xref: /netbsd-src/sys/dev/ic/ath.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: ath.c,v 1.109 2010/04/05 07:19:33 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.109 2010/04/05 07:19:33 joerg Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #include <sys/param.h>
57 #include <sys/reboot.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #include <sys/mbuf.h>
62 #include <sys/malloc.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/errno.h>
67 #include <sys/callout.h>
68 #include <sys/bus.h>
69 #include <sys/endian.h>
70 
71 #include <net/if.h>
72 #include <net/if_dl.h>
73 #include <net/if_media.h>
74 #include <net/if_types.h>
75 #include <net/if_arp.h>
76 #include <net/if_ether.h>
77 #include <net/if_llc.h>
78 
79 #include <net80211/ieee80211_netbsd.h>
80 #include <net80211/ieee80211_var.h>
81 
82 #include <net/bpf.h>
83 
84 #ifdef INET
85 #include <netinet/in.h>
86 #endif
87 
88 #include <sys/device.h>
89 #include <dev/ic/ath_netbsd.h>
90 
91 #define	AR_DEBUG
92 #include <dev/ic/athvar.h>
93 #include "ah_desc.h"
94 #include "ah_devid.h"	/* XXX for softled */
95 #include "opt_ah.h"
96 
97 #ifdef ATH_TX99_DIAG
98 #include <dev/ath/ath_tx99/ath_tx99.h>
99 #endif
100 
101 /* unaligned little endian access */
102 #define LE_READ_2(p)							\
103 	((u_int16_t)							\
104 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
105 #define LE_READ_4(p)							\
106 	((u_int32_t)							\
107 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
108 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
109 
110 enum {
111 	ATH_LED_TX,
112 	ATH_LED_RX,
113 	ATH_LED_POLL,
114 };
115 
116 #ifdef	AH_NEED_DESC_SWAP
117 #define	HTOAH32(x)	htole32(x)
118 #else
119 #define	HTOAH32(x)	(x)
120 #endif
121 
122 static int	ath_ifinit(struct ifnet *);
123 static int	ath_init(struct ath_softc *);
124 static void	ath_stop_locked(struct ifnet *, int);
125 static void	ath_stop(struct ifnet *, int);
126 static void	ath_start(struct ifnet *);
127 static int	ath_media_change(struct ifnet *);
128 static void	ath_watchdog(struct ifnet *);
129 static int	ath_ioctl(struct ifnet *, u_long, void *);
130 static void	ath_fatal_proc(void *, int);
131 static void	ath_rxorn_proc(void *, int);
132 static void	ath_bmiss_proc(void *, int);
133 static void	ath_radar_proc(void *, int);
134 static int	ath_key_alloc(struct ieee80211com *,
135 			const struct ieee80211_key *,
136 			ieee80211_keyix *, ieee80211_keyix *);
137 static int	ath_key_delete(struct ieee80211com *,
138 			const struct ieee80211_key *);
139 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
140 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
141 static void	ath_key_update_begin(struct ieee80211com *);
142 static void	ath_key_update_end(struct ieee80211com *);
143 static void	ath_mode_init(struct ath_softc *);
144 static void	ath_setslottime(struct ath_softc *);
145 static void	ath_updateslot(struct ifnet *);
146 static int	ath_beaconq_setup(struct ath_hal *);
147 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
148 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
149 static void	ath_beacon_proc(void *, int);
150 static void	ath_bstuck_proc(void *, int);
151 static void	ath_beacon_free(struct ath_softc *);
152 static void	ath_beacon_config(struct ath_softc *);
153 static void	ath_descdma_cleanup(struct ath_softc *sc,
154 			struct ath_descdma *, ath_bufhead *);
155 static int	ath_desc_alloc(struct ath_softc *);
156 static void	ath_desc_free(struct ath_softc *);
157 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
158 static void	ath_node_free(struct ieee80211_node *);
159 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
160 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
161 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
162 			struct ieee80211_node *ni,
163 			int subtype, int rssi, u_int32_t rstamp);
164 static void	ath_setdefantenna(struct ath_softc *, u_int);
165 static void	ath_rx_proc(void *, int);
166 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
167 static int	ath_tx_setup(struct ath_softc *, int, int);
168 static int	ath_wme_update(struct ieee80211com *);
169 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
170 static void	ath_tx_cleanup(struct ath_softc *);
171 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
172 			     struct ath_buf *, struct mbuf *);
173 static void	ath_tx_proc_q0(void *, int);
174 static void	ath_tx_proc_q0123(void *, int);
175 static void	ath_tx_proc(void *, int);
176 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
177 static void	ath_draintxq(struct ath_softc *);
178 static void	ath_stoprecv(struct ath_softc *);
179 static int	ath_startrecv(struct ath_softc *);
180 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181 static void	ath_next_scan(void *);
182 static void	ath_calibrate(void *);
183 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
184 static void	ath_setup_stationkey(struct ieee80211_node *);
185 static void	ath_newassoc(struct ieee80211_node *, int);
186 static int	ath_getchannels(struct ath_softc *, u_int cc,
187 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
188 static void	ath_led_event(struct ath_softc *, int);
189 static void	ath_update_txpow(struct ath_softc *);
190 static void	ath_freetx(struct mbuf *);
191 static void	ath_restore_diversity(struct ath_softc *);
192 
193 static int	ath_rate_setup(struct ath_softc *, u_int mode);
194 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
195 
196 static void	ath_bpfattach(struct ath_softc *);
197 static void	ath_announce(struct ath_softc *);
198 
199 int ath_dwelltime = 200;		/* 5 channels/second */
200 int ath_calinterval = 30;		/* calibrate every 30 secs */
201 int ath_outdoor = AH_TRUE;		/* outdoor operation */
202 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
203 int ath_countrycode = CTRY_DEFAULT;	/* country code */
204 int ath_regdomain = 0;			/* regulatory domain */
205 int ath_debug = 0;
206 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
207 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
208 
209 #ifdef AR_DEBUG
210 enum {
211 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
212 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
213 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
214 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
215 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
216 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
217 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
218 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
219 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
220 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
221 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
222 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
223 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
224 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
225 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
226 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
227 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
228 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
229 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
230 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
231 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
232 	ATH_DEBUG_ANY		= 0xffffffff
233 };
234 #define	IFF_DUMPPKTS(sc, m) \
235 	((sc->sc_debug & (m)) || \
236 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
237 #define	DPRINTF(sc, m, fmt, ...) do {				\
238 	if (sc->sc_debug & (m))					\
239 		printf(fmt, __VA_ARGS__);			\
240 } while (0)
241 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
242 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
243 		ath_keyprint(__func__, ix, hk, mac);		\
244 } while (0)
245 static	void ath_printrxbuf(struct ath_buf *bf, int);
246 static	void ath_printtxbuf(struct ath_buf *bf, int);
247 #else
248 #define        IFF_DUMPPKTS(sc, m) \
249 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
250 #define        DPRINTF(m, fmt, ...)
251 #define        KEYPRINTF(sc, k, ix, mac)
252 #endif
253 
254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
255 
256 int
257 ath_attach(u_int16_t devid, struct ath_softc *sc)
258 {
259 	struct ifnet *ifp = &sc->sc_if;
260 	struct ieee80211com *ic = &sc->sc_ic;
261 	struct ath_hal *ah = NULL;
262 	HAL_STATUS status;
263 	int error = 0, i;
264 
265 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
266 
267 	pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
268 
269 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
270 
271 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
272 	if (ah == NULL) {
273 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
274 			status);
275 		error = ENXIO;
276 		goto bad;
277 	}
278 	if (ah->ah_abi != HAL_ABI_VERSION) {
279 		if_printf(ifp, "HAL ABI mismatch detected "
280 			"(HAL:0x%x != driver:0x%x)\n",
281 			ah->ah_abi, HAL_ABI_VERSION);
282 		error = ENXIO;
283 		goto bad;
284 	}
285 	sc->sc_ah = ah;
286 
287 	if (!prop_dictionary_set_bool(device_properties(sc->sc_dev),
288 	    "pmf-powerdown", false))
289 		goto bad;
290 
291 	/*
292 	 * Check if the MAC has multi-rate retry support.
293 	 * We do this by trying to setup a fake extended
294 	 * descriptor.  MAC's that don't have support will
295 	 * return false w/o doing anything.  MAC's that do
296 	 * support it will return true w/o doing anything.
297 	 */
298 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299 
300 	/*
301 	 * Check if the device has hardware counters for PHY
302 	 * errors.  If so we need to enable the MIB interrupt
303 	 * so we can act on stat triggers.
304 	 */
305 	if (ath_hal_hwphycounters(ah))
306 		sc->sc_needmib = 1;
307 
308 	/*
309 	 * Get the hardware key cache size.
310 	 */
311 	sc->sc_keymax = ath_hal_keycachesize(ah);
312 	if (sc->sc_keymax > ATH_KEYMAX) {
313 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314 			ATH_KEYMAX, sc->sc_keymax);
315 		sc->sc_keymax = ATH_KEYMAX;
316 	}
317 	/*
318 	 * Reset the key cache since some parts do not
319 	 * reset the contents on initial power up.
320 	 */
321 	for (i = 0; i < sc->sc_keymax; i++)
322 		ath_hal_keyreset(ah, i);
323 	/*
324 	 * Mark key cache slots associated with global keys
325 	 * as in use.  If we knew TKIP was not to be used we
326 	 * could leave the +32, +64, and +32+64 slots free.
327 	 * XXX only for splitmic.
328 	 */
329 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330 		setbit(sc->sc_keymap, i);
331 		setbit(sc->sc_keymap, i+32);
332 		setbit(sc->sc_keymap, i+64);
333 		setbit(sc->sc_keymap, i+32+64);
334 	}
335 
336 	/*
337 	 * Collect the channel list using the default country
338 	 * code and including outdoor channels.  The 802.11 layer
339 	 * is resposible for filtering this list based on settings
340 	 * like the phy mode.
341 	 */
342 	error = ath_getchannels(sc, ath_countrycode,
343 			ath_outdoor, ath_xchanmode);
344 	if (error != 0)
345 		goto bad;
346 
347 	/*
348 	 * Setup rate tables for all potential media types.
349 	 */
350 	ath_rate_setup(sc, IEEE80211_MODE_11A);
351 	ath_rate_setup(sc, IEEE80211_MODE_11B);
352 	ath_rate_setup(sc, IEEE80211_MODE_11G);
353 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
354 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
355 	/* NB: setup here so ath_rate_update is happy */
356 	ath_setcurmode(sc, IEEE80211_MODE_11A);
357 
358 	/*
359 	 * Allocate tx+rx descriptors and populate the lists.
360 	 */
361 	error = ath_desc_alloc(sc);
362 	if (error != 0) {
363 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
364 		goto bad;
365 	}
366 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
367 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
368 #if 0
369 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
370 #endif
371 
372 	ATH_TXBUF_LOCK_INIT(sc);
373 
374 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
375 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
376 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
377 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
378 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
379 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
380 
381 	/*
382 	 * Allocate hardware transmit queues: one queue for
383 	 * beacon frames and one data queue for each QoS
384 	 * priority.  Note that the hal handles reseting
385 	 * these queues at the needed time.
386 	 *
387 	 * XXX PS-Poll
388 	 */
389 	sc->sc_bhalq = ath_beaconq_setup(ah);
390 	if (sc->sc_bhalq == (u_int) -1) {
391 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
392 		error = EIO;
393 		goto bad2;
394 	}
395 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
396 	if (sc->sc_cabq == NULL) {
397 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
398 		error = EIO;
399 		goto bad2;
400 	}
401 	/* NB: insure BK queue is the lowest priority h/w queue */
402 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
403 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
404 			ieee80211_wme_acnames[WME_AC_BK]);
405 		error = EIO;
406 		goto bad2;
407 	}
408 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
409 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
410 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
411 		/*
412 		 * Not enough hardware tx queues to properly do WME;
413 		 * just punt and assign them all to the same h/w queue.
414 		 * We could do a better job of this if, for example,
415 		 * we allocate queues when we switch from station to
416 		 * AP mode.
417 		 */
418 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
419 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
420 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
421 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
422 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
423 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
424 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
425 	}
426 
427 	/*
428 	 * Special case certain configurations.  Note the
429 	 * CAB queue is handled by these specially so don't
430 	 * include them when checking the txq setup mask.
431 	 */
432 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
433 	case 0x01:
434 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
435 		break;
436 	case 0x0f:
437 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
438 		break;
439 	default:
440 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
441 		break;
442 	}
443 
444 	/*
445 	 * Setup rate control.  Some rate control modules
446 	 * call back to change the anntena state so expose
447 	 * the necessary entry points.
448 	 * XXX maybe belongs in struct ath_ratectrl?
449 	 */
450 	sc->sc_setdefantenna = ath_setdefantenna;
451 	sc->sc_rc = ath_rate_attach(sc);
452 	if (sc->sc_rc == NULL) {
453 		error = EIO;
454 		goto bad2;
455 	}
456 
457 	sc->sc_blinking = 0;
458 	sc->sc_ledstate = 1;
459 	sc->sc_ledon = 0;			/* low true */
460 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
461 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
462 	/*
463 	 * Auto-enable soft led processing for IBM cards and for
464 	 * 5211 minipci cards.  Users can also manually enable/disable
465 	 * support with a sysctl.
466 	 */
467 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
468 	if (sc->sc_softled) {
469 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
470 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
471 	}
472 
473 	ifp->if_softc = sc;
474 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
475 	ifp->if_start = ath_start;
476 	ifp->if_stop = ath_stop;
477 	ifp->if_watchdog = ath_watchdog;
478 	ifp->if_ioctl = ath_ioctl;
479 	ifp->if_init = ath_ifinit;
480 	IFQ_SET_READY(&ifp->if_snd);
481 
482 	ic->ic_ifp = ifp;
483 	ic->ic_reset = ath_reset;
484 	ic->ic_newassoc = ath_newassoc;
485 	ic->ic_updateslot = ath_updateslot;
486 	ic->ic_wme.wme_update = ath_wme_update;
487 	/* XXX not right but it's not used anywhere important */
488 	ic->ic_phytype = IEEE80211_T_OFDM;
489 	ic->ic_opmode = IEEE80211_M_STA;
490 	ic->ic_caps =
491 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
492 		| IEEE80211_C_HOSTAP		/* hostap mode */
493 		| IEEE80211_C_MONITOR		/* monitor mode */
494 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
495 		| IEEE80211_C_SHSLOT		/* short slot time supported */
496 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
497 		| IEEE80211_C_TXFRAG		/* handle tx frags */
498 		;
499 	/*
500 	 * Query the hal to figure out h/w crypto support.
501 	 */
502 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
503 		ic->ic_caps |= IEEE80211_C_WEP;
504 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
505 		ic->ic_caps |= IEEE80211_C_AES;
506 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
507 		ic->ic_caps |= IEEE80211_C_AES_CCM;
508 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
509 		ic->ic_caps |= IEEE80211_C_CKIP;
510 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
511 		ic->ic_caps |= IEEE80211_C_TKIP;
512 		/*
513 		 * Check if h/w does the MIC and/or whether the
514 		 * separate key cache entries are required to
515 		 * handle both tx+rx MIC keys.
516 		 */
517 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
518 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
519 
520 		/*
521 		 * If the h/w supports storing tx+rx MIC keys
522 		 * in one cache slot automatically enable use.
523 		 */
524 		if (ath_hal_hastkipsplit(ah) ||
525 		    !ath_hal_settkipsplit(ah, AH_FALSE))
526 			sc->sc_splitmic = 1;
527 
528 		/*
529 		 * If the h/w can do TKIP MIC together with WME then
530 		 * we use it; otherwise we force the MIC to be done
531 		 * in software by the net80211 layer.
532 		 */
533 		if (ath_hal_haswmetkipmic(ah))
534 			ic->ic_caps |= IEEE80211_C_WME_TKIPMIC;
535 	}
536 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
537 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
538 	/*
539 	 * Mark key cache slots associated with global keys
540 	 * as in use.  If we knew TKIP was not to be used we
541 	 * could leave the +32, +64, and +32+64 slots free.
542 	 */
543 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
544 		setbit(sc->sc_keymap, i);
545 		setbit(sc->sc_keymap, i+64);
546 		if (sc->sc_splitmic) {
547 			setbit(sc->sc_keymap, i+32);
548 			setbit(sc->sc_keymap, i+32+64);
549 		}
550 	}
551 	/*
552 	 * TPC support can be done either with a global cap or
553 	 * per-packet support.  The latter is not available on
554 	 * all parts.  We're a bit pedantic here as all parts
555 	 * support a global cap.
556 	 */
557 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
558 		ic->ic_caps |= IEEE80211_C_TXPMGT;
559 
560 	/*
561 	 * Mark WME capability only if we have sufficient
562 	 * hardware queues to do proper priority scheduling.
563 	 */
564 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
565 		ic->ic_caps |= IEEE80211_C_WME;
566 	/*
567 	 * Check for misc other capabilities.
568 	 */
569 	if (ath_hal_hasbursting(ah))
570 		ic->ic_caps |= IEEE80211_C_BURST;
571 
572 	/*
573 	 * Indicate we need the 802.11 header padded to a
574 	 * 32-bit boundary for 4-address and QoS frames.
575 	 */
576 	ic->ic_flags |= IEEE80211_F_DATAPAD;
577 
578 	/*
579 	 * Query the hal about antenna support.
580 	 */
581 	sc->sc_defant = ath_hal_getdefantenna(ah);
582 
583 	/*
584 	 * Not all chips have the VEOL support we want to
585 	 * use with IBSS beacons; check here for it.
586 	 */
587 	sc->sc_hasveol = ath_hal_hasveol(ah);
588 
589 	/* get mac address from hardware */
590 	ath_hal_getmac(ah, ic->ic_myaddr);
591 
592 	if_attach(ifp);
593 	/* call MI attach routine. */
594 	ieee80211_ifattach(ic);
595 	/* override default methods */
596 	ic->ic_node_alloc = ath_node_alloc;
597 	sc->sc_node_free = ic->ic_node_free;
598 	ic->ic_node_free = ath_node_free;
599 	ic->ic_node_getrssi = ath_node_getrssi;
600 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
601 	ic->ic_recv_mgmt = ath_recv_mgmt;
602 	sc->sc_newstate = ic->ic_newstate;
603 	ic->ic_newstate = ath_newstate;
604 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
605 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
606 	ic->ic_crypto.cs_key_delete = ath_key_delete;
607 	ic->ic_crypto.cs_key_set = ath_key_set;
608 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
609 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
610 	/* complete initialization */
611 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
612 
613 	ath_bpfattach(sc);
614 
615 	sc->sc_flags |= ATH_ATTACHED;
616 
617 	/*
618 	 * Setup dynamic sysctl's now that country code and
619 	 * regdomain are available from the hal.
620 	 */
621 	ath_sysctlattach(sc);
622 
623 	ieee80211_announce(ic);
624 	ath_announce(sc);
625 	return 0;
626 bad2:
627 	ath_tx_cleanup(sc);
628 	ath_desc_free(sc);
629 bad:
630 	if (ah)
631 		ath_hal_detach(ah);
632 	/* XXX don't get under the abstraction like this */
633 	sc->sc_dev->dv_flags &= ~DVF_ACTIVE;
634 	return error;
635 }
636 
637 int
638 ath_detach(struct ath_softc *sc)
639 {
640 	struct ifnet *ifp = &sc->sc_if;
641 	int s;
642 
643 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
644 		return (0);
645 
646 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
647 		__func__, ifp->if_flags);
648 
649 	s = splnet();
650 	ath_stop(ifp, 1);
651 	bpf_detach(ifp);
652 	/*
653 	 * NB: the order of these is important:
654 	 * o call the 802.11 layer before detaching the hal to
655 	 *   insure callbacks into the driver to delete global
656 	 *   key cache entries can be handled
657 	 * o reclaim the tx queue data structures after calling
658 	 *   the 802.11 layer as we'll get called back to reclaim
659 	 *   node state and potentially want to use them
660 	 * o to cleanup the tx queues the hal is called, so detach
661 	 *   it last
662 	 * Other than that, it's straightforward...
663 	 */
664 	ieee80211_ifdetach(&sc->sc_ic);
665 #ifdef ATH_TX99_DIAG
666 	if (sc->sc_tx99 != NULL)
667 		sc->sc_tx99->detach(sc->sc_tx99);
668 #endif
669 	ath_rate_detach(sc->sc_rc);
670 	ath_desc_free(sc);
671 	ath_tx_cleanup(sc);
672 	sysctl_teardown(&sc->sc_sysctllog);
673 	ath_hal_detach(sc->sc_ah);
674 	if_detach(ifp);
675 	splx(s);
676 
677 	return 0;
678 }
679 
680 void
681 ath_suspend(struct ath_softc *sc)
682 {
683 #if notyet
684 	/*
685 	 * Set the chip in full sleep mode.  Note that we are
686 	 * careful to do this only when bringing the interface
687 	 * completely to a stop.  When the chip is in this state
688 	 * it must be carefully woken up or references to
689 	 * registers in the PCI clock domain may freeze the bus
690 	 * (and system).  This varies by chip and is mostly an
691 	 * issue with newer parts that go to sleep more quickly.
692 	 */
693 	ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
694 #endif
695 }
696 
697 bool
698 ath_resume(struct ath_softc *sc)
699 {
700 	struct ath_hal *ah = sc->sc_ah;
701 	struct ieee80211com *ic = &sc->sc_ic;
702 	HAL_STATUS status;
703 	int i;
704 
705 #if notyet
706 	ath_hal_setpower(ah, HAL_PM_AWAKE);
707 #else
708 	ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status);
709 #endif
710 
711 	/*
712 	 * Reset the key cache since some parts do not
713 	 * reset the contents on initial power up.
714 	 */
715 	for (i = 0; i < sc->sc_keymax; i++)
716 		ath_hal_keyreset(ah, i);
717 
718 	ath_hal_resettxqueue(ah, sc->sc_bhalq);
719 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
720 		if (ATH_TXQ_SETUP(sc, i))
721 			ath_hal_resettxqueue(ah, i);
722 
723 	if (sc->sc_softled) {
724 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
725 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
726 	}
727 	return true;
728 }
729 
730 /*
731  * Interrupt handler.  Most of the actual processing is deferred.
732  */
733 int
734 ath_intr(void *arg)
735 {
736 	struct ath_softc *sc = arg;
737 	struct ifnet *ifp = &sc->sc_if;
738 	struct ath_hal *ah = sc->sc_ah;
739 	HAL_INT status;
740 
741 	if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) {
742 		/*
743 		 * The hardware is not ready/present, don't touch anything.
744 		 * Note this can happen early on if the IRQ is shared.
745 		 */
746 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
747 		return 0;
748 	}
749 
750 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
751 		return 0;
752 
753 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
754 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
755 			__func__, ifp->if_flags);
756 		ath_hal_getisr(ah, &status);	/* clear ISR */
757 		ath_hal_intrset(ah, 0);		/* disable further intr's */
758 		return 1; /* XXX */
759 	}
760 	/*
761 	 * Figure out the reason(s) for the interrupt.  Note
762 	 * that the hal returns a pseudo-ISR that may include
763 	 * bits we haven't explicitly enabled so we mask the
764 	 * value to insure we only process bits we requested.
765 	 */
766 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
767 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
768 	status &= sc->sc_imask;			/* discard unasked for bits */
769 	if (status & HAL_INT_FATAL) {
770 		/*
771 		 * Fatal errors are unrecoverable.  Typically
772 		 * these are caused by DMA errors.  Unfortunately
773 		 * the exact reason is not (presently) returned
774 		 * by the hal.
775 		 */
776 		sc->sc_stats.ast_hardware++;
777 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
778 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
779 	} else if (status & HAL_INT_RXORN) {
780 		sc->sc_stats.ast_rxorn++;
781 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
782 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
783 	} else {
784 		if (status & HAL_INT_SWBA) {
785 			/*
786 			 * Software beacon alert--time to send a beacon.
787 			 * Handle beacon transmission directly; deferring
788 			 * this is too slow to meet timing constraints
789 			 * under load.
790 			 */
791 			ath_beacon_proc(sc, 0);
792 		}
793 		if (status & HAL_INT_RXEOL) {
794 			/*
795 			 * NB: the hardware should re-read the link when
796 			 *     RXE bit is written, but it doesn't work at
797 			 *     least on older hardware revs.
798 			 */
799 			sc->sc_stats.ast_rxeol++;
800 			sc->sc_rxlink = NULL;
801 		}
802 		if (status & HAL_INT_TXURN) {
803 			sc->sc_stats.ast_txurn++;
804 			/* bump tx trigger level */
805 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
806 		}
807 		if (status & HAL_INT_RX)
808 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
809 		if (status & HAL_INT_TX)
810 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
811 		if (status & HAL_INT_BMISS) {
812 			sc->sc_stats.ast_bmiss++;
813 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
814 		}
815 		if (status & HAL_INT_MIB) {
816 			sc->sc_stats.ast_mib++;
817 			/*
818 			 * Disable interrupts until we service the MIB
819 			 * interrupt; otherwise it will continue to fire.
820 			 */
821 			ath_hal_intrset(ah, 0);
822 			/*
823 			 * Let the hal handle the event.  We assume it will
824 			 * clear whatever condition caused the interrupt.
825 			 */
826 			ath_hal_mibevent(ah, &sc->sc_halstats);
827 			ath_hal_intrset(ah, sc->sc_imask);
828 		}
829 	}
830 	return 1;
831 }
832 
833 /* Swap transmit descriptor.
834  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
835  * function.
836  */
837 static inline void
838 ath_desc_swap(struct ath_desc *ds)
839 {
840 #ifdef AH_NEED_DESC_SWAP
841 	ds->ds_link = htole32(ds->ds_link);
842 	ds->ds_data = htole32(ds->ds_data);
843 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
844 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
845 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
846 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
847 #endif
848 }
849 
850 static void
851 ath_fatal_proc(void *arg, int pending)
852 {
853 	struct ath_softc *sc = arg;
854 	struct ifnet *ifp = &sc->sc_if;
855 
856 	if_printf(ifp, "hardware error; resetting\n");
857 	ath_reset(ifp);
858 }
859 
860 static void
861 ath_rxorn_proc(void *arg, int pending)
862 {
863 	struct ath_softc *sc = arg;
864 	struct ifnet *ifp = &sc->sc_if;
865 
866 	if_printf(ifp, "rx FIFO overrun; resetting\n");
867 	ath_reset(ifp);
868 }
869 
870 static void
871 ath_bmiss_proc(void *arg, int pending)
872 {
873 	struct ath_softc *sc = arg;
874 	struct ieee80211com *ic = &sc->sc_ic;
875 
876 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
877 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
878 		("unexpect operating mode %u", ic->ic_opmode));
879 	if (ic->ic_state == IEEE80211_S_RUN) {
880 		u_int64_t lastrx = sc->sc_lastrx;
881 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
882 
883 		DPRINTF(sc, ATH_DEBUG_BEACON,
884 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
885 		    " (%" PRIu64 ") bmiss %u\n",
886 		    __func__, tsf, tsf - lastrx, lastrx,
887 		    ic->ic_bmisstimeout*1024);
888 		/*
889 		 * Workaround phantom bmiss interrupts by sanity-checking
890 		 * the time of our last rx'd frame.  If it is within the
891 		 * beacon miss interval then ignore the interrupt.  If it's
892 		 * truly a bmiss we'll get another interrupt soon and that'll
893 		 * be dispatched up for processing.
894 		 */
895 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
896 			NET_LOCK_GIANT();
897 			ieee80211_beacon_miss(ic);
898 			NET_UNLOCK_GIANT();
899 		} else
900 			sc->sc_stats.ast_bmiss_phantom++;
901 	}
902 }
903 
904 static void
905 ath_radar_proc(void *arg, int pending)
906 {
907 #if 0
908 	struct ath_softc *sc = arg;
909 	struct ifnet *ifp = &sc->sc_if;
910 	struct ath_hal *ah = sc->sc_ah;
911 	HAL_CHANNEL hchan;
912 
913 	if (ath_hal_procdfs(ah, &hchan)) {
914 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
915 			hchan.channel, hchan.channelFlags, hchan.privFlags);
916 		/*
917 		 * Initiate channel change.
918 		 */
919 		/* XXX not yet */
920 	}
921 #endif
922 }
923 
924 static u_int
925 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
926 {
927 #define	N(a)	(sizeof(a) / sizeof(a[0]))
928 	static const u_int modeflags[] = {
929 		0,			/* IEEE80211_MODE_AUTO */
930 		CHANNEL_A,		/* IEEE80211_MODE_11A */
931 		CHANNEL_B,		/* IEEE80211_MODE_11B */
932 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
933 		0,			/* IEEE80211_MODE_FH */
934 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
935 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
936 	};
937 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
938 
939 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
940 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
941 	return modeflags[mode];
942 #undef N
943 }
944 
945 static int
946 ath_ifinit(struct ifnet *ifp)
947 {
948 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
949 
950 	return ath_init(sc);
951 }
952 
953 static void
954 ath_settkipmic(struct ath_softc *sc)
955 {
956 	struct ieee80211com *ic = &sc->sc_ic;
957 	struct ath_hal *ah = sc->sc_ah;
958 
959 	if ((ic->ic_caps & IEEE80211_C_TKIP) &&
960 	    !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) {
961 		if (ic->ic_flags & IEEE80211_F_WME) {
962 			(void)ath_hal_settkipmic(ah, AH_FALSE);
963 			ic->ic_caps &= ~IEEE80211_C_TKIPMIC;
964 		} else {
965 			(void)ath_hal_settkipmic(ah, AH_TRUE);
966 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
967 		}
968 	}
969 }
970 
971 static int
972 ath_init(struct ath_softc *sc)
973 {
974 	struct ifnet *ifp = &sc->sc_if;
975 	struct ieee80211com *ic = &sc->sc_ic;
976 	struct ath_hal *ah = sc->sc_ah;
977 	HAL_STATUS status;
978 	int error = 0;
979 
980 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
981 		__func__, ifp->if_flags);
982 
983 	if (device_is_active(sc->sc_dev)) {
984 		ATH_LOCK(sc);
985 	} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
986 	           !device_is_active(sc->sc_dev))
987 		return 0;
988 	else
989 		ATH_LOCK(sc);
990 
991 	/*
992 	 * Stop anything previously setup.  This is safe
993 	 * whether this is the first time through or not.
994 	 */
995 	ath_stop_locked(ifp, 0);
996 
997 	/*
998 	 * The basic interface to setting the hardware in a good
999 	 * state is ``reset''.  On return the hardware is known to
1000 	 * be powered up and with interrupts disabled.  This must
1001 	 * be followed by initialization of the appropriate bits
1002 	 * and then setup of the interrupt mask.
1003 	 */
1004 	ath_settkipmic(sc);
1005 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1006 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1007 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1008 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1009 			status);
1010 		error = EIO;
1011 		goto done;
1012 	}
1013 
1014 	/*
1015 	 * This is needed only to setup initial state
1016 	 * but it's best done after a reset.
1017 	 */
1018 	ath_update_txpow(sc);
1019 	/*
1020 	 * Likewise this is set during reset so update
1021 	 * state cached in the driver.
1022 	 */
1023 	ath_restore_diversity(sc);
1024 	sc->sc_calinterval = 1;
1025 	sc->sc_caltries = 0;
1026 
1027 	/*
1028 	 * Setup the hardware after reset: the key cache
1029 	 * is filled as needed and the receive engine is
1030 	 * set going.  Frame transmit is handled entirely
1031 	 * in the frame output path; there's nothing to do
1032 	 * here except setup the interrupt mask.
1033 	 */
1034 	if ((error = ath_startrecv(sc)) != 0) {
1035 		if_printf(ifp, "unable to start recv logic\n");
1036 		goto done;
1037 	}
1038 
1039 	/*
1040 	 * Enable interrupts.
1041 	 */
1042 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1043 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1044 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1045 	/*
1046 	 * Enable MIB interrupts when there are hardware phy counters.
1047 	 * Note we only do this (at the moment) for station mode.
1048 	 */
1049 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1050 		sc->sc_imask |= HAL_INT_MIB;
1051 	ath_hal_intrset(ah, sc->sc_imask);
1052 
1053 	ifp->if_flags |= IFF_RUNNING;
1054 	ic->ic_state = IEEE80211_S_INIT;
1055 
1056 	/*
1057 	 * The hardware should be ready to go now so it's safe
1058 	 * to kick the 802.11 state machine as it's likely to
1059 	 * immediately call back to us to send mgmt frames.
1060 	 */
1061 	ath_chan_change(sc, ic->ic_curchan);
1062 #ifdef ATH_TX99_DIAG
1063 	if (sc->sc_tx99 != NULL)
1064 		sc->sc_tx99->start(sc->sc_tx99);
1065 	else
1066 #endif
1067 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1068 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1069 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1070 	} else
1071 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1072 done:
1073 	ATH_UNLOCK(sc);
1074 	return error;
1075 }
1076 
1077 static void
1078 ath_stop_locked(struct ifnet *ifp, int disable)
1079 {
1080 	struct ath_softc *sc = ifp->if_softc;
1081 	struct ieee80211com *ic = &sc->sc_ic;
1082 	struct ath_hal *ah = sc->sc_ah;
1083 
1084 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n",
1085 		__func__, !device_is_enabled(sc->sc_dev), ifp->if_flags);
1086 
1087 	ATH_LOCK_ASSERT(sc);
1088 	if (ifp->if_flags & IFF_RUNNING) {
1089 		/*
1090 		 * Shutdown the hardware and driver:
1091 		 *    reset 802.11 state machine
1092 		 *    turn off timers
1093 		 *    disable interrupts
1094 		 *    turn off the radio
1095 		 *    clear transmit machinery
1096 		 *    clear receive machinery
1097 		 *    drain and release tx queues
1098 		 *    reclaim beacon resources
1099 		 *    power down hardware
1100 		 *
1101 		 * Note that some of this work is not possible if the
1102 		 * hardware is gone (invalid).
1103 		 */
1104 #ifdef ATH_TX99_DIAG
1105 		if (sc->sc_tx99 != NULL)
1106 			sc->sc_tx99->stop(sc->sc_tx99);
1107 #endif
1108 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1109 		ifp->if_flags &= ~IFF_RUNNING;
1110 		ifp->if_timer = 0;
1111 		if (device_is_enabled(sc->sc_dev)) {
1112 			if (sc->sc_softled) {
1113 				callout_stop(&sc->sc_ledtimer);
1114 				ath_hal_gpioset(ah, sc->sc_ledpin,
1115 					!sc->sc_ledon);
1116 				sc->sc_blinking = 0;
1117 			}
1118 			ath_hal_intrset(ah, 0);
1119 		}
1120 		ath_draintxq(sc);
1121 		if (device_is_enabled(sc->sc_dev)) {
1122 			ath_stoprecv(sc);
1123 			ath_hal_phydisable(ah);
1124 		} else
1125 			sc->sc_rxlink = NULL;
1126 		IF_PURGE(&ifp->if_snd);
1127 		ath_beacon_free(sc);
1128 	}
1129 	if (disable)
1130 		pmf_device_suspend(sc->sc_dev, &sc->sc_qual);
1131 }
1132 
1133 static void
1134 ath_stop(struct ifnet *ifp, int disable)
1135 {
1136 	struct ath_softc *sc = ifp->if_softc;
1137 
1138 	ATH_LOCK(sc);
1139 	ath_stop_locked(ifp, disable);
1140 	ATH_UNLOCK(sc);
1141 }
1142 
1143 static void
1144 ath_restore_diversity(struct ath_softc *sc)
1145 {
1146 	struct ifnet *ifp = &sc->sc_if;
1147 	struct ath_hal *ah = sc->sc_ah;
1148 
1149 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1150 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1151 		if_printf(ifp, "could not restore diversity setting %d\n",
1152 		    sc->sc_diversity);
1153 		sc->sc_diversity = ath_hal_getdiversity(ah);
1154 	}
1155 }
1156 
1157 /*
1158  * Reset the hardware w/o losing operational state.  This is
1159  * basically a more efficient way of doing ath_stop, ath_init,
1160  * followed by state transitions to the current 802.11
1161  * operational state.  Used to recover from various errors and
1162  * to reset or reload hardware state.
1163  */
1164 int
1165 ath_reset(struct ifnet *ifp)
1166 {
1167 	struct ath_softc *sc = ifp->if_softc;
1168 	struct ieee80211com *ic = &sc->sc_ic;
1169 	struct ath_hal *ah = sc->sc_ah;
1170 	struct ieee80211_channel *c;
1171 	HAL_STATUS status;
1172 
1173 	/*
1174 	 * Convert to a HAL channel description with the flags
1175 	 * constrained to reflect the current operating mode.
1176 	 */
1177 	c = ic->ic_curchan;
1178 	sc->sc_curchan.channel = c->ic_freq;
1179 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1180 
1181 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1182 	ath_draintxq(sc);		/* stop xmit side */
1183 	ath_stoprecv(sc);		/* stop recv side */
1184 	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1185 	/* NB: indicate channel change so we do a full reset */
1186 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1187 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1188 			__func__, status);
1189 	ath_update_txpow(sc);		/* update tx power state */
1190 	ath_restore_diversity(sc);
1191 	sc->sc_calinterval = 1;
1192 	sc->sc_caltries = 0;
1193 	if (ath_startrecv(sc) != 0)	/* restart recv */
1194 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1195 	/*
1196 	 * We may be doing a reset in response to an ioctl
1197 	 * that changes the channel so update any state that
1198 	 * might change as a result.
1199 	 */
1200 	ath_chan_change(sc, c);
1201 	if (ic->ic_state == IEEE80211_S_RUN)
1202 		ath_beacon_config(sc);	/* restart beacons */
1203 	ath_hal_intrset(ah, sc->sc_imask);
1204 
1205 	ath_start(ifp);			/* restart xmit */
1206 	return 0;
1207 }
1208 
1209 /*
1210  * Cleanup driver resources when we run out of buffers
1211  * while processing fragments; return the tx buffers
1212  * allocated and drop node references.
1213  */
1214 static void
1215 ath_txfrag_cleanup(struct ath_softc *sc,
1216 	ath_bufhead *frags, struct ieee80211_node *ni)
1217 {
1218 	struct ath_buf *bf;
1219 
1220 	ATH_TXBUF_LOCK_ASSERT(sc);
1221 
1222 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1223 		STAILQ_REMOVE_HEAD(frags, bf_list);
1224 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1225 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1226 		ieee80211_node_decref(ni);
1227 	}
1228 }
1229 
1230 /*
1231  * Setup xmit of a fragmented frame.  Allocate a buffer
1232  * for each frag and bump the node reference count to
1233  * reflect the held reference to be setup by ath_tx_start.
1234  */
1235 static int
1236 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1237 	struct mbuf *m0, struct ieee80211_node *ni)
1238 {
1239 	struct mbuf *m;
1240 	struct ath_buf *bf;
1241 
1242 	ATH_TXBUF_LOCK(sc);
1243 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1244 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1245 		if (bf == NULL) {       /* out of buffers, cleanup */
1246 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1247 				__func__);
1248 			sc->sc_if.if_flags |= IFF_OACTIVE;
1249 			ath_txfrag_cleanup(sc, frags, ni);
1250 			break;
1251 		}
1252 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1253 		ieee80211_node_incref(ni);
1254 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1255 	}
1256 	ATH_TXBUF_UNLOCK(sc);
1257 
1258 	return !STAILQ_EMPTY(frags);
1259 }
1260 
1261 static void
1262 ath_start(struct ifnet *ifp)
1263 {
1264 	struct ath_softc *sc = ifp->if_softc;
1265 	struct ath_hal *ah = sc->sc_ah;
1266 	struct ieee80211com *ic = &sc->sc_ic;
1267 	struct ieee80211_node *ni;
1268 	struct ath_buf *bf;
1269 	struct mbuf *m, *next;
1270 	struct ieee80211_frame *wh;
1271 	struct ether_header *eh;
1272 	ath_bufhead frags;
1273 
1274 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
1275 	    !device_is_active(sc->sc_dev))
1276 		return;
1277 	for (;;) {
1278 		/*
1279 		 * Grab a TX buffer and associated resources.
1280 		 */
1281 		ATH_TXBUF_LOCK(sc);
1282 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1283 		if (bf != NULL)
1284 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1285 		ATH_TXBUF_UNLOCK(sc);
1286 		if (bf == NULL) {
1287 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1288 				__func__);
1289 			sc->sc_stats.ast_tx_qstop++;
1290 			ifp->if_flags |= IFF_OACTIVE;
1291 			break;
1292 		}
1293 		/*
1294 		 * Poll the management queue for frames; they
1295 		 * have priority over normal data frames.
1296 		 */
1297 		IF_DEQUEUE(&ic->ic_mgtq, m);
1298 		if (m == NULL) {
1299 			/*
1300 			 * No data frames go out unless we're associated.
1301 			 */
1302 			if (ic->ic_state != IEEE80211_S_RUN) {
1303 				DPRINTF(sc, ATH_DEBUG_XMIT,
1304 				    "%s: discard data packet, state %s\n",
1305 				    __func__,
1306 				    ieee80211_state_name[ic->ic_state]);
1307 				sc->sc_stats.ast_tx_discard++;
1308 				ATH_TXBUF_LOCK(sc);
1309 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1310 				ATH_TXBUF_UNLOCK(sc);
1311 				break;
1312 			}
1313 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1314 			if (m == NULL) {
1315 				ATH_TXBUF_LOCK(sc);
1316 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1317 				ATH_TXBUF_UNLOCK(sc);
1318 				break;
1319 			}
1320 			STAILQ_INIT(&frags);
1321 			/*
1322 			 * Find the node for the destination so we can do
1323 			 * things like power save and fast frames aggregation.
1324 			 */
1325 			if (m->m_len < sizeof(struct ether_header) &&
1326 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1327 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1328 				ni = NULL;
1329 				goto bad;
1330 			}
1331 			eh = mtod(m, struct ether_header *);
1332 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1333 			if (ni == NULL) {
1334 				/* NB: ieee80211_find_txnode does stat+msg */
1335 				m_freem(m);
1336 				goto bad;
1337 			}
1338 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1339 			    (m->m_flags & M_PWR_SAV) == 0) {
1340 				/*
1341 				 * Station in power save mode; pass the frame
1342 				 * to the 802.11 layer and continue.  We'll get
1343 				 * the frame back when the time is right.
1344 				 */
1345 				ieee80211_pwrsave(ic, ni, m);
1346 				goto reclaim;
1347 			}
1348 			/* calculate priority so we can find the tx queue */
1349 			if (ieee80211_classify(ic, m, ni)) {
1350 				DPRINTF(sc, ATH_DEBUG_XMIT,
1351 					"%s: discard, classification failure\n",
1352 					__func__);
1353 				m_freem(m);
1354 				goto bad;
1355 			}
1356 			ifp->if_opackets++;
1357 
1358 			bpf_mtap(ifp, m);
1359 			/*
1360 			 * Encapsulate the packet in prep for transmission.
1361 			 */
1362 			m = ieee80211_encap(ic, m, ni);
1363 			if (m == NULL) {
1364 				DPRINTF(sc, ATH_DEBUG_XMIT,
1365 					"%s: encapsulation failure\n",
1366 					__func__);
1367 				sc->sc_stats.ast_tx_encap++;
1368 				goto bad;
1369 			}
1370 			/*
1371 			 * Check for fragmentation.  If this has frame
1372 			 * has been broken up verify we have enough
1373 			 * buffers to send all the fragments so all
1374 			 * go out or none...
1375 			 */
1376 			if ((m->m_flags & M_FRAG) &&
1377 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1378 				DPRINTF(sc, ATH_DEBUG_ANY,
1379 				    "%s: out of txfrag buffers\n", __func__);
1380 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1381 				ath_freetx(m);
1382 				goto bad;
1383 			}
1384 		} else {
1385 			/*
1386 			 * Hack!  The referenced node pointer is in the
1387 			 * rcvif field of the packet header.  This is
1388 			 * placed there by ieee80211_mgmt_output because
1389 			 * we need to hold the reference with the frame
1390 			 * and there's no other way (other than packet
1391 			 * tags which we consider too expensive to use)
1392 			 * to pass it along.
1393 			 */
1394 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1395 			m->m_pkthdr.rcvif = NULL;
1396 
1397 			wh = mtod(m, struct ieee80211_frame *);
1398 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1399 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1400 				/* fill time stamp */
1401 				u_int64_t tsf;
1402 				u_int32_t *tstamp;
1403 
1404 				tsf = ath_hal_gettsf64(ah);
1405 				/* XXX: adjust 100us delay to xmit */
1406 				tsf += 100;
1407 				tstamp = (u_int32_t *)&wh[1];
1408 				tstamp[0] = htole32(tsf & 0xffffffff);
1409 				tstamp[1] = htole32(tsf >> 32);
1410 			}
1411 			sc->sc_stats.ast_tx_mgmt++;
1412 		}
1413 
1414 	nextfrag:
1415 		next = m->m_nextpkt;
1416 		if (ath_tx_start(sc, ni, bf, m)) {
1417 	bad:
1418 			ifp->if_oerrors++;
1419 	reclaim:
1420 			ATH_TXBUF_LOCK(sc);
1421 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1422 			ath_txfrag_cleanup(sc, &frags, ni);
1423 			ATH_TXBUF_UNLOCK(sc);
1424 			if (ni != NULL)
1425 				ieee80211_free_node(ni);
1426 			continue;
1427 		}
1428 		if (next != NULL) {
1429 			m = next;
1430 			bf = STAILQ_FIRST(&frags);
1431 			KASSERT(bf != NULL, ("no buf for txfrag"));
1432 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1433 			goto nextfrag;
1434 		}
1435 
1436 		ifp->if_timer = 1;
1437 	}
1438 }
1439 
1440 static int
1441 ath_media_change(struct ifnet *ifp)
1442 {
1443 #define	IS_UP(ifp) \
1444 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1445 	int error;
1446 
1447 	error = ieee80211_media_change(ifp);
1448 	if (error == ENETRESET) {
1449 		if (IS_UP(ifp))
1450 			ath_init(ifp->if_softc);	/* XXX lose error */
1451 		error = 0;
1452 	}
1453 	return error;
1454 #undef IS_UP
1455 }
1456 
1457 #ifdef AR_DEBUG
1458 static void
1459 ath_keyprint(const char *tag, u_int ix,
1460 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1461 {
1462 	static const char *ciphers[] = {
1463 		"WEP",
1464 		"AES-OCB",
1465 		"AES-CCM",
1466 		"CKIP",
1467 		"TKIP",
1468 		"CLR",
1469 	};
1470 	int i, n;
1471 
1472 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1473 	for (i = 0, n = hk->kv_len; i < n; i++)
1474 		printf("%02x", hk->kv_val[i]);
1475 	printf(" mac %s", ether_sprintf(mac));
1476 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1477 		printf(" mic ");
1478 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1479 			printf("%02x", hk->kv_mic[i]);
1480 	}
1481 	printf("\n");
1482 }
1483 #endif
1484 
1485 /*
1486  * Set a TKIP key into the hardware.  This handles the
1487  * potential distribution of key state to multiple key
1488  * cache slots for TKIP.
1489  */
1490 static int
1491 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1492 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1493 {
1494 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1495 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1496 	struct ath_hal *ah = sc->sc_ah;
1497 
1498 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1499 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1500 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1501 		if (sc->sc_splitmic) {
1502 			/*
1503 			 * TX key goes at first index, RX key at the rx index.
1504 			 * The hal handles the MIC keys at index+64.
1505 			 */
1506 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1507 			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1508 			if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk,
1509 						zerobssid))
1510 				return 0;
1511 
1512 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1513 			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1514 			/* XXX delete tx key on failure? */
1515 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32),
1516 					hk, mac);
1517 		} else {
1518 			/*
1519 			 * Room for both TX+RX MIC keys in one key cache
1520 			 * slot, just set key at the first index; the HAL
1521 			 * will handle the reset.
1522 			 */
1523 			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1524 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1525 			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1526 			return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1527 		}
1528 	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1529 		if (sc->sc_splitmic) {
1530 			/*
1531 			 * NB: must pass MIC key in expected location when
1532 			 * the keycache only holds one MIC key per entry.
1533 			 */
1534 			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1535 		} else
1536 			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1537 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1538 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac);
1539 	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1540 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1541 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1542 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1543 	}
1544 	return 0;
1545 #undef IEEE80211_KEY_XR
1546 }
1547 
1548 /*
1549  * Set a net80211 key into the hardware.  This handles the
1550  * potential distribution of key state to multiple key
1551  * cache slots for TKIP with hardware MIC support.
1552  */
1553 static int
1554 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1555 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1556 	struct ieee80211_node *bss)
1557 {
1558 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1559 	static const u_int8_t ciphermap[] = {
1560 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1561 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1562 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1563 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1564 		(u_int8_t) -1,		/* 4 is not allocated */
1565 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1566 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1567 	};
1568 	struct ath_hal *ah = sc->sc_ah;
1569 	const struct ieee80211_cipher *cip = k->wk_cipher;
1570 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1571 	const u_int8_t *mac;
1572 	HAL_KEYVAL hk;
1573 
1574 	memset(&hk, 0, sizeof(hk));
1575 	/*
1576 	 * Software crypto uses a "clear key" so non-crypto
1577 	 * state kept in the key cache are maintained and
1578 	 * so that rx frames have an entry to match.
1579 	 */
1580 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1581 		KASSERT(cip->ic_cipher < N(ciphermap),
1582 			("invalid cipher type %u", cip->ic_cipher));
1583 		hk.kv_type = ciphermap[cip->ic_cipher];
1584 		hk.kv_len = k->wk_keylen;
1585 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1586 	} else
1587 		hk.kv_type = HAL_CIPHER_CLR;
1588 
1589 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1590 		/*
1591 		 * Group keys on hardware that supports multicast frame
1592 		 * key search use a mac that is the sender's address with
1593 		 * the high bit set instead of the app-specified address.
1594 		 */
1595 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1596 		gmac[0] |= 0x80;
1597 		mac = gmac;
1598 	} else
1599 		mac = mac0;
1600 
1601 	if ((hk.kv_type == HAL_CIPHER_TKIP &&
1602 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) {
1603 		return ath_keyset_tkip(sc, k, &hk, mac);
1604 	} else {
1605 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1606 		return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac);
1607 	}
1608 #undef N
1609 }
1610 
1611 /*
1612  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1613  * each key, one for decrypt/encrypt and the other for the MIC.
1614  */
1615 static u_int16_t
1616 key_alloc_2pair(struct ath_softc *sc,
1617 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1618 {
1619 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1620 	u_int i, keyix;
1621 
1622 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1623 	/* XXX could optimize */
1624 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1625 		u_int8_t b = sc->sc_keymap[i];
1626 		if (b != 0xff) {
1627 			/*
1628 			 * One or more slots in this byte are free.
1629 			 */
1630 			keyix = i*NBBY;
1631 			while (b & 1) {
1632 		again:
1633 				keyix++;
1634 				b >>= 1;
1635 			}
1636 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1637 			if (isset(sc->sc_keymap, keyix+32) ||
1638 			    isset(sc->sc_keymap, keyix+64) ||
1639 			    isset(sc->sc_keymap, keyix+32+64)) {
1640 				/* full pair unavailable */
1641 				/* XXX statistic */
1642 				if (keyix == (i+1)*NBBY) {
1643 					/* no slots were appropriate, advance */
1644 					continue;
1645 				}
1646 				goto again;
1647 			}
1648 			setbit(sc->sc_keymap, keyix);
1649 			setbit(sc->sc_keymap, keyix+64);
1650 			setbit(sc->sc_keymap, keyix+32);
1651 			setbit(sc->sc_keymap, keyix+32+64);
1652 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1653 				"%s: key pair %u,%u %u,%u\n",
1654 				__func__, keyix, keyix+64,
1655 				keyix+32, keyix+32+64);
1656 			*txkeyix = keyix;
1657 			*rxkeyix = keyix+32;
1658 			return keyix;
1659 		}
1660 	}
1661 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1662 	return IEEE80211_KEYIX_NONE;
1663 #undef N
1664 }
1665 
1666 /*
1667  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1668  * each key, one for decrypt/encrypt and the other for the MIC.
1669  */
1670 static int
1671 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix,
1672     ieee80211_keyix *rxkeyix)
1673 {
1674 #define N(a)	(sizeof(a)/sizeof(a[0]))
1675 	u_int i, keyix;
1676 
1677 	KASSERT(!sc->sc_splitmic, ("key cache split"));
1678 	/* XXX could optimize */
1679 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1680 		uint8_t b = sc->sc_keymap[i];
1681 		if (b != 0xff) {
1682 			/*
1683 			 * One or more slots in this byte are free.
1684 			 */
1685 			keyix = i*NBBY;
1686 			while (b & 1) {
1687 		again:
1688 				keyix++;
1689 				b >>= 1;
1690 			}
1691 			if (isset(sc->sc_keymap, keyix+64)) {
1692 				/* full pair unavailable */
1693 				/* XXX statistic */
1694 				if (keyix == (i+1)*NBBY) {
1695 					/* no slots were appropriate, advance */
1696 					continue;
1697 				}
1698 				goto again;
1699 			}
1700 			setbit(sc->sc_keymap, keyix);
1701 			setbit(sc->sc_keymap, keyix+64);
1702 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1703 				"%s: key pair %u,%u\n",
1704 				__func__, keyix, keyix+64);
1705 			*txkeyix = *rxkeyix = keyix;
1706 			return 1;
1707 		}
1708 	}
1709 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1710 	return 0;
1711 #undef N
1712 }
1713 
1714 /*
1715  * Allocate a single key cache slot.
1716  */
1717 static int
1718 key_alloc_single(struct ath_softc *sc,
1719 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1720 {
1721 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1722 	u_int i, keyix;
1723 
1724 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1725 	for (i = 0; i < N(sc->sc_keymap); i++) {
1726 		u_int8_t b = sc->sc_keymap[i];
1727 		if (b != 0xff) {
1728 			/*
1729 			 * One or more slots are free.
1730 			 */
1731 			keyix = i*NBBY;
1732 			while (b & 1)
1733 				keyix++, b >>= 1;
1734 			setbit(sc->sc_keymap, keyix);
1735 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1736 				__func__, keyix);
1737 			*txkeyix = *rxkeyix = keyix;
1738 			return 1;
1739 		}
1740 	}
1741 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1742 	return 0;
1743 #undef N
1744 }
1745 
1746 /*
1747  * Allocate one or more key cache slots for a uniacst key.  The
1748  * key itself is needed only to identify the cipher.  For hardware
1749  * TKIP with split cipher+MIC keys we allocate two key cache slot
1750  * pairs so that we can setup separate TX and RX MIC keys.  Note
1751  * that the MIC key for a TKIP key at slot i is assumed by the
1752  * hardware to be at slot i+64.  This limits TKIP keys to the first
1753  * 64 entries.
1754  */
1755 static int
1756 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1757 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1758 {
1759 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1760 
1761 	/*
1762 	 * Group key allocation must be handled specially for
1763 	 * parts that do not support multicast key cache search
1764 	 * functionality.  For those parts the key id must match
1765 	 * the h/w key index so lookups find the right key.  On
1766 	 * parts w/ the key search facility we install the sender's
1767 	 * mac address (with the high bit set) and let the hardware
1768 	 * find the key w/o using the key id.  This is preferred as
1769 	 * it permits us to support multiple users for adhoc and/or
1770 	 * multi-station operation.
1771 	 */
1772 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1773 		if (!(&ic->ic_nw_keys[0] <= k &&
1774 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1775 			/* should not happen */
1776 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1777 				"%s: bogus group key\n", __func__);
1778 			return 0;
1779 		}
1780 		/*
1781 		 * XXX we pre-allocate the global keys so
1782 		 * have no way to check if they've already been allocated.
1783 		 */
1784 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1785 		return 1;
1786 	}
1787 
1788 	/*
1789 	 * We allocate two pair for TKIP when using the h/w to do
1790 	 * the MIC.  For everything else, including software crypto,
1791 	 * we allocate a single entry.  Note that s/w crypto requires
1792 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1793 	 * not support pass-through cache entries and we map all
1794 	 * those requests to slot 0.
1795 	 */
1796 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1797 		return key_alloc_single(sc, keyix, rxkeyix);
1798 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1799 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1800 		if (sc->sc_splitmic)
1801 			return key_alloc_2pair(sc, keyix, rxkeyix);
1802 		else
1803 			return key_alloc_pair(sc, keyix, rxkeyix);
1804 	} else {
1805 		return key_alloc_single(sc, keyix, rxkeyix);
1806 	}
1807 }
1808 
1809 /*
1810  * Delete an entry in the key cache allocated by ath_key_alloc.
1811  */
1812 static int
1813 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1814 {
1815 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1816 	struct ath_hal *ah = sc->sc_ah;
1817 	const struct ieee80211_cipher *cip = k->wk_cipher;
1818 	u_int keyix = k->wk_keyix;
1819 
1820 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1821 
1822 	if (!device_has_power(sc->sc_dev)) {
1823 		aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n",
1824 		    k->wk_keyix);
1825 	}
1826 
1827 	ath_hal_keyreset(ah, keyix);
1828 	/*
1829 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1830 	 */
1831 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1832 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1833 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1834 	if (keyix >= IEEE80211_WEP_NKID) {
1835 		/*
1836 		 * Don't touch keymap entries for global keys so
1837 		 * they are never considered for dynamic allocation.
1838 		 */
1839 		clrbit(sc->sc_keymap, keyix);
1840 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1841 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
1842 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1843 			if (sc->sc_splitmic) {
1844 				/* +32 for RX key, +32+64 for RX key MIC */
1845 				clrbit(sc->sc_keymap, keyix+32);
1846 				clrbit(sc->sc_keymap, keyix+32+64);
1847 			}
1848 		}
1849 	}
1850 	return 1;
1851 }
1852 
1853 /*
1854  * Set the key cache contents for the specified key.  Key cache
1855  * slot(s) must already have been allocated by ath_key_alloc.
1856  */
1857 static int
1858 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1859 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1860 {
1861 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1862 
1863 	if (!device_has_power(sc->sc_dev)) {
1864 		aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n",
1865 		    k->wk_keyix);
1866 	}
1867 	return ath_keyset(sc, k, mac, ic->ic_bss);
1868 }
1869 
1870 /*
1871  * Block/unblock tx+rx processing while a key change is done.
1872  * We assume the caller serializes key management operations
1873  * so we only need to worry about synchronization with other
1874  * uses that originate in the driver.
1875  */
1876 static void
1877 ath_key_update_begin(struct ieee80211com *ic)
1878 {
1879 	struct ifnet *ifp = ic->ic_ifp;
1880 	struct ath_softc *sc = ifp->if_softc;
1881 
1882 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1883 #if 0
1884 	tasklet_disable(&sc->sc_rxtq);
1885 #endif
1886 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1887 }
1888 
1889 static void
1890 ath_key_update_end(struct ieee80211com *ic)
1891 {
1892 	struct ifnet *ifp = ic->ic_ifp;
1893 	struct ath_softc *sc = ifp->if_softc;
1894 
1895 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1896 	IF_UNLOCK(&ifp->if_snd);
1897 #if 0
1898 	tasklet_enable(&sc->sc_rxtq);
1899 #endif
1900 }
1901 
1902 /*
1903  * Calculate the receive filter according to the
1904  * operating mode and state:
1905  *
1906  * o always accept unicast, broadcast, and multicast traffic
1907  * o maintain current state of phy error reception (the hal
1908  *   may enable phy error frames for noise immunity work)
1909  * o probe request frames are accepted only when operating in
1910  *   hostap, adhoc, or monitor modes
1911  * o enable promiscuous mode according to the interface state
1912  * o accept beacons:
1913  *   - when operating in adhoc mode so the 802.11 layer creates
1914  *     node table entries for peers,
1915  *   - when operating in station mode for collecting rssi data when
1916  *     the station is otherwise quiet, or
1917  *   - when scanning
1918  */
1919 static u_int32_t
1920 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1921 {
1922 	struct ieee80211com *ic = &sc->sc_ic;
1923 	struct ath_hal *ah = sc->sc_ah;
1924 	struct ifnet *ifp = &sc->sc_if;
1925 	u_int32_t rfilt;
1926 
1927 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1928 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1929 	if (ic->ic_opmode != IEEE80211_M_STA)
1930 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1931 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1932 	    (ifp->if_flags & IFF_PROMISC))
1933 		rfilt |= HAL_RX_FILTER_PROM;
1934 	if (ifp->if_flags & IFF_PROMISC)
1935 		rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ;
1936 	if (ic->ic_opmode == IEEE80211_M_STA ||
1937 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1938 	    state == IEEE80211_S_SCAN)
1939 		rfilt |= HAL_RX_FILTER_BEACON;
1940 	return rfilt;
1941 }
1942 
1943 static void
1944 ath_mode_init(struct ath_softc *sc)
1945 {
1946 	struct ifnet *ifp = &sc->sc_if;
1947 	struct ieee80211com *ic = &sc->sc_ic;
1948 	struct ath_hal *ah = sc->sc_ah;
1949 	struct ether_multi *enm;
1950 	struct ether_multistep estep;
1951 	u_int32_t rfilt, mfilt[2], val;
1952 	int i;
1953 	uint8_t pos;
1954 
1955 	/* configure rx filter */
1956 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1957 	ath_hal_setrxfilter(ah, rfilt);
1958 
1959 	/* configure operational mode */
1960 	ath_hal_setopmode(ah);
1961 
1962 	/* Write keys to hardware; it may have been powered down. */
1963 	ath_key_update_begin(ic);
1964 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1965 		ath_key_set(ic,
1966 			    &ic->ic_crypto.cs_nw_keys[i],
1967 			    ic->ic_myaddr);
1968 	}
1969 	ath_key_update_end(ic);
1970 
1971 	/*
1972 	 * Handle any link-level address change.  Note that we only
1973 	 * need to force ic_myaddr; any other addresses are handled
1974 	 * as a byproduct of the ifnet code marking the interface
1975 	 * down then up.
1976 	 *
1977 	 * XXX should get from lladdr instead of arpcom but that's more work
1978 	 */
1979 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1980 	ath_hal_setmac(ah, ic->ic_myaddr);
1981 
1982 	/* calculate and install multicast filter */
1983 	ifp->if_flags &= ~IFF_ALLMULTI;
1984 	mfilt[0] = mfilt[1] = 0;
1985 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1986 	while (enm != NULL) {
1987 		void *dl;
1988 		/* XXX Punt on ranges. */
1989 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1990 			mfilt[0] = mfilt[1] = 0xffffffff;
1991 			ifp->if_flags |= IFF_ALLMULTI;
1992 			break;
1993 		}
1994 		dl = enm->enm_addrlo;
1995 		val = LE_READ_4((char *)dl + 0);
1996 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1997 		val = LE_READ_4((char *)dl + 3);
1998 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1999 		pos &= 0x3f;
2000 		mfilt[pos / 32] |= (1 << (pos % 32));
2001 
2002 		ETHER_NEXT_MULTI(estep, enm);
2003 	}
2004 
2005 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
2006 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
2007 		__func__, rfilt, mfilt[0], mfilt[1]);
2008 }
2009 
2010 /*
2011  * Set the slot time based on the current setting.
2012  */
2013 static void
2014 ath_setslottime(struct ath_softc *sc)
2015 {
2016 	struct ieee80211com *ic = &sc->sc_ic;
2017 	struct ath_hal *ah = sc->sc_ah;
2018 
2019 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2020 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2021 	else
2022 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2023 	sc->sc_updateslot = OK;
2024 }
2025 
2026 /*
2027  * Callback from the 802.11 layer to update the
2028  * slot time based on the current setting.
2029  */
2030 static void
2031 ath_updateslot(struct ifnet *ifp)
2032 {
2033 	struct ath_softc *sc = ifp->if_softc;
2034 	struct ieee80211com *ic = &sc->sc_ic;
2035 
2036 	/*
2037 	 * When not coordinating the BSS, change the hardware
2038 	 * immediately.  For other operation we defer the change
2039 	 * until beacon updates have propagated to the stations.
2040 	 */
2041 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2042 		sc->sc_updateslot = UPDATE;
2043 	else
2044 		ath_setslottime(sc);
2045 }
2046 
2047 /*
2048  * Setup a h/w transmit queue for beacons.
2049  */
2050 static int
2051 ath_beaconq_setup(struct ath_hal *ah)
2052 {
2053 	HAL_TXQ_INFO qi;
2054 
2055 	memset(&qi, 0, sizeof(qi));
2056 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2057 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2058 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2059 	/* NB: for dynamic turbo, don't enable any other interrupts */
2060 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2061 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2062 }
2063 
2064 /*
2065  * Setup the transmit queue parameters for the beacon queue.
2066  */
2067 static int
2068 ath_beaconq_config(struct ath_softc *sc)
2069 {
2070 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2071 	struct ieee80211com *ic = &sc->sc_ic;
2072 	struct ath_hal *ah = sc->sc_ah;
2073 	HAL_TXQ_INFO qi;
2074 
2075 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2076 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2077 		/*
2078 		 * Always burst out beacon and CAB traffic.
2079 		 */
2080 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2081 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2082 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2083 	} else {
2084 		struct wmeParams *wmep =
2085 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2086 		/*
2087 		 * Adhoc mode; important thing is to use 2x cwmin.
2088 		 */
2089 		qi.tqi_aifs = wmep->wmep_aifsn;
2090 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2091 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2092 	}
2093 
2094 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2095 		device_printf(sc->sc_dev, "unable to update parameters for "
2096 			"beacon hardware queue!\n");
2097 		return 0;
2098 	} else {
2099 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2100 		return 1;
2101 	}
2102 #undef ATH_EXPONENT_TO_VALUE
2103 }
2104 
2105 /*
2106  * Allocate and setup an initial beacon frame.
2107  */
2108 static int
2109 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2110 {
2111 	struct ieee80211com *ic = ni->ni_ic;
2112 	struct ath_buf *bf;
2113 	struct mbuf *m;
2114 	int error;
2115 
2116 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2117 	if (bf == NULL) {
2118 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2119 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2120 		return ENOMEM;			/* XXX */
2121 	}
2122 	/*
2123 	 * NB: the beacon data buffer must be 32-bit aligned;
2124 	 * we assume the mbuf routines will return us something
2125 	 * with this alignment (perhaps should assert).
2126 	 */
2127 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2128 	if (m == NULL) {
2129 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2130 			__func__);
2131 		sc->sc_stats.ast_be_nombuf++;
2132 		return ENOMEM;
2133 	}
2134 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2135 				     BUS_DMA_NOWAIT);
2136 	if (error == 0) {
2137 		bf->bf_m = m;
2138 		bf->bf_node = ieee80211_ref_node(ni);
2139 	} else {
2140 		m_freem(m);
2141 	}
2142 	return error;
2143 }
2144 
2145 /*
2146  * Setup the beacon frame for transmit.
2147  */
2148 static void
2149 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2150 {
2151 #define	USE_SHPREAMBLE(_ic) \
2152 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2153 		== IEEE80211_F_SHPREAMBLE)
2154 	struct ieee80211_node *ni = bf->bf_node;
2155 	struct ieee80211com *ic = ni->ni_ic;
2156 	struct mbuf *m = bf->bf_m;
2157 	struct ath_hal *ah = sc->sc_ah;
2158 	struct ath_desc *ds;
2159 	int flags, antenna;
2160 	const HAL_RATE_TABLE *rt;
2161 	u_int8_t rix, rate;
2162 
2163 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2164 		__func__, m, m->m_len);
2165 
2166 	/* setup descriptors */
2167 	ds = bf->bf_desc;
2168 
2169 	flags = HAL_TXDESC_NOACK;
2170 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2171 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2172 		flags |= HAL_TXDESC_VEOL;
2173 		/*
2174 		 * Let hardware handle antenna switching unless
2175 		 * the user has selected a transmit antenna
2176 		 * (sc_txantenna is not 0).
2177 		 */
2178 		antenna = sc->sc_txantenna;
2179 	} else {
2180 		ds->ds_link = 0;
2181 		/*
2182 		 * Switch antenna every 4 beacons, unless the user
2183 		 * has selected a transmit antenna (sc_txantenna
2184 		 * is not 0).
2185 		 *
2186 		 * XXX assumes two antenna
2187 		 */
2188 		if (sc->sc_txantenna == 0)
2189 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2190 		else
2191 			antenna = sc->sc_txantenna;
2192 	}
2193 
2194 	KASSERT(bf->bf_nseg == 1,
2195 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2196 	ds->ds_data = bf->bf_segs[0].ds_addr;
2197 	/*
2198 	 * Calculate rate code.
2199 	 * XXX everything at min xmit rate
2200 	 */
2201 	rix = sc->sc_minrateix;
2202 	rt = sc->sc_currates;
2203 	rate = rt->info[rix].rateCode;
2204 	if (USE_SHPREAMBLE(ic))
2205 		rate |= rt->info[rix].shortPreamble;
2206 	ath_hal_setuptxdesc(ah, ds
2207 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2208 		, sizeof(struct ieee80211_frame)/* header length */
2209 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2210 		, ni->ni_txpower		/* txpower XXX */
2211 		, rate, 1			/* series 0 rate/tries */
2212 		, HAL_TXKEYIX_INVALID		/* no encryption */
2213 		, antenna			/* antenna mode */
2214 		, flags				/* no ack, veol for beacons */
2215 		, 0				/* rts/cts rate */
2216 		, 0				/* rts/cts duration */
2217 	);
2218 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2219 	ath_hal_filltxdesc(ah, ds
2220 		, roundup(m->m_len, 4)		/* buffer length */
2221 		, AH_TRUE			/* first segment */
2222 		, AH_TRUE			/* last segment */
2223 		, ds				/* first descriptor */
2224 	);
2225 
2226 	/* NB: The desc swap function becomes void, if descriptor swapping
2227 	 * is not enabled
2228 	 */
2229 	ath_desc_swap(ds);
2230 
2231 #undef USE_SHPREAMBLE
2232 }
2233 
2234 /*
2235  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2236  * frame contents are done as needed and the slot time is
2237  * also adjusted based on current state.
2238  */
2239 static void
2240 ath_beacon_proc(void *arg, int pending)
2241 {
2242 	struct ath_softc *sc = arg;
2243 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2244 	struct ieee80211_node *ni = bf->bf_node;
2245 	struct ieee80211com *ic = ni->ni_ic;
2246 	struct ath_hal *ah = sc->sc_ah;
2247 	struct mbuf *m;
2248 	int ncabq, error, otherant;
2249 
2250 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2251 		__func__, pending);
2252 
2253 	if (ic->ic_opmode == IEEE80211_M_STA ||
2254 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2255 	    bf == NULL || bf->bf_m == NULL) {
2256 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2257 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2258 		return;
2259 	}
2260 	/*
2261 	 * Check if the previous beacon has gone out.  If
2262 	 * not don't try to post another, skip this period
2263 	 * and wait for the next.  Missed beacons indicate
2264 	 * a problem and should not occur.  If we miss too
2265 	 * many consecutive beacons reset the device.
2266 	 */
2267 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2268 		sc->sc_bmisscount++;
2269 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2270 			"%s: missed %u consecutive beacons\n",
2271 			__func__, sc->sc_bmisscount);
2272 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2273 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2274 		return;
2275 	}
2276 	if (sc->sc_bmisscount != 0) {
2277 		DPRINTF(sc, ATH_DEBUG_BEACON,
2278 			"%s: resume beacon xmit after %u misses\n",
2279 			__func__, sc->sc_bmisscount);
2280 		sc->sc_bmisscount = 0;
2281 	}
2282 
2283 	/*
2284 	 * Update dynamic beacon contents.  If this returns
2285 	 * non-zero then we need to remap the memory because
2286 	 * the beacon frame changed size (probably because
2287 	 * of the TIM bitmap).
2288 	 */
2289 	m = bf->bf_m;
2290 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2291 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2292 		/* XXX too conservative? */
2293 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2294 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2295 					     BUS_DMA_NOWAIT);
2296 		if (error != 0) {
2297 			if_printf(&sc->sc_if,
2298 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2299 			    __func__, error);
2300 			return;
2301 		}
2302 	}
2303 
2304 	/*
2305 	 * Handle slot time change when a non-ERP station joins/leaves
2306 	 * an 11g network.  The 802.11 layer notifies us via callback,
2307 	 * we mark updateslot, then wait one beacon before effecting
2308 	 * the change.  This gives associated stations at least one
2309 	 * beacon interval to note the state change.
2310 	 */
2311 	/* XXX locking */
2312 	if (sc->sc_updateslot == UPDATE)
2313 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2314 	else if (sc->sc_updateslot == COMMIT)
2315 		ath_setslottime(sc);		/* commit change to h/w */
2316 
2317 	/*
2318 	 * Check recent per-antenna transmit statistics and flip
2319 	 * the default antenna if noticeably more frames went out
2320 	 * on the non-default antenna.
2321 	 * XXX assumes 2 anntenae
2322 	 */
2323 	otherant = sc->sc_defant & 1 ? 2 : 1;
2324 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2325 		ath_setdefantenna(sc, otherant);
2326 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2327 
2328 	/*
2329 	 * Construct tx descriptor.
2330 	 */
2331 	ath_beacon_setup(sc, bf);
2332 
2333 	/*
2334 	 * Stop any current dma and put the new frame on the queue.
2335 	 * This should never fail since we check above that no frames
2336 	 * are still pending on the queue.
2337 	 */
2338 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2339 		DPRINTF(sc, ATH_DEBUG_ANY,
2340 			"%s: beacon queue %u did not stop?\n",
2341 			__func__, sc->sc_bhalq);
2342 	}
2343 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2344 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2345 
2346 	/*
2347 	 * Enable the CAB queue before the beacon queue to
2348 	 * insure cab frames are triggered by this beacon.
2349 	 */
2350 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2351 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2352 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2353 	ath_hal_txstart(ah, sc->sc_bhalq);
2354 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2355 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2356 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2357 
2358 	sc->sc_stats.ast_be_xmit++;
2359 }
2360 
2361 /*
2362  * Reset the hardware after detecting beacons have stopped.
2363  */
2364 static void
2365 ath_bstuck_proc(void *arg, int pending)
2366 {
2367 	struct ath_softc *sc = arg;
2368 	struct ifnet *ifp = &sc->sc_if;
2369 
2370 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2371 		sc->sc_bmisscount);
2372 	ath_reset(ifp);
2373 }
2374 
2375 /*
2376  * Reclaim beacon resources.
2377  */
2378 static void
2379 ath_beacon_free(struct ath_softc *sc)
2380 {
2381 	struct ath_buf *bf;
2382 
2383 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2384 		if (bf->bf_m != NULL) {
2385 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2386 			m_freem(bf->bf_m);
2387 			bf->bf_m = NULL;
2388 		}
2389 		if (bf->bf_node != NULL) {
2390 			ieee80211_free_node(bf->bf_node);
2391 			bf->bf_node = NULL;
2392 		}
2393 	}
2394 }
2395 
2396 /*
2397  * Configure the beacon and sleep timers.
2398  *
2399  * When operating as an AP this resets the TSF and sets
2400  * up the hardware to notify us when we need to issue beacons.
2401  *
2402  * When operating in station mode this sets up the beacon
2403  * timers according to the timestamp of the last received
2404  * beacon and the current TSF, configures PCF and DTIM
2405  * handling, programs the sleep registers so the hardware
2406  * will wakeup in time to receive beacons, and configures
2407  * the beacon miss handling so we'll receive a BMISS
2408  * interrupt when we stop seeing beacons from the AP
2409  * we've associated with.
2410  */
2411 static void
2412 ath_beacon_config(struct ath_softc *sc)
2413 {
2414 #define	TSF_TO_TU(_h,_l) \
2415 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2416 #define	FUDGE	2
2417 	struct ath_hal *ah = sc->sc_ah;
2418 	struct ieee80211com *ic = &sc->sc_ic;
2419 	struct ieee80211_node *ni = ic->ic_bss;
2420 	u_int32_t nexttbtt, intval, tsftu;
2421 	u_int64_t tsf;
2422 
2423 	/* extract tstamp from last beacon and convert to TU */
2424 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2425 			     LE_READ_4(ni->ni_tstamp.data));
2426 	/* NB: the beacon interval is kept internally in TU's */
2427 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2428 	if (nexttbtt == 0)		/* e.g. for ap mode */
2429 		nexttbtt = intval;
2430 	else if (intval)		/* NB: can be 0 for monitor mode */
2431 		nexttbtt = roundup(nexttbtt, intval);
2432 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2433 		__func__, nexttbtt, intval, ni->ni_intval);
2434 	if (ic->ic_opmode == IEEE80211_M_STA) {
2435 		HAL_BEACON_STATE bs;
2436 		int dtimperiod, dtimcount;
2437 		int cfpperiod, cfpcount;
2438 
2439 		/*
2440 		 * Setup dtim and cfp parameters according to
2441 		 * last beacon we received (which may be none).
2442 		 */
2443 		dtimperiod = ni->ni_dtim_period;
2444 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2445 			dtimperiod = 1;
2446 		dtimcount = ni->ni_dtim_count;
2447 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2448 			dtimcount = 0;		/* XXX? */
2449 		cfpperiod = 1;			/* NB: no PCF support yet */
2450 		cfpcount = 0;
2451 		/*
2452 		 * Pull nexttbtt forward to reflect the current
2453 		 * TSF and calculate dtim+cfp state for the result.
2454 		 */
2455 		tsf = ath_hal_gettsf64(ah);
2456 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2457 		do {
2458 			nexttbtt += intval;
2459 			if (--dtimcount < 0) {
2460 				dtimcount = dtimperiod - 1;
2461 				if (--cfpcount < 0)
2462 					cfpcount = cfpperiod - 1;
2463 			}
2464 		} while (nexttbtt < tsftu);
2465 		memset(&bs, 0, sizeof(bs));
2466 		bs.bs_intval = intval;
2467 		bs.bs_nexttbtt = nexttbtt;
2468 		bs.bs_dtimperiod = dtimperiod*intval;
2469 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2470 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2471 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2472 		bs.bs_cfpmaxduration = 0;
2473 #if 0
2474 		/*
2475 		 * The 802.11 layer records the offset to the DTIM
2476 		 * bitmap while receiving beacons; use it here to
2477 		 * enable h/w detection of our AID being marked in
2478 		 * the bitmap vector (to indicate frames for us are
2479 		 * pending at the AP).
2480 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2481 		 * XXX enable based on h/w rev for newer chips
2482 		 */
2483 		bs.bs_timoffset = ni->ni_timoff;
2484 #endif
2485 		/*
2486 		 * Calculate the number of consecutive beacons to miss
2487 		 * before taking a BMISS interrupt.  The configuration
2488 		 * is specified in ms, so we need to convert that to
2489 		 * TU's and then calculate based on the beacon interval.
2490 		 * Note that we clamp the result to at most 10 beacons.
2491 		 */
2492 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2493 		if (bs.bs_bmissthreshold > 10)
2494 			bs.bs_bmissthreshold = 10;
2495 		else if (bs.bs_bmissthreshold <= 0)
2496 			bs.bs_bmissthreshold = 1;
2497 
2498 		/*
2499 		 * Calculate sleep duration.  The configuration is
2500 		 * given in ms.  We insure a multiple of the beacon
2501 		 * period is used.  Also, if the sleep duration is
2502 		 * greater than the DTIM period then it makes senses
2503 		 * to make it a multiple of that.
2504 		 *
2505 		 * XXX fixed at 100ms
2506 		 */
2507 		bs.bs_sleepduration =
2508 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2509 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2510 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2511 
2512 		DPRINTF(sc, ATH_DEBUG_BEACON,
2513 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2514 			, __func__
2515 			, tsf, tsftu
2516 			, bs.bs_intval
2517 			, bs.bs_nexttbtt
2518 			, bs.bs_dtimperiod
2519 			, bs.bs_nextdtim
2520 			, bs.bs_bmissthreshold
2521 			, bs.bs_sleepduration
2522 			, bs.bs_cfpperiod
2523 			, bs.bs_cfpmaxduration
2524 			, bs.bs_cfpnext
2525 			, bs.bs_timoffset
2526 		);
2527 		ath_hal_intrset(ah, 0);
2528 		ath_hal_beacontimers(ah, &bs);
2529 		sc->sc_imask |= HAL_INT_BMISS;
2530 		ath_hal_intrset(ah, sc->sc_imask);
2531 	} else {
2532 		ath_hal_intrset(ah, 0);
2533 		if (nexttbtt == intval)
2534 			intval |= HAL_BEACON_RESET_TSF;
2535 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2536 			/*
2537 			 * In IBSS mode enable the beacon timers but only
2538 			 * enable SWBA interrupts if we need to manually
2539 			 * prepare beacon frames.  Otherwise we use a
2540 			 * self-linked tx descriptor and let the hardware
2541 			 * deal with things.
2542 			 */
2543 			intval |= HAL_BEACON_ENA;
2544 			if (!sc->sc_hasveol)
2545 				sc->sc_imask |= HAL_INT_SWBA;
2546 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2547 				/*
2548 				 * Pull nexttbtt forward to reflect
2549 				 * the current TSF.
2550 				 */
2551 				tsf = ath_hal_gettsf64(ah);
2552 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2553 				do {
2554 					nexttbtt += intval;
2555 				} while (nexttbtt < tsftu);
2556 			}
2557 			ath_beaconq_config(sc);
2558 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2559 			/*
2560 			 * In AP mode we enable the beacon timers and
2561 			 * SWBA interrupts to prepare beacon frames.
2562 			 */
2563 			intval |= HAL_BEACON_ENA;
2564 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2565 			ath_beaconq_config(sc);
2566 		}
2567 		ath_hal_beaconinit(ah, nexttbtt, intval);
2568 		sc->sc_bmisscount = 0;
2569 		ath_hal_intrset(ah, sc->sc_imask);
2570 		/*
2571 		 * When using a self-linked beacon descriptor in
2572 		 * ibss mode load it once here.
2573 		 */
2574 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2575 			ath_beacon_proc(sc, 0);
2576 	}
2577 	sc->sc_syncbeacon = 0;
2578 #undef UNDEF
2579 #undef TSF_TO_TU
2580 }
2581 
2582 static int
2583 ath_descdma_setup(struct ath_softc *sc,
2584 	struct ath_descdma *dd, ath_bufhead *head,
2585 	const char *name, int nbuf, int ndesc)
2586 {
2587 #define	DS2PHYS(_dd, _ds) \
2588 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2589 	struct ifnet *ifp = &sc->sc_if;
2590 	struct ath_desc *ds;
2591 	struct ath_buf *bf;
2592 	int i, bsize, error;
2593 
2594 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2595 	    __func__, name, nbuf, ndesc);
2596 
2597 	dd->dd_name = name;
2598 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2599 
2600 	/*
2601 	 * Setup DMA descriptor area.
2602 	 */
2603 	dd->dd_dmat = sc->sc_dmat;
2604 
2605 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2606 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2607 
2608 	if (error != 0) {
2609 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2610 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2611 		goto fail0;
2612 	}
2613 
2614 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2615 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2616 	if (error != 0) {
2617 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2618 		    nbuf * ndesc, dd->dd_name, error);
2619 		goto fail1;
2620 	}
2621 
2622 	/* allocate descriptors */
2623 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2624 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2625 	if (error != 0) {
2626 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2627 			"error %u\n", dd->dd_name, error);
2628 		goto fail2;
2629 	}
2630 
2631 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2632 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2633 	if (error != 0) {
2634 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2635 			dd->dd_name, error);
2636 		goto fail3;
2637 	}
2638 
2639 	ds = dd->dd_desc;
2640 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2641 	DPRINTF(sc, ATH_DEBUG_RESET,
2642 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2643 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2644 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2645 
2646 	/* allocate rx buffers */
2647 	bsize = sizeof(struct ath_buf) * nbuf;
2648 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2649 	if (bf == NULL) {
2650 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2651 			dd->dd_name, bsize);
2652 		goto fail4;
2653 	}
2654 	dd->dd_bufptr = bf;
2655 
2656 	STAILQ_INIT(head);
2657 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2658 		bf->bf_desc = ds;
2659 		bf->bf_daddr = DS2PHYS(dd, ds);
2660 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2661 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2662 		if (error != 0) {
2663 			if_printf(ifp, "unable to create dmamap for %s "
2664 				"buffer %u, error %u\n", dd->dd_name, i, error);
2665 			ath_descdma_cleanup(sc, dd, head);
2666 			return error;
2667 		}
2668 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2669 	}
2670 	return 0;
2671 fail4:
2672 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2673 fail3:
2674 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2675 fail2:
2676 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2677 fail1:
2678 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2679 fail0:
2680 	memset(dd, 0, sizeof(*dd));
2681 	return error;
2682 #undef DS2PHYS
2683 }
2684 
2685 static void
2686 ath_descdma_cleanup(struct ath_softc *sc,
2687 	struct ath_descdma *dd, ath_bufhead *head)
2688 {
2689 	struct ath_buf *bf;
2690 	struct ieee80211_node *ni;
2691 
2692 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2693 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2694 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2695 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2696 
2697 	STAILQ_FOREACH(bf, head, bf_list) {
2698 		if (bf->bf_m) {
2699 			m_freem(bf->bf_m);
2700 			bf->bf_m = NULL;
2701 		}
2702 		if (bf->bf_dmamap != NULL) {
2703 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2704 			bf->bf_dmamap = NULL;
2705 		}
2706 		ni = bf->bf_node;
2707 		bf->bf_node = NULL;
2708 		if (ni != NULL) {
2709 			/*
2710 			 * Reclaim node reference.
2711 			 */
2712 			ieee80211_free_node(ni);
2713 		}
2714 	}
2715 
2716 	STAILQ_INIT(head);
2717 	free(dd->dd_bufptr, M_ATHDEV);
2718 	memset(dd, 0, sizeof(*dd));
2719 }
2720 
2721 static int
2722 ath_desc_alloc(struct ath_softc *sc)
2723 {
2724 	int error;
2725 
2726 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2727 			"rx", ath_rxbuf, 1);
2728 	if (error != 0)
2729 		return error;
2730 
2731 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2732 			"tx", ath_txbuf, ATH_TXDESC);
2733 	if (error != 0) {
2734 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2735 		return error;
2736 	}
2737 
2738 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2739 			"beacon", 1, 1);
2740 	if (error != 0) {
2741 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2742 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2743 		return error;
2744 	}
2745 	return 0;
2746 }
2747 
2748 static void
2749 ath_desc_free(struct ath_softc *sc)
2750 {
2751 
2752 	if (sc->sc_bdma.dd_desc_len != 0)
2753 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2754 	if (sc->sc_txdma.dd_desc_len != 0)
2755 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2756 	if (sc->sc_rxdma.dd_desc_len != 0)
2757 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2758 }
2759 
2760 static struct ieee80211_node *
2761 ath_node_alloc(struct ieee80211_node_table *nt)
2762 {
2763 	struct ieee80211com *ic = nt->nt_ic;
2764 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2765 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2766 	struct ath_node *an;
2767 
2768 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2769 	if (an == NULL) {
2770 		/* XXX stat+msg */
2771 		return NULL;
2772 	}
2773 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2774 	ath_rate_node_init(sc, an);
2775 
2776 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2777 	return &an->an_node;
2778 }
2779 
2780 static void
2781 ath_node_free(struct ieee80211_node *ni)
2782 {
2783 	struct ieee80211com *ic = ni->ni_ic;
2784         struct ath_softc *sc = ic->ic_ifp->if_softc;
2785 
2786 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2787 
2788 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2789 	sc->sc_node_free(ni);
2790 }
2791 
2792 static u_int8_t
2793 ath_node_getrssi(const struct ieee80211_node *ni)
2794 {
2795 #define	HAL_EP_RND(x, mul) \
2796 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2797 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2798 	int32_t rssi;
2799 
2800 	/*
2801 	 * When only one frame is received there will be no state in
2802 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2803 	 */
2804 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2805 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2806 	else
2807 		rssi = ni->ni_rssi;
2808 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2809 #undef HAL_EP_RND
2810 }
2811 
2812 static int
2813 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2814 {
2815 	struct ath_hal *ah = sc->sc_ah;
2816 	int error;
2817 	struct mbuf *m;
2818 	struct ath_desc *ds;
2819 
2820 	m = bf->bf_m;
2821 	if (m == NULL) {
2822 		/*
2823 		 * NB: by assigning a page to the rx dma buffer we
2824 		 * implicitly satisfy the Atheros requirement that
2825 		 * this buffer be cache-line-aligned and sized to be
2826 		 * multiple of the cache line size.  Not doing this
2827 		 * causes weird stuff to happen (for the 5210 at least).
2828 		 */
2829 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2830 		if (m == NULL) {
2831 			DPRINTF(sc, ATH_DEBUG_ANY,
2832 				"%s: no mbuf/cluster\n", __func__);
2833 			sc->sc_stats.ast_rx_nombuf++;
2834 			return ENOMEM;
2835 		}
2836 		bf->bf_m = m;
2837 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2838 
2839 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2840 					     bf->bf_dmamap, m,
2841 					     BUS_DMA_NOWAIT);
2842 		if (error != 0) {
2843 			DPRINTF(sc, ATH_DEBUG_ANY,
2844 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2845 			    __func__, error);
2846 			sc->sc_stats.ast_rx_busdma++;
2847 			return error;
2848 		}
2849 		KASSERT(bf->bf_nseg == 1,
2850 			("multi-segment packet; nseg %u", bf->bf_nseg));
2851 	}
2852 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2853 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2854 
2855 	/*
2856 	 * Setup descriptors.  For receive we always terminate
2857 	 * the descriptor list with a self-linked entry so we'll
2858 	 * not get overrun under high load (as can happen with a
2859 	 * 5212 when ANI processing enables PHY error frames).
2860 	 *
2861 	 * To insure the last descriptor is self-linked we create
2862 	 * each descriptor as self-linked and add it to the end.  As
2863 	 * each additional descriptor is added the previous self-linked
2864 	 * entry is ``fixed'' naturally.  This should be safe even
2865 	 * if DMA is happening.  When processing RX interrupts we
2866 	 * never remove/process the last, self-linked, entry on the
2867 	 * descriptor list.  This insures the hardware always has
2868 	 * someplace to write a new frame.
2869 	 */
2870 	ds = bf->bf_desc;
2871 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2872 	ds->ds_data = bf->bf_segs[0].ds_addr;
2873 	/* ds->ds_vdata = mtod(m, void *);	for radar */
2874 	ath_hal_setuprxdesc(ah, ds
2875 		, m->m_len		/* buffer size */
2876 		, 0
2877 	);
2878 
2879 	if (sc->sc_rxlink != NULL)
2880 		*sc->sc_rxlink = bf->bf_daddr;
2881 	sc->sc_rxlink = &ds->ds_link;
2882 	return 0;
2883 }
2884 
2885 /*
2886  * Extend 15-bit time stamp from rx descriptor to
2887  * a full 64-bit TSF using the specified TSF.
2888  */
2889 static inline u_int64_t
2890 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2891 {
2892 	if ((tsf & 0x7fff) < rstamp)
2893 		tsf -= 0x8000;
2894 	return ((tsf &~ 0x7fff) | rstamp);
2895 }
2896 
2897 /*
2898  * Intercept management frames to collect beacon rssi data
2899  * and to do ibss merges.
2900  */
2901 static void
2902 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2903 	struct ieee80211_node *ni,
2904 	int subtype, int rssi, u_int32_t rstamp)
2905 {
2906 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2907 
2908 	/*
2909 	 * Call up first so subsequent work can use information
2910 	 * potentially stored in the node (e.g. for ibss merge).
2911 	 */
2912 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2913 	switch (subtype) {
2914 	case IEEE80211_FC0_SUBTYPE_BEACON:
2915 		/* update rssi statistics for use by the hal */
2916 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2917 		if (sc->sc_syncbeacon &&
2918 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2919 			/*
2920 			 * Resync beacon timers using the tsf of the beacon
2921 			 * frame we just received.
2922 			 */
2923 			ath_beacon_config(sc);
2924 		}
2925 		/* fall thru... */
2926 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2927 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2928 		    ic->ic_state == IEEE80211_S_RUN) {
2929 			u_int64_t tsf = ath_extend_tsf(rstamp,
2930 				ath_hal_gettsf64(sc->sc_ah));
2931 
2932 			/*
2933 			 * Handle ibss merge as needed; check the tsf on the
2934 			 * frame before attempting the merge.  The 802.11 spec
2935 			 * says the station should change it's bssid to match
2936 			 * the oldest station with the same ssid, where oldest
2937 			 * is determined by the tsf.  Note that hardware
2938 			 * reconfiguration happens through callback to
2939 			 * ath_newstate as the state machine will go from
2940 			 * RUN -> RUN when this happens.
2941 			 */
2942 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2943 				DPRINTF(sc, ATH_DEBUG_STATE,
2944 				    "ibss merge, rstamp %u tsf %ju "
2945 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2946 				    (uintmax_t)ni->ni_tstamp.tsf);
2947 				(void) ieee80211_ibss_merge(ni);
2948 			}
2949 		}
2950 		break;
2951 	}
2952 }
2953 
2954 /*
2955  * Set the default antenna.
2956  */
2957 static void
2958 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2959 {
2960 	struct ath_hal *ah = sc->sc_ah;
2961 
2962 	/* XXX block beacon interrupts */
2963 	ath_hal_setdefantenna(ah, antenna);
2964 	if (sc->sc_defant != antenna)
2965 		sc->sc_stats.ast_ant_defswitch++;
2966 	sc->sc_defant = antenna;
2967 	sc->sc_rxotherant = 0;
2968 }
2969 
2970 static void
2971 ath_handle_micerror(struct ieee80211com *ic,
2972 	struct ieee80211_frame *wh, int keyix)
2973 {
2974 	struct ieee80211_node *ni;
2975 
2976 	/* XXX recheck MIC to deal w/ chips that lie */
2977 	/* XXX discard MIC errors on !data frames */
2978 	ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix);
2979 	if (ni != NULL) {
2980 		ieee80211_notify_michael_failure(ic, wh, keyix);
2981 		ieee80211_free_node(ni);
2982 	}
2983 }
2984 
2985 static void
2986 ath_rx_proc(void *arg, int npending)
2987 {
2988 #define	PA2DESC(_sc, _pa) \
2989 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2990 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2991 	struct ath_softc *sc = arg;
2992 	struct ath_buf *bf;
2993 	struct ieee80211com *ic = &sc->sc_ic;
2994 	struct ifnet *ifp = &sc->sc_if;
2995 	struct ath_hal *ah = sc->sc_ah;
2996 	struct ath_desc *ds;
2997 	struct mbuf *m;
2998 	struct ieee80211_node *ni;
2999 	struct ath_node *an;
3000 	int len, ngood, type;
3001 	u_int phyerr;
3002 	HAL_STATUS status;
3003 	int16_t nf;
3004 	u_int64_t tsf;
3005 	uint8_t rxerr_tap, rxerr_mon;
3006 
3007 	NET_LOCK_GIANT();		/* XXX */
3008 
3009 	rxerr_tap =
3010 	    (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0;
3011 
3012 	if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR)
3013 		rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3014 	else if (ifp->if_flags & IFF_PROMISC)
3015 		rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC;
3016 
3017 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3018 	ngood = 0;
3019 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3020 	tsf = ath_hal_gettsf64(ah);
3021 	do {
3022 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3023 		if (bf == NULL) {		/* NB: shouldn't happen */
3024 			if_printf(ifp, "%s: no buffer!\n", __func__);
3025 			break;
3026 		}
3027 		ds = bf->bf_desc;
3028 		if (ds->ds_link == bf->bf_daddr) {
3029 			/* NB: never process the self-linked entry at the end */
3030 			break;
3031 		}
3032 		m = bf->bf_m;
3033 		if (m == NULL) {		/* NB: shouldn't happen */
3034 			if_printf(ifp, "%s: no mbuf!\n", __func__);
3035 			break;
3036 		}
3037 		/* XXX sync descriptor memory */
3038 		/*
3039 		 * Must provide the virtual address of the current
3040 		 * descriptor, the physical address, and the virtual
3041 		 * address of the next descriptor in the h/w chain.
3042 		 * This allows the HAL to look ahead to see if the
3043 		 * hardware is done with a descriptor by checking the
3044 		 * done bit in the following descriptor and the address
3045 		 * of the current descriptor the DMA engine is working
3046 		 * on.  All this is necessary because of our use of
3047 		 * a self-linked list to avoid rx overruns.
3048 		 */
3049 		status = ath_hal_rxprocdesc(ah, ds,
3050 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
3051 				&ds->ds_rxstat);
3052 #ifdef AR_DEBUG
3053 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3054 			ath_printrxbuf(bf, status == HAL_OK);
3055 #endif
3056 		if (status == HAL_EINPROGRESS)
3057 			break;
3058 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3059 		if (ds->ds_rxstat.rs_more) {
3060 			/*
3061 			 * Frame spans multiple descriptors; this
3062 			 * cannot happen yet as we don't support
3063 			 * jumbograms.  If not in monitor mode,
3064 			 * discard the frame.
3065 			 */
3066 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3067 				sc->sc_stats.ast_rx_toobig++;
3068 				goto rx_next;
3069 			}
3070 			/* fall thru for monitor mode handling... */
3071 		} else if (ds->ds_rxstat.rs_status != 0) {
3072 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3073 				sc->sc_stats.ast_rx_crcerr++;
3074 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3075 				sc->sc_stats.ast_rx_fifoerr++;
3076 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3077 				sc->sc_stats.ast_rx_phyerr++;
3078 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3079 				sc->sc_stats.ast_rx_phy[phyerr]++;
3080 				goto rx_next;
3081 			}
3082 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3083 				/*
3084 				 * Decrypt error.  If the error occurred
3085 				 * because there was no hardware key, then
3086 				 * let the frame through so the upper layers
3087 				 * can process it.  This is necessary for 5210
3088 				 * parts which have no way to setup a ``clear''
3089 				 * key cache entry.
3090 				 *
3091 				 * XXX do key cache faulting
3092 				 */
3093 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3094 					goto rx_accept;
3095 				sc->sc_stats.ast_rx_badcrypt++;
3096 			}
3097 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3098 				sc->sc_stats.ast_rx_badmic++;
3099 				/*
3100 				 * Do minimal work required to hand off
3101 				 * the 802.11 header for notifcation.
3102 				 */
3103 				/* XXX frag's and qos frames */
3104 				len = ds->ds_rxstat.rs_datalen;
3105 				if (len >= sizeof (struct ieee80211_frame)) {
3106 					bus_dmamap_sync(sc->sc_dmat,
3107 					    bf->bf_dmamap,
3108 					    0, bf->bf_dmamap->dm_mapsize,
3109 					    BUS_DMASYNC_POSTREAD);
3110 					ath_handle_micerror(ic,
3111 					    mtod(m, struct ieee80211_frame *),
3112 					    sc->sc_splitmic ?
3113 						ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix);
3114 				}
3115 			}
3116 			ifp->if_ierrors++;
3117 			/*
3118 			 * Reject error frames, we normally don't want
3119 			 * to see them in monitor mode (in monitor mode
3120 			 * allow through packets that have crypto problems).
3121 			 */
3122 
3123 			if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon))
3124 				goto rx_next;
3125 		}
3126 rx_accept:
3127 		/*
3128 		 * Sync and unmap the frame.  At this point we're
3129 		 * committed to passing the mbuf somewhere so clear
3130 		 * bf_m; this means a new sk_buff must be allocated
3131 		 * when the rx descriptor is setup again to receive
3132 		 * another frame.
3133 		 */
3134 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3135 		    0, bf->bf_dmamap->dm_mapsize,
3136 		    BUS_DMASYNC_POSTREAD);
3137 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3138 		bf->bf_m = NULL;
3139 
3140 		m->m_pkthdr.rcvif = ifp;
3141 		len = ds->ds_rxstat.rs_datalen;
3142 		m->m_pkthdr.len = m->m_len = len;
3143 
3144 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3145 
3146 		if (sc->sc_drvbpf) {
3147 			u_int8_t rix;
3148 
3149 			/*
3150 			 * Discard anything shorter than an ack or cts.
3151 			 */
3152 			if (len < IEEE80211_ACK_LEN) {
3153 				DPRINTF(sc, ATH_DEBUG_RECV,
3154 					"%s: runt packet %d\n",
3155 					__func__, len);
3156 				sc->sc_stats.ast_rx_tooshort++;
3157 				m_freem(m);
3158 				goto rx_next;
3159 			}
3160 			rix = ds->ds_rxstat.rs_rate;
3161 			sc->sc_rx_th.wr_tsf = htole64(
3162 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3163 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3164 			if (ds->ds_rxstat.rs_status &
3165 			    (HAL_RXERR_CRC|HAL_RXERR_PHY)) {
3166 				sc->sc_rx_th.wr_flags |=
3167 				    IEEE80211_RADIOTAP_F_BADFCS;
3168 			}
3169 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3170 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3171 			sc->sc_rx_th.wr_antnoise = nf;
3172 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3173 
3174 			bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th,
3175 			    sc->sc_rx_th_len, m);
3176 		}
3177 
3178 		if (ds->ds_rxstat.rs_status & rxerr_tap) {
3179 			m_freem(m);
3180 			goto rx_next;
3181 		}
3182 		/*
3183 		 * From this point on we assume the frame is at least
3184 		 * as large as ieee80211_frame_min; verify that.
3185 		 */
3186 		if (len < IEEE80211_MIN_LEN) {
3187 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3188 				__func__, len);
3189 			sc->sc_stats.ast_rx_tooshort++;
3190 			m_freem(m);
3191 			goto rx_next;
3192 		}
3193 
3194 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3195 			ieee80211_dump_pkt(mtod(m, void *), len,
3196 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3197 				   ds->ds_rxstat.rs_rssi);
3198 		}
3199 
3200 		m_adj(m, -IEEE80211_CRC_LEN);
3201 
3202 		/*
3203 		 * Locate the node for sender, track state, and then
3204 		 * pass the (referenced) node up to the 802.11 layer
3205 		 * for its use.
3206 		 */
3207 		ni = ieee80211_find_rxnode_withkey(ic,
3208 			mtod(m, const struct ieee80211_frame_min *),
3209 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3210 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3211 		/*
3212 		 * Track rx rssi and do any rx antenna management.
3213 		 */
3214 		an = ATH_NODE(ni);
3215 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3216 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3217 		/*
3218 		 * Send frame up for processing.
3219 		 */
3220 		type = ieee80211_input(ic, m, ni,
3221 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3222 		ieee80211_free_node(ni);
3223 		if (sc->sc_diversity) {
3224 			/*
3225 			 * When using fast diversity, change the default rx
3226 			 * antenna if diversity chooses the other antenna 3
3227 			 * times in a row.
3228 			 */
3229 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3230 				if (++sc->sc_rxotherant >= 3)
3231 					ath_setdefantenna(sc,
3232 						ds->ds_rxstat.rs_antenna);
3233 			} else
3234 				sc->sc_rxotherant = 0;
3235 		}
3236 		if (sc->sc_softled) {
3237 			/*
3238 			 * Blink for any data frame.  Otherwise do a
3239 			 * heartbeat-style blink when idle.  The latter
3240 			 * is mainly for station mode where we depend on
3241 			 * periodic beacon frames to trigger the poll event.
3242 			 */
3243 			if (type == IEEE80211_FC0_TYPE_DATA) {
3244 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3245 				ath_led_event(sc, ATH_LED_RX);
3246 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3247 				ath_led_event(sc, ATH_LED_POLL);
3248 		}
3249 		/*
3250 		 * Arrange to update the last rx timestamp only for
3251 		 * frames from our ap when operating in station mode.
3252 		 * This assumes the rx key is always setup when associated.
3253 		 */
3254 		if (ic->ic_opmode == IEEE80211_M_STA &&
3255 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3256 			ngood++;
3257 rx_next:
3258 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3259 	} while (ath_rxbuf_init(sc, bf) == 0);
3260 
3261 	/* rx signal state monitoring */
3262 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3263 #if 0
3264 	if (ath_hal_radar_event(ah))
3265 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3266 #endif
3267 	if (ngood)
3268 		sc->sc_lastrx = tsf;
3269 
3270 #ifdef __NetBSD__
3271 	/* XXX Why isn't this necessary in FreeBSD? */
3272 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3273 		ath_start(ifp);
3274 #endif /* __NetBSD__ */
3275 
3276 	NET_UNLOCK_GIANT();		/* XXX */
3277 #undef PA2DESC
3278 }
3279 
3280 /*
3281  * Setup a h/w transmit queue.
3282  */
3283 static struct ath_txq *
3284 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3285 {
3286 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3287 	struct ath_hal *ah = sc->sc_ah;
3288 	HAL_TXQ_INFO qi;
3289 	int qnum;
3290 
3291 	memset(&qi, 0, sizeof(qi));
3292 	qi.tqi_subtype = subtype;
3293 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3294 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3295 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3296 	/*
3297 	 * Enable interrupts only for EOL and DESC conditions.
3298 	 * We mark tx descriptors to receive a DESC interrupt
3299 	 * when a tx queue gets deep; otherwise waiting for the
3300 	 * EOL to reap descriptors.  Note that this is done to
3301 	 * reduce interrupt load and this only defers reaping
3302 	 * descriptors, never transmitting frames.  Aside from
3303 	 * reducing interrupts this also permits more concurrency.
3304 	 * The only potential downside is if the tx queue backs
3305 	 * up in which case the top half of the kernel may backup
3306 	 * due to a lack of tx descriptors.
3307 	 */
3308 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3309 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3310 	if (qnum == -1) {
3311 		/*
3312 		 * NB: don't print a message, this happens
3313 		 * normally on parts with too few tx queues
3314 		 */
3315 		return NULL;
3316 	}
3317 	if (qnum >= N(sc->sc_txq)) {
3318 		device_printf(sc->sc_dev,
3319 			"hal qnum %u out of range, max %zu!\n",
3320 			qnum, N(sc->sc_txq));
3321 		ath_hal_releasetxqueue(ah, qnum);
3322 		return NULL;
3323 	}
3324 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3325 		struct ath_txq *txq = &sc->sc_txq[qnum];
3326 
3327 		txq->axq_qnum = qnum;
3328 		txq->axq_depth = 0;
3329 		txq->axq_intrcnt = 0;
3330 		txq->axq_link = NULL;
3331 		STAILQ_INIT(&txq->axq_q);
3332 		ATH_TXQ_LOCK_INIT(sc, txq);
3333 		sc->sc_txqsetup |= 1<<qnum;
3334 	}
3335 	return &sc->sc_txq[qnum];
3336 #undef N
3337 }
3338 
3339 /*
3340  * Setup a hardware data transmit queue for the specified
3341  * access control.  The hal may not support all requested
3342  * queues in which case it will return a reference to a
3343  * previously setup queue.  We record the mapping from ac's
3344  * to h/w queues for use by ath_tx_start and also track
3345  * the set of h/w queues being used to optimize work in the
3346  * transmit interrupt handler and related routines.
3347  */
3348 static int
3349 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3350 {
3351 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3352 	struct ath_txq *txq;
3353 
3354 	if (ac >= N(sc->sc_ac2q)) {
3355 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3356 			ac, N(sc->sc_ac2q));
3357 		return 0;
3358 	}
3359 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3360 	if (txq != NULL) {
3361 		sc->sc_ac2q[ac] = txq;
3362 		return 1;
3363 	} else
3364 		return 0;
3365 #undef N
3366 }
3367 
3368 /*
3369  * Update WME parameters for a transmit queue.
3370  */
3371 static int
3372 ath_txq_update(struct ath_softc *sc, int ac)
3373 {
3374 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3375 #define	ATH_TXOP_TO_US(v)		(v<<5)
3376 	struct ieee80211com *ic = &sc->sc_ic;
3377 	struct ath_txq *txq = sc->sc_ac2q[ac];
3378 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3379 	struct ath_hal *ah = sc->sc_ah;
3380 	HAL_TXQ_INFO qi;
3381 
3382 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3383 	qi.tqi_aifs = wmep->wmep_aifsn;
3384 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3385 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3386 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3387 
3388 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3389 		device_printf(sc->sc_dev, "unable to update hardware queue "
3390 			"parameters for %s traffic!\n",
3391 			ieee80211_wme_acnames[ac]);
3392 		return 0;
3393 	} else {
3394 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3395 		return 1;
3396 	}
3397 #undef ATH_TXOP_TO_US
3398 #undef ATH_EXPONENT_TO_VALUE
3399 }
3400 
3401 /*
3402  * Callback from the 802.11 layer to update WME parameters.
3403  */
3404 static int
3405 ath_wme_update(struct ieee80211com *ic)
3406 {
3407 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3408 
3409 	return !ath_txq_update(sc, WME_AC_BE) ||
3410 	    !ath_txq_update(sc, WME_AC_BK) ||
3411 	    !ath_txq_update(sc, WME_AC_VI) ||
3412 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3413 }
3414 
3415 /*
3416  * Reclaim resources for a setup queue.
3417  */
3418 static void
3419 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3420 {
3421 
3422 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3423 	ATH_TXQ_LOCK_DESTROY(txq);
3424 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3425 }
3426 
3427 /*
3428  * Reclaim all tx queue resources.
3429  */
3430 static void
3431 ath_tx_cleanup(struct ath_softc *sc)
3432 {
3433 	int i;
3434 
3435 	ATH_TXBUF_LOCK_DESTROY(sc);
3436 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3437 		if (ATH_TXQ_SETUP(sc, i))
3438 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3439 }
3440 
3441 /*
3442  * Defragment an mbuf chain, returning at most maxfrags separate
3443  * mbufs+clusters.  If this is not possible NULL is returned and
3444  * the original mbuf chain is left in it's present (potentially
3445  * modified) state.  We use two techniques: collapsing consecutive
3446  * mbufs and replacing consecutive mbufs by a cluster.
3447  */
3448 static struct mbuf *
3449 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3450 {
3451 	struct mbuf *m, *n, *n2, **prev;
3452 	u_int curfrags;
3453 
3454 	/*
3455 	 * Calculate the current number of frags.
3456 	 */
3457 	curfrags = 0;
3458 	for (m = m0; m != NULL; m = m->m_next)
3459 		curfrags++;
3460 	/*
3461 	 * First, try to collapse mbufs.  Note that we always collapse
3462 	 * towards the front so we don't need to deal with moving the
3463 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3464 	 * less data than the following.
3465 	 */
3466 	m = m0;
3467 again:
3468 	for (;;) {
3469 		n = m->m_next;
3470 		if (n == NULL)
3471 			break;
3472 		if (n->m_len < M_TRAILINGSPACE(m)) {
3473 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3474 				n->m_len);
3475 			m->m_len += n->m_len;
3476 			m->m_next = n->m_next;
3477 			m_free(n);
3478 			if (--curfrags <= maxfrags)
3479 				return m0;
3480 		} else
3481 			m = n;
3482 	}
3483 	KASSERT(maxfrags > 1,
3484 		("maxfrags %u, but normal collapse failed", maxfrags));
3485 	/*
3486 	 * Collapse consecutive mbufs to a cluster.
3487 	 */
3488 	prev = &m0->m_next;		/* NB: not the first mbuf */
3489 	while ((n = *prev) != NULL) {
3490 		if ((n2 = n->m_next) != NULL &&
3491 		    n->m_len + n2->m_len < MCLBYTES) {
3492 			m = m_getcl(how, MT_DATA, 0);
3493 			if (m == NULL)
3494 				goto bad;
3495 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3496 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3497 				n2->m_len);
3498 			m->m_len = n->m_len + n2->m_len;
3499 			m->m_next = n2->m_next;
3500 			*prev = m;
3501 			m_free(n);
3502 			m_free(n2);
3503 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3504 				return m0;
3505 			/*
3506 			 * Still not there, try the normal collapse
3507 			 * again before we allocate another cluster.
3508 			 */
3509 			goto again;
3510 		}
3511 		prev = &n->m_next;
3512 	}
3513 	/*
3514 	 * No place where we can collapse to a cluster; punt.
3515 	 * This can occur if, for example, you request 2 frags
3516 	 * but the packet requires that both be clusters (we
3517 	 * never reallocate the first mbuf to avoid moving the
3518 	 * packet header).
3519 	 */
3520 bad:
3521 	return NULL;
3522 }
3523 
3524 /*
3525  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3526  */
3527 static int
3528 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3529 {
3530 	int i;
3531 
3532 	for (i = 0; i < rt->rateCount; i++)
3533 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3534 			return i;
3535 	return 0;		/* NB: lowest rate */
3536 }
3537 
3538 static void
3539 ath_freetx(struct mbuf *m)
3540 {
3541 	struct mbuf *next;
3542 
3543 	do {
3544 		next = m->m_nextpkt;
3545 		m->m_nextpkt = NULL;
3546 		m_freem(m);
3547 	} while ((m = next) != NULL);
3548 }
3549 
3550 static int
3551 deduct_pad_bytes(int len, int hdrlen)
3552 {
3553 	/* XXX I am suspicious that this code, which I extracted
3554 	 * XXX from ath_tx_start() for reuse, does the right thing.
3555 	 */
3556 	return len - (hdrlen & 3);
3557 }
3558 
3559 static int
3560 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3561     struct mbuf *m0)
3562 {
3563 	struct ieee80211com *ic = &sc->sc_ic;
3564 	struct ath_hal *ah = sc->sc_ah;
3565 	struct ifnet *ifp = &sc->sc_if;
3566 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3567 	int i, error, iswep, ismcast, isfrag, ismrr;
3568 	int keyix, hdrlen, pktlen, try0;
3569 	u_int8_t rix, txrate, ctsrate;
3570 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3571 	struct ath_desc *ds, *ds0;
3572 	struct ath_txq *txq;
3573 	struct ieee80211_frame *wh;
3574 	u_int subtype, flags, ctsduration;
3575 	HAL_PKT_TYPE atype;
3576 	const HAL_RATE_TABLE *rt;
3577 	HAL_BOOL shortPreamble;
3578 	struct ath_node *an;
3579 	struct mbuf *m;
3580 	u_int pri;
3581 
3582 	wh = mtod(m0, struct ieee80211_frame *);
3583 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3584 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3585 	isfrag = m0->m_flags & M_FRAG;
3586 	hdrlen = ieee80211_anyhdrsize(wh);
3587 	/*
3588 	 * Packet length must not include any
3589 	 * pad bytes; deduct them here.
3590 	 */
3591 	pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen);
3592 
3593 	if (iswep) {
3594 		const struct ieee80211_cipher *cip;
3595 		struct ieee80211_key *k;
3596 
3597 		/*
3598 		 * Construct the 802.11 header+trailer for an encrypted
3599 		 * frame. The only reason this can fail is because of an
3600 		 * unknown or unsupported cipher/key type.
3601 		 */
3602 		k = ieee80211_crypto_encap(ic, ni, m0);
3603 		if (k == NULL) {
3604 			/*
3605 			 * This can happen when the key is yanked after the
3606 			 * frame was queued.  Just discard the frame; the
3607 			 * 802.11 layer counts failures and provides
3608 			 * debugging/diagnostics.
3609 			 */
3610 			ath_freetx(m0);
3611 			return EIO;
3612 		}
3613 		/*
3614 		 * Adjust the packet + header lengths for the crypto
3615 		 * additions and calculate the h/w key index.  When
3616 		 * a s/w mic is done the frame will have had any mic
3617 		 * added to it prior to entry so m0->m_pkthdr.len above will
3618 		 * account for it. Otherwise we need to add it to the
3619 		 * packet length.
3620 		 */
3621 		cip = k->wk_cipher;
3622 		hdrlen += cip->ic_header;
3623 		pktlen += cip->ic_header + cip->ic_trailer;
3624 		/* NB: frags always have any TKIP MIC done in s/w */
3625 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3626 			pktlen += cip->ic_miclen;
3627 		keyix = k->wk_keyix;
3628 
3629 		/* packet header may have moved, reset our local pointer */
3630 		wh = mtod(m0, struct ieee80211_frame *);
3631 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3632 		/*
3633 		 * Use station key cache slot, if assigned.
3634 		 */
3635 		keyix = ni->ni_ucastkey.wk_keyix;
3636 		if (keyix == IEEE80211_KEYIX_NONE)
3637 			keyix = HAL_TXKEYIX_INVALID;
3638 	} else
3639 		keyix = HAL_TXKEYIX_INVALID;
3640 
3641 	pktlen += IEEE80211_CRC_LEN;
3642 
3643 	/*
3644 	 * Load the DMA map so any coalescing is done.  This
3645 	 * also calculates the number of descriptors we need.
3646 	 */
3647 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3648 				     BUS_DMA_NOWAIT);
3649 	if (error == EFBIG) {
3650 		/* XXX packet requires too many descriptors */
3651 		bf->bf_nseg = ATH_TXDESC+1;
3652 	} else if (error != 0) {
3653 		sc->sc_stats.ast_tx_busdma++;
3654 		ath_freetx(m0);
3655 		return error;
3656 	}
3657 	/*
3658 	 * Discard null packets and check for packets that
3659 	 * require too many TX descriptors.  We try to convert
3660 	 * the latter to a cluster.
3661 	 */
3662 	if (error == EFBIG) {		/* too many desc's, linearize */
3663 		sc->sc_stats.ast_tx_linear++;
3664 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3665 		if (m == NULL) {
3666 			ath_freetx(m0);
3667 			sc->sc_stats.ast_tx_nombuf++;
3668 			return ENOMEM;
3669 		}
3670 		m0 = m;
3671 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3672 					     BUS_DMA_NOWAIT);
3673 		if (error != 0) {
3674 			sc->sc_stats.ast_tx_busdma++;
3675 			ath_freetx(m0);
3676 			return error;
3677 		}
3678 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3679 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3680 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3681 		sc->sc_stats.ast_tx_nodata++;
3682 		ath_freetx(m0);
3683 		return EIO;
3684 	}
3685 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3686 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3687             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3688 	bf->bf_m = m0;
3689 	bf->bf_node = ni;			/* NB: held reference */
3690 
3691 	/* setup descriptors */
3692 	ds = bf->bf_desc;
3693 	rt = sc->sc_currates;
3694 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3695 
3696 	/*
3697 	 * NB: the 802.11 layer marks whether or not we should
3698 	 * use short preamble based on the current mode and
3699 	 * negotiated parameters.
3700 	 */
3701 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3702 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3703 		shortPreamble = AH_TRUE;
3704 		sc->sc_stats.ast_tx_shortpre++;
3705 	} else {
3706 		shortPreamble = AH_FALSE;
3707 	}
3708 
3709 	an = ATH_NODE(ni);
3710 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3711 	ismrr = 0;				/* default no multi-rate retry*/
3712 	/*
3713 	 * Calculate Atheros packet type from IEEE80211 packet header,
3714 	 * setup for rate calculations, and select h/w transmit queue.
3715 	 */
3716 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3717 	case IEEE80211_FC0_TYPE_MGT:
3718 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3719 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3720 			atype = HAL_PKT_TYPE_BEACON;
3721 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3722 			atype = HAL_PKT_TYPE_PROBE_RESP;
3723 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3724 			atype = HAL_PKT_TYPE_ATIM;
3725 		else
3726 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3727 		rix = sc->sc_minrateix;
3728 		txrate = rt->info[rix].rateCode;
3729 		if (shortPreamble)
3730 			txrate |= rt->info[rix].shortPreamble;
3731 		try0 = ATH_TXMGTTRY;
3732 		/* NB: force all management frames to highest queue */
3733 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3734 			/* NB: force all management frames to highest queue */
3735 			pri = WME_AC_VO;
3736 		} else
3737 			pri = WME_AC_BE;
3738 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3739 		break;
3740 	case IEEE80211_FC0_TYPE_CTL:
3741 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3742 		rix = sc->sc_minrateix;
3743 		txrate = rt->info[rix].rateCode;
3744 		if (shortPreamble)
3745 			txrate |= rt->info[rix].shortPreamble;
3746 		try0 = ATH_TXMGTTRY;
3747 		/* NB: force all ctl frames to highest queue */
3748 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3749 			/* NB: force all ctl frames to highest queue */
3750 			pri = WME_AC_VO;
3751 		} else
3752 			pri = WME_AC_BE;
3753 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3754 		break;
3755 	case IEEE80211_FC0_TYPE_DATA:
3756 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3757 		/*
3758 		 * Data frames: multicast frames go out at a fixed rate,
3759 		 * otherwise consult the rate control module for the
3760 		 * rate to use.
3761 		 */
3762 		if (ismcast) {
3763 			/*
3764 			 * Check mcast rate setting in case it's changed.
3765 			 * XXX move out of fastpath
3766 			 */
3767 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3768 				sc->sc_mcastrix =
3769 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3770 				sc->sc_mcastrate = ic->ic_mcast_rate;
3771 			}
3772 			rix = sc->sc_mcastrix;
3773 			txrate = rt->info[rix].rateCode;
3774 			try0 = 1;
3775 		} else {
3776 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3777 				&rix, &try0, &txrate);
3778 			sc->sc_txrate = txrate;		/* for LED blinking */
3779 			if (try0 != ATH_TXMAXTRY)
3780 				ismrr = 1;
3781 		}
3782 		pri = M_WME_GETAC(m0);
3783 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3784 			flags |= HAL_TXDESC_NOACK;
3785 		break;
3786 	default:
3787 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3788 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3789 		/* XXX statistic */
3790 		ath_freetx(m0);
3791 		return EIO;
3792 	}
3793 	txq = sc->sc_ac2q[pri];
3794 
3795 	/*
3796 	 * When servicing one or more stations in power-save mode
3797 	 * multicast frames must be buffered until after the beacon.
3798 	 * We use the CAB queue for that.
3799 	 */
3800 	if (ismcast && ic->ic_ps_sta) {
3801 		txq = sc->sc_cabq;
3802 		/* XXX? more bit in 802.11 frame header */
3803 	}
3804 
3805 	/*
3806 	 * Calculate miscellaneous flags.
3807 	 */
3808 	if (ismcast) {
3809 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3810 	} else if (pktlen > ic->ic_rtsthreshold) {
3811 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3812 		cix = rt->info[rix].controlRate;
3813 		sc->sc_stats.ast_tx_rts++;
3814 	}
3815 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3816 		sc->sc_stats.ast_tx_noack++;
3817 
3818 	/*
3819 	 * If 802.11g protection is enabled, determine whether
3820 	 * to use RTS/CTS or just CTS.  Note that this is only
3821 	 * done for OFDM unicast frames.
3822 	 */
3823 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3824 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3825 	    (flags & HAL_TXDESC_NOACK) == 0) {
3826 		/* XXX fragments must use CCK rates w/ protection */
3827 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3828 			flags |= HAL_TXDESC_RTSENA;
3829 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3830 			flags |= HAL_TXDESC_CTSENA;
3831 		if (isfrag) {
3832 			/*
3833 			 * For frags it would be desirable to use the
3834 			 * highest CCK rate for RTS/CTS.  But stations
3835 			 * farther away may detect it at a lower CCK rate
3836 			 * so use the configured protection rate instead
3837 			 * (for now).
3838 			 */
3839 			cix = rt->info[sc->sc_protrix].controlRate;
3840 		} else
3841 			cix = rt->info[sc->sc_protrix].controlRate;
3842 		sc->sc_stats.ast_tx_protect++;
3843 	}
3844 
3845 	/*
3846 	 * Calculate duration.  This logically belongs in the 802.11
3847 	 * layer but it lacks sufficient information to calculate it.
3848 	 */
3849 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3850 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3851 		u_int16_t dur;
3852 		/*
3853 		 * XXX not right with fragmentation.
3854 		 */
3855 		if (shortPreamble)
3856 			dur = rt->info[rix].spAckDuration;
3857 		else
3858 			dur = rt->info[rix].lpAckDuration;
3859 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3860 			dur += dur;             /* additional SIFS+ACK */
3861 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3862 			/*
3863 			 * Include the size of next fragment so NAV is
3864 			 * updated properly.  The last fragment uses only
3865 			 * the ACK duration
3866 			 */
3867 			dur += ath_hal_computetxtime(ah, rt,
3868 			    deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len,
3869 			        hdrlen) -
3870 			    deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen,
3871 			    rix, shortPreamble);
3872 		}
3873 		if (isfrag) {
3874 			/*
3875 			 * Force hardware to use computed duration for next
3876 			 * fragment by disabling multi-rate retry which updates
3877 			 * duration based on the multi-rate duration table.
3878 			 */
3879 			try0 = ATH_TXMAXTRY;
3880 		}
3881 		*(u_int16_t *)wh->i_dur = htole16(dur);
3882 	}
3883 
3884 	/*
3885 	 * Calculate RTS/CTS rate and duration if needed.
3886 	 */
3887 	ctsduration = 0;
3888 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3889 		/*
3890 		 * CTS transmit rate is derived from the transmit rate
3891 		 * by looking in the h/w rate table.  We must also factor
3892 		 * in whether or not a short preamble is to be used.
3893 		 */
3894 		/* NB: cix is set above where RTS/CTS is enabled */
3895 		KASSERT(cix != 0xff, ("cix not setup"));
3896 		ctsrate = rt->info[cix].rateCode;
3897 		/*
3898 		 * Compute the transmit duration based on the frame
3899 		 * size and the size of an ACK frame.  We call into the
3900 		 * HAL to do the computation since it depends on the
3901 		 * characteristics of the actual PHY being used.
3902 		 *
3903 		 * NB: CTS is assumed the same size as an ACK so we can
3904 		 *     use the precalculated ACK durations.
3905 		 */
3906 		if (shortPreamble) {
3907 			ctsrate |= rt->info[cix].shortPreamble;
3908 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3909 				ctsduration += rt->info[cix].spAckDuration;
3910 			ctsduration += ath_hal_computetxtime(ah,
3911 				rt, pktlen, rix, AH_TRUE);
3912 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3913 				ctsduration += rt->info[rix].spAckDuration;
3914 		} else {
3915 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3916 				ctsduration += rt->info[cix].lpAckDuration;
3917 			ctsduration += ath_hal_computetxtime(ah,
3918 				rt, pktlen, rix, AH_FALSE);
3919 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3920 				ctsduration += rt->info[rix].lpAckDuration;
3921 		}
3922 		/*
3923 		 * Must disable multi-rate retry when using RTS/CTS.
3924 		 */
3925 		ismrr = 0;
3926 		try0 = ATH_TXMGTTRY;		/* XXX */
3927 	} else
3928 		ctsrate = 0;
3929 
3930 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3931 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3932 			sc->sc_hwmap[txrate].ieeerate, -1);
3933 	bpf_mtap3(ic->ic_rawbpf, m0);
3934 	if (sc->sc_drvbpf) {
3935 		u_int64_t tsf = ath_hal_gettsf64(ah);
3936 
3937 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3938 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3939 		if (iswep)
3940 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3941 		if (isfrag)
3942 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3943 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3944 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3945 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3946 
3947 		bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
3948 	}
3949 
3950 	/*
3951 	 * Determine if a tx interrupt should be generated for
3952 	 * this descriptor.  We take a tx interrupt to reap
3953 	 * descriptors when the h/w hits an EOL condition or
3954 	 * when the descriptor is specifically marked to generate
3955 	 * an interrupt.  We periodically mark descriptors in this
3956 	 * way to insure timely replenishing of the supply needed
3957 	 * for sending frames.  Defering interrupts reduces system
3958 	 * load and potentially allows more concurrent work to be
3959 	 * done but if done to aggressively can cause senders to
3960 	 * backup.
3961 	 *
3962 	 * NB: use >= to deal with sc_txintrperiod changing
3963 	 *     dynamically through sysctl.
3964 	 */
3965 	if (flags & HAL_TXDESC_INTREQ) {
3966 		txq->axq_intrcnt = 0;
3967 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3968 		flags |= HAL_TXDESC_INTREQ;
3969 		txq->axq_intrcnt = 0;
3970 	}
3971 
3972 	/*
3973 	 * Formulate first tx descriptor with tx controls.
3974 	 */
3975 	/* XXX check return value? */
3976 	ath_hal_setuptxdesc(ah, ds
3977 		, pktlen		/* packet length */
3978 		, hdrlen		/* header length */
3979 		, atype			/* Atheros packet type */
3980 		, ni->ni_txpower	/* txpower */
3981 		, txrate, try0		/* series 0 rate/tries */
3982 		, keyix			/* key cache index */
3983 		, sc->sc_txantenna	/* antenna mode */
3984 		, flags			/* flags */
3985 		, ctsrate		/* rts/cts rate */
3986 		, ctsduration		/* rts/cts duration */
3987 	);
3988 	bf->bf_flags = flags;
3989 	/*
3990 	 * Setup the multi-rate retry state only when we're
3991 	 * going to use it.  This assumes ath_hal_setuptxdesc
3992 	 * initializes the descriptors (so we don't have to)
3993 	 * when the hardware supports multi-rate retry and
3994 	 * we don't use it.
3995 	 */
3996 	if (ismrr)
3997 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3998 
3999 	/*
4000 	 * Fillin the remainder of the descriptor info.
4001 	 */
4002 	ds0 = ds;
4003 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4004 		ds->ds_data = bf->bf_segs[i].ds_addr;
4005 		if (i == bf->bf_nseg - 1)
4006 			ds->ds_link = 0;
4007 		else
4008 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4009 		ath_hal_filltxdesc(ah, ds
4010 			, bf->bf_segs[i].ds_len	/* segment length */
4011 			, i == 0		/* first segment */
4012 			, i == bf->bf_nseg - 1	/* last segment */
4013 			, ds0			/* first descriptor */
4014 		);
4015 
4016 		/* NB: The desc swap function becomes void,
4017 		 * if descriptor swapping is not enabled
4018 		 */
4019 		ath_desc_swap(ds);
4020 
4021 		DPRINTF(sc, ATH_DEBUG_XMIT,
4022 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4023 			__func__, i, ds->ds_link, ds->ds_data,
4024 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4025 	}
4026 	/*
4027 	 * Insert the frame on the outbound list and
4028 	 * pass it on to the hardware.
4029 	 */
4030 	ATH_TXQ_LOCK(txq);
4031 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4032 	if (txq->axq_link == NULL) {
4033 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4034 		DPRINTF(sc, ATH_DEBUG_XMIT,
4035 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
4036 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
4037 		    txq->axq_depth);
4038 	} else {
4039 		*txq->axq_link = HTOAH32(bf->bf_daddr);
4040 		DPRINTF(sc, ATH_DEBUG_XMIT,
4041 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
4042 		    __func__, txq->axq_qnum, txq->axq_link,
4043 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4044 	}
4045 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4046 	/*
4047 	 * The CAB queue is started from the SWBA handler since
4048 	 * frames only go out on DTIM and to avoid possible races.
4049 	 */
4050 	if (txq != sc->sc_cabq)
4051 		ath_hal_txstart(ah, txq->axq_qnum);
4052 	ATH_TXQ_UNLOCK(txq);
4053 
4054 	return 0;
4055 }
4056 
4057 /*
4058  * Process completed xmit descriptors from the specified queue.
4059  */
4060 static int
4061 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4062 {
4063 	struct ath_hal *ah = sc->sc_ah;
4064 	struct ieee80211com *ic = &sc->sc_ic;
4065 	struct ath_buf *bf;
4066 	struct ath_desc *ds, *ds0;
4067 	struct ieee80211_node *ni;
4068 	struct ath_node *an;
4069 	int sr, lr, pri, nacked;
4070 	HAL_STATUS status;
4071 
4072 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4073 		__func__, txq->axq_qnum,
4074 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4075 		txq->axq_link);
4076 	nacked = 0;
4077 	for (;;) {
4078 		ATH_TXQ_LOCK(txq);
4079 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4080 		bf = STAILQ_FIRST(&txq->axq_q);
4081 		if (bf == NULL) {
4082 			txq->axq_link = NULL;
4083 			ATH_TXQ_UNLOCK(txq);
4084 			break;
4085 		}
4086 		ds0 = &bf->bf_desc[0];
4087 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4088 		status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat);
4089 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4090 			ath_printtxbuf(bf, status == HAL_OK);
4091 		if (status == HAL_EINPROGRESS) {
4092 			ATH_TXQ_UNLOCK(txq);
4093 			break;
4094 		}
4095 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4096 		ATH_TXQ_UNLOCK(txq);
4097 
4098 		ni = bf->bf_node;
4099 		if (ni != NULL) {
4100 			an = ATH_NODE(ni);
4101 			if (ds->ds_txstat.ts_status == 0) {
4102 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4103 				sc->sc_stats.ast_ant_tx[txant]++;
4104 				sc->sc_ant_tx[txant]++;
4105 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4106 					sc->sc_stats.ast_tx_altrate++;
4107 				sc->sc_stats.ast_tx_rssi =
4108 					ds->ds_txstat.ts_rssi;
4109 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4110 					ds->ds_txstat.ts_rssi);
4111 				pri = M_WME_GETAC(bf->bf_m);
4112 				if (pri >= WME_AC_VO)
4113 					ic->ic_wme.wme_hipri_traffic++;
4114 				ni->ni_inact = ni->ni_inact_reload;
4115 			} else {
4116 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4117 					sc->sc_stats.ast_tx_xretries++;
4118 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4119 					sc->sc_stats.ast_tx_fifoerr++;
4120 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4121 					sc->sc_stats.ast_tx_filtered++;
4122 			}
4123 			sr = ds->ds_txstat.ts_shortretry;
4124 			lr = ds->ds_txstat.ts_longretry;
4125 			sc->sc_stats.ast_tx_shortretry += sr;
4126 			sc->sc_stats.ast_tx_longretry += lr;
4127 			/*
4128 			 * Hand the descriptor to the rate control algorithm.
4129 			 */
4130 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4131 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4132 				/*
4133 				 * If frame was ack'd update the last rx time
4134 				 * used to workaround phantom bmiss interrupts.
4135 				 */
4136 				if (ds->ds_txstat.ts_status == 0)
4137 					nacked++;
4138 				ath_rate_tx_complete(sc, an, ds, ds0);
4139 			}
4140 			/*
4141 			 * Reclaim reference to node.
4142 			 *
4143 			 * NB: the node may be reclaimed here if, for example
4144 			 *     this is a DEAUTH message that was sent and the
4145 			 *     node was timed out due to inactivity.
4146 			 */
4147 			ieee80211_free_node(ni);
4148 		}
4149 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4150 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4151 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4152 		m_freem(bf->bf_m);
4153 		bf->bf_m = NULL;
4154 		bf->bf_node = NULL;
4155 
4156 		ATH_TXBUF_LOCK(sc);
4157 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4158 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4159 		ATH_TXBUF_UNLOCK(sc);
4160 	}
4161 	return nacked;
4162 }
4163 
4164 static inline int
4165 txqactive(struct ath_hal *ah, int qnum)
4166 {
4167 	u_int32_t txqs = 1<<qnum;
4168 	ath_hal_gettxintrtxqs(ah, &txqs);
4169 	return (txqs & (1<<qnum));
4170 }
4171 
4172 /*
4173  * Deferred processing of transmit interrupt; special-cased
4174  * for a single hardware transmit queue (e.g. 5210 and 5211).
4175  */
4176 static void
4177 ath_tx_proc_q0(void *arg, int npending)
4178 {
4179 	struct ath_softc *sc = arg;
4180 	struct ifnet *ifp = &sc->sc_if;
4181 
4182 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4183 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4184 	}
4185 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4186 		ath_tx_processq(sc, sc->sc_cabq);
4187 
4188 	if (sc->sc_softled)
4189 		ath_led_event(sc, ATH_LED_TX);
4190 
4191 	ath_start(ifp);
4192 }
4193 
4194 /*
4195  * Deferred processing of transmit interrupt; special-cased
4196  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4197  */
4198 static void
4199 ath_tx_proc_q0123(void *arg, int npending)
4200 {
4201 	struct ath_softc *sc = arg;
4202 	struct ifnet *ifp = &sc->sc_if;
4203 	int nacked;
4204 
4205 	/*
4206 	 * Process each active queue.
4207 	 */
4208 	nacked = 0;
4209 	if (txqactive(sc->sc_ah, 0))
4210 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4211 	if (txqactive(sc->sc_ah, 1))
4212 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4213 	if (txqactive(sc->sc_ah, 2))
4214 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4215 	if (txqactive(sc->sc_ah, 3))
4216 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4217 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4218 		ath_tx_processq(sc, sc->sc_cabq);
4219 	if (nacked) {
4220 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4221 	}
4222 
4223 	if (sc->sc_softled)
4224 		ath_led_event(sc, ATH_LED_TX);
4225 
4226 	ath_start(ifp);
4227 }
4228 
4229 /*
4230  * Deferred processing of transmit interrupt.
4231  */
4232 static void
4233 ath_tx_proc(void *arg, int npending)
4234 {
4235 	struct ath_softc *sc = arg;
4236 	struct ifnet *ifp = &sc->sc_if;
4237 	int i, nacked;
4238 
4239 	/*
4240 	 * Process each active queue.
4241 	 */
4242 	nacked = 0;
4243 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4244 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4245 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4246 	if (nacked) {
4247 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4248 	}
4249 
4250 	if (sc->sc_softled)
4251 		ath_led_event(sc, ATH_LED_TX);
4252 
4253 	ath_start(ifp);
4254 }
4255 
4256 static void
4257 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4258 {
4259 	struct ath_hal *ah = sc->sc_ah;
4260 	struct ieee80211_node *ni;
4261 	struct ath_buf *bf;
4262 	struct ath_desc *ds;
4263 
4264 	/*
4265 	 * NB: this assumes output has been stopped and
4266 	 *     we do not need to block ath_tx_tasklet
4267 	 */
4268 	for (;;) {
4269 		ATH_TXQ_LOCK(txq);
4270 		bf = STAILQ_FIRST(&txq->axq_q);
4271 		if (bf == NULL) {
4272 			txq->axq_link = NULL;
4273 			ATH_TXQ_UNLOCK(txq);
4274 			break;
4275 		}
4276 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4277 		ATH_TXQ_UNLOCK(txq);
4278 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4279 		if (sc->sc_debug & ATH_DEBUG_RESET)
4280 			ath_printtxbuf(bf,
4281 				ath_hal_txprocdesc(ah, bf->bf_desc,
4282 					&ds->ds_txstat) == HAL_OK);
4283 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4284 		m_freem(bf->bf_m);
4285 		bf->bf_m = NULL;
4286 		ni = bf->bf_node;
4287 		bf->bf_node = NULL;
4288 		if (ni != NULL) {
4289 			/*
4290 			 * Reclaim node reference.
4291 			 */
4292 			ieee80211_free_node(ni);
4293 		}
4294 		ATH_TXBUF_LOCK(sc);
4295 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4296 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4297 		ATH_TXBUF_UNLOCK(sc);
4298 	}
4299 }
4300 
4301 static void
4302 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4303 {
4304 	struct ath_hal *ah = sc->sc_ah;
4305 
4306 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4307 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4308 	    __func__, txq->axq_qnum,
4309 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4310 	    txq->axq_link);
4311 }
4312 
4313 /*
4314  * Drain the transmit queues and reclaim resources.
4315  */
4316 static void
4317 ath_draintxq(struct ath_softc *sc)
4318 {
4319 	struct ath_hal *ah = sc->sc_ah;
4320 	int i;
4321 
4322 	/* XXX return value */
4323 	if (device_is_active(sc->sc_dev)) {
4324 		/* don't touch the hardware if marked invalid */
4325 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4326 		DPRINTF(sc, ATH_DEBUG_RESET,
4327 		    "%s: beacon queue %p\n", __func__,
4328 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4329 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4330 			if (ATH_TXQ_SETUP(sc, i))
4331 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4332 	}
4333 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4334 		if (ATH_TXQ_SETUP(sc, i))
4335 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4336 }
4337 
4338 /*
4339  * Disable the receive h/w in preparation for a reset.
4340  */
4341 static void
4342 ath_stoprecv(struct ath_softc *sc)
4343 {
4344 #define	PA2DESC(_sc, _pa) \
4345 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4346 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4347 	struct ath_hal *ah = sc->sc_ah;
4348 	u_int64_t tsf;
4349 
4350 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4351 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4352 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4353 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4354 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4355 		struct ath_buf *bf;
4356 
4357 		printf("%s: rx queue %p, link %p\n", __func__,
4358 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4359 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4360 			struct ath_desc *ds = bf->bf_desc;
4361 			tsf = ath_hal_gettsf64(sc->sc_ah);
4362 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4363 				bf->bf_daddr, PA2DESC(sc, ds->ds_link),
4364 				&ds->ds_rxstat);
4365 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4366 				ath_printrxbuf(bf, status == HAL_OK);
4367 		}
4368 	}
4369 	sc->sc_rxlink = NULL;		/* just in case */
4370 #undef PA2DESC
4371 }
4372 
4373 /*
4374  * Enable the receive h/w following a reset.
4375  */
4376 static int
4377 ath_startrecv(struct ath_softc *sc)
4378 {
4379 	struct ath_hal *ah = sc->sc_ah;
4380 	struct ath_buf *bf;
4381 
4382 	sc->sc_rxlink = NULL;
4383 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4384 		int error = ath_rxbuf_init(sc, bf);
4385 		if (error != 0) {
4386 			DPRINTF(sc, ATH_DEBUG_RECV,
4387 				"%s: ath_rxbuf_init failed %d\n",
4388 				__func__, error);
4389 			return error;
4390 		}
4391 	}
4392 
4393 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4394 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4395 	ath_hal_rxena(ah);		/* enable recv descriptors */
4396 	ath_mode_init(sc);		/* set filters, etc. */
4397 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4398 	return 0;
4399 }
4400 
4401 /*
4402  * Update internal state after a channel change.
4403  */
4404 static void
4405 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4406 {
4407 	struct ieee80211com *ic = &sc->sc_ic;
4408 	enum ieee80211_phymode mode;
4409 	u_int16_t flags;
4410 
4411 	/*
4412 	 * Change channels and update the h/w rate map
4413 	 * if we're switching; e.g. 11a to 11b/g.
4414 	 */
4415 	mode = ieee80211_chan2mode(ic, chan);
4416 	if (mode != sc->sc_curmode)
4417 		ath_setcurmode(sc, mode);
4418 	/*
4419 	 * Update BPF state.  NB: ethereal et. al. don't handle
4420 	 * merged flags well so pick a unique mode for their use.
4421 	 */
4422 	if (IEEE80211_IS_CHAN_A(chan))
4423 		flags = IEEE80211_CHAN_A;
4424 	/* XXX 11g schizophrenia */
4425 	else if (IEEE80211_IS_CHAN_G(chan) ||
4426 	    IEEE80211_IS_CHAN_PUREG(chan))
4427 		flags = IEEE80211_CHAN_G;
4428 	else
4429 		flags = IEEE80211_CHAN_B;
4430 	if (IEEE80211_IS_CHAN_T(chan))
4431 		flags |= IEEE80211_CHAN_TURBO;
4432 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4433 		htole16(chan->ic_freq);
4434 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4435 		htole16(flags);
4436 }
4437 
4438 #if 0
4439 /*
4440  * Poll for a channel clear indication; this is required
4441  * for channels requiring DFS and not previously visited
4442  * and/or with a recent radar detection.
4443  */
4444 static void
4445 ath_dfswait(void *arg)
4446 {
4447 	struct ath_softc *sc = arg;
4448 	struct ath_hal *ah = sc->sc_ah;
4449 	HAL_CHANNEL hchan;
4450 
4451 	ath_hal_radar_wait(ah, &hchan);
4452 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4453 		if_printf(&sc->sc_if,
4454 		    "channel %u/0x%x/0x%x has interference\n",
4455 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4456 		return;
4457 	}
4458 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4459 		/* XXX should not happen */
4460 		return;
4461 	}
4462 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4463 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4464 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4465 		if_printf(&sc->sc_if,
4466 		    "channel %u/0x%x/0x%x marked clear\n",
4467 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4468 	} else
4469 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4470 }
4471 #endif
4472 
4473 /*
4474  * Set/change channels.  If the channel is really being changed,
4475  * it's done by reseting the chip.  To accomplish this we must
4476  * first cleanup any pending DMA, then restart stuff after a la
4477  * ath_init.
4478  */
4479 static int
4480 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4481 {
4482 	struct ath_hal *ah = sc->sc_ah;
4483 	struct ieee80211com *ic = &sc->sc_ic;
4484 	HAL_CHANNEL hchan;
4485 
4486 	/*
4487 	 * Convert to a HAL channel description with
4488 	 * the flags constrained to reflect the current
4489 	 * operating mode.
4490 	 */
4491 	hchan.channel = chan->ic_freq;
4492 	hchan.channelFlags = ath_chan2flags(ic, chan);
4493 
4494 	DPRINTF(sc, ATH_DEBUG_RESET,
4495 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4496 	    __func__,
4497 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4498 		sc->sc_curchan.channelFlags),
4499 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4500 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4501 	        hchan.channel, hchan.channelFlags);
4502 	if (hchan.channel != sc->sc_curchan.channel ||
4503 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4504 		HAL_STATUS status;
4505 
4506 		/*
4507 		 * To switch channels clear any pending DMA operations;
4508 		 * wait long enough for the RX fifo to drain, reset the
4509 		 * hardware at the new frequency, and then re-enable
4510 		 * the relevant bits of the h/w.
4511 		 */
4512 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4513 		ath_draintxq(sc);		/* clear pending tx frames */
4514 		ath_stoprecv(sc);		/* turn off frame recv */
4515 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4516 			if_printf(ic->ic_ifp, "%s: unable to reset "
4517 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4518 			    __func__, ieee80211_chan2ieee(ic, chan),
4519 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4520 			return EIO;
4521 		}
4522 		sc->sc_curchan = hchan;
4523 		ath_update_txpow(sc);		/* update tx power state */
4524 		ath_restore_diversity(sc);
4525 		sc->sc_calinterval = 1;
4526 		sc->sc_caltries = 0;
4527 
4528 		/*
4529 		 * Re-enable rx framework.
4530 		 */
4531 		if (ath_startrecv(sc) != 0) {
4532 			if_printf(&sc->sc_if,
4533 				"%s: unable to restart recv logic\n", __func__);
4534 			return EIO;
4535 		}
4536 
4537 		/*
4538 		 * Change channels and update the h/w rate map
4539 		 * if we're switching; e.g. 11a to 11b/g.
4540 		 */
4541 		ic->ic_ibss_chan = chan;
4542 		ath_chan_change(sc, chan);
4543 
4544 #if 0
4545 		/*
4546 		 * Handle DFS required waiting period to determine
4547 		 * if channel is clear of radar traffic.
4548 		 */
4549 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4550 #define	DFS_AND_NOT_CLEAR(_c) \
4551 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4552 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4553 				if_printf(&sc->sc_if,
4554 					"wait for DFS clear channel signal\n");
4555 				/* XXX stop sndq */
4556 				sc->sc_if.if_flags |= IFF_OACTIVE;
4557 				callout_reset(&sc->sc_dfs_ch,
4558 					2 * hz, ath_dfswait, sc);
4559 			} else
4560 				callout_stop(&sc->sc_dfs_ch);
4561 #undef DFS_NOT_CLEAR
4562 		}
4563 #endif
4564 
4565 		/*
4566 		 * Re-enable interrupts.
4567 		 */
4568 		ath_hal_intrset(ah, sc->sc_imask);
4569 	}
4570 	return 0;
4571 }
4572 
4573 static void
4574 ath_next_scan(void *arg)
4575 {
4576 	struct ath_softc *sc = arg;
4577 	struct ieee80211com *ic = &sc->sc_ic;
4578 	int s;
4579 
4580 	/* don't call ath_start w/o network interrupts blocked */
4581 	s = splnet();
4582 
4583 	if (ic->ic_state == IEEE80211_S_SCAN)
4584 		ieee80211_next_scan(ic);
4585 	splx(s);
4586 }
4587 
4588 /*
4589  * Periodically recalibrate the PHY to account
4590  * for temperature/environment changes.
4591  */
4592 static void
4593 ath_calibrate(void *arg)
4594 {
4595 	struct ath_softc *sc = arg;
4596 	struct ath_hal *ah = sc->sc_ah;
4597 	HAL_BOOL iqCalDone;
4598 
4599 	sc->sc_stats.ast_per_cal++;
4600 
4601 	ATH_LOCK(sc);
4602 
4603 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4604 		/*
4605 		 * Rfgain is out of bounds, reset the chip
4606 		 * to load new gain values.
4607 		 */
4608 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4609 			"%s: rfgain change\n", __func__);
4610 		sc->sc_stats.ast_per_rfgain++;
4611 		ath_reset(&sc->sc_if);
4612 	}
4613 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4614 		DPRINTF(sc, ATH_DEBUG_ANY,
4615 			"%s: calibration of channel %u failed\n",
4616 			__func__, sc->sc_curchan.channel);
4617 		sc->sc_stats.ast_per_calfail++;
4618 	}
4619 	/*
4620 	 * Calibrate noise floor data again in case of change.
4621 	 */
4622 	ath_hal_process_noisefloor(ah);
4623 	/*
4624 	 * Poll more frequently when the IQ calibration is in
4625 	 * progress to speedup loading the final settings.
4626 	 * We temper this aggressive polling with an exponential
4627 	 * back off after 4 tries up to ath_calinterval.
4628 	 */
4629 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4630 		sc->sc_caltries = 0;
4631 		sc->sc_calinterval = ath_calinterval;
4632 	} else if (sc->sc_caltries > 4) {
4633 		sc->sc_caltries = 0;
4634 		sc->sc_calinterval <<= 1;
4635 		if (sc->sc_calinterval > ath_calinterval)
4636 			sc->sc_calinterval = ath_calinterval;
4637 	}
4638 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4639 		("bad calibration interval %u", sc->sc_calinterval));
4640 
4641 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4642 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4643 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4644 	sc->sc_caltries++;
4645 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4646 		ath_calibrate, sc);
4647 	ATH_UNLOCK(sc);
4648 }
4649 
4650 static int
4651 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4652 {
4653 	struct ifnet *ifp = ic->ic_ifp;
4654 	struct ath_softc *sc = ifp->if_softc;
4655 	struct ath_hal *ah = sc->sc_ah;
4656 	struct ieee80211_node *ni;
4657 	int i, error;
4658 	const u_int8_t *bssid;
4659 	u_int32_t rfilt;
4660 	static const HAL_LED_STATE leds[] = {
4661 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4662 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4663 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4664 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4665 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4666 	};
4667 
4668 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4669 		ieee80211_state_name[ic->ic_state],
4670 		ieee80211_state_name[nstate]);
4671 
4672 	callout_stop(&sc->sc_scan_ch);
4673 	callout_stop(&sc->sc_cal_ch);
4674 #if 0
4675 	callout_stop(&sc->sc_dfs_ch);
4676 #endif
4677 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4678 
4679 	if (nstate == IEEE80211_S_INIT) {
4680 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4681 		/*
4682 		 * NB: disable interrupts so we don't rx frames.
4683 		 */
4684 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4685 		/*
4686 		 * Notify the rate control algorithm.
4687 		 */
4688 		ath_rate_newstate(sc, nstate);
4689 		goto done;
4690 	}
4691 	ni = ic->ic_bss;
4692 	error = ath_chan_set(sc, ic->ic_curchan);
4693 	if (error != 0)
4694 		goto bad;
4695 	rfilt = ath_calcrxfilter(sc, nstate);
4696 	if (nstate == IEEE80211_S_SCAN)
4697 		bssid = ifp->if_broadcastaddr;
4698 	else
4699 		bssid = ni->ni_bssid;
4700 	ath_hal_setrxfilter(ah, rfilt);
4701 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4702 		 __func__, rfilt, ether_sprintf(bssid));
4703 
4704 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4705 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4706 	else
4707 		ath_hal_setassocid(ah, bssid, 0);
4708 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4709 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4710 			if (ath_hal_keyisvalid(ah, i))
4711 				ath_hal_keysetmac(ah, i, bssid);
4712 	}
4713 
4714 	/*
4715 	 * Notify the rate control algorithm so rates
4716 	 * are setup should ath_beacon_alloc be called.
4717 	 */
4718 	ath_rate_newstate(sc, nstate);
4719 
4720 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4721 		/* nothing to do */;
4722 	} else if (nstate == IEEE80211_S_RUN) {
4723 		DPRINTF(sc, ATH_DEBUG_STATE,
4724 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4725 			"capinfo=0x%04x chan=%d\n"
4726 			 , __func__
4727 			 , ic->ic_flags
4728 			 , ni->ni_intval
4729 			 , ether_sprintf(ni->ni_bssid)
4730 			 , ni->ni_capinfo
4731 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4732 
4733 		switch (ic->ic_opmode) {
4734 		case IEEE80211_M_HOSTAP:
4735 		case IEEE80211_M_IBSS:
4736 			/*
4737 			 * Allocate and setup the beacon frame.
4738 			 *
4739 			 * Stop any previous beacon DMA.  This may be
4740 			 * necessary, for example, when an ibss merge
4741 			 * causes reconfiguration; there will be a state
4742 			 * transition from RUN->RUN that means we may
4743 			 * be called with beacon transmission active.
4744 			 */
4745 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4746 			ath_beacon_free(sc);
4747 			error = ath_beacon_alloc(sc, ni);
4748 			if (error != 0)
4749 				goto bad;
4750 			/*
4751 			 * If joining an adhoc network defer beacon timer
4752 			 * configuration to the next beacon frame so we
4753 			 * have a current TSF to use.  Otherwise we're
4754 			 * starting an ibss/bss so there's no need to delay.
4755 			 */
4756 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4757 			    ic->ic_bss->ni_tstamp.tsf != 0)
4758 				sc->sc_syncbeacon = 1;
4759 			else
4760 				ath_beacon_config(sc);
4761 			break;
4762 		case IEEE80211_M_STA:
4763 			/*
4764 			 * Allocate a key cache slot to the station.
4765 			 */
4766 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4767 			    sc->sc_hasclrkey &&
4768 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4769 				ath_setup_stationkey(ni);
4770 			/*
4771 			 * Defer beacon timer configuration to the next
4772 			 * beacon frame so we have a current TSF to use
4773 			 * (any TSF collected when scanning is likely old).
4774 			 */
4775 			sc->sc_syncbeacon = 1;
4776 			break;
4777 		default:
4778 			break;
4779 		}
4780 		/*
4781 		 * Let the hal process statistics collected during a
4782 		 * scan so it can provide calibrated noise floor data.
4783 		 */
4784 		ath_hal_process_noisefloor(ah);
4785 		/*
4786 		 * Reset rssi stats; maybe not the best place...
4787 		 */
4788 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4789 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4790 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4791 	} else {
4792 		ath_hal_intrset(ah,
4793 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4794 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4795 	}
4796 done:
4797 	/*
4798 	 * Invoke the parent method to complete the work.
4799 	 */
4800 	error = sc->sc_newstate(ic, nstate, arg);
4801 	/*
4802 	 * Finally, start any timers.
4803 	 */
4804 	if (nstate == IEEE80211_S_RUN) {
4805 		/* start periodic recalibration timer */
4806 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4807 			ath_calibrate, sc);
4808 	} else if (nstate == IEEE80211_S_SCAN) {
4809 		/* start ap/neighbor scan timer */
4810 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4811 			ath_next_scan, sc);
4812 	}
4813 bad:
4814 	return error;
4815 }
4816 
4817 /*
4818  * Allocate a key cache slot to the station so we can
4819  * setup a mapping from key index to node. The key cache
4820  * slot is needed for managing antenna state and for
4821  * compression when stations do not use crypto.  We do
4822  * it uniliaterally here; if crypto is employed this slot
4823  * will be reassigned.
4824  */
4825 static void
4826 ath_setup_stationkey(struct ieee80211_node *ni)
4827 {
4828 	struct ieee80211com *ic = ni->ni_ic;
4829 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4830 	ieee80211_keyix keyix, rxkeyix;
4831 
4832 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4833 		/*
4834 		 * Key cache is full; we'll fall back to doing
4835 		 * the more expensive lookup in software.  Note
4836 		 * this also means no h/w compression.
4837 		 */
4838 		/* XXX msg+statistic */
4839 	} else {
4840 		/* XXX locking? */
4841 		ni->ni_ucastkey.wk_keyix = keyix;
4842 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4843 		/* NB: this will create a pass-thru key entry */
4844 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4845 	}
4846 }
4847 
4848 /*
4849  * Setup driver-specific state for a newly associated node.
4850  * Note that we're called also on a re-associate, the isnew
4851  * param tells us if this is the first time or not.
4852  */
4853 static void
4854 ath_newassoc(struct ieee80211_node *ni, int isnew)
4855 {
4856 	struct ieee80211com *ic = ni->ni_ic;
4857 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4858 
4859 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4860 	if (isnew &&
4861 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4862 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4863 		    ("new assoc with a unicast key already setup (keyix %u)",
4864 		    ni->ni_ucastkey.wk_keyix));
4865 		ath_setup_stationkey(ni);
4866 	}
4867 }
4868 
4869 static int
4870 ath_getchannels(struct ath_softc *sc, u_int cc,
4871 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4872 {
4873 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4874 	struct ieee80211com *ic = &sc->sc_ic;
4875 	struct ifnet *ifp = &sc->sc_if;
4876 	struct ath_hal *ah = sc->sc_ah;
4877 	HAL_CHANNEL *chans;
4878 	int i, ix, nchan;
4879 
4880 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4881 			M_TEMP, M_NOWAIT);
4882 	if (chans == NULL) {
4883 		if_printf(ifp, "unable to allocate channel table\n");
4884 		return ENOMEM;
4885 	}
4886 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4887 	    NULL, 0, NULL,
4888 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4889 		u_int32_t rd;
4890 
4891 		(void)ath_hal_getregdomain(ah, &rd);
4892 		if_printf(ifp, "unable to collect channel list from hal; "
4893 			"regdomain likely %u country code %u\n", rd, cc);
4894 		free(chans, M_TEMP);
4895 		return EINVAL;
4896 	}
4897 
4898 	/*
4899 	 * Convert HAL channels to ieee80211 ones and insert
4900 	 * them in the table according to their channel number.
4901 	 */
4902 	for (i = 0; i < nchan; i++) {
4903 		HAL_CHANNEL *c = &chans[i];
4904 		u_int16_t flags;
4905 
4906 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4907 		if (ix > IEEE80211_CHAN_MAX) {
4908 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4909 				ix, c->channel, c->channelFlags);
4910 			continue;
4911 		}
4912 		if (ix < 0) {
4913 			/* XXX can't handle stuff <2400 right now */
4914 			if (bootverbose)
4915 				if_printf(ifp, "hal channel %d (%u/%x) "
4916 				    "cannot be handled; ignored\n",
4917 				    ix, c->channel, c->channelFlags);
4918 			continue;
4919 		}
4920 		/*
4921 		 * Calculate net80211 flags; most are compatible
4922 		 * but some need massaging.  Note the static turbo
4923 		 * conversion can be removed once net80211 is updated
4924 		 * to understand static vs. dynamic turbo.
4925 		 */
4926 		flags = c->channelFlags & COMPAT;
4927 		if (c->channelFlags & CHANNEL_STURBO)
4928 			flags |= IEEE80211_CHAN_TURBO;
4929 		if (ic->ic_channels[ix].ic_freq == 0) {
4930 			ic->ic_channels[ix].ic_freq = c->channel;
4931 			ic->ic_channels[ix].ic_flags = flags;
4932 		} else {
4933 			/* channels overlap; e.g. 11g and 11b */
4934 			ic->ic_channels[ix].ic_flags |= flags;
4935 		}
4936 	}
4937 	free(chans, M_TEMP);
4938 	return 0;
4939 #undef COMPAT
4940 }
4941 
4942 static void
4943 ath_led_done(void *arg)
4944 {
4945 	struct ath_softc *sc = arg;
4946 
4947 	sc->sc_blinking = 0;
4948 }
4949 
4950 /*
4951  * Turn the LED off: flip the pin and then set a timer so no
4952  * update will happen for the specified duration.
4953  */
4954 static void
4955 ath_led_off(void *arg)
4956 {
4957 	struct ath_softc *sc = arg;
4958 
4959 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4960 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4961 }
4962 
4963 /*
4964  * Blink the LED according to the specified on/off times.
4965  */
4966 static void
4967 ath_led_blink(struct ath_softc *sc, int on, int off)
4968 {
4969 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4970 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4971 	sc->sc_blinking = 1;
4972 	sc->sc_ledoff = off;
4973 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4974 }
4975 
4976 static void
4977 ath_led_event(struct ath_softc *sc, int event)
4978 {
4979 
4980 	sc->sc_ledevent = ticks;	/* time of last event */
4981 	if (sc->sc_blinking)		/* don't interrupt active blink */
4982 		return;
4983 	switch (event) {
4984 	case ATH_LED_POLL:
4985 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4986 			sc->sc_hwmap[0].ledoff);
4987 		break;
4988 	case ATH_LED_TX:
4989 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4990 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4991 		break;
4992 	case ATH_LED_RX:
4993 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4994 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4995 		break;
4996 	}
4997 }
4998 
4999 static void
5000 ath_update_txpow(struct ath_softc *sc)
5001 {
5002 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
5003 	struct ieee80211com *ic = &sc->sc_ic;
5004 	struct ath_hal *ah = sc->sc_ah;
5005 	u_int32_t txpow;
5006 
5007 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
5008 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
5009 		/* read back in case value is clamped */
5010 		(void)ath_hal_gettxpowlimit(ah, &txpow);
5011 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
5012 	}
5013 	/*
5014 	 * Fetch max tx power level for status requests.
5015 	 */
5016 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
5017 	ic->ic_bss->ni_txpower = txpow;
5018 }
5019 
5020 static void
5021 rate_setup(struct ath_softc *sc,
5022 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
5023 {
5024 	int i, maxrates;
5025 
5026 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
5027 		DPRINTF(sc, ATH_DEBUG_ANY,
5028 			"%s: rate table too small (%u > %u)\n",
5029 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
5030 		maxrates = IEEE80211_RATE_MAXSIZE;
5031 	} else
5032 		maxrates = rt->rateCount;
5033 	for (i = 0; i < maxrates; i++)
5034 		rs->rs_rates[i] = rt->info[i].dot11Rate;
5035 	rs->rs_nrates = maxrates;
5036 }
5037 
5038 static int
5039 ath_rate_setup(struct ath_softc *sc, u_int mode)
5040 {
5041 	struct ath_hal *ah = sc->sc_ah;
5042 	struct ieee80211com *ic = &sc->sc_ic;
5043 	const HAL_RATE_TABLE *rt;
5044 
5045 	switch (mode) {
5046 	case IEEE80211_MODE_11A:
5047 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5048 		break;
5049 	case IEEE80211_MODE_11B:
5050 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5051 		break;
5052 	case IEEE80211_MODE_11G:
5053 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5054 		break;
5055 	case IEEE80211_MODE_TURBO_A:
5056 		/* XXX until static/dynamic turbo is fixed */
5057 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5058 		break;
5059 	case IEEE80211_MODE_TURBO_G:
5060 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5061 		break;
5062 	default:
5063 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5064 			__func__, mode);
5065 		return 0;
5066 	}
5067 	sc->sc_rates[mode] = rt;
5068 	if (rt != NULL) {
5069 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5070 		return 1;
5071 	} else
5072 		return 0;
5073 }
5074 
5075 static void
5076 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5077 {
5078 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5079 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5080 	static const struct {
5081 		u_int		rate;		/* tx/rx 802.11 rate */
5082 		u_int16_t	timeOn;		/* LED on time (ms) */
5083 		u_int16_t	timeOff;	/* LED off time (ms) */
5084 	} blinkrates[] = {
5085 		{ 108,  40,  10 },
5086 		{  96,  44,  11 },
5087 		{  72,  50,  13 },
5088 		{  48,  57,  14 },
5089 		{  36,  67,  16 },
5090 		{  24,  80,  20 },
5091 		{  22, 100,  25 },
5092 		{  18, 133,  34 },
5093 		{  12, 160,  40 },
5094 		{  10, 200,  50 },
5095 		{   6, 240,  58 },
5096 		{   4, 267,  66 },
5097 		{   2, 400, 100 },
5098 		{   0, 500, 130 },
5099 	};
5100 	const HAL_RATE_TABLE *rt;
5101 	int i, j;
5102 
5103 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5104 	rt = sc->sc_rates[mode];
5105 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5106 	for (i = 0; i < rt->rateCount; i++)
5107 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5108 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5109 	for (i = 0; i < 32; i++) {
5110 		u_int8_t ix = rt->rateCodeToIndex[i];
5111 		if (ix == 0xff) {
5112 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5113 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5114 			continue;
5115 		}
5116 		sc->sc_hwmap[i].ieeerate =
5117 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5118 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5119 		if (rt->info[ix].shortPreamble ||
5120 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5121 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5122 		/* NB: receive frames include FCS */
5123 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5124 			IEEE80211_RADIOTAP_F_FCS;
5125 		/* setup blink rate table to avoid per-packet lookup */
5126 		for (j = 0; j < N(blinkrates)-1; j++)
5127 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5128 				break;
5129 		/* NB: this uses the last entry if the rate isn't found */
5130 		/* XXX beware of overlow */
5131 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5132 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5133 	}
5134 	sc->sc_currates = rt;
5135 	sc->sc_curmode = mode;
5136 	/*
5137 	 * All protection frames are transmited at 2Mb/s for
5138 	 * 11g, otherwise at 1Mb/s.
5139 	 */
5140 	if (mode == IEEE80211_MODE_11G)
5141 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5142 	else
5143 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5144 	/* rate index used to send management frames */
5145 	sc->sc_minrateix = 0;
5146 	/*
5147 	 * Setup multicast rate state.
5148 	 */
5149 	/* XXX layering violation */
5150 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5151 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5152 	/* NB: caller is responsible for reseting rate control state */
5153 #undef N
5154 }
5155 
5156 #ifdef AR_DEBUG
5157 static void
5158 ath_printrxbuf(struct ath_buf *bf, int done)
5159 {
5160 	struct ath_desc *ds;
5161 	int i;
5162 
5163 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5164 		printf("R%d (%p %" PRIx64
5165 		    ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds,
5166 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5167 		    ds->ds_link, ds->ds_data,
5168 		    ds->ds_ctl0, ds->ds_ctl1,
5169 		    ds->ds_hw[0], ds->ds_hw[1],
5170 		    ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix,
5171 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5172 	}
5173 }
5174 
5175 static void
5176 ath_printtxbuf(struct ath_buf *bf, int done)
5177 {
5178 	struct ath_desc *ds;
5179 	int i;
5180 
5181 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5182 		printf("T%d (%p %" PRIx64
5183 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5184 		    i, ds,
5185 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5186 		    ds->ds_link, ds->ds_data,
5187 		    ds->ds_ctl0, ds->ds_ctl1,
5188 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5189 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5190 	}
5191 }
5192 #endif	/* AR_DEBUG */
5193 
5194 static void
5195 ath_watchdog(struct ifnet *ifp)
5196 {
5197 	struct ath_softc *sc = ifp->if_softc;
5198 	struct ieee80211com *ic = &sc->sc_ic;
5199 	struct ath_txq *axq;
5200 	int i;
5201 
5202 	ifp->if_timer = 0;
5203 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
5204 	    !device_is_active(sc->sc_dev))
5205 		return;
5206 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5207 		if (!ATH_TXQ_SETUP(sc, i))
5208 			continue;
5209 		axq = &sc->sc_txq[i];
5210 		ATH_TXQ_LOCK(axq);
5211 		if (axq->axq_timer == 0)
5212 			;
5213 		else if (--axq->axq_timer == 0) {
5214 			ATH_TXQ_UNLOCK(axq);
5215 			if_printf(ifp, "device timeout (txq %d, "
5216 			    "txintrperiod %d)\n", i, sc->sc_txintrperiod);
5217 			if (sc->sc_txintrperiod > 1)
5218 				sc->sc_txintrperiod--;
5219 			ath_reset(ifp);
5220 			ifp->if_oerrors++;
5221 			sc->sc_stats.ast_watchdog++;
5222 			break;
5223 		} else
5224 			ifp->if_timer = 1;
5225 		ATH_TXQ_UNLOCK(axq);
5226 	}
5227 	ieee80211_watchdog(ic);
5228 }
5229 
5230 /*
5231  * Diagnostic interface to the HAL.  This is used by various
5232  * tools to do things like retrieve register contents for
5233  * debugging.  The mechanism is intentionally opaque so that
5234  * it can change frequently w/o concern for compatiblity.
5235  */
5236 static int
5237 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5238 {
5239 	struct ath_hal *ah = sc->sc_ah;
5240 	u_int id = ad->ad_id & ATH_DIAG_ID;
5241 	void *indata = NULL;
5242 	void *outdata = NULL;
5243 	u_int32_t insize = ad->ad_in_size;
5244 	u_int32_t outsize = ad->ad_out_size;
5245 	int error = 0;
5246 
5247 	if (ad->ad_id & ATH_DIAG_IN) {
5248 		/*
5249 		 * Copy in data.
5250 		 */
5251 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5252 		if (indata == NULL) {
5253 			error = ENOMEM;
5254 			goto bad;
5255 		}
5256 		error = copyin(ad->ad_in_data, indata, insize);
5257 		if (error)
5258 			goto bad;
5259 	}
5260 	if (ad->ad_id & ATH_DIAG_DYN) {
5261 		/*
5262 		 * Allocate a buffer for the results (otherwise the HAL
5263 		 * returns a pointer to a buffer where we can read the
5264 		 * results).  Note that we depend on the HAL leaving this
5265 		 * pointer for us to use below in reclaiming the buffer;
5266 		 * may want to be more defensive.
5267 		 */
5268 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5269 		if (outdata == NULL) {
5270 			error = ENOMEM;
5271 			goto bad;
5272 		}
5273 	}
5274 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5275 		if (outsize < ad->ad_out_size)
5276 			ad->ad_out_size = outsize;
5277 		if (outdata != NULL)
5278 			error = copyout(outdata, ad->ad_out_data,
5279 					ad->ad_out_size);
5280 	} else {
5281 		error = EINVAL;
5282 	}
5283 bad:
5284 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5285 		free(indata, M_TEMP);
5286 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5287 		free(outdata, M_TEMP);
5288 	return error;
5289 }
5290 
5291 static int
5292 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5293 {
5294 #define	IS_RUNNING(ifp) \
5295 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5296 	struct ath_softc *sc = ifp->if_softc;
5297 	struct ieee80211com *ic = &sc->sc_ic;
5298 	struct ifreq *ifr = (struct ifreq *)data;
5299 	int error = 0;
5300 
5301 	ATH_LOCK(sc);
5302 	switch (cmd) {
5303 	case SIOCSIFFLAGS:
5304 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
5305 			break;
5306 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
5307 		case IFF_UP|IFF_RUNNING:
5308 			/*
5309 			 * To avoid rescanning another access point,
5310 			 * do not call ath_init() here.  Instead,
5311 			 * only reflect promisc mode settings.
5312 			 */
5313 			ath_mode_init(sc);
5314 			break;
5315 		case IFF_UP:
5316 			/*
5317 			 * Beware of being called during attach/detach
5318 			 * to reset promiscuous mode.  In that case we
5319 			 * will still be marked UP but not RUNNING.
5320 			 * However trying to re-init the interface
5321 			 * is the wrong thing to do as we've already
5322 			 * torn down much of our state.  There's
5323 			 * probably a better way to deal with this.
5324 			 */
5325 			error = ath_init(sc);
5326 			break;
5327 		case IFF_RUNNING:
5328 			ath_stop_locked(ifp, 1);
5329 			break;
5330 		case 0:
5331 			break;
5332 		}
5333 		break;
5334 	case SIOCADDMULTI:
5335 	case SIOCDELMULTI:
5336 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5337 			if (ifp->if_flags & IFF_RUNNING)
5338 				ath_mode_init(sc);
5339 			error = 0;
5340 		}
5341 		break;
5342 	case SIOCGATHSTATS:
5343 		/* NB: embed these numbers to get a consistent view */
5344 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5345 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5346 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5347 		ATH_UNLOCK(sc);
5348 		/*
5349 		 * NB: Drop the softc lock in case of a page fault;
5350 		 * we'll accept any potential inconsisentcy in the
5351 		 * statistics.  The alternative is to copy the data
5352 		 * to a local structure.
5353 		 */
5354 		return copyout(&sc->sc_stats,
5355 				ifr->ifr_data, sizeof (sc->sc_stats));
5356 	case SIOCGATHDIAG:
5357 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5358 		break;
5359 	default:
5360 		error = ieee80211_ioctl(ic, cmd, data);
5361 		if (error != ENETRESET)
5362 			;
5363 		else if (IS_RUNNING(ifp) &&
5364 		         ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5365 			error = ath_init(sc);
5366 		else
5367 			error = 0;
5368 		break;
5369 	}
5370 	ATH_UNLOCK(sc);
5371 	return error;
5372 #undef IS_RUNNING
5373 }
5374 
5375 static void
5376 ath_bpfattach(struct ath_softc *sc)
5377 {
5378 	struct ifnet *ifp = &sc->sc_if;
5379 
5380 	bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
5381 	    sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5382 	    &sc->sc_drvbpf);
5383 
5384 	/*
5385 	 * Initialize constant fields.
5386 	 * XXX make header lengths a multiple of 32-bits so subsequent
5387 	 *     headers are properly aligned; this is a kludge to keep
5388 	 *     certain applications happy.
5389 	 *
5390 	 * NB: the channel is setup each time we transition to the
5391 	 *     RUN state to avoid filling it in for each frame.
5392 	 */
5393 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5394 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5395 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5396 
5397 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5398 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5399 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5400 }
5401 
5402 /*
5403  * Announce various information on device/driver attach.
5404  */
5405 static void
5406 ath_announce(struct ath_softc *sc)
5407 {
5408 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5409 	struct ifnet *ifp = &sc->sc_if;
5410 	struct ath_hal *ah = sc->sc_ah;
5411 	u_int modes, cc;
5412 
5413 	if_printf(ifp, "mac %d.%d phy %d.%d",
5414 		ah->ah_macVersion, ah->ah_macRev,
5415 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5416 	/*
5417 	 * Print radio revision(s).  We check the wireless modes
5418 	 * to avoid falsely printing revs for inoperable parts.
5419 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5420 	 */
5421 	ath_hal_getcountrycode(ah, &cc);
5422 	modes = ath_hal_getwirelessmodes(ah, cc);
5423 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5424 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5425 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5426 				ah->ah_analog5GhzRev >> 4,
5427 				ah->ah_analog5GhzRev & 0xf,
5428 				ah->ah_analog2GhzRev >> 4,
5429 				ah->ah_analog2GhzRev & 0xf);
5430 		else
5431 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5432 				ah->ah_analog5GhzRev & 0xf);
5433 	} else
5434 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5435 			ah->ah_analog5GhzRev & 0xf);
5436 	printf("\n");
5437 	if (bootverbose) {
5438 		int i;
5439 		for (i = 0; i <= WME_AC_VO; i++) {
5440 			struct ath_txq *txq = sc->sc_ac2q[i];
5441 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5442 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5443 		}
5444 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5445 			sc->sc_cabq->axq_qnum);
5446 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5447 	}
5448 	if (ath_rxbuf != ATH_RXBUF)
5449 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5450 	if (ath_txbuf != ATH_TXBUF)
5451 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5452 #undef HAL_MODE_DUALBAND
5453 }
5454