 			intval |= HAL_BEACON_ENA;
2597 			if (!sc->sc_hasveol)
2598 				sc->sc_imask |= HAL_INT_SWBA;
2599 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2600 				/*
2601 				 * Pull nexttbtt forward to reflect
2602 				 * the current TSF.
2603 				 */
2604 				tsf = ath_hal_gettsf64(ah);
2605 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2606 				do {
2607 					nexttbtt += intval;
2608 				} while (nexttbtt < tsftu);
2609 			}
2610 			ath_beaconq_config(sc);
2611 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2612 			/*
2613 			 * In AP mode we enable the beacon timers and
2614 			 * SWBA interrupts to prepare beacon frames.
2615 			 */
2616 			intval |= HAL_BEACON_ENA;
2617 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2618 			ath_beaconq_config(sc);
2619 		}
2620 		ath_hal_beaconinit(ah, nexttbtt, intval);
2621 		sc->sc_bmisscount = 0;
2622 		ath_hal_intrset(ah, sc->sc_imask);
2623 		/*
2624 		 * When using a self-linked beacon descriptor in
2625 		 * ibss mode load it once here.
2626 		 */
2627 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2628 			ath_beacon_proc(sc, 0);
2629 	}
2630 	sc->sc_syncbeacon = 0;
2631 #undef UNDEF
2632 #undef TSF_TO_TU
2633 }
2634 
2635 static int
2636 ath_descdma_setup(struct ath_softc *sc,
2637 	struct ath_descdma *dd, ath_bufhead *head,
2638 	const char *name, int nbuf, int ndesc)
2639 {
2640 #define	DS2PHYS(_dd, _ds) \
2641 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2642 	struct ifnet *ifp = &sc->sc_if;
2643 	struct ath_desc *ds;
2644 	struct ath_buf *bf;
2645 	int i, bsize, error;
2646 
2647 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2648 	    __func__, name, nbuf, ndesc);
2649 
2650 	dd->dd_name = name;
2651 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2652 
2653 	/*
2654 	 * Setup DMA descriptor area.
2655 	 */
2656 	dd->dd_dmat = sc->sc_dmat;
2657 
2658 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2659 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2660 
2661 	if (error != 0) {
2662 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2663 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2664 		goto fail0;
2665 	}
2666 
2667 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2668 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2669 	if (error != 0) {
2670 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2671 		    nbuf * ndesc, dd->dd_name, error);
2672 		goto fail1;
2673 	}
2674 
2675 	/* allocate descriptors */
2676 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2677 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2678 	if (error != 0) {
2679 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2680 			"error %u\n", dd->dd_name, error);
2681 		goto fail2;
2682 	}
2683 
2684 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2685 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2686 	if (error != 0) {
2687 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2688 			dd->dd_name, error);
2689 		goto fail3;
2690 	}
2691 
2692 	ds = dd->dd_desc;
2693 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2694 	DPRINTF(sc, ATH_DEBUG_RESET,
2695 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2696 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2697 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2698 
2699 	/* allocate rx buffers */
2700 	bsize = sizeof(struct ath_buf) * nbuf;
2701 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2702 	if (bf == NULL) {
2703 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2704 			dd->dd_name, bsize);
2705 		goto fail4;
2706 	}
2707 	dd->dd_bufptr = bf;
2708 
2709 	STAILQ_INIT(head);
2710 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2711 		bf->bf_desc = ds;
2712 		bf->bf_daddr = DS2PHYS(dd, ds);
2713 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2714 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2715 		if (error != 0) {
2716 			if_printf(ifp, "unable to create dmamap for %s "
2717 				"buffer %u, error %u\n", dd->dd_name, i, error);
2718 			ath_descdma_cleanup(sc, dd, head);
2719 			return error;
2720 		}
2721 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2722 	}
2723 	return 0;
2724 fail4:
2725 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2726 fail3:
2727 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2728 fail2:
2729 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2730 fail1:
2731 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2732 fail0:
2733 	memset(dd, 0, sizeof(*dd));
2734 	return error;
2735 #undef DS2PHYS
2736 }
2737 
2738 static void
2739 ath_descdma_cleanup(struct ath_softc *sc,
2740 	struct ath_descdma *dd, ath_bufhead *head)
2741 {
2742 	struct ath_buf *bf;
2743 	struct ieee80211_node *ni;
2744 
2745 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2746 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2747 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2748 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2749 
2750 	STAILQ_FOREACH(bf, head, bf_list) {
2751 		if (bf->bf_m) {
2752 			m_freem(bf->bf_m);
2753 			bf->bf_m = NULL;
2754 		}
2755 		if (bf->bf_dmamap != NULL) {
2756 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2757 			bf->bf_dmamap = NULL;
2758 		}
2759 		ni = bf->bf_node;
2760 		bf->bf_node = NULL;
2761 		if (ni != NULL) {
2762 			/*
2763 			 * Reclaim node reference.
2764 			 */
2765 			ieee80211_free_node(ni);
2766 		}
2767 	}
2768 
2769 	STAILQ_INIT(head);
2770 	free(dd->dd_bufptr, M_ATHDEV);
2771 	memset(dd, 0, sizeof(*dd));
2772 }
2773 
2774 static int
2775 ath_desc_alloc(struct ath_softc *sc)
2776 {
2777 	int error;
2778 
2779 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2780 			"rx", ath_rxbuf, 1);
2781 	if (error != 0)
2782 		return error;
2783 
2784 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2785 			"tx", ath_txbuf, ATH_TXDESC);
2786 	if (error != 0) {
2787 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2788 		return error;
2789 	}
2790 
2791 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2792 			"beacon", 1, 1);
2793 	if (error != 0) {
2794 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2795 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2796 		return error;
2797 	}
2798 	return 0;
2799 }
2800 
2801 static void
2802 ath_desc_free(struct ath_softc *sc)
2803 {
2804 
2805 	if (sc->sc_bdma.dd_desc_len != 0)
2806 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2807 	if (sc->sc_txdma.dd_desc_len != 0)
2808 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2809 	if (sc->sc_rxdma.dd_desc_len != 0)
2810 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2811 }
2812 
2813 static struct ieee80211_node *
2814 ath_node_alloc(struct ieee80211_node_table *nt)
2815 {
2816 	struct ieee80211com *ic = nt->nt_ic;
2817 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2818 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2819 	struct ath_node *an;
2820 
2821 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2822 	if (an == NULL) {
2823 		/* XXX stat+msg */
2824 		return NULL;
2825 	}
2826 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2827 	ath_rate_node_init(sc, an);
2828 
2829 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2830 	return &an->an_node;
2831 }
2832 
2833 static void
2834 ath_node_free(struct ieee80211_node *ni)
2835 {
2836 	struct ieee80211com *ic = ni->ni_ic;
2837         struct ath_softc *sc = ic->ic_ifp->if_softc;
2838 
2839 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2840 
2841 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2842 	sc->sc_node_free(ni);
2843 }
2844 
2845 static u_int8_t
2846 ath_node_getrssi(const struct ieee80211_node *ni)
2847 {
2848 #define	HAL_EP_RND(x, mul) \
2849 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2850 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2851 	int32_t rssi;
2852 
2853 	/*
2854 	 * When only one frame is received there will be no state in
2855 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2856 	 */
2857 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2858 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2859 	else
2860 		rssi = ni->ni_rssi;
2861 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2862 #undef HAL_EP_RND
2863 }
2864 
2865 static int
2866 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2867 {
2868 	struct ath_hal *ah = sc->sc_ah;
2869 	int error;
2870 	struct mbuf *m;
2871 	struct ath_desc *ds;
2872 
2873 	m = bf->bf_m;
2874 	if (m == NULL) {
2875 		/*
2876 		 * NB: by assigning a page to the rx dma buffer we
2877 		 * implicitly satisfy the Atheros requirement that
2878 		 * this buffer be cache-line-aligned and sized to be
2879 		 * multiple of the cache line size.  Not doing this
2880 		 * causes weird stuff to happen (for the 5210 at least).
2881 		 */
2882 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2883 		if (m == NULL) {
2884 			DPRINTF(sc, ATH_DEBUG_ANY,
2885 				"%s: no mbuf/cluster\n", __func__);
2886 			sc->sc_stats.ast_rx_nombuf++;
2887 			return ENOMEM;
2888 		}
2889 		bf->bf_m = m;
2890 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2891 
2892 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2893 					     bf->bf_dmamap, m,
2894 					     BUS_DMA_NOWAIT);
2895 		if (error != 0) {
2896 			DPRINTF(sc, ATH_DEBUG_ANY,
2897 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2898 			    __func__, error);
2899 			sc->sc_stats.ast_rx_busdma++;
2900 			return error;
2901 		}
2902 		KASSERTMSG(bf->bf_nseg == 1,
2903 			"multi-segment packet; nseg %u", bf->bf_nseg);
2904 	}
2905 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2906 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2907 
2908 	/*
2909 	 * Setup descriptors.  For receive we always terminate
2910 	 * the descriptor list with a self-linked entry so we'll
2911 	 * not get overrun under high load (as can happen with a
2912 	 * 5212 when ANI processing enables PHY error frames).
2913 	 *
2914 	 * To insure the last descriptor is self-linked we create
2915 	 * each descriptor as self-linked and add it to the end.  As
2916 	 * each additional descriptor is added the previous self-linked
2917 	 * entry is ``fixed'' naturally.  This should be safe even
2918 	 * if DMA is happening.  When processing RX interrupts we
2919 	 * never remove/process the last, self-linked, entry on the
2920 	 * descriptor list.  This insures the hardware always has
2921 	 * someplace to write a new frame.
2922 	 */
2923 	ds = bf->bf_desc;
2924 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2925 	ds->ds_data = bf->bf_segs[0].ds_addr;
2926 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2927 	ath_hal_setuprxdesc(ah, ds
2928 		, m->m_len		/* buffer size */
2929 		, 0
2930 	);
2931 
2932 	if (sc->sc_rxlink != NULL)
2933 		*sc->sc_rxlink = bf->bf_daddr;
2934 	sc->sc_rxlink = &ds->ds_link;
2935 	return 0;
2936 }
2937 
2938 /*
2939  * Extend 15-bit time stamp from rx descriptor to
2940  * a full 64-bit TSF using the specified TSF.
2941  */
2942 static inline u_int64_t
2943 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2944 {
2945 	if ((tsf & 0x7fff) < rstamp)
2946 		tsf -= 0x8000;
2947 	return ((tsf &~ 0x7fff) | rstamp);
2948 }
2949 
2950 /*
2951  * Intercept management frames to collect beacon rssi data
2952  * and to do ibss merges.
2953  */
2954 static void
2955 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2956 	struct ieee80211_node *ni,
2957 	int subtype, int rssi, u_int32_t rstamp)
2958 {
2959 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2960 
2961 	/*
2962 	 * Call up first so subsequent work can use information
2963 	 * potentially stored in the node (e.g. for ibss merge).
2964 	 */
2965 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2966 	switch (subtype) {
2967 	case IEEE80211_FC0_SUBTYPE_BEACON:
2968 		/* update rssi statistics for use by the hal */
2969 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2970 		if (sc->sc_syncbeacon &&
2971 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2972 			/*
2973 			 * Resync beacon timers using the tsf of the beacon
2974 			 * frame we just received.
2975 			 */
2976 			ath_beacon_config(sc);
2977 		}
2978 		/* fall thru... */
2979 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2980 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2981 		    ic->ic_state == IEEE80211_S_RUN) {
2982 			u_int64_t tsf = ath_extend_tsf(rstamp,
2983 				ath_hal_gettsf64(sc->sc_ah));
2984 
2985 			/*
2986 			 * Handle ibss merge as needed; check the tsf on the
2987 			 * frame before attempting the merge.  The 802.11 spec
2988 			 * says the station should change its bssid to match
2989 			 * the oldest station with the same ssid, where oldest
2990 			 * is determined by the tsf.  Note that hardware
2991 			 * reconfiguration happens through callback to
2992 			 * ath_newstate as the state machine will go from
2993 			 * RUN -> RUN when this happens.
2994 			 */
2995 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2996 				DPRINTF(sc, ATH_DEBUG_STATE,
2997 				    "ibss merge, rstamp %u tsf %ju "
2998 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2999 				    (uintmax_t)ni->ni_tstamp.tsf);
3000 				(void) ieee80211_ibss_merge(ni);
3001 			}
3002 		}
3003 		break;
3004 	}
3005 }
3006 
3007 /*
3008  * Set the default antenna.
3009  */
3010 static void
3011 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3012 {
3013 	struct ath_hal *ah = sc->sc_ah;
3014 
3015 	/* XXX block beacon interrupts */
3016 	ath_hal_setdefantenna(ah, antenna);
3017 	if (sc->sc_defant != antenna)
3018 		sc->sc_stats.ast_ant_defswitch++;
3019 	sc->sc_defant = antenna;
3020 	sc->sc_rxotherant = 0;
3021 }
3022 
3023 static void
3024 ath_handle_micerror(struct ieee80211com *ic,
3025 	struct ieee80211_frame *wh, int keyix)
3026 {
3027 	struct ieee80211_node *ni;
3028 
3029 	/* XXX recheck MIC to deal w/ chips that lie */
3030 	/* XXX discard MIC errors on !data frames */
3031 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
3032 	if (ni != NULL) {
3033 		ieee80211_notify_michael_failure(ic, wh, keyix);
3034 		ieee80211_free_node(ni);
3035 	}
3036 }
3037 
3038 static void
3039 ath_rx_proc(void *arg, int npending)
3040 {
3041 #define	PA2DESC(_sc, _pa) \
3042 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
3043 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3044 	struct ath_softc *sc = arg;
3045 	struct ath_buf *bf;
3046 	struct ieee80211com *ic = &sc->sc_ic;
3047 	struct ifnet *ifp = &sc->sc_if;
3048 	struct ath_hal *ah = sc->sc_ah;
3049 	struct ath_desc *ds;
3050 	struct mbuf *m;
3051 	struct ieee80211_node *ni;
3052 	struct ath_node *an;
3053 	int len, ngood, type;
3054 	u_int phyerr;
3055 	HAL_STATUS status;
3056 	int16_t nf;
3057 	u_int64_t tsf;
3058 	uint8_t rxerr_tap, rxerr_mon;
3059 	NET_LOCK_GIANT_FUNC_INIT();
3060 
3061 	NET_LOCK_GIANT();		/* XXX */
3062 
3063 	rxerr_tap =
3064 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3065 
3066 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3067 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3068 	else if (ifp->if_flags & IFF_PROMISC)
3069 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3070 
3071 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3072 	ngood = 0;
3073 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3074 	tsf = ath_hal_gettsf64(ah);
3075 	do {
3076 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3077 		if (bf == NULL) {		/* NB: shouldn't happen */
3078 			if_printf(ifp, "%s: no buffer!\n", __func__);
3079 			break;
3080 		}
3081 		ds = bf->bf_desc;
3082 		if (ds->ds_link == bf->bf_daddr) {
3083 			/* NB: never process the self-linked entry at the end */
3084 			break;
3085 		}
3086 		m = bf->bf_m;
3087 		if (m == NULL) {		/* NB: shouldn't happen */
3088 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3089 			break;
3090 		}
3091 		/* XXX sync descriptor memory */
3092 		/*
3093 		 * Must provide the virtual address of the current
3094 		 * descriptor, the physical address, and the virtual
3095 		 * address of the next descriptor in the h/w chain.
3096 		 * This allows the HAL to look ahead to see if the
3097 		 * hardware is done with a descriptor by checking the
3098 		 * done bit in the following descriptor and the address
3099 		 * of the current descriptor the DMA engine is working
3100 		 * on.  All this is necessary because of our use of
3101 		 * a self-linked list to avoid rx overruns.
3102 		 */
3103 		status = ath_hal_rxprocdesc(ah, ds,
3104 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3105 				&ds->ds_rxstat);
3106 #ifdef AR_DEBUG
3107 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3108 			ath_printrxbuf(bf, status == HAL_OK);
3109 #endif
3110 		if (status == HAL_EINPROGRESS)
3111 			break;
3112 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3113 		if (ds->ds_rxstat.rs_more) {
3114 			/*
3115 			 * Frame spans multiple descriptors; this
3116 			 * cannot happen yet as we don't support
3117 			 * jumbograms.  If not in monitor mode,
3118 			 * discard the frame.
3119 			 */
3120 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3121 				sc->sc_stats.ast_rx_toobig++;
3122 				goto rx_next;
3123 			}
3124 			/* fall thru for monitor mode handling... */
3125 		} else if (ds->ds_rxstat.rs_status != 0) {
3126 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3127 				sc->sc_stats.ast_rx_crcerr++;
3128 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3129 				sc->sc_stats.ast_rx_fifoerr++;
3130 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3131 				sc->sc_stats.ast_rx_phyerr++;
3132 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3133 				sc->sc_stats.ast_rx_phy[phyerr]++;
3134 				goto rx_next;
3135 			}
3136 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3137 				/*
3138 				 * Decrypt error.  If the error occurred
3139 				 * because there was no hardware key, then
3140 				 * let the frame through so the upper layers
3141 				 * can process it.  This is necessary for 5210
3142 				 * parts which have no way to setup a ``clear''
3143 				 * key cache entry.
3144 				 *
3145 				 * XXX do key cache faulting
3146 				 */
3147 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3148 					goto rx_accept;
3149 				sc->sc_stats.ast_rx_badcrypt++;
3150 			}
3151 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3152 				sc->sc_stats.ast_rx_badmic++;
3153 				/*
3154 				 * Do minimal work required to hand off
3155 				 * the 802.11 header for notifcation.
3156 				 */
3157 				/* XXX frag's and qos frames */
3158 				len = ds->ds_rxstat.rs_datalen;
3159 				if (len >= sizeof (struct ieee80211_frame)) {
3160 					bus_dmamap_sync(sc->sc_dmat,
3161 					    bf->bf_dmamap,
3162 					    0, bf->bf_dmamap->dm_mapsize,
3163 					    BUS_DMASYNC_POSTREAD);
3164 					ath_handle_micerror(ic,
3165 					    mtod(m, struct ieee80211_frame *),
3166 					    sc->sc_splitmic ?
3167 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3168 				}
3169 			}
3170 			ifp->if_ierrors++;
3171 			/*
3172 			 * Reject error frames, we normally don't want
3173 			 * to see them in monitor mode (in monitor mode
3174 			 * allow through packets that have crypto problems).
3175 			 */
3176 
3177 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3178 				goto rx_next;
3179 		}
3180 rx_accept:
3181 		/*
3182 		 * Sync and unmap the frame.  At this point we're
3183 		 * committed to passing the mbuf somewhere so clear
3184 		 * bf_m; this means a new sk_buff must be allocated
3185 		 * when the rx descriptor is setup again to receive
3186 		 * another frame.
3187 		 */
3188 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3189 		    0, bf->bf_dmamap->dm_mapsize,
3190 		    BUS_DMASYNC_POSTREAD);
3191 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3192 		bf->bf_m = NULL;
3193 
3194 		m_set_rcvif(m, ifp);
3195 		len = ds->ds_rxstat.rs_datalen;
3196 		m->m_pkthdr.len = m->m_len = len;
3197 
3198 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3199 
3200 		if (sc->sc_drvbpf) {
3201 			u_int8_t rix;
3202 
3203 			/*
3204 			 * Discard anything shorter than an ack or cts.
3205 			 */
3206 			if (len < IEEE80211_ACK_LEN) {
3207 				DPRINTF(sc, ATH_DEBUG_RECV,
3208 					"%s: runt packet %d\n",
3209 					__func__, len);
3210 				sc->sc_stats.ast_rx_tooshort++;
3211 				m_freem(m);
3212 				goto rx_next;
3213 			}
3214 			rix = ds->ds_rxstat.rs_rate;
3215 			sc->sc_rx_th.wr_tsf = htole64(
3216 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3217 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3218 			if (ds->ds_rxstat.rs_status &
3219 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3220 				sc->sc_rx_th.wr_flags |=
3221 				    IEEE80211_RADIOTAP_F_BADFCS;
3222 			}
3223 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3224 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3225 			sc->sc_rx_th.wr_antnoise = nf;
3226 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3227 
3228 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3229 			    sc->sc_rx_th_len, m, BPF_D_IN);
3230 		}
3231 
3232 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3233 			m_freem(m);
3234 			goto rx_next;
3235 		}
3236 		/*
3237 		 * From this point on we assume the frame is at least
3238 		 * as large as ieee80211_frame_min; verify that.
3239 		 */
3240 		if (len < IEEE80211_MIN_LEN) {
3241 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3242 				__func__, len);
3243 			sc->sc_stats.ast_rx_tooshort++;
3244 			m_freem(m);
3245 			goto rx_next;
3246 		}
3247 
3248 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3249 			ieee80211_dump_pkt(mtod(m, void *), len,
3250 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3251 				   ds->ds_rxstat.rs_rssi);
3252 		}
3253 
3254 		m_adj(m, -IEEE80211_CRC_LEN);
3255 
3256 		/*
3257 		 * Locate the node for sender, track state, and then
3258 		 * pass the (referenced) node up to the 802.11 layer
3259 		 * for its use.
3260 		 */
3261 		ni = ieee80211_find_rxnode_withkey(ic,
3262 			mtod(m, const struct ieee80211_frame_min *),
3263 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3264 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3265 		/*
3266 		 * Track rx rssi and do any rx antenna management.
3267 		 */
3268 		an = ATH_NODE(ni);
3269 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3270 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3271 		/*
3272 		 * Send frame up for processing.
3273 		 */
3274 		type = ieee80211_input(ic, m, ni,
3275 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3276 		ieee80211_free_node(ni);
3277 		if (sc->sc_diversity) {
3278 			/*
3279 			 * When using fast diversity, change the default rx
3280 			 * antenna if diversity chooses the other antenna 3
3281 			 * times in a row.
3282 			 */
3283 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3284 				if (++sc->sc_rxotherant >= 3)
3285 					ath_setdefantenna(sc,
3286 						ds->ds_rxstat.rs_antenna);
3287 			} else
3288 				sc->sc_rxotherant = 0;
3289 		}
3290 		if (sc->sc_softled) {
3291 			/*
3292 			 * Blink for any data frame.  Otherwise do a
3293 			 * heartbeat-style blink when idle.  The latter
3294 			 * is mainly for station mode where we depend on
3295 			 * periodic beacon frames to trigger the poll event.
3296 			 */
3297 			if (type == IEEE80211_FC0_TYPE_DATA) {
3298 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3299 				ath_led_event(sc, ATH_LED_RX);
3300 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3301 				ath_led_event(sc, ATH_LED_POLL);
3302 		}
3303 		/*
3304 		 * Arrange to update the last rx timestamp only for
3305 		 * frames from our ap when operating in station mode.
3306 		 * This assumes the rx key is always setup when associated.
3307 		 */
3308 		if (ic->ic_opmode == IEEE80211_M_STA &&
3309 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3310 			ngood++;
3311 rx_next:
3312 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3313 	} while (ath_rxbuf_init(sc, bf) == 0);
3314 
3315 	/* rx signal state monitoring */
3316 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3317 #if 0
3318 	if (ath_hal_radar_event(ah))
3319 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3320 #endif
3321 	if (ngood)
3322 		sc->sc_lastrx = tsf;
3323 
3324 #ifdef __NetBSD__
3325 	/* XXX Why isn't this necessary in FreeBSD? */
3326 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3327 		ath_start(ifp);
3328 #endif /* __NetBSD__ */
3329 
3330 	NET_UNLOCK_GIANT();		/* XXX */
3331 #undef PA2DESC
3332 }
3333 
3334 /*
3335  * Setup a h/w transmit queue.
3336  */
3337 static struct ath_txq *
3338 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3339 {
3340 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3341 	struct ath_hal *ah = sc->sc_ah;
3342 	HAL_TXQ_INFO qi;
3343 	int qnum;
3344 
3345 	memset(&qi, 0, sizeof(qi));
3346 	qi.tqi_subtype = subtype;
3347 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3348 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3349 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3350 	/*
3351 	 * Enable interrupts only for EOL and DESC conditions.
3352 	 * We mark tx descriptors to receive a DESC interrupt
3353 	 * when a tx queue gets deep; otherwise waiting for the
3354 	 * EOL to reap descriptors.  Note that this is done to
3355 	 * reduce interrupt load and this only defers reaping
3356 	 * descriptors, never transmitting frames.  Aside from
3357 	 * reducing interrupts this also permits more concurrency.
3358 	 * The only potential downside is if the tx queue backs
3359 	 * up in which case the top half of the kernel may backup
3360 	 * due to a lack of tx descriptors.
3361 	 */
3362 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3363 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3364 	if (qnum == -1) {
3365 		/*
3366 		 * NB: don't print a message, this happens
3367 		 * normally on parts with too few tx queues
3368 		 */
3369 		return NULL;
3370 	}
3371 	if (qnum >= N(sc->sc_txq)) {
3372 		device_printf(sc->sc_dev,
3373 			"hal qnum %u out of range, max %zu!\n",
3374 			qnum, N(sc->sc_txq));
3375 		ath_hal_releasetxqueue(ah, qnum);
3376 		return NULL;
3377 	}
3378 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3379 		struct ath_txq *txq = &sc->sc_txq[qnum];
3380 
3381 		txq->axq_qnum = qnum;
3382 		txq->axq_depth = 0;
3383 		txq->axq_intrcnt = 0;
3384 		txq->axq_link = NULL;
3385 		STAILQ_INIT(&txq->axq_q);
3386 		ATH_TXQ_LOCK_INIT(sc, txq);
3387 		sc->sc_txqsetup |= 1<<qnum;
3388 	}
3389 	return &sc->sc_txq[qnum];
3390 #undef N
3391 }
3392 
3393 /*
3394  * Setup a hardware data transmit queue for the specified
3395  * access control.  The hal may not support all requested
3396  * queues in which case it will return a reference to a
3397  * previously setup queue.  We record the mapping from ac's
3398  * to h/w queues for use by ath_tx_start and also track
3399  * the set of h/w queues being used to optimize work in the
3400  * transmit interrupt handler and related routines.
3401  */
3402 static int
3403 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3404 {
3405 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3406 	struct ath_txq *txq;
3407 
3408 	if (ac >= N(sc->sc_ac2q)) {
3409 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3410 			ac, N(sc->sc_ac2q));
3411 		return 0;
3412 	}
3413 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3414 	if (txq != NULL) {
3415 		sc->sc_ac2q[ac] = txq;
3416 		return 1;
3417 	} else
3418 		return 0;
3419 #undef N
3420 }
3421 
3422 /*
3423  * Update WME parameters for a transmit queue.
3424  */
3425 static int
3426 ath_txq_update(struct ath_softc *sc, int ac)
3427 {
3428 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3429 #define	ATH_TXOP_TO_US(v)		(v<<5)
3430 	struct ieee80211com *ic = &sc->sc_ic;
3431 	struct ath_txq *txq = sc->sc_ac2q[ac];
3432 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3433 	struct ath_hal *ah = sc->sc_ah;
3434 	HAL_TXQ_INFO qi;
3435 
3436 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3437 	qi.tqi_aifs = wmep->wmep_aifsn;
3438 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3439 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3440 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3441 
3442 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3443 		device_printf(sc->sc_dev, "unable to update hardware queue "
3444 			"parameters for %s traffic!\n",
3445 			ieee80211_wme_acnames[ac]);
3446 		return 0;
3447 	} else {
3448 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3449 		return 1;
3450 	}
3451 #undef ATH_TXOP_TO_US
3452 #undef ATH_EXPONENT_TO_VALUE
3453 }
3454 
3455 /*
3456  * Callback from the 802.11 layer to update WME parameters.
3457  */
3458 static int
3459 ath_wme_update(struct ieee80211com *ic)
3460 {
3461 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3462 
3463 	return !ath_txq_update(sc, WME_AC_BE) ||
3464 	    !ath_txq_update(sc, WME_AC_BK) ||
3465 	    !ath_txq_update(sc, WME_AC_VI) ||
3466 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3467 }
3468 
3469 /*
3470  * Reclaim resources for a setup queue.
3471  */
3472 static void
3473 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3474 {
3475 
3476 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3477 	ATH_TXQ_LOCK_DESTROY(txq);
3478 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3479 }
3480 
3481 /*
3482  * Reclaim all tx queue resources.
3483  */
3484 static void
3485 ath_tx_cleanup(struct ath_softc *sc)
3486 {
3487 	int i;
3488 
3489 	ATH_TXBUF_LOCK_DESTROY(sc);
3490 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3491 		if (ATH_TXQ_SETUP(sc, i))
3492 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3493 }
3494 
3495 /*
3496  * Defragment an mbuf chain, returning at most maxfrags separate
3497  * mbufs+clusters.  If this is not possible NULL is returned and
3498  * the original mbuf chain is left in its present (potentially
3499  * modified) state.  We use two techniques: collapsing consecutive
3500  * mbufs and replacing consecutive mbufs by a cluster.
3501  */
3502 static struct mbuf *
3503 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3504 {
3505 	struct mbuf *m, *n, *n2, **prev;
3506 	u_int curfrags;
3507 
3508 	/*
3509 	 * Calculate the current number of frags.
3510 	 */
3511 	curfrags = 0;
3512 	for (m = m0; m != NULL; m = m->m_next)
3513 		curfrags++;
3514 	/*
3515 	 * First, try to collapse mbufs.  Note that we always collapse
3516 	 * towards the front so we don't need to deal with moving the
3517 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3518 	 * less data than the following.
3519 	 */
3520 	m = m0;
3521 again:
3522 	for (;;) {
3523 		n = m->m_next;
3524 		if (n == NULL)
3525 			break;
3526 		if (n->m_len < M_TRAILINGSPACE(m)) {
3527 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3528 				n->m_len);
3529 			m->m_len += n->m_len;
3530 			m->m_next = n->m_next;
3531 			m_free(n);
3532 			if (--curfrags <= maxfrags)
3533 				return m0;
3534 		} else
3535 			m = n;
3536 	}
3537 	KASSERTMSG(maxfrags > 1,
3538 		"maxfrags %u, but normal collapse failed", maxfrags);
3539 	/*
3540 	 * Collapse consecutive mbufs to a cluster.
3541 	 */
3542 	prev = &m0->m_next;		/* NB: not the first mbuf */
3543 	while ((n = *prev) != NULL) {
3544 		if ((n2 = n->m_next) != NULL &&
3545 		    n->m_len + n2->m_len < MCLBYTES) {
3546 			m = m_getcl(how, MT_DATA, 0);
3547 			if (m == NULL)
3548 				goto bad;
3549 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3550 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3551 				n2->m_len);
3552 			m->m_len = n->m_len + n2->m_len;
3553 			m->m_next = n2->m_next;
3554 			*prev = m;
3555 			m_free(n);
3556 			m_free(n2);
3557 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3558 				return m0;
3559 			/*
3560 			 * Still not there, try the normal collapse
3561 			 * again before we allocate another cluster.
3562 			 */
3563 			goto again;
3564 		}
3565 		prev = &n->m_next;
3566 	}
3567 	/*
3568 	 * No place where we can collapse to a cluster; punt.
3569 	 * This can occur if, for example, you request 2 frags
3570 	 * but the packet requires that both be clusters (we
3571 	 * never reallocate the first mbuf to avoid moving the
3572 	 * packet header).
3573 	 */
3574 bad:
3575 	return NULL;
3576 }
3577 
3578 /*
3579  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3580  */
3581 static int
3582 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3583 {
3584 	int i;
3585 
3586 	for (i = 0; i < rt->rateCount; i++)
3587 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3588 			return i;
3589 	return 0;		/* NB: lowest rate */
3590 }
3591 
3592 static void
3593 ath_freetx(struct mbuf *m)
3594 {
3595 	struct mbuf *next;
3596 
3597 	do {
3598 		next = m->m_nextpkt;
3599 		m->m_nextpkt = NULL;
3600 		m_freem(m);
3601 	} while ((m = next) != NULL);
3602 }
3603 
3604 static int
3605 deduct_pad_bytes(int len, int hdrlen)
3606 {
3607 	/* XXX I am suspicious that this code, which I extracted
3608 	 * XXX from ath_tx_start() for reuse, does the right thing.
3609 	 */
3610 	return len - (hdrlen & 3);
3611 }
3612 
3613 static int
3614 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3615     struct mbuf *m0)
3616 {
3617 	struct ieee80211com *ic = &sc->sc_ic;
3618 	struct ath_hal *ah = sc->sc_ah;
3619 	struct ifnet *ifp = &sc->sc_if;
3620 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3621 	int i, error, iswep, ismcast, isfrag, ismrr;
3622 	int keyix, hdrlen, pktlen, try0;
3623 	u_int8_t rix, txrate, ctsrate;
3624 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3625 	struct ath_desc *ds, *ds0;
3626 	struct ath_txq *txq;
3627 	struct ieee80211_frame *wh;
3628 	u_int subtype, flags, ctsduration;
3629 	HAL_PKT_TYPE atype;
3630 	const HAL_RATE_TABLE *rt;
3631 	HAL_BOOL shortPreamble;
3632 	struct ath_node *an;
3633 	struct mbuf *m;
3634 	u_int pri;
3635 
3636 	wh = mtod(m0, struct ieee80211_frame *);
3637 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3638 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3639 	isfrag = m0->m_flags & M_FRAG;
3640 	hdrlen = ieee80211_anyhdrsize(wh);
3641 	/*
3642 	 * Packet length must not include any
3643 	 * pad bytes; deduct them here.
3644 	 */
3645 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3646 
3647 	if (iswep) {
3648 		const struct ieee80211_cipher *cip;
3649 		struct ieee80211_key *k;
3650 
3651 		/*
3652 		 * Construct the 802.11 header+trailer for an encrypted
3653 		 * frame. The only reason this can fail is because of an
3654 		 * unknown or unsupported cipher/key type.
3655 		 */
3656 		k = ieee80211_crypto_encap(ic, ni, m0);
3657 		if (k == NULL) {
3658 			/*
3659 			 * This can happen when the key is yanked after the
3660 			 * frame was queued.  Just discard the frame; the
3661 			 * 802.11 layer counts failures and provides
3662 			 * debugging/diagnostics.
3663 			 */
3664 			ath_freetx(m0);
3665 			return EIO;
3666 		}
3667 		/*
3668 		 * Adjust the packet + header lengths for the crypto
3669 		 * additions and calculate the h/w key index.  When
3670 		 * a s/w mic is done the frame will have had any mic
3671 		 * added to it prior to entry so m0->m_pkthdr.len above will
3672 		 * account for it. Otherwise we need to add it to the
3673 		 * packet length.
3674 		 */
3675 		cip = k->wk_cipher;
3676 		hdrlen += cip->ic_header;
3677 		pktlen += cip->ic_header + cip->ic_trailer;
3678 		/* NB: frags always have any TKIP MIC done in s/w */
3679 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3680 			pktlen += cip->ic_miclen;
3681 		keyix = k->wk_keyix;
3682 
3683 		/* packet header may have moved, reset our local pointer */
3684 		wh = mtod(m0, struct ieee80211_frame *);
3685 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3686 		/*
3687 		 * Use station key cache slot, if assigned.
3688 		 */
3689 		keyix = ni->ni_ucastkey.wk_keyix;
3690 		if (keyix == IEEE80211_KEYIX_NONE)
3691 			keyix = HAL_TXKEYIX_INVALID;
3692 	} else
3693 		keyix = HAL_TXKEYIX_INVALID;
3694 
3695 	pktlen += IEEE80211_CRC_LEN;
3696 
3697 	/*
3698 	 * Load the DMA map so any coalescing is done.  This
3699 	 * also calculates the number of descriptors we need.
3700 	 */
3701 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3702 				     BUS_DMA_NOWAIT);
3703 	if (error == EFBIG) {
3704 		/* XXX packet requires too many descriptors */
3705 		bf->bf_nseg = ATH_TXDESC+1;
3706 	} else if (error != 0) {
3707 		sc->sc_stats.ast_tx_busdma++;
3708 		ath_freetx(m0);
3709 		return error;
3710 	}
3711 	/*
3712 	 * Discard null packets and check for packets that
3713 	 * require too many TX descriptors.  We try to convert
3714 	 * the latter to a cluster.
3715 	 */
3716 	if (error == EFBIG) {		/* too many desc's, linearize */
3717 		sc->sc_stats.ast_tx_linear++;
3718 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3719 		if (m == NULL) {
3720 			ath_freetx(m0);
3721 			sc->sc_stats.ast_tx_nombuf++;
3722 			return ENOMEM;
3723 		}
3724 		m0 = m;
3725 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3726 					     BUS_DMA_NOWAIT);
3727 		if (error != 0) {
3728 			sc->sc_stats.ast_tx_busdma++;
3729 			ath_freetx(m0);
3730 			return error;
3731 		}
3732 		KASSERTMSG(bf->bf_nseg <= ATH_TXDESC,
3733 		    "too many segments after defrag; nseg %u", bf->bf_nseg);
3734 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3735 		sc->sc_stats.ast_tx_nodata++;
3736 		ath_freetx(m0);
3737 		return EIO;
3738 	}
3739 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3740 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3741             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3742 	bf->bf_m = m0;
3743 	bf->bf_node = ni;			/* NB: held reference */
3744 
3745 	/* setup descriptors */
3746 	ds = bf->bf_desc;
3747 	rt = sc->sc_currates;
3748 	KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
3749 
3750 	/*
3751 	 * NB: the 802.11 layer marks whether or not we should
3752 	 * use short preamble based on the current mode and
3753 	 * negotiated parameters.
3754 	 */
3755 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3756 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3757 		shortPreamble = AH_TRUE;
3758 		sc->sc_stats.ast_tx_shortpre++;
3759 	} else {
3760 		shortPreamble = AH_FALSE;
3761 	}
3762 
3763 	an = ATH_NODE(ni);
3764 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3765 	ismrr = 0;				/* default no multi-rate retry*/
3766 	/*
3767 	 * Calculate Atheros packet type from IEEE80211 packet header,
3768 	 * setup for rate calculations, and select h/w transmit queue.
3769 	 */
3770 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3771 	case IEEE80211_FC0_TYPE_MGT:
3772 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3773 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3774 			atype = HAL_PKT_TYPE_BEACON;
3775 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3776 			atype = HAL_PKT_TYPE_PROBE_RESP;
3777 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3778 			atype = HAL_PKT_TYPE_ATIM;
3779 		else
3780 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3781 		rix = sc->sc_minrateix;
3782 		txrate = rt->info[rix].rateCode;
3783 		if (shortPreamble)
3784 			txrate |= rt->info[rix].shortPreamble;
3785 		try0 = ATH_TXMGTTRY;
3786 		/* NB: force all management frames to highest queue */
3787 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3788 			/* NB: force all management frames to highest queue */
3789 			pri = WME_AC_VO;
3790 		} else
3791 			pri = WME_AC_BE;
3792 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3793 		break;
3794 	case IEEE80211_FC0_TYPE_CTL:
3795 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3796 		rix = sc->sc_minrateix;
3797 		txrate = rt->info[rix].rateCode;
3798 		if (shortPreamble)
3799 			txrate |= rt->info[rix].shortPreamble;
3800 		try0 = ATH_TXMGTTRY;
3801 		/* NB: force all ctl frames to highest queue */
3802 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3803 			/* NB: force all ctl frames to highest queue */
3804 			pri = WME_AC_VO;
3805 		} else
3806 			pri = WME_AC_BE;
3807 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3808 		break;
3809 	case IEEE80211_FC0_TYPE_DATA:
3810 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3811 		/*
3812 		 * Data frames: multicast frames go out at a fixed rate,
3813 		 * otherwise consult the rate control module for the
3814 		 * rate to use.
3815 		 */
3816 		if (ismcast) {
3817 			/*
3818 			 * Check mcast rate setting in case it's changed.
3819 			 * XXX move out of fastpath
3820 			 */
3821 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3822 				sc->sc_mcastrix =
3823 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3824 				sc->sc_mcastrate = ic->ic_mcast_rate;
3825 			}
3826 			rix = sc->sc_mcastrix;
3827 			txrate = rt->info[rix].rateCode;
3828 			try0 = 1;
3829 		} else {
3830 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3831 				&rix, &try0, &txrate);
3832 			sc->sc_txrate = txrate;		/* for LED blinking */
3833 			if (try0 != ATH_TXMAXTRY)
3834 				ismrr = 1;
3835 		}
3836 		pri = M_WME_GETAC(m0);
3837 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3838 			flags |= HAL_TXDESC_NOACK;
3839 		break;
3840 	default:
3841 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3842 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3843 		/* XXX statistic */
3844 		ath_freetx(m0);
3845 		return EIO;
3846 	}
3847 	txq = sc->sc_ac2q[pri];
3848 
3849 	/*
3850 	 * When servicing one or more stations in power-save mode
3851 	 * multicast frames must be buffered until after the beacon.
3852 	 * We use the CAB queue for that.
3853 	 */
3854 	if (ismcast && ic->ic_ps_sta) {
3855 		txq = sc->sc_cabq;
3856 		/* XXX? more bit in 802.11 frame header */
3857 	}
3858 
3859 	/*
3860 	 * Calculate miscellaneous flags.
3861 	 */
3862 	if (ismcast) {
3863 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3864 	} else if (pktlen > ic->ic_rtsthreshold) {
3865 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3866 		cix = rt->info[rix].controlRate;
3867 		sc->sc_stats.ast_tx_rts++;
3868 	}
3869 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3870 		sc->sc_stats.ast_tx_noack++;
3871 
3872 	/*
3873 	 * If 802.11g protection is enabled, determine whether
3874 	 * to use RTS/CTS or just CTS.  Note that this is only
3875 	 * done for OFDM unicast frames.
3876 	 */
3877 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3878 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3879 	    (flags & HAL_TXDESC_NOACK) == 0) {
3880 		/* XXX fragments must use CCK rates w/ protection */
3881 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3882 			flags |= HAL_TXDESC_RTSENA;
3883 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3884 			flags |= HAL_TXDESC_CTSENA;
3885 		if (isfrag) {
3886 			/*
3887 			 * For frags it would be desirable to use the
3888 			 * highest CCK rate for RTS/CTS.  But stations
3889 			 * farther away may detect it at a lower CCK rate
3890 			 * so use the configured protection rate instead
3891 			 * (for now).
3892 			 */
3893 			cix = rt->info[sc->sc_protrix].controlRate;
3894 		} else
3895 			cix = rt->info[sc->sc_protrix].controlRate;
3896 		sc->sc_stats.ast_tx_protect++;
3897 	}
3898 
3899 	/*
3900 	 * Calculate duration.  This logically belongs in the 802.11
3901 	 * layer but it lacks sufficient information to calculate it.
3902 	 */
3903 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3904 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3905 		u_int16_t dur;
3906 		/*
3907 		 * XXX not right with fragmentation.
3908 		 */
3909 		if (shortPreamble)
3910 			dur = rt->info[rix].spAckDuration;
3911 		else
3912 			dur = rt->info[rix].lpAckDuration;
3913 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3914 			dur += dur;             /* additional SIFS+ACK */
3915 			KASSERTMSG(m0->m_nextpkt != NULL, "no fragment");
3916 			/*
3917 			 * Include the size of next fragment so NAV is
3918 			 * updated properly.  The last fragment uses only
3919 			 * the ACK duration
3920 			 */
3921 			dur += ath_hal_computetxtime(ah, rt,
3922 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3923 			        hdrlen) -
3924 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3925 			    rix, shortPreamble);
3926 		}
3927 		if (isfrag) {
3928 			/*
3929 			 * Force hardware to use computed duration for next
3930 			 * fragment by disabling multi-rate retry which updates
3931 			 * duration based on the multi-rate duration table.
3932 			 */
3933 			try0 = ATH_TXMAXTRY;
3934 		}
3935 		*(u_int16_t *)wh->i_dur = htole16(dur);
3936 	}
3937 
3938 	/*
3939 	 * Calculate RTS/CTS rate and duration if needed.
3940 	 */
3941 	ctsduration = 0;
3942 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3943 		/*
3944 		 * CTS transmit rate is derived from the transmit rate
3945 		 * by looking in the h/w rate table.  We must also factor
3946 		 * in whether or not a short preamble is to be used.
3947 		 */
3948 		/* NB: cix is set above where RTS/CTS is enabled */
3949 		KASSERTMSG(cix != 0xff, "cix not setup");
3950 		ctsrate = rt->info[cix].rateCode;
3951 		/*
3952 		 * Compute the transmit duration based on the frame
3953 		 * size and the size of an ACK frame.  We call into the
3954 		 * HAL to do the computation since it depends on the
3955 		 * characteristics of the actual PHY being used.
3956 		 *
3957 		 * NB: CTS is assumed the same size as an ACK so we can
3958 		 *     use the precalculated ACK durations.
3959 		 */
3960 		if (shortPreamble) {
3961 			ctsrate |= rt->info[cix].shortPreamble;
3962 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3963 				ctsduration += rt->info[cix].spAckDuration;
3964 			ctsduration += ath_hal_computetxtime(ah,
3965 				rt, pktlen, rix, AH_TRUE);
3966 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3967 				ctsduration += rt->info[rix].spAckDuration;
3968 		} else {
3969 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3970 				ctsduration += rt->info[cix].lpAckDuration;
3971 			ctsduration += ath_hal_computetxtime(ah,
3972 				rt, pktlen, rix, AH_FALSE);
3973 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3974 				ctsduration += rt->info[rix].lpAckDuration;
3975 		}
3976 		/*
3977 		 * Must disable multi-rate retry when using RTS/CTS.
3978 		 */
3979 		ismrr = 0;
3980 		try0 = ATH_TXMGTTRY;		/* XXX */
3981 	} else
3982 		ctsrate = 0;
3983 
3984 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3985 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3986 			sc->sc_hwmap[txrate].ieeerate, -1);
3987 	bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
3988 	if (sc->sc_drvbpf) {
3989 		u_int64_t tsf = ath_hal_gettsf64(ah);
3990 
3991 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3992 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3993 		if (iswep)
3994 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3995 		if (isfrag)
3996 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3997 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3998 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3999 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4000 
4001 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0,
4002 		    BPF_D_OUT);
4003 	}
4004 
4005 	/*
4006 	 * Determine if a tx interrupt should be generated for
4007 	 * this descriptor.  We take a tx interrupt to reap
4008 	 * descriptors when the h/w hits an EOL condition or
4009 	 * when the descriptor is specifically marked to generate
4010 	 * an interrupt.  We periodically mark descriptors in this
4011 	 * way to insure timely replenishing of the supply needed
4012 	 * for sending frames.  Defering interrupts reduces system
4013 	 * load and potentially allows more concurrent work to be
4014 	 * done but if done to aggressively can cause senders to
4015 	 * backup.
4016 	 *
4017 	 * NB: use >= to deal with sc_txintrperiod changing
4018 	 *     dynamically through sysctl.
4019 	 */
4020 	if (flags & HAL_TXDESC_INTREQ) {
4021 		txq->axq_intrcnt = 0;
4022 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4023 		flags |= HAL_TXDESC_INTREQ;
4024 		txq->axq_intrcnt = 0;
4025 	}
4026 
4027 	/*
4028 	 * Formulate first tx descriptor with tx controls.
4029 	 */
4030 	/* XXX check return value? */
4031 	ath_hal_setuptxdesc(ah, ds
4032 		, pktlen		/* packet length */
4033 		, hdrlen		/* header length */
4034 		, atype			/* Atheros packet type */
4035 		, ni->ni_txpower	/* txpower */
4036 		, txrate, try0		/* series 0 rate/tries */
4037 		, keyix			/* key cache index */
4038 		, sc->sc_txantenna	/* antenna mode */
4039 		, flags			/* flags */
4040 		, ctsrate		/* rts/cts rate */
4041 		, ctsduration		/* rts/cts duration */
4042 	);
4043 	bf->bf_flags = flags;
4044 	/*
4045 	 * Setup the multi-rate retry state only when we're
4046 	 * going to use it.  This assumes ath_hal_setuptxdesc
4047 	 * initializes the descriptors (so we don't have to)
4048 	 * when the hardware supports multi-rate retry and
4049 	 * we don't use it.
4050 	 */
4051 	if (ismrr)
4052 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4053 
4054 	/*
4055 	 * Fillin the remainder of the descriptor info.
4056 	 */
4057 	ds0 = ds;
4058 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4059 		ds->ds_data = bf->bf_segs[i].ds_addr;
4060 		if (i == bf->bf_nseg - 1)
4061 			ds->ds_link = 0;
4062 		else
4063 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4064 		ath_hal_filltxdesc(ah, ds
4065 			, bf->bf_segs[i].ds_len	/* segment length */
4066 			, i == 0		/* first segment */
4067 			, i == bf->bf_nseg - 1	/* last segment */
4068 			, ds0			/* first descriptor */
4069 		);
4070 
4071 		/* NB: The desc swap function becomes void,
4072 		 * if descriptor swapping is not enabled
4073 		 */
4074 		ath_desc_swap(ds);
4075 
4076 		DPRINTF(sc, ATH_DEBUG_XMIT,
4077 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4078 			__func__, i, ds->ds_link, ds->ds_data,
4079 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4080 	}
4081 	/*
4082 	 * Insert the frame on the outbound list and
4083 	 * pass it on to the hardware.
4084 	 */
4085 	ATH_TXQ_LOCK(txq);
4086 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4087 	if (txq->axq_link == NULL) {
4088 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4089 		DPRINTF(sc, ATH_DEBUG_XMIT,
4090 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4091 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4092 		    txq->axq_depth);
4093 	} else {
4094 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4095 		DPRINTF(sc, ATH_DEBUG_XMIT,
4096 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4097 		    __func__, txq->axq_qnum, txq->axq_link,
4098 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4099 	}
4100 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4101 	/*
4102 	 * The CAB queue is started from the SWBA handler since
4103 	 * frames only go out on DTIM and to avoid possible races.
4104 	 */
4105 	if (txq != sc->sc_cabq)
4106 		ath_hal_txstart(ah, txq->axq_qnum);
4107 	ATH_TXQ_UNLOCK(txq);
4108 
4109 	return 0;
4110 }
4111 
4112 /*
4113  * Process completed xmit descriptors from the specified queue.
4114  */
4115 static int
4116 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4117 {
4118 	struct ath_hal *ah = sc->sc_ah;
4119 	struct ieee80211com *ic = &sc->sc_ic;
4120 	struct ath_buf *bf;
4121 	struct ath_desc *ds, *ds0;
4122 	struct ieee80211_node *ni;
4123 	struct ath_node *an;
4124 	int sr, lr, pri, nacked;
4125 	HAL_STATUS status;
4126 
4127 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4128 		__func__, txq->axq_qnum,
4129 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4130 		txq->axq_link);
4131 	nacked = 0;
4132 	for (;;) {
4133 		ATH_TXQ_LOCK(txq);
4134 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4135 		bf = STAILQ_FIRST(&txq->axq_q);
4136 		if (bf == NULL) {
4137 			txq->axq_link = NULL;
4138 			ATH_TXQ_UNLOCK(txq);
4139 			break;
4140 		}
4141 		ds0 = &bf->bf_desc[0];
4142 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4143 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4144 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4145 			ath_printtxbuf(bf, status == HAL_OK);
4146 		if (status == HAL_EINPROGRESS) {
4147 			ATH_TXQ_UNLOCK(txq);
4148 			break;
4149 		}
4150 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4151 		ATH_TXQ_UNLOCK(txq);
4152 
4153 		ni = bf->bf_node;
4154 		if (ni != NULL) {
4155 			an = ATH_NODE(ni);
4156 			if (ds->ds_txstat.ts_status == 0) {
4157 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4158 				sc->sc_stats.ast_ant_tx[txant]++;
4159 				sc->sc_ant_tx[txant]++;
4160 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4161 					sc->sc_stats.ast_tx_altrate++;
4162 				sc->sc_stats.ast_tx_rssi =
4163 					ds->ds_txstat.ts_rssi;
4164 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4165 					ds->ds_txstat.ts_rssi);
4166 				pri = M_WME_GETAC(bf->bf_m);
4167 				if (pri >= WME_AC_VO)
4168 					ic->ic_wme.wme_hipri_traffic++;
4169 				ni->ni_inact = ni->ni_inact_reload;
4170 			} else {
4171 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4172 					sc->sc_stats.ast_tx_xretries++;
4173 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4174 					sc->sc_stats.ast_tx_fifoerr++;
4175 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4176 					sc->sc_stats.ast_tx_filtered++;
4177 			}
4178 			sr = ds->ds_txstat.ts_shortretry;
4179 			lr = ds->ds_txstat.ts_longretry;
4180 			sc->sc_stats.ast_tx_shortretry += sr;
4181 			sc->sc_stats.ast_tx_longretry += lr;
4182 			/*
4183 			 * Hand the descriptor to the rate control algorithm.
4184 			 */
4185 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4186 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4187 				/*
4188 				 * If frame was ack'd update the last rx time
4189 				 * used to workaround phantom bmiss interrupts.
4190 				 */
4191 				if (ds->ds_txstat.ts_status == 0)
4192 					nacked++;
4193 				ath_rate_tx_complete(sc, an, ds, ds0);
4194 			}
4195 			/*
4196 			 * Reclaim reference to node.
4197 			 *
4198 			 * NB: the node may be reclaimed here if, for example
4199 			 *     this is a DEAUTH message that was sent and the
4200 			 *     node was timed out due to inactivity.
4201 			 */
4202 			ieee80211_free_node(ni);
4203 		}
4204 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4205 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4206 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4207 		m_freem(bf->bf_m);
4208 		bf->bf_m = NULL;
4209 		bf->bf_node = NULL;
4210 
4211 		ATH_TXBUF_LOCK(sc);
4212 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4213 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4214 		ATH_TXBUF_UNLOCK(sc);
4215 	}
4216 	return nacked;
4217 }
4218 
4219 static inline int
4220 txqactive(struct ath_hal *ah, int qnum)
4221 {
4222 	u_int32_t txqs = 1<<qnum;
4223 	ath_hal_gettxintrtxqs(ah, &txqs);
4224 	return (txqs & (1<<qnum));
4225 }
4226 
4227 /*
4228  * Deferred processing of transmit interrupt; special-cased
4229  * for a single hardware transmit queue (e.g. 5210 and 5211).
4230  */
4231 static void
4232 ath_tx_proc_q0(void *arg, int npending)
4233 {
4234 	struct ath_softc *sc = arg;
4235 	struct ifnet *ifp = &sc->sc_if;
4236 #ifdef __NetBSD__
4237 	int s;
4238 #endif
4239 
4240 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4241 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4242 	}
4243 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4244 		ath_tx_processq(sc, sc->sc_cabq);
4245 
4246 	if (sc->sc_softled)
4247 		ath_led_event(sc, ATH_LED_TX);
4248 
4249 #ifdef __NetBSD__
4250 	s = splnet();
4251 #endif
4252 	ath_start(ifp);
4253 #ifdef __NetBSD__
4254 	splx(s);
4255 #endif
4256 }
4257 
4258 /*
4259  * Deferred processing of transmit interrupt; special-cased
4260  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4261  */
4262 static void
4263 ath_tx_proc_q0123(void *arg, int npending)
4264 {
4265 	struct ath_softc *sc = arg;
4266 	struct ifnet *ifp = &sc->sc_if;
4267 	int nacked;
4268 #ifdef __NetBSD__
4269 	int s;
4270 #endif
4271 
4272 	/*
4273 	 * Process each active queue.
4274 	 */
4275 	nacked = 0;
4276 	if (txqactive(sc->sc_ah, 0))
4277 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4278 	if (txqactive(sc->sc_ah, 1))
4279 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4280 	if (txqactive(sc->sc_ah, 2))
4281 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4282 	if (txqactive(sc->sc_ah, 3))
4283 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4284 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4285 		ath_tx_processq(sc, sc->sc_cabq);
4286 	if (nacked) {
4287 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4288 	}
4289 
4290 	if (sc->sc_softled)
4291 		ath_led_event(sc, ATH_LED_TX);
4292 
4293 #ifdef __NetBSD__
4294 	s = splnet();
4295 #endif
4296 	ath_start(ifp);
4297 #ifdef __NetBSD__
4298 	splx(s);
4299 #endif
4300 }
4301 
4302 /*
4303  * Deferred processing of transmit interrupt.
4304  */
4305 static void
4306 ath_tx_proc(void *arg, int npending)
4307 {
4308 	struct ath_softc *sc = arg;
4309 	struct ifnet *ifp = &sc->sc_if;
4310 	int i, nacked;
4311 #ifdef __NetBSD__
4312 	int s;
4313 #endif
4314 
4315 	/*
4316 	 * Process each active queue.
4317 	 */
4318 	nacked = 0;
4319 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4320 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4321 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4322 	if (nacked) {
4323 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4324 	}
4325 
4326 	if (sc->sc_softled)
4327 		ath_led_event(sc, ATH_LED_TX);
4328 
4329 #ifdef __NetBSD__
4330 	s = splnet();
4331 #endif
4332 	ath_start(ifp);
4333 #ifdef __NetBSD__
4334 	splx(s);
4335 #endif
4336 }
4337 
4338 static void
4339 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4340 {
4341 	struct ath_hal *ah = sc->sc_ah;
4342 	struct ieee80211_node *ni;
4343 	struct ath_buf *bf;
4344 	struct ath_desc *ds;
4345 
4346 	/*
4347 	 * NB: this assumes output has been stopped and
4348 	 *     we do not need to block ath_tx_tasklet
4349 	 */
4350 	for (;;) {
4351 		ATH_TXQ_LOCK(txq);
4352 		bf = STAILQ_FIRST(&txq->axq_q);
4353 		if (bf == NULL) {
4354 			txq->axq_link = NULL;
4355 			ATH_TXQ_UNLOCK(txq);
4356 			break;
4357 		}
4358 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4359 		ATH_TXQ_UNLOCK(txq);
4360 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4361 		if (sc->sc_debug & ATH_DEBUG_RESET)
4362 			ath_printtxbuf(bf,
4363 				ath_hal_txprocdesc(ah, bf->bf_desc,
4364 					&ds->ds_txstat) == HAL_OK);
4365 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4366 		m_freem(bf->bf_m);
4367 		bf->bf_m = NULL;
4368 		ni = bf->bf_node;
4369 		bf->bf_node = NULL;
4370 		if (ni != NULL) {
4371 			/*
4372 			 * Reclaim node reference.
4373 			 */
4374 			ieee80211_free_node(ni);
4375 		}
4376 		ATH_TXBUF_LOCK(sc);
4377 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4378 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4379 		ATH_TXBUF_UNLOCK(sc);
4380 	}
4381 }
4382 
4383 static void
4384 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4385 {
4386 	struct ath_hal *ah = sc->sc_ah;
4387 
4388 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4389 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4390 	    __func__, txq->axq_qnum,
4391 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4392 	    txq->axq_link);
4393 }
4394 
4395 /*
4396  * Drain the transmit queues and reclaim resources.
4397  */
4398 static void
4399 ath_draintxq(struct ath_softc *sc)
4400 {
4401 	struct ath_hal *ah = sc->sc_ah;
4402 	int i;
4403 
4404 	/* XXX return value */
4405 	if (device_is_active(sc->sc_dev)) {
4406 		/* don't touch the hardware if marked invalid */
4407 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4408 		DPRINTF(sc, ATH_DEBUG_RESET,
4409 		    "%s: beacon queue %p\n", __func__,
4410 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4411 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4412 			if (ATH_TXQ_SETUP(sc, i))
4413 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4414 	}
4415 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4416 		if (ATH_TXQ_SETUP(sc, i))
4417 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4418 }
4419 
4420 /*
4421  * Disable the receive h/w in preparation for a reset.
4422  */
4423 static void
4424 ath_stoprecv(struct ath_softc *sc)
4425 {
4426 #define	PA2DESC(_sc, _pa) \
4427 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4428 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4429 	struct ath_hal *ah = sc->sc_ah;
4430 
4431 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4432 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4433 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4434 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4435 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4436 		struct ath_buf *bf;
4437 
4438 		printf("%s: rx queue %p, link %p\n", __func__,
4439 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4440 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4441 			struct ath_desc *ds = bf->bf_desc;
4442 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4443 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4444 				&ds->ds_rxstat);
4445 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4446 				ath_printrxbuf(bf, status == HAL_OK);
4447 		}
4448 	}
4449 	sc->sc_rxlink = NULL;		/* just in case */
4450 #undef PA2DESC
4451 }
4452 
4453 /*
4454  * Enable the receive h/w following a reset.
4455  */
4456 static int
4457 ath_startrecv(struct ath_softc *sc)
4458 {
4459 	struct ath_hal *ah = sc->sc_ah;
4460 	struct ath_buf *bf;
4461 
4462 	sc->sc_rxlink = NULL;
4463 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4464 		int error = ath_rxbuf_init(sc, bf);
4465 		if (error != 0) {
4466 			DPRINTF(sc, ATH_DEBUG_RECV,
4467 				"%s: ath_rxbuf_init failed %d\n",
4468 				__func__, error);
4469 			return error;
4470 		}
4471 	}
4472 
4473 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4474 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4475 	ath_hal_rxena(ah);		/* enable recv descriptors */
4476 	ath_mode_init(sc);		/* set filters, etc. */
4477 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4478 	return 0;
4479 }
4480 
4481 /*
4482  * Update internal state after a channel change.
4483  */
4484 static void
4485 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4486 {
4487 	struct ieee80211com *ic = &sc->sc_ic;
4488 	enum ieee80211_phymode mode;
4489 	u_int16_t flags;
4490 
4491 	/*
4492 	 * Change channels and update the h/w rate map
4493 	 * if we're switching; e.g. 11a to 11b/g.
4494 	 */
4495 	mode = ieee80211_chan2mode(ic, chan);
4496 	if (mode != sc->sc_curmode)
4497 		ath_setcurmode(sc, mode);
4498 	/*
4499 	 * Update BPF state.  NB: ethereal et. al. don't handle
4500 	 * merged flags well so pick a unique mode for their use.
4501 	 */
4502 	if (IEEE80211_IS_CHAN_A(chan))
4503 		flags = IEEE80211_CHAN_A;
4504 	/* XXX 11g schizophrenia */
4505 	else if (IEEE80211_IS_CHAN_G(chan) ||
4506 	    IEEE80211_IS_CHAN_PUREG(chan))
4507 		flags = IEEE80211_CHAN_G;
4508 	else
4509 		flags = IEEE80211_CHAN_B;
4510 	if (IEEE80211_IS_CHAN_T(chan))
4511 		flags |= IEEE80211_CHAN_TURBO;
4512 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4513 		htole16(chan->ic_freq);
4514 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4515 		htole16(flags);
4516 }
4517 
4518 #if 0
4519 /*
4520  * Poll for a channel clear indication; this is required
4521  * for channels requiring DFS and not previously visited
4522  * and/or with a recent radar detection.
4523  */
4524 static void
4525 ath_dfswait(void *arg)
4526 {
4527 	struct ath_softc *sc = arg;
4528 	struct ath_hal *ah = sc->sc_ah;
4529 	HAL_CHANNEL hchan;
4530 
4531 	ath_hal_radar_wait(ah, &hchan);
4532 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4533 		if_printf(&sc->sc_if,
4534 		    "channel %u/0x%x/0x%x has interference\n",
4535 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4536 		return;
4537 	}
4538 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4539 		/* XXX should not happen */
4540 		return;
4541 	}
4542 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4543 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4544 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4545 		if_printf(&sc->sc_if,
4546 		    "channel %u/0x%x/0x%x marked clear\n",
4547 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4548 	} else
4549 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4550 }
4551 #endif
4552 
4553 /*
4554  * Set/change channels.  If the channel is really being changed,
4555  * it's done by reseting the chip.  To accomplish this we must
4556  * first cleanup any pending DMA, then restart stuff after a la
4557  * ath_init.
4558  */
4559 static int
4560 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4561 {
4562 	struct ath_hal *ah = sc->sc_ah;
4563 	struct ieee80211com *ic = &sc->sc_ic;
4564 	HAL_CHANNEL hchan;
4565 
4566 	/*
4567 	 * Convert to a HAL channel description with
4568 	 * the flags constrained to reflect the current
4569 	 * operating mode.
4570 	 */
4571 	hchan.channel = chan->ic_freq;
4572 	hchan.channelFlags = ath_chan2flags(ic, chan);
4573 
4574 	DPRINTF(sc, ATH_DEBUG_RESET,
4575 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4576 	    __func__,
4577 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4578 		sc->sc_curchan.channelFlags),
4579 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4580 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4581 	        hchan.channel, hchan.channelFlags);
4582 	if (hchan.channel != sc->sc_curchan.channel ||
4583 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4584 		HAL_STATUS status;
4585 
4586 		/*
4587 		 * To switch channels clear any pending DMA operations;
4588 		 * wait long enough for the RX fifo to drain, reset the
4589 		 * hardware at the new frequency, and then re-enable
4590 		 * the relevant bits of the h/w.
4591 		 */
4592 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4593 		ath_draintxq(sc);		/* clear pending tx frames */
4594 		ath_stoprecv(sc);		/* turn off frame recv */
4595 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4596 			if_printf(ic->ic_ifp, "%s: unable to reset "
4597 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4598 			    __func__, ieee80211_chan2ieee(ic, chan),
4599 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4600 			return EIO;
4601 		}
4602 		sc->sc_curchan = hchan;
4603 		ath_update_txpow(sc);		/* update tx power state */
4604 		ath_restore_diversity(sc);
4605 		sc->sc_calinterval = 1;
4606 		sc->sc_caltries = 0;
4607 
4608 		/*
4609 		 * Re-enable rx framework.
4610 		 */
4611 		if (ath_startrecv(sc) != 0) {
4612 			if_printf(&sc->sc_if,
4613 				"%s: unable to restart recv logic\n", __func__);
4614 			return EIO;
4615 		}
4616 
4617 		/*
4618 		 * Change channels and update the h/w rate map
4619 		 * if we're switching; e.g. 11a to 11b/g.
4620 		 */
4621 		ic->ic_ibss_chan = chan;
4622 		ath_chan_change(sc, chan);
4623 
4624 #if 0
4625 		/*
4626 		 * Handle DFS required waiting period to determine
4627 		 * if channel is clear of radar traffic.
4628 		 */
4629 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4630 #define	DFS_AND_NOT_CLEAR(_c) \
4631 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4632 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4633 				if_printf(&sc->sc_if,
4634 					"wait for DFS clear channel signal\n");
4635 				/* XXX stop sndq */
4636 				sc->sc_if.if_flags |= IFF_OACTIVE;
4637 				callout_reset(&sc->sc_dfs_ch,
4638 					2 * hz, ath_dfswait, sc);
4639 			} else
4640 				callout_stop(&sc->sc_dfs_ch);
4641 #undef DFS_NOT_CLEAR
4642 		}
4643 #endif
4644 
4645 		/*
4646 		 * Re-enable interrupts.
4647 		 */
4648 		ath_hal_intrset(ah, sc->sc_imask);
4649 	}
4650 	return 0;
4651 }
4652 
4653 static void
4654 ath_next_scan(void *arg)
4655 {
4656 	struct ath_softc *sc = arg;
4657 	struct ieee80211com *ic = &sc->sc_ic;
4658 	int s;
4659 
4660 	/* don't call ath_start w/o network interrupts blocked */
4661 	s = splnet();
4662 
4663 	if (ic->ic_state == IEEE80211_S_SCAN)
4664 		ieee80211_next_scan(ic);
4665 	splx(s);
4666 }
4667 
4668 /*
4669  * Periodically recalibrate the PHY to account
4670  * for temperature/environment changes.
4671  */
4672 static void
4673 ath_calibrate(void *arg)
4674 {
4675 	struct ath_softc *sc = arg;
4676 	struct ath_hal *ah = sc->sc_ah;
4677 	HAL_BOOL iqCalDone;
4678 	int s;
4679 
4680 	sc->sc_stats.ast_per_cal++;
4681 
4682 	 s = splnet();
4683 
4684 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4685 		/*
4686 		 * Rfgain is out of bounds, reset the chip
4687 		 * to load new gain values.
4688 		 */
4689 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4690 			"%s: rfgain change\n", __func__);
4691 		sc->sc_stats.ast_per_rfgain++;
4692 		ath_reset(&sc->sc_if);
4693 	}
4694 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4695 		DPRINTF(sc, ATH_DEBUG_ANY,
4696 			"%s: calibration of channel %u failed\n",
4697 			__func__, sc->sc_curchan.channel);
4698 		sc->sc_stats.ast_per_calfail++;
4699 	}
4700 	/*
4701 	 * Calibrate noise floor data again in case of change.
4702 	 */
4703 	ath_hal_process_noisefloor(ah);
4704 	/*
4705 	 * Poll more frequently when the IQ calibration is in
4706 	 * progress to speedup loading the final settings.
4707 	 * We temper this aggressive polling with an exponential
4708 	 * back off after 4 tries up to ath_calinterval.
4709 	 */
4710 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4711 		sc->sc_caltries = 0;
4712 		sc->sc_calinterval = ath_calinterval;
4713 	} else if (sc->sc_caltries > 4) {
4714 		sc->sc_caltries = 0;
4715 		sc->sc_calinterval <<= 1;
4716 		if (sc->sc_calinterval > ath_calinterval)
4717 			sc->sc_calinterval = ath_calinterval;
4718 	}
4719 	KASSERTMSG(0 < sc->sc_calinterval &&
4720 	           sc->sc_calinterval <= ath_calinterval,
4721 		   "bad calibration interval %u", sc->sc_calinterval);
4722 
4723 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4724 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4725 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4726 	sc->sc_caltries++;
4727 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4728 		ath_calibrate, sc);
4729 	splx(s);
4730 }
4731 
4732 static int
4733 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4734 {
4735 	struct ifnet *ifp = ic->ic_ifp;
4736 	struct ath_softc *sc = ifp->if_softc;
4737 	struct ath_hal *ah = sc->sc_ah;
4738 	struct ieee80211_node *ni;
4739 	int i, error;
4740 	const u_int8_t *bssid;
4741 	u_int32_t rfilt;
4742 	static const HAL_LED_STATE leds[] = {
4743 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4744 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4745 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4746 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4747 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4748 	};
4749 
4750 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4751 		ieee80211_state_name[ic->ic_state],
4752 		ieee80211_state_name[nstate]);
4753 
4754 	callout_stop(&sc->sc_scan_ch);
4755 	callout_stop(&sc->sc_cal_ch);
4756 #if 0
4757 	callout_stop(&sc->sc_dfs_ch);
4758 #endif
4759 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4760 
4761 	if (nstate == IEEE80211_S_INIT) {
4762 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4763 		/*
4764 		 * NB: disable interrupts so we don't rx frames.
4765 		 */
4766 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4767 		/*
4768 		 * Notify the rate control algorithm.
4769 		 */
4770 		ath_rate_newstate(sc, nstate);
4771 		goto done;
4772 	}
4773 	ni = ic->ic_bss;
4774 	error = ath_chan_set(sc, ic->ic_curchan);
4775 	if (error != 0)
4776 		goto bad;
4777 	rfilt = ath_calcrxfilter(sc, nstate);
4778 	if (nstate == IEEE80211_S_SCAN)
4779 		bssid = ifp->if_broadcastaddr;
4780 	else
4781 		bssid = ni->ni_bssid;
4782 	ath_hal_setrxfilter(ah, rfilt);
4783 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4784 		 __func__, rfilt, ether_sprintf(bssid));
4785 
4786 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4787 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4788 	else
4789 		ath_hal_setassocid(ah, bssid, 0);
4790 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4791 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4792 			if (ath_hal_keyisvalid(ah, i))
4793 				ath_hal_keysetmac(ah, i, bssid);
4794 	}
4795 
4796 	/*
4797 	 * Notify the rate control algorithm so rates
4798 	 * are setup should ath_beacon_alloc be called.
4799 	 */
4800 	ath_rate_newstate(sc, nstate);
4801 
4802 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4803 		/* nothing to do */;
4804 	} else if (nstate == IEEE80211_S_RUN) {
4805 		DPRINTF(sc, ATH_DEBUG_STATE,
4806 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4807 			"capinfo=0x%04x chan=%d\n"
4808 			 , __func__
4809 			 , ic->ic_flags
4810 			 , ni->ni_intval
4811 			 , ether_sprintf(ni->ni_bssid)
4812 			 , ni->ni_capinfo
4813 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4814 
4815 		switch (ic->ic_opmode) {
4816 		case IEEE80211_M_HOSTAP:
4817 		case IEEE80211_M_IBSS:
4818 			/*
4819 			 * Allocate and setup the beacon frame.
4820 			 *
4821 			 * Stop any previous beacon DMA.  This may be
4822 			 * necessary, for example, when an ibss merge
4823 			 * causes reconfiguration; there will be a state
4824 			 * transition from RUN->RUN that means we may
4825 			 * be called with beacon transmission active.
4826 			 */
4827 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4828 			ath_beacon_free(sc);
4829 			error = ath_beacon_alloc(sc, ni);
4830 			if (error != 0)
4831 				goto bad;
4832 			/*
4833 			 * If joining an adhoc network defer beacon timer
4834 			 * configuration to the next beacon frame so we
4835 			 * have a current TSF to use.  Otherwise we're
4836 			 * starting an ibss/bss so there's no need to delay.
4837 			 */
4838 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4839 			    ic->ic_bss->ni_tstamp.tsf != 0)
4840 				sc->sc_syncbeacon = 1;
4841 			else
4842 				ath_beacon_config(sc);
4843 			break;
4844 		case IEEE80211_M_STA:
4845 			/*
4846 			 * Allocate a key cache slot to the station.
4847 			 */
4848 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4849 			    sc->sc_hasclrkey &&
4850 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4851 				ath_setup_stationkey(ni);
4852 			/*
4853 			 * Defer beacon timer configuration to the next
4854 			 * beacon frame so we have a current TSF to use
4855 			 * (any TSF collected when scanning is likely old).
4856 			 */
4857 			sc->sc_syncbeacon = 1;
4858 			break;
4859 		default:
4860 			break;
4861 		}
4862 		/*
4863 		 * Let the hal process statistics collected during a
4864 		 * scan so it can provide calibrated noise floor data.
4865 		 */
4866 		ath_hal_process_noisefloor(ah);
4867 		/*
4868 		 * Reset rssi stats; maybe not the best place...
4869 		 */
4870 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4871 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4872 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4873 	} else {
4874 		ath_hal_intrset(ah,
4875 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4876 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4877 	}
4878 done:
4879 	/*
4880 	 * Invoke the parent method to complete the work.
4881 	 */
4882 	error = sc->sc_newstate(ic, nstate, arg);
4883 	/*
4884 	 * Finally, start any timers.
4885 	 */
4886 	if (nstate == IEEE80211_S_RUN) {
4887 		/* start periodic recalibration timer */
4888 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4889 			ath_calibrate, sc);
4890 	} else if (nstate == IEEE80211_S_SCAN) {
4891 		/* start ap/neighbor scan timer */
4892 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4893 			ath_next_scan, sc);
4894 	}
4895 bad:
4896 	return error;
4897 }
4898 
4899 /*
4900  * Allocate a key cache slot to the station so we can
4901  * setup a mapping from key index to node. The key cache
4902  * slot is needed for managing antenna state and for
4903  * compression when stations do not use crypto.  We do
4904  * it uniliaterally here; if crypto is employed this slot
4905  * will be reassigned.
4906  */
4907 static void
4908 ath_setup_stationkey(struct ieee80211_node *ni)
4909 {
4910 	struct ieee80211com *ic = ni->ni_ic;
4911 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4912 	ieee80211_keyix keyix, rxkeyix;
4913 
4914 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4915 		/*
4916 		 * Key cache is full; we'll fall back to doing
4917 		 * the more expensive lookup in software.  Note
4918 		 * this also means no h/w compression.
4919 		 */
4920 		/* XXX msg+statistic */
4921 	} else {
4922 		/* XXX locking? */
4923 		ni->ni_ucastkey.wk_keyix = keyix;
4924 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4925 		/* NB: this will create a pass-thru key entry */
4926 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4927 	}
4928 }
4929 
4930 /*
4931  * Setup driver-specific state for a newly associated node.
4932  * Note that we're called also on a re-associate, the isnew
4933  * param tells us if this is the first time or not.
4934  */
4935 static void
4936 ath_newassoc(struct ieee80211_node *ni, int isnew)
4937 {
4938 	struct ieee80211com *ic = ni->ni_ic;
4939 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4940 
4941 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4942 	if (isnew &&
4943 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4944 		KASSERTMSG(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4945 		    "new assoc with a unicast key already setup (keyix %u)",
4946 		    ni->ni_ucastkey.wk_keyix);
4947 		ath_setup_stationkey(ni);
4948 	}
4949 }
4950 
4951 static int
4952 ath_getchannels(struct ath_softc *sc, u_int cc,
4953 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4954 {
4955 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4956 	struct ieee80211com *ic = &sc->sc_ic;
4957 	struct ifnet *ifp = &sc->sc_if;
4958 	struct ath_hal *ah = sc->sc_ah;
4959 	HAL_CHANNEL *chans;
4960 	int i, ix, nchan;
4961 
4962 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4963 			M_TEMP, M_NOWAIT);
4964 	if (chans == NULL) {
4965 		if_printf(ifp, "unable to allocate channel table\n");
4966 		return ENOMEM;
4967 	}
4968 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4969 	    NULL, 0, NULL,
4970 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4971 		u_int32_t rd;
4972 
4973 		(void)ath_hal_getregdomain(ah, &rd);
4974 		if_printf(ifp, "unable to collect channel list from hal; "
4975 			"regdomain likely %u country code %u\n", rd, cc);
4976 		free(chans, M_TEMP);
4977 		return EINVAL;
4978 	}
4979 
4980 	/*
4981 	 * Convert HAL channels to ieee80211 ones and insert
4982 	 * them in the table according to their channel number.
4983 	 */
4984 	for (i = 0; i < nchan; i++) {
4985 		HAL_CHANNEL *c = &chans[i];
4986 		u_int16_t flags;
4987 
4988 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4989 		if (ix > IEEE80211_CHAN_MAX) {
4990 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4991 				ix, c->channel, c->channelFlags);
4992 			continue;
4993 		}
4994 		if (ix < 0) {
4995 			/* XXX can't handle stuff <2400 right now */
4996 			if (bootverbose)
4997 				if_printf(ifp, "hal channel %d (%u/%x) "
4998 				    "cannot be handled; ignored\n",
4999 				    ix, c->channel, c->channelFlags);
5000 			continue;
5001 		}
5002 		/*
5003 		 * Calculate net80211 flags; most are compatible
5004 		 * but some need massaging.  Note the static turbo
5005 		 * conversion can be removed once net80211 is updated
5006 		 * to understand static vs. dynamic turbo.
5007 		 */
5008 		flags = c->channelFlags & COMPAT;
5009 		if (c->channelFlags & CHANNEL_STURBO)
5010 			flags |= IEEE80211_CHAN_TURBO;
5011 		if (ic->ic_channels[ix].ic_freq == 0) {
5012 			ic->ic_channels[ix].ic_freq = c->channel;
5013 			ic->ic_channels[ix].ic_flags = flags;
5014 		} else {
5015 			/* channels overlap; e.g. 11g and 11b */
5016 			ic->ic_channels[ix].ic_flags |= flags;
5017 		}
5018 	}
5019 	free(chans, M_TEMP);
5020 	return 0;
5021 #undef COMPAT
5022 }
5023 
5024 static void
5025 ath_led_done(void *arg)
5026 {
5027 	struct ath_softc *sc = arg;
5028 
5029 	sc->sc_blinking = 0;
5030 }
5031 
5032 /*
5033  * Turn the LED off: flip the pin and then set a timer so no
5034  * update will happen for the specified duration.
5035  */
5036 static void
5037 ath_led_off(void *arg)
5038 {
5039 	struct ath_softc *sc = arg;
5040 
5041 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5042 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5043 }
5044 
5045 /*
5046  * Blink the LED according to the specified on/off times.
5047  */
5048 static void
5049 ath_led_blink(struct ath_softc *sc, int on, int off)
5050 {
5051 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5052 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5053 	sc->sc_blinking = 1;
5054 	sc->sc_ledoff = off;
5055 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5056 }
5057 
5058 static void
5059 ath_led_event(struct ath_softc *sc, int event)
5060 {
5061 
5062 	sc->sc_ledevent = ticks;	/* time of last event */
5063 	if (sc->sc_blinking)		/* don't interrupt active blink */
5064 		return;
5065 	switch (event) {
5066 	case ATH_LED_POLL:
5067 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
5068 			sc->sc_hwmap[0].ledoff);
5069 		break;
5070 	case ATH_LED_TX:
5071 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
5072 			sc->sc_hwmap[sc->sc_txrate].ledoff);
5073 		break;
5074 	case ATH_LED_RX:
5075 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
5076 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
5077 		break;
5078 	}
5079 }
5080 
5081 static void
5082 ath_update_txpow(struct ath_softc *sc)
5083 {
5084 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5085 	struct ieee80211com *ic = &sc->sc_ic;
5086 	struct ath_hal *ah = sc->sc_ah;
5087 	u_int32_t txpow;
5088 
5089 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5090 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5091 		/* read back in case value is clamped */
5092 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5093 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5094 	}
5095 	/*
5096 	 * Fetch max tx power level for status requests.
5097 	 */
5098 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5099 	ic->ic_bss->ni_txpower = txpow;
5100 }
5101 
5102 static void
5103 rate_setup(struct ath_softc *sc,
5104 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5105 {
5106 	int i, maxrates;
5107 
5108 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5109 		DPRINTF(sc, ATH_DEBUG_ANY,
5110 			"%s: rate table too small (%u > %u)\n",
5111 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5112 		maxrates = IEEE80211_RATE_MAXSIZE;
5113 	} else
5114 		maxrates = rt->rateCount;
5115 	for (i = 0; i < maxrates; i++)
5116 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5117 	rs->rs_nrates = maxrates;
5118 }
5119 
5120 static int
5121 ath_rate_setup(struct ath_softc *sc, u_int mode)
5122 {
5123 	struct ath_hal *ah = sc->sc_ah;
5124 	struct ieee80211com *ic = &sc->sc_ic;
5125 	const HAL_RATE_TABLE *rt;
5126 
5127 	switch (mode) {
5128 	case IEEE80211_MODE_11A:
5129 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5130 		break;
5131 	case IEEE80211_MODE_11B:
5132 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5133 		break;
5134 	case IEEE80211_MODE_11G:
5135 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5136 		break;
5137 	case IEEE80211_MODE_TURBO_A:
5138 		/* XXX until static/dynamic turbo is fixed */
5139 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5140 		break;
5141 	case IEEE80211_MODE_TURBO_G:
5142 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5143 		break;
5144 	default:
5145 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5146 			__func__, mode);
5147 		return 0;
5148 	}
5149 	sc->sc_rates[mode] = rt;
5150 	if (rt != NULL) {
5151 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5152 		return 1;
5153 	} else
5154 		return 0;
5155 }
5156 
5157 static void
5158 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5159 {
5160 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5161 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5162 	static const struct {
5163 		u_int		rate;		/* tx/rx 802.11 rate */
5164 		u_int16_t	timeOn;		/* LED on time (ms) */
5165 		u_int16_t	timeOff;	/* LED off time (ms) */
5166 	} blinkrates[] = {
5167 		{ 108,  40,  10 },
5168 		{  96,  44,  11 },
5169 		{  72,  50,  13 },
5170 		{  48,  57,  14 },
5171 		{  36,  67,  16 },
5172 		{  24,  80,  20 },
5173 		{  22, 100,  25 },
5174 		{  18, 133,  34 },
5175 		{  12, 160,  40 },
5176 		{  10, 200,  50 },
5177 		{   6, 240,  58 },
5178 		{   4, 267,  66 },
5179 		{   2, 400, 100 },
5180 		{   0, 500, 130 },
5181 	};
5182 	const HAL_RATE_TABLE *rt;
5183 	int i, j;
5184 
5185 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5186 	rt = sc->sc_rates[mode];
5187 	KASSERTMSG(rt != NULL, "no h/w rate set for phy mode %u", mode);
5188 	for (i = 0; i < rt->rateCount; i++)
5189 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5190 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5191 	for (i = 0; i < 32; i++) {
5192 		u_int8_t ix = rt->rateCodeToIndex[i];
5193 		if (ix == 0xff) {
5194 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5195 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5196 			continue;
5197 		}
5198 		sc->sc_hwmap[i].ieeerate =
5199 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5200 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5201 		if (rt->info[ix].shortPreamble ||
5202 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5203 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5204 		/* NB: receive frames include FCS */
5205 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5206 			IEEE80211_RADIOTAP_F_FCS;
5207 		/* setup blink rate table to avoid per-packet lookup */
5208 		for (j = 0; j < N(blinkrates)-1; j++)
5209 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5210 				break;
5211 		/* NB: this uses the last entry if the rate isn't found */
5212 		/* XXX beware of overlow */
5213 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5214 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5215 	}
5216 	sc->sc_currates = rt;
5217 	sc->sc_curmode = mode;
5218 	/*
5219 	 * All protection frames are transmited at 2Mb/s for
5220 	 * 11g, otherwise at 1Mb/s.
5221 	 */
5222 	if (mode == IEEE80211_MODE_11G)
5223 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5224 	else
5225 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5226 	/* rate index used to send management frames */
5227 	sc->sc_minrateix = 0;
5228 	/*
5229 	 * Setup multicast rate state.
5230 	 */
5231 	/* XXX layering violation */
5232 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5233 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5234 	/* NB: caller is responsible for reseting rate control state */
5235 #undef N
5236 }
5237 
5238 #ifdef AR_DEBUG
5239 static void
5240 ath_printrxbuf(struct ath_buf *bf, int done)
5241 {
5242 	struct ath_desc *ds;
5243 	int i;
5244 
5245 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5246 		printf("R%d (%p %" PRIx64
5247 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5248 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5249 		    ds->ds_link, ds->ds_data,
5250 		    ds->ds_ctl0, ds->ds_ctl1,
5251 		    ds->ds_hw[0], ds->ds_hw[1],
5252 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5253 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5254 	}
5255 }
5256 
5257 static void
5258 ath_printtxbuf(struct ath_buf *bf, int done)
5259 {
5260 	struct ath_desc *ds;
5261 	int i;
5262 
5263 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5264 		printf("T%d (%p %" PRIx64
5265 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5266 		    i, ds,
5267 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5268 		    ds->ds_link, ds->ds_data,
5269 		    ds->ds_ctl0, ds->ds_ctl1,
5270 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5271 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5272 	}
5273 }
5274 #endif	/* AR_DEBUG */
5275 
5276 static void
5277 ath_watchdog(struct ifnet *ifp)
5278 {
5279 	struct ath_softc *sc = ifp->if_softc;
5280 	struct ieee80211com *ic = &sc->sc_ic;
5281 	struct ath_txq *axq;
5282 	int i;
5283 
5284 	ifp->if_timer = 0;
5285 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5286 	    !device_is_active(sc->sc_dev))
5287 		return;
5288 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5289 		if (!ATH_TXQ_SETUP(sc, i))
5290 			continue;
5291 		axq = &sc->sc_txq[i];
5292 		ATH_TXQ_LOCK(axq);
5293 		if (axq->axq_timer == 0)
5294 			;
5295 		else if (--axq->axq_timer == 0) {
5296 			ATH_TXQ_UNLOCK(axq);
5297 			if_printf(ifp, "device timeout (txq %d, "
5298 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5299 			if (sc->sc_txintrperiod > 1)
5300 				sc->sc_txintrperiod--;
5301 			ath_reset(ifp);
5302 			ifp->if_oerrors++;
5303 			sc->sc_stats.ast_watchdog++;
5304 			break;
5305 		} else
5306 			ifp->if_timer = 1;
5307 		ATH_TXQ_UNLOCK(axq);
5308 	}
5309 	ieee80211_watchdog(ic);
5310 }
5311 
5312 /*
5313  * Diagnostic interface to the HAL.  This is used by various
5314  * tools to do things like retrieve register contents for
5315  * debugging.  The mechanism is intentionally opaque so that
5316  * it can change frequently w/o concern for compatiblity.
5317  */
5318 static int
5319 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5320 {
5321 	struct ath_hal *ah = sc->sc_ah;
5322 	u_int id = ad->ad_id & ATH_DIAG_ID;
5323 	void *indata = NULL;
5324 	void *outdata = NULL;
5325 	u_int32_t insize = ad->ad_in_size;
5326 	u_int32_t outsize = ad->ad_out_size;
5327 	int error = 0;
5328 
5329 	if (ad->ad_id & ATH_DIAG_IN) {
5330 		/*
5331 		 * Copy in data.
5332 		 */
5333 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5334 		if (indata == NULL) {
5335 			error = ENOMEM;
5336 			goto bad;
5337 		}
5338 		error = copyin(ad->ad_in_data, indata, insize);
5339 		if (error)
5340 			goto bad;
5341 	}
5342 	if (ad->ad_id & ATH_DIAG_DYN) {
5343 		/*
5344 		 * Allocate a buffer for the results (otherwise the HAL
5345 		 * returns a pointer to a buffer where we can read the
5346 		 * results).  Note that we depend on the HAL leaving this
5347 		 * pointer for us to use below in reclaiming the buffer;
5348 		 * may want to be more defensive.
5349 		 */
5350 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5351 		if (outdata == NULL) {
5352 			error = ENOMEM;
5353 			goto bad;
5354 		}
5355 	}
5356 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5357 		if (outsize < ad->ad_out_size)
5358 			ad->ad_out_size = outsize;
5359 		if (outdata != NULL)
5360 			error = copyout(outdata, ad->ad_out_data,
5361 					ad->ad_out_size);
5362 	} else {
5363 		error = EINVAL;
5364 	}
5365 bad:
5366 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5367 		free(indata, M_TEMP);
5368 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5369 		free(outdata, M_TEMP);
5370 	return error;
5371 }
5372 
5373 static int
5374 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5375 {
5376 #define	IS_RUNNING(ifp) \
5377 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5378 	struct ath_softc *sc = ifp->if_softc;
5379 	struct ieee80211com *ic = &sc->sc_ic;
5380 	struct ifreq *ifr = (struct ifreq *)data;
5381 	int error = 0, s;
5382 
5383 	s = splnet();
5384 	switch (cmd) {
5385 	case SIOCSIFFLAGS:
5386 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5387 			break;
5388 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5389 		case IFF_UP|IFF_RUNNING:
5390 			/*
5391 			 * To avoid rescanning another access point,
5392 			 * do not call ath_init() here.  Instead,
5393 			 * only reflect promisc mode settings.
5394 			 */
5395 			ath_mode_init(sc);
5396 			break;
5397 		case IFF_UP:
5398 			/*
5399 			 * Beware of being called during attach/detach
5400 			 * to reset promiscuous mode.  In that case we
5401 			 * will still be marked UP but not RUNNING.
5402 			 * However trying to re-init the interface
5403 			 * is the wrong thing to do as we've already
5404 			 * torn down much of our state.  There's
5405 			 * probably a better way to deal with this.
5406 			 */
5407 			error = ath_init(sc);
5408 			break;
5409 		case IFF_RUNNING:
5410 			ath_stop_locked(ifp, 1);
5411 			break;
5412 		case 0:
5413 			break;
5414 		}
5415 		break;
5416 	case SIOCADDMULTI:
5417 	case SIOCDELMULTI:
5418 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5419 			if (ifp->if_flags & IFF_RUNNING)
5420 				ath_mode_init(sc);
5421 			error = 0;
5422 		}
5423 		break;
5424 	case SIOCGATHSTATS:
5425 		/* NB: embed these numbers to get a consistent view */
5426 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5427 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5428 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5429 		splx(s);
5430 		/*
5431 		 * NB: Drop the softc lock in case of a page fault;
5432 		 * we'll accept any potential inconsisentcy in the
5433 		 * statistics.  The alternative is to copy the data
5434 		 * to a local structure.
5435 		 */
5436 		return copyout(&sc->sc_stats,
5437 				ifr->ifr_data, sizeof (sc->sc_stats));
5438 	case SIOCGATHDIAG:
5439 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5440 		break;
5441 	default:
5442 		error = ieee80211_ioctl(ic, cmd, data);
5443 		if (error != ENETRESET)
5444 			;
5445 		else if (IS_RUNNING(ifp) &&
5446 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5447 			error = ath_init(sc);
5448 		else
5449 			error = 0;
5450 		break;
5451 	}
5452 	splx(s);
5453 	return error;
5454 #undef IS_RUNNING
5455 }
5456 
5457 static void
5458 ath_bpfattach(struct ath_softc *sc)
5459 {
5460 	struct ifnet *ifp = &sc->sc_if;
5461 
5462 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5463 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5464 	    &sc->sc_drvbpf);
5465 
5466 	/*
5467 	 * Initialize constant fields.
5468 	 * XXX make header lengths a multiple of 32-bits so subsequent
5469 	 *     headers are properly aligned; this is a kludge to keep
5470 	 *     certain applications happy.
5471 	 *
5472 	 * NB: the channel is setup each time we transition to the
5473 	 *     RUN state to avoid filling it in for each frame.
5474 	 */
5475 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5476 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5477 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5478 
5479 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5480 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5481 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5482 }
5483 
5484 /*
5485  * Announce various information on device/driver attach.
5486  */
5487 static void
5488 ath_announce(struct ath_softc *sc)
5489 {
5490 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5491 	struct ifnet *ifp = &sc->sc_if;
5492 	struct ath_hal *ah = sc->sc_ah;
5493 	u_int modes, cc;
5494 
5495 	if_printf(ifp, "mac %d.%d phy %d.%d",
5496 		ah->ah_macVersion, ah->ah_macRev,
5497 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5498 	/*
5499 	 * Print radio revision(s).  We check the wireless modes
5500 	 * to avoid falsely printing revs for inoperable parts.
5501 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5502 	 */
5503 	ath_hal_getcountrycode(ah, &cc);
5504 	modes = ath_hal_getwirelessmodes(ah, cc);
5505 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5506 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5507 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5508 				ah->ah_analog5GhzRev >> 4,
5509 				ah->ah_analog5GhzRev & 0xf,
5510 				ah->ah_analog2GhzRev >> 4,
5511 				ah->ah_analog2GhzRev & 0xf);
5512 		else
5513 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5514 				ah->ah_analog5GhzRev & 0xf);
5515 	} else
5516 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5517 			ah->ah_analog5GhzRev & 0xf);
5518 	printf("\n");
5519 	if (bootverbose) {
5520 		int i;
5521 		for (i = 0; i <= WME_AC_VO; i++) {
5522 			struct ath_txq *txq = sc->sc_ac2q[i];
5523 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5524 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5525 		}
5526 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5527 			sc->sc_cabq->axq_qnum);
5528 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5529 	}
5530 	if (ath_rxbuf != ATH_RXBUF)
5531 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5532 	if (ath_txbuf != ATH_TXBUF)
5533 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5534 #undef HAL_MODE_DUALBAND
5535 }
5536