1 /* $NetBSD: ath.c,v 1.109 2010/04/05 07:19:33 joerg Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.109 2010/04/05 07:19:33 joerg Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #include "opt_inet.h" 55 56 #include <sys/param.h> 57 #include <sys/reboot.h> 58 #include <sys/systm.h> 59 #include <sys/types.h> 60 #include <sys/sysctl.h> 61 #include <sys/mbuf.h> 62 #include <sys/malloc.h> 63 #include <sys/kernel.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/errno.h> 67 #include <sys/callout.h> 68 #include <sys/bus.h> 69 #include <sys/endian.h> 70 71 #include <net/if.h> 72 #include <net/if_dl.h> 73 #include <net/if_media.h> 74 #include <net/if_types.h> 75 #include <net/if_arp.h> 76 #include <net/if_ether.h> 77 #include <net/if_llc.h> 78 79 #include <net80211/ieee80211_netbsd.h> 80 #include <net80211/ieee80211_var.h> 81 82 #include <net/bpf.h> 83 84 #ifdef INET 85 #include <netinet/in.h> 86 #endif 87 88 #include <sys/device.h> 89 #include <dev/ic/ath_netbsd.h> 90 91 #define AR_DEBUG 92 #include <dev/ic/athvar.h> 93 #include "ah_desc.h" 94 #include "ah_devid.h" /* XXX for softled */ 95 #include "opt_ah.h" 96 97 #ifdef ATH_TX99_DIAG 98 #include <dev/ath/ath_tx99/ath_tx99.h> 99 #endif 100 101 /* unaligned little endian access */ 102 #define LE_READ_2(p) \ 103 ((u_int16_t) \ 104 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 105 #define LE_READ_4(p) \ 106 ((u_int32_t) \ 107 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 108 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 109 110 enum { 111 ATH_LED_TX, 112 ATH_LED_RX, 113 ATH_LED_POLL, 114 }; 115 116 #ifdef AH_NEED_DESC_SWAP 117 #define HTOAH32(x) htole32(x) 118 #else 119 #define HTOAH32(x) (x) 120 #endif 121 122 static int ath_ifinit(struct ifnet *); 123 static int ath_init(struct ath_softc *); 124 static void ath_stop_locked(struct ifnet *, int); 125 static void ath_stop(struct ifnet *, int); 126 static void ath_start(struct ifnet *); 127 static int ath_media_change(struct ifnet *); 128 static void ath_watchdog(struct ifnet *); 129 static int ath_ioctl(struct ifnet *, u_long, void *); 130 static void ath_fatal_proc(void *, int); 131 static void ath_rxorn_proc(void *, int); 132 static void ath_bmiss_proc(void *, int); 133 static void ath_radar_proc(void *, int); 134 static int ath_key_alloc(struct ieee80211com *, 135 const struct ieee80211_key *, 136 ieee80211_keyix *, ieee80211_keyix *); 137 static int ath_key_delete(struct ieee80211com *, 138 const struct ieee80211_key *); 139 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 140 const u_int8_t mac[IEEE80211_ADDR_LEN]); 141 static void ath_key_update_begin(struct ieee80211com *); 142 static void ath_key_update_end(struct ieee80211com *); 143 static void ath_mode_init(struct ath_softc *); 144 static void ath_setslottime(struct ath_softc *); 145 static void ath_updateslot(struct ifnet *); 146 static int ath_beaconq_setup(struct ath_hal *); 147 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 148 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 149 static void ath_beacon_proc(void *, int); 150 static void ath_bstuck_proc(void *, int); 151 static void ath_beacon_free(struct ath_softc *); 152 static void ath_beacon_config(struct ath_softc *); 153 static void ath_descdma_cleanup(struct ath_softc *sc, 154 struct ath_descdma *, ath_bufhead *); 155 static int ath_desc_alloc(struct ath_softc *); 156 static void ath_desc_free(struct ath_softc *); 157 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 158 static void ath_node_free(struct ieee80211_node *); 159 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 160 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 161 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 162 struct ieee80211_node *ni, 163 int subtype, int rssi, u_int32_t rstamp); 164 static void ath_setdefantenna(struct ath_softc *, u_int); 165 static void ath_rx_proc(void *, int); 166 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 167 static int ath_tx_setup(struct ath_softc *, int, int); 168 static int ath_wme_update(struct ieee80211com *); 169 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 170 static void ath_tx_cleanup(struct ath_softc *); 171 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 172 struct ath_buf *, struct mbuf *); 173 static void ath_tx_proc_q0(void *, int); 174 static void ath_tx_proc_q0123(void *, int); 175 static void ath_tx_proc(void *, int); 176 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 177 static void ath_draintxq(struct ath_softc *); 178 static void ath_stoprecv(struct ath_softc *); 179 static int ath_startrecv(struct ath_softc *); 180 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 181 static void ath_next_scan(void *); 182 static void ath_calibrate(void *); 183 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 184 static void ath_setup_stationkey(struct ieee80211_node *); 185 static void ath_newassoc(struct ieee80211_node *, int); 186 static int ath_getchannels(struct ath_softc *, u_int cc, 187 HAL_BOOL outdoor, HAL_BOOL xchanmode); 188 static void ath_led_event(struct ath_softc *, int); 189 static void ath_update_txpow(struct ath_softc *); 190 static void ath_freetx(struct mbuf *); 191 static void ath_restore_diversity(struct ath_softc *); 192 193 static int ath_rate_setup(struct ath_softc *, u_int mode); 194 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 195 196 static void ath_bpfattach(struct ath_softc *); 197 static void ath_announce(struct ath_softc *); 198 199 int ath_dwelltime = 200; /* 5 channels/second */ 200 int ath_calinterval = 30; /* calibrate every 30 secs */ 201 int ath_outdoor = AH_TRUE; /* outdoor operation */ 202 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 203 int ath_countrycode = CTRY_DEFAULT; /* country code */ 204 int ath_regdomain = 0; /* regulatory domain */ 205 int ath_debug = 0; 206 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 207 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 208 209 #ifdef AR_DEBUG 210 enum { 211 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 212 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 213 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 214 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 215 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 216 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 217 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 218 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 219 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 220 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 221 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 222 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 223 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 224 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 225 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 226 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 227 ATH_DEBUG_NODE = 0x00080000, /* node management */ 228 ATH_DEBUG_LED = 0x00100000, /* led management */ 229 ATH_DEBUG_FF = 0x00200000, /* fast frames */ 230 ATH_DEBUG_DFS = 0x00400000, /* DFS processing */ 231 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 232 ATH_DEBUG_ANY = 0xffffffff 233 }; 234 #define IFF_DUMPPKTS(sc, m) \ 235 ((sc->sc_debug & (m)) || \ 236 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 237 #define DPRINTF(sc, m, fmt, ...) do { \ 238 if (sc->sc_debug & (m)) \ 239 printf(fmt, __VA_ARGS__); \ 240 } while (0) 241 #define KEYPRINTF(sc, ix, hk, mac) do { \ 242 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 243 ath_keyprint(__func__, ix, hk, mac); \ 244 } while (0) 245 static void ath_printrxbuf(struct ath_buf *bf, int); 246 static void ath_printtxbuf(struct ath_buf *bf, int); 247 #else 248 #define IFF_DUMPPKTS(sc, m) \ 249 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 250 #define DPRINTF(m, fmt, ...) 251 #define KEYPRINTF(sc, k, ix, mac) 252 #endif 253 254 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 255 256 int 257 ath_attach(u_int16_t devid, struct ath_softc *sc) 258 { 259 struct ifnet *ifp = &sc->sc_if; 260 struct ieee80211com *ic = &sc->sc_ic; 261 struct ath_hal *ah = NULL; 262 HAL_STATUS status; 263 int error = 0, i; 264 265 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 266 267 pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); 268 269 memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 270 271 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status); 272 if (ah == NULL) { 273 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 274 status); 275 error = ENXIO; 276 goto bad; 277 } 278 if (ah->ah_abi != HAL_ABI_VERSION) { 279 if_printf(ifp, "HAL ABI mismatch detected " 280 "(HAL:0x%x != driver:0x%x)\n", 281 ah->ah_abi, HAL_ABI_VERSION); 282 error = ENXIO; 283 goto bad; 284 } 285 sc->sc_ah = ah; 286 287 if (!prop_dictionary_set_bool(device_properties(sc->sc_dev), 288 "pmf-powerdown", false)) 289 goto bad; 290 291 /* 292 * Check if the MAC has multi-rate retry support. 293 * We do this by trying to setup a fake extended 294 * descriptor. MAC's that don't have support will 295 * return false w/o doing anything. MAC's that do 296 * support it will return true w/o doing anything. 297 */ 298 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 299 300 /* 301 * Check if the device has hardware counters for PHY 302 * errors. If so we need to enable the MIB interrupt 303 * so we can act on stat triggers. 304 */ 305 if (ath_hal_hwphycounters(ah)) 306 sc->sc_needmib = 1; 307 308 /* 309 * Get the hardware key cache size. 310 */ 311 sc->sc_keymax = ath_hal_keycachesize(ah); 312 if (sc->sc_keymax > ATH_KEYMAX) { 313 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 314 ATH_KEYMAX, sc->sc_keymax); 315 sc->sc_keymax = ATH_KEYMAX; 316 } 317 /* 318 * Reset the key cache since some parts do not 319 * reset the contents on initial power up. 320 */ 321 for (i = 0; i < sc->sc_keymax; i++) 322 ath_hal_keyreset(ah, i); 323 /* 324 * Mark key cache slots associated with global keys 325 * as in use. If we knew TKIP was not to be used we 326 * could leave the +32, +64, and +32+64 slots free. 327 * XXX only for splitmic. 328 */ 329 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 330 setbit(sc->sc_keymap, i); 331 setbit(sc->sc_keymap, i+32); 332 setbit(sc->sc_keymap, i+64); 333 setbit(sc->sc_keymap, i+32+64); 334 } 335 336 /* 337 * Collect the channel list using the default country 338 * code and including outdoor channels. The 802.11 layer 339 * is resposible for filtering this list based on settings 340 * like the phy mode. 341 */ 342 error = ath_getchannels(sc, ath_countrycode, 343 ath_outdoor, ath_xchanmode); 344 if (error != 0) 345 goto bad; 346 347 /* 348 * Setup rate tables for all potential media types. 349 */ 350 ath_rate_setup(sc, IEEE80211_MODE_11A); 351 ath_rate_setup(sc, IEEE80211_MODE_11B); 352 ath_rate_setup(sc, IEEE80211_MODE_11G); 353 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 354 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 355 /* NB: setup here so ath_rate_update is happy */ 356 ath_setcurmode(sc, IEEE80211_MODE_11A); 357 358 /* 359 * Allocate tx+rx descriptors and populate the lists. 360 */ 361 error = ath_desc_alloc(sc); 362 if (error != 0) { 363 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 364 goto bad; 365 } 366 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 367 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 368 #if 0 369 ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE); 370 #endif 371 372 ATH_TXBUF_LOCK_INIT(sc); 373 374 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 375 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 376 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 377 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 378 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 379 TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc); 380 381 /* 382 * Allocate hardware transmit queues: one queue for 383 * beacon frames and one data queue for each QoS 384 * priority. Note that the hal handles reseting 385 * these queues at the needed time. 386 * 387 * XXX PS-Poll 388 */ 389 sc->sc_bhalq = ath_beaconq_setup(ah); 390 if (sc->sc_bhalq == (u_int) -1) { 391 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 392 error = EIO; 393 goto bad2; 394 } 395 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 396 if (sc->sc_cabq == NULL) { 397 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 398 error = EIO; 399 goto bad2; 400 } 401 /* NB: insure BK queue is the lowest priority h/w queue */ 402 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 403 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 404 ieee80211_wme_acnames[WME_AC_BK]); 405 error = EIO; 406 goto bad2; 407 } 408 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 409 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 410 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 411 /* 412 * Not enough hardware tx queues to properly do WME; 413 * just punt and assign them all to the same h/w queue. 414 * We could do a better job of this if, for example, 415 * we allocate queues when we switch from station to 416 * AP mode. 417 */ 418 if (sc->sc_ac2q[WME_AC_VI] != NULL) 419 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 420 if (sc->sc_ac2q[WME_AC_BE] != NULL) 421 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 422 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 423 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 424 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 425 } 426 427 /* 428 * Special case certain configurations. Note the 429 * CAB queue is handled by these specially so don't 430 * include them when checking the txq setup mask. 431 */ 432 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 433 case 0x01: 434 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 435 break; 436 case 0x0f: 437 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 438 break; 439 default: 440 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 441 break; 442 } 443 444 /* 445 * Setup rate control. Some rate control modules 446 * call back to change the anntena state so expose 447 * the necessary entry points. 448 * XXX maybe belongs in struct ath_ratectrl? 449 */ 450 sc->sc_setdefantenna = ath_setdefantenna; 451 sc->sc_rc = ath_rate_attach(sc); 452 if (sc->sc_rc == NULL) { 453 error = EIO; 454 goto bad2; 455 } 456 457 sc->sc_blinking = 0; 458 sc->sc_ledstate = 1; 459 sc->sc_ledon = 0; /* low true */ 460 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 461 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 462 /* 463 * Auto-enable soft led processing for IBM cards and for 464 * 5211 minipci cards. Users can also manually enable/disable 465 * support with a sysctl. 466 */ 467 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 468 if (sc->sc_softled) { 469 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 470 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 471 } 472 473 ifp->if_softc = sc; 474 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 475 ifp->if_start = ath_start; 476 ifp->if_stop = ath_stop; 477 ifp->if_watchdog = ath_watchdog; 478 ifp->if_ioctl = ath_ioctl; 479 ifp->if_init = ath_ifinit; 480 IFQ_SET_READY(&ifp->if_snd); 481 482 ic->ic_ifp = ifp; 483 ic->ic_reset = ath_reset; 484 ic->ic_newassoc = ath_newassoc; 485 ic->ic_updateslot = ath_updateslot; 486 ic->ic_wme.wme_update = ath_wme_update; 487 /* XXX not right but it's not used anywhere important */ 488 ic->ic_phytype = IEEE80211_T_OFDM; 489 ic->ic_opmode = IEEE80211_M_STA; 490 ic->ic_caps = 491 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 492 | IEEE80211_C_HOSTAP /* hostap mode */ 493 | IEEE80211_C_MONITOR /* monitor mode */ 494 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 495 | IEEE80211_C_SHSLOT /* short slot time supported */ 496 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 497 | IEEE80211_C_TXFRAG /* handle tx frags */ 498 ; 499 /* 500 * Query the hal to figure out h/w crypto support. 501 */ 502 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 503 ic->ic_caps |= IEEE80211_C_WEP; 504 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 505 ic->ic_caps |= IEEE80211_C_AES; 506 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 507 ic->ic_caps |= IEEE80211_C_AES_CCM; 508 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 509 ic->ic_caps |= IEEE80211_C_CKIP; 510 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 511 ic->ic_caps |= IEEE80211_C_TKIP; 512 /* 513 * Check if h/w does the MIC and/or whether the 514 * separate key cache entries are required to 515 * handle both tx+rx MIC keys. 516 */ 517 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 518 ic->ic_caps |= IEEE80211_C_TKIPMIC; 519 520 /* 521 * If the h/w supports storing tx+rx MIC keys 522 * in one cache slot automatically enable use. 523 */ 524 if (ath_hal_hastkipsplit(ah) || 525 !ath_hal_settkipsplit(ah, AH_FALSE)) 526 sc->sc_splitmic = 1; 527 528 /* 529 * If the h/w can do TKIP MIC together with WME then 530 * we use it; otherwise we force the MIC to be done 531 * in software by the net80211 layer. 532 */ 533 if (ath_hal_haswmetkipmic(ah)) 534 ic->ic_caps |= IEEE80211_C_WME_TKIPMIC; 535 } 536 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 537 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 538 /* 539 * Mark key cache slots associated with global keys 540 * as in use. If we knew TKIP was not to be used we 541 * could leave the +32, +64, and +32+64 slots free. 542 */ 543 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 544 setbit(sc->sc_keymap, i); 545 setbit(sc->sc_keymap, i+64); 546 if (sc->sc_splitmic) { 547 setbit(sc->sc_keymap, i+32); 548 setbit(sc->sc_keymap, i+32+64); 549 } 550 } 551 /* 552 * TPC support can be done either with a global cap or 553 * per-packet support. The latter is not available on 554 * all parts. We're a bit pedantic here as all parts 555 * support a global cap. 556 */ 557 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 558 ic->ic_caps |= IEEE80211_C_TXPMGT; 559 560 /* 561 * Mark WME capability only if we have sufficient 562 * hardware queues to do proper priority scheduling. 563 */ 564 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 565 ic->ic_caps |= IEEE80211_C_WME; 566 /* 567 * Check for misc other capabilities. 568 */ 569 if (ath_hal_hasbursting(ah)) 570 ic->ic_caps |= IEEE80211_C_BURST; 571 572 /* 573 * Indicate we need the 802.11 header padded to a 574 * 32-bit boundary for 4-address and QoS frames. 575 */ 576 ic->ic_flags |= IEEE80211_F_DATAPAD; 577 578 /* 579 * Query the hal about antenna support. 580 */ 581 sc->sc_defant = ath_hal_getdefantenna(ah); 582 583 /* 584 * Not all chips have the VEOL support we want to 585 * use with IBSS beacons; check here for it. 586 */ 587 sc->sc_hasveol = ath_hal_hasveol(ah); 588 589 /* get mac address from hardware */ 590 ath_hal_getmac(ah, ic->ic_myaddr); 591 592 if_attach(ifp); 593 /* call MI attach routine. */ 594 ieee80211_ifattach(ic); 595 /* override default methods */ 596 ic->ic_node_alloc = ath_node_alloc; 597 sc->sc_node_free = ic->ic_node_free; 598 ic->ic_node_free = ath_node_free; 599 ic->ic_node_getrssi = ath_node_getrssi; 600 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 601 ic->ic_recv_mgmt = ath_recv_mgmt; 602 sc->sc_newstate = ic->ic_newstate; 603 ic->ic_newstate = ath_newstate; 604 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 605 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 606 ic->ic_crypto.cs_key_delete = ath_key_delete; 607 ic->ic_crypto.cs_key_set = ath_key_set; 608 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 609 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 610 /* complete initialization */ 611 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 612 613 ath_bpfattach(sc); 614 615 sc->sc_flags |= ATH_ATTACHED; 616 617 /* 618 * Setup dynamic sysctl's now that country code and 619 * regdomain are available from the hal. 620 */ 621 ath_sysctlattach(sc); 622 623 ieee80211_announce(ic); 624 ath_announce(sc); 625 return 0; 626 bad2: 627 ath_tx_cleanup(sc); 628 ath_desc_free(sc); 629 bad: 630 if (ah) 631 ath_hal_detach(ah); 632 /* XXX don't get under the abstraction like this */ 633 sc->sc_dev->dv_flags &= ~DVF_ACTIVE; 634 return error; 635 } 636 637 int 638 ath_detach(struct ath_softc *sc) 639 { 640 struct ifnet *ifp = &sc->sc_if; 641 int s; 642 643 if ((sc->sc_flags & ATH_ATTACHED) == 0) 644 return (0); 645 646 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 647 __func__, ifp->if_flags); 648 649 s = splnet(); 650 ath_stop(ifp, 1); 651 bpf_detach(ifp); 652 /* 653 * NB: the order of these is important: 654 * o call the 802.11 layer before detaching the hal to 655 * insure callbacks into the driver to delete global 656 * key cache entries can be handled 657 * o reclaim the tx queue data structures after calling 658 * the 802.11 layer as we'll get called back to reclaim 659 * node state and potentially want to use them 660 * o to cleanup the tx queues the hal is called, so detach 661 * it last 662 * Other than that, it's straightforward... 663 */ 664 ieee80211_ifdetach(&sc->sc_ic); 665 #ifdef ATH_TX99_DIAG 666 if (sc->sc_tx99 != NULL) 667 sc->sc_tx99->detach(sc->sc_tx99); 668 #endif 669 ath_rate_detach(sc->sc_rc); 670 ath_desc_free(sc); 671 ath_tx_cleanup(sc); 672 sysctl_teardown(&sc->sc_sysctllog); 673 ath_hal_detach(sc->sc_ah); 674 if_detach(ifp); 675 splx(s); 676 677 return 0; 678 } 679 680 void 681 ath_suspend(struct ath_softc *sc) 682 { 683 #if notyet 684 /* 685 * Set the chip in full sleep mode. Note that we are 686 * careful to do this only when bringing the interface 687 * completely to a stop. When the chip is in this state 688 * it must be carefully woken up or references to 689 * registers in the PCI clock domain may freeze the bus 690 * (and system). This varies by chip and is mostly an 691 * issue with newer parts that go to sleep more quickly. 692 */ 693 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 694 #endif 695 } 696 697 bool 698 ath_resume(struct ath_softc *sc) 699 { 700 struct ath_hal *ah = sc->sc_ah; 701 struct ieee80211com *ic = &sc->sc_ic; 702 HAL_STATUS status; 703 int i; 704 705 #if notyet 706 ath_hal_setpower(ah, HAL_PM_AWAKE); 707 #else 708 ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status); 709 #endif 710 711 /* 712 * Reset the key cache since some parts do not 713 * reset the contents on initial power up. 714 */ 715 for (i = 0; i < sc->sc_keymax; i++) 716 ath_hal_keyreset(ah, i); 717 718 ath_hal_resettxqueue(ah, sc->sc_bhalq); 719 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 720 if (ATH_TXQ_SETUP(sc, i)) 721 ath_hal_resettxqueue(ah, i); 722 723 if (sc->sc_softled) { 724 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 725 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 726 } 727 return true; 728 } 729 730 /* 731 * Interrupt handler. Most of the actual processing is deferred. 732 */ 733 int 734 ath_intr(void *arg) 735 { 736 struct ath_softc *sc = arg; 737 struct ifnet *ifp = &sc->sc_if; 738 struct ath_hal *ah = sc->sc_ah; 739 HAL_INT status; 740 741 if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) { 742 /* 743 * The hardware is not ready/present, don't touch anything. 744 * Note this can happen early on if the IRQ is shared. 745 */ 746 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 747 return 0; 748 } 749 750 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 751 return 0; 752 753 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 754 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 755 __func__, ifp->if_flags); 756 ath_hal_getisr(ah, &status); /* clear ISR */ 757 ath_hal_intrset(ah, 0); /* disable further intr's */ 758 return 1; /* XXX */ 759 } 760 /* 761 * Figure out the reason(s) for the interrupt. Note 762 * that the hal returns a pseudo-ISR that may include 763 * bits we haven't explicitly enabled so we mask the 764 * value to insure we only process bits we requested. 765 */ 766 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 767 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 768 status &= sc->sc_imask; /* discard unasked for bits */ 769 if (status & HAL_INT_FATAL) { 770 /* 771 * Fatal errors are unrecoverable. Typically 772 * these are caused by DMA errors. Unfortunately 773 * the exact reason is not (presently) returned 774 * by the hal. 775 */ 776 sc->sc_stats.ast_hardware++; 777 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 778 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 779 } else if (status & HAL_INT_RXORN) { 780 sc->sc_stats.ast_rxorn++; 781 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 782 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 783 } else { 784 if (status & HAL_INT_SWBA) { 785 /* 786 * Software beacon alert--time to send a beacon. 787 * Handle beacon transmission directly; deferring 788 * this is too slow to meet timing constraints 789 * under load. 790 */ 791 ath_beacon_proc(sc, 0); 792 } 793 if (status & HAL_INT_RXEOL) { 794 /* 795 * NB: the hardware should re-read the link when 796 * RXE bit is written, but it doesn't work at 797 * least on older hardware revs. 798 */ 799 sc->sc_stats.ast_rxeol++; 800 sc->sc_rxlink = NULL; 801 } 802 if (status & HAL_INT_TXURN) { 803 sc->sc_stats.ast_txurn++; 804 /* bump tx trigger level */ 805 ath_hal_updatetxtriglevel(ah, AH_TRUE); 806 } 807 if (status & HAL_INT_RX) 808 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 809 if (status & HAL_INT_TX) 810 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 811 if (status & HAL_INT_BMISS) { 812 sc->sc_stats.ast_bmiss++; 813 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 814 } 815 if (status & HAL_INT_MIB) { 816 sc->sc_stats.ast_mib++; 817 /* 818 * Disable interrupts until we service the MIB 819 * interrupt; otherwise it will continue to fire. 820 */ 821 ath_hal_intrset(ah, 0); 822 /* 823 * Let the hal handle the event. We assume it will 824 * clear whatever condition caused the interrupt. 825 */ 826 ath_hal_mibevent(ah, &sc->sc_halstats); 827 ath_hal_intrset(ah, sc->sc_imask); 828 } 829 } 830 return 1; 831 } 832 833 /* Swap transmit descriptor. 834 * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null" 835 * function. 836 */ 837 static inline void 838 ath_desc_swap(struct ath_desc *ds) 839 { 840 #ifdef AH_NEED_DESC_SWAP 841 ds->ds_link = htole32(ds->ds_link); 842 ds->ds_data = htole32(ds->ds_data); 843 ds->ds_ctl0 = htole32(ds->ds_ctl0); 844 ds->ds_ctl1 = htole32(ds->ds_ctl1); 845 ds->ds_hw[0] = htole32(ds->ds_hw[0]); 846 ds->ds_hw[1] = htole32(ds->ds_hw[1]); 847 #endif 848 } 849 850 static void 851 ath_fatal_proc(void *arg, int pending) 852 { 853 struct ath_softc *sc = arg; 854 struct ifnet *ifp = &sc->sc_if; 855 856 if_printf(ifp, "hardware error; resetting\n"); 857 ath_reset(ifp); 858 } 859 860 static void 861 ath_rxorn_proc(void *arg, int pending) 862 { 863 struct ath_softc *sc = arg; 864 struct ifnet *ifp = &sc->sc_if; 865 866 if_printf(ifp, "rx FIFO overrun; resetting\n"); 867 ath_reset(ifp); 868 } 869 870 static void 871 ath_bmiss_proc(void *arg, int pending) 872 { 873 struct ath_softc *sc = arg; 874 struct ieee80211com *ic = &sc->sc_ic; 875 876 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 877 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 878 ("unexpect operating mode %u", ic->ic_opmode)); 879 if (ic->ic_state == IEEE80211_S_RUN) { 880 u_int64_t lastrx = sc->sc_lastrx; 881 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 882 883 DPRINTF(sc, ATH_DEBUG_BEACON, 884 "%s: tsf %" PRIu64 " lastrx %" PRId64 885 " (%" PRIu64 ") bmiss %u\n", 886 __func__, tsf, tsf - lastrx, lastrx, 887 ic->ic_bmisstimeout*1024); 888 /* 889 * Workaround phantom bmiss interrupts by sanity-checking 890 * the time of our last rx'd frame. If it is within the 891 * beacon miss interval then ignore the interrupt. If it's 892 * truly a bmiss we'll get another interrupt soon and that'll 893 * be dispatched up for processing. 894 */ 895 if (tsf - lastrx > ic->ic_bmisstimeout*1024) { 896 NET_LOCK_GIANT(); 897 ieee80211_beacon_miss(ic); 898 NET_UNLOCK_GIANT(); 899 } else 900 sc->sc_stats.ast_bmiss_phantom++; 901 } 902 } 903 904 static void 905 ath_radar_proc(void *arg, int pending) 906 { 907 #if 0 908 struct ath_softc *sc = arg; 909 struct ifnet *ifp = &sc->sc_if; 910 struct ath_hal *ah = sc->sc_ah; 911 HAL_CHANNEL hchan; 912 913 if (ath_hal_procdfs(ah, &hchan)) { 914 if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n", 915 hchan.channel, hchan.channelFlags, hchan.privFlags); 916 /* 917 * Initiate channel change. 918 */ 919 /* XXX not yet */ 920 } 921 #endif 922 } 923 924 static u_int 925 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 926 { 927 #define N(a) (sizeof(a) / sizeof(a[0])) 928 static const u_int modeflags[] = { 929 0, /* IEEE80211_MODE_AUTO */ 930 CHANNEL_A, /* IEEE80211_MODE_11A */ 931 CHANNEL_B, /* IEEE80211_MODE_11B */ 932 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 933 0, /* IEEE80211_MODE_FH */ 934 CHANNEL_ST, /* IEEE80211_MODE_TURBO_A */ 935 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 936 }; 937 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 938 939 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 940 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 941 return modeflags[mode]; 942 #undef N 943 } 944 945 static int 946 ath_ifinit(struct ifnet *ifp) 947 { 948 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 949 950 return ath_init(sc); 951 } 952 953 static void 954 ath_settkipmic(struct ath_softc *sc) 955 { 956 struct ieee80211com *ic = &sc->sc_ic; 957 struct ath_hal *ah = sc->sc_ah; 958 959 if ((ic->ic_caps & IEEE80211_C_TKIP) && 960 !(ic->ic_caps & IEEE80211_C_WME_TKIPMIC)) { 961 if (ic->ic_flags & IEEE80211_F_WME) { 962 (void)ath_hal_settkipmic(ah, AH_FALSE); 963 ic->ic_caps &= ~IEEE80211_C_TKIPMIC; 964 } else { 965 (void)ath_hal_settkipmic(ah, AH_TRUE); 966 ic->ic_caps |= IEEE80211_C_TKIPMIC; 967 } 968 } 969 } 970 971 static int 972 ath_init(struct ath_softc *sc) 973 { 974 struct ifnet *ifp = &sc->sc_if; 975 struct ieee80211com *ic = &sc->sc_ic; 976 struct ath_hal *ah = sc->sc_ah; 977 HAL_STATUS status; 978 int error = 0; 979 980 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 981 __func__, ifp->if_flags); 982 983 if (device_is_active(sc->sc_dev)) { 984 ATH_LOCK(sc); 985 } else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) || 986 !device_is_active(sc->sc_dev)) 987 return 0; 988 else 989 ATH_LOCK(sc); 990 991 /* 992 * Stop anything previously setup. This is safe 993 * whether this is the first time through or not. 994 */ 995 ath_stop_locked(ifp, 0); 996 997 /* 998 * The basic interface to setting the hardware in a good 999 * state is ``reset''. On return the hardware is known to 1000 * be powered up and with interrupts disabled. This must 1001 * be followed by initialization of the appropriate bits 1002 * and then setup of the interrupt mask. 1003 */ 1004 ath_settkipmic(sc); 1005 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 1006 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 1007 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 1008 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1009 status); 1010 error = EIO; 1011 goto done; 1012 } 1013 1014 /* 1015 * This is needed only to setup initial state 1016 * but it's best done after a reset. 1017 */ 1018 ath_update_txpow(sc); 1019 /* 1020 * Likewise this is set during reset so update 1021 * state cached in the driver. 1022 */ 1023 ath_restore_diversity(sc); 1024 sc->sc_calinterval = 1; 1025 sc->sc_caltries = 0; 1026 1027 /* 1028 * Setup the hardware after reset: the key cache 1029 * is filled as needed and the receive engine is 1030 * set going. Frame transmit is handled entirely 1031 * in the frame output path; there's nothing to do 1032 * here except setup the interrupt mask. 1033 */ 1034 if ((error = ath_startrecv(sc)) != 0) { 1035 if_printf(ifp, "unable to start recv logic\n"); 1036 goto done; 1037 } 1038 1039 /* 1040 * Enable interrupts. 1041 */ 1042 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1043 | HAL_INT_RXEOL | HAL_INT_RXORN 1044 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1045 /* 1046 * Enable MIB interrupts when there are hardware phy counters. 1047 * Note we only do this (at the moment) for station mode. 1048 */ 1049 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1050 sc->sc_imask |= HAL_INT_MIB; 1051 ath_hal_intrset(ah, sc->sc_imask); 1052 1053 ifp->if_flags |= IFF_RUNNING; 1054 ic->ic_state = IEEE80211_S_INIT; 1055 1056 /* 1057 * The hardware should be ready to go now so it's safe 1058 * to kick the 802.11 state machine as it's likely to 1059 * immediately call back to us to send mgmt frames. 1060 */ 1061 ath_chan_change(sc, ic->ic_curchan); 1062 #ifdef ATH_TX99_DIAG 1063 if (sc->sc_tx99 != NULL) 1064 sc->sc_tx99->start(sc->sc_tx99); 1065 else 1066 #endif 1067 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1068 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1069 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1070 } else 1071 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1072 done: 1073 ATH_UNLOCK(sc); 1074 return error; 1075 } 1076 1077 static void 1078 ath_stop_locked(struct ifnet *ifp, int disable) 1079 { 1080 struct ath_softc *sc = ifp->if_softc; 1081 struct ieee80211com *ic = &sc->sc_ic; 1082 struct ath_hal *ah = sc->sc_ah; 1083 1084 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %d if_flags 0x%x\n", 1085 __func__, !device_is_enabled(sc->sc_dev), ifp->if_flags); 1086 1087 ATH_LOCK_ASSERT(sc); 1088 if (ifp->if_flags & IFF_RUNNING) { 1089 /* 1090 * Shutdown the hardware and driver: 1091 * reset 802.11 state machine 1092 * turn off timers 1093 * disable interrupts 1094 * turn off the radio 1095 * clear transmit machinery 1096 * clear receive machinery 1097 * drain and release tx queues 1098 * reclaim beacon resources 1099 * power down hardware 1100 * 1101 * Note that some of this work is not possible if the 1102 * hardware is gone (invalid). 1103 */ 1104 #ifdef ATH_TX99_DIAG 1105 if (sc->sc_tx99 != NULL) 1106 sc->sc_tx99->stop(sc->sc_tx99); 1107 #endif 1108 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1109 ifp->if_flags &= ~IFF_RUNNING; 1110 ifp->if_timer = 0; 1111 if (device_is_enabled(sc->sc_dev)) { 1112 if (sc->sc_softled) { 1113 callout_stop(&sc->sc_ledtimer); 1114 ath_hal_gpioset(ah, sc->sc_ledpin, 1115 !sc->sc_ledon); 1116 sc->sc_blinking = 0; 1117 } 1118 ath_hal_intrset(ah, 0); 1119 } 1120 ath_draintxq(sc); 1121 if (device_is_enabled(sc->sc_dev)) { 1122 ath_stoprecv(sc); 1123 ath_hal_phydisable(ah); 1124 } else 1125 sc->sc_rxlink = NULL; 1126 IF_PURGE(&ifp->if_snd); 1127 ath_beacon_free(sc); 1128 } 1129 if (disable) 1130 pmf_device_suspend(sc->sc_dev, &sc->sc_qual); 1131 } 1132 1133 static void 1134 ath_stop(struct ifnet *ifp, int disable) 1135 { 1136 struct ath_softc *sc = ifp->if_softc; 1137 1138 ATH_LOCK(sc); 1139 ath_stop_locked(ifp, disable); 1140 ATH_UNLOCK(sc); 1141 } 1142 1143 static void 1144 ath_restore_diversity(struct ath_softc *sc) 1145 { 1146 struct ifnet *ifp = &sc->sc_if; 1147 struct ath_hal *ah = sc->sc_ah; 1148 1149 if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) || 1150 sc->sc_diversity != ath_hal_getdiversity(ah)) { 1151 if_printf(ifp, "could not restore diversity setting %d\n", 1152 sc->sc_diversity); 1153 sc->sc_diversity = ath_hal_getdiversity(ah); 1154 } 1155 } 1156 1157 /* 1158 * Reset the hardware w/o losing operational state. This is 1159 * basically a more efficient way of doing ath_stop, ath_init, 1160 * followed by state transitions to the current 802.11 1161 * operational state. Used to recover from various errors and 1162 * to reset or reload hardware state. 1163 */ 1164 int 1165 ath_reset(struct ifnet *ifp) 1166 { 1167 struct ath_softc *sc = ifp->if_softc; 1168 struct ieee80211com *ic = &sc->sc_ic; 1169 struct ath_hal *ah = sc->sc_ah; 1170 struct ieee80211_channel *c; 1171 HAL_STATUS status; 1172 1173 /* 1174 * Convert to a HAL channel description with the flags 1175 * constrained to reflect the current operating mode. 1176 */ 1177 c = ic->ic_curchan; 1178 sc->sc_curchan.channel = c->ic_freq; 1179 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1180 1181 ath_hal_intrset(ah, 0); /* disable interrupts */ 1182 ath_draintxq(sc); /* stop xmit side */ 1183 ath_stoprecv(sc); /* stop recv side */ 1184 ath_settkipmic(sc); /* configure TKIP MIC handling */ 1185 /* NB: indicate channel change so we do a full reset */ 1186 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1187 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1188 __func__, status); 1189 ath_update_txpow(sc); /* update tx power state */ 1190 ath_restore_diversity(sc); 1191 sc->sc_calinterval = 1; 1192 sc->sc_caltries = 0; 1193 if (ath_startrecv(sc) != 0) /* restart recv */ 1194 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1195 /* 1196 * We may be doing a reset in response to an ioctl 1197 * that changes the channel so update any state that 1198 * might change as a result. 1199 */ 1200 ath_chan_change(sc, c); 1201 if (ic->ic_state == IEEE80211_S_RUN) 1202 ath_beacon_config(sc); /* restart beacons */ 1203 ath_hal_intrset(ah, sc->sc_imask); 1204 1205 ath_start(ifp); /* restart xmit */ 1206 return 0; 1207 } 1208 1209 /* 1210 * Cleanup driver resources when we run out of buffers 1211 * while processing fragments; return the tx buffers 1212 * allocated and drop node references. 1213 */ 1214 static void 1215 ath_txfrag_cleanup(struct ath_softc *sc, 1216 ath_bufhead *frags, struct ieee80211_node *ni) 1217 { 1218 struct ath_buf *bf; 1219 1220 ATH_TXBUF_LOCK_ASSERT(sc); 1221 1222 while ((bf = STAILQ_FIRST(frags)) != NULL) { 1223 STAILQ_REMOVE_HEAD(frags, bf_list); 1224 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1225 sc->sc_if.if_flags &= ~IFF_OACTIVE; 1226 ieee80211_node_decref(ni); 1227 } 1228 } 1229 1230 /* 1231 * Setup xmit of a fragmented frame. Allocate a buffer 1232 * for each frag and bump the node reference count to 1233 * reflect the held reference to be setup by ath_tx_start. 1234 */ 1235 static int 1236 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags, 1237 struct mbuf *m0, struct ieee80211_node *ni) 1238 { 1239 struct mbuf *m; 1240 struct ath_buf *bf; 1241 1242 ATH_TXBUF_LOCK(sc); 1243 for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) { 1244 bf = STAILQ_FIRST(&sc->sc_txbuf); 1245 if (bf == NULL) { /* out of buffers, cleanup */ 1246 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1247 __func__); 1248 sc->sc_if.if_flags |= IFF_OACTIVE; 1249 ath_txfrag_cleanup(sc, frags, ni); 1250 break; 1251 } 1252 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1253 ieee80211_node_incref(ni); 1254 STAILQ_INSERT_TAIL(frags, bf, bf_list); 1255 } 1256 ATH_TXBUF_UNLOCK(sc); 1257 1258 return !STAILQ_EMPTY(frags); 1259 } 1260 1261 static void 1262 ath_start(struct ifnet *ifp) 1263 { 1264 struct ath_softc *sc = ifp->if_softc; 1265 struct ath_hal *ah = sc->sc_ah; 1266 struct ieee80211com *ic = &sc->sc_ic; 1267 struct ieee80211_node *ni; 1268 struct ath_buf *bf; 1269 struct mbuf *m, *next; 1270 struct ieee80211_frame *wh; 1271 struct ether_header *eh; 1272 ath_bufhead frags; 1273 1274 if ((ifp->if_flags & IFF_RUNNING) == 0 || 1275 !device_is_active(sc->sc_dev)) 1276 return; 1277 for (;;) { 1278 /* 1279 * Grab a TX buffer and associated resources. 1280 */ 1281 ATH_TXBUF_LOCK(sc); 1282 bf = STAILQ_FIRST(&sc->sc_txbuf); 1283 if (bf != NULL) 1284 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1285 ATH_TXBUF_UNLOCK(sc); 1286 if (bf == NULL) { 1287 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n", 1288 __func__); 1289 sc->sc_stats.ast_tx_qstop++; 1290 ifp->if_flags |= IFF_OACTIVE; 1291 break; 1292 } 1293 /* 1294 * Poll the management queue for frames; they 1295 * have priority over normal data frames. 1296 */ 1297 IF_DEQUEUE(&ic->ic_mgtq, m); 1298 if (m == NULL) { 1299 /* 1300 * No data frames go out unless we're associated. 1301 */ 1302 if (ic->ic_state != IEEE80211_S_RUN) { 1303 DPRINTF(sc, ATH_DEBUG_XMIT, 1304 "%s: discard data packet, state %s\n", 1305 __func__, 1306 ieee80211_state_name[ic->ic_state]); 1307 sc->sc_stats.ast_tx_discard++; 1308 ATH_TXBUF_LOCK(sc); 1309 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1310 ATH_TXBUF_UNLOCK(sc); 1311 break; 1312 } 1313 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1314 if (m == NULL) { 1315 ATH_TXBUF_LOCK(sc); 1316 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1317 ATH_TXBUF_UNLOCK(sc); 1318 break; 1319 } 1320 STAILQ_INIT(&frags); 1321 /* 1322 * Find the node for the destination so we can do 1323 * things like power save and fast frames aggregation. 1324 */ 1325 if (m->m_len < sizeof(struct ether_header) && 1326 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1327 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1328 ni = NULL; 1329 goto bad; 1330 } 1331 eh = mtod(m, struct ether_header *); 1332 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1333 if (ni == NULL) { 1334 /* NB: ieee80211_find_txnode does stat+msg */ 1335 m_freem(m); 1336 goto bad; 1337 } 1338 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1339 (m->m_flags & M_PWR_SAV) == 0) { 1340 /* 1341 * Station in power save mode; pass the frame 1342 * to the 802.11 layer and continue. We'll get 1343 * the frame back when the time is right. 1344 */ 1345 ieee80211_pwrsave(ic, ni, m); 1346 goto reclaim; 1347 } 1348 /* calculate priority so we can find the tx queue */ 1349 if (ieee80211_classify(ic, m, ni)) { 1350 DPRINTF(sc, ATH_DEBUG_XMIT, 1351 "%s: discard, classification failure\n", 1352 __func__); 1353 m_freem(m); 1354 goto bad; 1355 } 1356 ifp->if_opackets++; 1357 1358 bpf_mtap(ifp, m); 1359 /* 1360 * Encapsulate the packet in prep for transmission. 1361 */ 1362 m = ieee80211_encap(ic, m, ni); 1363 if (m == NULL) { 1364 DPRINTF(sc, ATH_DEBUG_XMIT, 1365 "%s: encapsulation failure\n", 1366 __func__); 1367 sc->sc_stats.ast_tx_encap++; 1368 goto bad; 1369 } 1370 /* 1371 * Check for fragmentation. If this has frame 1372 * has been broken up verify we have enough 1373 * buffers to send all the fragments so all 1374 * go out or none... 1375 */ 1376 if ((m->m_flags & M_FRAG) && 1377 !ath_txfrag_setup(sc, &frags, m, ni)) { 1378 DPRINTF(sc, ATH_DEBUG_ANY, 1379 "%s: out of txfrag buffers\n", __func__); 1380 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1381 ath_freetx(m); 1382 goto bad; 1383 } 1384 } else { 1385 /* 1386 * Hack! The referenced node pointer is in the 1387 * rcvif field of the packet header. This is 1388 * placed there by ieee80211_mgmt_output because 1389 * we need to hold the reference with the frame 1390 * and there's no other way (other than packet 1391 * tags which we consider too expensive to use) 1392 * to pass it along. 1393 */ 1394 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1395 m->m_pkthdr.rcvif = NULL; 1396 1397 wh = mtod(m, struct ieee80211_frame *); 1398 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1399 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1400 /* fill time stamp */ 1401 u_int64_t tsf; 1402 u_int32_t *tstamp; 1403 1404 tsf = ath_hal_gettsf64(ah); 1405 /* XXX: adjust 100us delay to xmit */ 1406 tsf += 100; 1407 tstamp = (u_int32_t *)&wh[1]; 1408 tstamp[0] = htole32(tsf & 0xffffffff); 1409 tstamp[1] = htole32(tsf >> 32); 1410 } 1411 sc->sc_stats.ast_tx_mgmt++; 1412 } 1413 1414 nextfrag: 1415 next = m->m_nextpkt; 1416 if (ath_tx_start(sc, ni, bf, m)) { 1417 bad: 1418 ifp->if_oerrors++; 1419 reclaim: 1420 ATH_TXBUF_LOCK(sc); 1421 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1422 ath_txfrag_cleanup(sc, &frags, ni); 1423 ATH_TXBUF_UNLOCK(sc); 1424 if (ni != NULL) 1425 ieee80211_free_node(ni); 1426 continue; 1427 } 1428 if (next != NULL) { 1429 m = next; 1430 bf = STAILQ_FIRST(&frags); 1431 KASSERT(bf != NULL, ("no buf for txfrag")); 1432 STAILQ_REMOVE_HEAD(&frags, bf_list); 1433 goto nextfrag; 1434 } 1435 1436 ifp->if_timer = 1; 1437 } 1438 } 1439 1440 static int 1441 ath_media_change(struct ifnet *ifp) 1442 { 1443 #define IS_UP(ifp) \ 1444 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1445 int error; 1446 1447 error = ieee80211_media_change(ifp); 1448 if (error == ENETRESET) { 1449 if (IS_UP(ifp)) 1450 ath_init(ifp->if_softc); /* XXX lose error */ 1451 error = 0; 1452 } 1453 return error; 1454 #undef IS_UP 1455 } 1456 1457 #ifdef AR_DEBUG 1458 static void 1459 ath_keyprint(const char *tag, u_int ix, 1460 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1461 { 1462 static const char *ciphers[] = { 1463 "WEP", 1464 "AES-OCB", 1465 "AES-CCM", 1466 "CKIP", 1467 "TKIP", 1468 "CLR", 1469 }; 1470 int i, n; 1471 1472 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1473 for (i = 0, n = hk->kv_len; i < n; i++) 1474 printf("%02x", hk->kv_val[i]); 1475 printf(" mac %s", ether_sprintf(mac)); 1476 if (hk->kv_type == HAL_CIPHER_TKIP) { 1477 printf(" mic "); 1478 for (i = 0; i < sizeof(hk->kv_mic); i++) 1479 printf("%02x", hk->kv_mic[i]); 1480 } 1481 printf("\n"); 1482 } 1483 #endif 1484 1485 /* 1486 * Set a TKIP key into the hardware. This handles the 1487 * potential distribution of key state to multiple key 1488 * cache slots for TKIP. 1489 */ 1490 static int 1491 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1492 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1493 { 1494 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1495 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1496 struct ath_hal *ah = sc->sc_ah; 1497 1498 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1499 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1500 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1501 if (sc->sc_splitmic) { 1502 /* 1503 * TX key goes at first index, RX key at the rx index. 1504 * The hal handles the MIC keys at index+64. 1505 */ 1506 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1507 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1508 if (!ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, 1509 zerobssid)) 1510 return 0; 1511 1512 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1513 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1514 /* XXX delete tx key on failure? */ 1515 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix+32), 1516 hk, mac); 1517 } else { 1518 /* 1519 * Room for both TX+RX MIC keys in one key cache 1520 * slot, just set key at the first index; the HAL 1521 * will handle the reset. 1522 */ 1523 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1524 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1525 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1526 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1527 } 1528 } else if (k->wk_flags & IEEE80211_KEY_XMIT) { 1529 if (sc->sc_splitmic) { 1530 /* 1531 * NB: must pass MIC key in expected location when 1532 * the keycache only holds one MIC key per entry. 1533 */ 1534 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic)); 1535 } else 1536 memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic)); 1537 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1538 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), hk, mac); 1539 } else if (k->wk_flags & IEEE80211_KEY_RECV) { 1540 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1541 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1542 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1543 } 1544 return 0; 1545 #undef IEEE80211_KEY_XR 1546 } 1547 1548 /* 1549 * Set a net80211 key into the hardware. This handles the 1550 * potential distribution of key state to multiple key 1551 * cache slots for TKIP with hardware MIC support. 1552 */ 1553 static int 1554 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1555 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1556 struct ieee80211_node *bss) 1557 { 1558 #define N(a) (sizeof(a)/sizeof(a[0])) 1559 static const u_int8_t ciphermap[] = { 1560 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1561 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1562 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1563 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1564 (u_int8_t) -1, /* 4 is not allocated */ 1565 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1566 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1567 }; 1568 struct ath_hal *ah = sc->sc_ah; 1569 const struct ieee80211_cipher *cip = k->wk_cipher; 1570 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1571 const u_int8_t *mac; 1572 HAL_KEYVAL hk; 1573 1574 memset(&hk, 0, sizeof(hk)); 1575 /* 1576 * Software crypto uses a "clear key" so non-crypto 1577 * state kept in the key cache are maintained and 1578 * so that rx frames have an entry to match. 1579 */ 1580 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1581 KASSERT(cip->ic_cipher < N(ciphermap), 1582 ("invalid cipher type %u", cip->ic_cipher)); 1583 hk.kv_type = ciphermap[cip->ic_cipher]; 1584 hk.kv_len = k->wk_keylen; 1585 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1586 } else 1587 hk.kv_type = HAL_CIPHER_CLR; 1588 1589 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1590 /* 1591 * Group keys on hardware that supports multicast frame 1592 * key search use a mac that is the sender's address with 1593 * the high bit set instead of the app-specified address. 1594 */ 1595 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1596 gmac[0] |= 0x80; 1597 mac = gmac; 1598 } else 1599 mac = mac0; 1600 1601 if ((hk.kv_type == HAL_CIPHER_TKIP && 1602 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0)) { 1603 return ath_keyset_tkip(sc, k, &hk, mac); 1604 } else { 1605 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1606 return ath_hal_keyset(ah, ATH_KEY(k->wk_keyix), &hk, mac); 1607 } 1608 #undef N 1609 } 1610 1611 /* 1612 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1613 * each key, one for decrypt/encrypt and the other for the MIC. 1614 */ 1615 static u_int16_t 1616 key_alloc_2pair(struct ath_softc *sc, 1617 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1618 { 1619 #define N(a) (sizeof(a)/sizeof(a[0])) 1620 u_int i, keyix; 1621 1622 KASSERT(sc->sc_splitmic, ("key cache !split")); 1623 /* XXX could optimize */ 1624 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1625 u_int8_t b = sc->sc_keymap[i]; 1626 if (b != 0xff) { 1627 /* 1628 * One or more slots in this byte are free. 1629 */ 1630 keyix = i*NBBY; 1631 while (b & 1) { 1632 again: 1633 keyix++; 1634 b >>= 1; 1635 } 1636 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1637 if (isset(sc->sc_keymap, keyix+32) || 1638 isset(sc->sc_keymap, keyix+64) || 1639 isset(sc->sc_keymap, keyix+32+64)) { 1640 /* full pair unavailable */ 1641 /* XXX statistic */ 1642 if (keyix == (i+1)*NBBY) { 1643 /* no slots were appropriate, advance */ 1644 continue; 1645 } 1646 goto again; 1647 } 1648 setbit(sc->sc_keymap, keyix); 1649 setbit(sc->sc_keymap, keyix+64); 1650 setbit(sc->sc_keymap, keyix+32); 1651 setbit(sc->sc_keymap, keyix+32+64); 1652 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1653 "%s: key pair %u,%u %u,%u\n", 1654 __func__, keyix, keyix+64, 1655 keyix+32, keyix+32+64); 1656 *txkeyix = keyix; 1657 *rxkeyix = keyix+32; 1658 return keyix; 1659 } 1660 } 1661 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1662 return IEEE80211_KEYIX_NONE; 1663 #undef N 1664 } 1665 1666 /* 1667 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1668 * each key, one for decrypt/encrypt and the other for the MIC. 1669 */ 1670 static int 1671 key_alloc_pair(struct ath_softc *sc, ieee80211_keyix *txkeyix, 1672 ieee80211_keyix *rxkeyix) 1673 { 1674 #define N(a) (sizeof(a)/sizeof(a[0])) 1675 u_int i, keyix; 1676 1677 KASSERT(!sc->sc_splitmic, ("key cache split")); 1678 /* XXX could optimize */ 1679 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1680 uint8_t b = sc->sc_keymap[i]; 1681 if (b != 0xff) { 1682 /* 1683 * One or more slots in this byte are free. 1684 */ 1685 keyix = i*NBBY; 1686 while (b & 1) { 1687 again: 1688 keyix++; 1689 b >>= 1; 1690 } 1691 if (isset(sc->sc_keymap, keyix+64)) { 1692 /* full pair unavailable */ 1693 /* XXX statistic */ 1694 if (keyix == (i+1)*NBBY) { 1695 /* no slots were appropriate, advance */ 1696 continue; 1697 } 1698 goto again; 1699 } 1700 setbit(sc->sc_keymap, keyix); 1701 setbit(sc->sc_keymap, keyix+64); 1702 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1703 "%s: key pair %u,%u\n", 1704 __func__, keyix, keyix+64); 1705 *txkeyix = *rxkeyix = keyix; 1706 return 1; 1707 } 1708 } 1709 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1710 return 0; 1711 #undef N 1712 } 1713 1714 /* 1715 * Allocate a single key cache slot. 1716 */ 1717 static int 1718 key_alloc_single(struct ath_softc *sc, 1719 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1720 { 1721 #define N(a) (sizeof(a)/sizeof(a[0])) 1722 u_int i, keyix; 1723 1724 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1725 for (i = 0; i < N(sc->sc_keymap); i++) { 1726 u_int8_t b = sc->sc_keymap[i]; 1727 if (b != 0xff) { 1728 /* 1729 * One or more slots are free. 1730 */ 1731 keyix = i*NBBY; 1732 while (b & 1) 1733 keyix++, b >>= 1; 1734 setbit(sc->sc_keymap, keyix); 1735 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1736 __func__, keyix); 1737 *txkeyix = *rxkeyix = keyix; 1738 return 1; 1739 } 1740 } 1741 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1742 return 0; 1743 #undef N 1744 } 1745 1746 /* 1747 * Allocate one or more key cache slots for a uniacst key. The 1748 * key itself is needed only to identify the cipher. For hardware 1749 * TKIP with split cipher+MIC keys we allocate two key cache slot 1750 * pairs so that we can setup separate TX and RX MIC keys. Note 1751 * that the MIC key for a TKIP key at slot i is assumed by the 1752 * hardware to be at slot i+64. This limits TKIP keys to the first 1753 * 64 entries. 1754 */ 1755 static int 1756 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1757 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1758 { 1759 struct ath_softc *sc = ic->ic_ifp->if_softc; 1760 1761 /* 1762 * Group key allocation must be handled specially for 1763 * parts that do not support multicast key cache search 1764 * functionality. For those parts the key id must match 1765 * the h/w key index so lookups find the right key. On 1766 * parts w/ the key search facility we install the sender's 1767 * mac address (with the high bit set) and let the hardware 1768 * find the key w/o using the key id. This is preferred as 1769 * it permits us to support multiple users for adhoc and/or 1770 * multi-station operation. 1771 */ 1772 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1773 if (!(&ic->ic_nw_keys[0] <= k && 1774 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1775 /* should not happen */ 1776 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1777 "%s: bogus group key\n", __func__); 1778 return 0; 1779 } 1780 /* 1781 * XXX we pre-allocate the global keys so 1782 * have no way to check if they've already been allocated. 1783 */ 1784 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1785 return 1; 1786 } 1787 1788 /* 1789 * We allocate two pair for TKIP when using the h/w to do 1790 * the MIC. For everything else, including software crypto, 1791 * we allocate a single entry. Note that s/w crypto requires 1792 * a pass-through slot on the 5211 and 5212. The 5210 does 1793 * not support pass-through cache entries and we map all 1794 * those requests to slot 0. 1795 */ 1796 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1797 return key_alloc_single(sc, keyix, rxkeyix); 1798 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1799 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1800 if (sc->sc_splitmic) 1801 return key_alloc_2pair(sc, keyix, rxkeyix); 1802 else 1803 return key_alloc_pair(sc, keyix, rxkeyix); 1804 } else { 1805 return key_alloc_single(sc, keyix, rxkeyix); 1806 } 1807 } 1808 1809 /* 1810 * Delete an entry in the key cache allocated by ath_key_alloc. 1811 */ 1812 static int 1813 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1814 { 1815 struct ath_softc *sc = ic->ic_ifp->if_softc; 1816 struct ath_hal *ah = sc->sc_ah; 1817 const struct ieee80211_cipher *cip = k->wk_cipher; 1818 u_int keyix = k->wk_keyix; 1819 1820 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1821 1822 if (!device_has_power(sc->sc_dev)) { 1823 aprint_error_dev(sc->sc_dev, "deleting keyix %d w/o power\n", 1824 k->wk_keyix); 1825 } 1826 1827 ath_hal_keyreset(ah, keyix); 1828 /* 1829 * Handle split tx/rx keying required for TKIP with h/w MIC. 1830 */ 1831 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1832 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1833 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1834 if (keyix >= IEEE80211_WEP_NKID) { 1835 /* 1836 * Don't touch keymap entries for global keys so 1837 * they are never considered for dynamic allocation. 1838 */ 1839 clrbit(sc->sc_keymap, keyix); 1840 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1841 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) { 1842 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1843 if (sc->sc_splitmic) { 1844 /* +32 for RX key, +32+64 for RX key MIC */ 1845 clrbit(sc->sc_keymap, keyix+32); 1846 clrbit(sc->sc_keymap, keyix+32+64); 1847 } 1848 } 1849 } 1850 return 1; 1851 } 1852 1853 /* 1854 * Set the key cache contents for the specified key. Key cache 1855 * slot(s) must already have been allocated by ath_key_alloc. 1856 */ 1857 static int 1858 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1859 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1860 { 1861 struct ath_softc *sc = ic->ic_ifp->if_softc; 1862 1863 if (!device_has_power(sc->sc_dev)) { 1864 aprint_error_dev(sc->sc_dev, "setting keyix %d w/o power\n", 1865 k->wk_keyix); 1866 } 1867 return ath_keyset(sc, k, mac, ic->ic_bss); 1868 } 1869 1870 /* 1871 * Block/unblock tx+rx processing while a key change is done. 1872 * We assume the caller serializes key management operations 1873 * so we only need to worry about synchronization with other 1874 * uses that originate in the driver. 1875 */ 1876 static void 1877 ath_key_update_begin(struct ieee80211com *ic) 1878 { 1879 struct ifnet *ifp = ic->ic_ifp; 1880 struct ath_softc *sc = ifp->if_softc; 1881 1882 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1883 #if 0 1884 tasklet_disable(&sc->sc_rxtq); 1885 #endif 1886 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1887 } 1888 1889 static void 1890 ath_key_update_end(struct ieee80211com *ic) 1891 { 1892 struct ifnet *ifp = ic->ic_ifp; 1893 struct ath_softc *sc = ifp->if_softc; 1894 1895 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1896 IF_UNLOCK(&ifp->if_snd); 1897 #if 0 1898 tasklet_enable(&sc->sc_rxtq); 1899 #endif 1900 } 1901 1902 /* 1903 * Calculate the receive filter according to the 1904 * operating mode and state: 1905 * 1906 * o always accept unicast, broadcast, and multicast traffic 1907 * o maintain current state of phy error reception (the hal 1908 * may enable phy error frames for noise immunity work) 1909 * o probe request frames are accepted only when operating in 1910 * hostap, adhoc, or monitor modes 1911 * o enable promiscuous mode according to the interface state 1912 * o accept beacons: 1913 * - when operating in adhoc mode so the 802.11 layer creates 1914 * node table entries for peers, 1915 * - when operating in station mode for collecting rssi data when 1916 * the station is otherwise quiet, or 1917 * - when scanning 1918 */ 1919 static u_int32_t 1920 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1921 { 1922 struct ieee80211com *ic = &sc->sc_ic; 1923 struct ath_hal *ah = sc->sc_ah; 1924 struct ifnet *ifp = &sc->sc_if; 1925 u_int32_t rfilt; 1926 1927 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1928 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1929 if (ic->ic_opmode != IEEE80211_M_STA) 1930 rfilt |= HAL_RX_FILTER_PROBEREQ; 1931 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1932 (ifp->if_flags & IFF_PROMISC)) 1933 rfilt |= HAL_RX_FILTER_PROM; 1934 if (ifp->if_flags & IFF_PROMISC) 1935 rfilt |= HAL_RX_FILTER_CONTROL | HAL_RX_FILTER_PROBEREQ; 1936 if (ic->ic_opmode == IEEE80211_M_STA || 1937 ic->ic_opmode == IEEE80211_M_IBSS || 1938 state == IEEE80211_S_SCAN) 1939 rfilt |= HAL_RX_FILTER_BEACON; 1940 return rfilt; 1941 } 1942 1943 static void 1944 ath_mode_init(struct ath_softc *sc) 1945 { 1946 struct ifnet *ifp = &sc->sc_if; 1947 struct ieee80211com *ic = &sc->sc_ic; 1948 struct ath_hal *ah = sc->sc_ah; 1949 struct ether_multi *enm; 1950 struct ether_multistep estep; 1951 u_int32_t rfilt, mfilt[2], val; 1952 int i; 1953 uint8_t pos; 1954 1955 /* configure rx filter */ 1956 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1957 ath_hal_setrxfilter(ah, rfilt); 1958 1959 /* configure operational mode */ 1960 ath_hal_setopmode(ah); 1961 1962 /* Write keys to hardware; it may have been powered down. */ 1963 ath_key_update_begin(ic); 1964 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1965 ath_key_set(ic, 1966 &ic->ic_crypto.cs_nw_keys[i], 1967 ic->ic_myaddr); 1968 } 1969 ath_key_update_end(ic); 1970 1971 /* 1972 * Handle any link-level address change. Note that we only 1973 * need to force ic_myaddr; any other addresses are handled 1974 * as a byproduct of the ifnet code marking the interface 1975 * down then up. 1976 * 1977 * XXX should get from lladdr instead of arpcom but that's more work 1978 */ 1979 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl)); 1980 ath_hal_setmac(ah, ic->ic_myaddr); 1981 1982 /* calculate and install multicast filter */ 1983 ifp->if_flags &= ~IFF_ALLMULTI; 1984 mfilt[0] = mfilt[1] = 0; 1985 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1986 while (enm != NULL) { 1987 void *dl; 1988 /* XXX Punt on ranges. */ 1989 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1990 mfilt[0] = mfilt[1] = 0xffffffff; 1991 ifp->if_flags |= IFF_ALLMULTI; 1992 break; 1993 } 1994 dl = enm->enm_addrlo; 1995 val = LE_READ_4((char *)dl + 0); 1996 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1997 val = LE_READ_4((char *)dl + 3); 1998 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1999 pos &= 0x3f; 2000 mfilt[pos / 32] |= (1 << (pos % 32)); 2001 2002 ETHER_NEXT_MULTI(estep, enm); 2003 } 2004 2005 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 2006 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 2007 __func__, rfilt, mfilt[0], mfilt[1]); 2008 } 2009 2010 /* 2011 * Set the slot time based on the current setting. 2012 */ 2013 static void 2014 ath_setslottime(struct ath_softc *sc) 2015 { 2016 struct ieee80211com *ic = &sc->sc_ic; 2017 struct ath_hal *ah = sc->sc_ah; 2018 2019 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2020 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 2021 else 2022 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 2023 sc->sc_updateslot = OK; 2024 } 2025 2026 /* 2027 * Callback from the 802.11 layer to update the 2028 * slot time based on the current setting. 2029 */ 2030 static void 2031 ath_updateslot(struct ifnet *ifp) 2032 { 2033 struct ath_softc *sc = ifp->if_softc; 2034 struct ieee80211com *ic = &sc->sc_ic; 2035 2036 /* 2037 * When not coordinating the BSS, change the hardware 2038 * immediately. For other operation we defer the change 2039 * until beacon updates have propagated to the stations. 2040 */ 2041 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2042 sc->sc_updateslot = UPDATE; 2043 else 2044 ath_setslottime(sc); 2045 } 2046 2047 /* 2048 * Setup a h/w transmit queue for beacons. 2049 */ 2050 static int 2051 ath_beaconq_setup(struct ath_hal *ah) 2052 { 2053 HAL_TXQ_INFO qi; 2054 2055 memset(&qi, 0, sizeof(qi)); 2056 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 2057 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 2058 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 2059 /* NB: for dynamic turbo, don't enable any other interrupts */ 2060 qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE; 2061 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 2062 } 2063 2064 /* 2065 * Setup the transmit queue parameters for the beacon queue. 2066 */ 2067 static int 2068 ath_beaconq_config(struct ath_softc *sc) 2069 { 2070 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 2071 struct ieee80211com *ic = &sc->sc_ic; 2072 struct ath_hal *ah = sc->sc_ah; 2073 HAL_TXQ_INFO qi; 2074 2075 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 2076 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2077 /* 2078 * Always burst out beacon and CAB traffic. 2079 */ 2080 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 2081 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 2082 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 2083 } else { 2084 struct wmeParams *wmep = 2085 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 2086 /* 2087 * Adhoc mode; important thing is to use 2x cwmin. 2088 */ 2089 qi.tqi_aifs = wmep->wmep_aifsn; 2090 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 2091 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 2092 } 2093 2094 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 2095 device_printf(sc->sc_dev, "unable to update parameters for " 2096 "beacon hardware queue!\n"); 2097 return 0; 2098 } else { 2099 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 2100 return 1; 2101 } 2102 #undef ATH_EXPONENT_TO_VALUE 2103 } 2104 2105 /* 2106 * Allocate and setup an initial beacon frame. 2107 */ 2108 static int 2109 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 2110 { 2111 struct ieee80211com *ic = ni->ni_ic; 2112 struct ath_buf *bf; 2113 struct mbuf *m; 2114 int error; 2115 2116 bf = STAILQ_FIRST(&sc->sc_bbuf); 2117 if (bf == NULL) { 2118 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 2119 sc->sc_stats.ast_be_nombuf++; /* XXX */ 2120 return ENOMEM; /* XXX */ 2121 } 2122 /* 2123 * NB: the beacon data buffer must be 32-bit aligned; 2124 * we assume the mbuf routines will return us something 2125 * with this alignment (perhaps should assert). 2126 */ 2127 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 2128 if (m == NULL) { 2129 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 2130 __func__); 2131 sc->sc_stats.ast_be_nombuf++; 2132 return ENOMEM; 2133 } 2134 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2135 BUS_DMA_NOWAIT); 2136 if (error == 0) { 2137 bf->bf_m = m; 2138 bf->bf_node = ieee80211_ref_node(ni); 2139 } else { 2140 m_freem(m); 2141 } 2142 return error; 2143 } 2144 2145 /* 2146 * Setup the beacon frame for transmit. 2147 */ 2148 static void 2149 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 2150 { 2151 #define USE_SHPREAMBLE(_ic) \ 2152 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 2153 == IEEE80211_F_SHPREAMBLE) 2154 struct ieee80211_node *ni = bf->bf_node; 2155 struct ieee80211com *ic = ni->ni_ic; 2156 struct mbuf *m = bf->bf_m; 2157 struct ath_hal *ah = sc->sc_ah; 2158 struct ath_desc *ds; 2159 int flags, antenna; 2160 const HAL_RATE_TABLE *rt; 2161 u_int8_t rix, rate; 2162 2163 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 2164 __func__, m, m->m_len); 2165 2166 /* setup descriptors */ 2167 ds = bf->bf_desc; 2168 2169 flags = HAL_TXDESC_NOACK; 2170 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2171 ds->ds_link = HTOAH32(bf->bf_daddr); /* self-linked */ 2172 flags |= HAL_TXDESC_VEOL; 2173 /* 2174 * Let hardware handle antenna switching unless 2175 * the user has selected a transmit antenna 2176 * (sc_txantenna is not 0). 2177 */ 2178 antenna = sc->sc_txantenna; 2179 } else { 2180 ds->ds_link = 0; 2181 /* 2182 * Switch antenna every 4 beacons, unless the user 2183 * has selected a transmit antenna (sc_txantenna 2184 * is not 0). 2185 * 2186 * XXX assumes two antenna 2187 */ 2188 if (sc->sc_txantenna == 0) 2189 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2190 else 2191 antenna = sc->sc_txantenna; 2192 } 2193 2194 KASSERT(bf->bf_nseg == 1, 2195 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2196 ds->ds_data = bf->bf_segs[0].ds_addr; 2197 /* 2198 * Calculate rate code. 2199 * XXX everything at min xmit rate 2200 */ 2201 rix = sc->sc_minrateix; 2202 rt = sc->sc_currates; 2203 rate = rt->info[rix].rateCode; 2204 if (USE_SHPREAMBLE(ic)) 2205 rate |= rt->info[rix].shortPreamble; 2206 ath_hal_setuptxdesc(ah, ds 2207 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2208 , sizeof(struct ieee80211_frame)/* header length */ 2209 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2210 , ni->ni_txpower /* txpower XXX */ 2211 , rate, 1 /* series 0 rate/tries */ 2212 , HAL_TXKEYIX_INVALID /* no encryption */ 2213 , antenna /* antenna mode */ 2214 , flags /* no ack, veol for beacons */ 2215 , 0 /* rts/cts rate */ 2216 , 0 /* rts/cts duration */ 2217 ); 2218 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2219 ath_hal_filltxdesc(ah, ds 2220 , roundup(m->m_len, 4) /* buffer length */ 2221 , AH_TRUE /* first segment */ 2222 , AH_TRUE /* last segment */ 2223 , ds /* first descriptor */ 2224 ); 2225 2226 /* NB: The desc swap function becomes void, if descriptor swapping 2227 * is not enabled 2228 */ 2229 ath_desc_swap(ds); 2230 2231 #undef USE_SHPREAMBLE 2232 } 2233 2234 /* 2235 * Transmit a beacon frame at SWBA. Dynamic updates to the 2236 * frame contents are done as needed and the slot time is 2237 * also adjusted based on current state. 2238 */ 2239 static void 2240 ath_beacon_proc(void *arg, int pending) 2241 { 2242 struct ath_softc *sc = arg; 2243 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2244 struct ieee80211_node *ni = bf->bf_node; 2245 struct ieee80211com *ic = ni->ni_ic; 2246 struct ath_hal *ah = sc->sc_ah; 2247 struct mbuf *m; 2248 int ncabq, error, otherant; 2249 2250 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2251 __func__, pending); 2252 2253 if (ic->ic_opmode == IEEE80211_M_STA || 2254 ic->ic_opmode == IEEE80211_M_MONITOR || 2255 bf == NULL || bf->bf_m == NULL) { 2256 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2257 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2258 return; 2259 } 2260 /* 2261 * Check if the previous beacon has gone out. If 2262 * not don't try to post another, skip this period 2263 * and wait for the next. Missed beacons indicate 2264 * a problem and should not occur. If we miss too 2265 * many consecutive beacons reset the device. 2266 */ 2267 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2268 sc->sc_bmisscount++; 2269 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2270 "%s: missed %u consecutive beacons\n", 2271 __func__, sc->sc_bmisscount); 2272 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2273 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2274 return; 2275 } 2276 if (sc->sc_bmisscount != 0) { 2277 DPRINTF(sc, ATH_DEBUG_BEACON, 2278 "%s: resume beacon xmit after %u misses\n", 2279 __func__, sc->sc_bmisscount); 2280 sc->sc_bmisscount = 0; 2281 } 2282 2283 /* 2284 * Update dynamic beacon contents. If this returns 2285 * non-zero then we need to remap the memory because 2286 * the beacon frame changed size (probably because 2287 * of the TIM bitmap). 2288 */ 2289 m = bf->bf_m; 2290 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2291 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2292 /* XXX too conservative? */ 2293 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2294 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2295 BUS_DMA_NOWAIT); 2296 if (error != 0) { 2297 if_printf(&sc->sc_if, 2298 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2299 __func__, error); 2300 return; 2301 } 2302 } 2303 2304 /* 2305 * Handle slot time change when a non-ERP station joins/leaves 2306 * an 11g network. The 802.11 layer notifies us via callback, 2307 * we mark updateslot, then wait one beacon before effecting 2308 * the change. This gives associated stations at least one 2309 * beacon interval to note the state change. 2310 */ 2311 /* XXX locking */ 2312 if (sc->sc_updateslot == UPDATE) 2313 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2314 else if (sc->sc_updateslot == COMMIT) 2315 ath_setslottime(sc); /* commit change to h/w */ 2316 2317 /* 2318 * Check recent per-antenna transmit statistics and flip 2319 * the default antenna if noticeably more frames went out 2320 * on the non-default antenna. 2321 * XXX assumes 2 anntenae 2322 */ 2323 otherant = sc->sc_defant & 1 ? 2 : 1; 2324 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2325 ath_setdefantenna(sc, otherant); 2326 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2327 2328 /* 2329 * Construct tx descriptor. 2330 */ 2331 ath_beacon_setup(sc, bf); 2332 2333 /* 2334 * Stop any current dma and put the new frame on the queue. 2335 * This should never fail since we check above that no frames 2336 * are still pending on the queue. 2337 */ 2338 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2339 DPRINTF(sc, ATH_DEBUG_ANY, 2340 "%s: beacon queue %u did not stop?\n", 2341 __func__, sc->sc_bhalq); 2342 } 2343 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2344 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2345 2346 /* 2347 * Enable the CAB queue before the beacon queue to 2348 * insure cab frames are triggered by this beacon. 2349 */ 2350 if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1)) /* NB: only at DTIM */ 2351 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2352 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2353 ath_hal_txstart(ah, sc->sc_bhalq); 2354 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2355 "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__, 2356 sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc); 2357 2358 sc->sc_stats.ast_be_xmit++; 2359 } 2360 2361 /* 2362 * Reset the hardware after detecting beacons have stopped. 2363 */ 2364 static void 2365 ath_bstuck_proc(void *arg, int pending) 2366 { 2367 struct ath_softc *sc = arg; 2368 struct ifnet *ifp = &sc->sc_if; 2369 2370 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2371 sc->sc_bmisscount); 2372 ath_reset(ifp); 2373 } 2374 2375 /* 2376 * Reclaim beacon resources. 2377 */ 2378 static void 2379 ath_beacon_free(struct ath_softc *sc) 2380 { 2381 struct ath_buf *bf; 2382 2383 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2384 if (bf->bf_m != NULL) { 2385 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2386 m_freem(bf->bf_m); 2387 bf->bf_m = NULL; 2388 } 2389 if (bf->bf_node != NULL) { 2390 ieee80211_free_node(bf->bf_node); 2391 bf->bf_node = NULL; 2392 } 2393 } 2394 } 2395 2396 /* 2397 * Configure the beacon and sleep timers. 2398 * 2399 * When operating as an AP this resets the TSF and sets 2400 * up the hardware to notify us when we need to issue beacons. 2401 * 2402 * When operating in station mode this sets up the beacon 2403 * timers according to the timestamp of the last received 2404 * beacon and the current TSF, configures PCF and DTIM 2405 * handling, programs the sleep registers so the hardware 2406 * will wakeup in time to receive beacons, and configures 2407 * the beacon miss handling so we'll receive a BMISS 2408 * interrupt when we stop seeing beacons from the AP 2409 * we've associated with. 2410 */ 2411 static void 2412 ath_beacon_config(struct ath_softc *sc) 2413 { 2414 #define TSF_TO_TU(_h,_l) \ 2415 ((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10)) 2416 #define FUDGE 2 2417 struct ath_hal *ah = sc->sc_ah; 2418 struct ieee80211com *ic = &sc->sc_ic; 2419 struct ieee80211_node *ni = ic->ic_bss; 2420 u_int32_t nexttbtt, intval, tsftu; 2421 u_int64_t tsf; 2422 2423 /* extract tstamp from last beacon and convert to TU */ 2424 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2425 LE_READ_4(ni->ni_tstamp.data)); 2426 /* NB: the beacon interval is kept internally in TU's */ 2427 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2428 if (nexttbtt == 0) /* e.g. for ap mode */ 2429 nexttbtt = intval; 2430 else if (intval) /* NB: can be 0 for monitor mode */ 2431 nexttbtt = roundup(nexttbtt, intval); 2432 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2433 __func__, nexttbtt, intval, ni->ni_intval); 2434 if (ic->ic_opmode == IEEE80211_M_STA) { 2435 HAL_BEACON_STATE bs; 2436 int dtimperiod, dtimcount; 2437 int cfpperiod, cfpcount; 2438 2439 /* 2440 * Setup dtim and cfp parameters according to 2441 * last beacon we received (which may be none). 2442 */ 2443 dtimperiod = ni->ni_dtim_period; 2444 if (dtimperiod <= 0) /* NB: 0 if not known */ 2445 dtimperiod = 1; 2446 dtimcount = ni->ni_dtim_count; 2447 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2448 dtimcount = 0; /* XXX? */ 2449 cfpperiod = 1; /* NB: no PCF support yet */ 2450 cfpcount = 0; 2451 /* 2452 * Pull nexttbtt forward to reflect the current 2453 * TSF and calculate dtim+cfp state for the result. 2454 */ 2455 tsf = ath_hal_gettsf64(ah); 2456 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2457 do { 2458 nexttbtt += intval; 2459 if (--dtimcount < 0) { 2460 dtimcount = dtimperiod - 1; 2461 if (--cfpcount < 0) 2462 cfpcount = cfpperiod - 1; 2463 } 2464 } while (nexttbtt < tsftu); 2465 memset(&bs, 0, sizeof(bs)); 2466 bs.bs_intval = intval; 2467 bs.bs_nexttbtt = nexttbtt; 2468 bs.bs_dtimperiod = dtimperiod*intval; 2469 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2470 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2471 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2472 bs.bs_cfpmaxduration = 0; 2473 #if 0 2474 /* 2475 * The 802.11 layer records the offset to the DTIM 2476 * bitmap while receiving beacons; use it here to 2477 * enable h/w detection of our AID being marked in 2478 * the bitmap vector (to indicate frames for us are 2479 * pending at the AP). 2480 * XXX do DTIM handling in s/w to WAR old h/w bugs 2481 * XXX enable based on h/w rev for newer chips 2482 */ 2483 bs.bs_timoffset = ni->ni_timoff; 2484 #endif 2485 /* 2486 * Calculate the number of consecutive beacons to miss 2487 * before taking a BMISS interrupt. The configuration 2488 * is specified in ms, so we need to convert that to 2489 * TU's and then calculate based on the beacon interval. 2490 * Note that we clamp the result to at most 10 beacons. 2491 */ 2492 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2493 if (bs.bs_bmissthreshold > 10) 2494 bs.bs_bmissthreshold = 10; 2495 else if (bs.bs_bmissthreshold <= 0) 2496 bs.bs_bmissthreshold = 1; 2497 2498 /* 2499 * Calculate sleep duration. The configuration is 2500 * given in ms. We insure a multiple of the beacon 2501 * period is used. Also, if the sleep duration is 2502 * greater than the DTIM period then it makes senses 2503 * to make it a multiple of that. 2504 * 2505 * XXX fixed at 100ms 2506 */ 2507 bs.bs_sleepduration = 2508 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2509 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2510 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2511 2512 DPRINTF(sc, ATH_DEBUG_BEACON, 2513 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2514 , __func__ 2515 , tsf, tsftu 2516 , bs.bs_intval 2517 , bs.bs_nexttbtt 2518 , bs.bs_dtimperiod 2519 , bs.bs_nextdtim 2520 , bs.bs_bmissthreshold 2521 , bs.bs_sleepduration 2522 , bs.bs_cfpperiod 2523 , bs.bs_cfpmaxduration 2524 , bs.bs_cfpnext 2525 , bs.bs_timoffset 2526 ); 2527 ath_hal_intrset(ah, 0); 2528 ath_hal_beacontimers(ah, &bs); 2529 sc->sc_imask |= HAL_INT_BMISS; 2530 ath_hal_intrset(ah, sc->sc_imask); 2531 } else { 2532 ath_hal_intrset(ah, 0); 2533 if (nexttbtt == intval) 2534 intval |= HAL_BEACON_RESET_TSF; 2535 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2536 /* 2537 * In IBSS mode enable the beacon timers but only 2538 * enable SWBA interrupts if we need to manually 2539 * prepare beacon frames. Otherwise we use a 2540 * self-linked tx descriptor and let the hardware 2541 * deal with things. 2542 */ 2543 intval |= HAL_BEACON_ENA; 2544 if (!sc->sc_hasveol) 2545 sc->sc_imask |= HAL_INT_SWBA; 2546 if ((intval & HAL_BEACON_RESET_TSF) == 0) { 2547 /* 2548 * Pull nexttbtt forward to reflect 2549 * the current TSF. 2550 */ 2551 tsf = ath_hal_gettsf64(ah); 2552 tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; 2553 do { 2554 nexttbtt += intval; 2555 } while (nexttbtt < tsftu); 2556 } 2557 ath_beaconq_config(sc); 2558 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2559 /* 2560 * In AP mode we enable the beacon timers and 2561 * SWBA interrupts to prepare beacon frames. 2562 */ 2563 intval |= HAL_BEACON_ENA; 2564 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2565 ath_beaconq_config(sc); 2566 } 2567 ath_hal_beaconinit(ah, nexttbtt, intval); 2568 sc->sc_bmisscount = 0; 2569 ath_hal_intrset(ah, sc->sc_imask); 2570 /* 2571 * When using a self-linked beacon descriptor in 2572 * ibss mode load it once here. 2573 */ 2574 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2575 ath_beacon_proc(sc, 0); 2576 } 2577 sc->sc_syncbeacon = 0; 2578 #undef UNDEF 2579 #undef TSF_TO_TU 2580 } 2581 2582 static int 2583 ath_descdma_setup(struct ath_softc *sc, 2584 struct ath_descdma *dd, ath_bufhead *head, 2585 const char *name, int nbuf, int ndesc) 2586 { 2587 #define DS2PHYS(_dd, _ds) \ 2588 ((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc)) 2589 struct ifnet *ifp = &sc->sc_if; 2590 struct ath_desc *ds; 2591 struct ath_buf *bf; 2592 int i, bsize, error; 2593 2594 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2595 __func__, name, nbuf, ndesc); 2596 2597 dd->dd_name = name; 2598 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2599 2600 /* 2601 * Setup DMA descriptor area. 2602 */ 2603 dd->dd_dmat = sc->sc_dmat; 2604 2605 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2606 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2607 2608 if (error != 0) { 2609 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2610 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2611 goto fail0; 2612 } 2613 2614 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2615 dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT); 2616 if (error != 0) { 2617 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2618 nbuf * ndesc, dd->dd_name, error); 2619 goto fail1; 2620 } 2621 2622 /* allocate descriptors */ 2623 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2624 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2625 if (error != 0) { 2626 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2627 "error %u\n", dd->dd_name, error); 2628 goto fail2; 2629 } 2630 2631 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2632 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2633 if (error != 0) { 2634 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2635 dd->dd_name, error); 2636 goto fail3; 2637 } 2638 2639 ds = dd->dd_desc; 2640 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2641 DPRINTF(sc, ATH_DEBUG_RESET, 2642 "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n", 2643 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2644 (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2645 2646 /* allocate rx buffers */ 2647 bsize = sizeof(struct ath_buf) * nbuf; 2648 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2649 if (bf == NULL) { 2650 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2651 dd->dd_name, bsize); 2652 goto fail4; 2653 } 2654 dd->dd_bufptr = bf; 2655 2656 STAILQ_INIT(head); 2657 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2658 bf->bf_desc = ds; 2659 bf->bf_daddr = DS2PHYS(dd, ds); 2660 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2661 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2662 if (error != 0) { 2663 if_printf(ifp, "unable to create dmamap for %s " 2664 "buffer %u, error %u\n", dd->dd_name, i, error); 2665 ath_descdma_cleanup(sc, dd, head); 2666 return error; 2667 } 2668 STAILQ_INSERT_TAIL(head, bf, bf_list); 2669 } 2670 return 0; 2671 fail4: 2672 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2673 fail3: 2674 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2675 fail2: 2676 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2677 fail1: 2678 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2679 fail0: 2680 memset(dd, 0, sizeof(*dd)); 2681 return error; 2682 #undef DS2PHYS 2683 } 2684 2685 static void 2686 ath_descdma_cleanup(struct ath_softc *sc, 2687 struct ath_descdma *dd, ath_bufhead *head) 2688 { 2689 struct ath_buf *bf; 2690 struct ieee80211_node *ni; 2691 2692 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2693 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2694 bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len); 2695 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2696 2697 STAILQ_FOREACH(bf, head, bf_list) { 2698 if (bf->bf_m) { 2699 m_freem(bf->bf_m); 2700 bf->bf_m = NULL; 2701 } 2702 if (bf->bf_dmamap != NULL) { 2703 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2704 bf->bf_dmamap = NULL; 2705 } 2706 ni = bf->bf_node; 2707 bf->bf_node = NULL; 2708 if (ni != NULL) { 2709 /* 2710 * Reclaim node reference. 2711 */ 2712 ieee80211_free_node(ni); 2713 } 2714 } 2715 2716 STAILQ_INIT(head); 2717 free(dd->dd_bufptr, M_ATHDEV); 2718 memset(dd, 0, sizeof(*dd)); 2719 } 2720 2721 static int 2722 ath_desc_alloc(struct ath_softc *sc) 2723 { 2724 int error; 2725 2726 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2727 "rx", ath_rxbuf, 1); 2728 if (error != 0) 2729 return error; 2730 2731 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2732 "tx", ath_txbuf, ATH_TXDESC); 2733 if (error != 0) { 2734 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2735 return error; 2736 } 2737 2738 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2739 "beacon", 1, 1); 2740 if (error != 0) { 2741 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2742 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2743 return error; 2744 } 2745 return 0; 2746 } 2747 2748 static void 2749 ath_desc_free(struct ath_softc *sc) 2750 { 2751 2752 if (sc->sc_bdma.dd_desc_len != 0) 2753 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2754 if (sc->sc_txdma.dd_desc_len != 0) 2755 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2756 if (sc->sc_rxdma.dd_desc_len != 0) 2757 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2758 } 2759 2760 static struct ieee80211_node * 2761 ath_node_alloc(struct ieee80211_node_table *nt) 2762 { 2763 struct ieee80211com *ic = nt->nt_ic; 2764 struct ath_softc *sc = ic->ic_ifp->if_softc; 2765 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2766 struct ath_node *an; 2767 2768 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2769 if (an == NULL) { 2770 /* XXX stat+msg */ 2771 return NULL; 2772 } 2773 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2774 ath_rate_node_init(sc, an); 2775 2776 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2777 return &an->an_node; 2778 } 2779 2780 static void 2781 ath_node_free(struct ieee80211_node *ni) 2782 { 2783 struct ieee80211com *ic = ni->ni_ic; 2784 struct ath_softc *sc = ic->ic_ifp->if_softc; 2785 2786 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2787 2788 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2789 sc->sc_node_free(ni); 2790 } 2791 2792 static u_int8_t 2793 ath_node_getrssi(const struct ieee80211_node *ni) 2794 { 2795 #define HAL_EP_RND(x, mul) \ 2796 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2797 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2798 int32_t rssi; 2799 2800 /* 2801 * When only one frame is received there will be no state in 2802 * avgrssi so fallback on the value recorded by the 802.11 layer. 2803 */ 2804 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2805 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2806 else 2807 rssi = ni->ni_rssi; 2808 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2809 #undef HAL_EP_RND 2810 } 2811 2812 static int 2813 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2814 { 2815 struct ath_hal *ah = sc->sc_ah; 2816 int error; 2817 struct mbuf *m; 2818 struct ath_desc *ds; 2819 2820 m = bf->bf_m; 2821 if (m == NULL) { 2822 /* 2823 * NB: by assigning a page to the rx dma buffer we 2824 * implicitly satisfy the Atheros requirement that 2825 * this buffer be cache-line-aligned and sized to be 2826 * multiple of the cache line size. Not doing this 2827 * causes weird stuff to happen (for the 5210 at least). 2828 */ 2829 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2830 if (m == NULL) { 2831 DPRINTF(sc, ATH_DEBUG_ANY, 2832 "%s: no mbuf/cluster\n", __func__); 2833 sc->sc_stats.ast_rx_nombuf++; 2834 return ENOMEM; 2835 } 2836 bf->bf_m = m; 2837 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2838 2839 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2840 bf->bf_dmamap, m, 2841 BUS_DMA_NOWAIT); 2842 if (error != 0) { 2843 DPRINTF(sc, ATH_DEBUG_ANY, 2844 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2845 __func__, error); 2846 sc->sc_stats.ast_rx_busdma++; 2847 return error; 2848 } 2849 KASSERT(bf->bf_nseg == 1, 2850 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2851 } 2852 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2853 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2854 2855 /* 2856 * Setup descriptors. For receive we always terminate 2857 * the descriptor list with a self-linked entry so we'll 2858 * not get overrun under high load (as can happen with a 2859 * 5212 when ANI processing enables PHY error frames). 2860 * 2861 * To insure the last descriptor is self-linked we create 2862 * each descriptor as self-linked and add it to the end. As 2863 * each additional descriptor is added the previous self-linked 2864 * entry is ``fixed'' naturally. This should be safe even 2865 * if DMA is happening. When processing RX interrupts we 2866 * never remove/process the last, self-linked, entry on the 2867 * descriptor list. This insures the hardware always has 2868 * someplace to write a new frame. 2869 */ 2870 ds = bf->bf_desc; 2871 ds->ds_link = HTOAH32(bf->bf_daddr); /* link to self */ 2872 ds->ds_data = bf->bf_segs[0].ds_addr; 2873 /* ds->ds_vdata = mtod(m, void *); for radar */ 2874 ath_hal_setuprxdesc(ah, ds 2875 , m->m_len /* buffer size */ 2876 , 0 2877 ); 2878 2879 if (sc->sc_rxlink != NULL) 2880 *sc->sc_rxlink = bf->bf_daddr; 2881 sc->sc_rxlink = &ds->ds_link; 2882 return 0; 2883 } 2884 2885 /* 2886 * Extend 15-bit time stamp from rx descriptor to 2887 * a full 64-bit TSF using the specified TSF. 2888 */ 2889 static inline u_int64_t 2890 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf) 2891 { 2892 if ((tsf & 0x7fff) < rstamp) 2893 tsf -= 0x8000; 2894 return ((tsf &~ 0x7fff) | rstamp); 2895 } 2896 2897 /* 2898 * Intercept management frames to collect beacon rssi data 2899 * and to do ibss merges. 2900 */ 2901 static void 2902 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2903 struct ieee80211_node *ni, 2904 int subtype, int rssi, u_int32_t rstamp) 2905 { 2906 struct ath_softc *sc = ic->ic_ifp->if_softc; 2907 2908 /* 2909 * Call up first so subsequent work can use information 2910 * potentially stored in the node (e.g. for ibss merge). 2911 */ 2912 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2913 switch (subtype) { 2914 case IEEE80211_FC0_SUBTYPE_BEACON: 2915 /* update rssi statistics for use by the hal */ 2916 ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi); 2917 if (sc->sc_syncbeacon && 2918 ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) { 2919 /* 2920 * Resync beacon timers using the tsf of the beacon 2921 * frame we just received. 2922 */ 2923 ath_beacon_config(sc); 2924 } 2925 /* fall thru... */ 2926 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2927 if (ic->ic_opmode == IEEE80211_M_IBSS && 2928 ic->ic_state == IEEE80211_S_RUN) { 2929 u_int64_t tsf = ath_extend_tsf(rstamp, 2930 ath_hal_gettsf64(sc->sc_ah)); 2931 2932 /* 2933 * Handle ibss merge as needed; check the tsf on the 2934 * frame before attempting the merge. The 802.11 spec 2935 * says the station should change it's bssid to match 2936 * the oldest station with the same ssid, where oldest 2937 * is determined by the tsf. Note that hardware 2938 * reconfiguration happens through callback to 2939 * ath_newstate as the state machine will go from 2940 * RUN -> RUN when this happens. 2941 */ 2942 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2943 DPRINTF(sc, ATH_DEBUG_STATE, 2944 "ibss merge, rstamp %u tsf %ju " 2945 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2946 (uintmax_t)ni->ni_tstamp.tsf); 2947 (void) ieee80211_ibss_merge(ni); 2948 } 2949 } 2950 break; 2951 } 2952 } 2953 2954 /* 2955 * Set the default antenna. 2956 */ 2957 static void 2958 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2959 { 2960 struct ath_hal *ah = sc->sc_ah; 2961 2962 /* XXX block beacon interrupts */ 2963 ath_hal_setdefantenna(ah, antenna); 2964 if (sc->sc_defant != antenna) 2965 sc->sc_stats.ast_ant_defswitch++; 2966 sc->sc_defant = antenna; 2967 sc->sc_rxotherant = 0; 2968 } 2969 2970 static void 2971 ath_handle_micerror(struct ieee80211com *ic, 2972 struct ieee80211_frame *wh, int keyix) 2973 { 2974 struct ieee80211_node *ni; 2975 2976 /* XXX recheck MIC to deal w/ chips that lie */ 2977 /* XXX discard MIC errors on !data frames */ 2978 ni = ieee80211_find_rxnode_withkey(ic, (const struct ieee80211_frame_min *) wh, keyix); 2979 if (ni != NULL) { 2980 ieee80211_notify_michael_failure(ic, wh, keyix); 2981 ieee80211_free_node(ni); 2982 } 2983 } 2984 2985 static void 2986 ath_rx_proc(void *arg, int npending) 2987 { 2988 #define PA2DESC(_sc, _pa) \ 2989 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 2990 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2991 struct ath_softc *sc = arg; 2992 struct ath_buf *bf; 2993 struct ieee80211com *ic = &sc->sc_ic; 2994 struct ifnet *ifp = &sc->sc_if; 2995 struct ath_hal *ah = sc->sc_ah; 2996 struct ath_desc *ds; 2997 struct mbuf *m; 2998 struct ieee80211_node *ni; 2999 struct ath_node *an; 3000 int len, ngood, type; 3001 u_int phyerr; 3002 HAL_STATUS status; 3003 int16_t nf; 3004 u_int64_t tsf; 3005 uint8_t rxerr_tap, rxerr_mon; 3006 3007 NET_LOCK_GIANT(); /* XXX */ 3008 3009 rxerr_tap = 3010 (ifp->if_flags & IFF_PROMISC) ? HAL_RXERR_CRC|HAL_RXERR_PHY : 0; 3011 3012 if (sc->sc_ic.ic_opmode == IEEE80211_M_MONITOR) 3013 rxerr_mon = HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3014 else if (ifp->if_flags & IFF_PROMISC) 3015 rxerr_tap |= HAL_RXERR_DECRYPT|HAL_RXERR_MIC; 3016 3017 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 3018 ngood = 0; 3019 nf = ath_hal_getchannoise(ah, &sc->sc_curchan); 3020 tsf = ath_hal_gettsf64(ah); 3021 do { 3022 bf = STAILQ_FIRST(&sc->sc_rxbuf); 3023 if (bf == NULL) { /* NB: shouldn't happen */ 3024 if_printf(ifp, "%s: no buffer!\n", __func__); 3025 break; 3026 } 3027 ds = bf->bf_desc; 3028 if (ds->ds_link == bf->bf_daddr) { 3029 /* NB: never process the self-linked entry at the end */ 3030 break; 3031 } 3032 m = bf->bf_m; 3033 if (m == NULL) { /* NB: shouldn't happen */ 3034 if_printf(ifp, "%s: no mbuf!\n", __func__); 3035 break; 3036 } 3037 /* XXX sync descriptor memory */ 3038 /* 3039 * Must provide the virtual address of the current 3040 * descriptor, the physical address, and the virtual 3041 * address of the next descriptor in the h/w chain. 3042 * This allows the HAL to look ahead to see if the 3043 * hardware is done with a descriptor by checking the 3044 * done bit in the following descriptor and the address 3045 * of the current descriptor the DMA engine is working 3046 * on. All this is necessary because of our use of 3047 * a self-linked list to avoid rx overruns. 3048 */ 3049 status = ath_hal_rxprocdesc(ah, ds, 3050 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 3051 &ds->ds_rxstat); 3052 #ifdef AR_DEBUG 3053 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 3054 ath_printrxbuf(bf, status == HAL_OK); 3055 #endif 3056 if (status == HAL_EINPROGRESS) 3057 break; 3058 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 3059 if (ds->ds_rxstat.rs_more) { 3060 /* 3061 * Frame spans multiple descriptors; this 3062 * cannot happen yet as we don't support 3063 * jumbograms. If not in monitor mode, 3064 * discard the frame. 3065 */ 3066 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 3067 sc->sc_stats.ast_rx_toobig++; 3068 goto rx_next; 3069 } 3070 /* fall thru for monitor mode handling... */ 3071 } else if (ds->ds_rxstat.rs_status != 0) { 3072 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 3073 sc->sc_stats.ast_rx_crcerr++; 3074 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 3075 sc->sc_stats.ast_rx_fifoerr++; 3076 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 3077 sc->sc_stats.ast_rx_phyerr++; 3078 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 3079 sc->sc_stats.ast_rx_phy[phyerr]++; 3080 goto rx_next; 3081 } 3082 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 3083 /* 3084 * Decrypt error. If the error occurred 3085 * because there was no hardware key, then 3086 * let the frame through so the upper layers 3087 * can process it. This is necessary for 5210 3088 * parts which have no way to setup a ``clear'' 3089 * key cache entry. 3090 * 3091 * XXX do key cache faulting 3092 */ 3093 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 3094 goto rx_accept; 3095 sc->sc_stats.ast_rx_badcrypt++; 3096 } 3097 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 3098 sc->sc_stats.ast_rx_badmic++; 3099 /* 3100 * Do minimal work required to hand off 3101 * the 802.11 header for notifcation. 3102 */ 3103 /* XXX frag's and qos frames */ 3104 len = ds->ds_rxstat.rs_datalen; 3105 if (len >= sizeof (struct ieee80211_frame)) { 3106 bus_dmamap_sync(sc->sc_dmat, 3107 bf->bf_dmamap, 3108 0, bf->bf_dmamap->dm_mapsize, 3109 BUS_DMASYNC_POSTREAD); 3110 ath_handle_micerror(ic, 3111 mtod(m, struct ieee80211_frame *), 3112 sc->sc_splitmic ? 3113 ds->ds_rxstat.rs_keyix-32 : ds->ds_rxstat.rs_keyix); 3114 } 3115 } 3116 ifp->if_ierrors++; 3117 /* 3118 * Reject error frames, we normally don't want 3119 * to see them in monitor mode (in monitor mode 3120 * allow through packets that have crypto problems). 3121 */ 3122 3123 if (ds->ds_rxstat.rs_status &~ (rxerr_tap|rxerr_mon)) 3124 goto rx_next; 3125 } 3126 rx_accept: 3127 /* 3128 * Sync and unmap the frame. At this point we're 3129 * committed to passing the mbuf somewhere so clear 3130 * bf_m; this means a new sk_buff must be allocated 3131 * when the rx descriptor is setup again to receive 3132 * another frame. 3133 */ 3134 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 3135 0, bf->bf_dmamap->dm_mapsize, 3136 BUS_DMASYNC_POSTREAD); 3137 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3138 bf->bf_m = NULL; 3139 3140 m->m_pkthdr.rcvif = ifp; 3141 len = ds->ds_rxstat.rs_datalen; 3142 m->m_pkthdr.len = m->m_len = len; 3143 3144 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 3145 3146 if (sc->sc_drvbpf) { 3147 u_int8_t rix; 3148 3149 /* 3150 * Discard anything shorter than an ack or cts. 3151 */ 3152 if (len < IEEE80211_ACK_LEN) { 3153 DPRINTF(sc, ATH_DEBUG_RECV, 3154 "%s: runt packet %d\n", 3155 __func__, len); 3156 sc->sc_stats.ast_rx_tooshort++; 3157 m_freem(m); 3158 goto rx_next; 3159 } 3160 rix = ds->ds_rxstat.rs_rate; 3161 sc->sc_rx_th.wr_tsf = htole64( 3162 ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf)); 3163 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 3164 if (ds->ds_rxstat.rs_status & 3165 (HAL_RXERR_CRC|HAL_RXERR_PHY)) { 3166 sc->sc_rx_th.wr_flags |= 3167 IEEE80211_RADIOTAP_F_BADFCS; 3168 } 3169 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 3170 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf; 3171 sc->sc_rx_th.wr_antnoise = nf; 3172 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 3173 3174 bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, 3175 sc->sc_rx_th_len, m); 3176 } 3177 3178 if (ds->ds_rxstat.rs_status & rxerr_tap) { 3179 m_freem(m); 3180 goto rx_next; 3181 } 3182 /* 3183 * From this point on we assume the frame is at least 3184 * as large as ieee80211_frame_min; verify that. 3185 */ 3186 if (len < IEEE80211_MIN_LEN) { 3187 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 3188 __func__, len); 3189 sc->sc_stats.ast_rx_tooshort++; 3190 m_freem(m); 3191 goto rx_next; 3192 } 3193 3194 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 3195 ieee80211_dump_pkt(mtod(m, void *), len, 3196 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 3197 ds->ds_rxstat.rs_rssi); 3198 } 3199 3200 m_adj(m, -IEEE80211_CRC_LEN); 3201 3202 /* 3203 * Locate the node for sender, track state, and then 3204 * pass the (referenced) node up to the 802.11 layer 3205 * for its use. 3206 */ 3207 ni = ieee80211_find_rxnode_withkey(ic, 3208 mtod(m, const struct ieee80211_frame_min *), 3209 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 3210 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 3211 /* 3212 * Track rx rssi and do any rx antenna management. 3213 */ 3214 an = ATH_NODE(ni); 3215 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 3216 ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi); 3217 /* 3218 * Send frame up for processing. 3219 */ 3220 type = ieee80211_input(ic, m, ni, 3221 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 3222 ieee80211_free_node(ni); 3223 if (sc->sc_diversity) { 3224 /* 3225 * When using fast diversity, change the default rx 3226 * antenna if diversity chooses the other antenna 3 3227 * times in a row. 3228 */ 3229 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3230 if (++sc->sc_rxotherant >= 3) 3231 ath_setdefantenna(sc, 3232 ds->ds_rxstat.rs_antenna); 3233 } else 3234 sc->sc_rxotherant = 0; 3235 } 3236 if (sc->sc_softled) { 3237 /* 3238 * Blink for any data frame. Otherwise do a 3239 * heartbeat-style blink when idle. The latter 3240 * is mainly for station mode where we depend on 3241 * periodic beacon frames to trigger the poll event. 3242 */ 3243 if (type == IEEE80211_FC0_TYPE_DATA) { 3244 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3245 ath_led_event(sc, ATH_LED_RX); 3246 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3247 ath_led_event(sc, ATH_LED_POLL); 3248 } 3249 /* 3250 * Arrange to update the last rx timestamp only for 3251 * frames from our ap when operating in station mode. 3252 * This assumes the rx key is always setup when associated. 3253 */ 3254 if (ic->ic_opmode == IEEE80211_M_STA && 3255 ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID) 3256 ngood++; 3257 rx_next: 3258 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3259 } while (ath_rxbuf_init(sc, bf) == 0); 3260 3261 /* rx signal state monitoring */ 3262 ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan); 3263 #if 0 3264 if (ath_hal_radar_event(ah)) 3265 TASK_RUN_OR_ENQUEUE(&sc->sc_radartask); 3266 #endif 3267 if (ngood) 3268 sc->sc_lastrx = tsf; 3269 3270 #ifdef __NetBSD__ 3271 /* XXX Why isn't this necessary in FreeBSD? */ 3272 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3273 ath_start(ifp); 3274 #endif /* __NetBSD__ */ 3275 3276 NET_UNLOCK_GIANT(); /* XXX */ 3277 #undef PA2DESC 3278 } 3279 3280 /* 3281 * Setup a h/w transmit queue. 3282 */ 3283 static struct ath_txq * 3284 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3285 { 3286 #define N(a) (sizeof(a)/sizeof(a[0])) 3287 struct ath_hal *ah = sc->sc_ah; 3288 HAL_TXQ_INFO qi; 3289 int qnum; 3290 3291 memset(&qi, 0, sizeof(qi)); 3292 qi.tqi_subtype = subtype; 3293 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3294 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3295 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3296 /* 3297 * Enable interrupts only for EOL and DESC conditions. 3298 * We mark tx descriptors to receive a DESC interrupt 3299 * when a tx queue gets deep; otherwise waiting for the 3300 * EOL to reap descriptors. Note that this is done to 3301 * reduce interrupt load and this only defers reaping 3302 * descriptors, never transmitting frames. Aside from 3303 * reducing interrupts this also permits more concurrency. 3304 * The only potential downside is if the tx queue backs 3305 * up in which case the top half of the kernel may backup 3306 * due to a lack of tx descriptors. 3307 */ 3308 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3309 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3310 if (qnum == -1) { 3311 /* 3312 * NB: don't print a message, this happens 3313 * normally on parts with too few tx queues 3314 */ 3315 return NULL; 3316 } 3317 if (qnum >= N(sc->sc_txq)) { 3318 device_printf(sc->sc_dev, 3319 "hal qnum %u out of range, max %zu!\n", 3320 qnum, N(sc->sc_txq)); 3321 ath_hal_releasetxqueue(ah, qnum); 3322 return NULL; 3323 } 3324 if (!ATH_TXQ_SETUP(sc, qnum)) { 3325 struct ath_txq *txq = &sc->sc_txq[qnum]; 3326 3327 txq->axq_qnum = qnum; 3328 txq->axq_depth = 0; 3329 txq->axq_intrcnt = 0; 3330 txq->axq_link = NULL; 3331 STAILQ_INIT(&txq->axq_q); 3332 ATH_TXQ_LOCK_INIT(sc, txq); 3333 sc->sc_txqsetup |= 1<<qnum; 3334 } 3335 return &sc->sc_txq[qnum]; 3336 #undef N 3337 } 3338 3339 /* 3340 * Setup a hardware data transmit queue for the specified 3341 * access control. The hal may not support all requested 3342 * queues in which case it will return a reference to a 3343 * previously setup queue. We record the mapping from ac's 3344 * to h/w queues for use by ath_tx_start and also track 3345 * the set of h/w queues being used to optimize work in the 3346 * transmit interrupt handler and related routines. 3347 */ 3348 static int 3349 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3350 { 3351 #define N(a) (sizeof(a)/sizeof(a[0])) 3352 struct ath_txq *txq; 3353 3354 if (ac >= N(sc->sc_ac2q)) { 3355 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3356 ac, N(sc->sc_ac2q)); 3357 return 0; 3358 } 3359 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3360 if (txq != NULL) { 3361 sc->sc_ac2q[ac] = txq; 3362 return 1; 3363 } else 3364 return 0; 3365 #undef N 3366 } 3367 3368 /* 3369 * Update WME parameters for a transmit queue. 3370 */ 3371 static int 3372 ath_txq_update(struct ath_softc *sc, int ac) 3373 { 3374 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3375 #define ATH_TXOP_TO_US(v) (v<<5) 3376 struct ieee80211com *ic = &sc->sc_ic; 3377 struct ath_txq *txq = sc->sc_ac2q[ac]; 3378 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3379 struct ath_hal *ah = sc->sc_ah; 3380 HAL_TXQ_INFO qi; 3381 3382 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3383 qi.tqi_aifs = wmep->wmep_aifsn; 3384 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3385 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3386 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3387 3388 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3389 device_printf(sc->sc_dev, "unable to update hardware queue " 3390 "parameters for %s traffic!\n", 3391 ieee80211_wme_acnames[ac]); 3392 return 0; 3393 } else { 3394 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3395 return 1; 3396 } 3397 #undef ATH_TXOP_TO_US 3398 #undef ATH_EXPONENT_TO_VALUE 3399 } 3400 3401 /* 3402 * Callback from the 802.11 layer to update WME parameters. 3403 */ 3404 static int 3405 ath_wme_update(struct ieee80211com *ic) 3406 { 3407 struct ath_softc *sc = ic->ic_ifp->if_softc; 3408 3409 return !ath_txq_update(sc, WME_AC_BE) || 3410 !ath_txq_update(sc, WME_AC_BK) || 3411 !ath_txq_update(sc, WME_AC_VI) || 3412 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3413 } 3414 3415 /* 3416 * Reclaim resources for a setup queue. 3417 */ 3418 static void 3419 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3420 { 3421 3422 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3423 ATH_TXQ_LOCK_DESTROY(txq); 3424 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3425 } 3426 3427 /* 3428 * Reclaim all tx queue resources. 3429 */ 3430 static void 3431 ath_tx_cleanup(struct ath_softc *sc) 3432 { 3433 int i; 3434 3435 ATH_TXBUF_LOCK_DESTROY(sc); 3436 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3437 if (ATH_TXQ_SETUP(sc, i)) 3438 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3439 } 3440 3441 /* 3442 * Defragment an mbuf chain, returning at most maxfrags separate 3443 * mbufs+clusters. If this is not possible NULL is returned and 3444 * the original mbuf chain is left in it's present (potentially 3445 * modified) state. We use two techniques: collapsing consecutive 3446 * mbufs and replacing consecutive mbufs by a cluster. 3447 */ 3448 static struct mbuf * 3449 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3450 { 3451 struct mbuf *m, *n, *n2, **prev; 3452 u_int curfrags; 3453 3454 /* 3455 * Calculate the current number of frags. 3456 */ 3457 curfrags = 0; 3458 for (m = m0; m != NULL; m = m->m_next) 3459 curfrags++; 3460 /* 3461 * First, try to collapse mbufs. Note that we always collapse 3462 * towards the front so we don't need to deal with moving the 3463 * pkthdr. This may be suboptimal if the first mbuf has much 3464 * less data than the following. 3465 */ 3466 m = m0; 3467 again: 3468 for (;;) { 3469 n = m->m_next; 3470 if (n == NULL) 3471 break; 3472 if (n->m_len < M_TRAILINGSPACE(m)) { 3473 memcpy(mtod(m, char *) + m->m_len, mtod(n, void *), 3474 n->m_len); 3475 m->m_len += n->m_len; 3476 m->m_next = n->m_next; 3477 m_free(n); 3478 if (--curfrags <= maxfrags) 3479 return m0; 3480 } else 3481 m = n; 3482 } 3483 KASSERT(maxfrags > 1, 3484 ("maxfrags %u, but normal collapse failed", maxfrags)); 3485 /* 3486 * Collapse consecutive mbufs to a cluster. 3487 */ 3488 prev = &m0->m_next; /* NB: not the first mbuf */ 3489 while ((n = *prev) != NULL) { 3490 if ((n2 = n->m_next) != NULL && 3491 n->m_len + n2->m_len < MCLBYTES) { 3492 m = m_getcl(how, MT_DATA, 0); 3493 if (m == NULL) 3494 goto bad; 3495 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3496 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3497 n2->m_len); 3498 m->m_len = n->m_len + n2->m_len; 3499 m->m_next = n2->m_next; 3500 *prev = m; 3501 m_free(n); 3502 m_free(n2); 3503 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3504 return m0; 3505 /* 3506 * Still not there, try the normal collapse 3507 * again before we allocate another cluster. 3508 */ 3509 goto again; 3510 } 3511 prev = &n->m_next; 3512 } 3513 /* 3514 * No place where we can collapse to a cluster; punt. 3515 * This can occur if, for example, you request 2 frags 3516 * but the packet requires that both be clusters (we 3517 * never reallocate the first mbuf to avoid moving the 3518 * packet header). 3519 */ 3520 bad: 3521 return NULL; 3522 } 3523 3524 /* 3525 * Return h/w rate index for an IEEE rate (w/o basic rate bit). 3526 */ 3527 static int 3528 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate) 3529 { 3530 int i; 3531 3532 for (i = 0; i < rt->rateCount; i++) 3533 if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate) 3534 return i; 3535 return 0; /* NB: lowest rate */ 3536 } 3537 3538 static void 3539 ath_freetx(struct mbuf *m) 3540 { 3541 struct mbuf *next; 3542 3543 do { 3544 next = m->m_nextpkt; 3545 m->m_nextpkt = NULL; 3546 m_freem(m); 3547 } while ((m = next) != NULL); 3548 } 3549 3550 static int 3551 deduct_pad_bytes(int len, int hdrlen) 3552 { 3553 /* XXX I am suspicious that this code, which I extracted 3554 * XXX from ath_tx_start() for reuse, does the right thing. 3555 */ 3556 return len - (hdrlen & 3); 3557 } 3558 3559 static int 3560 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3561 struct mbuf *m0) 3562 { 3563 struct ieee80211com *ic = &sc->sc_ic; 3564 struct ath_hal *ah = sc->sc_ah; 3565 struct ifnet *ifp = &sc->sc_if; 3566 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3567 int i, error, iswep, ismcast, isfrag, ismrr; 3568 int keyix, hdrlen, pktlen, try0; 3569 u_int8_t rix, txrate, ctsrate; 3570 u_int8_t cix = 0xff; /* NB: silence compiler */ 3571 struct ath_desc *ds, *ds0; 3572 struct ath_txq *txq; 3573 struct ieee80211_frame *wh; 3574 u_int subtype, flags, ctsduration; 3575 HAL_PKT_TYPE atype; 3576 const HAL_RATE_TABLE *rt; 3577 HAL_BOOL shortPreamble; 3578 struct ath_node *an; 3579 struct mbuf *m; 3580 u_int pri; 3581 3582 wh = mtod(m0, struct ieee80211_frame *); 3583 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3584 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3585 isfrag = m0->m_flags & M_FRAG; 3586 hdrlen = ieee80211_anyhdrsize(wh); 3587 /* 3588 * Packet length must not include any 3589 * pad bytes; deduct them here. 3590 */ 3591 pktlen = deduct_pad_bytes(m0->m_pkthdr.len, hdrlen); 3592 3593 if (iswep) { 3594 const struct ieee80211_cipher *cip; 3595 struct ieee80211_key *k; 3596 3597 /* 3598 * Construct the 802.11 header+trailer for an encrypted 3599 * frame. The only reason this can fail is because of an 3600 * unknown or unsupported cipher/key type. 3601 */ 3602 k = ieee80211_crypto_encap(ic, ni, m0); 3603 if (k == NULL) { 3604 /* 3605 * This can happen when the key is yanked after the 3606 * frame was queued. Just discard the frame; the 3607 * 802.11 layer counts failures and provides 3608 * debugging/diagnostics. 3609 */ 3610 ath_freetx(m0); 3611 return EIO; 3612 } 3613 /* 3614 * Adjust the packet + header lengths for the crypto 3615 * additions and calculate the h/w key index. When 3616 * a s/w mic is done the frame will have had any mic 3617 * added to it prior to entry so m0->m_pkthdr.len above will 3618 * account for it. Otherwise we need to add it to the 3619 * packet length. 3620 */ 3621 cip = k->wk_cipher; 3622 hdrlen += cip->ic_header; 3623 pktlen += cip->ic_header + cip->ic_trailer; 3624 /* NB: frags always have any TKIP MIC done in s/w */ 3625 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag) 3626 pktlen += cip->ic_miclen; 3627 keyix = k->wk_keyix; 3628 3629 /* packet header may have moved, reset our local pointer */ 3630 wh = mtod(m0, struct ieee80211_frame *); 3631 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3632 /* 3633 * Use station key cache slot, if assigned. 3634 */ 3635 keyix = ni->ni_ucastkey.wk_keyix; 3636 if (keyix == IEEE80211_KEYIX_NONE) 3637 keyix = HAL_TXKEYIX_INVALID; 3638 } else 3639 keyix = HAL_TXKEYIX_INVALID; 3640 3641 pktlen += IEEE80211_CRC_LEN; 3642 3643 /* 3644 * Load the DMA map so any coalescing is done. This 3645 * also calculates the number of descriptors we need. 3646 */ 3647 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3648 BUS_DMA_NOWAIT); 3649 if (error == EFBIG) { 3650 /* XXX packet requires too many descriptors */ 3651 bf->bf_nseg = ATH_TXDESC+1; 3652 } else if (error != 0) { 3653 sc->sc_stats.ast_tx_busdma++; 3654 ath_freetx(m0); 3655 return error; 3656 } 3657 /* 3658 * Discard null packets and check for packets that 3659 * require too many TX descriptors. We try to convert 3660 * the latter to a cluster. 3661 */ 3662 if (error == EFBIG) { /* too many desc's, linearize */ 3663 sc->sc_stats.ast_tx_linear++; 3664 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3665 if (m == NULL) { 3666 ath_freetx(m0); 3667 sc->sc_stats.ast_tx_nombuf++; 3668 return ENOMEM; 3669 } 3670 m0 = m; 3671 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3672 BUS_DMA_NOWAIT); 3673 if (error != 0) { 3674 sc->sc_stats.ast_tx_busdma++; 3675 ath_freetx(m0); 3676 return error; 3677 } 3678 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3679 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3680 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3681 sc->sc_stats.ast_tx_nodata++; 3682 ath_freetx(m0); 3683 return EIO; 3684 } 3685 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3686 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3687 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3688 bf->bf_m = m0; 3689 bf->bf_node = ni; /* NB: held reference */ 3690 3691 /* setup descriptors */ 3692 ds = bf->bf_desc; 3693 rt = sc->sc_currates; 3694 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3695 3696 /* 3697 * NB: the 802.11 layer marks whether or not we should 3698 * use short preamble based on the current mode and 3699 * negotiated parameters. 3700 */ 3701 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3702 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3703 shortPreamble = AH_TRUE; 3704 sc->sc_stats.ast_tx_shortpre++; 3705 } else { 3706 shortPreamble = AH_FALSE; 3707 } 3708 3709 an = ATH_NODE(ni); 3710 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3711 ismrr = 0; /* default no multi-rate retry*/ 3712 /* 3713 * Calculate Atheros packet type from IEEE80211 packet header, 3714 * setup for rate calculations, and select h/w transmit queue. 3715 */ 3716 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3717 case IEEE80211_FC0_TYPE_MGT: 3718 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3719 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3720 atype = HAL_PKT_TYPE_BEACON; 3721 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3722 atype = HAL_PKT_TYPE_PROBE_RESP; 3723 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3724 atype = HAL_PKT_TYPE_ATIM; 3725 else 3726 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3727 rix = sc->sc_minrateix; 3728 txrate = rt->info[rix].rateCode; 3729 if (shortPreamble) 3730 txrate |= rt->info[rix].shortPreamble; 3731 try0 = ATH_TXMGTTRY; 3732 /* NB: force all management frames to highest queue */ 3733 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3734 /* NB: force all management frames to highest queue */ 3735 pri = WME_AC_VO; 3736 } else 3737 pri = WME_AC_BE; 3738 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3739 break; 3740 case IEEE80211_FC0_TYPE_CTL: 3741 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3742 rix = sc->sc_minrateix; 3743 txrate = rt->info[rix].rateCode; 3744 if (shortPreamble) 3745 txrate |= rt->info[rix].shortPreamble; 3746 try0 = ATH_TXMGTTRY; 3747 /* NB: force all ctl frames to highest queue */ 3748 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3749 /* NB: force all ctl frames to highest queue */ 3750 pri = WME_AC_VO; 3751 } else 3752 pri = WME_AC_BE; 3753 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3754 break; 3755 case IEEE80211_FC0_TYPE_DATA: 3756 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3757 /* 3758 * Data frames: multicast frames go out at a fixed rate, 3759 * otherwise consult the rate control module for the 3760 * rate to use. 3761 */ 3762 if (ismcast) { 3763 /* 3764 * Check mcast rate setting in case it's changed. 3765 * XXX move out of fastpath 3766 */ 3767 if (ic->ic_mcast_rate != sc->sc_mcastrate) { 3768 sc->sc_mcastrix = 3769 ath_tx_findrix(rt, ic->ic_mcast_rate); 3770 sc->sc_mcastrate = ic->ic_mcast_rate; 3771 } 3772 rix = sc->sc_mcastrix; 3773 txrate = rt->info[rix].rateCode; 3774 try0 = 1; 3775 } else { 3776 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3777 &rix, &try0, &txrate); 3778 sc->sc_txrate = txrate; /* for LED blinking */ 3779 if (try0 != ATH_TXMAXTRY) 3780 ismrr = 1; 3781 } 3782 pri = M_WME_GETAC(m0); 3783 if (cap->cap_wmeParams[pri].wmep_noackPolicy) 3784 flags |= HAL_TXDESC_NOACK; 3785 break; 3786 default: 3787 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3788 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3789 /* XXX statistic */ 3790 ath_freetx(m0); 3791 return EIO; 3792 } 3793 txq = sc->sc_ac2q[pri]; 3794 3795 /* 3796 * When servicing one or more stations in power-save mode 3797 * multicast frames must be buffered until after the beacon. 3798 * We use the CAB queue for that. 3799 */ 3800 if (ismcast && ic->ic_ps_sta) { 3801 txq = sc->sc_cabq; 3802 /* XXX? more bit in 802.11 frame header */ 3803 } 3804 3805 /* 3806 * Calculate miscellaneous flags. 3807 */ 3808 if (ismcast) { 3809 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3810 } else if (pktlen > ic->ic_rtsthreshold) { 3811 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3812 cix = rt->info[rix].controlRate; 3813 sc->sc_stats.ast_tx_rts++; 3814 } 3815 if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */ 3816 sc->sc_stats.ast_tx_noack++; 3817 3818 /* 3819 * If 802.11g protection is enabled, determine whether 3820 * to use RTS/CTS or just CTS. Note that this is only 3821 * done for OFDM unicast frames. 3822 */ 3823 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3824 rt->info[rix].phy == IEEE80211_T_OFDM && 3825 (flags & HAL_TXDESC_NOACK) == 0) { 3826 /* XXX fragments must use CCK rates w/ protection */ 3827 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3828 flags |= HAL_TXDESC_RTSENA; 3829 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3830 flags |= HAL_TXDESC_CTSENA; 3831 if (isfrag) { 3832 /* 3833 * For frags it would be desirable to use the 3834 * highest CCK rate for RTS/CTS. But stations 3835 * farther away may detect it at a lower CCK rate 3836 * so use the configured protection rate instead 3837 * (for now). 3838 */ 3839 cix = rt->info[sc->sc_protrix].controlRate; 3840 } else 3841 cix = rt->info[sc->sc_protrix].controlRate; 3842 sc->sc_stats.ast_tx_protect++; 3843 } 3844 3845 /* 3846 * Calculate duration. This logically belongs in the 802.11 3847 * layer but it lacks sufficient information to calculate it. 3848 */ 3849 if ((flags & HAL_TXDESC_NOACK) == 0 && 3850 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3851 u_int16_t dur; 3852 /* 3853 * XXX not right with fragmentation. 3854 */ 3855 if (shortPreamble) 3856 dur = rt->info[rix].spAckDuration; 3857 else 3858 dur = rt->info[rix].lpAckDuration; 3859 if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) { 3860 dur += dur; /* additional SIFS+ACK */ 3861 KASSERT(m0->m_nextpkt != NULL, ("no fragment")); 3862 /* 3863 * Include the size of next fragment so NAV is 3864 * updated properly. The last fragment uses only 3865 * the ACK duration 3866 */ 3867 dur += ath_hal_computetxtime(ah, rt, 3868 deduct_pad_bytes(m0->m_nextpkt->m_pkthdr.len, 3869 hdrlen) - 3870 deduct_pad_bytes(m0->m_pkthdr.len, hdrlen) + pktlen, 3871 rix, shortPreamble); 3872 } 3873 if (isfrag) { 3874 /* 3875 * Force hardware to use computed duration for next 3876 * fragment by disabling multi-rate retry which updates 3877 * duration based on the multi-rate duration table. 3878 */ 3879 try0 = ATH_TXMAXTRY; 3880 } 3881 *(u_int16_t *)wh->i_dur = htole16(dur); 3882 } 3883 3884 /* 3885 * Calculate RTS/CTS rate and duration if needed. 3886 */ 3887 ctsduration = 0; 3888 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3889 /* 3890 * CTS transmit rate is derived from the transmit rate 3891 * by looking in the h/w rate table. We must also factor 3892 * in whether or not a short preamble is to be used. 3893 */ 3894 /* NB: cix is set above where RTS/CTS is enabled */ 3895 KASSERT(cix != 0xff, ("cix not setup")); 3896 ctsrate = rt->info[cix].rateCode; 3897 /* 3898 * Compute the transmit duration based on the frame 3899 * size and the size of an ACK frame. We call into the 3900 * HAL to do the computation since it depends on the 3901 * characteristics of the actual PHY being used. 3902 * 3903 * NB: CTS is assumed the same size as an ACK so we can 3904 * use the precalculated ACK durations. 3905 */ 3906 if (shortPreamble) { 3907 ctsrate |= rt->info[cix].shortPreamble; 3908 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3909 ctsduration += rt->info[cix].spAckDuration; 3910 ctsduration += ath_hal_computetxtime(ah, 3911 rt, pktlen, rix, AH_TRUE); 3912 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3913 ctsduration += rt->info[rix].spAckDuration; 3914 } else { 3915 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3916 ctsduration += rt->info[cix].lpAckDuration; 3917 ctsduration += ath_hal_computetxtime(ah, 3918 rt, pktlen, rix, AH_FALSE); 3919 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3920 ctsduration += rt->info[rix].lpAckDuration; 3921 } 3922 /* 3923 * Must disable multi-rate retry when using RTS/CTS. 3924 */ 3925 ismrr = 0; 3926 try0 = ATH_TXMGTTRY; /* XXX */ 3927 } else 3928 ctsrate = 0; 3929 3930 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3931 ieee80211_dump_pkt(mtod(m0, void *), m0->m_len, 3932 sc->sc_hwmap[txrate].ieeerate, -1); 3933 bpf_mtap3(ic->ic_rawbpf, m0); 3934 if (sc->sc_drvbpf) { 3935 u_int64_t tsf = ath_hal_gettsf64(ah); 3936 3937 sc->sc_tx_th.wt_tsf = htole64(tsf); 3938 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3939 if (iswep) 3940 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3941 if (isfrag) 3942 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG; 3943 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3944 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3945 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3946 3947 bpf_mtap2(sc->sc_drvbpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3948 } 3949 3950 /* 3951 * Determine if a tx interrupt should be generated for 3952 * this descriptor. We take a tx interrupt to reap 3953 * descriptors when the h/w hits an EOL condition or 3954 * when the descriptor is specifically marked to generate 3955 * an interrupt. We periodically mark descriptors in this 3956 * way to insure timely replenishing of the supply needed 3957 * for sending frames. Defering interrupts reduces system 3958 * load and potentially allows more concurrent work to be 3959 * done but if done to aggressively can cause senders to 3960 * backup. 3961 * 3962 * NB: use >= to deal with sc_txintrperiod changing 3963 * dynamically through sysctl. 3964 */ 3965 if (flags & HAL_TXDESC_INTREQ) { 3966 txq->axq_intrcnt = 0; 3967 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3968 flags |= HAL_TXDESC_INTREQ; 3969 txq->axq_intrcnt = 0; 3970 } 3971 3972 /* 3973 * Formulate first tx descriptor with tx controls. 3974 */ 3975 /* XXX check return value? */ 3976 ath_hal_setuptxdesc(ah, ds 3977 , pktlen /* packet length */ 3978 , hdrlen /* header length */ 3979 , atype /* Atheros packet type */ 3980 , ni->ni_txpower /* txpower */ 3981 , txrate, try0 /* series 0 rate/tries */ 3982 , keyix /* key cache index */ 3983 , sc->sc_txantenna /* antenna mode */ 3984 , flags /* flags */ 3985 , ctsrate /* rts/cts rate */ 3986 , ctsduration /* rts/cts duration */ 3987 ); 3988 bf->bf_flags = flags; 3989 /* 3990 * Setup the multi-rate retry state only when we're 3991 * going to use it. This assumes ath_hal_setuptxdesc 3992 * initializes the descriptors (so we don't have to) 3993 * when the hardware supports multi-rate retry and 3994 * we don't use it. 3995 */ 3996 if (ismrr) 3997 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 3998 3999 /* 4000 * Fillin the remainder of the descriptor info. 4001 */ 4002 ds0 = ds; 4003 for (i = 0; i < bf->bf_nseg; i++, ds++) { 4004 ds->ds_data = bf->bf_segs[i].ds_addr; 4005 if (i == bf->bf_nseg - 1) 4006 ds->ds_link = 0; 4007 else 4008 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 4009 ath_hal_filltxdesc(ah, ds 4010 , bf->bf_segs[i].ds_len /* segment length */ 4011 , i == 0 /* first segment */ 4012 , i == bf->bf_nseg - 1 /* last segment */ 4013 , ds0 /* first descriptor */ 4014 ); 4015 4016 /* NB: The desc swap function becomes void, 4017 * if descriptor swapping is not enabled 4018 */ 4019 ath_desc_swap(ds); 4020 4021 DPRINTF(sc, ATH_DEBUG_XMIT, 4022 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 4023 __func__, i, ds->ds_link, ds->ds_data, 4024 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 4025 } 4026 /* 4027 * Insert the frame on the outbound list and 4028 * pass it on to the hardware. 4029 */ 4030 ATH_TXQ_LOCK(txq); 4031 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 4032 if (txq->axq_link == NULL) { 4033 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 4034 DPRINTF(sc, ATH_DEBUG_XMIT, 4035 "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__, 4036 txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc, 4037 txq->axq_depth); 4038 } else { 4039 *txq->axq_link = HTOAH32(bf->bf_daddr); 4040 DPRINTF(sc, ATH_DEBUG_XMIT, 4041 "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n", 4042 __func__, txq->axq_qnum, txq->axq_link, 4043 (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 4044 } 4045 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 4046 /* 4047 * The CAB queue is started from the SWBA handler since 4048 * frames only go out on DTIM and to avoid possible races. 4049 */ 4050 if (txq != sc->sc_cabq) 4051 ath_hal_txstart(ah, txq->axq_qnum); 4052 ATH_TXQ_UNLOCK(txq); 4053 4054 return 0; 4055 } 4056 4057 /* 4058 * Process completed xmit descriptors from the specified queue. 4059 */ 4060 static int 4061 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 4062 { 4063 struct ath_hal *ah = sc->sc_ah; 4064 struct ieee80211com *ic = &sc->sc_ic; 4065 struct ath_buf *bf; 4066 struct ath_desc *ds, *ds0; 4067 struct ieee80211_node *ni; 4068 struct ath_node *an; 4069 int sr, lr, pri, nacked; 4070 HAL_STATUS status; 4071 4072 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 4073 __func__, txq->axq_qnum, 4074 (void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 4075 txq->axq_link); 4076 nacked = 0; 4077 for (;;) { 4078 ATH_TXQ_LOCK(txq); 4079 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 4080 bf = STAILQ_FIRST(&txq->axq_q); 4081 if (bf == NULL) { 4082 txq->axq_link = NULL; 4083 ATH_TXQ_UNLOCK(txq); 4084 break; 4085 } 4086 ds0 = &bf->bf_desc[0]; 4087 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4088 status = ath_hal_txprocdesc(ah, ds, &ds->ds_txstat); 4089 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 4090 ath_printtxbuf(bf, status == HAL_OK); 4091 if (status == HAL_EINPROGRESS) { 4092 ATH_TXQ_UNLOCK(txq); 4093 break; 4094 } 4095 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4096 ATH_TXQ_UNLOCK(txq); 4097 4098 ni = bf->bf_node; 4099 if (ni != NULL) { 4100 an = ATH_NODE(ni); 4101 if (ds->ds_txstat.ts_status == 0) { 4102 u_int8_t txant = ds->ds_txstat.ts_antenna; 4103 sc->sc_stats.ast_ant_tx[txant]++; 4104 sc->sc_ant_tx[txant]++; 4105 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 4106 sc->sc_stats.ast_tx_altrate++; 4107 sc->sc_stats.ast_tx_rssi = 4108 ds->ds_txstat.ts_rssi; 4109 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 4110 ds->ds_txstat.ts_rssi); 4111 pri = M_WME_GETAC(bf->bf_m); 4112 if (pri >= WME_AC_VO) 4113 ic->ic_wme.wme_hipri_traffic++; 4114 ni->ni_inact = ni->ni_inact_reload; 4115 } else { 4116 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 4117 sc->sc_stats.ast_tx_xretries++; 4118 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 4119 sc->sc_stats.ast_tx_fifoerr++; 4120 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 4121 sc->sc_stats.ast_tx_filtered++; 4122 } 4123 sr = ds->ds_txstat.ts_shortretry; 4124 lr = ds->ds_txstat.ts_longretry; 4125 sc->sc_stats.ast_tx_shortretry += sr; 4126 sc->sc_stats.ast_tx_longretry += lr; 4127 /* 4128 * Hand the descriptor to the rate control algorithm. 4129 */ 4130 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 4131 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) { 4132 /* 4133 * If frame was ack'd update the last rx time 4134 * used to workaround phantom bmiss interrupts. 4135 */ 4136 if (ds->ds_txstat.ts_status == 0) 4137 nacked++; 4138 ath_rate_tx_complete(sc, an, ds, ds0); 4139 } 4140 /* 4141 * Reclaim reference to node. 4142 * 4143 * NB: the node may be reclaimed here if, for example 4144 * this is a DEAUTH message that was sent and the 4145 * node was timed out due to inactivity. 4146 */ 4147 ieee80211_free_node(ni); 4148 } 4149 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 4150 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4151 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4152 m_freem(bf->bf_m); 4153 bf->bf_m = NULL; 4154 bf->bf_node = NULL; 4155 4156 ATH_TXBUF_LOCK(sc); 4157 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4158 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4159 ATH_TXBUF_UNLOCK(sc); 4160 } 4161 return nacked; 4162 } 4163 4164 static inline int 4165 txqactive(struct ath_hal *ah, int qnum) 4166 { 4167 u_int32_t txqs = 1<<qnum; 4168 ath_hal_gettxintrtxqs(ah, &txqs); 4169 return (txqs & (1<<qnum)); 4170 } 4171 4172 /* 4173 * Deferred processing of transmit interrupt; special-cased 4174 * for a single hardware transmit queue (e.g. 5210 and 5211). 4175 */ 4176 static void 4177 ath_tx_proc_q0(void *arg, int npending) 4178 { 4179 struct ath_softc *sc = arg; 4180 struct ifnet *ifp = &sc->sc_if; 4181 4182 if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){ 4183 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4184 } 4185 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4186 ath_tx_processq(sc, sc->sc_cabq); 4187 4188 if (sc->sc_softled) 4189 ath_led_event(sc, ATH_LED_TX); 4190 4191 ath_start(ifp); 4192 } 4193 4194 /* 4195 * Deferred processing of transmit interrupt; special-cased 4196 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 4197 */ 4198 static void 4199 ath_tx_proc_q0123(void *arg, int npending) 4200 { 4201 struct ath_softc *sc = arg; 4202 struct ifnet *ifp = &sc->sc_if; 4203 int nacked; 4204 4205 /* 4206 * Process each active queue. 4207 */ 4208 nacked = 0; 4209 if (txqactive(sc->sc_ah, 0)) 4210 nacked += ath_tx_processq(sc, &sc->sc_txq[0]); 4211 if (txqactive(sc->sc_ah, 1)) 4212 nacked += ath_tx_processq(sc, &sc->sc_txq[1]); 4213 if (txqactive(sc->sc_ah, 2)) 4214 nacked += ath_tx_processq(sc, &sc->sc_txq[2]); 4215 if (txqactive(sc->sc_ah, 3)) 4216 nacked += ath_tx_processq(sc, &sc->sc_txq[3]); 4217 if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum)) 4218 ath_tx_processq(sc, sc->sc_cabq); 4219 if (nacked) { 4220 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4221 } 4222 4223 if (sc->sc_softled) 4224 ath_led_event(sc, ATH_LED_TX); 4225 4226 ath_start(ifp); 4227 } 4228 4229 /* 4230 * Deferred processing of transmit interrupt. 4231 */ 4232 static void 4233 ath_tx_proc(void *arg, int npending) 4234 { 4235 struct ath_softc *sc = arg; 4236 struct ifnet *ifp = &sc->sc_if; 4237 int i, nacked; 4238 4239 /* 4240 * Process each active queue. 4241 */ 4242 nacked = 0; 4243 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4244 if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i)) 4245 nacked += ath_tx_processq(sc, &sc->sc_txq[i]); 4246 if (nacked) { 4247 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4248 } 4249 4250 if (sc->sc_softled) 4251 ath_led_event(sc, ATH_LED_TX); 4252 4253 ath_start(ifp); 4254 } 4255 4256 static void 4257 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4258 { 4259 struct ath_hal *ah = sc->sc_ah; 4260 struct ieee80211_node *ni; 4261 struct ath_buf *bf; 4262 struct ath_desc *ds; 4263 4264 /* 4265 * NB: this assumes output has been stopped and 4266 * we do not need to block ath_tx_tasklet 4267 */ 4268 for (;;) { 4269 ATH_TXQ_LOCK(txq); 4270 bf = STAILQ_FIRST(&txq->axq_q); 4271 if (bf == NULL) { 4272 txq->axq_link = NULL; 4273 ATH_TXQ_UNLOCK(txq); 4274 break; 4275 } 4276 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 4277 ATH_TXQ_UNLOCK(txq); 4278 ds = &bf->bf_desc[bf->bf_nseg - 1]; 4279 if (sc->sc_debug & ATH_DEBUG_RESET) 4280 ath_printtxbuf(bf, 4281 ath_hal_txprocdesc(ah, bf->bf_desc, 4282 &ds->ds_txstat) == HAL_OK); 4283 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4284 m_freem(bf->bf_m); 4285 bf->bf_m = NULL; 4286 ni = bf->bf_node; 4287 bf->bf_node = NULL; 4288 if (ni != NULL) { 4289 /* 4290 * Reclaim node reference. 4291 */ 4292 ieee80211_free_node(ni); 4293 } 4294 ATH_TXBUF_LOCK(sc); 4295 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4296 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4297 ATH_TXBUF_UNLOCK(sc); 4298 } 4299 } 4300 4301 static void 4302 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4303 { 4304 struct ath_hal *ah = sc->sc_ah; 4305 4306 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4307 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4308 __func__, txq->axq_qnum, 4309 (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4310 txq->axq_link); 4311 } 4312 4313 /* 4314 * Drain the transmit queues and reclaim resources. 4315 */ 4316 static void 4317 ath_draintxq(struct ath_softc *sc) 4318 { 4319 struct ath_hal *ah = sc->sc_ah; 4320 int i; 4321 4322 /* XXX return value */ 4323 if (device_is_active(sc->sc_dev)) { 4324 /* don't touch the hardware if marked invalid */ 4325 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4326 DPRINTF(sc, ATH_DEBUG_RESET, 4327 "%s: beacon queue %p\n", __func__, 4328 (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4329 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4330 if (ATH_TXQ_SETUP(sc, i)) 4331 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4332 } 4333 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4334 if (ATH_TXQ_SETUP(sc, i)) 4335 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4336 } 4337 4338 /* 4339 * Disable the receive h/w in preparation for a reset. 4340 */ 4341 static void 4342 ath_stoprecv(struct ath_softc *sc) 4343 { 4344 #define PA2DESC(_sc, _pa) \ 4345 ((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \ 4346 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4347 struct ath_hal *ah = sc->sc_ah; 4348 u_int64_t tsf; 4349 4350 ath_hal_stoppcurecv(ah); /* disable PCU */ 4351 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4352 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4353 DELAY(3000); /* 3ms is long enough for 1 frame */ 4354 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4355 struct ath_buf *bf; 4356 4357 printf("%s: rx queue %p, link %p\n", __func__, 4358 (void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4359 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4360 struct ath_desc *ds = bf->bf_desc; 4361 tsf = ath_hal_gettsf64(sc->sc_ah); 4362 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4363 bf->bf_daddr, PA2DESC(sc, ds->ds_link), 4364 &ds->ds_rxstat); 4365 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4366 ath_printrxbuf(bf, status == HAL_OK); 4367 } 4368 } 4369 sc->sc_rxlink = NULL; /* just in case */ 4370 #undef PA2DESC 4371 } 4372 4373 /* 4374 * Enable the receive h/w following a reset. 4375 */ 4376 static int 4377 ath_startrecv(struct ath_softc *sc) 4378 { 4379 struct ath_hal *ah = sc->sc_ah; 4380 struct ath_buf *bf; 4381 4382 sc->sc_rxlink = NULL; 4383 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4384 int error = ath_rxbuf_init(sc, bf); 4385 if (error != 0) { 4386 DPRINTF(sc, ATH_DEBUG_RECV, 4387 "%s: ath_rxbuf_init failed %d\n", 4388 __func__, error); 4389 return error; 4390 } 4391 } 4392 4393 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4394 ath_hal_putrxbuf(ah, bf->bf_daddr); 4395 ath_hal_rxena(ah); /* enable recv descriptors */ 4396 ath_mode_init(sc); /* set filters, etc. */ 4397 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4398 return 0; 4399 } 4400 4401 /* 4402 * Update internal state after a channel change. 4403 */ 4404 static void 4405 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4406 { 4407 struct ieee80211com *ic = &sc->sc_ic; 4408 enum ieee80211_phymode mode; 4409 u_int16_t flags; 4410 4411 /* 4412 * Change channels and update the h/w rate map 4413 * if we're switching; e.g. 11a to 11b/g. 4414 */ 4415 mode = ieee80211_chan2mode(ic, chan); 4416 if (mode != sc->sc_curmode) 4417 ath_setcurmode(sc, mode); 4418 /* 4419 * Update BPF state. NB: ethereal et. al. don't handle 4420 * merged flags well so pick a unique mode for their use. 4421 */ 4422 if (IEEE80211_IS_CHAN_A(chan)) 4423 flags = IEEE80211_CHAN_A; 4424 /* XXX 11g schizophrenia */ 4425 else if (IEEE80211_IS_CHAN_G(chan) || 4426 IEEE80211_IS_CHAN_PUREG(chan)) 4427 flags = IEEE80211_CHAN_G; 4428 else 4429 flags = IEEE80211_CHAN_B; 4430 if (IEEE80211_IS_CHAN_T(chan)) 4431 flags |= IEEE80211_CHAN_TURBO; 4432 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4433 htole16(chan->ic_freq); 4434 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4435 htole16(flags); 4436 } 4437 4438 #if 0 4439 /* 4440 * Poll for a channel clear indication; this is required 4441 * for channels requiring DFS and not previously visited 4442 * and/or with a recent radar detection. 4443 */ 4444 static void 4445 ath_dfswait(void *arg) 4446 { 4447 struct ath_softc *sc = arg; 4448 struct ath_hal *ah = sc->sc_ah; 4449 HAL_CHANNEL hchan; 4450 4451 ath_hal_radar_wait(ah, &hchan); 4452 if (hchan.privFlags & CHANNEL_INTERFERENCE) { 4453 if_printf(&sc->sc_if, 4454 "channel %u/0x%x/0x%x has interference\n", 4455 hchan.channel, hchan.channelFlags, hchan.privFlags); 4456 return; 4457 } 4458 if ((hchan.privFlags & CHANNEL_DFS) == 0) { 4459 /* XXX should not happen */ 4460 return; 4461 } 4462 if (hchan.privFlags & CHANNEL_DFS_CLEAR) { 4463 sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR; 4464 sc->sc_if.if_flags &= ~IFF_OACTIVE; 4465 if_printf(&sc->sc_if, 4466 "channel %u/0x%x/0x%x marked clear\n", 4467 hchan.channel, hchan.channelFlags, hchan.privFlags); 4468 } else 4469 callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc); 4470 } 4471 #endif 4472 4473 /* 4474 * Set/change channels. If the channel is really being changed, 4475 * it's done by reseting the chip. To accomplish this we must 4476 * first cleanup any pending DMA, then restart stuff after a la 4477 * ath_init. 4478 */ 4479 static int 4480 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4481 { 4482 struct ath_hal *ah = sc->sc_ah; 4483 struct ieee80211com *ic = &sc->sc_ic; 4484 HAL_CHANNEL hchan; 4485 4486 /* 4487 * Convert to a HAL channel description with 4488 * the flags constrained to reflect the current 4489 * operating mode. 4490 */ 4491 hchan.channel = chan->ic_freq; 4492 hchan.channelFlags = ath_chan2flags(ic, chan); 4493 4494 DPRINTF(sc, ATH_DEBUG_RESET, 4495 "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n", 4496 __func__, 4497 ath_hal_mhz2ieee(ah, sc->sc_curchan.channel, 4498 sc->sc_curchan.channelFlags), 4499 sc->sc_curchan.channel, sc->sc_curchan.channelFlags, 4500 ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags), 4501 hchan.channel, hchan.channelFlags); 4502 if (hchan.channel != sc->sc_curchan.channel || 4503 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4504 HAL_STATUS status; 4505 4506 /* 4507 * To switch channels clear any pending DMA operations; 4508 * wait long enough for the RX fifo to drain, reset the 4509 * hardware at the new frequency, and then re-enable 4510 * the relevant bits of the h/w. 4511 */ 4512 ath_hal_intrset(ah, 0); /* disable interrupts */ 4513 ath_draintxq(sc); /* clear pending tx frames */ 4514 ath_stoprecv(sc); /* turn off frame recv */ 4515 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4516 if_printf(ic->ic_ifp, "%s: unable to reset " 4517 "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n", 4518 __func__, ieee80211_chan2ieee(ic, chan), 4519 chan->ic_freq, chan->ic_flags, hchan.channelFlags); 4520 return EIO; 4521 } 4522 sc->sc_curchan = hchan; 4523 ath_update_txpow(sc); /* update tx power state */ 4524 ath_restore_diversity(sc); 4525 sc->sc_calinterval = 1; 4526 sc->sc_caltries = 0; 4527 4528 /* 4529 * Re-enable rx framework. 4530 */ 4531 if (ath_startrecv(sc) != 0) { 4532 if_printf(&sc->sc_if, 4533 "%s: unable to restart recv logic\n", __func__); 4534 return EIO; 4535 } 4536 4537 /* 4538 * Change channels and update the h/w rate map 4539 * if we're switching; e.g. 11a to 11b/g. 4540 */ 4541 ic->ic_ibss_chan = chan; 4542 ath_chan_change(sc, chan); 4543 4544 #if 0 4545 /* 4546 * Handle DFS required waiting period to determine 4547 * if channel is clear of radar traffic. 4548 */ 4549 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 4550 #define DFS_AND_NOT_CLEAR(_c) \ 4551 (((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS) 4552 if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) { 4553 if_printf(&sc->sc_if, 4554 "wait for DFS clear channel signal\n"); 4555 /* XXX stop sndq */ 4556 sc->sc_if.if_flags |= IFF_OACTIVE; 4557 callout_reset(&sc->sc_dfs_ch, 4558 2 * hz, ath_dfswait, sc); 4559 } else 4560 callout_stop(&sc->sc_dfs_ch); 4561 #undef DFS_NOT_CLEAR 4562 } 4563 #endif 4564 4565 /* 4566 * Re-enable interrupts. 4567 */ 4568 ath_hal_intrset(ah, sc->sc_imask); 4569 } 4570 return 0; 4571 } 4572 4573 static void 4574 ath_next_scan(void *arg) 4575 { 4576 struct ath_softc *sc = arg; 4577 struct ieee80211com *ic = &sc->sc_ic; 4578 int s; 4579 4580 /* don't call ath_start w/o network interrupts blocked */ 4581 s = splnet(); 4582 4583 if (ic->ic_state == IEEE80211_S_SCAN) 4584 ieee80211_next_scan(ic); 4585 splx(s); 4586 } 4587 4588 /* 4589 * Periodically recalibrate the PHY to account 4590 * for temperature/environment changes. 4591 */ 4592 static void 4593 ath_calibrate(void *arg) 4594 { 4595 struct ath_softc *sc = arg; 4596 struct ath_hal *ah = sc->sc_ah; 4597 HAL_BOOL iqCalDone; 4598 4599 sc->sc_stats.ast_per_cal++; 4600 4601 ATH_LOCK(sc); 4602 4603 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4604 /* 4605 * Rfgain is out of bounds, reset the chip 4606 * to load new gain values. 4607 */ 4608 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4609 "%s: rfgain change\n", __func__); 4610 sc->sc_stats.ast_per_rfgain++; 4611 ath_reset(&sc->sc_if); 4612 } 4613 if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) { 4614 DPRINTF(sc, ATH_DEBUG_ANY, 4615 "%s: calibration of channel %u failed\n", 4616 __func__, sc->sc_curchan.channel); 4617 sc->sc_stats.ast_per_calfail++; 4618 } 4619 /* 4620 * Calibrate noise floor data again in case of change. 4621 */ 4622 ath_hal_process_noisefloor(ah); 4623 /* 4624 * Poll more frequently when the IQ calibration is in 4625 * progress to speedup loading the final settings. 4626 * We temper this aggressive polling with an exponential 4627 * back off after 4 tries up to ath_calinterval. 4628 */ 4629 if (iqCalDone || sc->sc_calinterval >= ath_calinterval) { 4630 sc->sc_caltries = 0; 4631 sc->sc_calinterval = ath_calinterval; 4632 } else if (sc->sc_caltries > 4) { 4633 sc->sc_caltries = 0; 4634 sc->sc_calinterval <<= 1; 4635 if (sc->sc_calinterval > ath_calinterval) 4636 sc->sc_calinterval = ath_calinterval; 4637 } 4638 KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval, 4639 ("bad calibration interval %u", sc->sc_calinterval)); 4640 4641 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4642 "%s: next +%u (%siqCalDone tries %u)\n", __func__, 4643 sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries); 4644 sc->sc_caltries++; 4645 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4646 ath_calibrate, sc); 4647 ATH_UNLOCK(sc); 4648 } 4649 4650 static int 4651 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4652 { 4653 struct ifnet *ifp = ic->ic_ifp; 4654 struct ath_softc *sc = ifp->if_softc; 4655 struct ath_hal *ah = sc->sc_ah; 4656 struct ieee80211_node *ni; 4657 int i, error; 4658 const u_int8_t *bssid; 4659 u_int32_t rfilt; 4660 static const HAL_LED_STATE leds[] = { 4661 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4662 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4663 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4664 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4665 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4666 }; 4667 4668 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4669 ieee80211_state_name[ic->ic_state], 4670 ieee80211_state_name[nstate]); 4671 4672 callout_stop(&sc->sc_scan_ch); 4673 callout_stop(&sc->sc_cal_ch); 4674 #if 0 4675 callout_stop(&sc->sc_dfs_ch); 4676 #endif 4677 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4678 4679 if (nstate == IEEE80211_S_INIT) { 4680 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4681 /* 4682 * NB: disable interrupts so we don't rx frames. 4683 */ 4684 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4685 /* 4686 * Notify the rate control algorithm. 4687 */ 4688 ath_rate_newstate(sc, nstate); 4689 goto done; 4690 } 4691 ni = ic->ic_bss; 4692 error = ath_chan_set(sc, ic->ic_curchan); 4693 if (error != 0) 4694 goto bad; 4695 rfilt = ath_calcrxfilter(sc, nstate); 4696 if (nstate == IEEE80211_S_SCAN) 4697 bssid = ifp->if_broadcastaddr; 4698 else 4699 bssid = ni->ni_bssid; 4700 ath_hal_setrxfilter(ah, rfilt); 4701 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4702 __func__, rfilt, ether_sprintf(bssid)); 4703 4704 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4705 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4706 else 4707 ath_hal_setassocid(ah, bssid, 0); 4708 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4709 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4710 if (ath_hal_keyisvalid(ah, i)) 4711 ath_hal_keysetmac(ah, i, bssid); 4712 } 4713 4714 /* 4715 * Notify the rate control algorithm so rates 4716 * are setup should ath_beacon_alloc be called. 4717 */ 4718 ath_rate_newstate(sc, nstate); 4719 4720 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4721 /* nothing to do */; 4722 } else if (nstate == IEEE80211_S_RUN) { 4723 DPRINTF(sc, ATH_DEBUG_STATE, 4724 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4725 "capinfo=0x%04x chan=%d\n" 4726 , __func__ 4727 , ic->ic_flags 4728 , ni->ni_intval 4729 , ether_sprintf(ni->ni_bssid) 4730 , ni->ni_capinfo 4731 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4732 4733 switch (ic->ic_opmode) { 4734 case IEEE80211_M_HOSTAP: 4735 case IEEE80211_M_IBSS: 4736 /* 4737 * Allocate and setup the beacon frame. 4738 * 4739 * Stop any previous beacon DMA. This may be 4740 * necessary, for example, when an ibss merge 4741 * causes reconfiguration; there will be a state 4742 * transition from RUN->RUN that means we may 4743 * be called with beacon transmission active. 4744 */ 4745 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4746 ath_beacon_free(sc); 4747 error = ath_beacon_alloc(sc, ni); 4748 if (error != 0) 4749 goto bad; 4750 /* 4751 * If joining an adhoc network defer beacon timer 4752 * configuration to the next beacon frame so we 4753 * have a current TSF to use. Otherwise we're 4754 * starting an ibss/bss so there's no need to delay. 4755 */ 4756 if (ic->ic_opmode == IEEE80211_M_IBSS && 4757 ic->ic_bss->ni_tstamp.tsf != 0) 4758 sc->sc_syncbeacon = 1; 4759 else 4760 ath_beacon_config(sc); 4761 break; 4762 case IEEE80211_M_STA: 4763 /* 4764 * Allocate a key cache slot to the station. 4765 */ 4766 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4767 sc->sc_hasclrkey && 4768 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4769 ath_setup_stationkey(ni); 4770 /* 4771 * Defer beacon timer configuration to the next 4772 * beacon frame so we have a current TSF to use 4773 * (any TSF collected when scanning is likely old). 4774 */ 4775 sc->sc_syncbeacon = 1; 4776 break; 4777 default: 4778 break; 4779 } 4780 /* 4781 * Let the hal process statistics collected during a 4782 * scan so it can provide calibrated noise floor data. 4783 */ 4784 ath_hal_process_noisefloor(ah); 4785 /* 4786 * Reset rssi stats; maybe not the best place... 4787 */ 4788 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 4789 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 4790 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 4791 } else { 4792 ath_hal_intrset(ah, 4793 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4794 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4795 } 4796 done: 4797 /* 4798 * Invoke the parent method to complete the work. 4799 */ 4800 error = sc->sc_newstate(ic, nstate, arg); 4801 /* 4802 * Finally, start any timers. 4803 */ 4804 if (nstate == IEEE80211_S_RUN) { 4805 /* start periodic recalibration timer */ 4806 callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz, 4807 ath_calibrate, sc); 4808 } else if (nstate == IEEE80211_S_SCAN) { 4809 /* start ap/neighbor scan timer */ 4810 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4811 ath_next_scan, sc); 4812 } 4813 bad: 4814 return error; 4815 } 4816 4817 /* 4818 * Allocate a key cache slot to the station so we can 4819 * setup a mapping from key index to node. The key cache 4820 * slot is needed for managing antenna state and for 4821 * compression when stations do not use crypto. We do 4822 * it uniliaterally here; if crypto is employed this slot 4823 * will be reassigned. 4824 */ 4825 static void 4826 ath_setup_stationkey(struct ieee80211_node *ni) 4827 { 4828 struct ieee80211com *ic = ni->ni_ic; 4829 struct ath_softc *sc = ic->ic_ifp->if_softc; 4830 ieee80211_keyix keyix, rxkeyix; 4831 4832 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4833 /* 4834 * Key cache is full; we'll fall back to doing 4835 * the more expensive lookup in software. Note 4836 * this also means no h/w compression. 4837 */ 4838 /* XXX msg+statistic */ 4839 } else { 4840 /* XXX locking? */ 4841 ni->ni_ucastkey.wk_keyix = keyix; 4842 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4843 /* NB: this will create a pass-thru key entry */ 4844 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4845 } 4846 } 4847 4848 /* 4849 * Setup driver-specific state for a newly associated node. 4850 * Note that we're called also on a re-associate, the isnew 4851 * param tells us if this is the first time or not. 4852 */ 4853 static void 4854 ath_newassoc(struct ieee80211_node *ni, int isnew) 4855 { 4856 struct ieee80211com *ic = ni->ni_ic; 4857 struct ath_softc *sc = ic->ic_ifp->if_softc; 4858 4859 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4860 if (isnew && 4861 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4862 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4863 ("new assoc with a unicast key already setup (keyix %u)", 4864 ni->ni_ucastkey.wk_keyix)); 4865 ath_setup_stationkey(ni); 4866 } 4867 } 4868 4869 static int 4870 ath_getchannels(struct ath_softc *sc, u_int cc, 4871 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4872 { 4873 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 4874 struct ieee80211com *ic = &sc->sc_ic; 4875 struct ifnet *ifp = &sc->sc_if; 4876 struct ath_hal *ah = sc->sc_ah; 4877 HAL_CHANNEL *chans; 4878 int i, ix, nchan; 4879 4880 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4881 M_TEMP, M_NOWAIT); 4882 if (chans == NULL) { 4883 if_printf(ifp, "unable to allocate channel table\n"); 4884 return ENOMEM; 4885 } 4886 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4887 NULL, 0, NULL, 4888 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4889 u_int32_t rd; 4890 4891 (void)ath_hal_getregdomain(ah, &rd); 4892 if_printf(ifp, "unable to collect channel list from hal; " 4893 "regdomain likely %u country code %u\n", rd, cc); 4894 free(chans, M_TEMP); 4895 return EINVAL; 4896 } 4897 4898 /* 4899 * Convert HAL channels to ieee80211 ones and insert 4900 * them in the table according to their channel number. 4901 */ 4902 for (i = 0; i < nchan; i++) { 4903 HAL_CHANNEL *c = &chans[i]; 4904 u_int16_t flags; 4905 4906 ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags); 4907 if (ix > IEEE80211_CHAN_MAX) { 4908 if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n", 4909 ix, c->channel, c->channelFlags); 4910 continue; 4911 } 4912 if (ix < 0) { 4913 /* XXX can't handle stuff <2400 right now */ 4914 if (bootverbose) 4915 if_printf(ifp, "hal channel %d (%u/%x) " 4916 "cannot be handled; ignored\n", 4917 ix, c->channel, c->channelFlags); 4918 continue; 4919 } 4920 /* 4921 * Calculate net80211 flags; most are compatible 4922 * but some need massaging. Note the static turbo 4923 * conversion can be removed once net80211 is updated 4924 * to understand static vs. dynamic turbo. 4925 */ 4926 flags = c->channelFlags & COMPAT; 4927 if (c->channelFlags & CHANNEL_STURBO) 4928 flags |= IEEE80211_CHAN_TURBO; 4929 if (ic->ic_channels[ix].ic_freq == 0) { 4930 ic->ic_channels[ix].ic_freq = c->channel; 4931 ic->ic_channels[ix].ic_flags = flags; 4932 } else { 4933 /* channels overlap; e.g. 11g and 11b */ 4934 ic->ic_channels[ix].ic_flags |= flags; 4935 } 4936 } 4937 free(chans, M_TEMP); 4938 return 0; 4939 #undef COMPAT 4940 } 4941 4942 static void 4943 ath_led_done(void *arg) 4944 { 4945 struct ath_softc *sc = arg; 4946 4947 sc->sc_blinking = 0; 4948 } 4949 4950 /* 4951 * Turn the LED off: flip the pin and then set a timer so no 4952 * update will happen for the specified duration. 4953 */ 4954 static void 4955 ath_led_off(void *arg) 4956 { 4957 struct ath_softc *sc = arg; 4958 4959 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4960 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4961 } 4962 4963 /* 4964 * Blink the LED according to the specified on/off times. 4965 */ 4966 static void 4967 ath_led_blink(struct ath_softc *sc, int on, int off) 4968 { 4969 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4970 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4971 sc->sc_blinking = 1; 4972 sc->sc_ledoff = off; 4973 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4974 } 4975 4976 static void 4977 ath_led_event(struct ath_softc *sc, int event) 4978 { 4979 4980 sc->sc_ledevent = ticks; /* time of last event */ 4981 if (sc->sc_blinking) /* don't interrupt active blink */ 4982 return; 4983 switch (event) { 4984 case ATH_LED_POLL: 4985 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4986 sc->sc_hwmap[0].ledoff); 4987 break; 4988 case ATH_LED_TX: 4989 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4990 sc->sc_hwmap[sc->sc_txrate].ledoff); 4991 break; 4992 case ATH_LED_RX: 4993 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 4994 sc->sc_hwmap[sc->sc_rxrate].ledoff); 4995 break; 4996 } 4997 } 4998 4999 static void 5000 ath_update_txpow(struct ath_softc *sc) 5001 { 5002 #define COMPAT (CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE) 5003 struct ieee80211com *ic = &sc->sc_ic; 5004 struct ath_hal *ah = sc->sc_ah; 5005 u_int32_t txpow; 5006 5007 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 5008 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 5009 /* read back in case value is clamped */ 5010 (void)ath_hal_gettxpowlimit(ah, &txpow); 5011 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 5012 } 5013 /* 5014 * Fetch max tx power level for status requests. 5015 */ 5016 (void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 5017 ic->ic_bss->ni_txpower = txpow; 5018 } 5019 5020 static void 5021 rate_setup(struct ath_softc *sc, 5022 const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs) 5023 { 5024 int i, maxrates; 5025 5026 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 5027 DPRINTF(sc, ATH_DEBUG_ANY, 5028 "%s: rate table too small (%u > %u)\n", 5029 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 5030 maxrates = IEEE80211_RATE_MAXSIZE; 5031 } else 5032 maxrates = rt->rateCount; 5033 for (i = 0; i < maxrates; i++) 5034 rs->rs_rates[i] = rt->info[i].dot11Rate; 5035 rs->rs_nrates = maxrates; 5036 } 5037 5038 static int 5039 ath_rate_setup(struct ath_softc *sc, u_int mode) 5040 { 5041 struct ath_hal *ah = sc->sc_ah; 5042 struct ieee80211com *ic = &sc->sc_ic; 5043 const HAL_RATE_TABLE *rt; 5044 5045 switch (mode) { 5046 case IEEE80211_MODE_11A: 5047 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5048 break; 5049 case IEEE80211_MODE_11B: 5050 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5051 break; 5052 case IEEE80211_MODE_11G: 5053 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5054 break; 5055 case IEEE80211_MODE_TURBO_A: 5056 /* XXX until static/dynamic turbo is fixed */ 5057 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5058 break; 5059 case IEEE80211_MODE_TURBO_G: 5060 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5061 break; 5062 default: 5063 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5064 __func__, mode); 5065 return 0; 5066 } 5067 sc->sc_rates[mode] = rt; 5068 if (rt != NULL) { 5069 rate_setup(sc, rt, &ic->ic_sup_rates[mode]); 5070 return 1; 5071 } else 5072 return 0; 5073 } 5074 5075 static void 5076 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5077 { 5078 #define N(a) (sizeof(a)/sizeof(a[0])) 5079 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5080 static const struct { 5081 u_int rate; /* tx/rx 802.11 rate */ 5082 u_int16_t timeOn; /* LED on time (ms) */ 5083 u_int16_t timeOff; /* LED off time (ms) */ 5084 } blinkrates[] = { 5085 { 108, 40, 10 }, 5086 { 96, 44, 11 }, 5087 { 72, 50, 13 }, 5088 { 48, 57, 14 }, 5089 { 36, 67, 16 }, 5090 { 24, 80, 20 }, 5091 { 22, 100, 25 }, 5092 { 18, 133, 34 }, 5093 { 12, 160, 40 }, 5094 { 10, 200, 50 }, 5095 { 6, 240, 58 }, 5096 { 4, 267, 66 }, 5097 { 2, 400, 100 }, 5098 { 0, 500, 130 }, 5099 }; 5100 const HAL_RATE_TABLE *rt; 5101 int i, j; 5102 5103 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5104 rt = sc->sc_rates[mode]; 5105 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5106 for (i = 0; i < rt->rateCount; i++) 5107 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 5108 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5109 for (i = 0; i < 32; i++) { 5110 u_int8_t ix = rt->rateCodeToIndex[i]; 5111 if (ix == 0xff) { 5112 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5113 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5114 continue; 5115 } 5116 sc->sc_hwmap[i].ieeerate = 5117 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 5118 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5119 if (rt->info[ix].shortPreamble || 5120 rt->info[ix].phy == IEEE80211_T_OFDM) 5121 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5122 /* NB: receive frames include FCS */ 5123 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 5124 IEEE80211_RADIOTAP_F_FCS; 5125 /* setup blink rate table to avoid per-packet lookup */ 5126 for (j = 0; j < N(blinkrates)-1; j++) 5127 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5128 break; 5129 /* NB: this uses the last entry if the rate isn't found */ 5130 /* XXX beware of overlow */ 5131 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5132 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5133 } 5134 sc->sc_currates = rt; 5135 sc->sc_curmode = mode; 5136 /* 5137 * All protection frames are transmited at 2Mb/s for 5138 * 11g, otherwise at 1Mb/s. 5139 */ 5140 if (mode == IEEE80211_MODE_11G) 5141 sc->sc_protrix = ath_tx_findrix(rt, 2*2); 5142 else 5143 sc->sc_protrix = ath_tx_findrix(rt, 2*1); 5144 /* rate index used to send management frames */ 5145 sc->sc_minrateix = 0; 5146 /* 5147 * Setup multicast rate state. 5148 */ 5149 /* XXX layering violation */ 5150 sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate); 5151 sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate; 5152 /* NB: caller is responsible for reseting rate control state */ 5153 #undef N 5154 } 5155 5156 #ifdef AR_DEBUG 5157 static void 5158 ath_printrxbuf(struct ath_buf *bf, int done) 5159 { 5160 struct ath_desc *ds; 5161 int i; 5162 5163 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5164 printf("R%d (%p %" PRIx64 5165 ") %08x %08x %08x %08x %08x %08x %02x %02x %c\n", i, ds, 5166 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5167 ds->ds_link, ds->ds_data, 5168 ds->ds_ctl0, ds->ds_ctl1, 5169 ds->ds_hw[0], ds->ds_hw[1], 5170 ds->ds_rxstat.rs_status, ds->ds_rxstat.rs_keyix, 5171 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 5172 } 5173 } 5174 5175 static void 5176 ath_printtxbuf(struct ath_buf *bf, int done) 5177 { 5178 struct ath_desc *ds; 5179 int i; 5180 5181 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 5182 printf("T%d (%p %" PRIx64 5183 ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 5184 i, ds, 5185 (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i, 5186 ds->ds_link, ds->ds_data, 5187 ds->ds_ctl0, ds->ds_ctl1, 5188 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 5189 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 5190 } 5191 } 5192 #endif /* AR_DEBUG */ 5193 5194 static void 5195 ath_watchdog(struct ifnet *ifp) 5196 { 5197 struct ath_softc *sc = ifp->if_softc; 5198 struct ieee80211com *ic = &sc->sc_ic; 5199 struct ath_txq *axq; 5200 int i; 5201 5202 ifp->if_timer = 0; 5203 if ((ifp->if_flags & IFF_RUNNING) == 0 || 5204 !device_is_active(sc->sc_dev)) 5205 return; 5206 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 5207 if (!ATH_TXQ_SETUP(sc, i)) 5208 continue; 5209 axq = &sc->sc_txq[i]; 5210 ATH_TXQ_LOCK(axq); 5211 if (axq->axq_timer == 0) 5212 ; 5213 else if (--axq->axq_timer == 0) { 5214 ATH_TXQ_UNLOCK(axq); 5215 if_printf(ifp, "device timeout (txq %d, " 5216 "txintrperiod %d)\n", i, sc->sc_txintrperiod); 5217 if (sc->sc_txintrperiod > 1) 5218 sc->sc_txintrperiod--; 5219 ath_reset(ifp); 5220 ifp->if_oerrors++; 5221 sc->sc_stats.ast_watchdog++; 5222 break; 5223 } else 5224 ifp->if_timer = 1; 5225 ATH_TXQ_UNLOCK(axq); 5226 } 5227 ieee80211_watchdog(ic); 5228 } 5229 5230 /* 5231 * Diagnostic interface to the HAL. This is used by various 5232 * tools to do things like retrieve register contents for 5233 * debugging. The mechanism is intentionally opaque so that 5234 * it can change frequently w/o concern for compatiblity. 5235 */ 5236 static int 5237 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5238 { 5239 struct ath_hal *ah = sc->sc_ah; 5240 u_int id = ad->ad_id & ATH_DIAG_ID; 5241 void *indata = NULL; 5242 void *outdata = NULL; 5243 u_int32_t insize = ad->ad_in_size; 5244 u_int32_t outsize = ad->ad_out_size; 5245 int error = 0; 5246 5247 if (ad->ad_id & ATH_DIAG_IN) { 5248 /* 5249 * Copy in data. 5250 */ 5251 indata = malloc(insize, M_TEMP, M_NOWAIT); 5252 if (indata == NULL) { 5253 error = ENOMEM; 5254 goto bad; 5255 } 5256 error = copyin(ad->ad_in_data, indata, insize); 5257 if (error) 5258 goto bad; 5259 } 5260 if (ad->ad_id & ATH_DIAG_DYN) { 5261 /* 5262 * Allocate a buffer for the results (otherwise the HAL 5263 * returns a pointer to a buffer where we can read the 5264 * results). Note that we depend on the HAL leaving this 5265 * pointer for us to use below in reclaiming the buffer; 5266 * may want to be more defensive. 5267 */ 5268 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5269 if (outdata == NULL) { 5270 error = ENOMEM; 5271 goto bad; 5272 } 5273 } 5274 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5275 if (outsize < ad->ad_out_size) 5276 ad->ad_out_size = outsize; 5277 if (outdata != NULL) 5278 error = copyout(outdata, ad->ad_out_data, 5279 ad->ad_out_size); 5280 } else { 5281 error = EINVAL; 5282 } 5283 bad: 5284 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5285 free(indata, M_TEMP); 5286 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5287 free(outdata, M_TEMP); 5288 return error; 5289 } 5290 5291 static int 5292 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data) 5293 { 5294 #define IS_RUNNING(ifp) \ 5295 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 5296 struct ath_softc *sc = ifp->if_softc; 5297 struct ieee80211com *ic = &sc->sc_ic; 5298 struct ifreq *ifr = (struct ifreq *)data; 5299 int error = 0; 5300 5301 ATH_LOCK(sc); 5302 switch (cmd) { 5303 case SIOCSIFFLAGS: 5304 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 5305 break; 5306 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { 5307 case IFF_UP|IFF_RUNNING: 5308 /* 5309 * To avoid rescanning another access point, 5310 * do not call ath_init() here. Instead, 5311 * only reflect promisc mode settings. 5312 */ 5313 ath_mode_init(sc); 5314 break; 5315 case IFF_UP: 5316 /* 5317 * Beware of being called during attach/detach 5318 * to reset promiscuous mode. In that case we 5319 * will still be marked UP but not RUNNING. 5320 * However trying to re-init the interface 5321 * is the wrong thing to do as we've already 5322 * torn down much of our state. There's 5323 * probably a better way to deal with this. 5324 */ 5325 error = ath_init(sc); 5326 break; 5327 case IFF_RUNNING: 5328 ath_stop_locked(ifp, 1); 5329 break; 5330 case 0: 5331 break; 5332 } 5333 break; 5334 case SIOCADDMULTI: 5335 case SIOCDELMULTI: 5336 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 5337 if (ifp->if_flags & IFF_RUNNING) 5338 ath_mode_init(sc); 5339 error = 0; 5340 } 5341 break; 5342 case SIOCGATHSTATS: 5343 /* NB: embed these numbers to get a consistent view */ 5344 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5345 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5346 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 5347 ATH_UNLOCK(sc); 5348 /* 5349 * NB: Drop the softc lock in case of a page fault; 5350 * we'll accept any potential inconsisentcy in the 5351 * statistics. The alternative is to copy the data 5352 * to a local structure. 5353 */ 5354 return copyout(&sc->sc_stats, 5355 ifr->ifr_data, sizeof (sc->sc_stats)); 5356 case SIOCGATHDIAG: 5357 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5358 break; 5359 default: 5360 error = ieee80211_ioctl(ic, cmd, data); 5361 if (error != ENETRESET) 5362 ; 5363 else if (IS_RUNNING(ifp) && 5364 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 5365 error = ath_init(sc); 5366 else 5367 error = 0; 5368 break; 5369 } 5370 ATH_UNLOCK(sc); 5371 return error; 5372 #undef IS_RUNNING 5373 } 5374 5375 static void 5376 ath_bpfattach(struct ath_softc *sc) 5377 { 5378 struct ifnet *ifp = &sc->sc_if; 5379 5380 bpf_attach2(ifp, DLT_IEEE802_11_RADIO, 5381 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 5382 &sc->sc_drvbpf); 5383 5384 /* 5385 * Initialize constant fields. 5386 * XXX make header lengths a multiple of 32-bits so subsequent 5387 * headers are properly aligned; this is a kludge to keep 5388 * certain applications happy. 5389 * 5390 * NB: the channel is setup each time we transition to the 5391 * RUN state to avoid filling it in for each frame. 5392 */ 5393 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 5394 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 5395 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 5396 5397 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 5398 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 5399 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 5400 } 5401 5402 /* 5403 * Announce various information on device/driver attach. 5404 */ 5405 static void 5406 ath_announce(struct ath_softc *sc) 5407 { 5408 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 5409 struct ifnet *ifp = &sc->sc_if; 5410 struct ath_hal *ah = sc->sc_ah; 5411 u_int modes, cc; 5412 5413 if_printf(ifp, "mac %d.%d phy %d.%d", 5414 ah->ah_macVersion, ah->ah_macRev, 5415 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5416 /* 5417 * Print radio revision(s). We check the wireless modes 5418 * to avoid falsely printing revs for inoperable parts. 5419 * Dual-band radio revs are returned in the 5 GHz rev number. 5420 */ 5421 ath_hal_getcountrycode(ah, &cc); 5422 modes = ath_hal_getwirelessmodes(ah, cc); 5423 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 5424 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 5425 printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d", 5426 ah->ah_analog5GhzRev >> 4, 5427 ah->ah_analog5GhzRev & 0xf, 5428 ah->ah_analog2GhzRev >> 4, 5429 ah->ah_analog2GhzRev & 0xf); 5430 else 5431 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5432 ah->ah_analog5GhzRev & 0xf); 5433 } else 5434 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 5435 ah->ah_analog5GhzRev & 0xf); 5436 printf("\n"); 5437 if (bootverbose) { 5438 int i; 5439 for (i = 0; i <= WME_AC_VO; i++) { 5440 struct ath_txq *txq = sc->sc_ac2q[i]; 5441 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5442 txq->axq_qnum, ieee80211_wme_acnames[i]); 5443 } 5444 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5445 sc->sc_cabq->axq_qnum); 5446 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5447 } 5448 if (ath_rxbuf != ATH_RXBUF) 5449 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5450 if (ath_txbuf != ATH_TXBUF) 5451 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5452 #undef HAL_MODE_DUALBAND 5453 } 5454