1 /* $NetBSD: ath.c,v 1.66 2005/12/24 20:27:29 perry Exp $ */ 2 3 /*- 4 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer, 12 * without modification. 13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 15 * redistribution must be conditioned upon including a substantially 16 * similar Disclaimer requirement for further binary redistribution. 17 * 3. Neither the names of the above-listed copyright holders nor the names 18 * of any contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * Alternatively, this software may be distributed under the terms of the 22 * GNU General Public License ("GPL") version 2 as published by the Free 23 * Software Foundation. 24 * 25 * NO WARRANTY 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 30 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 31 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 34 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 36 * THE POSSIBILITY OF SUCH DAMAGES. 37 */ 38 39 #include <sys/cdefs.h> 40 #ifdef __FreeBSD__ 41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $"); 42 #endif 43 #ifdef __NetBSD__ 44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.66 2005/12/24 20:27:29 perry Exp $"); 45 #endif 46 47 /* 48 * Driver for the Atheros Wireless LAN controller. 49 * 50 * This software is derived from work of Atsushi Onoe; his contribution 51 * is greatly appreciated. 52 */ 53 54 #include "opt_inet.h" 55 56 #ifdef __NetBSD__ 57 #include "bpfilter.h" 58 #endif /* __NetBSD__ */ 59 60 #include <sys/param.h> 61 #include <sys/reboot.h> 62 #include <sys/systm.h> 63 #include <sys/types.h> 64 #include <sys/sysctl.h> 65 #include <sys/mbuf.h> 66 #include <sys/malloc.h> 67 #include <sys/lock.h> 68 #include <sys/kernel.h> 69 #include <sys/socket.h> 70 #include <sys/sockio.h> 71 #include <sys/errno.h> 72 #include <sys/callout.h> 73 #include <machine/bus.h> 74 #include <sys/endian.h> 75 76 #include <machine/bus.h> 77 78 #include <net/if.h> 79 #include <net/if_dl.h> 80 #include <net/if_media.h> 81 #include <net/if_types.h> 82 #include <net/if_arp.h> 83 #include <net/if_ether.h> 84 #include <net/if_llc.h> 85 86 #include <net80211/ieee80211_netbsd.h> 87 #include <net80211/ieee80211_var.h> 88 89 #if NBPFILTER > 0 90 #include <net/bpf.h> 91 #endif 92 93 #ifdef INET 94 #include <netinet/in.h> 95 #endif 96 97 #include <sys/device.h> 98 #include <dev/ic/ath_netbsd.h> 99 100 #define AR_DEBUG 101 #include <dev/ic/athvar.h> 102 #include <contrib/dev/ic/athhal_desc.h> 103 #include <contrib/dev/ic/athhal_devid.h> /* XXX for softled */ 104 105 /* unaligned little endian access */ 106 #define LE_READ_2(p) \ 107 ((u_int16_t) \ 108 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8))) 109 #define LE_READ_4(p) \ 110 ((u_int32_t) \ 111 ((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \ 112 (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24))) 113 114 enum { 115 ATH_LED_TX, 116 ATH_LED_RX, 117 ATH_LED_POLL, 118 }; 119 120 static int ath_ifinit(struct ifnet *); 121 static int ath_init(struct ath_softc *); 122 static void ath_stop_locked(struct ifnet *, int); 123 static void ath_stop(struct ifnet *, int); 124 static void ath_start(struct ifnet *); 125 static int ath_media_change(struct ifnet *); 126 static void ath_watchdog(struct ifnet *); 127 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 128 static void ath_fatal_proc(void *, int); 129 static void ath_rxorn_proc(void *, int); 130 static void ath_bmiss_proc(void *, int); 131 static int ath_key_alloc(struct ieee80211com *, 132 const struct ieee80211_key *, 133 ieee80211_keyix *, ieee80211_keyix *); 134 static int ath_key_delete(struct ieee80211com *, 135 const struct ieee80211_key *); 136 static int ath_key_set(struct ieee80211com *, const struct ieee80211_key *, 137 const u_int8_t mac[IEEE80211_ADDR_LEN]); 138 static void ath_key_update_begin(struct ieee80211com *); 139 static void ath_key_update_end(struct ieee80211com *); 140 static void ath_mode_init(struct ath_softc *); 141 static void ath_setslottime(struct ath_softc *); 142 static void ath_updateslot(struct ifnet *); 143 static int ath_beaconq_setup(struct ath_hal *); 144 static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *); 145 static void ath_beacon_setup(struct ath_softc *, struct ath_buf *); 146 static void ath_beacon_proc(void *, int); 147 static void ath_bstuck_proc(void *, int); 148 static void ath_beacon_free(struct ath_softc *); 149 static void ath_beacon_config(struct ath_softc *); 150 static void ath_descdma_cleanup(struct ath_softc *sc, 151 struct ath_descdma *, ath_bufhead *); 152 static int ath_desc_alloc(struct ath_softc *); 153 static void ath_desc_free(struct ath_softc *); 154 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *); 155 static void ath_node_free(struct ieee80211_node *); 156 static u_int8_t ath_node_getrssi(const struct ieee80211_node *); 157 static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *); 158 static void ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 159 struct ieee80211_node *ni, 160 int subtype, int rssi, u_int32_t rstamp); 161 static void ath_setdefantenna(struct ath_softc *, u_int); 162 static void ath_rx_proc(void *, int); 163 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 164 static int ath_tx_setup(struct ath_softc *, int, int); 165 static int ath_wme_update(struct ieee80211com *); 166 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 167 static void ath_tx_cleanup(struct ath_softc *); 168 static int ath_tx_start(struct ath_softc *, struct ieee80211_node *, 169 struct ath_buf *, struct mbuf *); 170 static void ath_tx_proc_q0(void *, int); 171 static void ath_tx_proc_q0123(void *, int); 172 static void ath_tx_proc(void *, int); 173 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 174 static void ath_draintxq(struct ath_softc *); 175 static void ath_stoprecv(struct ath_softc *); 176 static int ath_startrecv(struct ath_softc *); 177 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 178 static void ath_next_scan(void *); 179 static void ath_calibrate(void *); 180 static int ath_newstate(struct ieee80211com *, enum ieee80211_state, int); 181 static void ath_setup_stationkey(struct ieee80211_node *); 182 static void ath_newassoc(struct ieee80211_node *, int); 183 static int ath_getchannels(struct ath_softc *, u_int cc, 184 HAL_BOOL outdoor, HAL_BOOL xchanmode); 185 static void ath_led_event(struct ath_softc *, int); 186 static void ath_update_txpow(struct ath_softc *); 187 188 static int ath_rate_setup(struct ath_softc *, u_int mode); 189 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 190 191 #ifdef __NetBSD__ 192 int ath_enable(struct ath_softc *); 193 void ath_disable(struct ath_softc *); 194 void ath_power(int, void *); 195 #endif 196 197 #if NBPFILTER > 0 198 static void ath_bpfattach(struct ath_softc *); 199 #endif 200 static void ath_announce(struct ath_softc *); 201 202 int ath_dwelltime = 200; /* 5 channels/second */ 203 int ath_calinterval = 30; /* calibrate every 30 secs */ 204 int ath_outdoor = AH_TRUE; /* outdoor operation */ 205 int ath_xchanmode = AH_TRUE; /* enable extended channels */ 206 int ath_countrycode = CTRY_DEFAULT; /* country code */ 207 int ath_regdomain = 0; /* regulatory domain */ 208 int ath_debug = 0; 209 210 #ifdef AR_DEBUG 211 enum { 212 ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */ 213 ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */ 214 ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */ 215 ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */ 216 ATH_DEBUG_RATE = 0x00000010, /* rate control */ 217 ATH_DEBUG_RESET = 0x00000020, /* reset processing */ 218 ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */ 219 ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */ 220 ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */ 221 ATH_DEBUG_INTR = 0x00001000, /* ISR */ 222 ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */ 223 ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */ 224 ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */ 225 ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */ 226 ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */ 227 ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */ 228 ATH_DEBUG_NODE = 0x00080000, /* node management */ 229 ATH_DEBUG_LED = 0x00100000, /* led management */ 230 ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */ 231 ATH_DEBUG_ANY = 0xffffffff 232 }; 233 #define IFF_DUMPPKTS(sc, m) \ 234 ((sc->sc_debug & (m)) || \ 235 (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 236 #define DPRINTF(sc, m, fmt, ...) do { \ 237 if (sc->sc_debug & (m)) \ 238 printf(fmt, __VA_ARGS__); \ 239 } while (0) 240 #define KEYPRINTF(sc, ix, hk, mac) do { \ 241 if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \ 242 ath_keyprint(__func__, ix, hk, mac); \ 243 } while (0) 244 static void ath_printrxbuf(struct ath_buf *bf, int); 245 static void ath_printtxbuf(struct ath_buf *bf, int); 246 #else 247 #define IFF_DUMPPKTS(sc, m) \ 248 ((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 249 #define DPRINTF(m, fmt, ...) 250 #define KEYPRINTF(sc, k, ix, mac) 251 #endif 252 253 #ifdef __NetBSD__ 254 int 255 ath_activate(struct device *self, enum devact act) 256 { 257 struct ath_softc *sc = (struct ath_softc *)self; 258 int rv = 0, s; 259 260 s = splnet(); 261 switch (act) { 262 case DVACT_ACTIVATE: 263 rv = EOPNOTSUPP; 264 break; 265 case DVACT_DEACTIVATE: 266 if_deactivate(&sc->sc_if); 267 break; 268 } 269 splx(s); 270 return rv; 271 } 272 273 int 274 ath_enable(struct ath_softc *sc) 275 { 276 if (ATH_IS_ENABLED(sc) == 0) { 277 if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) { 278 printf("%s: device enable failed\n", 279 sc->sc_dev.dv_xname); 280 return (EIO); 281 } 282 sc->sc_flags |= ATH_ENABLED; 283 } 284 return (0); 285 } 286 287 void 288 ath_disable(struct ath_softc *sc) 289 { 290 if (!ATH_IS_ENABLED(sc)) 291 return; 292 if (sc->sc_disable != NULL) 293 (*sc->sc_disable)(sc); 294 sc->sc_flags &= ~ATH_ENABLED; 295 } 296 #endif /* __NetBSD__ */ 297 298 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 299 300 int 301 ath_attach(u_int16_t devid, struct ath_softc *sc) 302 { 303 struct ifnet *ifp = &sc->sc_if; 304 struct ieee80211com *ic = &sc->sc_ic; 305 struct ath_hal *ah = NULL; 306 HAL_STATUS status; 307 int error = 0, i; 308 309 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 310 311 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 312 313 ah = ath_hal_attach(devid, sc, sc->sc_st, ATH_BUSHANDLE2HAL(sc->sc_sh), 314 &status); 315 if (ah == NULL) { 316 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 317 status); 318 error = ENXIO; 319 goto bad; 320 } 321 if (ah->ah_abi != HAL_ABI_VERSION) { 322 if_printf(ifp, "HAL ABI mismatch detected " 323 "(HAL:0x%x != driver:0x%x)\n", 324 ah->ah_abi, HAL_ABI_VERSION); 325 error = ENXIO; 326 goto bad; 327 } 328 sc->sc_ah = ah; 329 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 330 331 /* 332 * Check if the MAC has multi-rate retry support. 333 * We do this by trying to setup a fake extended 334 * descriptor. MAC's that don't have support will 335 * return false w/o doing anything. MAC's that do 336 * support it will return true w/o doing anything. 337 */ 338 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 339 340 /* 341 * Check if the device has hardware counters for PHY 342 * errors. If so we need to enable the MIB interrupt 343 * so we can act on stat triggers. 344 */ 345 if (ath_hal_hwphycounters(ah)) 346 sc->sc_needmib = 1; 347 348 /* 349 * Get the hardware key cache size. 350 */ 351 sc->sc_keymax = ath_hal_keycachesize(ah); 352 if (sc->sc_keymax > ATH_KEYMAX) { 353 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 354 ATH_KEYMAX, sc->sc_keymax); 355 sc->sc_keymax = ATH_KEYMAX; 356 } 357 /* 358 * Reset the key cache since some parts do not 359 * reset the contents on initial power up. 360 */ 361 for (i = 0; i < sc->sc_keymax; i++) 362 ath_hal_keyreset(ah, i); 363 /* 364 * Mark key cache slots associated with global keys 365 * as in use. If we knew TKIP was not to be used we 366 * could leave the +32, +64, and +32+64 slots free. 367 * XXX only for splitmic. 368 */ 369 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 370 setbit(sc->sc_keymap, i); 371 setbit(sc->sc_keymap, i+32); 372 setbit(sc->sc_keymap, i+64); 373 setbit(sc->sc_keymap, i+32+64); 374 } 375 376 /* 377 * Collect the channel list using the default country 378 * code and including outdoor channels. The 802.11 layer 379 * is resposible for filtering this list based on settings 380 * like the phy mode. 381 */ 382 error = ath_getchannels(sc, ath_countrycode, 383 ath_outdoor, ath_xchanmode); 384 if (error != 0) 385 goto bad; 386 387 /* 388 * Setup rate tables for all potential media types. 389 */ 390 ath_rate_setup(sc, IEEE80211_MODE_11A); 391 ath_rate_setup(sc, IEEE80211_MODE_11B); 392 ath_rate_setup(sc, IEEE80211_MODE_11G); 393 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 394 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 395 /* NB: setup here so ath_rate_update is happy */ 396 ath_setcurmode(sc, IEEE80211_MODE_11A); 397 398 /* 399 * Allocate tx+rx descriptors and populate the lists. 400 */ 401 error = ath_desc_alloc(sc); 402 if (error != 0) { 403 if_printf(ifp, "failed to allocate descriptors: %d\n", error); 404 goto bad; 405 } 406 ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 407 ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE); 408 409 ATH_TXBUF_LOCK_INIT(sc); 410 411 TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc); 412 TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc); 413 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 414 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 415 TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc); 416 417 /* 418 * Allocate hardware transmit queues: one queue for 419 * beacon frames and one data queue for each QoS 420 * priority. Note that the hal handles reseting 421 * these queues at the needed time. 422 * 423 * XXX PS-Poll 424 */ 425 sc->sc_bhalq = ath_beaconq_setup(ah); 426 if (sc->sc_bhalq == (u_int) -1) { 427 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 428 error = EIO; 429 goto bad2; 430 } 431 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 432 if (sc->sc_cabq == NULL) { 433 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 434 error = EIO; 435 goto bad2; 436 } 437 /* NB: insure BK queue is the lowest priority h/w queue */ 438 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 439 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 440 ieee80211_wme_acnames[WME_AC_BK]); 441 error = EIO; 442 goto bad2; 443 } 444 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 445 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 446 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 447 /* 448 * Not enough hardware tx queues to properly do WME; 449 * just punt and assign them all to the same h/w queue. 450 * We could do a better job of this if, for example, 451 * we allocate queues when we switch from station to 452 * AP mode. 453 */ 454 if (sc->sc_ac2q[WME_AC_VI] != NULL) 455 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 456 if (sc->sc_ac2q[WME_AC_BE] != NULL) 457 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 458 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 459 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 460 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 461 } 462 463 /* 464 * Special case certain configurations. Note the 465 * CAB queue is handled by these specially so don't 466 * include them when checking the txq setup mask. 467 */ 468 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 469 case 0x01: 470 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 471 break; 472 case 0x0f: 473 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 474 break; 475 default: 476 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 477 break; 478 } 479 480 /* 481 * Setup rate control. Some rate control modules 482 * call back to change the anntena state so expose 483 * the necessary entry points. 484 * XXX maybe belongs in struct ath_ratectrl? 485 */ 486 sc->sc_setdefantenna = ath_setdefantenna; 487 sc->sc_rc = ath_rate_attach(sc); 488 if (sc->sc_rc == NULL) { 489 error = EIO; 490 goto bad2; 491 } 492 493 sc->sc_blinking = 0; 494 sc->sc_ledstate = 1; 495 sc->sc_ledon = 0; /* low true */ 496 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 497 ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE); 498 /* 499 * Auto-enable soft led processing for IBM cards and for 500 * 5211 minipci cards. Users can also manually enable/disable 501 * support with a sysctl. 502 */ 503 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 504 if (sc->sc_softled) { 505 ath_hal_gpioCfgOutput(ah, sc->sc_ledpin); 506 ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon); 507 } 508 509 ifp->if_softc = sc; 510 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 511 ifp->if_start = ath_start; 512 ifp->if_watchdog = ath_watchdog; 513 ifp->if_ioctl = ath_ioctl; 514 ifp->if_init = ath_ifinit; 515 IFQ_SET_READY(&ifp->if_snd); 516 517 ic->ic_ifp = ifp; 518 ic->ic_reset = ath_reset; 519 ic->ic_newassoc = ath_newassoc; 520 ic->ic_updateslot = ath_updateslot; 521 ic->ic_wme.wme_update = ath_wme_update; 522 /* XXX not right but it's not used anywhere important */ 523 ic->ic_phytype = IEEE80211_T_OFDM; 524 ic->ic_opmode = IEEE80211_M_STA; 525 ic->ic_caps = 526 IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 527 | IEEE80211_C_HOSTAP /* hostap mode */ 528 | IEEE80211_C_MONITOR /* monitor mode */ 529 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 530 | IEEE80211_C_SHSLOT /* short slot time supported */ 531 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 532 ; 533 /* 534 * Query the hal to figure out h/w crypto support. 535 */ 536 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 537 ic->ic_caps |= IEEE80211_C_WEP; 538 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 539 ic->ic_caps |= IEEE80211_C_AES; 540 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 541 ic->ic_caps |= IEEE80211_C_AES_CCM; 542 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 543 ic->ic_caps |= IEEE80211_C_CKIP; 544 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 545 ic->ic_caps |= IEEE80211_C_TKIP; 546 /* 547 * Check if h/w does the MIC and/or whether the 548 * separate key cache entries are required to 549 * handle both tx+rx MIC keys. 550 */ 551 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 552 ic->ic_caps |= IEEE80211_C_TKIPMIC; 553 if (ath_hal_tkipsplit(ah)) 554 sc->sc_splitmic = 1; 555 } 556 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 557 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 558 /* 559 * TPC support can be done either with a global cap or 560 * per-packet support. The latter is not available on 561 * all parts. We're a bit pedantic here as all parts 562 * support a global cap. 563 */ 564 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 565 ic->ic_caps |= IEEE80211_C_TXPMGT; 566 567 /* 568 * Mark WME capability only if we have sufficient 569 * hardware queues to do proper priority scheduling. 570 */ 571 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 572 ic->ic_caps |= IEEE80211_C_WME; 573 /* 574 * Check for misc other capabilities. 575 */ 576 if (ath_hal_hasbursting(ah)) 577 ic->ic_caps |= IEEE80211_C_BURST; 578 579 /* 580 * Indicate we need the 802.11 header padded to a 581 * 32-bit boundary for 4-address and QoS frames. 582 */ 583 ic->ic_flags |= IEEE80211_F_DATAPAD; 584 585 /* 586 * Query the hal about antenna support. 587 */ 588 sc->sc_defant = ath_hal_getdefantenna(ah); 589 590 /* 591 * Not all chips have the VEOL support we want to 592 * use with IBSS beacons; check here for it. 593 */ 594 sc->sc_hasveol = ath_hal_hasveol(ah); 595 596 /* get mac address from hardware */ 597 ath_hal_getmac(ah, ic->ic_myaddr); 598 599 if_attach(ifp); 600 /* call MI attach routine. */ 601 ieee80211_ifattach(ic); 602 /* override default methods */ 603 ic->ic_node_alloc = ath_node_alloc; 604 sc->sc_node_free = ic->ic_node_free; 605 ic->ic_node_free = ath_node_free; 606 ic->ic_node_getrssi = ath_node_getrssi; 607 sc->sc_recv_mgmt = ic->ic_recv_mgmt; 608 ic->ic_recv_mgmt = ath_recv_mgmt; 609 sc->sc_newstate = ic->ic_newstate; 610 ic->ic_newstate = ath_newstate; 611 ic->ic_crypto.cs_max_keyix = sc->sc_keymax; 612 ic->ic_crypto.cs_key_alloc = ath_key_alloc; 613 ic->ic_crypto.cs_key_delete = ath_key_delete; 614 ic->ic_crypto.cs_key_set = ath_key_set; 615 ic->ic_crypto.cs_key_update_begin = ath_key_update_begin; 616 ic->ic_crypto.cs_key_update_end = ath_key_update_end; 617 /* complete initialization */ 618 ieee80211_media_init(ic, ath_media_change, ieee80211_media_status); 619 620 #if NBPFILTER > 0 621 ath_bpfattach(sc); 622 #endif 623 624 #ifdef __NetBSD__ 625 sc->sc_flags |= ATH_ATTACHED; 626 /* 627 * Make sure the interface is shutdown during reboot. 628 */ 629 sc->sc_sdhook = shutdownhook_establish(ath_shutdown, sc); 630 if (sc->sc_sdhook == NULL) 631 printf("%s: WARNING: unable to establish shutdown hook\n", 632 sc->sc_dev.dv_xname); 633 sc->sc_powerhook = powerhook_establish(ath_power, sc); 634 if (sc->sc_powerhook == NULL) 635 printf("%s: WARNING: unable to establish power hook\n", 636 sc->sc_dev.dv_xname); 637 #endif 638 639 /* 640 * Setup dynamic sysctl's now that country code and 641 * regdomain are available from the hal. 642 */ 643 ath_sysctlattach(sc); 644 645 ieee80211_announce(ic); 646 ath_announce(sc); 647 return 0; 648 bad2: 649 ath_tx_cleanup(sc); 650 ath_desc_free(sc); 651 bad: 652 if (ah) 653 ath_hal_detach(ah); 654 sc->sc_invalid = 1; 655 return error; 656 } 657 658 int 659 ath_detach(struct ath_softc *sc) 660 { 661 struct ifnet *ifp = &sc->sc_if; 662 int s; 663 664 if ((sc->sc_flags & ATH_ATTACHED) == 0) 665 return (0); 666 667 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 668 __func__, ifp->if_flags); 669 670 s = splnet(); 671 ath_stop(ifp, 1); 672 #if NBPFILTER > 0 673 bpfdetach(ifp); 674 #endif 675 /* 676 * NB: the order of these is important: 677 * o call the 802.11 layer before detaching the hal to 678 * insure callbacks into the driver to delete global 679 * key cache entries can be handled 680 * o reclaim the tx queue data structures after calling 681 * the 802.11 layer as we'll get called back to reclaim 682 * node state and potentially want to use them 683 * o to cleanup the tx queues the hal is called, so detach 684 * it last 685 * Other than that, it's straightforward... 686 */ 687 ieee80211_ifdetach(&sc->sc_ic); 688 ath_rate_detach(sc->sc_rc); 689 ath_desc_free(sc); 690 ath_tx_cleanup(sc); 691 sysctl_teardown(&sc->sc_sysctllog); 692 ath_hal_detach(sc->sc_ah); 693 if_detach(ifp); 694 splx(s); 695 powerhook_disestablish(sc->sc_powerhook); 696 shutdownhook_disestablish(sc->sc_sdhook); 697 698 return 0; 699 } 700 701 #ifdef __NetBSD__ 702 void 703 ath_power(int why, void *arg) 704 { 705 struct ath_softc *sc = arg; 706 int s; 707 708 DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why); 709 710 s = splnet(); 711 switch (why) { 712 case PWR_SUSPEND: 713 case PWR_STANDBY: 714 ath_suspend(sc, why); 715 break; 716 case PWR_RESUME: 717 ath_resume(sc, why); 718 break; 719 case PWR_SOFTSUSPEND: 720 case PWR_SOFTSTANDBY: 721 case PWR_SOFTRESUME: 722 break; 723 } 724 splx(s); 725 } 726 #endif 727 728 void 729 ath_suspend(struct ath_softc *sc, int why) 730 { 731 struct ifnet *ifp = &sc->sc_if; 732 733 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 734 __func__, ifp->if_flags); 735 736 ath_stop(ifp, 1); 737 if (sc->sc_power != NULL) 738 (*sc->sc_power)(sc, why); 739 } 740 741 void 742 ath_resume(struct ath_softc *sc, int why) 743 { 744 struct ifnet *ifp = &sc->sc_if; 745 746 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 747 __func__, ifp->if_flags); 748 749 if (ifp->if_flags & IFF_UP) { 750 ath_init(sc); 751 #if 0 752 (void)ath_intr(sc); 753 #endif 754 if (sc->sc_power != NULL) 755 (*sc->sc_power)(sc, why); 756 if (ifp->if_flags & IFF_RUNNING) 757 ath_start(ifp); 758 } 759 if (sc->sc_softled) { 760 ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin); 761 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 762 } 763 } 764 765 void 766 ath_shutdown(void *arg) 767 { 768 struct ath_softc *sc = arg; 769 770 ath_stop(&sc->sc_if, 1); 771 } 772 773 /* 774 * Interrupt handler. Most of the actual processing is deferred. 775 */ 776 int 777 ath_intr(void *arg) 778 { 779 struct ath_softc *sc = arg; 780 struct ifnet *ifp = &sc->sc_if; 781 struct ath_hal *ah = sc->sc_ah; 782 HAL_INT status; 783 784 if (sc->sc_invalid) { 785 /* 786 * The hardware is not ready/present, don't touch anything. 787 * Note this can happen early on if the IRQ is shared. 788 */ 789 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 790 return 0; 791 } 792 if (!ath_hal_intrpend(ah)) /* shared irq, not for us */ 793 return 0; 794 if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) { 795 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 796 __func__, ifp->if_flags); 797 ath_hal_getisr(ah, &status); /* clear ISR */ 798 ath_hal_intrset(ah, 0); /* disable further intr's */ 799 return 1; /* XXX */ 800 } 801 /* 802 * Figure out the reason(s) for the interrupt. Note 803 * that the hal returns a pseudo-ISR that may include 804 * bits we haven't explicitly enabled so we mask the 805 * value to insure we only process bits we requested. 806 */ 807 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 808 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 809 status &= sc->sc_imask; /* discard unasked for bits */ 810 if (status & HAL_INT_FATAL) { 811 /* 812 * Fatal errors are unrecoverable. Typically 813 * these are caused by DMA errors. Unfortunately 814 * the exact reason is not (presently) returned 815 * by the hal. 816 */ 817 sc->sc_stats.ast_hardware++; 818 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 819 TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask); 820 } else if (status & HAL_INT_RXORN) { 821 sc->sc_stats.ast_rxorn++; 822 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 823 TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask); 824 } else { 825 if (status & HAL_INT_SWBA) { 826 /* 827 * Software beacon alert--time to send a beacon. 828 * Handle beacon transmission directly; deferring 829 * this is too slow to meet timing constraints 830 * under load. 831 */ 832 ath_beacon_proc(sc, 0); 833 } 834 if (status & HAL_INT_RXEOL) { 835 /* 836 * NB: the hardware should re-read the link when 837 * RXE bit is written, but it doesn't work at 838 * least on older hardware revs. 839 */ 840 sc->sc_stats.ast_rxeol++; 841 sc->sc_rxlink = NULL; 842 } 843 if (status & HAL_INT_TXURN) { 844 sc->sc_stats.ast_txurn++; 845 /* bump tx trigger level */ 846 ath_hal_updatetxtriglevel(ah, AH_TRUE); 847 } 848 if (status & HAL_INT_RX) 849 TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask); 850 if (status & HAL_INT_TX) 851 TASK_RUN_OR_ENQUEUE(&sc->sc_txtask); 852 if (status & HAL_INT_BMISS) { 853 sc->sc_stats.ast_bmiss++; 854 TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask); 855 } 856 if (status & HAL_INT_MIB) { 857 sc->sc_stats.ast_mib++; 858 /* 859 * Disable interrupts until we service the MIB 860 * interrupt; otherwise it will continue to fire. 861 */ 862 ath_hal_intrset(ah, 0); 863 /* 864 * Let the hal handle the event. We assume it will 865 * clear whatever condition caused the interrupt. 866 */ 867 ath_hal_mibevent(ah, 868 &ATH_NODE(sc->sc_ic.ic_bss)->an_halstats); 869 ath_hal_intrset(ah, sc->sc_imask); 870 } 871 } 872 return 1; 873 } 874 875 static void 876 ath_fatal_proc(void *arg, int pending) 877 { 878 struct ath_softc *sc = arg; 879 struct ifnet *ifp = &sc->sc_if; 880 881 if_printf(ifp, "hardware error; resetting\n"); 882 ath_reset(ifp); 883 } 884 885 static void 886 ath_rxorn_proc(void *arg, int pending) 887 { 888 struct ath_softc *sc = arg; 889 struct ifnet *ifp = &sc->sc_if; 890 891 if_printf(ifp, "rx FIFO overrun; resetting\n"); 892 ath_reset(ifp); 893 } 894 895 static void 896 ath_bmiss_proc(void *arg, int pending) 897 { 898 struct ath_softc *sc = arg; 899 struct ieee80211com *ic = &sc->sc_ic; 900 901 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 902 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 903 ("unexpect operating mode %u", ic->ic_opmode)); 904 if (ic->ic_state == IEEE80211_S_RUN) { 905 /* 906 * Rather than go directly to scan state, try to 907 * reassociate first. If that fails then the state 908 * machine will drop us into scanning after timing 909 * out waiting for a probe response. 910 */ 911 NET_LOCK_GIANT(); 912 ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); 913 NET_UNLOCK_GIANT(); 914 } 915 } 916 917 static u_int 918 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan) 919 { 920 #define N(a) (sizeof(a) / sizeof(a[0])) 921 static const u_int modeflags[] = { 922 0, /* IEEE80211_MODE_AUTO */ 923 CHANNEL_A, /* IEEE80211_MODE_11A */ 924 CHANNEL_B, /* IEEE80211_MODE_11B */ 925 CHANNEL_PUREG, /* IEEE80211_MODE_11G */ 926 0, /* IEEE80211_MODE_FH */ 927 CHANNEL_T, /* IEEE80211_MODE_TURBO_A */ 928 CHANNEL_108G /* IEEE80211_MODE_TURBO_G */ 929 }; 930 enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan); 931 932 KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode)); 933 KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode)); 934 return modeflags[mode]; 935 #undef N 936 } 937 938 static int 939 ath_ifinit(struct ifnet *ifp) 940 { 941 struct ath_softc *sc = (struct ath_softc *)ifp->if_softc; 942 943 return ath_init(sc); 944 } 945 946 static int 947 ath_init(struct ath_softc *sc) 948 { 949 struct ifnet *ifp = &sc->sc_if; 950 struct ieee80211com *ic = &sc->sc_ic; 951 struct ath_hal *ah = sc->sc_ah; 952 HAL_STATUS status; 953 int error = 0; 954 955 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 956 __func__, ifp->if_flags); 957 958 ATH_LOCK(sc); 959 960 if ((error = ath_enable(sc)) != 0) 961 return error; 962 963 /* 964 * Stop anything previously setup. This is safe 965 * whether this is the first time through or not. 966 */ 967 ath_stop_locked(ifp, 0); 968 969 /* 970 * The basic interface to setting the hardware in a good 971 * state is ``reset''. On return the hardware is known to 972 * be powered up and with interrupts disabled. This must 973 * be followed by initialization of the appropriate bits 974 * and then setup of the interrupt mask. 975 */ 976 sc->sc_curchan.channel = ic->ic_curchan->ic_freq; 977 sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan); 978 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) { 979 if_printf(ifp, "unable to reset hardware; hal status %u\n", 980 status); 981 error = EIO; 982 goto done; 983 } 984 985 /* 986 * This is needed only to setup initial state 987 * but it's best done after a reset. 988 */ 989 ath_update_txpow(sc); 990 /* 991 * Likewise this is set during reset so update 992 * state cached in the driver. 993 */ 994 sc->sc_diversity = ath_hal_getdiversity(ah); 995 996 /* 997 * Setup the hardware after reset: the key cache 998 * is filled as needed and the receive engine is 999 * set going. Frame transmit is handled entirely 1000 * in the frame output path; there's nothing to do 1001 * here except setup the interrupt mask. 1002 */ 1003 if ((error = ath_startrecv(sc)) != 0) { 1004 if_printf(ifp, "unable to start recv logic\n"); 1005 goto done; 1006 } 1007 1008 /* 1009 * Enable interrupts. 1010 */ 1011 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 1012 | HAL_INT_RXEOL | HAL_INT_RXORN 1013 | HAL_INT_FATAL | HAL_INT_GLOBAL; 1014 /* 1015 * Enable MIB interrupts when there are hardware phy counters. 1016 * Note we only do this (at the moment) for station mode. 1017 */ 1018 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 1019 sc->sc_imask |= HAL_INT_MIB; 1020 ath_hal_intrset(ah, sc->sc_imask); 1021 1022 ifp->if_flags |= IFF_RUNNING; 1023 ic->ic_state = IEEE80211_S_INIT; 1024 1025 /* 1026 * The hardware should be ready to go now so it's safe 1027 * to kick the 802.11 state machine as it's likely to 1028 * immediately call back to us to send mgmt frames. 1029 */ 1030 ath_chan_change(sc, ic->ic_curchan); 1031 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1032 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 1033 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 1034 } else 1035 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1036 done: 1037 ATH_UNLOCK(sc); 1038 return error; 1039 } 1040 1041 static void 1042 ath_stop_locked(struct ifnet *ifp, int disable) 1043 { 1044 struct ath_softc *sc = ifp->if_softc; 1045 struct ieee80211com *ic = &sc->sc_ic; 1046 struct ath_hal *ah = sc->sc_ah; 1047 1048 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 1049 __func__, sc->sc_invalid, ifp->if_flags); 1050 1051 ATH_LOCK_ASSERT(sc); 1052 if (ifp->if_flags & IFF_RUNNING) { 1053 /* 1054 * Shutdown the hardware and driver: 1055 * reset 802.11 state machine 1056 * turn off timers 1057 * disable interrupts 1058 * turn off the radio 1059 * clear transmit machinery 1060 * clear receive machinery 1061 * drain and release tx queues 1062 * reclaim beacon resources 1063 * power down hardware 1064 * 1065 * Note that some of this work is not possible if the 1066 * hardware is gone (invalid). 1067 */ 1068 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1069 ifp->if_flags &= ~IFF_RUNNING; 1070 ifp->if_timer = 0; 1071 if (!sc->sc_invalid) { 1072 if (sc->sc_softled) { 1073 callout_stop(&sc->sc_ledtimer); 1074 ath_hal_gpioset(ah, sc->sc_ledpin, 1075 !sc->sc_ledon); 1076 sc->sc_blinking = 0; 1077 } 1078 ath_hal_intrset(ah, 0); 1079 } 1080 ath_draintxq(sc); 1081 if (!sc->sc_invalid) { 1082 ath_stoprecv(sc); 1083 ath_hal_phydisable(ah); 1084 } else 1085 sc->sc_rxlink = NULL; 1086 IF_PURGE(&ifp->if_snd); 1087 ath_beacon_free(sc); 1088 if (disable) 1089 ath_disable(sc); 1090 } 1091 } 1092 1093 static void 1094 ath_stop(struct ifnet *ifp, int disable) 1095 { 1096 struct ath_softc *sc = ifp->if_softc; 1097 1098 ATH_LOCK(sc); 1099 ath_stop_locked(ifp, disable); 1100 if (!sc->sc_invalid) { 1101 /* 1102 * Set the chip in full sleep mode. Note that we are 1103 * careful to do this only when bringing the interface 1104 * completely to a stop. When the chip is in this state 1105 * it must be carefully woken up or references to 1106 * registers in the PCI clock domain may freeze the bus 1107 * (and system). This varies by chip and is mostly an 1108 * issue with newer parts that go to sleep more quickly. 1109 */ 1110 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0); 1111 } 1112 ATH_UNLOCK(sc); 1113 } 1114 1115 /* 1116 * Reset the hardware w/o losing operational state. This is 1117 * basically a more efficient way of doing ath_stop, ath_init, 1118 * followed by state transitions to the current 802.11 1119 * operational state. Used to recover from various errors and 1120 * to reset or reload hardware state. 1121 */ 1122 int 1123 ath_reset(struct ifnet *ifp) 1124 { 1125 struct ath_softc *sc = ifp->if_softc; 1126 struct ieee80211com *ic = &sc->sc_ic; 1127 struct ath_hal *ah = sc->sc_ah; 1128 struct ieee80211_channel *c; 1129 HAL_STATUS status; 1130 1131 /* 1132 * Convert to a HAL channel description with the flags 1133 * constrained to reflect the current operating mode. 1134 */ 1135 c = ic->ic_curchan; 1136 sc->sc_curchan.channel = c->ic_freq; 1137 sc->sc_curchan.channelFlags = ath_chan2flags(ic, c); 1138 1139 ath_hal_intrset(ah, 0); /* disable interrupts */ 1140 ath_draintxq(sc); /* stop xmit side */ 1141 ath_stoprecv(sc); /* stop recv side */ 1142 /* NB: indicate channel change so we do a full reset */ 1143 if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status)) 1144 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 1145 __func__, status); 1146 ath_update_txpow(sc); /* update tx power state */ 1147 sc->sc_diversity = ath_hal_getdiversity(ah); 1148 if (ath_startrecv(sc) != 0) /* restart recv */ 1149 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 1150 /* 1151 * We may be doing a reset in response to an ioctl 1152 * that changes the channel so update any state that 1153 * might change as a result. 1154 */ 1155 ath_chan_change(sc, c); 1156 if (ic->ic_state == IEEE80211_S_RUN) 1157 ath_beacon_config(sc); /* restart beacons */ 1158 ath_hal_intrset(ah, sc->sc_imask); 1159 1160 ath_start(ifp); /* restart xmit */ 1161 return 0; 1162 } 1163 1164 static void 1165 ath_start(struct ifnet *ifp) 1166 { 1167 struct ath_softc *sc = ifp->if_softc; 1168 struct ath_hal *ah = sc->sc_ah; 1169 struct ieee80211com *ic = &sc->sc_ic; 1170 struct ieee80211_node *ni; 1171 struct ath_buf *bf; 1172 struct mbuf *m; 1173 struct ieee80211_frame *wh; 1174 struct ether_header *eh; 1175 1176 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 1177 return; 1178 for (;;) { 1179 /* 1180 * Grab a TX buffer and associated resources. 1181 */ 1182 ATH_TXBUF_LOCK(sc); 1183 bf = STAILQ_FIRST(&sc->sc_txbuf); 1184 if (bf != NULL) 1185 STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list); 1186 ATH_TXBUF_UNLOCK(sc); 1187 if (bf == NULL) { 1188 DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n", 1189 __func__); 1190 sc->sc_stats.ast_tx_qstop++; 1191 ifp->if_flags |= IFF_OACTIVE; 1192 break; 1193 } 1194 /* 1195 * Poll the management queue for frames; they 1196 * have priority over normal data frames. 1197 */ 1198 IF_DEQUEUE(&ic->ic_mgtq, m); 1199 if (m == NULL) { 1200 /* 1201 * No data frames go out unless we're associated. 1202 */ 1203 if (ic->ic_state != IEEE80211_S_RUN) { 1204 DPRINTF(sc, ATH_DEBUG_ANY, 1205 "%s: ignore data packet, state %u\n", 1206 __func__, ic->ic_state); 1207 sc->sc_stats.ast_tx_discard++; 1208 ATH_TXBUF_LOCK(sc); 1209 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1210 ATH_TXBUF_UNLOCK(sc); 1211 break; 1212 } 1213 IFQ_DEQUEUE(&ifp->if_snd, m); /* XXX: LOCK */ 1214 if (m == NULL) { 1215 ATH_TXBUF_LOCK(sc); 1216 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1217 ATH_TXBUF_UNLOCK(sc); 1218 break; 1219 } 1220 /* 1221 * Find the node for the destination so we can do 1222 * things like power save and fast frames aggregation. 1223 */ 1224 if (m->m_len < sizeof(struct ether_header) && 1225 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 1226 ic->ic_stats.is_tx_nobuf++; /* XXX */ 1227 ni = NULL; 1228 goto bad; 1229 } 1230 eh = mtod(m, struct ether_header *); 1231 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1232 if (ni == NULL) { 1233 /* NB: ieee80211_find_txnode does stat+msg */ 1234 m_freem(m); 1235 goto bad; 1236 } 1237 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1238 (m->m_flags & M_PWR_SAV) == 0) { 1239 /* 1240 * Station in power save mode; pass the frame 1241 * to the 802.11 layer and continue. We'll get 1242 * the frame back when the time is right. 1243 */ 1244 ieee80211_pwrsave(ic, ni, m); 1245 goto reclaim; 1246 } 1247 /* calculate priority so we can find the tx queue */ 1248 if (ieee80211_classify(ic, m, ni)) { 1249 DPRINTF(sc, ATH_DEBUG_XMIT, 1250 "%s: discard, classification failure\n", 1251 __func__); 1252 m_freem(m); 1253 goto bad; 1254 } 1255 ifp->if_opackets++; 1256 1257 #if NBPFILTER > 0 1258 if (ifp->if_bpf) 1259 bpf_mtap(ifp->if_bpf, m); 1260 #endif 1261 /* 1262 * Encapsulate the packet in prep for transmission. 1263 */ 1264 m = ieee80211_encap(ic, m, ni); 1265 if (m == NULL) { 1266 DPRINTF(sc, ATH_DEBUG_ANY, 1267 "%s: encapsulation failure\n", 1268 __func__); 1269 sc->sc_stats.ast_tx_encap++; 1270 goto bad; 1271 } 1272 } else { 1273 /* 1274 * Hack! The referenced node pointer is in the 1275 * rcvif field of the packet header. This is 1276 * placed there by ieee80211_mgmt_output because 1277 * we need to hold the reference with the frame 1278 * and there's no other way (other than packet 1279 * tags which we consider too expensive to use) 1280 * to pass it along. 1281 */ 1282 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 1283 m->m_pkthdr.rcvif = NULL; 1284 1285 wh = mtod(m, struct ieee80211_frame *); 1286 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1287 IEEE80211_FC0_SUBTYPE_PROBE_RESP) { 1288 /* fill time stamp */ 1289 u_int64_t tsf; 1290 u_int32_t *tstamp; 1291 1292 tsf = ath_hal_gettsf64(ah); 1293 /* XXX: adjust 100us delay to xmit */ 1294 tsf += 100; 1295 tstamp = (u_int32_t *)&wh[1]; 1296 tstamp[0] = htole32(tsf & 0xffffffff); 1297 tstamp[1] = htole32(tsf >> 32); 1298 } 1299 sc->sc_stats.ast_tx_mgmt++; 1300 } 1301 1302 if (ath_tx_start(sc, ni, bf, m)) { 1303 bad: 1304 ifp->if_oerrors++; 1305 reclaim: 1306 ATH_TXBUF_LOCK(sc); 1307 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 1308 ATH_TXBUF_UNLOCK(sc); 1309 if (ni != NULL) 1310 ieee80211_free_node(ni); 1311 continue; 1312 } 1313 1314 sc->sc_tx_timer = 5; 1315 ifp->if_timer = 1; 1316 } 1317 } 1318 1319 static int 1320 ath_media_change(struct ifnet *ifp) 1321 { 1322 #define IS_UP(ifp) \ 1323 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 1324 int error; 1325 1326 error = ieee80211_media_change(ifp); 1327 if (error == ENETRESET) { 1328 if (IS_UP(ifp)) 1329 ath_init(ifp->if_softc); /* XXX lose error */ 1330 error = 0; 1331 } 1332 return error; 1333 #undef IS_UP 1334 } 1335 1336 #ifdef AR_DEBUG 1337 static void 1338 ath_keyprint(const char *tag, u_int ix, 1339 const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1340 { 1341 static const char *ciphers[] = { 1342 "WEP", 1343 "AES-OCB", 1344 "AES-CCM", 1345 "CKIP", 1346 "TKIP", 1347 "CLR", 1348 }; 1349 int i, n; 1350 1351 printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]); 1352 for (i = 0, n = hk->kv_len; i < n; i++) 1353 printf("%02x", hk->kv_val[i]); 1354 printf(" mac %s", ether_sprintf(mac)); 1355 if (hk->kv_type == HAL_CIPHER_TKIP) { 1356 printf(" mic "); 1357 for (i = 0; i < sizeof(hk->kv_mic); i++) 1358 printf("%02x", hk->kv_mic[i]); 1359 } 1360 printf("\n"); 1361 } 1362 #endif 1363 1364 /* 1365 * Set a TKIP key into the hardware. This handles the 1366 * potential distribution of key state to multiple key 1367 * cache slots for TKIP. 1368 */ 1369 static int 1370 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k, 1371 HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN]) 1372 { 1373 #define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV) 1374 static const u_int8_t zerobssid[IEEE80211_ADDR_LEN]; 1375 struct ath_hal *ah = sc->sc_ah; 1376 1377 KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP, 1378 ("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher)); 1379 KASSERT(sc->sc_splitmic, ("key cache !split")); 1380 if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) { 1381 /* 1382 * TX key goes at first index, RX key at the rx index. 1383 * The hal handles the MIC keys at index+64. 1384 */ 1385 memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic)); 1386 KEYPRINTF(sc, k->wk_keyix, hk, zerobssid); 1387 if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid)) 1388 return 0; 1389 1390 memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic)); 1391 KEYPRINTF(sc, k->wk_keyix+32, hk, mac); 1392 /* XXX delete tx key on failure? */ 1393 return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac); 1394 } else if (k->wk_flags & IEEE80211_KEY_XR) { 1395 /* 1396 * TX/RX key goes at first index. 1397 * The hal handles the MIC keys are index+64. 1398 */ 1399 memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ? 1400 k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic)); 1401 KEYPRINTF(sc, k->wk_keyix, hk, mac); 1402 return ath_hal_keyset(ah, k->wk_keyix, hk, mac); 1403 } 1404 return 0; 1405 #undef IEEE80211_KEY_XR 1406 } 1407 1408 /* 1409 * Set a net80211 key into the hardware. This handles the 1410 * potential distribution of key state to multiple key 1411 * cache slots for TKIP with hardware MIC support. 1412 */ 1413 static int 1414 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k, 1415 const u_int8_t mac0[IEEE80211_ADDR_LEN], 1416 struct ieee80211_node *bss) 1417 { 1418 #define N(a) (sizeof(a)/sizeof(a[0])) 1419 static const u_int8_t ciphermap[] = { 1420 HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */ 1421 HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */ 1422 HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */ 1423 HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */ 1424 (u_int8_t) -1, /* 4 is not allocated */ 1425 HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */ 1426 HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */ 1427 }; 1428 struct ath_hal *ah = sc->sc_ah; 1429 const struct ieee80211_cipher *cip = k->wk_cipher; 1430 u_int8_t gmac[IEEE80211_ADDR_LEN]; 1431 const u_int8_t *mac; 1432 HAL_KEYVAL hk; 1433 1434 memset(&hk, 0, sizeof(hk)); 1435 /* 1436 * Software crypto uses a "clear key" so non-crypto 1437 * state kept in the key cache are maintained and 1438 * so that rx frames have an entry to match. 1439 */ 1440 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) { 1441 KASSERT(cip->ic_cipher < N(ciphermap), 1442 ("invalid cipher type %u", cip->ic_cipher)); 1443 hk.kv_type = ciphermap[cip->ic_cipher]; 1444 hk.kv_len = k->wk_keylen; 1445 memcpy(hk.kv_val, k->wk_key, k->wk_keylen); 1446 } else 1447 hk.kv_type = HAL_CIPHER_CLR; 1448 1449 if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) { 1450 /* 1451 * Group keys on hardware that supports multicast frame 1452 * key search use a mac that is the sender's address with 1453 * the high bit set instead of the app-specified address. 1454 */ 1455 IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr); 1456 gmac[0] |= 0x80; 1457 mac = gmac; 1458 } else 1459 mac = mac0; 1460 1461 if (hk.kv_type == HAL_CIPHER_TKIP && 1462 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1463 sc->sc_splitmic) { 1464 return ath_keyset_tkip(sc, k, &hk, mac); 1465 } else { 1466 KEYPRINTF(sc, k->wk_keyix, &hk, mac); 1467 return ath_hal_keyset(ah, k->wk_keyix, &hk, mac); 1468 } 1469 #undef N 1470 } 1471 1472 /* 1473 * Allocate tx/rx key slots for TKIP. We allocate two slots for 1474 * each key, one for decrypt/encrypt and the other for the MIC. 1475 */ 1476 static u_int16_t 1477 key_alloc_2pair(struct ath_softc *sc, 1478 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1479 { 1480 #define N(a) (sizeof(a)/sizeof(a[0])) 1481 u_int i, keyix; 1482 1483 KASSERT(sc->sc_splitmic, ("key cache !split")); 1484 /* XXX could optimize */ 1485 for (i = 0; i < N(sc->sc_keymap)/4; i++) { 1486 u_int8_t b = sc->sc_keymap[i]; 1487 if (b != 0xff) { 1488 /* 1489 * One or more slots in this byte are free. 1490 */ 1491 keyix = i*NBBY; 1492 while (b & 1) { 1493 again: 1494 keyix++; 1495 b >>= 1; 1496 } 1497 /* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */ 1498 if (isset(sc->sc_keymap, keyix+32) || 1499 isset(sc->sc_keymap, keyix+64) || 1500 isset(sc->sc_keymap, keyix+32+64)) { 1501 /* full pair unavailable */ 1502 /* XXX statistic */ 1503 if (keyix == (i+1)*NBBY) { 1504 /* no slots were appropriate, advance */ 1505 continue; 1506 } 1507 goto again; 1508 } 1509 setbit(sc->sc_keymap, keyix); 1510 setbit(sc->sc_keymap, keyix+64); 1511 setbit(sc->sc_keymap, keyix+32); 1512 setbit(sc->sc_keymap, keyix+32+64); 1513 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1514 "%s: key pair %u,%u %u,%u\n", 1515 __func__, keyix, keyix+64, 1516 keyix+32, keyix+32+64); 1517 *txkeyix = keyix; 1518 *rxkeyix = keyix+32; 1519 return 1; 1520 } 1521 } 1522 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__); 1523 return 0; 1524 #undef N 1525 } 1526 1527 /* 1528 * Allocate a single key cache slot. 1529 */ 1530 static int 1531 key_alloc_single(struct ath_softc *sc, 1532 ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix) 1533 { 1534 #define N(a) (sizeof(a)/sizeof(a[0])) 1535 u_int i, keyix; 1536 1537 /* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */ 1538 for (i = 0; i < N(sc->sc_keymap); i++) { 1539 u_int8_t b = sc->sc_keymap[i]; 1540 if (b != 0xff) { 1541 /* 1542 * One or more slots are free. 1543 */ 1544 keyix = i*NBBY; 1545 while (b & 1) 1546 keyix++, b >>= 1; 1547 setbit(sc->sc_keymap, keyix); 1548 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n", 1549 __func__, keyix); 1550 *txkeyix = *rxkeyix = keyix; 1551 return 1; 1552 } 1553 } 1554 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__); 1555 return 0; 1556 #undef N 1557 } 1558 1559 /* 1560 * Allocate one or more key cache slots for a uniacst key. The 1561 * key itself is needed only to identify the cipher. For hardware 1562 * TKIP with split cipher+MIC keys we allocate two key cache slot 1563 * pairs so that we can setup separate TX and RX MIC keys. Note 1564 * that the MIC key for a TKIP key at slot i is assumed by the 1565 * hardware to be at slot i+64. This limits TKIP keys to the first 1566 * 64 entries. 1567 */ 1568 static int 1569 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k, 1570 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) 1571 { 1572 struct ath_softc *sc = ic->ic_ifp->if_softc; 1573 1574 /* 1575 * Group key allocation must be handled specially for 1576 * parts that do not support multicast key cache search 1577 * functionality. For those parts the key id must match 1578 * the h/w key index so lookups find the right key. On 1579 * parts w/ the key search facility we install the sender's 1580 * mac address (with the high bit set) and let the hardware 1581 * find the key w/o using the key id. This is preferred as 1582 * it permits us to support multiple users for adhoc and/or 1583 * multi-station operation. 1584 */ 1585 if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) { 1586 if (!(&ic->ic_nw_keys[0] <= k && 1587 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) { 1588 /* should not happen */ 1589 DPRINTF(sc, ATH_DEBUG_KEYCACHE, 1590 "%s: bogus group key\n", __func__); 1591 return 0; 1592 } 1593 /* 1594 * XXX we pre-allocate the global keys so 1595 * have no way to check if they've already been allocated. 1596 */ 1597 *keyix = *rxkeyix = k - ic->ic_nw_keys; 1598 return 1; 1599 } 1600 1601 /* 1602 * We allocate two pair for TKIP when using the h/w to do 1603 * the MIC. For everything else, including software crypto, 1604 * we allocate a single entry. Note that s/w crypto requires 1605 * a pass-through slot on the 5211 and 5212. The 5210 does 1606 * not support pass-through cache entries and we map all 1607 * those requests to slot 0. 1608 */ 1609 if (k->wk_flags & IEEE80211_KEY_SWCRYPT) { 1610 return key_alloc_single(sc, keyix, rxkeyix); 1611 } else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP && 1612 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) { 1613 return key_alloc_2pair(sc, keyix, rxkeyix); 1614 } else { 1615 return key_alloc_single(sc, keyix, rxkeyix); 1616 } 1617 } 1618 1619 /* 1620 * Delete an entry in the key cache allocated by ath_key_alloc. 1621 */ 1622 static int 1623 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 1624 { 1625 struct ath_softc *sc = ic->ic_ifp->if_softc; 1626 struct ath_hal *ah = sc->sc_ah; 1627 const struct ieee80211_cipher *cip = k->wk_cipher; 1628 u_int keyix = k->wk_keyix; 1629 1630 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix); 1631 1632 ath_hal_keyreset(ah, keyix); 1633 /* 1634 * Handle split tx/rx keying required for TKIP with h/w MIC. 1635 */ 1636 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1637 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) 1638 ath_hal_keyreset(ah, keyix+32); /* RX key */ 1639 if (keyix >= IEEE80211_WEP_NKID) { 1640 /* 1641 * Don't touch keymap entries for global keys so 1642 * they are never considered for dynamic allocation. 1643 */ 1644 clrbit(sc->sc_keymap, keyix); 1645 if (cip->ic_cipher == IEEE80211_CIPHER_TKIP && 1646 (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && 1647 sc->sc_splitmic) { 1648 clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */ 1649 clrbit(sc->sc_keymap, keyix+32); /* RX key */ 1650 clrbit(sc->sc_keymap, keyix+32+64); /* RX key MIC */ 1651 } 1652 } 1653 return 1; 1654 } 1655 1656 /* 1657 * Set the key cache contents for the specified key. Key cache 1658 * slot(s) must already have been allocated by ath_key_alloc. 1659 */ 1660 static int 1661 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 1662 const u_int8_t mac[IEEE80211_ADDR_LEN]) 1663 { 1664 struct ath_softc *sc = ic->ic_ifp->if_softc; 1665 1666 return ath_keyset(sc, k, mac, ic->ic_bss); 1667 } 1668 1669 /* 1670 * Block/unblock tx+rx processing while a key change is done. 1671 * We assume the caller serializes key management operations 1672 * so we only need to worry about synchronization with other 1673 * uses that originate in the driver. 1674 */ 1675 static void 1676 ath_key_update_begin(struct ieee80211com *ic) 1677 { 1678 struct ifnet *ifp = ic->ic_ifp; 1679 struct ath_softc *sc = ifp->if_softc; 1680 1681 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1682 #if 0 1683 tasklet_disable(&sc->sc_rxtq); 1684 #endif 1685 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 1686 } 1687 1688 static void 1689 ath_key_update_end(struct ieee80211com *ic) 1690 { 1691 struct ifnet *ifp = ic->ic_ifp; 1692 struct ath_softc *sc = ifp->if_softc; 1693 1694 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 1695 IF_UNLOCK(&ifp->if_snd); 1696 #if 0 1697 tasklet_enable(&sc->sc_rxtq); 1698 #endif 1699 } 1700 1701 /* 1702 * Calculate the receive filter according to the 1703 * operating mode and state: 1704 * 1705 * o always accept unicast, broadcast, and multicast traffic 1706 * o maintain current state of phy error reception (the hal 1707 * may enable phy error frames for noise immunity work) 1708 * o probe request frames are accepted only when operating in 1709 * hostap, adhoc, or monitor modes 1710 * o enable promiscuous mode according to the interface state 1711 * o accept beacons: 1712 * - when operating in adhoc mode so the 802.11 layer creates 1713 * node table entries for peers, 1714 * - when operating in station mode for collecting rssi data when 1715 * the station is otherwise quiet, or 1716 * - when scanning 1717 */ 1718 static u_int32_t 1719 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state) 1720 { 1721 struct ieee80211com *ic = &sc->sc_ic; 1722 struct ath_hal *ah = sc->sc_ah; 1723 struct ifnet *ifp = &sc->sc_if; 1724 u_int32_t rfilt; 1725 1726 rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR) 1727 | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST; 1728 if (ic->ic_opmode != IEEE80211_M_STA) 1729 rfilt |= HAL_RX_FILTER_PROBEREQ; 1730 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1731 (ifp->if_flags & IFF_PROMISC)) 1732 rfilt |= HAL_RX_FILTER_PROM; 1733 if (ic->ic_opmode == IEEE80211_M_STA || 1734 ic->ic_opmode == IEEE80211_M_IBSS || 1735 state == IEEE80211_S_SCAN) 1736 rfilt |= HAL_RX_FILTER_BEACON; 1737 return rfilt; 1738 } 1739 1740 static void 1741 ath_mcastfilter_accum(caddr_t dl, u_int32_t *mfilt) 1742 { 1743 u_int32_t val; 1744 u_int8_t pos; 1745 1746 /* calculate XOR of eight 6bit values */ 1747 val = LE_READ_4(dl + 0); 1748 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1749 val = LE_READ_4(dl + 3); 1750 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1751 pos &= 0x3f; 1752 mfilt[pos / 32] |= (1 << (pos % 32)); 1753 } 1754 1755 static void 1756 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt) 1757 { 1758 struct ifnet *ifp = &sc->sc_if; 1759 struct ether_multi *enm; 1760 struct ether_multistep estep; 1761 1762 mfilt[0] = mfilt[1] = 0; 1763 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1764 while (enm != NULL) { 1765 /* XXX Punt on ranges. */ 1766 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) { 1767 mfilt[0] = mfilt[1] = ~((u_int32_t)0); 1768 ifp->if_flags |= IFF_ALLMULTI; 1769 return; 1770 } 1771 ath_mcastfilter_accum(enm->enm_addrlo, mfilt); 1772 ETHER_NEXT_MULTI(estep, enm); 1773 } 1774 ifp->if_flags &= ~IFF_ALLMULTI; 1775 } 1776 1777 static void 1778 ath_mode_init(struct ath_softc *sc) 1779 { 1780 struct ieee80211com *ic = &sc->sc_ic; 1781 struct ath_hal *ah = sc->sc_ah; 1782 u_int32_t rfilt, mfilt[2]; 1783 int i; 1784 1785 /* configure rx filter */ 1786 rfilt = ath_calcrxfilter(sc, ic->ic_state); 1787 ath_hal_setrxfilter(ah, rfilt); 1788 1789 /* configure operational mode */ 1790 ath_hal_setopmode(ah); 1791 1792 /* Write keys to hardware; it may have been powered down. */ 1793 ath_key_update_begin(ic); 1794 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 1795 ath_key_set(ic, 1796 &ic->ic_crypto.cs_nw_keys[i], 1797 ic->ic_myaddr); 1798 } 1799 ath_key_update_end(ic); 1800 1801 /* 1802 * Handle any link-level address change. Note that we only 1803 * need to force ic_myaddr; any other addresses are handled 1804 * as a byproduct of the ifnet code marking the interface 1805 * down then up. 1806 * 1807 * XXX should get from lladdr instead of arpcom but that's more work 1808 */ 1809 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(sc->sc_if.if_sadl)); 1810 ath_hal_setmac(ah, ic->ic_myaddr); 1811 1812 /* calculate and install multicast filter */ 1813 #ifdef __FreeBSD__ 1814 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 1815 mfilt[0] = mfilt[1] = 0; 1816 IF_ADDR_LOCK(ifp); 1817 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1818 caddr_t dl; 1819 1820 /* calculate XOR of eight 6bit values */ 1821 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 1822 val = LE_READ_4(dl + 0); 1823 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1824 val = LE_READ_4(dl + 3); 1825 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 1826 pos &= 0x3f; 1827 mfilt[pos / 32] |= (1 << (pos % 32)); 1828 } 1829 IF_ADDR_UNLOCK(ifp); 1830 } else { 1831 mfilt[0] = mfilt[1] = ~0; 1832 } 1833 #endif 1834 #ifdef __NetBSD__ 1835 ath_mcastfilter_compute(sc, mfilt); 1836 #endif 1837 ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]); 1838 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n", 1839 __func__, rfilt, mfilt[0], mfilt[1]); 1840 } 1841 1842 /* 1843 * Set the slot time based on the current setting. 1844 */ 1845 static void 1846 ath_setslottime(struct ath_softc *sc) 1847 { 1848 struct ieee80211com *ic = &sc->sc_ic; 1849 struct ath_hal *ah = sc->sc_ah; 1850 1851 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1852 ath_hal_setslottime(ah, HAL_SLOT_TIME_9); 1853 else 1854 ath_hal_setslottime(ah, HAL_SLOT_TIME_20); 1855 sc->sc_updateslot = OK; 1856 } 1857 1858 /* 1859 * Callback from the 802.11 layer to update the 1860 * slot time based on the current setting. 1861 */ 1862 static void 1863 ath_updateslot(struct ifnet *ifp) 1864 { 1865 struct ath_softc *sc = ifp->if_softc; 1866 struct ieee80211com *ic = &sc->sc_ic; 1867 1868 /* 1869 * When not coordinating the BSS, change the hardware 1870 * immediately. For other operation we defer the change 1871 * until beacon updates have propagated to the stations. 1872 */ 1873 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1874 sc->sc_updateslot = UPDATE; 1875 else 1876 ath_setslottime(sc); 1877 } 1878 1879 /* 1880 * Setup a h/w transmit queue for beacons. 1881 */ 1882 static int 1883 ath_beaconq_setup(struct ath_hal *ah) 1884 { 1885 HAL_TXQ_INFO qi; 1886 1887 memset(&qi, 0, sizeof(qi)); 1888 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 1889 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 1890 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 1891 /* NB: for dynamic turbo, don't enable any other interrupts */ 1892 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1893 return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi); 1894 } 1895 1896 /* 1897 * Setup the transmit queue parameters for the beacon queue. 1898 */ 1899 static int 1900 ath_beaconq_config(struct ath_softc *sc) 1901 { 1902 #define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1) 1903 struct ieee80211com *ic = &sc->sc_ic; 1904 struct ath_hal *ah = sc->sc_ah; 1905 HAL_TXQ_INFO qi; 1906 1907 ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi); 1908 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1909 /* 1910 * Always burst out beacon and CAB traffic. 1911 */ 1912 qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT; 1913 qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT; 1914 qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT; 1915 } else { 1916 struct wmeParams *wmep = 1917 &ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE]; 1918 /* 1919 * Adhoc mode; important thing is to use 2x cwmin. 1920 */ 1921 qi.tqi_aifs = wmep->wmep_aifsn; 1922 qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 1923 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 1924 } 1925 1926 if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) { 1927 device_printf(sc->sc_dev, "unable to update parameters for " 1928 "beacon hardware queue!\n"); 1929 return 0; 1930 } else { 1931 ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */ 1932 return 1; 1933 } 1934 #undef ATH_EXPONENT_TO_VALUE 1935 } 1936 1937 /* 1938 * Allocate and setup an initial beacon frame. 1939 */ 1940 static int 1941 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni) 1942 { 1943 struct ieee80211com *ic = ni->ni_ic; 1944 struct ath_buf *bf; 1945 struct mbuf *m; 1946 int error; 1947 1948 bf = STAILQ_FIRST(&sc->sc_bbuf); 1949 if (bf == NULL) { 1950 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__); 1951 sc->sc_stats.ast_be_nombuf++; /* XXX */ 1952 return ENOMEM; /* XXX */ 1953 } 1954 /* 1955 * NB: the beacon data buffer must be 32-bit aligned; 1956 * we assume the mbuf routines will return us something 1957 * with this alignment (perhaps should assert). 1958 */ 1959 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff); 1960 if (m == NULL) { 1961 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n", 1962 __func__); 1963 sc->sc_stats.ast_be_nombuf++; 1964 return ENOMEM; 1965 } 1966 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 1967 BUS_DMA_NOWAIT); 1968 if (error == 0) { 1969 bf->bf_m = m; 1970 bf->bf_node = ieee80211_ref_node(ni); 1971 } else { 1972 m_freem(m); 1973 } 1974 return error; 1975 } 1976 1977 /* 1978 * Setup the beacon frame for transmit. 1979 */ 1980 static void 1981 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf) 1982 { 1983 #define USE_SHPREAMBLE(_ic) \ 1984 (((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\ 1985 == IEEE80211_F_SHPREAMBLE) 1986 struct ieee80211_node *ni = bf->bf_node; 1987 struct ieee80211com *ic = ni->ni_ic; 1988 struct mbuf *m = bf->bf_m; 1989 struct ath_hal *ah = sc->sc_ah; 1990 struct ath_node *an = ATH_NODE(ni); 1991 struct ath_desc *ds; 1992 int flags, antenna; 1993 u_int8_t rate; 1994 1995 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n", 1996 __func__, m, m->m_len); 1997 1998 /* setup descriptors */ 1999 ds = bf->bf_desc; 2000 2001 flags = HAL_TXDESC_NOACK; 2002 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) { 2003 ds->ds_link = bf->bf_daddr; /* self-linked */ 2004 flags |= HAL_TXDESC_VEOL; 2005 /* 2006 * Let hardware handle antenna switching unless 2007 * the user has selected a transmit antenna 2008 * (sc_txantenna is not 0). 2009 */ 2010 antenna = sc->sc_txantenna; 2011 } else { 2012 ds->ds_link = 0; 2013 /* 2014 * Switch antenna every 4 beacons, unless the user 2015 * has selected a transmit antenna (sc_txantenna 2016 * is not 0). 2017 * 2018 * XXX assumes two antenna 2019 */ 2020 if (sc->sc_txantenna == 0) 2021 antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1); 2022 else 2023 antenna = sc->sc_txantenna; 2024 } 2025 2026 KASSERT(bf->bf_nseg == 1, 2027 ("multi-segment beacon frame; nseg %u", bf->bf_nseg)); 2028 ds->ds_data = bf->bf_segs[0].ds_addr; 2029 /* 2030 * Calculate rate code. 2031 * XXX everything at min xmit rate 2032 */ 2033 if (USE_SHPREAMBLE(ic)) 2034 rate = an->an_tx_mgtratesp; 2035 else 2036 rate = an->an_tx_mgtrate; 2037 ath_hal_setuptxdesc(ah, ds 2038 , m->m_len + IEEE80211_CRC_LEN /* frame length */ 2039 , sizeof(struct ieee80211_frame)/* header length */ 2040 , HAL_PKT_TYPE_BEACON /* Atheros packet type */ 2041 , ni->ni_txpower /* txpower XXX */ 2042 , rate, 1 /* series 0 rate/tries */ 2043 , HAL_TXKEYIX_INVALID /* no encryption */ 2044 , antenna /* antenna mode */ 2045 , flags /* no ack, veol for beacons */ 2046 , 0 /* rts/cts rate */ 2047 , 0 /* rts/cts duration */ 2048 ); 2049 /* NB: beacon's BufLen must be a multiple of 4 bytes */ 2050 ath_hal_filltxdesc(ah, ds 2051 , roundup(m->m_len, 4) /* buffer length */ 2052 , AH_TRUE /* first segment */ 2053 , AH_TRUE /* last segment */ 2054 , ds /* first descriptor */ 2055 ); 2056 #undef USE_SHPREAMBLE 2057 } 2058 2059 /* 2060 * Transmit a beacon frame at SWBA. Dynamic updates to the 2061 * frame contents are done as needed and the slot time is 2062 * also adjusted based on current state. 2063 */ 2064 static void 2065 ath_beacon_proc(void *arg, int pending) 2066 { 2067 struct ath_softc *sc = arg; 2068 struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf); 2069 struct ieee80211_node *ni = bf->bf_node; 2070 struct ieee80211com *ic = ni->ni_ic; 2071 struct ath_hal *ah = sc->sc_ah; 2072 struct mbuf *m; 2073 int ncabq, error, otherant; 2074 2075 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n", 2076 __func__, pending); 2077 2078 if (ic->ic_opmode == IEEE80211_M_STA || 2079 ic->ic_opmode == IEEE80211_M_MONITOR || 2080 bf == NULL || bf->bf_m == NULL) { 2081 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n", 2082 __func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL); 2083 return; 2084 } 2085 /* 2086 * Check if the previous beacon has gone out. If 2087 * not don't don't try to post another, skip this 2088 * period and wait for the next. Missed beacons 2089 * indicate a problem and should not occur. If we 2090 * miss too many consecutive beacons reset the device. 2091 */ 2092 if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) { 2093 sc->sc_bmisscount++; 2094 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2095 "%s: missed %u consecutive beacons\n", 2096 __func__, sc->sc_bmisscount); 2097 if (sc->sc_bmisscount > 3) /* NB: 3 is a guess */ 2098 TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask); 2099 return; 2100 } 2101 if (sc->sc_bmisscount != 0) { 2102 DPRINTF(sc, ATH_DEBUG_BEACON, 2103 "%s: resume beacon xmit after %u misses\n", 2104 __func__, sc->sc_bmisscount); 2105 sc->sc_bmisscount = 0; 2106 } 2107 2108 /* 2109 * Update dynamic beacon contents. If this returns 2110 * non-zero then we need to remap the memory because 2111 * the beacon frame changed size (probably because 2112 * of the TIM bitmap). 2113 */ 2114 m = bf->bf_m; 2115 ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum); 2116 if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) { 2117 /* XXX too conservative? */ 2118 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2119 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m, 2120 BUS_DMA_NOWAIT); 2121 if (error != 0) { 2122 if_printf(&sc->sc_if, 2123 "%s: bus_dmamap_load_mbuf failed, error %u\n", 2124 __func__, error); 2125 return; 2126 } 2127 } 2128 2129 /* 2130 * Handle slot time change when a non-ERP station joins/leaves 2131 * an 11g network. The 802.11 layer notifies us via callback, 2132 * we mark updateslot, then wait one beacon before effecting 2133 * the change. This gives associated stations at least one 2134 * beacon interval to note the state change. 2135 */ 2136 /* XXX locking */ 2137 if (sc->sc_updateslot == UPDATE) 2138 sc->sc_updateslot = COMMIT; /* commit next beacon */ 2139 else if (sc->sc_updateslot == COMMIT) 2140 ath_setslottime(sc); /* commit change to h/w */ 2141 2142 /* 2143 * Check recent per-antenna transmit statistics and flip 2144 * the default antenna if noticeably more frames went out 2145 * on the non-default antenna. 2146 * XXX assumes 2 anntenae 2147 */ 2148 otherant = sc->sc_defant & 1 ? 2 : 1; 2149 if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2) 2150 ath_setdefantenna(sc, otherant); 2151 sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0; 2152 2153 /* 2154 * Construct tx descriptor. 2155 */ 2156 ath_beacon_setup(sc, bf); 2157 2158 /* 2159 * Stop any current dma and put the new frame on the queue. 2160 * This should never fail since we check above that no frames 2161 * are still pending on the queue. 2162 */ 2163 if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) { 2164 DPRINTF(sc, ATH_DEBUG_ANY, 2165 "%s: beacon queue %u did not stop?\n", 2166 __func__, sc->sc_bhalq); 2167 } 2168 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2169 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 2170 2171 /* 2172 * Enable the CAB queue before the beacon queue to 2173 * insure cab frames are triggered by this beacon. 2174 */ 2175 if (sc->sc_boff.bo_tim[4] & 1) /* NB: only at DTIM */ 2176 ath_hal_txstart(ah, sc->sc_cabq->axq_qnum); 2177 ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr); 2178 ath_hal_txstart(ah, sc->sc_bhalq); 2179 DPRINTF(sc, ATH_DEBUG_BEACON_PROC, 2180 "%s: TXDP[%u] = %p (%p)\n", __func__, 2181 sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc); 2182 2183 sc->sc_stats.ast_be_xmit++; 2184 } 2185 2186 /* 2187 * Reset the hardware after detecting beacons have stopped. 2188 */ 2189 static void 2190 ath_bstuck_proc(void *arg, int pending) 2191 { 2192 struct ath_softc *sc = arg; 2193 struct ifnet *ifp = &sc->sc_if; 2194 2195 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2196 sc->sc_bmisscount); 2197 ath_reset(ifp); 2198 } 2199 2200 /* 2201 * Reclaim beacon resources. 2202 */ 2203 static void 2204 ath_beacon_free(struct ath_softc *sc) 2205 { 2206 struct ath_buf *bf; 2207 2208 STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) { 2209 if (bf->bf_m != NULL) { 2210 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2211 m_freem(bf->bf_m); 2212 bf->bf_m = NULL; 2213 } 2214 if (bf->bf_node != NULL) { 2215 ieee80211_free_node(bf->bf_node); 2216 bf->bf_node = NULL; 2217 } 2218 } 2219 } 2220 2221 /* 2222 * Configure the beacon and sleep timers. 2223 * 2224 * When operating as an AP this resets the TSF and sets 2225 * up the hardware to notify us when we need to issue beacons. 2226 * 2227 * When operating in station mode this sets up the beacon 2228 * timers according to the timestamp of the last received 2229 * beacon and the current TSF, configures PCF and DTIM 2230 * handling, programs the sleep registers so the hardware 2231 * will wakeup in time to receive beacons, and configures 2232 * the beacon miss handling so we'll receive a BMISS 2233 * interrupt when we stop seeing beacons from the AP 2234 * we've associated with. 2235 */ 2236 static void 2237 ath_beacon_config(struct ath_softc *sc) 2238 { 2239 #define TSF_TO_TU(_h,_l) (((_h) << 22) | ((_l) >> 10)) 2240 struct ath_hal *ah = sc->sc_ah; 2241 struct ieee80211com *ic = &sc->sc_ic; 2242 struct ieee80211_node *ni = ic->ic_bss; 2243 u_int32_t nexttbtt, intval; 2244 2245 /* extract tstamp from last beacon and convert to TU */ 2246 nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4), 2247 LE_READ_4(ni->ni_tstamp.data)); 2248 /* NB: the beacon interval is kept internally in TU's */ 2249 intval = ni->ni_intval & HAL_BEACON_PERIOD; 2250 if (nexttbtt == 0) /* e.g. for ap mode */ 2251 nexttbtt = intval; 2252 else if (intval) /* NB: can be 0 for monitor mode */ 2253 nexttbtt = roundup(nexttbtt, intval); 2254 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n", 2255 __func__, nexttbtt, intval, ni->ni_intval); 2256 if (ic->ic_opmode == IEEE80211_M_STA) { 2257 HAL_BEACON_STATE bs; 2258 u_int64_t tsf; 2259 u_int32_t tsftu; 2260 int dtimperiod, dtimcount; 2261 int cfpperiod, cfpcount; 2262 2263 /* 2264 * Setup dtim and cfp parameters according to 2265 * last beacon we received (which may be none). 2266 */ 2267 dtimperiod = ni->ni_dtim_period; 2268 if (dtimperiod <= 0) /* NB: 0 if not known */ 2269 dtimperiod = 1; 2270 dtimcount = ni->ni_dtim_count; 2271 if (dtimcount >= dtimperiod) /* NB: sanity check */ 2272 dtimcount = 0; /* XXX? */ 2273 cfpperiod = 1; /* NB: no PCF support yet */ 2274 cfpcount = 0; 2275 #define FUDGE 2 2276 /* 2277 * Pull nexttbtt forward to reflect the current 2278 * TSF and calculate dtim+cfp state for the result. 2279 */ 2280 tsf = ath_hal_gettsf64(ah); 2281 tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE; 2282 do { 2283 nexttbtt += intval; 2284 if (--dtimcount < 0) { 2285 dtimcount = dtimperiod - 1; 2286 if (--cfpcount < 0) 2287 cfpcount = cfpperiod - 1; 2288 } 2289 } while (nexttbtt < tsftu); 2290 #undef FUDGE 2291 memset(&bs, 0, sizeof(bs)); 2292 bs.bs_intval = intval; 2293 bs.bs_nexttbtt = nexttbtt; 2294 bs.bs_dtimperiod = dtimperiod*intval; 2295 bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; 2296 bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; 2297 bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; 2298 bs.bs_cfpmaxduration = 0; 2299 #if 0 2300 /* 2301 * The 802.11 layer records the offset to the DTIM 2302 * bitmap while receiving beacons; use it here to 2303 * enable h/w detection of our AID being marked in 2304 * the bitmap vector (to indicate frames for us are 2305 * pending at the AP). 2306 * XXX do DTIM handling in s/w to WAR old h/w bugs 2307 * XXX enable based on h/w rev for newer chips 2308 */ 2309 bs.bs_timoffset = ni->ni_timoff; 2310 #endif 2311 /* 2312 * Calculate the number of consecutive beacons to miss 2313 * before taking a BMISS interrupt. The configuration 2314 * is specified in ms, so we need to convert that to 2315 * TU's and then calculate based on the beacon interval. 2316 * Note that we clamp the result to at most 10 beacons. 2317 */ 2318 bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval); 2319 if (bs.bs_bmissthreshold > 10) 2320 bs.bs_bmissthreshold = 10; 2321 else if (bs.bs_bmissthreshold <= 0) 2322 bs.bs_bmissthreshold = 1; 2323 2324 /* 2325 * Calculate sleep duration. The configuration is 2326 * given in ms. We insure a multiple of the beacon 2327 * period is used. Also, if the sleep duration is 2328 * greater than the DTIM period then it makes senses 2329 * to make it a multiple of that. 2330 * 2331 * XXX fixed at 100ms 2332 */ 2333 bs.bs_sleepduration = 2334 roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval); 2335 if (bs.bs_sleepduration > bs.bs_dtimperiod) 2336 bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod); 2337 2338 DPRINTF(sc, ATH_DEBUG_BEACON, 2339 "%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n" 2340 , __func__ 2341 , tsf, tsftu 2342 , bs.bs_intval 2343 , bs.bs_nexttbtt 2344 , bs.bs_dtimperiod 2345 , bs.bs_nextdtim 2346 , bs.bs_bmissthreshold 2347 , bs.bs_sleepduration 2348 , bs.bs_cfpperiod 2349 , bs.bs_cfpmaxduration 2350 , bs.bs_cfpnext 2351 , bs.bs_timoffset 2352 ); 2353 ath_hal_intrset(ah, 0); 2354 ath_hal_beacontimers(ah, &bs); 2355 sc->sc_imask |= HAL_INT_BMISS; 2356 ath_hal_intrset(ah, sc->sc_imask); 2357 } else { 2358 ath_hal_intrset(ah, 0); 2359 if (nexttbtt == intval) 2360 intval |= HAL_BEACON_RESET_TSF; 2361 if (ic->ic_opmode == IEEE80211_M_IBSS) { 2362 /* 2363 * In IBSS mode enable the beacon timers but only 2364 * enable SWBA interrupts if we need to manually 2365 * prepare beacon frames. Otherwise we use a 2366 * self-linked tx descriptor and let the hardware 2367 * deal with things. 2368 */ 2369 intval |= HAL_BEACON_ENA; 2370 if (!sc->sc_hasveol) 2371 sc->sc_imask |= HAL_INT_SWBA; 2372 ath_beaconq_config(sc); 2373 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2374 /* 2375 * In AP mode we enable the beacon timers and 2376 * SWBA interrupts to prepare beacon frames. 2377 */ 2378 intval |= HAL_BEACON_ENA; 2379 sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */ 2380 ath_beaconq_config(sc); 2381 } 2382 ath_hal_beaconinit(ah, nexttbtt, intval); 2383 sc->sc_bmisscount = 0; 2384 ath_hal_intrset(ah, sc->sc_imask); 2385 /* 2386 * When using a self-linked beacon descriptor in 2387 * ibss mode load it once here. 2388 */ 2389 if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) 2390 ath_beacon_proc(sc, 0); 2391 } 2392 #undef TSF_TO_TU 2393 } 2394 2395 static int 2396 ath_descdma_setup(struct ath_softc *sc, 2397 struct ath_descdma *dd, ath_bufhead *head, 2398 const char *name, int nbuf, int ndesc) 2399 { 2400 #define DS2PHYS(_dd, _ds) \ 2401 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 2402 struct ifnet *ifp = &sc->sc_if; 2403 struct ath_desc *ds; 2404 struct ath_buf *bf; 2405 int i, bsize, error; 2406 2407 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n", 2408 __func__, name, nbuf, ndesc); 2409 2410 dd->dd_name = name; 2411 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; 2412 2413 /* 2414 * Setup DMA descriptor area. 2415 */ 2416 dd->dd_dmat = sc->sc_dmat; 2417 2418 error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE, 2419 0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0); 2420 2421 if (error != 0) { 2422 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 2423 "error %u\n", nbuf * ndesc, dd->dd_name, error); 2424 goto fail0; 2425 } 2426 2427 error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg, 2428 dd->dd_desc_len, (caddr_t *)&dd->dd_desc, BUS_DMA_COHERENT); 2429 if (error != 0) { 2430 if_printf(ifp, "unable to map %u %s descriptors, error = %u\n", 2431 nbuf * ndesc, dd->dd_name, error); 2432 goto fail1; 2433 } 2434 2435 /* allocate descriptors */ 2436 error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1, 2437 dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap); 2438 if (error != 0) { 2439 if_printf(ifp, "unable to create dmamap for %s descriptors, " 2440 "error %u\n", dd->dd_name, error); 2441 goto fail2; 2442 } 2443 2444 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc, 2445 dd->dd_desc_len, NULL, BUS_DMA_NOWAIT); 2446 if (error != 0) { 2447 if_printf(ifp, "unable to map %s descriptors, error %u\n", 2448 dd->dd_name, error); 2449 goto fail3; 2450 } 2451 2452 ds = dd->dd_desc; 2453 dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr; 2454 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 2455 __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len, 2456 (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len); 2457 2458 /* allocate rx buffers */ 2459 bsize = sizeof(struct ath_buf) * nbuf; 2460 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 2461 if (bf == NULL) { 2462 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 2463 dd->dd_name, bsize); 2464 goto fail4; 2465 } 2466 dd->dd_bufptr = bf; 2467 2468 STAILQ_INIT(head); 2469 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { 2470 bf->bf_desc = ds; 2471 bf->bf_daddr = DS2PHYS(dd, ds); 2472 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc, 2473 MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap); 2474 if (error != 0) { 2475 if_printf(ifp, "unable to create dmamap for %s " 2476 "buffer %u, error %u\n", dd->dd_name, i, error); 2477 ath_descdma_cleanup(sc, dd, head); 2478 return error; 2479 } 2480 STAILQ_INSERT_TAIL(head, bf, bf_list); 2481 } 2482 return 0; 2483 fail4: 2484 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2485 fail3: 2486 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2487 fail2: 2488 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len); 2489 fail1: 2490 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2491 fail0: 2492 memset(dd, 0, sizeof(*dd)); 2493 return error; 2494 #undef DS2PHYS 2495 } 2496 2497 static void 2498 ath_descdma_cleanup(struct ath_softc *sc, 2499 struct ath_descdma *dd, ath_bufhead *head) 2500 { 2501 struct ath_buf *bf; 2502 struct ieee80211_node *ni; 2503 2504 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 2505 bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap); 2506 bus_dmamem_unmap(dd->dd_dmat, (caddr_t)dd->dd_desc, dd->dd_desc_len); 2507 bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg); 2508 2509 STAILQ_FOREACH(bf, head, bf_list) { 2510 if (bf->bf_m) { 2511 m_freem(bf->bf_m); 2512 bf->bf_m = NULL; 2513 } 2514 if (bf->bf_dmamap != NULL) { 2515 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 2516 bf->bf_dmamap = NULL; 2517 } 2518 ni = bf->bf_node; 2519 bf->bf_node = NULL; 2520 if (ni != NULL) { 2521 /* 2522 * Reclaim node reference. 2523 */ 2524 ieee80211_free_node(ni); 2525 } 2526 } 2527 2528 STAILQ_INIT(head); 2529 free(dd->dd_bufptr, M_ATHDEV); 2530 memset(dd, 0, sizeof(*dd)); 2531 } 2532 2533 static int 2534 ath_desc_alloc(struct ath_softc *sc) 2535 { 2536 int error; 2537 2538 error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf, 2539 "rx", ATH_RXBUF, 1); 2540 if (error != 0) 2541 return error; 2542 2543 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 2544 "tx", ATH_TXBUF, ATH_TXDESC); 2545 if (error != 0) { 2546 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2547 return error; 2548 } 2549 2550 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 2551 "beacon", 1, 1); 2552 if (error != 0) { 2553 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2554 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2555 return error; 2556 } 2557 return 0; 2558 } 2559 2560 static void 2561 ath_desc_free(struct ath_softc *sc) 2562 { 2563 2564 if (sc->sc_bdma.dd_desc_len != 0) 2565 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 2566 if (sc->sc_txdma.dd_desc_len != 0) 2567 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 2568 if (sc->sc_rxdma.dd_desc_len != 0) 2569 ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf); 2570 } 2571 2572 static struct ieee80211_node * 2573 ath_node_alloc(struct ieee80211_node_table *nt) 2574 { 2575 struct ieee80211com *ic = nt->nt_ic; 2576 struct ath_softc *sc = ic->ic_ifp->if_softc; 2577 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 2578 struct ath_node *an; 2579 2580 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 2581 if (an == NULL) { 2582 /* XXX stat+msg */ 2583 return NULL; 2584 } 2585 an->an_avgrssi = ATH_RSSI_DUMMY_MARKER; 2586 an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 2587 an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 2588 an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 2589 ath_rate_node_init(sc, an); 2590 2591 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 2592 return &an->an_node; 2593 } 2594 2595 static void 2596 ath_node_free(struct ieee80211_node *ni) 2597 { 2598 struct ieee80211com *ic = ni->ni_ic; 2599 struct ath_softc *sc = ic->ic_ifp->if_softc; 2600 2601 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 2602 2603 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 2604 sc->sc_node_free(ni); 2605 } 2606 2607 static u_int8_t 2608 ath_node_getrssi(const struct ieee80211_node *ni) 2609 { 2610 #define HAL_EP_RND(x, mul) \ 2611 ((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul)) 2612 u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi; 2613 int32_t rssi; 2614 2615 /* 2616 * When only one frame is received there will be no state in 2617 * avgrssi so fallback on the value recorded by the 802.11 layer. 2618 */ 2619 if (avgrssi != ATH_RSSI_DUMMY_MARKER) 2620 rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER); 2621 else 2622 rssi = ni->ni_rssi; 2623 /* NB: theoretically we shouldn't need this, but be paranoid */ 2624 return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi; 2625 #undef HAL_EP_RND 2626 } 2627 2628 static int 2629 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf) 2630 { 2631 struct ath_hal *ah = sc->sc_ah; 2632 int error; 2633 struct mbuf *m; 2634 struct ath_desc *ds; 2635 2636 m = bf->bf_m; 2637 if (m == NULL) { 2638 /* 2639 * NB: by assigning a page to the rx dma buffer we 2640 * implicitly satisfy the Atheros requirement that 2641 * this buffer be cache-line-aligned and sized to be 2642 * multiple of the cache line size. Not doing this 2643 * causes weird stuff to happen (for the 5210 at least). 2644 */ 2645 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2646 if (m == NULL) { 2647 DPRINTF(sc, ATH_DEBUG_ANY, 2648 "%s: no mbuf/cluster\n", __func__); 2649 sc->sc_stats.ast_rx_nombuf++; 2650 return ENOMEM; 2651 } 2652 bf->bf_m = m; 2653 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 2654 2655 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2656 bf->bf_dmamap, m, 2657 BUS_DMA_NOWAIT); 2658 if (error != 0) { 2659 DPRINTF(sc, ATH_DEBUG_ANY, 2660 "%s: bus_dmamap_load_mbuf failed; error %d\n", 2661 __func__, error); 2662 sc->sc_stats.ast_rx_busdma++; 2663 return error; 2664 } 2665 KASSERT(bf->bf_nseg == 1, 2666 ("multi-segment packet; nseg %u", bf->bf_nseg)); 2667 } 2668 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 2669 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2670 2671 /* 2672 * Setup descriptors. For receive we always terminate 2673 * the descriptor list with a self-linked entry so we'll 2674 * not get overrun under high load (as can happen with a 2675 * 5212 when ANI processing enables PHY error frames). 2676 * 2677 * To insure the last descriptor is self-linked we create 2678 * each descriptor as self-linked and add it to the end. As 2679 * each additional descriptor is added the previous self-linked 2680 * entry is ``fixed'' naturally. This should be safe even 2681 * if DMA is happening. When processing RX interrupts we 2682 * never remove/process the last, self-linked, entry on the 2683 * descriptor list. This insures the hardware always has 2684 * someplace to write a new frame. 2685 */ 2686 ds = bf->bf_desc; 2687 ds->ds_link = bf->bf_daddr; /* link to self */ 2688 ds->ds_data = bf->bf_segs[0].ds_addr; 2689 ath_hal_setuprxdesc(ah, ds 2690 , m->m_len /* buffer size */ 2691 , 0 2692 ); 2693 2694 if (sc->sc_rxlink != NULL) 2695 *sc->sc_rxlink = bf->bf_daddr; 2696 sc->sc_rxlink = &ds->ds_link; 2697 return 0; 2698 } 2699 2700 /* 2701 * Extend 15-bit time stamp from rx descriptor to 2702 * a full 64-bit TSF using the current h/w TSF. 2703 */ 2704 static inline u_int64_t 2705 ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp) 2706 { 2707 u_int64_t tsf; 2708 2709 tsf = ath_hal_gettsf64(ah); 2710 if ((tsf & 0x7fff) < rstamp) 2711 tsf -= 0x8000; 2712 return ((tsf &~ 0x7fff) | rstamp); 2713 } 2714 2715 /* 2716 * Intercept management frames to collect beacon rssi data 2717 * and to do ibss merges. 2718 */ 2719 static void 2720 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, 2721 struct ieee80211_node *ni, 2722 int subtype, int rssi, u_int32_t rstamp) 2723 { 2724 struct ath_softc *sc = ic->ic_ifp->if_softc; 2725 2726 /* 2727 * Call up first so subsequent work can use information 2728 * potentially stored in the node (e.g. for ibss merge). 2729 */ 2730 sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp); 2731 switch (subtype) { 2732 case IEEE80211_FC0_SUBTYPE_BEACON: 2733 /* update rssi statistics for use by the hal */ 2734 ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi); 2735 /* fall thru... */ 2736 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 2737 if (ic->ic_opmode == IEEE80211_M_IBSS && 2738 ic->ic_state == IEEE80211_S_RUN) { 2739 u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp); 2740 2741 /* 2742 * Handle ibss merge as needed; check the tsf on the 2743 * frame before attempting the merge. The 802.11 spec 2744 * says the station should change it's bssid to match 2745 * the oldest station with the same ssid, where oldest 2746 * is determined by the tsf. Note that hardware 2747 * reconfiguration happens through callback to 2748 * ath_newstate as the state machine will go from 2749 * RUN -> RUN when this happens. 2750 */ 2751 if (le64toh(ni->ni_tstamp.tsf) >= tsf) { 2752 DPRINTF(sc, ATH_DEBUG_STATE, 2753 "ibss merge, rstamp %u tsf %ju " 2754 "tstamp %ju\n", rstamp, (uintmax_t)tsf, 2755 (uintmax_t)ni->ni_tstamp.tsf); 2756 (void) ieee80211_ibss_merge(ni); 2757 } 2758 } 2759 break; 2760 } 2761 } 2762 2763 /* 2764 * Set the default antenna. 2765 */ 2766 static void 2767 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 2768 { 2769 struct ath_hal *ah = sc->sc_ah; 2770 2771 /* XXX block beacon interrupts */ 2772 ath_hal_setdefantenna(ah, antenna); 2773 if (sc->sc_defant != antenna) 2774 sc->sc_stats.ast_ant_defswitch++; 2775 sc->sc_defant = antenna; 2776 sc->sc_rxotherant = 0; 2777 } 2778 2779 static void 2780 ath_rx_proc(void *arg, int npending) 2781 { 2782 #define PA2DESC(_sc, _pa) \ 2783 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 2784 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 2785 struct ath_softc *sc = arg; 2786 struct ath_buf *bf; 2787 struct ieee80211com *ic = &sc->sc_ic; 2788 struct ifnet *ifp = &sc->sc_if; 2789 struct ath_hal *ah = sc->sc_ah; 2790 struct ath_desc *ds; 2791 struct mbuf *m; 2792 struct ieee80211_node *ni; 2793 struct ath_node *an; 2794 int len, type; 2795 u_int phyerr; 2796 HAL_STATUS status; 2797 2798 NET_LOCK_GIANT(); /* XXX */ 2799 2800 DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending); 2801 do { 2802 bf = STAILQ_FIRST(&sc->sc_rxbuf); 2803 if (bf == NULL) { /* NB: shouldn't happen */ 2804 if_printf(ifp, "%s: no buffer!\n", __func__); 2805 break; 2806 } 2807 ds = bf->bf_desc; 2808 if (ds->ds_link == bf->bf_daddr) { 2809 /* NB: never process the self-linked entry at the end */ 2810 break; 2811 } 2812 m = bf->bf_m; 2813 if (m == NULL) { /* NB: shouldn't happen */ 2814 if_printf(ifp, "%s: no mbuf!\n", __func__); 2815 continue; 2816 } 2817 /* XXX sync descriptor memory */ 2818 /* 2819 * Must provide the virtual address of the current 2820 * descriptor, the physical address, and the virtual 2821 * address of the next descriptor in the h/w chain. 2822 * This allows the HAL to look ahead to see if the 2823 * hardware is done with a descriptor by checking the 2824 * done bit in the following descriptor and the address 2825 * of the current descriptor the DMA engine is working 2826 * on. All this is necessary because of our use of 2827 * a self-linked list to avoid rx overruns. 2828 */ 2829 status = ath_hal_rxprocdesc(ah, ds, 2830 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 2831 #ifdef AR_DEBUG 2832 if (sc->sc_debug & ATH_DEBUG_RECV_DESC) 2833 ath_printrxbuf(bf, status == HAL_OK); 2834 #endif 2835 if (status == HAL_EINPROGRESS) 2836 break; 2837 STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list); 2838 if (ds->ds_rxstat.rs_more) { 2839 /* 2840 * Frame spans multiple descriptors; this 2841 * cannot happen yet as we don't support 2842 * jumbograms. If not in monitor mode, 2843 * discard the frame. 2844 */ 2845 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2846 sc->sc_stats.ast_rx_toobig++; 2847 goto rx_next; 2848 } 2849 /* fall thru for monitor mode handling... */ 2850 } else if (ds->ds_rxstat.rs_status != 0) { 2851 if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC) 2852 sc->sc_stats.ast_rx_crcerr++; 2853 if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO) 2854 sc->sc_stats.ast_rx_fifoerr++; 2855 if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) { 2856 sc->sc_stats.ast_rx_phyerr++; 2857 phyerr = ds->ds_rxstat.rs_phyerr & 0x1f; 2858 sc->sc_stats.ast_rx_phy[phyerr]++; 2859 goto rx_next; 2860 } 2861 if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) { 2862 /* 2863 * Decrypt error. If the error occurred 2864 * because there was no hardware key, then 2865 * let the frame through so the upper layers 2866 * can process it. This is necessary for 5210 2867 * parts which have no way to setup a ``clear'' 2868 * key cache entry. 2869 * 2870 * XXX do key cache faulting 2871 */ 2872 if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID) 2873 goto rx_accept; 2874 sc->sc_stats.ast_rx_badcrypt++; 2875 } 2876 if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) { 2877 sc->sc_stats.ast_rx_badmic++; 2878 /* 2879 * Do minimal work required to hand off 2880 * the 802.11 header for notifcation. 2881 */ 2882 /* XXX frag's and qos frames */ 2883 len = ds->ds_rxstat.rs_datalen; 2884 if (len >= sizeof (struct ieee80211_frame)) { 2885 bus_dmamap_sync(sc->sc_dmat, 2886 bf->bf_dmamap, 2887 0, bf->bf_dmamap->dm_mapsize, 2888 BUS_DMASYNC_POSTREAD); 2889 ieee80211_notify_michael_failure(ic, 2890 mtod(m, struct ieee80211_frame *), 2891 sc->sc_splitmic ? 2892 ds->ds_rxstat.rs_keyix-32 : 2893 ds->ds_rxstat.rs_keyix 2894 ); 2895 } 2896 } 2897 ifp->if_ierrors++; 2898 /* 2899 * Reject error frames, we normally don't want 2900 * to see them in monitor mode (in monitor mode 2901 * allow through packets that have crypto problems). 2902 */ 2903 if ((ds->ds_rxstat.rs_status &~ 2904 (HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) || 2905 sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) 2906 goto rx_next; 2907 } 2908 rx_accept: 2909 /* 2910 * Sync and unmap the frame. At this point we're 2911 * committed to passing the mbuf somewhere so clear 2912 * bf_m; this means a new sk_buff must be allocated 2913 * when the rx descriptor is setup again to receive 2914 * another frame. 2915 */ 2916 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 2917 0, bf->bf_dmamap->dm_mapsize, 2918 BUS_DMASYNC_POSTREAD); 2919 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 2920 bf->bf_m = NULL; 2921 2922 m->m_pkthdr.rcvif = ifp; 2923 len = ds->ds_rxstat.rs_datalen; 2924 m->m_pkthdr.len = m->m_len = len; 2925 2926 sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++; 2927 2928 #if NBPFILTER > 0 2929 if (sc->sc_drvbpf) { 2930 u_int8_t rix; 2931 2932 /* 2933 * Discard anything shorter than an ack or cts. 2934 */ 2935 if (len < IEEE80211_ACK_LEN) { 2936 DPRINTF(sc, ATH_DEBUG_RECV, 2937 "%s: runt packet %d\n", 2938 __func__, len); 2939 sc->sc_stats.ast_rx_tooshort++; 2940 m_freem(m); 2941 goto rx_next; 2942 } 2943 rix = ds->ds_rxstat.rs_rate; 2944 sc->sc_rx_th.wr_tsf = ath_extend_tsf(sc->sc_ah, 2945 ds->ds_rxstat.rs_tstamp); 2946 sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags; 2947 sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate; 2948 sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi; 2949 sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna; 2950 2951 bpf_mtap2(sc->sc_drvbpf, 2952 &sc->sc_rx_th, sc->sc_rx_th_len, m); 2953 } 2954 #endif 2955 2956 /* 2957 * From this point on we assume the frame is at least 2958 * as large as ieee80211_frame_min; verify that. 2959 */ 2960 if (len < IEEE80211_MIN_LEN) { 2961 DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n", 2962 __func__, len); 2963 sc->sc_stats.ast_rx_tooshort++; 2964 m_freem(m); 2965 goto rx_next; 2966 } 2967 2968 if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) { 2969 ieee80211_dump_pkt(mtod(m, caddr_t), len, 2970 sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate, 2971 ds->ds_rxstat.rs_rssi); 2972 } 2973 2974 m_adj(m, -IEEE80211_CRC_LEN); 2975 2976 /* 2977 * Locate the node for sender, track state, and then 2978 * pass the (referenced) node up to the 802.11 layer 2979 * for its use. 2980 */ 2981 ni = ieee80211_find_rxnode_withkey(ic, 2982 mtod(m, const struct ieee80211_frame_min *), 2983 ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ? 2984 IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix); 2985 /* 2986 * Track rx rssi and do any rx antenna management. 2987 */ 2988 an = ATH_NODE(ni); 2989 ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi); 2990 /* 2991 * Send frame up for processing. 2992 */ 2993 type = ieee80211_input(ic, m, ni, 2994 ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp); 2995 ieee80211_free_node(ni); 2996 if (sc->sc_diversity) { 2997 /* 2998 * When using fast diversity, change the default rx 2999 * antenna if diversity chooses the other antenna 3 3000 * times in a row. 3001 */ 3002 if (sc->sc_defant != ds->ds_rxstat.rs_antenna) { 3003 if (++sc->sc_rxotherant >= 3) 3004 ath_setdefantenna(sc, 3005 ds->ds_rxstat.rs_antenna); 3006 } else 3007 sc->sc_rxotherant = 0; 3008 } 3009 if (sc->sc_softled) { 3010 /* 3011 * Blink for any data frame. Otherwise do a 3012 * heartbeat-style blink when idle. The latter 3013 * is mainly for station mode where we depend on 3014 * periodic beacon frames to trigger the poll event. 3015 */ 3016 if (type == IEEE80211_FC0_TYPE_DATA) { 3017 sc->sc_rxrate = ds->ds_rxstat.rs_rate; 3018 ath_led_event(sc, ATH_LED_RX); 3019 } else if (ticks - sc->sc_ledevent >= sc->sc_ledidle) 3020 ath_led_event(sc, ATH_LED_POLL); 3021 } 3022 rx_next: 3023 STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list); 3024 } while (ath_rxbuf_init(sc, bf) == 0); 3025 3026 /* rx signal state monitoring */ 3027 ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats); 3028 3029 #ifdef __NetBSD__ 3030 /* XXX Why isn't this necessary in FreeBSD? */ 3031 if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) 3032 ath_start(ifp); 3033 #endif /* __NetBSD__ */ 3034 3035 NET_UNLOCK_GIANT(); /* XXX */ 3036 #undef PA2DESC 3037 } 3038 3039 /* 3040 * Setup a h/w transmit queue. 3041 */ 3042 static struct ath_txq * 3043 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3044 { 3045 #define N(a) (sizeof(a)/sizeof(a[0])) 3046 struct ath_hal *ah = sc->sc_ah; 3047 HAL_TXQ_INFO qi; 3048 int qnum; 3049 3050 memset(&qi, 0, sizeof(qi)); 3051 qi.tqi_subtype = subtype; 3052 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3053 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3054 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3055 /* 3056 * Enable interrupts only for EOL and DESC conditions. 3057 * We mark tx descriptors to receive a DESC interrupt 3058 * when a tx queue gets deep; otherwise waiting for the 3059 * EOL to reap descriptors. Note that this is done to 3060 * reduce interrupt load and this only defers reaping 3061 * descriptors, never transmitting frames. Aside from 3062 * reducing interrupts this also permits more concurrency. 3063 * The only potential downside is if the tx queue backs 3064 * up in which case the top half of the kernel may backup 3065 * due to a lack of tx descriptors. 3066 */ 3067 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; 3068 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3069 if (qnum == -1) { 3070 /* 3071 * NB: don't print a message, this happens 3072 * normally on parts with too few tx queues 3073 */ 3074 return NULL; 3075 } 3076 if (qnum >= N(sc->sc_txq)) { 3077 device_printf(sc->sc_dev, 3078 "hal qnum %u out of range, max %zu!\n", 3079 qnum, N(sc->sc_txq)); 3080 ath_hal_releasetxqueue(ah, qnum); 3081 return NULL; 3082 } 3083 if (!ATH_TXQ_SETUP(sc, qnum)) { 3084 struct ath_txq *txq = &sc->sc_txq[qnum]; 3085 3086 txq->axq_qnum = qnum; 3087 txq->axq_depth = 0; 3088 txq->axq_intrcnt = 0; 3089 txq->axq_link = NULL; 3090 STAILQ_INIT(&txq->axq_q); 3091 ATH_TXQ_LOCK_INIT(sc, txq); 3092 sc->sc_txqsetup |= 1<<qnum; 3093 } 3094 return &sc->sc_txq[qnum]; 3095 #undef N 3096 } 3097 3098 /* 3099 * Setup a hardware data transmit queue for the specified 3100 * access control. The hal may not support all requested 3101 * queues in which case it will return a reference to a 3102 * previously setup queue. We record the mapping from ac's 3103 * to h/w queues for use by ath_tx_start and also track 3104 * the set of h/w queues being used to optimize work in the 3105 * transmit interrupt handler and related routines. 3106 */ 3107 static int 3108 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3109 { 3110 #define N(a) (sizeof(a)/sizeof(a[0])) 3111 struct ath_txq *txq; 3112 3113 if (ac >= N(sc->sc_ac2q)) { 3114 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3115 ac, N(sc->sc_ac2q)); 3116 return 0; 3117 } 3118 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3119 if (txq != NULL) { 3120 sc->sc_ac2q[ac] = txq; 3121 return 1; 3122 } else 3123 return 0; 3124 #undef N 3125 } 3126 3127 /* 3128 * Update WME parameters for a transmit queue. 3129 */ 3130 static int 3131 ath_txq_update(struct ath_softc *sc, int ac) 3132 { 3133 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3134 #define ATH_TXOP_TO_US(v) (v<<5) 3135 struct ieee80211com *ic = &sc->sc_ic; 3136 struct ath_txq *txq = sc->sc_ac2q[ac]; 3137 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3138 struct ath_hal *ah = sc->sc_ah; 3139 HAL_TXQ_INFO qi; 3140 3141 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3142 qi.tqi_aifs = wmep->wmep_aifsn; 3143 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3144 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3145 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3146 3147 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3148 device_printf(sc->sc_dev, "unable to update hardware queue " 3149 "parameters for %s traffic!\n", 3150 ieee80211_wme_acnames[ac]); 3151 return 0; 3152 } else { 3153 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3154 return 1; 3155 } 3156 #undef ATH_TXOP_TO_US 3157 #undef ATH_EXPONENT_TO_VALUE 3158 } 3159 3160 /* 3161 * Callback from the 802.11 layer to update WME parameters. 3162 */ 3163 static int 3164 ath_wme_update(struct ieee80211com *ic) 3165 { 3166 struct ath_softc *sc = ic->ic_ifp->if_softc; 3167 3168 return !ath_txq_update(sc, WME_AC_BE) || 3169 !ath_txq_update(sc, WME_AC_BK) || 3170 !ath_txq_update(sc, WME_AC_VI) || 3171 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3172 } 3173 3174 /* 3175 * Reclaim resources for a setup queue. 3176 */ 3177 static void 3178 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3179 { 3180 3181 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3182 ATH_TXQ_LOCK_DESTROY(txq); 3183 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3184 } 3185 3186 /* 3187 * Reclaim all tx queue resources. 3188 */ 3189 static void 3190 ath_tx_cleanup(struct ath_softc *sc) 3191 { 3192 int i; 3193 3194 ATH_TXBUF_LOCK_DESTROY(sc); 3195 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3196 if (ATH_TXQ_SETUP(sc, i)) 3197 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3198 } 3199 3200 /* 3201 * Defragment an mbuf chain, returning at most maxfrags separate 3202 * mbufs+clusters. If this is not possible NULL is returned and 3203 * the original mbuf chain is left in it's present (potentially 3204 * modified) state. We use two techniques: collapsing consecutive 3205 * mbufs and replacing consecutive mbufs by a cluster. 3206 */ 3207 static struct mbuf * 3208 ath_defrag(struct mbuf *m0, int how, int maxfrags) 3209 { 3210 struct mbuf *m, *n, *n2, **prev; 3211 u_int curfrags; 3212 3213 /* 3214 * Calculate the current number of frags. 3215 */ 3216 curfrags = 0; 3217 for (m = m0; m != NULL; m = m->m_next) 3218 curfrags++; 3219 /* 3220 * First, try to collapse mbufs. Note that we always collapse 3221 * towards the front so we don't need to deal with moving the 3222 * pkthdr. This may be suboptimal if the first mbuf has much 3223 * less data than the following. 3224 */ 3225 m = m0; 3226 again: 3227 for (;;) { 3228 n = m->m_next; 3229 if (n == NULL) 3230 break; 3231 if ((m->m_flags & M_RDONLY) == 0 && 3232 n->m_len < M_TRAILINGSPACE(m)) { 3233 bcopy(mtod(n, void *), mtod(m, char *) + m->m_len, 3234 n->m_len); 3235 m->m_len += n->m_len; 3236 m->m_next = n->m_next; 3237 m_free(n); 3238 if (--curfrags <= maxfrags) 3239 return m0; 3240 } else 3241 m = n; 3242 } 3243 KASSERT(maxfrags > 1, 3244 ("maxfrags %u, but normal collapse failed", maxfrags)); 3245 /* 3246 * Collapse consecutive mbufs to a cluster. 3247 */ 3248 prev = &m0->m_next; /* NB: not the first mbuf */ 3249 while ((n = *prev) != NULL) { 3250 if ((n2 = n->m_next) != NULL && 3251 n->m_len + n2->m_len < MCLBYTES) { 3252 m = m_getcl(how, MT_DATA, 0); 3253 if (m == NULL) 3254 goto bad; 3255 bcopy(mtod(n, void *), mtod(m, void *), n->m_len); 3256 bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len, 3257 n2->m_len); 3258 m->m_len = n->m_len + n2->m_len; 3259 m->m_next = n2->m_next; 3260 *prev = m; 3261 m_free(n); 3262 m_free(n2); 3263 if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */ 3264 return m0; 3265 /* 3266 * Still not there, try the normal collapse 3267 * again before we allocate another cluster. 3268 */ 3269 goto again; 3270 } 3271 prev = &n->m_next; 3272 } 3273 /* 3274 * No place where we can collapse to a cluster; punt. 3275 * This can occur if, for example, you request 2 frags 3276 * but the packet requires that both be clusters (we 3277 * never reallocate the first mbuf to avoid moving the 3278 * packet header). 3279 */ 3280 bad: 3281 return NULL; 3282 } 3283 3284 static int 3285 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf, 3286 struct mbuf *m0) 3287 { 3288 #define CTS_DURATION \ 3289 ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE) 3290 #define updateCTSForBursting(_ah, _ds, _txq) \ 3291 ath_hal_updateCTSForBursting(_ah, _ds, \ 3292 _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \ 3293 _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \ 3294 txopLimit, CTS_DURATION) 3295 struct ieee80211com *ic = &sc->sc_ic; 3296 struct ath_hal *ah = sc->sc_ah; 3297 struct ifnet *ifp = &sc->sc_if; 3298 const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams; 3299 int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0; 3300 u_int8_t rix, txrate, ctsrate; 3301 u_int8_t cix = 0xff; /* NB: silence compiler */ 3302 struct ath_desc *ds, *ds0; 3303 struct ath_txq *txq; 3304 struct ieee80211_frame *wh; 3305 u_int subtype, flags, ctsduration; 3306 HAL_PKT_TYPE atype; 3307 const HAL_RATE_TABLE *rt; 3308 HAL_BOOL shortPreamble; 3309 struct ath_node *an; 3310 struct mbuf *m; 3311 u_int pri; 3312 3313 wh = mtod(m0, struct ieee80211_frame *); 3314 iswep = wh->i_fc[1] & IEEE80211_FC1_WEP; 3315 ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1); 3316 hdrlen = ieee80211_anyhdrsize(wh); 3317 /* 3318 * Packet length must not include any 3319 * pad bytes; deduct them here. 3320 */ 3321 pktlen = m0->m_pkthdr.len - (hdrlen & 3); 3322 3323 if (iswep) { 3324 const struct ieee80211_cipher *cip; 3325 struct ieee80211_key *k; 3326 3327 /* 3328 * Construct the 802.11 header+trailer for an encrypted 3329 * frame. The only reason this can fail is because of an 3330 * unknown or unsupported cipher/key type. 3331 */ 3332 k = ieee80211_crypto_encap(ic, ni, m0); 3333 if (k == NULL) { 3334 /* 3335 * This can happen when the key is yanked after the 3336 * frame was queued. Just discard the frame; the 3337 * 802.11 layer counts failures and provides 3338 * debugging/diagnostics. 3339 */ 3340 m_freem(m0); 3341 return EIO; 3342 } 3343 /* 3344 * Adjust the packet + header lengths for the crypto 3345 * additions and calculate the h/w key index. When 3346 * a s/w mic is done the frame will have had any mic 3347 * added to it prior to entry so skb->len above will 3348 * account for it. Otherwise we need to add it to the 3349 * packet length. 3350 */ 3351 cip = k->wk_cipher; 3352 hdrlen += cip->ic_header; 3353 pktlen += cip->ic_header + cip->ic_trailer; 3354 if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0) 3355 pktlen += cip->ic_miclen; 3356 keyix = k->wk_keyix; 3357 3358 /* packet header may have moved, reset our local pointer */ 3359 wh = mtod(m0, struct ieee80211_frame *); 3360 } else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) { 3361 /* 3362 * Use station key cache slot, if assigned. 3363 */ 3364 keyix = ni->ni_ucastkey.wk_keyix; 3365 if (keyix == IEEE80211_KEYIX_NONE) 3366 keyix = HAL_TXKEYIX_INVALID; 3367 } else 3368 keyix = HAL_TXKEYIX_INVALID; 3369 3370 pktlen += IEEE80211_CRC_LEN; 3371 3372 /* 3373 * Load the DMA map so any coalescing is done. This 3374 * also calculates the number of descriptors we need. 3375 */ 3376 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3377 BUS_DMA_NOWAIT); 3378 if (error == EFBIG) { 3379 /* XXX packet requires too many descriptors */ 3380 bf->bf_nseg = ATH_TXDESC+1; 3381 } else if (error != 0) { 3382 sc->sc_stats.ast_tx_busdma++; 3383 m_freem(m0); 3384 return error; 3385 } 3386 /* 3387 * Discard null packets and check for packets that 3388 * require too many TX descriptors. We try to convert 3389 * the latter to a cluster. 3390 */ 3391 if (error == EFBIG) { /* too many desc's, linearize */ 3392 sc->sc_stats.ast_tx_linear++; 3393 m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC); 3394 if (m == NULL) { 3395 m_freem(m0); 3396 sc->sc_stats.ast_tx_nombuf++; 3397 return ENOMEM; 3398 } 3399 m0 = m; 3400 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0, 3401 BUS_DMA_NOWAIT); 3402 if (error != 0) { 3403 sc->sc_stats.ast_tx_busdma++; 3404 m_freem(m0); 3405 return error; 3406 } 3407 KASSERT(bf->bf_nseg <= ATH_TXDESC, 3408 ("too many segments after defrag; nseg %u", bf->bf_nseg)); 3409 } else if (bf->bf_nseg == 0) { /* null packet, discard */ 3410 sc->sc_stats.ast_tx_nodata++; 3411 m_freem(m0); 3412 return EIO; 3413 } 3414 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen); 3415 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3416 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); 3417 bf->bf_m = m0; 3418 bf->bf_node = ni; /* NB: held reference */ 3419 3420 /* setup descriptors */ 3421 ds = bf->bf_desc; 3422 rt = sc->sc_currates; 3423 KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode)); 3424 3425 /* 3426 * NB: the 802.11 layer marks whether or not we should 3427 * use short preamble based on the current mode and 3428 * negotiated parameters. 3429 */ 3430 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 3431 (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) { 3432 shortPreamble = AH_TRUE; 3433 sc->sc_stats.ast_tx_shortpre++; 3434 } else { 3435 shortPreamble = AH_FALSE; 3436 } 3437 3438 an = ATH_NODE(ni); 3439 flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */ 3440 /* 3441 * Calculate Atheros packet type from IEEE80211 packet header, 3442 * setup for rate calculations, and select h/w transmit queue. 3443 */ 3444 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 3445 case IEEE80211_FC0_TYPE_MGT: 3446 subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; 3447 if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) 3448 atype = HAL_PKT_TYPE_BEACON; 3449 else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) 3450 atype = HAL_PKT_TYPE_PROBE_RESP; 3451 else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM) 3452 atype = HAL_PKT_TYPE_ATIM; 3453 else 3454 atype = HAL_PKT_TYPE_NORMAL; /* XXX */ 3455 rix = 0; /* XXX lowest rate */ 3456 try0 = ATH_TXMAXTRY; 3457 if (shortPreamble) 3458 txrate = an->an_tx_mgtratesp; 3459 else 3460 txrate = an->an_tx_mgtrate; 3461 /* NB: force all management frames to highest queue */ 3462 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3463 /* NB: force all management frames to highest queue */ 3464 pri = WME_AC_VO; 3465 } else 3466 pri = WME_AC_BE; 3467 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3468 break; 3469 case IEEE80211_FC0_TYPE_CTL: 3470 atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */ 3471 rix = 0; /* XXX lowest rate */ 3472 try0 = ATH_TXMAXTRY; 3473 if (shortPreamble) 3474 txrate = an->an_tx_mgtratesp; 3475 else 3476 txrate = an->an_tx_mgtrate; 3477 /* NB: force all ctl frames to highest queue */ 3478 if (ni->ni_flags & IEEE80211_NODE_QOS) { 3479 /* NB: force all ctl frames to highest queue */ 3480 pri = WME_AC_VO; 3481 } else 3482 pri = WME_AC_BE; 3483 flags |= HAL_TXDESC_INTREQ; /* force interrupt */ 3484 break; 3485 case IEEE80211_FC0_TYPE_DATA: 3486 atype = HAL_PKT_TYPE_NORMAL; /* default */ 3487 /* 3488 * Data frames; consult the rate control module for 3489 * unicast frames. Send multicast frames at the 3490 * lowest rate. 3491 */ 3492 if (!ismcast) { 3493 ath_rate_findrate(sc, an, shortPreamble, pktlen, 3494 &rix, &try0, &txrate); 3495 } else { 3496 rix = 0; 3497 try0 = ATH_TXMAXTRY; 3498 txrate = an->an_tx_mgtrate; 3499 } 3500 sc->sc_txrate = txrate; /* for LED blinking */ 3501 /* 3502 * Default all non-QoS traffic to the background queue. 3503 */ 3504 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 3505 pri = M_WME_GETAC(m0); 3506 if (cap->cap_wmeParams[pri].wmep_noackPolicy) { 3507 flags |= HAL_TXDESC_NOACK; 3508 sc->sc_stats.ast_tx_noack++; 3509 } 3510 } else 3511 pri = WME_AC_BE; 3512 break; 3513 default: 3514 if_printf(ifp, "bogus frame type 0x%x (%s)\n", 3515 wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__); 3516 /* XXX statistic */ 3517 m_freem(m0); 3518 return EIO; 3519 } 3520 txq = sc->sc_ac2q[pri]; 3521 3522 /* 3523 * When servicing one or more stations in power-save mode 3524 * multicast frames must be buffered until after the beacon. 3525 * We use the CAB queue for that. 3526 */ 3527 if (ismcast && ic->ic_ps_sta) { 3528 txq = sc->sc_cabq; 3529 /* XXX? more bit in 802.11 frame header */ 3530 } 3531 3532 /* 3533 * Calculate miscellaneous flags. 3534 */ 3535 if (ismcast) { 3536 flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */ 3537 sc->sc_stats.ast_tx_noack++; 3538 } else if (pktlen > ic->ic_rtsthreshold) { 3539 flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */ 3540 cix = rt->info[rix].controlRate; 3541 sc->sc_stats.ast_tx_rts++; 3542 } 3543 3544 /* 3545 * If 802.11g protection is enabled, determine whether 3546 * to use RTS/CTS or just CTS. Note that this is only 3547 * done for OFDM unicast frames. 3548 */ 3549 if ((ic->ic_flags & IEEE80211_F_USEPROT) && 3550 rt->info[rix].phy == IEEE80211_T_OFDM && 3551 (flags & HAL_TXDESC_NOACK) == 0) { 3552 /* XXX fragments must use CCK rates w/ protection */ 3553 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3554 flags |= HAL_TXDESC_RTSENA; 3555 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3556 flags |= HAL_TXDESC_CTSENA; 3557 cix = rt->info[sc->sc_protrix].controlRate; 3558 sc->sc_stats.ast_tx_protect++; 3559 } 3560 3561 /* 3562 * Calculate duration. This logically belongs in the 802.11 3563 * layer but it lacks sufficient information to calculate it. 3564 */ 3565 if ((flags & HAL_TXDESC_NOACK) == 0 && 3566 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) { 3567 u_int16_t dur; 3568 /* 3569 * XXX not right with fragmentation. 3570 */ 3571 if (shortPreamble) 3572 dur = rt->info[rix].spAckDuration; 3573 else 3574 dur = rt->info[rix].lpAckDuration; 3575 *(u_int16_t *)wh->i_dur = htole16(dur); 3576 } 3577 3578 /* 3579 * Calculate RTS/CTS rate and duration if needed. 3580 */ 3581 ctsduration = 0; 3582 if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) { 3583 /* 3584 * CTS transmit rate is derived from the transmit rate 3585 * by looking in the h/w rate table. We must also factor 3586 * in whether or not a short preamble is to be used. 3587 */ 3588 /* NB: cix is set above where RTS/CTS is enabled */ 3589 KASSERT(cix != 0xff, ("cix not setup")); 3590 ctsrate = rt->info[cix].rateCode; 3591 /* 3592 * Compute the transmit duration based on the frame 3593 * size and the size of an ACK frame. We call into the 3594 * HAL to do the computation since it depends on the 3595 * characteristics of the actual PHY being used. 3596 * 3597 * NB: CTS is assumed the same size as an ACK so we can 3598 * use the precalculated ACK durations. 3599 */ 3600 if (shortPreamble) { 3601 ctsrate |= rt->info[cix].shortPreamble; 3602 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3603 ctsduration += rt->info[cix].spAckDuration; 3604 ctsduration += ath_hal_computetxtime(ah, 3605 rt, pktlen, rix, AH_TRUE); 3606 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3607 ctsduration += rt->info[rix].spAckDuration; 3608 } else { 3609 if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */ 3610 ctsduration += rt->info[cix].lpAckDuration; 3611 ctsduration += ath_hal_computetxtime(ah, 3612 rt, pktlen, rix, AH_FALSE); 3613 if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */ 3614 ctsduration += rt->info[rix].lpAckDuration; 3615 } 3616 /* 3617 * Must disable multi-rate retry when using RTS/CTS. 3618 */ 3619 try0 = ATH_TXMAXTRY; 3620 } else 3621 ctsrate = 0; 3622 3623 if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT)) 3624 ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len, 3625 sc->sc_hwmap[txrate].ieeerate, -1); 3626 #if NBPFILTER > 0 3627 if (ic->ic_rawbpf) 3628 bpf_mtap(ic->ic_rawbpf, m0); 3629 if (sc->sc_drvbpf) { 3630 sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags; 3631 if (iswep) 3632 sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP; 3633 sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate; 3634 sc->sc_tx_th.wt_txpower = ni->ni_txpower; 3635 sc->sc_tx_th.wt_antenna = sc->sc_txantenna; 3636 3637 bpf_mtap2(sc->sc_drvbpf, 3638 &sc->sc_tx_th, sc->sc_tx_th_len, m0); 3639 } 3640 #endif 3641 3642 /* 3643 * Determine if a tx interrupt should be generated for 3644 * this descriptor. We take a tx interrupt to reap 3645 * descriptors when the h/w hits an EOL condition or 3646 * when the descriptor is specifically marked to generate 3647 * an interrupt. We periodically mark descriptors in this 3648 * way to insure timely replenishing of the supply needed 3649 * for sending frames. Defering interrupts reduces system 3650 * load and potentially allows more concurrent work to be 3651 * done but if done to aggressively can cause senders to 3652 * backup. 3653 * 3654 * NB: use >= to deal with sc_txintrperiod changing 3655 * dynamically through sysctl. 3656 */ 3657 if (flags & HAL_TXDESC_INTREQ) { 3658 txq->axq_intrcnt = 0; 3659 } else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) { 3660 flags |= HAL_TXDESC_INTREQ; 3661 txq->axq_intrcnt = 0; 3662 } 3663 3664 /* 3665 * Formulate first tx descriptor with tx controls. 3666 */ 3667 /* XXX check return value? */ 3668 ath_hal_setuptxdesc(ah, ds 3669 , pktlen /* packet length */ 3670 , hdrlen /* header length */ 3671 , atype /* Atheros packet type */ 3672 , ni->ni_txpower /* txpower */ 3673 , txrate, try0 /* series 0 rate/tries */ 3674 , keyix /* key cache index */ 3675 , sc->sc_txantenna /* antenna mode */ 3676 , flags /* flags */ 3677 , ctsrate /* rts/cts rate */ 3678 , ctsduration /* rts/cts duration */ 3679 ); 3680 bf->bf_flags = flags; 3681 /* 3682 * Setup the multi-rate retry state only when we're 3683 * going to use it. This assumes ath_hal_setuptxdesc 3684 * initializes the descriptors (so we don't have to) 3685 * when the hardware supports multi-rate retry and 3686 * we don't use it. 3687 */ 3688 if (try0 != ATH_TXMAXTRY) 3689 ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix); 3690 3691 /* 3692 * Fillin the remainder of the descriptor info. 3693 */ 3694 ds0 = ds; 3695 for (i = 0; i < bf->bf_nseg; i++, ds++) { 3696 ds->ds_data = bf->bf_segs[i].ds_addr; 3697 if (i == bf->bf_nseg - 1) 3698 ds->ds_link = 0; 3699 else 3700 ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1); 3701 ath_hal_filltxdesc(ah, ds 3702 , bf->bf_segs[i].ds_len /* segment length */ 3703 , i == 0 /* first segment */ 3704 , i == bf->bf_nseg - 1 /* last segment */ 3705 , ds0 /* first descriptor */ 3706 ); 3707 DPRINTF(sc, ATH_DEBUG_XMIT, 3708 "%s: %d: %08x %08x %08x %08x %08x %08x\n", 3709 __func__, i, ds->ds_link, ds->ds_data, 3710 ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]); 3711 } 3712 /* 3713 * Insert the frame on the outbound list and 3714 * pass it on to the hardware. 3715 */ 3716 ATH_TXQ_LOCK(txq); 3717 if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) { 3718 u_int32_t txopLimit = IEEE80211_TXOP_TO_US( 3719 cap->cap_wmeParams[pri].wmep_txopLimit); 3720 /* 3721 * When bursting, potentially extend the CTS duration 3722 * of a previously queued frame to cover this frame 3723 * and not exceed the txopLimit. If that can be done 3724 * then disable RTS/CTS on this frame since it's now 3725 * covered (burst extension). Otherwise we must terminate 3726 * the burst before this frame goes out so as not to 3727 * violate the WME parameters. All this is complicated 3728 * as we need to update the state of packets on the 3729 * (live) hardware queue. The logic is buried in the hal 3730 * because it's highly chip-specific. 3731 */ 3732 if (txopLimit != 0) { 3733 sc->sc_stats.ast_tx_ctsburst++; 3734 if (updateCTSForBursting(ah, ds0, txq) == 0) { 3735 /* 3736 * This frame was not covered by RTS/CTS from 3737 * the previous frame in the burst; update the 3738 * descriptor pointers so this frame is now 3739 * treated as the last frame for extending a 3740 * burst. 3741 */ 3742 txq->axq_lastdsWithCTS = ds0; 3743 /* set gating Desc to final desc */ 3744 txq->axq_gatingds = 3745 (struct ath_desc *)txq->axq_link; 3746 } else 3747 sc->sc_stats.ast_tx_ctsext++; 3748 } 3749 } 3750 ATH_TXQ_INSERT_TAIL(txq, bf, bf_list); 3751 if (txq->axq_link == NULL) { 3752 ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 3753 DPRINTF(sc, ATH_DEBUG_XMIT, 3754 "%s: TXDP[%u] = %p (%p) depth %d\n", __func__, 3755 txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc, 3756 txq->axq_depth); 3757 } else { 3758 *txq->axq_link = bf->bf_daddr; 3759 DPRINTF(sc, ATH_DEBUG_XMIT, 3760 "%s: link[%u](%p)=%p (%p) depth %d\n", __func__, 3761 txq->axq_qnum, txq->axq_link, 3762 (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth); 3763 } 3764 txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link; 3765 /* 3766 * The CAB queue is started from the SWBA handler since 3767 * frames only go out on DTIM and to avoid possible races. 3768 */ 3769 if (txq != sc->sc_cabq) 3770 ath_hal_txstart(ah, txq->axq_qnum); 3771 ATH_TXQ_UNLOCK(txq); 3772 3773 return 0; 3774 #undef updateCTSForBursting 3775 #undef CTS_DURATION 3776 } 3777 3778 /* 3779 * Process completed xmit descriptors from the specified queue. 3780 */ 3781 static void 3782 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 3783 { 3784 struct ath_hal *ah = sc->sc_ah; 3785 struct ieee80211com *ic = &sc->sc_ic; 3786 struct ath_buf *bf; 3787 struct ath_desc *ds, *ds0; 3788 struct ieee80211_node *ni; 3789 struct ath_node *an; 3790 int sr, lr, pri; 3791 HAL_STATUS status; 3792 3793 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3794 __func__, txq->axq_qnum, 3795 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3796 txq->axq_link); 3797 for (;;) { 3798 ATH_TXQ_LOCK(txq); 3799 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3800 bf = STAILQ_FIRST(&txq->axq_q); 3801 if (bf == NULL) { 3802 txq->axq_link = NULL; 3803 ATH_TXQ_UNLOCK(txq); 3804 break; 3805 } 3806 ds0 = &bf->bf_desc[0]; 3807 ds = &bf->bf_desc[bf->bf_nseg - 1]; 3808 status = ath_hal_txprocdesc(ah, ds); 3809 #ifdef AR_DEBUG 3810 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3811 ath_printtxbuf(bf, status == HAL_OK); 3812 #endif 3813 if (status == HAL_EINPROGRESS) { 3814 ATH_TXQ_UNLOCK(txq); 3815 break; 3816 } 3817 if (ds0 == txq->axq_lastdsWithCTS) 3818 txq->axq_lastdsWithCTS = NULL; 3819 if (ds == txq->axq_gatingds) 3820 txq->axq_gatingds = NULL; 3821 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3822 ATH_TXQ_UNLOCK(txq); 3823 3824 ni = bf->bf_node; 3825 if (ni != NULL) { 3826 an = ATH_NODE(ni); 3827 if (ds->ds_txstat.ts_status == 0) { 3828 u_int8_t txant = ds->ds_txstat.ts_antenna; 3829 sc->sc_stats.ast_ant_tx[txant]++; 3830 sc->sc_ant_tx[txant]++; 3831 if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE) 3832 sc->sc_stats.ast_tx_altrate++; 3833 sc->sc_stats.ast_tx_rssi = 3834 ds->ds_txstat.ts_rssi; 3835 ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi, 3836 ds->ds_txstat.ts_rssi); 3837 pri = M_WME_GETAC(bf->bf_m); 3838 if (pri >= WME_AC_VO) 3839 ic->ic_wme.wme_hipri_traffic++; 3840 ni->ni_inact = ni->ni_inact_reload; 3841 } else { 3842 if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY) 3843 sc->sc_stats.ast_tx_xretries++; 3844 if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO) 3845 sc->sc_stats.ast_tx_fifoerr++; 3846 if (ds->ds_txstat.ts_status & HAL_TXERR_FILT) 3847 sc->sc_stats.ast_tx_filtered++; 3848 } 3849 sr = ds->ds_txstat.ts_shortretry; 3850 lr = ds->ds_txstat.ts_longretry; 3851 sc->sc_stats.ast_tx_shortretry += sr; 3852 sc->sc_stats.ast_tx_longretry += lr; 3853 /* 3854 * Hand the descriptor to the rate control algorithm. 3855 */ 3856 if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 && 3857 (bf->bf_flags & HAL_TXDESC_NOACK) == 0) 3858 ath_rate_tx_complete(sc, an, ds, ds0); 3859 /* 3860 * Reclaim reference to node. 3861 * 3862 * NB: the node may be reclaimed here if, for example 3863 * this is a DEAUTH message that was sent and the 3864 * node was timed out due to inactivity. 3865 */ 3866 ieee80211_free_node(ni); 3867 } 3868 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0, 3869 bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 3870 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3871 m_freem(bf->bf_m); 3872 bf->bf_m = NULL; 3873 bf->bf_node = NULL; 3874 3875 ATH_TXBUF_LOCK(sc); 3876 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3877 ATH_TXBUF_UNLOCK(sc); 3878 } 3879 } 3880 3881 /* 3882 * Deferred processing of transmit interrupt; special-cased 3883 * for a single hardware transmit queue (e.g. 5210 and 5211). 3884 */ 3885 static void 3886 ath_tx_proc_q0(void *arg, int npending) 3887 { 3888 struct ath_softc *sc = arg; 3889 struct ifnet *ifp = &sc->sc_if; 3890 3891 ath_tx_processq(sc, &sc->sc_txq[0]); 3892 ath_tx_processq(sc, sc->sc_cabq); 3893 ifp->if_flags &= ~IFF_OACTIVE; 3894 sc->sc_tx_timer = 0; 3895 3896 if (sc->sc_softled) 3897 ath_led_event(sc, ATH_LED_TX); 3898 3899 ath_start(ifp); 3900 } 3901 3902 /* 3903 * Deferred processing of transmit interrupt; special-cased 3904 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3905 */ 3906 static void 3907 ath_tx_proc_q0123(void *arg, int npending) 3908 { 3909 struct ath_softc *sc = arg; 3910 struct ifnet *ifp = &sc->sc_if; 3911 3912 /* 3913 * Process each active queue. 3914 */ 3915 ath_tx_processq(sc, &sc->sc_txq[0]); 3916 ath_tx_processq(sc, &sc->sc_txq[1]); 3917 ath_tx_processq(sc, &sc->sc_txq[2]); 3918 ath_tx_processq(sc, &sc->sc_txq[3]); 3919 ath_tx_processq(sc, sc->sc_cabq); 3920 3921 ifp->if_flags &= ~IFF_OACTIVE; 3922 sc->sc_tx_timer = 0; 3923 3924 if (sc->sc_softled) 3925 ath_led_event(sc, ATH_LED_TX); 3926 3927 ath_start(ifp); 3928 } 3929 3930 /* 3931 * Deferred processing of transmit interrupt. 3932 */ 3933 static void 3934 ath_tx_proc(void *arg, int npending) 3935 { 3936 struct ath_softc *sc = arg; 3937 struct ifnet *ifp = &sc->sc_if; 3938 int i; 3939 3940 /* 3941 * Process each active queue. 3942 */ 3943 /* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */ 3944 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3945 if (ATH_TXQ_SETUP(sc, i)) 3946 ath_tx_processq(sc, &sc->sc_txq[i]); 3947 3948 ifp->if_flags &= ~IFF_OACTIVE; 3949 sc->sc_tx_timer = 0; 3950 3951 if (sc->sc_softled) 3952 ath_led_event(sc, ATH_LED_TX); 3953 3954 ath_start(ifp); 3955 } 3956 3957 static void 3958 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 3959 { 3960 struct ath_hal *ah = sc->sc_ah; 3961 struct ieee80211_node *ni; 3962 struct ath_buf *bf; 3963 3964 /* 3965 * NB: this assumes output has been stopped and 3966 * we do not need to block ath_tx_tasklet 3967 */ 3968 for (;;) { 3969 ATH_TXQ_LOCK(txq); 3970 bf = STAILQ_FIRST(&txq->axq_q); 3971 if (bf == NULL) { 3972 txq->axq_link = NULL; 3973 ATH_TXQ_UNLOCK(txq); 3974 break; 3975 } 3976 ATH_TXQ_REMOVE_HEAD(txq, bf_list); 3977 ATH_TXQ_UNLOCK(txq); 3978 #ifdef AR_DEBUG 3979 if (sc->sc_debug & ATH_DEBUG_RESET) 3980 ath_printtxbuf(bf, 3981 ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK); 3982 #endif /* AR_DEBUG */ 3983 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 3984 m_freem(bf->bf_m); 3985 bf->bf_m = NULL; 3986 ni = bf->bf_node; 3987 bf->bf_node = NULL; 3988 if (ni != NULL) { 3989 /* 3990 * Reclaim node reference. 3991 */ 3992 ieee80211_free_node(ni); 3993 } 3994 ATH_TXBUF_LOCK(sc); 3995 STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 3996 ATH_TXBUF_UNLOCK(sc); 3997 } 3998 } 3999 4000 static void 4001 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4002 { 4003 struct ath_hal *ah = sc->sc_ah; 4004 4005 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4006 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4007 __func__, txq->axq_qnum, 4008 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4009 txq->axq_link); 4010 } 4011 4012 /* 4013 * Drain the transmit queues and reclaim resources. 4014 */ 4015 static void 4016 ath_draintxq(struct ath_softc *sc) 4017 { 4018 struct ath_hal *ah = sc->sc_ah; 4019 struct ifnet *ifp = &sc->sc_if; 4020 int i; 4021 4022 /* XXX return value */ 4023 if (!sc->sc_invalid) { 4024 /* don't touch the hardware if marked invalid */ 4025 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4026 DPRINTF(sc, ATH_DEBUG_RESET, 4027 "%s: beacon queue %p\n", __func__, 4028 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)); 4029 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4030 if (ATH_TXQ_SETUP(sc, i)) 4031 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4032 } 4033 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4034 if (ATH_TXQ_SETUP(sc, i)) 4035 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4036 ifp->if_flags &= ~IFF_OACTIVE; 4037 sc->sc_tx_timer = 0; 4038 } 4039 4040 /* 4041 * Disable the receive h/w in preparation for a reset. 4042 */ 4043 static void 4044 ath_stoprecv(struct ath_softc *sc) 4045 { 4046 #define PA2DESC(_sc, _pa) \ 4047 ((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \ 4048 ((_pa) - (_sc)->sc_rxdma.dd_desc_paddr))) 4049 struct ath_hal *ah = sc->sc_ah; 4050 4051 ath_hal_stoppcurecv(ah); /* disable PCU */ 4052 ath_hal_setrxfilter(ah, 0); /* clear recv filter */ 4053 ath_hal_stopdmarecv(ah); /* disable DMA engine */ 4054 DELAY(3000); /* 3ms is long enough for 1 frame */ 4055 #ifdef AR_DEBUG 4056 if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) { 4057 struct ath_buf *bf; 4058 4059 printf("%s: rx queue %p, link %p\n", __func__, 4060 (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink); 4061 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4062 struct ath_desc *ds = bf->bf_desc; 4063 HAL_STATUS status = ath_hal_rxprocdesc(ah, ds, 4064 bf->bf_daddr, PA2DESC(sc, ds->ds_link)); 4065 if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL)) 4066 ath_printrxbuf(bf, status == HAL_OK); 4067 } 4068 } 4069 #endif 4070 sc->sc_rxlink = NULL; /* just in case */ 4071 #undef PA2DESC 4072 } 4073 4074 /* 4075 * Enable the receive h/w following a reset. 4076 */ 4077 static int 4078 ath_startrecv(struct ath_softc *sc) 4079 { 4080 struct ath_hal *ah = sc->sc_ah; 4081 struct ath_buf *bf; 4082 4083 sc->sc_rxlink = NULL; 4084 STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) { 4085 int error = ath_rxbuf_init(sc, bf); 4086 if (error != 0) { 4087 DPRINTF(sc, ATH_DEBUG_RECV, 4088 "%s: ath_rxbuf_init failed %d\n", 4089 __func__, error); 4090 return error; 4091 } 4092 } 4093 4094 bf = STAILQ_FIRST(&sc->sc_rxbuf); 4095 ath_hal_putrxbuf(ah, bf->bf_daddr); 4096 ath_hal_rxena(ah); /* enable recv descriptors */ 4097 ath_mode_init(sc); /* set filters, etc. */ 4098 ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */ 4099 return 0; 4100 } 4101 4102 /* 4103 * Update internal state after a channel change. 4104 */ 4105 static void 4106 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4107 { 4108 struct ieee80211com *ic = &sc->sc_ic; 4109 enum ieee80211_phymode mode; 4110 u_int16_t flags; 4111 4112 /* 4113 * Change channels and update the h/w rate map 4114 * if we're switching; e.g. 11a to 11b/g. 4115 */ 4116 mode = ieee80211_chan2mode(ic, chan); 4117 if (mode != sc->sc_curmode) 4118 ath_setcurmode(sc, mode); 4119 /* 4120 * Update BPF state. NB: ethereal et. al. don't handle 4121 * merged flags well so pick a unique mode for their use. 4122 */ 4123 if (IEEE80211_IS_CHAN_A(chan)) 4124 flags = IEEE80211_CHAN_A; 4125 /* XXX 11g schizophrenia */ 4126 else if (IEEE80211_IS_CHAN_G(chan) || 4127 IEEE80211_IS_CHAN_PUREG(chan)) 4128 flags = IEEE80211_CHAN_G; 4129 else 4130 flags = IEEE80211_CHAN_B; 4131 if (IEEE80211_IS_CHAN_T(chan)) 4132 flags |= IEEE80211_CHAN_TURBO; 4133 sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq = 4134 htole16(chan->ic_freq); 4135 sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags = 4136 htole16(flags); 4137 } 4138 4139 /* 4140 * Set/change channels. If the channel is really being changed, 4141 * it's done by reseting the chip. To accomplish this we must 4142 * first cleanup any pending DMA, then restart stuff after a la 4143 * ath_init. 4144 */ 4145 static int 4146 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4147 { 4148 struct ath_hal *ah = sc->sc_ah; 4149 struct ieee80211com *ic = &sc->sc_ic; 4150 HAL_CHANNEL hchan; 4151 4152 /* 4153 * Convert to a HAL channel description with 4154 * the flags constrained to reflect the current 4155 * operating mode. 4156 */ 4157 hchan.channel = chan->ic_freq; 4158 hchan.channelFlags = ath_chan2flags(ic, chan); 4159 4160 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n", 4161 __func__, 4162 ath_hal_mhz2ieee(sc->sc_curchan.channel, 4163 sc->sc_curchan.channelFlags), 4164 sc->sc_curchan.channel, 4165 ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel); 4166 if (hchan.channel != sc->sc_curchan.channel || 4167 hchan.channelFlags != sc->sc_curchan.channelFlags) { 4168 HAL_STATUS status; 4169 4170 /* 4171 * To switch channels clear any pending DMA operations; 4172 * wait long enough for the RX fifo to drain, reset the 4173 * hardware at the new frequency, and then re-enable 4174 * the relevant bits of the h/w. 4175 */ 4176 ath_hal_intrset(ah, 0); /* disable interrupts */ 4177 ath_draintxq(sc); /* clear pending tx frames */ 4178 ath_stoprecv(sc); /* turn off frame recv */ 4179 if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) { 4180 if_printf(&sc->sc_if, "ath_chan_set: unable to reset " 4181 "channel %u (%u Mhz)\n", 4182 ieee80211_chan2ieee(ic, chan), chan->ic_freq); 4183 return EIO; 4184 } 4185 sc->sc_curchan = hchan; 4186 ath_update_txpow(sc); /* update tx power state */ 4187 sc->sc_diversity = ath_hal_getdiversity(ah); 4188 4189 /* 4190 * Re-enable rx framework. 4191 */ 4192 if (ath_startrecv(sc) != 0) { 4193 if_printf(&sc->sc_if, 4194 "ath_chan_set: unable to restart recv logic\n"); 4195 return EIO; 4196 } 4197 4198 /* 4199 * Change channels and update the h/w rate map 4200 * if we're switching; e.g. 11a to 11b/g. 4201 */ 4202 ic->ic_ibss_chan = chan; 4203 ath_chan_change(sc, chan); 4204 4205 /* 4206 * Re-enable interrupts. 4207 */ 4208 ath_hal_intrset(ah, sc->sc_imask); 4209 } 4210 return 0; 4211 } 4212 4213 static void 4214 ath_next_scan(void *arg) 4215 { 4216 struct ath_softc *sc = arg; 4217 struct ieee80211com *ic = &sc->sc_ic; 4218 int s; 4219 4220 /* don't call ath_start w/o network interrupts blocked */ 4221 s = splnet(); 4222 4223 if (ic->ic_state == IEEE80211_S_SCAN) 4224 ieee80211_next_scan(ic); 4225 splx(s); 4226 } 4227 4228 /* 4229 * Periodically recalibrate the PHY to account 4230 * for temperature/environment changes. 4231 */ 4232 static void 4233 ath_calibrate(void *arg) 4234 { 4235 struct ath_softc *sc = arg; 4236 struct ath_hal *ah = sc->sc_ah; 4237 4238 sc->sc_stats.ast_per_cal++; 4239 4240 ATH_LOCK(sc); 4241 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n", 4242 __func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags); 4243 4244 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4245 /* 4246 * Rfgain is out of bounds, reset the chip 4247 * to load new gain values. 4248 */ 4249 sc->sc_stats.ast_per_rfgain++; 4250 ath_reset(&sc->sc_if); 4251 } 4252 if (!ath_hal_calibrate(ah, &sc->sc_curchan)) { 4253 DPRINTF(sc, ATH_DEBUG_ANY, 4254 "%s: calibration of channel %u failed\n", 4255 __func__, sc->sc_curchan.channel); 4256 sc->sc_stats.ast_per_calfail++; 4257 } 4258 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc); 4259 ATH_UNLOCK(sc); 4260 } 4261 4262 static int 4263 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 4264 { 4265 struct ifnet *ifp = ic->ic_ifp; 4266 struct ath_softc *sc = ifp->if_softc; 4267 struct ath_hal *ah = sc->sc_ah; 4268 struct ieee80211_node *ni; 4269 int i, error; 4270 const u_int8_t *bssid; 4271 u_int32_t rfilt; 4272 static const HAL_LED_STATE leds[] = { 4273 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4274 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4275 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4276 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4277 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4278 }; 4279 4280 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4281 ieee80211_state_name[ic->ic_state], 4282 ieee80211_state_name[nstate]); 4283 4284 callout_stop(&sc->sc_scan_ch); 4285 callout_stop(&sc->sc_cal_ch); 4286 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4287 4288 if (nstate == IEEE80211_S_INIT) { 4289 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4290 /* 4291 * NB: disable interrupts so we don't rx frames. 4292 */ 4293 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 4294 /* 4295 * Notify the rate control algorithm. 4296 */ 4297 ath_rate_newstate(sc, nstate); 4298 goto done; 4299 } 4300 ni = ic->ic_bss; 4301 error = ath_chan_set(sc, ic->ic_curchan); 4302 if (error != 0) 4303 goto bad; 4304 rfilt = ath_calcrxfilter(sc, nstate); 4305 if (nstate == IEEE80211_S_SCAN) 4306 bssid = ifp->if_broadcastaddr; 4307 else 4308 bssid = ni->ni_bssid; 4309 ath_hal_setrxfilter(ah, rfilt); 4310 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n", 4311 __func__, rfilt, ether_sprintf(bssid)); 4312 4313 if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA) 4314 ath_hal_setassocid(ah, bssid, ni->ni_associd); 4315 else 4316 ath_hal_setassocid(ah, bssid, 0); 4317 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 4318 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4319 if (ath_hal_keyisvalid(ah, i)) 4320 ath_hal_keysetmac(ah, i, bssid); 4321 } 4322 4323 /* 4324 * Notify the rate control algorithm so rates 4325 * are setup should ath_beacon_alloc be called. 4326 */ 4327 ath_rate_newstate(sc, nstate); 4328 4329 if (ic->ic_opmode == IEEE80211_M_MONITOR) { 4330 /* nothing to do */; 4331 } else if (nstate == IEEE80211_S_RUN) { 4332 DPRINTF(sc, ATH_DEBUG_STATE, 4333 "%s(RUN): ic_flags=0x%08x iv=%d bssid=%s " 4334 "capinfo=0x%04x chan=%d\n" 4335 , __func__ 4336 , ic->ic_flags 4337 , ni->ni_intval 4338 , ether_sprintf(ni->ni_bssid) 4339 , ni->ni_capinfo 4340 , ieee80211_chan2ieee(ic, ic->ic_curchan)); 4341 4342 switch (ic->ic_opmode) { 4343 case IEEE80211_M_HOSTAP: 4344 case IEEE80211_M_IBSS: 4345 /* 4346 * Allocate and setup the beacon frame. 4347 * 4348 * Stop any previous beacon DMA. This may be 4349 * necessary, for example, when an ibss merge 4350 * causes reconfiguration; there will be a state 4351 * transition from RUN->RUN that means we may 4352 * be called with beacon transmission active. 4353 */ 4354 ath_hal_stoptxdma(ah, sc->sc_bhalq); 4355 ath_beacon_free(sc); 4356 error = ath_beacon_alloc(sc, ni); 4357 if (error != 0) 4358 goto bad; 4359 break; 4360 case IEEE80211_M_STA: 4361 /* 4362 * Allocate a key cache slot to the station. 4363 */ 4364 if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && 4365 sc->sc_hasclrkey && 4366 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 4367 ath_setup_stationkey(ni); 4368 break; 4369 default: 4370 break; 4371 } 4372 4373 /* 4374 * Configure the beacon and sleep timers. 4375 */ 4376 ath_beacon_config(sc); 4377 } else { 4378 ath_hal_intrset(ah, 4379 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4380 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4381 } 4382 done: 4383 /* 4384 * Invoke the parent method to complete the work. 4385 */ 4386 error = sc->sc_newstate(ic, nstate, arg); 4387 /* 4388 * Finally, start any timers. 4389 */ 4390 if (nstate == IEEE80211_S_RUN) { 4391 /* start periodic recalibration timer */ 4392 callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, 4393 ath_calibrate, sc); 4394 } else if (nstate == IEEE80211_S_SCAN) { 4395 /* start ap/neighbor scan timer */ 4396 callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000, 4397 ath_next_scan, sc); 4398 } 4399 bad: 4400 return error; 4401 } 4402 4403 /* 4404 * Allocate a key cache slot to the station so we can 4405 * setup a mapping from key index to node. The key cache 4406 * slot is needed for managing antenna state and for 4407 * compression when stations do not use crypto. We do 4408 * it uniliaterally here; if crypto is employed this slot 4409 * will be reassigned. 4410 */ 4411 static void 4412 ath_setup_stationkey(struct ieee80211_node *ni) 4413 { 4414 struct ieee80211com *ic = ni->ni_ic; 4415 struct ath_softc *sc = ic->ic_ifp->if_softc; 4416 ieee80211_keyix keyix, rxkeyix; 4417 4418 if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 4419 /* 4420 * Key cache is full; we'll fall back to doing 4421 * the more expensive lookup in software. Note 4422 * this also means no h/w compression. 4423 */ 4424 /* XXX msg+statistic */ 4425 } else { 4426 /* XXX locking? */ 4427 ni->ni_ucastkey.wk_keyix = keyix; 4428 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 4429 /* NB: this will create a pass-thru key entry */ 4430 ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss); 4431 } 4432 } 4433 4434 /* 4435 * Setup driver-specific state for a newly associated node. 4436 * Note that we're called also on a re-associate, the isnew 4437 * param tells us if this is the first time or not. 4438 */ 4439 static void 4440 ath_newassoc(struct ieee80211_node *ni, int isnew) 4441 { 4442 struct ieee80211com *ic = ni->ni_ic; 4443 struct ath_softc *sc = ic->ic_ifp->if_softc; 4444 4445 ath_rate_newassoc(sc, ATH_NODE(ni), isnew); 4446 if (isnew && 4447 (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) { 4448 KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE, 4449 ("new assoc with a unicast key already setup (keyix %u)", 4450 ni->ni_ucastkey.wk_keyix)); 4451 ath_setup_stationkey(ni); 4452 } 4453 } 4454 4455 static int 4456 ath_getchannels(struct ath_softc *sc, u_int cc, 4457 HAL_BOOL outdoor, HAL_BOOL xchanmode) 4458 { 4459 struct ieee80211com *ic = &sc->sc_ic; 4460 struct ifnet *ifp = &sc->sc_if; 4461 struct ath_hal *ah = sc->sc_ah; 4462 HAL_CHANNEL *chans; 4463 int i, ix, nchan; 4464 4465 chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL), 4466 M_TEMP, M_NOWAIT); 4467 if (chans == NULL) { 4468 if_printf(ifp, "unable to allocate channel table\n"); 4469 return ENOMEM; 4470 } 4471 if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan, 4472 cc, HAL_MODE_ALL, outdoor, xchanmode)) { 4473 u_int32_t rd; 4474 4475 ath_hal_getregdomain(ah, &rd); 4476 if_printf(ifp, "unable to collect channel list from hal; " 4477 "regdomain likely %u country code %u\n", rd, cc); 4478 free(chans, M_TEMP); 4479 return EINVAL; 4480 } 4481 4482 /* 4483 * Convert HAL channels to ieee80211 ones and insert 4484 * them in the table according to their channel number. 4485 */ 4486 for (i = 0; i < nchan; i++) { 4487 HAL_CHANNEL *c = &chans[i]; 4488 ix = ath_hal_mhz2ieee(c->channel, c->channelFlags); 4489 if (ix > IEEE80211_CHAN_MAX) { 4490 if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n", 4491 ix, c->channel, c->channelFlags); 4492 continue; 4493 } 4494 DPRINTF(sc, ATH_DEBUG_ANY, 4495 "%s: HAL channel %d/%d freq %d flags %#04x idx %d\n", 4496 sc->sc_dev.dv_xname, i, nchan, c->channel, c->channelFlags, 4497 ix); 4498 /* NB: flags are known to be compatible */ 4499 if (ic->ic_channels[ix].ic_freq == 0) { 4500 ic->ic_channels[ix].ic_freq = c->channel; 4501 ic->ic_channels[ix].ic_flags = c->channelFlags; 4502 } else { 4503 /* channels overlap; e.g. 11g and 11b */ 4504 ic->ic_channels[ix].ic_flags |= c->channelFlags; 4505 } 4506 } 4507 free(chans, M_TEMP); 4508 return 0; 4509 } 4510 4511 static void 4512 ath_led_done(void *arg) 4513 { 4514 struct ath_softc *sc = arg; 4515 4516 sc->sc_blinking = 0; 4517 } 4518 4519 /* 4520 * Turn the LED off: flip the pin and then set a timer so no 4521 * update will happen for the specified duration. 4522 */ 4523 static void 4524 ath_led_off(void *arg) 4525 { 4526 struct ath_softc *sc = arg; 4527 4528 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon); 4529 callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc); 4530 } 4531 4532 /* 4533 * Blink the LED according to the specified on/off times. 4534 */ 4535 static void 4536 ath_led_blink(struct ath_softc *sc, int on, int off) 4537 { 4538 DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off); 4539 ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon); 4540 sc->sc_blinking = 1; 4541 sc->sc_ledoff = off; 4542 callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc); 4543 } 4544 4545 static void 4546 ath_led_event(struct ath_softc *sc, int event) 4547 { 4548 4549 sc->sc_ledevent = ticks; /* time of last event */ 4550 if (sc->sc_blinking) /* don't interrupt active blink */ 4551 return; 4552 switch (event) { 4553 case ATH_LED_POLL: 4554 ath_led_blink(sc, sc->sc_hwmap[0].ledon, 4555 sc->sc_hwmap[0].ledoff); 4556 break; 4557 case ATH_LED_TX: 4558 ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon, 4559 sc->sc_hwmap[sc->sc_txrate].ledoff); 4560 break; 4561 case ATH_LED_RX: 4562 ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon, 4563 sc->sc_hwmap[sc->sc_rxrate].ledoff); 4564 break; 4565 } 4566 } 4567 4568 static void 4569 ath_update_txpow(struct ath_softc *sc) 4570 { 4571 struct ieee80211com *ic = &sc->sc_ic; 4572 struct ath_hal *ah = sc->sc_ah; 4573 u_int32_t txpow; 4574 4575 if (sc->sc_curtxpow != ic->ic_txpowlimit) { 4576 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 4577 /* read back in case value is clamped */ 4578 ath_hal_gettxpowlimit(ah, &txpow); 4579 ic->ic_txpowlimit = sc->sc_curtxpow = txpow; 4580 } 4581 /* 4582 * Fetch max tx power level for status requests. 4583 */ 4584 ath_hal_getmaxtxpow(sc->sc_ah, &txpow); 4585 ic->ic_bss->ni_txpower = txpow; 4586 } 4587 4588 static int 4589 ath_rate_setup(struct ath_softc *sc, u_int mode) 4590 { 4591 struct ath_hal *ah = sc->sc_ah; 4592 struct ieee80211com *ic = &sc->sc_ic; 4593 const HAL_RATE_TABLE *rt; 4594 struct ieee80211_rateset *rs; 4595 int i, maxrates; 4596 4597 switch (mode) { 4598 case IEEE80211_MODE_11A: 4599 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A); 4600 break; 4601 case IEEE80211_MODE_11B: 4602 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B); 4603 break; 4604 case IEEE80211_MODE_11G: 4605 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G); 4606 break; 4607 case IEEE80211_MODE_TURBO_A: 4608 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO); 4609 break; 4610 case IEEE80211_MODE_TURBO_G: 4611 sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G); 4612 break; 4613 default: 4614 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 4615 __func__, mode); 4616 return 0; 4617 } 4618 rt = sc->sc_rates[mode]; 4619 if (rt == NULL) 4620 return 0; 4621 if (rt->rateCount > IEEE80211_RATE_MAXSIZE) { 4622 DPRINTF(sc, ATH_DEBUG_ANY, 4623 "%s: rate table too small (%u > %u)\n", 4624 __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE); 4625 maxrates = IEEE80211_RATE_MAXSIZE; 4626 } else 4627 maxrates = rt->rateCount; 4628 rs = &ic->ic_sup_rates[mode]; 4629 for (i = 0; i < maxrates; i++) 4630 rs->rs_rates[i] = rt->info[i].dot11Rate; 4631 rs->rs_nrates = maxrates; 4632 return 1; 4633 } 4634 4635 static void 4636 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 4637 { 4638 #define N(a) (sizeof(a)/sizeof(a[0])) 4639 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 4640 static const struct { 4641 u_int rate; /* tx/rx 802.11 rate */ 4642 u_int16_t timeOn; /* LED on time (ms) */ 4643 u_int16_t timeOff; /* LED off time (ms) */ 4644 } blinkrates[] = { 4645 { 108, 40, 10 }, 4646 { 96, 44, 11 }, 4647 { 72, 50, 13 }, 4648 { 48, 57, 14 }, 4649 { 36, 67, 16 }, 4650 { 24, 80, 20 }, 4651 { 22, 100, 25 }, 4652 { 18, 133, 34 }, 4653 { 12, 160, 40 }, 4654 { 10, 200, 50 }, 4655 { 6, 240, 58 }, 4656 { 4, 267, 66 }, 4657 { 2, 400, 100 }, 4658 { 0, 500, 130 }, 4659 }; 4660 const HAL_RATE_TABLE *rt; 4661 int i, j; 4662 4663 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 4664 rt = sc->sc_rates[mode]; 4665 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 4666 for (i = 0; i < rt->rateCount; i++) 4667 sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i; 4668 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 4669 for (i = 0; i < 32; i++) { 4670 u_int8_t ix = rt->rateCodeToIndex[i]; 4671 if (ix == 0xff) { 4672 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 4673 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 4674 continue; 4675 } 4676 sc->sc_hwmap[i].ieeerate = 4677 rt->info[ix].dot11Rate & IEEE80211_RATE_VAL; 4678 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 4679 if (rt->info[ix].shortPreamble || 4680 rt->info[ix].phy == IEEE80211_T_OFDM) 4681 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 4682 /* NB: receive frames include FCS */ 4683 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags | 4684 IEEE80211_RADIOTAP_F_FCS; 4685 /* setup blink rate table to avoid per-packet lookup */ 4686 for (j = 0; j < N(blinkrates)-1; j++) 4687 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 4688 break; 4689 /* NB: this uses the last entry if the rate isn't found */ 4690 /* XXX beware of overlow */ 4691 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 4692 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 4693 } 4694 sc->sc_currates = rt; 4695 sc->sc_curmode = mode; 4696 /* 4697 * All protection frames are transmited at 2Mb/s for 4698 * 11g, otherwise at 1Mb/s. 4699 * XXX select protection rate index from rate table. 4700 */ 4701 sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0); 4702 /* NB: caller is responsible for reseting rate control state */ 4703 #undef N 4704 } 4705 4706 #ifdef AR_DEBUG 4707 static void 4708 ath_printrxbuf(struct ath_buf *bf, int done) 4709 { 4710 struct ath_desc *ds; 4711 int i; 4712 4713 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4714 printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n", 4715 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4716 ds->ds_link, ds->ds_data, 4717 ds->ds_ctl0, ds->ds_ctl1, 4718 ds->ds_hw[0], ds->ds_hw[1], 4719 !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!'); 4720 } 4721 } 4722 4723 static void 4724 ath_printtxbuf(struct ath_buf *bf, int done) 4725 { 4726 struct ath_desc *ds; 4727 int i; 4728 4729 for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) { 4730 printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n", 4731 i, ds, (struct ath_desc *)bf->bf_daddr + i, 4732 ds->ds_link, ds->ds_data, 4733 ds->ds_ctl0, ds->ds_ctl1, 4734 ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3], 4735 !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!'); 4736 } 4737 } 4738 #endif /* AR_DEBUG */ 4739 4740 static void 4741 ath_watchdog(struct ifnet *ifp) 4742 { 4743 struct ath_softc *sc = ifp->if_softc; 4744 struct ieee80211com *ic = &sc->sc_ic; 4745 4746 ifp->if_timer = 0; 4747 if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid) 4748 return; 4749 if (sc->sc_tx_timer) { 4750 if (--sc->sc_tx_timer == 0) { 4751 if_printf(ifp, "device timeout\n"); 4752 ath_reset(ifp); 4753 ifp->if_oerrors++; 4754 sc->sc_stats.ast_watchdog++; 4755 } else 4756 ifp->if_timer = 1; 4757 } 4758 ieee80211_watchdog(ic); 4759 } 4760 4761 /* 4762 * Diagnostic interface to the HAL. This is used by various 4763 * tools to do things like retrieve register contents for 4764 * debugging. The mechanism is intentionally opaque so that 4765 * it can change frequently w/o concern for compatiblity. 4766 */ 4767 static int 4768 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 4769 { 4770 struct ath_hal *ah = sc->sc_ah; 4771 u_int id = ad->ad_id & ATH_DIAG_ID; 4772 void *indata = NULL; 4773 void *outdata = NULL; 4774 u_int32_t insize = ad->ad_in_size; 4775 u_int32_t outsize = ad->ad_out_size; 4776 int error = 0; 4777 4778 if (ad->ad_id & ATH_DIAG_IN) { 4779 /* 4780 * Copy in data. 4781 */ 4782 indata = malloc(insize, M_TEMP, M_NOWAIT); 4783 if (indata == NULL) { 4784 error = ENOMEM; 4785 goto bad; 4786 } 4787 error = copyin(ad->ad_in_data, indata, insize); 4788 if (error) 4789 goto bad; 4790 } 4791 if (ad->ad_id & ATH_DIAG_DYN) { 4792 /* 4793 * Allocate a buffer for the results (otherwise the HAL 4794 * returns a pointer to a buffer where we can read the 4795 * results). Note that we depend on the HAL leaving this 4796 * pointer for us to use below in reclaiming the buffer; 4797 * may want to be more defensive. 4798 */ 4799 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 4800 if (outdata == NULL) { 4801 error = ENOMEM; 4802 goto bad; 4803 } 4804 } 4805 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 4806 if (outsize < ad->ad_out_size) 4807 ad->ad_out_size = outsize; 4808 if (outdata != NULL) 4809 error = copyout(outdata, ad->ad_out_data, 4810 ad->ad_out_size); 4811 } else { 4812 error = EINVAL; 4813 } 4814 bad: 4815 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 4816 free(indata, M_TEMP); 4817 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 4818 free(outdata, M_TEMP); 4819 return error; 4820 } 4821 4822 static int 4823 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 4824 { 4825 #define IS_RUNNING(ifp) \ 4826 ((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING)) 4827 struct ath_softc *sc = ifp->if_softc; 4828 struct ieee80211com *ic = &sc->sc_ic; 4829 struct ifreq *ifr = (struct ifreq *)data; 4830 int error = 0; 4831 4832 ATH_LOCK(sc); 4833 switch (cmd) { 4834 case SIOCSIFFLAGS: 4835 if (IS_RUNNING(ifp)) { 4836 /* 4837 * To avoid rescanning another access point, 4838 * do not call ath_init() here. Instead, 4839 * only reflect promisc mode settings. 4840 */ 4841 ath_mode_init(sc); 4842 } else if (ifp->if_flags & IFF_UP) { 4843 /* 4844 * Beware of being called during attach/detach 4845 * to reset promiscuous mode. In that case we 4846 * will still be marked UP but not RUNNING. 4847 * However trying to re-init the interface 4848 * is the wrong thing to do as we've already 4849 * torn down much of our state. There's 4850 * probably a better way to deal with this. 4851 */ 4852 if (!sc->sc_invalid && ic->ic_bss != NULL) 4853 ath_init(sc); /* XXX lose error */ 4854 } else 4855 ath_stop_locked(ifp, 1); 4856 break; 4857 case SIOCADDMULTI: 4858 case SIOCDELMULTI: 4859 error = (cmd == SIOCADDMULTI) ? 4860 ether_addmulti(ifr, &sc->sc_ec) : 4861 ether_delmulti(ifr, &sc->sc_ec); 4862 if (error == ENETRESET) { 4863 if (ifp->if_flags & IFF_RUNNING) 4864 ath_mode_init(sc); 4865 error = 0; 4866 } 4867 break; 4868 case SIOCGATHSTATS: 4869 /* NB: embed these numbers to get a consistent view */ 4870 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 4871 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 4872 sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic); 4873 ATH_UNLOCK(sc); 4874 /* 4875 * NB: Drop the softc lock in case of a page fault; 4876 * we'll accept any potential inconsisentcy in the 4877 * statistics. The alternative is to copy the data 4878 * to a local structure. 4879 */ 4880 return copyout(&sc->sc_stats, 4881 ifr->ifr_data, sizeof (sc->sc_stats)); 4882 case SIOCGATHDIAG: 4883 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 4884 break; 4885 default: 4886 error = ieee80211_ioctl(ic, cmd, data); 4887 if (error == ENETRESET) { 4888 if (IS_RUNNING(ifp) && 4889 ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 4890 ath_init(sc); /* XXX lose error */ 4891 error = 0; 4892 } 4893 if (error == ERESTART) 4894 error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0; 4895 break; 4896 } 4897 ATH_UNLOCK(sc); 4898 return error; 4899 #undef IS_RUNNING 4900 } 4901 4902 #if NBPFILTER > 0 4903 static void 4904 ath_bpfattach(struct ath_softc *sc) 4905 { 4906 struct ifnet *ifp = &sc->sc_if; 4907 4908 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 4909 sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th), 4910 &sc->sc_drvbpf); 4911 /* 4912 * Initialize constant fields. 4913 * XXX make header lengths a multiple of 32-bits so subsequent 4914 * headers are properly aligned; this is a kludge to keep 4915 * certain applications happy. 4916 * 4917 * NB: the channel is setup each time we transition to the 4918 * RUN state to avoid filling it in for each frame. 4919 */ 4920 sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t)); 4921 sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len); 4922 sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT); 4923 4924 sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t)); 4925 sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len); 4926 sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT); 4927 } 4928 #endif 4929 4930 /* 4931 * Announce various information on device/driver attach. 4932 */ 4933 static void 4934 ath_announce(struct ath_softc *sc) 4935 { 4936 #define HAL_MODE_DUALBAND (HAL_MODE_11A|HAL_MODE_11B) 4937 struct ifnet *ifp = &sc->sc_if; 4938 struct ath_hal *ah = sc->sc_ah; 4939 u_int modes, cc; 4940 4941 if_printf(ifp, "mac %d.%d phy %d.%d", 4942 ah->ah_macVersion, ah->ah_macRev, 4943 ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 4944 /* 4945 * Print radio revision(s). We check the wireless modes 4946 * to avoid falsely printing revs for inoperable parts. 4947 * Dual-band radio revs are returned in the 5Ghz rev number. 4948 */ 4949 ath_hal_getcountrycode(ah, &cc); 4950 modes = ath_hal_getwirelessmodes(ah, cc); 4951 if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) { 4952 if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev) 4953 printf(" 5ghz radio %d.%d 2ghz radio %d.%d", 4954 ah->ah_analog5GhzRev >> 4, 4955 ah->ah_analog5GhzRev & 0xf, 4956 ah->ah_analog2GhzRev >> 4, 4957 ah->ah_analog2GhzRev & 0xf); 4958 else 4959 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4960 ah->ah_analog5GhzRev & 0xf); 4961 } else 4962 printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4, 4963 ah->ah_analog5GhzRev & 0xf); 4964 printf("\n"); 4965 if (bootverbose) { 4966 int i; 4967 for (i = 0; i <= WME_AC_VO; i++) { 4968 struct ath_txq *txq = sc->sc_ac2q[i]; 4969 if_printf(ifp, "Use hw queue %u for %s traffic\n", 4970 txq->axq_qnum, ieee80211_wme_acnames[i]); 4971 } 4972 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 4973 sc->sc_cabq->axq_qnum); 4974 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 4975 } 4976 #undef HAL_MODE_DUALBAND 4977 } 4978