xref: /netbsd-src/sys/dev/ic/ath.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: ath.c,v 1.96 2007/12/14 02:46:49 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.96 2007/12/14 02:46:49 dyoung Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83 
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86 
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90 
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94 
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97 
98 #define	AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
102 #include "athhal_options.h"
103 
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107 
108 /* unaligned little endian access */
109 #define LE_READ_2(p)							\
110 	((u_int16_t)							\
111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112 #define LE_READ_4(p)							\
113 	((u_int32_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116 
117 enum {
118 	ATH_LED_TX,
119 	ATH_LED_RX,
120 	ATH_LED_POLL,
121 };
122 
123 #ifdef	AH_NEED_DESC_SWAP
124 #define	HTOAH32(x)	htole32(x)
125 #else
126 #define	HTOAH32(x)	(x)
127 #endif
128 
129 static int	ath_ifinit(struct ifnet *);
130 static int	ath_init(struct ath_softc *);
131 static void	ath_stop_locked(struct ifnet *, int);
132 static void	ath_stop(struct ifnet *, int);
133 static void	ath_start(struct ifnet *);
134 static int	ath_media_change(struct ifnet *);
135 static void	ath_watchdog(struct ifnet *);
136 static int	ath_ioctl(struct ifnet *, u_long, void *);
137 static void	ath_fatal_proc(void *, int);
138 static void	ath_rxorn_proc(void *, int);
139 static void	ath_bmiss_proc(void *, int);
140 static void	ath_radar_proc(void *, int);
141 static int	ath_key_alloc(struct ieee80211com *,
142 			const struct ieee80211_key *,
143 			ieee80211_keyix *, ieee80211_keyix *);
144 static int	ath_key_delete(struct ieee80211com *,
145 			const struct ieee80211_key *);
146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void	ath_key_update_begin(struct ieee80211com *);
149 static void	ath_key_update_end(struct ieee80211com *);
150 static void	ath_mode_init(struct ath_softc *);
151 static void	ath_setslottime(struct ath_softc *);
152 static void	ath_updateslot(struct ifnet *);
153 static int	ath_beaconq_setup(struct ath_hal *);
154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void	ath_beacon_proc(void *, int);
157 static void	ath_bstuck_proc(void *, int);
158 static void	ath_beacon_free(struct ath_softc *);
159 static void	ath_beacon_config(struct ath_softc *);
160 static void	ath_descdma_cleanup(struct ath_softc *sc,
161 			struct ath_descdma *, ath_bufhead *);
162 static int	ath_desc_alloc(struct ath_softc *);
163 static void	ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void	ath_node_free(struct ieee80211_node *);
166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 			struct ieee80211_node *ni,
170 			int subtype, int rssi, u_int32_t rstamp);
171 static void	ath_setdefantenna(struct ath_softc *, u_int);
172 static void	ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int	ath_tx_setup(struct ath_softc *, int, int);
175 static int	ath_wme_update(struct ieee80211com *);
176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void	ath_tx_cleanup(struct ath_softc *);
178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 			     struct ath_buf *, struct mbuf *);
180 static void	ath_tx_proc_q0(void *, int);
181 static void	ath_tx_proc_q0123(void *, int);
182 static void	ath_tx_proc(void *, int);
183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void	ath_draintxq(struct ath_softc *);
185 static void	ath_stoprecv(struct ath_softc *);
186 static int	ath_startrecv(struct ath_softc *);
187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void	ath_next_scan(void *);
189 static void	ath_calibrate(void *);
190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void	ath_setup_stationkey(struct ieee80211_node *);
192 static void	ath_newassoc(struct ieee80211_node *, int);
193 static int	ath_getchannels(struct ath_softc *, u_int cc,
194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void	ath_led_event(struct ath_softc *, int);
196 static void	ath_update_txpow(struct ath_softc *);
197 static void	ath_freetx(struct mbuf *);
198 static void	ath_restore_diversity(struct ath_softc *);
199 
200 static int	ath_rate_setup(struct ath_softc *, u_int mode);
201 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
202 
203 #ifdef __NetBSD__
204 int	ath_enable(struct ath_softc *);
205 void	ath_disable(struct ath_softc *);
206 #endif
207 
208 #if NBPFILTER > 0
209 static void	ath_bpfattach(struct ath_softc *);
210 #endif
211 static void	ath_announce(struct ath_softc *);
212 
213 int ath_dwelltime = 200;		/* 5 channels/second */
214 int ath_calinterval = 30;		/* calibrate every 30 secs */
215 int ath_outdoor = AH_TRUE;		/* outdoor operation */
216 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
217 int ath_countrycode = CTRY_DEFAULT;	/* country code */
218 int ath_regdomain = 0;			/* regulatory domain */
219 int ath_debug = 0;
220 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
221 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
222 
223 #ifdef AR_DEBUG
224 enum {
225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
246 	ATH_DEBUG_ANY		= 0xffffffff
247 };
248 #define	IFF_DUMPPKTS(sc, m) \
249 	((sc->sc_debug & (m)) || \
250 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define	DPRINTF(sc, m, fmt, ...) do {				\
252 	if (sc->sc_debug & (m))					\
253 		printf(fmt, __VA_ARGS__);			\
254 } while (0)
255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
257 		ath_keyprint(__func__, ix, hk, mac);		\
258 } while (0)
259 static	void ath_printrxbuf(struct ath_buf *bf, int);
260 static	void ath_printtxbuf(struct ath_buf *bf, int);
261 #else
262 #define	IFF_DUMPPKTS(sc, m) \
263 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define	DPRINTF(m, fmt, ...)
265 #define	KEYPRINTF(sc, k, ix, mac)
266 #endif
267 
268 #ifdef __NetBSD__
269 int
270 ath_activate(struct device *self, enum devact act)
271 {
272 	struct ath_softc *sc = (struct ath_softc *)self;
273 	int rv = 0, s;
274 
275 	s = splnet();
276 	switch (act) {
277 	case DVACT_ACTIVATE:
278 		rv = EOPNOTSUPP;
279 		break;
280 	case DVACT_DEACTIVATE:
281 		if_deactivate(&sc->sc_if);
282 		break;
283 	}
284 	splx(s);
285 	return rv;
286 }
287 
288 int
289 ath_enable(struct ath_softc *sc)
290 {
291 	if (ATH_IS_ENABLED(sc) == 0) {
292 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
293 			printf("%s: device enable failed\n",
294 				device_xname(&sc->sc_dev));
295 			return (EIO);
296 		}
297 		sc->sc_flags |= ATH_ENABLED;
298 	}
299 	return (0);
300 }
301 
302 void
303 ath_disable(struct ath_softc *sc)
304 {
305 	if (!ATH_IS_ENABLED(sc))
306 		return;
307 	if (sc->sc_disable != NULL)
308 		(*sc->sc_disable)(sc);
309 	sc->sc_flags &= ~ATH_ENABLED;
310 }
311 #endif /* __NetBSD__ */
312 
313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
314 
315 int
316 ath_attach(u_int16_t devid, struct ath_softc *sc)
317 {
318 	struct ifnet *ifp = &sc->sc_if;
319 	struct ieee80211com *ic = &sc->sc_ic;
320 	struct ath_hal *ah = NULL;
321 	HAL_STATUS status;
322 	int error = 0, i;
323 
324 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
325 
326 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
327 
328 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
329 	if (ah == NULL) {
330 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
331 			status);
332 		error = ENXIO;
333 		goto bad;
334 	}
335 	if (ah->ah_abi != HAL_ABI_VERSION) {
336 		if_printf(ifp, "HAL ABI mismatch detected "
337 			"(HAL:0x%x != driver:0x%x)\n",
338 			ah->ah_abi, HAL_ABI_VERSION);
339 		error = ENXIO;
340 		goto bad;
341 	}
342 	sc->sc_ah = ah;
343 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
344 
345 	/*
346 	 * Check if the MAC has multi-rate retry support.
347 	 * We do this by trying to setup a fake extended
348 	 * descriptor.  MAC's that don't have support will
349 	 * return false w/o doing anything.  MAC's that do
350 	 * support it will return true w/o doing anything.
351 	 */
352 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
353 
354 	/*
355 	 * Check if the device has hardware counters for PHY
356 	 * errors.  If so we need to enable the MIB interrupt
357 	 * so we can act on stat triggers.
358 	 */
359 	if (ath_hal_hwphycounters(ah))
360 		sc->sc_needmib = 1;
361 
362 	/*
363 	 * Get the hardware key cache size.
364 	 */
365 	sc->sc_keymax = ath_hal_keycachesize(ah);
366 	if (sc->sc_keymax > ATH_KEYMAX) {
367 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
368 			ATH_KEYMAX, sc->sc_keymax);
369 		sc->sc_keymax = ATH_KEYMAX;
370 	}
371 	/*
372 	 * Reset the key cache since some parts do not
373 	 * reset the contents on initial power up.
374 	 */
375 	for (i = 0; i < sc->sc_keymax; i++)
376 		ath_hal_keyreset(ah, i);
377 	/*
378 	 * Mark key cache slots associated with global keys
379 	 * as in use.  If we knew TKIP was not to be used we
380 	 * could leave the +32, +64, and +32+64 slots free.
381 	 * XXX only for splitmic.
382 	 */
383 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
384 		setbit(sc->sc_keymap, i);
385 		setbit(sc->sc_keymap, i+32);
386 		setbit(sc->sc_keymap, i+64);
387 		setbit(sc->sc_keymap, i+32+64);
388 	}
389 
390 	/*
391 	 * Collect the channel list using the default country
392 	 * code and including outdoor channels.  The 802.11 layer
393 	 * is resposible for filtering this list based on settings
394 	 * like the phy mode.
395 	 */
396 	error = ath_getchannels(sc, ath_countrycode,
397 			ath_outdoor, ath_xchanmode);
398 	if (error != 0)
399 		goto bad;
400 
401 	/*
402 	 * Setup rate tables for all potential media types.
403 	 */
404 	ath_rate_setup(sc, IEEE80211_MODE_11A);
405 	ath_rate_setup(sc, IEEE80211_MODE_11B);
406 	ath_rate_setup(sc, IEEE80211_MODE_11G);
407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
409 	/* NB: setup here so ath_rate_update is happy */
410 	ath_setcurmode(sc, IEEE80211_MODE_11A);
411 
412 	/*
413 	 * Allocate tx+rx descriptors and populate the lists.
414 	 */
415 	error = ath_desc_alloc(sc);
416 	if (error != 0) {
417 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
418 		goto bad;
419 	}
420 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
421 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
422 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
423 
424 	ATH_TXBUF_LOCK_INIT(sc);
425 
426 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
427 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
428 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
429 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
430 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
431 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
432 
433 	/*
434 	 * Allocate hardware transmit queues: one queue for
435 	 * beacon frames and one data queue for each QoS
436 	 * priority.  Note that the hal handles reseting
437 	 * these queues at the needed time.
438 	 *
439 	 * XXX PS-Poll
440 	 */
441 	sc->sc_bhalq = ath_beaconq_setup(ah);
442 	if (sc->sc_bhalq == (u_int) -1) {
443 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
444 		error = EIO;
445 		goto bad2;
446 	}
447 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
448 	if (sc->sc_cabq == NULL) {
449 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
450 		error = EIO;
451 		goto bad2;
452 	}
453 	/* NB: insure BK queue is the lowest priority h/w queue */
454 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
455 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
456 			ieee80211_wme_acnames[WME_AC_BK]);
457 		error = EIO;
458 		goto bad2;
459 	}
460 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
461 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
462 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
463 		/*
464 		 * Not enough hardware tx queues to properly do WME;
465 		 * just punt and assign them all to the same h/w queue.
466 		 * We could do a better job of this if, for example,
467 		 * we allocate queues when we switch from station to
468 		 * AP mode.
469 		 */
470 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
471 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
472 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
473 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
474 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
475 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
476 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
477 	}
478 
479 	/*
480 	 * Special case certain configurations.  Note the
481 	 * CAB queue is handled by these specially so don't
482 	 * include them when checking the txq setup mask.
483 	 */
484 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
485 	case 0x01:
486 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
487 		break;
488 	case 0x0f:
489 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
490 		break;
491 	default:
492 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
493 		break;
494 	}
495 
496 	/*
497 	 * Setup rate control.  Some rate control modules
498 	 * call back to change the anntena state so expose
499 	 * the necessary entry points.
500 	 * XXX maybe belongs in struct ath_ratectrl?
501 	 */
502 	sc->sc_setdefantenna = ath_setdefantenna;
503 	sc->sc_rc = ath_rate_attach(sc);
504 	if (sc->sc_rc == NULL) {
505 		error = EIO;
506 		goto bad2;
507 	}
508 
509 	sc->sc_blinking = 0;
510 	sc->sc_ledstate = 1;
511 	sc->sc_ledon = 0;			/* low true */
512 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
513 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
514 	/*
515 	 * Auto-enable soft led processing for IBM cards and for
516 	 * 5211 minipci cards.  Users can also manually enable/disable
517 	 * support with a sysctl.
518 	 */
519 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
520 	if (sc->sc_softled) {
521 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
522 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
523 	}
524 
525 	ifp->if_softc = sc;
526 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
527 	ifp->if_start = ath_start;
528 	ifp->if_stop = ath_stop;
529 	ifp->if_watchdog = ath_watchdog;
530 	ifp->if_ioctl = ath_ioctl;
531 	ifp->if_init = ath_ifinit;
532 	IFQ_SET_READY(&ifp->if_snd);
533 
534 	ic->ic_ifp = ifp;
535 	ic->ic_reset = ath_reset;
536 	ic->ic_newassoc = ath_newassoc;
537 	ic->ic_updateslot = ath_updateslot;
538 	ic->ic_wme.wme_update = ath_wme_update;
539 	/* XXX not right but it's not used anywhere important */
540 	ic->ic_phytype = IEEE80211_T_OFDM;
541 	ic->ic_opmode = IEEE80211_M_STA;
542 	ic->ic_caps =
543 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
544 		| IEEE80211_C_HOSTAP		/* hostap mode */
545 		| IEEE80211_C_MONITOR		/* monitor mode */
546 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
547 		| IEEE80211_C_SHSLOT		/* short slot time supported */
548 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
549 		| IEEE80211_C_TXFRAG		/* handle tx frags */
550 		;
551 	/*
552 	 * Query the hal to figure out h/w crypto support.
553 	 */
554 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
555 		ic->ic_caps |= IEEE80211_C_WEP;
556 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
557 		ic->ic_caps |= IEEE80211_C_AES;
558 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
559 		ic->ic_caps |= IEEE80211_C_AES_CCM;
560 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
561 		ic->ic_caps |= IEEE80211_C_CKIP;
562 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
563 		ic->ic_caps |= IEEE80211_C_TKIP;
564 		/*
565 		 * Check if h/w does the MIC and/or whether the
566 		 * separate key cache entries are required to
567 		 * handle both tx+rx MIC keys.
568 		 */
569 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
570 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
571 		if (ath_hal_tkipsplit(ah))
572 			sc->sc_splitmic = 1;
573 	}
574 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
575 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
576 	/*
577 	 * TPC support can be done either with a global cap or
578 	 * per-packet support.  The latter is not available on
579 	 * all parts.  We're a bit pedantic here as all parts
580 	 * support a global cap.
581 	 */
582 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
583 		ic->ic_caps |= IEEE80211_C_TXPMGT;
584 
585 	/*
586 	 * Mark WME capability only if we have sufficient
587 	 * hardware queues to do proper priority scheduling.
588 	 */
589 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
590 		ic->ic_caps |= IEEE80211_C_WME;
591 	/*
592 	 * Check for misc other capabilities.
593 	 */
594 	if (ath_hal_hasbursting(ah))
595 		ic->ic_caps |= IEEE80211_C_BURST;
596 
597 	/*
598 	 * Indicate we need the 802.11 header padded to a
599 	 * 32-bit boundary for 4-address and QoS frames.
600 	 */
601 	ic->ic_flags |= IEEE80211_F_DATAPAD;
602 
603 	/*
604 	 * Query the hal about antenna support.
605 	 */
606 	sc->sc_defant = ath_hal_getdefantenna(ah);
607 
608 	/*
609 	 * Not all chips have the VEOL support we want to
610 	 * use with IBSS beacons; check here for it.
611 	 */
612 	sc->sc_hasveol = ath_hal_hasveol(ah);
613 
614 	/* get mac address from hardware */
615 	ath_hal_getmac(ah, ic->ic_myaddr);
616 
617 	if_attach(ifp);
618 	/* call MI attach routine. */
619 	ieee80211_ifattach(ic);
620 	/* override default methods */
621 	ic->ic_node_alloc = ath_node_alloc;
622 	sc->sc_node_free = ic->ic_node_free;
623 	ic->ic_node_free = ath_node_free;
624 	ic->ic_node_getrssi = ath_node_getrssi;
625 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
626 	ic->ic_recv_mgmt = ath_recv_mgmt;
627 	sc->sc_newstate = ic->ic_newstate;
628 	ic->ic_newstate = ath_newstate;
629 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
630 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
631 	ic->ic_crypto.cs_key_delete = ath_key_delete;
632 	ic->ic_crypto.cs_key_set = ath_key_set;
633 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
634 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
635 	/* complete initialization */
636 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
637 
638 #if NBPFILTER > 0
639 	ath_bpfattach(sc);
640 #endif
641 
642 	sc->sc_flags |= ATH_ATTACHED;
643 
644 	/*
645 	 * Setup dynamic sysctl's now that country code and
646 	 * regdomain are available from the hal.
647 	 */
648 	ath_sysctlattach(sc);
649 
650 	ieee80211_announce(ic);
651 	ath_announce(sc);
652 	return 0;
653 bad2:
654 	ath_tx_cleanup(sc);
655 	ath_desc_free(sc);
656 bad:
657 	if (ah)
658 		ath_hal_detach(ah);
659 	sc->sc_invalid = 1;
660 	return error;
661 }
662 
663 int
664 ath_detach(struct ath_softc *sc)
665 {
666 	struct ifnet *ifp = &sc->sc_if;
667 	int s;
668 
669 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
670 		return (0);
671 
672 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
673 		__func__, ifp->if_flags);
674 
675 	s = splnet();
676 	ath_stop(ifp, 1);
677 #if NBPFILTER > 0
678 	bpfdetach(ifp);
679 #endif
680 	/*
681 	 * NB: the order of these is important:
682 	 * o call the 802.11 layer before detaching the hal to
683 	 *   insure callbacks into the driver to delete global
684 	 *   key cache entries can be handled
685 	 * o reclaim the tx queue data structures after calling
686 	 *   the 802.11 layer as we'll get called back to reclaim
687 	 *   node state and potentially want to use them
688 	 * o to cleanup the tx queues the hal is called, so detach
689 	 *   it last
690 	 * Other than that, it's straightforward...
691 	 */
692 	ieee80211_ifdetach(&sc->sc_ic);
693 #ifdef ATH_TX99_DIAG
694 	if (sc->sc_tx99 != NULL)
695 		sc->sc_tx99->detach(sc->sc_tx99);
696 #endif
697 	ath_rate_detach(sc->sc_rc);
698 	ath_desc_free(sc);
699 	ath_tx_cleanup(sc);
700 	sysctl_teardown(&sc->sc_sysctllog);
701 	ath_hal_detach(sc->sc_ah);
702 	if_detach(ifp);
703 	splx(s);
704 	powerhook_disestablish(sc->sc_powerhook);
705 
706 	return 0;
707 }
708 
709 void
710 ath_resume(struct ath_softc *sc)
711 {
712 	if (sc->sc_softled) {
713 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
714 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
715 	}
716 }
717 
718 /*
719  * Interrupt handler.  Most of the actual processing is deferred.
720  */
721 int
722 ath_intr(void *arg)
723 {
724 	struct ath_softc *sc = arg;
725 	struct ifnet *ifp = &sc->sc_if;
726 	struct ath_hal *ah = sc->sc_ah;
727 	HAL_INT status;
728 
729 	if (sc->sc_invalid) {
730 		/*
731 		 * The hardware is not ready/present, don't touch anything.
732 		 * Note this can happen early on if the IRQ is shared.
733 		 */
734 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
735 		return 0;
736 	}
737 
738 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
739 		return 0;
740 
741 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
742 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
743 			__func__, ifp->if_flags);
744 		ath_hal_getisr(ah, &status);	/* clear ISR */
745 		ath_hal_intrset(ah, 0);		/* disable further intr's */
746 		return 1; /* XXX */
747 	}
748 	/*
749 	 * Figure out the reason(s) for the interrupt.  Note
750 	 * that the hal returns a pseudo-ISR that may include
751 	 * bits we haven't explicitly enabled so we mask the
752 	 * value to insure we only process bits we requested.
753 	 */
754 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
755 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
756 	status &= sc->sc_imask;			/* discard unasked for bits */
757 	if (status & HAL_INT_FATAL) {
758 		/*
759 		 * Fatal errors are unrecoverable.  Typically
760 		 * these are caused by DMA errors.  Unfortunately
761 		 * the exact reason is not (presently) returned
762 		 * by the hal.
763 		 */
764 		sc->sc_stats.ast_hardware++;
765 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
766 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
767 	} else if (status & HAL_INT_RXORN) {
768 		sc->sc_stats.ast_rxorn++;
769 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
770 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
771 	} else {
772 		if (status & HAL_INT_SWBA) {
773 			/*
774 			 * Software beacon alert--time to send a beacon.
775 			 * Handle beacon transmission directly; deferring
776 			 * this is too slow to meet timing constraints
777 			 * under load.
778 			 */
779 			ath_beacon_proc(sc, 0);
780 		}
781 		if (status & HAL_INT_RXEOL) {
782 			/*
783 			 * NB: the hardware should re-read the link when
784 			 *     RXE bit is written, but it doesn't work at
785 			 *     least on older hardware revs.
786 			 */
787 			sc->sc_stats.ast_rxeol++;
788 			sc->sc_rxlink = NULL;
789 		}
790 		if (status & HAL_INT_TXURN) {
791 			sc->sc_stats.ast_txurn++;
792 			/* bump tx trigger level */
793 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
794 		}
795 		if (status & HAL_INT_RX)
796 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
797 		if (status & HAL_INT_TX)
798 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
799 		if (status & HAL_INT_BMISS) {
800 			sc->sc_stats.ast_bmiss++;
801 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
802 		}
803 		if (status & HAL_INT_MIB) {
804 			sc->sc_stats.ast_mib++;
805 			/*
806 			 * Disable interrupts until we service the MIB
807 			 * interrupt; otherwise it will continue to fire.
808 			 */
809 			ath_hal_intrset(ah, 0);
810 			/*
811 			 * Let the hal handle the event.  We assume it will
812 			 * clear whatever condition caused the interrupt.
813 			 */
814 			ath_hal_mibevent(ah, &sc->sc_halstats);
815 			ath_hal_intrset(ah, sc->sc_imask);
816 		}
817 	}
818 	return 1;
819 }
820 
821 /* Swap transmit descriptor.
822  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
823  * function.
824  */
825 static inline void
826 ath_desc_swap(struct ath_desc *ds)
827 {
828 #ifdef AH_NEED_DESC_SWAP
829 	ds->ds_link = htole32(ds->ds_link);
830 	ds->ds_data = htole32(ds->ds_data);
831 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
832 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
833 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
834 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
835 #endif
836 }
837 
838 static void
839 ath_fatal_proc(void *arg, int pending)
840 {
841 	struct ath_softc *sc = arg;
842 	struct ifnet *ifp = &sc->sc_if;
843 
844 	if_printf(ifp, "hardware error; resetting\n");
845 	ath_reset(ifp);
846 }
847 
848 static void
849 ath_rxorn_proc(void *arg, int pending)
850 {
851 	struct ath_softc *sc = arg;
852 	struct ifnet *ifp = &sc->sc_if;
853 
854 	if_printf(ifp, "rx FIFO overrun; resetting\n");
855 	ath_reset(ifp);
856 }
857 
858 static void
859 ath_bmiss_proc(void *arg, int pending)
860 {
861 	struct ath_softc *sc = arg;
862 	struct ieee80211com *ic = &sc->sc_ic;
863 
864 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
865 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
866 		("unexpect operating mode %u", ic->ic_opmode));
867 	if (ic->ic_state == IEEE80211_S_RUN) {
868 		u_int64_t lastrx = sc->sc_lastrx;
869 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
870 
871 		DPRINTF(sc, ATH_DEBUG_BEACON,
872 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
873 		    " (%" PRIu64 ") bmiss %u\n",
874 		    __func__, tsf, tsf - lastrx, lastrx,
875 		    ic->ic_bmisstimeout*1024);
876 		/*
877 		 * Workaround phantom bmiss interrupts by sanity-checking
878 		 * the time of our last rx'd frame.  If it is within the
879 		 * beacon miss interval then ignore the interrupt.  If it's
880 		 * truly a bmiss we'll get another interrupt soon and that'll
881 		 * be dispatched up for processing.
882 		 */
883 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
884 			NET_LOCK_GIANT();
885 			ieee80211_beacon_miss(ic);
886 			NET_UNLOCK_GIANT();
887 		} else
888 			sc->sc_stats.ast_bmiss_phantom++;
889 	}
890 }
891 
892 static void
893 ath_radar_proc(void *arg, int pending)
894 {
895 	struct ath_softc *sc = arg;
896 	struct ifnet *ifp = &sc->sc_if;
897 	struct ath_hal *ah = sc->sc_ah;
898 	HAL_CHANNEL hchan;
899 
900 	if (ath_hal_procdfs(ah, &hchan)) {
901 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
902 			hchan.channel, hchan.channelFlags, hchan.privFlags);
903 		/*
904 		 * Initiate channel change.
905 		 */
906 		/* XXX not yet */
907 	}
908 }
909 
910 static u_int
911 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
912 {
913 #define	N(a)	(sizeof(a) / sizeof(a[0]))
914 	static const u_int modeflags[] = {
915 		0,			/* IEEE80211_MODE_AUTO */
916 		CHANNEL_A,		/* IEEE80211_MODE_11A */
917 		CHANNEL_B,		/* IEEE80211_MODE_11B */
918 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
919 		0,			/* IEEE80211_MODE_FH */
920 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
921 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
922 	};
923 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
924 
925 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
926 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
927 	return modeflags[mode];
928 #undef N
929 }
930 
931 static int
932 ath_ifinit(struct ifnet *ifp)
933 {
934 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
935 
936 	return ath_init(sc);
937 }
938 
939 static int
940 ath_init(struct ath_softc *sc)
941 {
942 	struct ifnet *ifp = &sc->sc_if;
943 	struct ieee80211com *ic = &sc->sc_ic;
944 	struct ath_hal *ah = sc->sc_ah;
945 	HAL_STATUS status;
946 	int error = 0;
947 
948 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
949 		__func__, ifp->if_flags);
950 
951 	if (!device_has_power(&sc->sc_dev))
952 		return EBUSY;
953 
954 	ATH_LOCK(sc);
955 
956 	if ((error = ath_enable(sc)) != 0) {
957 		ATH_UNLOCK(sc);
958 		return error;
959 	}
960 
961 	/*
962 	 * Stop anything previously setup.  This is safe
963 	 * whether this is the first time through or not.
964 	 */
965 	ath_stop_locked(ifp, 0);
966 
967 	/*
968 	 * The basic interface to setting the hardware in a good
969 	 * state is ``reset''.  On return the hardware is known to
970 	 * be powered up and with interrupts disabled.  This must
971 	 * be followed by initialization of the appropriate bits
972 	 * and then setup of the interrupt mask.
973 	 */
974 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
975 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
976 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
977 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
978 			status);
979 		error = EIO;
980 		goto done;
981 	}
982 
983 	/*
984 	 * This is needed only to setup initial state
985 	 * but it's best done after a reset.
986 	 */
987 	ath_update_txpow(sc);
988 	/*
989 	 * Likewise this is set during reset so update
990 	 * state cached in the driver.
991 	 */
992 	ath_restore_diversity(sc);
993 	sc->sc_calinterval = 1;
994 	sc->sc_caltries = 0;
995 
996 	/*
997 	 * Setup the hardware after reset: the key cache
998 	 * is filled as needed and the receive engine is
999 	 * set going.  Frame transmit is handled entirely
1000 	 * in the frame output path; there's nothing to do
1001 	 * here except setup the interrupt mask.
1002 	 */
1003 	if ((error = ath_startrecv(sc)) != 0) {
1004 		if_printf(ifp, "unable to start recv logic\n");
1005 		goto done;
1006 	}
1007 
1008 	/*
1009 	 * Enable interrupts.
1010 	 */
1011 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1012 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1013 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1014 	/*
1015 	 * Enable MIB interrupts when there are hardware phy counters.
1016 	 * Note we only do this (at the moment) for station mode.
1017 	 */
1018 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1019 		sc->sc_imask |= HAL_INT_MIB;
1020 	ath_hal_intrset(ah, sc->sc_imask);
1021 
1022 	ifp->if_flags |= IFF_RUNNING;
1023 	ic->ic_state = IEEE80211_S_INIT;
1024 
1025 	/*
1026 	 * The hardware should be ready to go now so it's safe
1027 	 * to kick the 802.11 state machine as it's likely to
1028 	 * immediately call back to us to send mgmt frames.
1029 	 */
1030 	ath_chan_change(sc, ic->ic_curchan);
1031 #ifdef ATH_TX99_DIAG
1032 	if (sc->sc_tx99 != NULL)
1033 		sc->sc_tx99->start(sc->sc_tx99);
1034 	else
1035 #endif
1036 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1037 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1038 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1039 	} else
1040 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1041 done:
1042 	ATH_UNLOCK(sc);
1043 	return error;
1044 }
1045 
1046 static void
1047 ath_stop_locked(struct ifnet *ifp, int disable)
1048 {
1049 	struct ath_softc *sc = ifp->if_softc;
1050 	struct ieee80211com *ic = &sc->sc_ic;
1051 	struct ath_hal *ah = sc->sc_ah;
1052 
1053 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1054 		__func__, sc->sc_invalid, ifp->if_flags);
1055 
1056 	ATH_LOCK_ASSERT(sc);
1057 	if (ifp->if_flags & IFF_RUNNING) {
1058 		/*
1059 		 * Shutdown the hardware and driver:
1060 		 *    reset 802.11 state machine
1061 		 *    turn off timers
1062 		 *    disable interrupts
1063 		 *    turn off the radio
1064 		 *    clear transmit machinery
1065 		 *    clear receive machinery
1066 		 *    drain and release tx queues
1067 		 *    reclaim beacon resources
1068 		 *    power down hardware
1069 		 *
1070 		 * Note that some of this work is not possible if the
1071 		 * hardware is gone (invalid).
1072 		 */
1073 #ifdef ATH_TX99_DIAG
1074 		if (sc->sc_tx99 != NULL)
1075 			sc->sc_tx99->stop(sc->sc_tx99);
1076 #endif
1077 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1078 		ifp->if_flags &= ~IFF_RUNNING;
1079 		ifp->if_timer = 0;
1080 		if (!sc->sc_invalid) {
1081 			if (sc->sc_softled) {
1082 				callout_stop(&sc->sc_ledtimer);
1083 				ath_hal_gpioset(ah, sc->sc_ledpin,
1084 					!sc->sc_ledon);
1085 				sc->sc_blinking = 0;
1086 			}
1087 			ath_hal_intrset(ah, 0);
1088 		}
1089 		ath_draintxq(sc);
1090 		if (!sc->sc_invalid) {
1091 			ath_stoprecv(sc);
1092 			ath_hal_phydisable(ah);
1093 		} else
1094 			sc->sc_rxlink = NULL;
1095 		IF_PURGE(&ifp->if_snd);
1096 		ath_beacon_free(sc);
1097 		if (disable)
1098 			ath_disable(sc);
1099 	}
1100 }
1101 
1102 static void
1103 ath_stop(struct ifnet *ifp, int disable)
1104 {
1105 	struct ath_softc *sc = ifp->if_softc;
1106 
1107 	ATH_LOCK(sc);
1108 	ath_stop_locked(ifp, disable);
1109 	if (!sc->sc_invalid) {
1110 		/*
1111 		 * Set the chip in full sleep mode.  Note that we are
1112 		 * careful to do this only when bringing the interface
1113 		 * completely to a stop.  When the chip is in this state
1114 		 * it must be carefully woken up or references to
1115 		 * registers in the PCI clock domain may freeze the bus
1116 		 * (and system).  This varies by chip and is mostly an
1117 		 * issue with newer parts that go to sleep more quickly.
1118 		 */
1119 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1120 	}
1121 	ATH_UNLOCK(sc);
1122 }
1123 
1124 static void
1125 ath_restore_diversity(struct ath_softc *sc)
1126 {
1127 	struct ifnet *ifp = &sc->sc_if;
1128 	struct ath_hal *ah = sc->sc_ah;
1129 
1130 	if (!ath_hal_setdiversity(sc->sc_ah, sc->sc_diversity) ||
1131 	    sc->sc_diversity != ath_hal_getdiversity(ah)) {
1132 		if_printf(ifp, "could not restore diversity setting %d\n",
1133 		    sc->sc_diversity);
1134 		sc->sc_diversity = ath_hal_getdiversity(ah);
1135 	}
1136 }
1137 
1138 /*
1139  * Reset the hardware w/o losing operational state.  This is
1140  * basically a more efficient way of doing ath_stop, ath_init,
1141  * followed by state transitions to the current 802.11
1142  * operational state.  Used to recover from various errors and
1143  * to reset or reload hardware state.
1144  */
1145 int
1146 ath_reset(struct ifnet *ifp)
1147 {
1148 	struct ath_softc *sc = ifp->if_softc;
1149 	struct ieee80211com *ic = &sc->sc_ic;
1150 	struct ath_hal *ah = sc->sc_ah;
1151 	struct ieee80211_channel *c;
1152 	HAL_STATUS status;
1153 
1154 	/*
1155 	 * Convert to a HAL channel description with the flags
1156 	 * constrained to reflect the current operating mode.
1157 	 */
1158 	c = ic->ic_curchan;
1159 	sc->sc_curchan.channel = c->ic_freq;
1160 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1161 
1162 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1163 	ath_draintxq(sc);		/* stop xmit side */
1164 	ath_stoprecv(sc);		/* stop recv side */
1165 	/* NB: indicate channel change so we do a full reset */
1166 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1167 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1168 			__func__, status);
1169 	ath_update_txpow(sc);		/* update tx power state */
1170 	ath_restore_diversity(sc);
1171 	sc->sc_calinterval = 1;
1172 	sc->sc_caltries = 0;
1173 	if (ath_startrecv(sc) != 0)	/* restart recv */
1174 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1175 	/*
1176 	 * We may be doing a reset in response to an ioctl
1177 	 * that changes the channel so update any state that
1178 	 * might change as a result.
1179 	 */
1180 	ath_chan_change(sc, c);
1181 	if (ic->ic_state == IEEE80211_S_RUN)
1182 		ath_beacon_config(sc);	/* restart beacons */
1183 	ath_hal_intrset(ah, sc->sc_imask);
1184 
1185 	ath_start(ifp);			/* restart xmit */
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Cleanup driver resources when we run out of buffers
1191  * while processing fragments; return the tx buffers
1192  * allocated and drop node references.
1193  */
1194 static void
1195 ath_txfrag_cleanup(struct ath_softc *sc,
1196 	ath_bufhead *frags, struct ieee80211_node *ni)
1197 {
1198 	struct ath_buf *bf;
1199 
1200 	ATH_TXBUF_LOCK_ASSERT(sc);
1201 
1202 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1203 		STAILQ_REMOVE_HEAD(frags, bf_list);
1204 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1205 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1206 		ieee80211_node_decref(ni);
1207 	}
1208 }
1209 
1210 /*
1211  * Setup xmit of a fragmented frame.  Allocate a buffer
1212  * for each frag and bump the node reference count to
1213  * reflect the held reference to be setup by ath_tx_start.
1214  */
1215 static int
1216 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1217 	struct mbuf *m0, struct ieee80211_node *ni)
1218 {
1219 	struct mbuf *m;
1220 	struct ath_buf *bf;
1221 
1222 	ATH_TXBUF_LOCK(sc);
1223 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1224 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1225 		if (bf == NULL) {       /* out of buffers, cleanup */
1226 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1227 				__func__);
1228 			sc->sc_if.if_flags |= IFF_OACTIVE;
1229 			ath_txfrag_cleanup(sc, frags, ni);
1230 			break;
1231 		}
1232 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1233 		ieee80211_node_incref(ni);
1234 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1235 	}
1236 	ATH_TXBUF_UNLOCK(sc);
1237 
1238 	return !STAILQ_EMPTY(frags);
1239 }
1240 
1241 static void
1242 ath_start(struct ifnet *ifp)
1243 {
1244 	struct ath_softc *sc = ifp->if_softc;
1245 	struct ath_hal *ah = sc->sc_ah;
1246 	struct ieee80211com *ic = &sc->sc_ic;
1247 	struct ieee80211_node *ni;
1248 	struct ath_buf *bf;
1249 	struct mbuf *m, *next;
1250 	struct ieee80211_frame *wh;
1251 	struct ether_header *eh;
1252 	ath_bufhead frags;
1253 
1254 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1255 		return;
1256 	for (;;) {
1257 		/*
1258 		 * Grab a TX buffer and associated resources.
1259 		 */
1260 		ATH_TXBUF_LOCK(sc);
1261 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1262 		if (bf != NULL)
1263 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1264 		ATH_TXBUF_UNLOCK(sc);
1265 		if (bf == NULL) {
1266 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1267 				__func__);
1268 			sc->sc_stats.ast_tx_qstop++;
1269 			ifp->if_flags |= IFF_OACTIVE;
1270 			break;
1271 		}
1272 		/*
1273 		 * Poll the management queue for frames; they
1274 		 * have priority over normal data frames.
1275 		 */
1276 		IF_DEQUEUE(&ic->ic_mgtq, m);
1277 		if (m == NULL) {
1278 			/*
1279 			 * No data frames go out unless we're associated.
1280 			 */
1281 			if (ic->ic_state != IEEE80211_S_RUN) {
1282 				DPRINTF(sc, ATH_DEBUG_XMIT,
1283 				    "%s: discard data packet, state %s\n",
1284 				    __func__,
1285 				    ieee80211_state_name[ic->ic_state]);
1286 				sc->sc_stats.ast_tx_discard++;
1287 				ATH_TXBUF_LOCK(sc);
1288 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1289 				ATH_TXBUF_UNLOCK(sc);
1290 				break;
1291 			}
1292 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1293 			if (m == NULL) {
1294 				ATH_TXBUF_LOCK(sc);
1295 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1296 				ATH_TXBUF_UNLOCK(sc);
1297 				break;
1298 			}
1299 			STAILQ_INIT(&frags);
1300 			/*
1301 			 * Find the node for the destination so we can do
1302 			 * things like power save and fast frames aggregation.
1303 			 */
1304 			if (m->m_len < sizeof(struct ether_header) &&
1305 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1306 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1307 				ni = NULL;
1308 				goto bad;
1309 			}
1310 			eh = mtod(m, struct ether_header *);
1311 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1312 			if (ni == NULL) {
1313 				/* NB: ieee80211_find_txnode does stat+msg */
1314 				m_freem(m);
1315 				goto bad;
1316 			}
1317 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1318 			    (m->m_flags & M_PWR_SAV) == 0) {
1319 				/*
1320 				 * Station in power save mode; pass the frame
1321 				 * to the 802.11 layer and continue.  We'll get
1322 				 * the frame back when the time is right.
1323 				 */
1324 				ieee80211_pwrsave(ic, ni, m);
1325 				goto reclaim;
1326 			}
1327 			/* calculate priority so we can find the tx queue */
1328 			if (ieee80211_classify(ic, m, ni)) {
1329 				DPRINTF(sc, ATH_DEBUG_XMIT,
1330 					"%s: discard, classification failure\n",
1331 					__func__);
1332 				m_freem(m);
1333 				goto bad;
1334 			}
1335 			ifp->if_opackets++;
1336 
1337 #if NBPFILTER > 0
1338 			if (ifp->if_bpf)
1339 				bpf_mtap(ifp->if_bpf, m);
1340 #endif
1341 			/*
1342 			 * Encapsulate the packet in prep for transmission.
1343 			 */
1344 			m = ieee80211_encap(ic, m, ni);
1345 			if (m == NULL) {
1346 				DPRINTF(sc, ATH_DEBUG_XMIT,
1347 					"%s: encapsulation failure\n",
1348 					__func__);
1349 				sc->sc_stats.ast_tx_encap++;
1350 				goto bad;
1351 			}
1352 			/*
1353 			 * Check for fragmentation.  If this has frame
1354 			 * has been broken up verify we have enough
1355 			 * buffers to send all the fragments so all
1356 			 * go out or none...
1357 			 */
1358 			if ((m->m_flags & M_FRAG) &&
1359 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1360 				DPRINTF(sc, ATH_DEBUG_ANY,
1361 				    "%s: out of txfrag buffers\n", __func__);
1362 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1363 				ath_freetx(m);
1364 				goto bad;
1365 			}
1366 		} else {
1367 			/*
1368 			 * Hack!  The referenced node pointer is in the
1369 			 * rcvif field of the packet header.  This is
1370 			 * placed there by ieee80211_mgmt_output because
1371 			 * we need to hold the reference with the frame
1372 			 * and there's no other way (other than packet
1373 			 * tags which we consider too expensive to use)
1374 			 * to pass it along.
1375 			 */
1376 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1377 			m->m_pkthdr.rcvif = NULL;
1378 
1379 			wh = mtod(m, struct ieee80211_frame *);
1380 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1381 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1382 				/* fill time stamp */
1383 				u_int64_t tsf;
1384 				u_int32_t *tstamp;
1385 
1386 				tsf = ath_hal_gettsf64(ah);
1387 				/* XXX: adjust 100us delay to xmit */
1388 				tsf += 100;
1389 				tstamp = (u_int32_t *)&wh[1];
1390 				tstamp[0] = htole32(tsf & 0xffffffff);
1391 				tstamp[1] = htole32(tsf >> 32);
1392 			}
1393 			sc->sc_stats.ast_tx_mgmt++;
1394 		}
1395 
1396 	nextfrag:
1397 		next = m->m_nextpkt;
1398 		if (ath_tx_start(sc, ni, bf, m)) {
1399 	bad:
1400 			ifp->if_oerrors++;
1401 	reclaim:
1402 			ATH_TXBUF_LOCK(sc);
1403 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1404 			ath_txfrag_cleanup(sc, &frags, ni);
1405 			ATH_TXBUF_UNLOCK(sc);
1406 			if (ni != NULL)
1407 				ieee80211_free_node(ni);
1408 			continue;
1409 		}
1410 		if (next != NULL) {
1411 			m = next;
1412 			bf = STAILQ_FIRST(&frags);
1413 			KASSERT(bf != NULL, ("no buf for txfrag"));
1414 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1415 			goto nextfrag;
1416 		}
1417 
1418 		ifp->if_timer = 1;
1419 	}
1420 }
1421 
1422 static int
1423 ath_media_change(struct ifnet *ifp)
1424 {
1425 #define	IS_UP(ifp) \
1426 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1427 	int error;
1428 
1429 	error = ieee80211_media_change(ifp);
1430 	if (error == ENETRESET) {
1431 		if (IS_UP(ifp))
1432 			ath_init(ifp->if_softc);	/* XXX lose error */
1433 		error = 0;
1434 	}
1435 	return error;
1436 #undef IS_UP
1437 }
1438 
1439 #ifdef AR_DEBUG
1440 static void
1441 ath_keyprint(const char *tag, u_int ix,
1442 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1443 {
1444 	static const char *ciphers[] = {
1445 		"WEP",
1446 		"AES-OCB",
1447 		"AES-CCM",
1448 		"CKIP",
1449 		"TKIP",
1450 		"CLR",
1451 	};
1452 	int i, n;
1453 
1454 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1455 	for (i = 0, n = hk->kv_len; i < n; i++)
1456 		printf("%02x", hk->kv_val[i]);
1457 	printf(" mac %s", ether_sprintf(mac));
1458 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1459 		printf(" mic ");
1460 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1461 			printf("%02x", hk->kv_mic[i]);
1462 	}
1463 	printf("\n");
1464 }
1465 #endif
1466 
1467 /*
1468  * Set a TKIP key into the hardware.  This handles the
1469  * potential distribution of key state to multiple key
1470  * cache slots for TKIP.
1471  */
1472 static int
1473 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1474 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1475 {
1476 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1477 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1478 	struct ath_hal *ah = sc->sc_ah;
1479 
1480 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1481 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1482 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1483 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1484 		/*
1485 		 * TX key goes at first index, RX key at the rx index.
1486 		 * The hal handles the MIC keys at index+64.
1487 		 */
1488 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1489 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1490 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1491 			return 0;
1492 
1493 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1494 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1495 		/* XXX delete tx key on failure? */
1496 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1497 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1498 		/*
1499 		 * TX/RX key goes at first index.
1500 		 * The hal handles the MIC keys are index+64.
1501 		 */
1502 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1503 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1504 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1505 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1506 	}
1507 	return 0;
1508 #undef IEEE80211_KEY_XR
1509 }
1510 
1511 /*
1512  * Set a net80211 key into the hardware.  This handles the
1513  * potential distribution of key state to multiple key
1514  * cache slots for TKIP with hardware MIC support.
1515  */
1516 static int
1517 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1518 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1519 	struct ieee80211_node *bss)
1520 {
1521 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1522 	static const u_int8_t ciphermap[] = {
1523 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1524 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1525 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1526 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1527 		(u_int8_t) -1,		/* 4 is not allocated */
1528 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1529 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1530 	};
1531 	struct ath_hal *ah = sc->sc_ah;
1532 	const struct ieee80211_cipher *cip = k->wk_cipher;
1533 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1534 	const u_int8_t *mac;
1535 	HAL_KEYVAL hk;
1536 
1537 	memset(&hk, 0, sizeof(hk));
1538 	/*
1539 	 * Software crypto uses a "clear key" so non-crypto
1540 	 * state kept in the key cache are maintained and
1541 	 * so that rx frames have an entry to match.
1542 	 */
1543 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1544 		KASSERT(cip->ic_cipher < N(ciphermap),
1545 			("invalid cipher type %u", cip->ic_cipher));
1546 		hk.kv_type = ciphermap[cip->ic_cipher];
1547 		hk.kv_len = k->wk_keylen;
1548 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1549 	} else
1550 		hk.kv_type = HAL_CIPHER_CLR;
1551 
1552 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1553 		/*
1554 		 * Group keys on hardware that supports multicast frame
1555 		 * key search use a mac that is the sender's address with
1556 		 * the high bit set instead of the app-specified address.
1557 		 */
1558 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1559 		gmac[0] |= 0x80;
1560 		mac = gmac;
1561 	} else
1562 		mac = mac0;
1563 
1564 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1565 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1566 	    sc->sc_splitmic) {
1567 		return ath_keyset_tkip(sc, k, &hk, mac);
1568 	} else {
1569 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1570 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1571 	}
1572 #undef N
1573 }
1574 
1575 /*
1576  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1577  * each key, one for decrypt/encrypt and the other for the MIC.
1578  */
1579 static u_int16_t
1580 key_alloc_2pair(struct ath_softc *sc,
1581 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1582 {
1583 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1584 	u_int i, keyix;
1585 
1586 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1587 	/* XXX could optimize */
1588 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1589 		u_int8_t b = sc->sc_keymap[i];
1590 		if (b != 0xff) {
1591 			/*
1592 			 * One or more slots in this byte are free.
1593 			 */
1594 			keyix = i*NBBY;
1595 			while (b & 1) {
1596 		again:
1597 				keyix++;
1598 				b >>= 1;
1599 			}
1600 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1601 			if (isset(sc->sc_keymap, keyix+32) ||
1602 			    isset(sc->sc_keymap, keyix+64) ||
1603 			    isset(sc->sc_keymap, keyix+32+64)) {
1604 				/* full pair unavailable */
1605 				/* XXX statistic */
1606 				if (keyix == (i+1)*NBBY) {
1607 					/* no slots were appropriate, advance */
1608 					continue;
1609 				}
1610 				goto again;
1611 			}
1612 			setbit(sc->sc_keymap, keyix);
1613 			setbit(sc->sc_keymap, keyix+64);
1614 			setbit(sc->sc_keymap, keyix+32);
1615 			setbit(sc->sc_keymap, keyix+32+64);
1616 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1617 				"%s: key pair %u,%u %u,%u\n",
1618 				__func__, keyix, keyix+64,
1619 				keyix+32, keyix+32+64);
1620 			*txkeyix = keyix;
1621 			*rxkeyix = keyix+32;
1622 			return 1;
1623 		}
1624 	}
1625 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1626 	return 0;
1627 #undef N
1628 }
1629 
1630 /*
1631  * Allocate a single key cache slot.
1632  */
1633 static int
1634 key_alloc_single(struct ath_softc *sc,
1635 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1636 {
1637 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1638 	u_int i, keyix;
1639 
1640 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1641 	for (i = 0; i < N(sc->sc_keymap); i++) {
1642 		u_int8_t b = sc->sc_keymap[i];
1643 		if (b != 0xff) {
1644 			/*
1645 			 * One or more slots are free.
1646 			 */
1647 			keyix = i*NBBY;
1648 			while (b & 1)
1649 				keyix++, b >>= 1;
1650 			setbit(sc->sc_keymap, keyix);
1651 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1652 				__func__, keyix);
1653 			*txkeyix = *rxkeyix = keyix;
1654 			return 1;
1655 		}
1656 	}
1657 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1658 	return 0;
1659 #undef N
1660 }
1661 
1662 /*
1663  * Allocate one or more key cache slots for a uniacst key.  The
1664  * key itself is needed only to identify the cipher.  For hardware
1665  * TKIP with split cipher+MIC keys we allocate two key cache slot
1666  * pairs so that we can setup separate TX and RX MIC keys.  Note
1667  * that the MIC key for a TKIP key at slot i is assumed by the
1668  * hardware to be at slot i+64.  This limits TKIP keys to the first
1669  * 64 entries.
1670  */
1671 static int
1672 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1673 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1674 {
1675 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1676 
1677 	/*
1678 	 * Group key allocation must be handled specially for
1679 	 * parts that do not support multicast key cache search
1680 	 * functionality.  For those parts the key id must match
1681 	 * the h/w key index so lookups find the right key.  On
1682 	 * parts w/ the key search facility we install the sender's
1683 	 * mac address (with the high bit set) and let the hardware
1684 	 * find the key w/o using the key id.  This is preferred as
1685 	 * it permits us to support multiple users for adhoc and/or
1686 	 * multi-station operation.
1687 	 */
1688 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1689 		if (!(&ic->ic_nw_keys[0] <= k &&
1690 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1691 			/* should not happen */
1692 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1693 				"%s: bogus group key\n", __func__);
1694 			return 0;
1695 		}
1696 		/*
1697 		 * XXX we pre-allocate the global keys so
1698 		 * have no way to check if they've already been allocated.
1699 		 */
1700 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1701 		return 1;
1702 	}
1703 
1704 	/*
1705 	 * We allocate two pair for TKIP when using the h/w to do
1706 	 * the MIC.  For everything else, including software crypto,
1707 	 * we allocate a single entry.  Note that s/w crypto requires
1708 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1709 	 * not support pass-through cache entries and we map all
1710 	 * those requests to slot 0.
1711 	 */
1712 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1713 		return key_alloc_single(sc, keyix, rxkeyix);
1714 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1715 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1716 		return key_alloc_2pair(sc, keyix, rxkeyix);
1717 	} else {
1718 		return key_alloc_single(sc, keyix, rxkeyix);
1719 	}
1720 }
1721 
1722 /*
1723  * Delete an entry in the key cache allocated by ath_key_alloc.
1724  */
1725 static int
1726 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1727 {
1728 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1729 	struct ath_hal *ah = sc->sc_ah;
1730 	const struct ieee80211_cipher *cip = k->wk_cipher;
1731 	u_int keyix = k->wk_keyix;
1732 
1733 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1734 
1735 	ath_hal_keyreset(ah, keyix);
1736 	/*
1737 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1738 	 */
1739 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1740 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1741 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1742 	if (keyix >= IEEE80211_WEP_NKID) {
1743 		/*
1744 		 * Don't touch keymap entries for global keys so
1745 		 * they are never considered for dynamic allocation.
1746 		 */
1747 		clrbit(sc->sc_keymap, keyix);
1748 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1749 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1750 		    sc->sc_splitmic) {
1751 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1752 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1753 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1754 		}
1755 	}
1756 	return 1;
1757 }
1758 
1759 /*
1760  * Set the key cache contents for the specified key.  Key cache
1761  * slot(s) must already have been allocated by ath_key_alloc.
1762  */
1763 static int
1764 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1765 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1766 {
1767 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1768 
1769 	return ath_keyset(sc, k, mac, ic->ic_bss);
1770 }
1771 
1772 /*
1773  * Block/unblock tx+rx processing while a key change is done.
1774  * We assume the caller serializes key management operations
1775  * so we only need to worry about synchronization with other
1776  * uses that originate in the driver.
1777  */
1778 static void
1779 ath_key_update_begin(struct ieee80211com *ic)
1780 {
1781 	struct ifnet *ifp = ic->ic_ifp;
1782 	struct ath_softc *sc = ifp->if_softc;
1783 
1784 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1785 #if 0
1786 	tasklet_disable(&sc->sc_rxtq);
1787 #endif
1788 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1789 }
1790 
1791 static void
1792 ath_key_update_end(struct ieee80211com *ic)
1793 {
1794 	struct ifnet *ifp = ic->ic_ifp;
1795 	struct ath_softc *sc = ifp->if_softc;
1796 
1797 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1798 	IF_UNLOCK(&ifp->if_snd);
1799 #if 0
1800 	tasklet_enable(&sc->sc_rxtq);
1801 #endif
1802 }
1803 
1804 /*
1805  * Calculate the receive filter according to the
1806  * operating mode and state:
1807  *
1808  * o always accept unicast, broadcast, and multicast traffic
1809  * o maintain current state of phy error reception (the hal
1810  *   may enable phy error frames for noise immunity work)
1811  * o probe request frames are accepted only when operating in
1812  *   hostap, adhoc, or monitor modes
1813  * o enable promiscuous mode according to the interface state
1814  * o accept beacons:
1815  *   - when operating in adhoc mode so the 802.11 layer creates
1816  *     node table entries for peers,
1817  *   - when operating in station mode for collecting rssi data when
1818  *     the station is otherwise quiet, or
1819  *   - when scanning
1820  */
1821 static u_int32_t
1822 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1823 {
1824 	struct ieee80211com *ic = &sc->sc_ic;
1825 	struct ath_hal *ah = sc->sc_ah;
1826 	struct ifnet *ifp = &sc->sc_if;
1827 	u_int32_t rfilt;
1828 
1829 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1830 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1831 	if (ic->ic_opmode != IEEE80211_M_STA)
1832 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1833 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1834 	    (ifp->if_flags & IFF_PROMISC))
1835 		rfilt |= HAL_RX_FILTER_PROM;
1836 	if (ic->ic_opmode == IEEE80211_M_STA ||
1837 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1838 	    state == IEEE80211_S_SCAN)
1839 		rfilt |= HAL_RX_FILTER_BEACON;
1840 	return rfilt;
1841 }
1842 
1843 static void
1844 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1845 {
1846 	u_int32_t val;
1847 	u_int8_t pos;
1848 
1849 	/* calculate XOR of eight 6bit values */
1850 	val = LE_READ_4((char *)dl + 0);
1851 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1852 	val = LE_READ_4((char *)dl + 3);
1853 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1854 	pos &= 0x3f;
1855 	mfilt[pos / 32] |= (1 << (pos % 32));
1856 }
1857 
1858 static void
1859 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1860 {
1861 	struct ifnet *ifp = &sc->sc_if;
1862 	struct ether_multi *enm;
1863 	struct ether_multistep estep;
1864 
1865 	mfilt[0] = mfilt[1] = 0;
1866 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1867 	while (enm != NULL) {
1868 		/* XXX Punt on ranges. */
1869 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1870 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1871 			ifp->if_flags |= IFF_ALLMULTI;
1872 			return;
1873 		}
1874 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1875 		ETHER_NEXT_MULTI(estep, enm);
1876 	}
1877 	ifp->if_flags &= ~IFF_ALLMULTI;
1878 }
1879 
1880 static void
1881 ath_mode_init(struct ath_softc *sc)
1882 {
1883 	struct ieee80211com *ic = &sc->sc_ic;
1884 	struct ath_hal *ah = sc->sc_ah;
1885 	u_int32_t rfilt, mfilt[2];
1886 	int i;
1887 
1888 	/* configure rx filter */
1889 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1890 	ath_hal_setrxfilter(ah, rfilt);
1891 
1892 	/* configure operational mode */
1893 	ath_hal_setopmode(ah);
1894 
1895 	/* Write keys to hardware; it may have been powered down. */
1896 	ath_key_update_begin(ic);
1897 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1898 		ath_key_set(ic,
1899 			    &ic->ic_crypto.cs_nw_keys[i],
1900 			    ic->ic_myaddr);
1901 	}
1902 	ath_key_update_end(ic);
1903 
1904 	/*
1905 	 * Handle any link-level address change.  Note that we only
1906 	 * need to force ic_myaddr; any other addresses are handled
1907 	 * as a byproduct of the ifnet code marking the interface
1908 	 * down then up.
1909 	 *
1910 	 * XXX should get from lladdr instead of arpcom but that's more work
1911 	 */
1912 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1913 	ath_hal_setmac(ah, ic->ic_myaddr);
1914 
1915 	/* calculate and install multicast filter */
1916 #ifdef __FreeBSD__
1917 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1918 		mfilt[0] = mfilt[1] = 0;
1919 		IF_ADDR_LOCK(ifp);
1920 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1921 			void *dl;
1922 
1923 			/* calculate XOR of eight 6bit values */
1924 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1925 			val = LE_READ_4((char *)dl + 0);
1926 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1927 			val = LE_READ_4((char *)dl + 3);
1928 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1929 			pos &= 0x3f;
1930 			mfilt[pos / 32] |= (1 << (pos % 32));
1931 		}
1932 		IF_ADDR_UNLOCK(ifp);
1933 	} else {
1934 		mfilt[0] = mfilt[1] = ~0;
1935 	}
1936 #endif
1937 #ifdef __NetBSD__
1938 	ath_mcastfilter_compute(sc, mfilt);
1939 #endif
1940 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1941 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1942 		__func__, rfilt, mfilt[0], mfilt[1]);
1943 }
1944 
1945 /*
1946  * Set the slot time based on the current setting.
1947  */
1948 static void
1949 ath_setslottime(struct ath_softc *sc)
1950 {
1951 	struct ieee80211com *ic = &sc->sc_ic;
1952 	struct ath_hal *ah = sc->sc_ah;
1953 
1954 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1955 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1956 	else
1957 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1958 	sc->sc_updateslot = OK;
1959 }
1960 
1961 /*
1962  * Callback from the 802.11 layer to update the
1963  * slot time based on the current setting.
1964  */
1965 static void
1966 ath_updateslot(struct ifnet *ifp)
1967 {
1968 	struct ath_softc *sc = ifp->if_softc;
1969 	struct ieee80211com *ic = &sc->sc_ic;
1970 
1971 	/*
1972 	 * When not coordinating the BSS, change the hardware
1973 	 * immediately.  For other operation we defer the change
1974 	 * until beacon updates have propagated to the stations.
1975 	 */
1976 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1977 		sc->sc_updateslot = UPDATE;
1978 	else
1979 		ath_setslottime(sc);
1980 }
1981 
1982 /*
1983  * Setup a h/w transmit queue for beacons.
1984  */
1985 static int
1986 ath_beaconq_setup(struct ath_hal *ah)
1987 {
1988 	HAL_TXQ_INFO qi;
1989 
1990 	memset(&qi, 0, sizeof(qi));
1991 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1992 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1993 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1994 	/* NB: for dynamic turbo, don't enable any other interrupts */
1995 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1996 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1997 }
1998 
1999 /*
2000  * Setup the transmit queue parameters for the beacon queue.
2001  */
2002 static int
2003 ath_beaconq_config(struct ath_softc *sc)
2004 {
2005 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2006 	struct ieee80211com *ic = &sc->sc_ic;
2007 	struct ath_hal *ah = sc->sc_ah;
2008 	HAL_TXQ_INFO qi;
2009 
2010 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2011 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2012 		/*
2013 		 * Always burst out beacon and CAB traffic.
2014 		 */
2015 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2016 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2017 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2018 	} else {
2019 		struct wmeParams *wmep =
2020 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2021 		/*
2022 		 * Adhoc mode; important thing is to use 2x cwmin.
2023 		 */
2024 		qi.tqi_aifs = wmep->wmep_aifsn;
2025 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2026 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2027 	}
2028 
2029 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2030 		device_printf(&sc->sc_dev, "unable to update parameters for "
2031 			"beacon hardware queue!\n");
2032 		return 0;
2033 	} else {
2034 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2035 		return 1;
2036 	}
2037 #undef ATH_EXPONENT_TO_VALUE
2038 }
2039 
2040 /*
2041  * Allocate and setup an initial beacon frame.
2042  */
2043 static int
2044 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2045 {
2046 	struct ieee80211com *ic = ni->ni_ic;
2047 	struct ath_buf *bf;
2048 	struct mbuf *m;
2049 	int error;
2050 
2051 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2052 	if (bf == NULL) {
2053 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2054 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2055 		return ENOMEM;			/* XXX */
2056 	}
2057 	/*
2058 	 * NB: the beacon data buffer must be 32-bit aligned;
2059 	 * we assume the mbuf routines will return us something
2060 	 * with this alignment (perhaps should assert).
2061 	 */
2062 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2063 	if (m == NULL) {
2064 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2065 			__func__);
2066 		sc->sc_stats.ast_be_nombuf++;
2067 		return ENOMEM;
2068 	}
2069 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2070 				     BUS_DMA_NOWAIT);
2071 	if (error == 0) {
2072 		bf->bf_m = m;
2073 		bf->bf_node = ieee80211_ref_node(ni);
2074 	} else {
2075 		m_freem(m);
2076 	}
2077 	return error;
2078 }
2079 
2080 /*
2081  * Setup the beacon frame for transmit.
2082  */
2083 static void
2084 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2085 {
2086 #define	USE_SHPREAMBLE(_ic) \
2087 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2088 		== IEEE80211_F_SHPREAMBLE)
2089 	struct ieee80211_node *ni = bf->bf_node;
2090 	struct ieee80211com *ic = ni->ni_ic;
2091 	struct mbuf *m = bf->bf_m;
2092 	struct ath_hal *ah = sc->sc_ah;
2093 	struct ath_desc *ds;
2094 	int flags, antenna;
2095 	const HAL_RATE_TABLE *rt;
2096 	u_int8_t rix, rate;
2097 
2098 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2099 		__func__, m, m->m_len);
2100 
2101 	/* setup descriptors */
2102 	ds = bf->bf_desc;
2103 
2104 	flags = HAL_TXDESC_NOACK;
2105 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2106 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2107 		flags |= HAL_TXDESC_VEOL;
2108 		/*
2109 		 * Let hardware handle antenna switching unless
2110 		 * the user has selected a transmit antenna
2111 		 * (sc_txantenna is not 0).
2112 		 */
2113 		antenna = sc->sc_txantenna;
2114 	} else {
2115 		ds->ds_link = 0;
2116 		/*
2117 		 * Switch antenna every 4 beacons, unless the user
2118 		 * has selected a transmit antenna (sc_txantenna
2119 		 * is not 0).
2120 		 *
2121 		 * XXX assumes two antenna
2122 		 */
2123 		if (sc->sc_txantenna == 0)
2124 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2125 		else
2126 			antenna = sc->sc_txantenna;
2127 	}
2128 
2129 	KASSERT(bf->bf_nseg == 1,
2130 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2131 	ds->ds_data = bf->bf_segs[0].ds_addr;
2132 	/*
2133 	 * Calculate rate code.
2134 	 * XXX everything at min xmit rate
2135 	 */
2136 	rix = sc->sc_minrateix;
2137 	rt = sc->sc_currates;
2138 	rate = rt->info[rix].rateCode;
2139 	if (USE_SHPREAMBLE(ic))
2140 		rate |= rt->info[rix].shortPreamble;
2141 	ath_hal_setuptxdesc(ah, ds
2142 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2143 		, sizeof(struct ieee80211_frame)/* header length */
2144 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2145 		, ni->ni_txpower		/* txpower XXX */
2146 		, rate, 1			/* series 0 rate/tries */
2147 		, HAL_TXKEYIX_INVALID		/* no encryption */
2148 		, antenna			/* antenna mode */
2149 		, flags				/* no ack, veol for beacons */
2150 		, 0				/* rts/cts rate */
2151 		, 0				/* rts/cts duration */
2152 	);
2153 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2154 	ath_hal_filltxdesc(ah, ds
2155 		, roundup(m->m_len, 4)		/* buffer length */
2156 		, AH_TRUE			/* first segment */
2157 		, AH_TRUE			/* last segment */
2158 		, ds				/* first descriptor */
2159 	);
2160 
2161 	/* NB: The desc swap function becomes void,
2162 	 * if descriptor swapping is not enabled
2163 	 */
2164 	ath_desc_swap(ds);
2165 
2166 #undef USE_SHPREAMBLE
2167 }
2168 
2169 /*
2170  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2171  * frame contents are done as needed and the slot time is
2172  * also adjusted based on current state.
2173  */
2174 static void
2175 ath_beacon_proc(void *arg, int pending)
2176 {
2177 	struct ath_softc *sc = arg;
2178 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2179 	struct ieee80211_node *ni = bf->bf_node;
2180 	struct ieee80211com *ic = ni->ni_ic;
2181 	struct ath_hal *ah = sc->sc_ah;
2182 	struct mbuf *m;
2183 	int ncabq, error, otherant;
2184 
2185 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2186 		__func__, pending);
2187 
2188 	if (ic->ic_opmode == IEEE80211_M_STA ||
2189 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2190 	    bf == NULL || bf->bf_m == NULL) {
2191 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2192 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2193 		return;
2194 	}
2195 	/*
2196 	 * Check if the previous beacon has gone out.  If
2197 	 * not don't try to post another, skip this period
2198 	 * and wait for the next.  Missed beacons indicate
2199 	 * a problem and should not occur.  If we miss too
2200 	 * many consecutive beacons reset the device.
2201 	 */
2202 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2203 		sc->sc_bmisscount++;
2204 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2205 			"%s: missed %u consecutive beacons\n",
2206 			__func__, sc->sc_bmisscount);
2207 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2208 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2209 		return;
2210 	}
2211 	if (sc->sc_bmisscount != 0) {
2212 		DPRINTF(sc, ATH_DEBUG_BEACON,
2213 			"%s: resume beacon xmit after %u misses\n",
2214 			__func__, sc->sc_bmisscount);
2215 		sc->sc_bmisscount = 0;
2216 	}
2217 
2218 	/*
2219 	 * Update dynamic beacon contents.  If this returns
2220 	 * non-zero then we need to remap the memory because
2221 	 * the beacon frame changed size (probably because
2222 	 * of the TIM bitmap).
2223 	 */
2224 	m = bf->bf_m;
2225 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2226 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2227 		/* XXX too conservative? */
2228 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2229 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2230 					     BUS_DMA_NOWAIT);
2231 		if (error != 0) {
2232 			if_printf(&sc->sc_if,
2233 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2234 			    __func__, error);
2235 			return;
2236 		}
2237 	}
2238 
2239 	/*
2240 	 * Handle slot time change when a non-ERP station joins/leaves
2241 	 * an 11g network.  The 802.11 layer notifies us via callback,
2242 	 * we mark updateslot, then wait one beacon before effecting
2243 	 * the change.  This gives associated stations at least one
2244 	 * beacon interval to note the state change.
2245 	 */
2246 	/* XXX locking */
2247 	if (sc->sc_updateslot == UPDATE)
2248 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2249 	else if (sc->sc_updateslot == COMMIT)
2250 		ath_setslottime(sc);		/* commit change to h/w */
2251 
2252 	/*
2253 	 * Check recent per-antenna transmit statistics and flip
2254 	 * the default antenna if noticeably more frames went out
2255 	 * on the non-default antenna.
2256 	 * XXX assumes 2 anntenae
2257 	 */
2258 	otherant = sc->sc_defant & 1 ? 2 : 1;
2259 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2260 		ath_setdefantenna(sc, otherant);
2261 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2262 
2263 	/*
2264 	 * Construct tx descriptor.
2265 	 */
2266 	ath_beacon_setup(sc, bf);
2267 
2268 	/*
2269 	 * Stop any current dma and put the new frame on the queue.
2270 	 * This should never fail since we check above that no frames
2271 	 * are still pending on the queue.
2272 	 */
2273 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2274 		DPRINTF(sc, ATH_DEBUG_ANY,
2275 			"%s: beacon queue %u did not stop?\n",
2276 			__func__, sc->sc_bhalq);
2277 	}
2278 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2279 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2280 
2281 	/*
2282 	 * Enable the CAB queue before the beacon queue to
2283 	 * insure cab frames are triggered by this beacon.
2284 	 */
2285 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2286 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2287 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2288 	ath_hal_txstart(ah, sc->sc_bhalq);
2289 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2290 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2291 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2292 
2293 	sc->sc_stats.ast_be_xmit++;
2294 }
2295 
2296 /*
2297  * Reset the hardware after detecting beacons have stopped.
2298  */
2299 static void
2300 ath_bstuck_proc(void *arg, int pending)
2301 {
2302 	struct ath_softc *sc = arg;
2303 	struct ifnet *ifp = &sc->sc_if;
2304 
2305 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2306 		sc->sc_bmisscount);
2307 	ath_reset(ifp);
2308 }
2309 
2310 /*
2311  * Reclaim beacon resources.
2312  */
2313 static void
2314 ath_beacon_free(struct ath_softc *sc)
2315 {
2316 	struct ath_buf *bf;
2317 
2318 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2319 		if (bf->bf_m != NULL) {
2320 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2321 			m_freem(bf->bf_m);
2322 			bf->bf_m = NULL;
2323 		}
2324 		if (bf->bf_node != NULL) {
2325 			ieee80211_free_node(bf->bf_node);
2326 			bf->bf_node = NULL;
2327 		}
2328 	}
2329 }
2330 
2331 /*
2332  * Configure the beacon and sleep timers.
2333  *
2334  * When operating as an AP this resets the TSF and sets
2335  * up the hardware to notify us when we need to issue beacons.
2336  *
2337  * When operating in station mode this sets up the beacon
2338  * timers according to the timestamp of the last received
2339  * beacon and the current TSF, configures PCF and DTIM
2340  * handling, programs the sleep registers so the hardware
2341  * will wakeup in time to receive beacons, and configures
2342  * the beacon miss handling so we'll receive a BMISS
2343  * interrupt when we stop seeing beacons from the AP
2344  * we've associated with.
2345  */
2346 static void
2347 ath_beacon_config(struct ath_softc *sc)
2348 {
2349 #define	TSF_TO_TU(_h,_l) \
2350 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2351 #define	FUDGE	2
2352 	struct ath_hal *ah = sc->sc_ah;
2353 	struct ieee80211com *ic = &sc->sc_ic;
2354 	struct ieee80211_node *ni = ic->ic_bss;
2355 	u_int32_t nexttbtt, intval, tsftu;
2356 	u_int64_t tsf;
2357 
2358 	/* extract tstamp from last beacon and convert to TU */
2359 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2360 			     LE_READ_4(ni->ni_tstamp.data));
2361 	/* NB: the beacon interval is kept internally in TU's */
2362 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2363 	if (nexttbtt == 0)		/* e.g. for ap mode */
2364 		nexttbtt = intval;
2365 	else if (intval)		/* NB: can be 0 for monitor mode */
2366 		nexttbtt = roundup(nexttbtt, intval);
2367 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2368 		__func__, nexttbtt, intval, ni->ni_intval);
2369 	if (ic->ic_opmode == IEEE80211_M_STA) {
2370 		HAL_BEACON_STATE bs;
2371 		int dtimperiod, dtimcount;
2372 		int cfpperiod, cfpcount;
2373 
2374 		/*
2375 		 * Setup dtim and cfp parameters according to
2376 		 * last beacon we received (which may be none).
2377 		 */
2378 		dtimperiod = ni->ni_dtim_period;
2379 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2380 			dtimperiod = 1;
2381 		dtimcount = ni->ni_dtim_count;
2382 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2383 			dtimcount = 0;		/* XXX? */
2384 		cfpperiod = 1;			/* NB: no PCF support yet */
2385 		cfpcount = 0;
2386 		/*
2387 		 * Pull nexttbtt forward to reflect the current
2388 		 * TSF and calculate dtim+cfp state for the result.
2389 		 */
2390 		tsf = ath_hal_gettsf64(ah);
2391 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2392 		do {
2393 			nexttbtt += intval;
2394 			if (--dtimcount < 0) {
2395 				dtimcount = dtimperiod - 1;
2396 				if (--cfpcount < 0)
2397 					cfpcount = cfpperiod - 1;
2398 			}
2399 		} while (nexttbtt < tsftu);
2400 		memset(&bs, 0, sizeof(bs));
2401 		bs.bs_intval = intval;
2402 		bs.bs_nexttbtt = nexttbtt;
2403 		bs.bs_dtimperiod = dtimperiod*intval;
2404 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2405 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2406 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2407 		bs.bs_cfpmaxduration = 0;
2408 #if 0
2409 		/*
2410 		 * The 802.11 layer records the offset to the DTIM
2411 		 * bitmap while receiving beacons; use it here to
2412 		 * enable h/w detection of our AID being marked in
2413 		 * the bitmap vector (to indicate frames for us are
2414 		 * pending at the AP).
2415 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2416 		 * XXX enable based on h/w rev for newer chips
2417 		 */
2418 		bs.bs_timoffset = ni->ni_timoff;
2419 #endif
2420 		/*
2421 		 * Calculate the number of consecutive beacons to miss
2422 		 * before taking a BMISS interrupt.  The configuration
2423 		 * is specified in ms, so we need to convert that to
2424 		 * TU's and then calculate based on the beacon interval.
2425 		 * Note that we clamp the result to at most 10 beacons.
2426 		 */
2427 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2428 		if (bs.bs_bmissthreshold > 10)
2429 			bs.bs_bmissthreshold = 10;
2430 		else if (bs.bs_bmissthreshold <= 0)
2431 			bs.bs_bmissthreshold = 1;
2432 
2433 		/*
2434 		 * Calculate sleep duration.  The configuration is
2435 		 * given in ms.  We insure a multiple of the beacon
2436 		 * period is used.  Also, if the sleep duration is
2437 		 * greater than the DTIM period then it makes senses
2438 		 * to make it a multiple of that.
2439 		 *
2440 		 * XXX fixed at 100ms
2441 		 */
2442 		bs.bs_sleepduration =
2443 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2444 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2445 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2446 
2447 		DPRINTF(sc, ATH_DEBUG_BEACON,
2448 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2449 			, __func__
2450 			, tsf, tsftu
2451 			, bs.bs_intval
2452 			, bs.bs_nexttbtt
2453 			, bs.bs_dtimperiod
2454 			, bs.bs_nextdtim
2455 			, bs.bs_bmissthreshold
2456 			, bs.bs_sleepduration
2457 			, bs.bs_cfpperiod
2458 			, bs.bs_cfpmaxduration
2459 			, bs.bs_cfpnext
2460 			, bs.bs_timoffset
2461 		);
2462 		ath_hal_intrset(ah, 0);
2463 		ath_hal_beacontimers(ah, &bs);
2464 		sc->sc_imask |= HAL_INT_BMISS;
2465 		ath_hal_intrset(ah, sc->sc_imask);
2466 	} else {
2467 		ath_hal_intrset(ah, 0);
2468 		if (nexttbtt == intval)
2469 			intval |= HAL_BEACON_RESET_TSF;
2470 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2471 			/*
2472 			 * In IBSS mode enable the beacon timers but only
2473 			 * enable SWBA interrupts if we need to manually
2474 			 * prepare beacon frames.  Otherwise we use a
2475 			 * self-linked tx descriptor and let the hardware
2476 			 * deal with things.
2477 			 */
2478 			intval |= HAL_BEACON_ENA;
2479 			if (!sc->sc_hasveol)
2480 				sc->sc_imask |= HAL_INT_SWBA;
2481 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2482 				/*
2483 				 * Pull nexttbtt forward to reflect
2484 				 * the current TSF.
2485 				 */
2486 				tsf = ath_hal_gettsf64(ah);
2487 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2488 				do {
2489 					nexttbtt += intval;
2490 				} while (nexttbtt < tsftu);
2491 			}
2492 			ath_beaconq_config(sc);
2493 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2494 			/*
2495 			 * In AP mode we enable the beacon timers and
2496 			 * SWBA interrupts to prepare beacon frames.
2497 			 */
2498 			intval |= HAL_BEACON_ENA;
2499 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2500 			ath_beaconq_config(sc);
2501 		}
2502 		ath_hal_beaconinit(ah, nexttbtt, intval);
2503 		sc->sc_bmisscount = 0;
2504 		ath_hal_intrset(ah, sc->sc_imask);
2505 		/*
2506 		 * When using a self-linked beacon descriptor in
2507 		 * ibss mode load it once here.
2508 		 */
2509 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2510 			ath_beacon_proc(sc, 0);
2511 	}
2512 	sc->sc_syncbeacon = 0;
2513 #undef UNDEF
2514 #undef TSF_TO_TU
2515 }
2516 
2517 static int
2518 ath_descdma_setup(struct ath_softc *sc,
2519 	struct ath_descdma *dd, ath_bufhead *head,
2520 	const char *name, int nbuf, int ndesc)
2521 {
2522 #define	DS2PHYS(_dd, _ds) \
2523 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2524 	struct ifnet *ifp = &sc->sc_if;
2525 	struct ath_desc *ds;
2526 	struct ath_buf *bf;
2527 	int i, bsize, error;
2528 
2529 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2530 	    __func__, name, nbuf, ndesc);
2531 
2532 	dd->dd_name = name;
2533 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2534 
2535 	/*
2536 	 * Setup DMA descriptor area.
2537 	 */
2538 	dd->dd_dmat = sc->sc_dmat;
2539 
2540 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2541 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2542 
2543 	if (error != 0) {
2544 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2545 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2546 		goto fail0;
2547 	}
2548 
2549 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2550 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2551 	if (error != 0) {
2552 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2553 		    nbuf * ndesc, dd->dd_name, error);
2554 		goto fail1;
2555 	}
2556 
2557 	/* allocate descriptors */
2558 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2559 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2560 	if (error != 0) {
2561 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2562 			"error %u\n", dd->dd_name, error);
2563 		goto fail2;
2564 	}
2565 
2566 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2567 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2568 	if (error != 0) {
2569 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2570 			dd->dd_name, error);
2571 		goto fail3;
2572 	}
2573 
2574 	ds = dd->dd_desc;
2575 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2576 	DPRINTF(sc, ATH_DEBUG_RESET,
2577 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2578 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2579 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2580 
2581 	/* allocate rx buffers */
2582 	bsize = sizeof(struct ath_buf) * nbuf;
2583 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2584 	if (bf == NULL) {
2585 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2586 			dd->dd_name, bsize);
2587 		goto fail4;
2588 	}
2589 	dd->dd_bufptr = bf;
2590 
2591 	STAILQ_INIT(head);
2592 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2593 		bf->bf_desc = ds;
2594 		bf->bf_daddr = DS2PHYS(dd, ds);
2595 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2596 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2597 		if (error != 0) {
2598 			if_printf(ifp, "unable to create dmamap for %s "
2599 				"buffer %u, error %u\n", dd->dd_name, i, error);
2600 			ath_descdma_cleanup(sc, dd, head);
2601 			return error;
2602 		}
2603 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2604 	}
2605 	return 0;
2606 fail4:
2607 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2608 fail3:
2609 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2610 fail2:
2611 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2612 fail1:
2613 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2614 fail0:
2615 	memset(dd, 0, sizeof(*dd));
2616 	return error;
2617 #undef DS2PHYS
2618 }
2619 
2620 static void
2621 ath_descdma_cleanup(struct ath_softc *sc,
2622 	struct ath_descdma *dd, ath_bufhead *head)
2623 {
2624 	struct ath_buf *bf;
2625 	struct ieee80211_node *ni;
2626 
2627 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2628 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2629 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2630 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2631 
2632 	STAILQ_FOREACH(bf, head, bf_list) {
2633 		if (bf->bf_m) {
2634 			m_freem(bf->bf_m);
2635 			bf->bf_m = NULL;
2636 		}
2637 		if (bf->bf_dmamap != NULL) {
2638 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2639 			bf->bf_dmamap = NULL;
2640 		}
2641 		ni = bf->bf_node;
2642 		bf->bf_node = NULL;
2643 		if (ni != NULL) {
2644 			/*
2645 			 * Reclaim node reference.
2646 			 */
2647 			ieee80211_free_node(ni);
2648 		}
2649 	}
2650 
2651 	STAILQ_INIT(head);
2652 	free(dd->dd_bufptr, M_ATHDEV);
2653 	memset(dd, 0, sizeof(*dd));
2654 }
2655 
2656 static int
2657 ath_desc_alloc(struct ath_softc *sc)
2658 {
2659 	int error;
2660 
2661 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2662 			"rx", ath_rxbuf, 1);
2663 	if (error != 0)
2664 		return error;
2665 
2666 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2667 			"tx", ath_txbuf, ATH_TXDESC);
2668 	if (error != 0) {
2669 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2670 		return error;
2671 	}
2672 
2673 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2674 			"beacon", 1, 1);
2675 	if (error != 0) {
2676 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2677 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2678 		return error;
2679 	}
2680 	return 0;
2681 }
2682 
2683 static void
2684 ath_desc_free(struct ath_softc *sc)
2685 {
2686 
2687 	if (sc->sc_bdma.dd_desc_len != 0)
2688 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2689 	if (sc->sc_txdma.dd_desc_len != 0)
2690 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2691 	if (sc->sc_rxdma.dd_desc_len != 0)
2692 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2693 }
2694 
2695 static struct ieee80211_node *
2696 ath_node_alloc(struct ieee80211_node_table *nt)
2697 {
2698 	struct ieee80211com *ic = nt->nt_ic;
2699 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2700 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2701 	struct ath_node *an;
2702 
2703 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2704 	if (an == NULL) {
2705 		/* XXX stat+msg */
2706 		return NULL;
2707 	}
2708 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2709 	ath_rate_node_init(sc, an);
2710 
2711 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2712 	return &an->an_node;
2713 }
2714 
2715 static void
2716 ath_node_free(struct ieee80211_node *ni)
2717 {
2718 	struct ieee80211com *ic = ni->ni_ic;
2719         struct ath_softc *sc = ic->ic_ifp->if_softc;
2720 
2721 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2722 
2723 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2724 	sc->sc_node_free(ni);
2725 }
2726 
2727 static u_int8_t
2728 ath_node_getrssi(const struct ieee80211_node *ni)
2729 {
2730 #define	HAL_EP_RND(x, mul) \
2731 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2732 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2733 	int32_t rssi;
2734 
2735 	/*
2736 	 * When only one frame is received there will be no state in
2737 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2738 	 */
2739 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2740 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2741 	else
2742 		rssi = ni->ni_rssi;
2743 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2744 #undef HAL_EP_RND
2745 }
2746 
2747 static int
2748 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2749 {
2750 	struct ath_hal *ah = sc->sc_ah;
2751 	int error;
2752 	struct mbuf *m;
2753 	struct ath_desc *ds;
2754 
2755 	m = bf->bf_m;
2756 	if (m == NULL) {
2757 		/*
2758 		 * NB: by assigning a page to the rx dma buffer we
2759 		 * implicitly satisfy the Atheros requirement that
2760 		 * this buffer be cache-line-aligned and sized to be
2761 		 * multiple of the cache line size.  Not doing this
2762 		 * causes weird stuff to happen (for the 5210 at least).
2763 		 */
2764 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2765 		if (m == NULL) {
2766 			DPRINTF(sc, ATH_DEBUG_ANY,
2767 				"%s: no mbuf/cluster\n", __func__);
2768 			sc->sc_stats.ast_rx_nombuf++;
2769 			return ENOMEM;
2770 		}
2771 		bf->bf_m = m;
2772 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2773 
2774 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2775 					     bf->bf_dmamap, m,
2776 					     BUS_DMA_NOWAIT);
2777 		if (error != 0) {
2778 			DPRINTF(sc, ATH_DEBUG_ANY,
2779 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2780 			    __func__, error);
2781 			sc->sc_stats.ast_rx_busdma++;
2782 			return error;
2783 		}
2784 		KASSERT(bf->bf_nseg == 1,
2785 			("multi-segment packet; nseg %u", bf->bf_nseg));
2786 	}
2787 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2788 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2789 
2790 	/*
2791 	 * Setup descriptors.  For receive we always terminate
2792 	 * the descriptor list with a self-linked entry so we'll
2793 	 * not get overrun under high load (as can happen with a
2794 	 * 5212 when ANI processing enables PHY error frames).
2795 	 *
2796 	 * To insure the last descriptor is self-linked we create
2797 	 * each descriptor as self-linked and add it to the end.  As
2798 	 * each additional descriptor is added the previous self-linked
2799 	 * entry is ``fixed'' naturally.  This should be safe even
2800 	 * if DMA is happening.  When processing RX interrupts we
2801 	 * never remove/process the last, self-linked, entry on the
2802 	 * descriptor list.  This insures the hardware always has
2803 	 * someplace to write a new frame.
2804 	 */
2805 	ds = bf->bf_desc;
2806 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2807 	ds->ds_data = bf->bf_segs[0].ds_addr;
2808 	ds->ds_vdata = mtod(m, void *);	/* for radar */
2809 	ath_hal_setuprxdesc(ah, ds
2810 		, m->m_len		/* buffer size */
2811 		, 0
2812 	);
2813 
2814 	if (sc->sc_rxlink != NULL)
2815 		*sc->sc_rxlink = bf->bf_daddr;
2816 	sc->sc_rxlink = &ds->ds_link;
2817 	return 0;
2818 }
2819 
2820 /*
2821  * Extend 15-bit time stamp from rx descriptor to
2822  * a full 64-bit TSF using the specified TSF.
2823  */
2824 static inline u_int64_t
2825 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2826 {
2827 	if ((tsf & 0x7fff) < rstamp)
2828 		tsf -= 0x8000;
2829 	return ((tsf &~ 0x7fff) | rstamp);
2830 }
2831 
2832 /*
2833  * Intercept management frames to collect beacon rssi data
2834  * and to do ibss merges.
2835  */
2836 static void
2837 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2838 	struct ieee80211_node *ni,
2839 	int subtype, int rssi, u_int32_t rstamp)
2840 {
2841 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2842 
2843 	/*
2844 	 * Call up first so subsequent work can use information
2845 	 * potentially stored in the node (e.g. for ibss merge).
2846 	 */
2847 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2848 	switch (subtype) {
2849 	case IEEE80211_FC0_SUBTYPE_BEACON:
2850 		/* update rssi statistics for use by the hal */
2851 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2852 		if (sc->sc_syncbeacon &&
2853 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2854 			/*
2855 			 * Resync beacon timers using the tsf of the beacon
2856 			 * frame we just received.
2857 			 */
2858 			ath_beacon_config(sc);
2859 		}
2860 		/* fall thru... */
2861 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2862 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2863 		    ic->ic_state == IEEE80211_S_RUN) {
2864 			u_int64_t tsf = ath_extend_tsf(rstamp,
2865 				ath_hal_gettsf64(sc->sc_ah));
2866 
2867 			/*
2868 			 * Handle ibss merge as needed; check the tsf on the
2869 			 * frame before attempting the merge.  The 802.11 spec
2870 			 * says the station should change it's bssid to match
2871 			 * the oldest station with the same ssid, where oldest
2872 			 * is determined by the tsf.  Note that hardware
2873 			 * reconfiguration happens through callback to
2874 			 * ath_newstate as the state machine will go from
2875 			 * RUN -> RUN when this happens.
2876 			 */
2877 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2878 				DPRINTF(sc, ATH_DEBUG_STATE,
2879 				    "ibss merge, rstamp %u tsf %ju "
2880 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2881 				    (uintmax_t)ni->ni_tstamp.tsf);
2882 				(void) ieee80211_ibss_merge(ni);
2883 			}
2884 		}
2885 		break;
2886 	}
2887 }
2888 
2889 /*
2890  * Set the default antenna.
2891  */
2892 static void
2893 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2894 {
2895 	struct ath_hal *ah = sc->sc_ah;
2896 
2897 	/* XXX block beacon interrupts */
2898 	ath_hal_setdefantenna(ah, antenna);
2899 	if (sc->sc_defant != antenna)
2900 		sc->sc_stats.ast_ant_defswitch++;
2901 	sc->sc_defant = antenna;
2902 	sc->sc_rxotherant = 0;
2903 }
2904 
2905 static void
2906 ath_rx_proc(void *arg, int npending)
2907 {
2908 #define	PA2DESC(_sc, _pa) \
2909 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2910 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2911 	struct ath_softc *sc = arg;
2912 	struct ath_buf *bf;
2913 	struct ieee80211com *ic = &sc->sc_ic;
2914 	struct ifnet *ifp = &sc->sc_if;
2915 	struct ath_hal *ah = sc->sc_ah;
2916 	struct ath_desc *ds;
2917 	struct mbuf *m;
2918 	struct ieee80211_node *ni;
2919 	struct ath_node *an;
2920 	int len, type, ngood;
2921 	u_int phyerr;
2922 	HAL_STATUS status;
2923 	int16_t nf;
2924 	u_int64_t tsf;
2925 
2926 	NET_LOCK_GIANT();		/* XXX */
2927 
2928 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2929 	ngood = 0;
2930 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2931 	tsf = ath_hal_gettsf64(ah);
2932 	do {
2933 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2934 		if (bf == NULL) {		/* NB: shouldn't happen */
2935 			if_printf(ifp, "%s: no buffer!\n", __func__);
2936 			break;
2937 		}
2938 		ds = bf->bf_desc;
2939 		if (ds->ds_link == bf->bf_daddr) {
2940 			/* NB: never process the self-linked entry at the end */
2941 			break;
2942 		}
2943 		m = bf->bf_m;
2944 		if (m == NULL) {		/* NB: shouldn't happen */
2945 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2946 			break;
2947 		}
2948 		/* XXX sync descriptor memory */
2949 		/*
2950 		 * Must provide the virtual address of the current
2951 		 * descriptor, the physical address, and the virtual
2952 		 * address of the next descriptor in the h/w chain.
2953 		 * This allows the HAL to look ahead to see if the
2954 		 * hardware is done with a descriptor by checking the
2955 		 * done bit in the following descriptor and the address
2956 		 * of the current descriptor the DMA engine is working
2957 		 * on.  All this is necessary because of our use of
2958 		 * a self-linked list to avoid rx overruns.
2959 		 */
2960 		status = ath_hal_rxprocdesc(ah, ds,
2961 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2962 #ifdef AR_DEBUG
2963 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2964 			ath_printrxbuf(bf, status == HAL_OK);
2965 #endif
2966 		if (status == HAL_EINPROGRESS)
2967 			break;
2968 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2969 		if (ds->ds_rxstat.rs_more) {
2970 			/*
2971 			 * Frame spans multiple descriptors; this
2972 			 * cannot happen yet as we don't support
2973 			 * jumbograms.  If not in monitor mode,
2974 			 * discard the frame.
2975 			 */
2976 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2977 				sc->sc_stats.ast_rx_toobig++;
2978 				goto rx_next;
2979 			}
2980 			/* fall thru for monitor mode handling... */
2981 		} else if (ds->ds_rxstat.rs_status != 0) {
2982 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2983 				sc->sc_stats.ast_rx_crcerr++;
2984 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2985 				sc->sc_stats.ast_rx_fifoerr++;
2986 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2987 				sc->sc_stats.ast_rx_phyerr++;
2988 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2989 				sc->sc_stats.ast_rx_phy[phyerr]++;
2990 				goto rx_next;
2991 			}
2992 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2993 				/*
2994 				 * Decrypt error.  If the error occurred
2995 				 * because there was no hardware key, then
2996 				 * let the frame through so the upper layers
2997 				 * can process it.  This is necessary for 5210
2998 				 * parts which have no way to setup a ``clear''
2999 				 * key cache entry.
3000 				 *
3001 				 * XXX do key cache faulting
3002 				 */
3003 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3004 					goto rx_accept;
3005 				sc->sc_stats.ast_rx_badcrypt++;
3006 			}
3007 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3008 				sc->sc_stats.ast_rx_badmic++;
3009 				/*
3010 				 * Do minimal work required to hand off
3011 				 * the 802.11 header for notifcation.
3012 				 */
3013 				/* XXX frag's and qos frames */
3014 				len = ds->ds_rxstat.rs_datalen;
3015 				if (len >= sizeof (struct ieee80211_frame)) {
3016 					bus_dmamap_sync(sc->sc_dmat,
3017 					    bf->bf_dmamap,
3018 					    0, bf->bf_dmamap->dm_mapsize,
3019 					    BUS_DMASYNC_POSTREAD);
3020 					ieee80211_notify_michael_failure(ic,
3021 					    mtod(m, struct ieee80211_frame *),
3022 					    sc->sc_splitmic ?
3023 					        ds->ds_rxstat.rs_keyix-32 :
3024 					        ds->ds_rxstat.rs_keyix
3025 					);
3026 				}
3027 			}
3028 			ifp->if_ierrors++;
3029 			/*
3030 			 * Reject error frames, we normally don't want
3031 			 * to see them in monitor mode (in monitor mode
3032 			 * allow through packets that have crypto problems).
3033 			 */
3034 			if ((ds->ds_rxstat.rs_status &~
3035 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3036 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3037 				goto rx_next;
3038 		}
3039 rx_accept:
3040 		/*
3041 		 * Sync and unmap the frame.  At this point we're
3042 		 * committed to passing the mbuf somewhere so clear
3043 		 * bf_m; this means a new sk_buff must be allocated
3044 		 * when the rx descriptor is setup again to receive
3045 		 * another frame.
3046 		 */
3047 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3048 		    0, bf->bf_dmamap->dm_mapsize,
3049 		    BUS_DMASYNC_POSTREAD);
3050 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3051 		bf->bf_m = NULL;
3052 
3053 		m->m_pkthdr.rcvif = ifp;
3054 		len = ds->ds_rxstat.rs_datalen;
3055 		m->m_pkthdr.len = m->m_len = len;
3056 
3057 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3058 
3059 #if NBPFILTER > 0
3060 		if (sc->sc_drvbpf) {
3061 			u_int8_t rix;
3062 
3063 			/*
3064 			 * Discard anything shorter than an ack or cts.
3065 			 */
3066 			if (len < IEEE80211_ACK_LEN) {
3067 				DPRINTF(sc, ATH_DEBUG_RECV,
3068 					"%s: runt packet %d\n",
3069 					__func__, len);
3070 				sc->sc_stats.ast_rx_tooshort++;
3071 				m_freem(m);
3072 				goto rx_next;
3073 			}
3074 			rix = ds->ds_rxstat.rs_rate;
3075 			sc->sc_rx_th.wr_tsf = htole64(
3076 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3077 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3078 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3079 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3080 			sc->sc_rx_th.wr_antnoise = nf;
3081 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3082 
3083 			bpf_mtap2(sc->sc_drvbpf,
3084 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
3085 		}
3086 #endif
3087 
3088 		/*
3089 		 * From this point on we assume the frame is at least
3090 		 * as large as ieee80211_frame_min; verify that.
3091 		 */
3092 		if (len < IEEE80211_MIN_LEN) {
3093 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3094 				__func__, len);
3095 			sc->sc_stats.ast_rx_tooshort++;
3096 			m_freem(m);
3097 			goto rx_next;
3098 		}
3099 
3100 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3101 			ieee80211_dump_pkt(mtod(m, void *), len,
3102 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3103 				   ds->ds_rxstat.rs_rssi);
3104 		}
3105 
3106 		m_adj(m, -IEEE80211_CRC_LEN);
3107 
3108 		/*
3109 		 * Locate the node for sender, track state, and then
3110 		 * pass the (referenced) node up to the 802.11 layer
3111 		 * for its use.
3112 		 */
3113 		ni = ieee80211_find_rxnode_withkey(ic,
3114 			mtod(m, const struct ieee80211_frame_min *),
3115 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3116 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3117 		/*
3118 		 * Track rx rssi and do any rx antenna management.
3119 		 */
3120 		an = ATH_NODE(ni);
3121 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3122 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3123 		/*
3124 		 * Send frame up for processing.
3125 		 */
3126 		type = ieee80211_input(ic, m, ni,
3127 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3128 		ieee80211_free_node(ni);
3129 		if (sc->sc_diversity) {
3130 			/*
3131 			 * When using fast diversity, change the default rx
3132 			 * antenna if diversity chooses the other antenna 3
3133 			 * times in a row.
3134 			 */
3135 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3136 				if (++sc->sc_rxotherant >= 3)
3137 					ath_setdefantenna(sc,
3138 						ds->ds_rxstat.rs_antenna);
3139 			} else
3140 				sc->sc_rxotherant = 0;
3141 		}
3142 		if (sc->sc_softled) {
3143 			/*
3144 			 * Blink for any data frame.  Otherwise do a
3145 			 * heartbeat-style blink when idle.  The latter
3146 			 * is mainly for station mode where we depend on
3147 			 * periodic beacon frames to trigger the poll event.
3148 			 */
3149 			if (type == IEEE80211_FC0_TYPE_DATA) {
3150 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3151 				ath_led_event(sc, ATH_LED_RX);
3152 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3153 				ath_led_event(sc, ATH_LED_POLL);
3154 		}
3155 		/*
3156 		 * Arrange to update the last rx timestamp only for
3157 		 * frames from our ap when operating in station mode.
3158 		 * This assumes the rx key is always setup when associated.
3159 		 */
3160 		if (ic->ic_opmode == IEEE80211_M_STA &&
3161 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3162 			ngood++;
3163 rx_next:
3164 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3165 	} while (ath_rxbuf_init(sc, bf) == 0);
3166 
3167 	/* rx signal state monitoring */
3168 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3169 	if (ath_hal_radar_event(ah))
3170 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3171 	if (ngood)
3172 		sc->sc_lastrx = tsf;
3173 
3174 #ifdef __NetBSD__
3175 	/* XXX Why isn't this necessary in FreeBSD? */
3176 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3177 		ath_start(ifp);
3178 #endif /* __NetBSD__ */
3179 
3180 	NET_UNLOCK_GIANT();		/* XXX */
3181 #undef PA2DESC
3182 }
3183 
3184 /*
3185  * Setup a h/w transmit queue.
3186  */
3187 static struct ath_txq *
3188 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3189 {
3190 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3191 	struct ath_hal *ah = sc->sc_ah;
3192 	HAL_TXQ_INFO qi;
3193 	int qnum;
3194 
3195 	memset(&qi, 0, sizeof(qi));
3196 	qi.tqi_subtype = subtype;
3197 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3198 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3199 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3200 	/*
3201 	 * Enable interrupts only for EOL and DESC conditions.
3202 	 * We mark tx descriptors to receive a DESC interrupt
3203 	 * when a tx queue gets deep; otherwise waiting for the
3204 	 * EOL to reap descriptors.  Note that this is done to
3205 	 * reduce interrupt load and this only defers reaping
3206 	 * descriptors, never transmitting frames.  Aside from
3207 	 * reducing interrupts this also permits more concurrency.
3208 	 * The only potential downside is if the tx queue backs
3209 	 * up in which case the top half of the kernel may backup
3210 	 * due to a lack of tx descriptors.
3211 	 */
3212 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3213 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3214 	if (qnum == -1) {
3215 		/*
3216 		 * NB: don't print a message, this happens
3217 		 * normally on parts with too few tx queues
3218 		 */
3219 		return NULL;
3220 	}
3221 	if (qnum >= N(sc->sc_txq)) {
3222 		device_printf(&sc->sc_dev,
3223 			"hal qnum %u out of range, max %zu!\n",
3224 			qnum, N(sc->sc_txq));
3225 		ath_hal_releasetxqueue(ah, qnum);
3226 		return NULL;
3227 	}
3228 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3229 		struct ath_txq *txq = &sc->sc_txq[qnum];
3230 
3231 		txq->axq_qnum = qnum;
3232 		txq->axq_depth = 0;
3233 		txq->axq_intrcnt = 0;
3234 		txq->axq_link = NULL;
3235 		STAILQ_INIT(&txq->axq_q);
3236 		ATH_TXQ_LOCK_INIT(sc, txq);
3237 		sc->sc_txqsetup |= 1<<qnum;
3238 	}
3239 	return &sc->sc_txq[qnum];
3240 #undef N
3241 }
3242 
3243 /*
3244  * Setup a hardware data transmit queue for the specified
3245  * access control.  The hal may not support all requested
3246  * queues in which case it will return a reference to a
3247  * previously setup queue.  We record the mapping from ac's
3248  * to h/w queues for use by ath_tx_start and also track
3249  * the set of h/w queues being used to optimize work in the
3250  * transmit interrupt handler and related routines.
3251  */
3252 static int
3253 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3254 {
3255 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3256 	struct ath_txq *txq;
3257 
3258 	if (ac >= N(sc->sc_ac2q)) {
3259 		device_printf(&sc->sc_dev, "AC %u out of range, max %zu!\n",
3260 			ac, N(sc->sc_ac2q));
3261 		return 0;
3262 	}
3263 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3264 	if (txq != NULL) {
3265 		sc->sc_ac2q[ac] = txq;
3266 		return 1;
3267 	} else
3268 		return 0;
3269 #undef N
3270 }
3271 
3272 /*
3273  * Update WME parameters for a transmit queue.
3274  */
3275 static int
3276 ath_txq_update(struct ath_softc *sc, int ac)
3277 {
3278 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3279 #define	ATH_TXOP_TO_US(v)		(v<<5)
3280 	struct ieee80211com *ic = &sc->sc_ic;
3281 	struct ath_txq *txq = sc->sc_ac2q[ac];
3282 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3283 	struct ath_hal *ah = sc->sc_ah;
3284 	HAL_TXQ_INFO qi;
3285 
3286 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3287 	qi.tqi_aifs = wmep->wmep_aifsn;
3288 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3289 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3290 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3291 
3292 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3293 		device_printf(&sc->sc_dev, "unable to update hardware queue "
3294 			"parameters for %s traffic!\n",
3295 			ieee80211_wme_acnames[ac]);
3296 		return 0;
3297 	} else {
3298 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3299 		return 1;
3300 	}
3301 #undef ATH_TXOP_TO_US
3302 #undef ATH_EXPONENT_TO_VALUE
3303 }
3304 
3305 /*
3306  * Callback from the 802.11 layer to update WME parameters.
3307  */
3308 static int
3309 ath_wme_update(struct ieee80211com *ic)
3310 {
3311 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3312 
3313 	return !ath_txq_update(sc, WME_AC_BE) ||
3314 	    !ath_txq_update(sc, WME_AC_BK) ||
3315 	    !ath_txq_update(sc, WME_AC_VI) ||
3316 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3317 }
3318 
3319 /*
3320  * Reclaim resources for a setup queue.
3321  */
3322 static void
3323 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3324 {
3325 
3326 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3327 	ATH_TXQ_LOCK_DESTROY(txq);
3328 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3329 }
3330 
3331 /*
3332  * Reclaim all tx queue resources.
3333  */
3334 static void
3335 ath_tx_cleanup(struct ath_softc *sc)
3336 {
3337 	int i;
3338 
3339 	ATH_TXBUF_LOCK_DESTROY(sc);
3340 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3341 		if (ATH_TXQ_SETUP(sc, i))
3342 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3343 }
3344 
3345 /*
3346  * Defragment an mbuf chain, returning at most maxfrags separate
3347  * mbufs+clusters.  If this is not possible NULL is returned and
3348  * the original mbuf chain is left in it's present (potentially
3349  * modified) state.  We use two techniques: collapsing consecutive
3350  * mbufs and replacing consecutive mbufs by a cluster.
3351  */
3352 static struct mbuf *
3353 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3354 {
3355 	struct mbuf *m, *n, *n2, **prev;
3356 	u_int curfrags;
3357 
3358 	/*
3359 	 * Calculate the current number of frags.
3360 	 */
3361 	curfrags = 0;
3362 	for (m = m0; m != NULL; m = m->m_next)
3363 		curfrags++;
3364 	/*
3365 	 * First, try to collapse mbufs.  Note that we always collapse
3366 	 * towards the front so we don't need to deal with moving the
3367 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3368 	 * less data than the following.
3369 	 */
3370 	m = m0;
3371 again:
3372 	for (;;) {
3373 		n = m->m_next;
3374 		if (n == NULL)
3375 			break;
3376 		if (n->m_len < M_TRAILINGSPACE(m)) {
3377 			memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
3378 				n->m_len);
3379 			m->m_len += n->m_len;
3380 			m->m_next = n->m_next;
3381 			m_free(n);
3382 			if (--curfrags <= maxfrags)
3383 				return m0;
3384 		} else
3385 			m = n;
3386 	}
3387 	KASSERT(maxfrags > 1,
3388 		("maxfrags %u, but normal collapse failed", maxfrags));
3389 	/*
3390 	 * Collapse consecutive mbufs to a cluster.
3391 	 */
3392 	prev = &m0->m_next;		/* NB: not the first mbuf */
3393 	while ((n = *prev) != NULL) {
3394 		if ((n2 = n->m_next) != NULL &&
3395 		    n->m_len + n2->m_len < MCLBYTES) {
3396 			m = m_getcl(how, MT_DATA, 0);
3397 			if (m == NULL)
3398 				goto bad;
3399 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3400 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3401 				n2->m_len);
3402 			m->m_len = n->m_len + n2->m_len;
3403 			m->m_next = n2->m_next;
3404 			*prev = m;
3405 			m_free(n);
3406 			m_free(n2);
3407 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3408 				return m0;
3409 			/*
3410 			 * Still not there, try the normal collapse
3411 			 * again before we allocate another cluster.
3412 			 */
3413 			goto again;
3414 		}
3415 		prev = &n->m_next;
3416 	}
3417 	/*
3418 	 * No place where we can collapse to a cluster; punt.
3419 	 * This can occur if, for example, you request 2 frags
3420 	 * but the packet requires that both be clusters (we
3421 	 * never reallocate the first mbuf to avoid moving the
3422 	 * packet header).
3423 	 */
3424 bad:
3425 	return NULL;
3426 }
3427 
3428 /*
3429  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3430  */
3431 static int
3432 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3433 {
3434 	int i;
3435 
3436 	for (i = 0; i < rt->rateCount; i++)
3437 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3438 			return i;
3439 	return 0;		/* NB: lowest rate */
3440 }
3441 
3442 static void
3443 ath_freetx(struct mbuf *m)
3444 {
3445 	struct mbuf *next;
3446 
3447 	do {
3448 		next = m->m_nextpkt;
3449 		m->m_nextpkt = NULL;
3450 		m_freem(m);
3451 	} while ((m = next) != NULL);
3452 }
3453 
3454 static int
3455 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3456     struct mbuf *m0)
3457 {
3458 	struct ieee80211com *ic = &sc->sc_ic;
3459 	struct ath_hal *ah = sc->sc_ah;
3460 	struct ifnet *ifp = &sc->sc_if;
3461 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3462 	int i, error, iswep, ismcast, isfrag, ismrr;
3463 	int keyix, hdrlen, pktlen, try0;
3464 	u_int8_t rix, txrate, ctsrate;
3465 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3466 	struct ath_desc *ds, *ds0;
3467 	struct ath_txq *txq;
3468 	struct ieee80211_frame *wh;
3469 	u_int subtype, flags, ctsduration;
3470 	HAL_PKT_TYPE atype;
3471 	const HAL_RATE_TABLE *rt;
3472 	HAL_BOOL shortPreamble;
3473 	struct ath_node *an;
3474 	struct mbuf *m;
3475 	u_int pri;
3476 
3477 	wh = mtod(m0, struct ieee80211_frame *);
3478 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3479 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3480 	isfrag = m0->m_flags & M_FRAG;
3481 	hdrlen = ieee80211_anyhdrsize(wh);
3482 	/*
3483 	 * Packet length must not include any
3484 	 * pad bytes; deduct them here.
3485 	 */
3486 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3487 
3488 	if (iswep) {
3489 		const struct ieee80211_cipher *cip;
3490 		struct ieee80211_key *k;
3491 
3492 		/*
3493 		 * Construct the 802.11 header+trailer for an encrypted
3494 		 * frame. The only reason this can fail is because of an
3495 		 * unknown or unsupported cipher/key type.
3496 		 */
3497 		k = ieee80211_crypto_encap(ic, ni, m0);
3498 		if (k == NULL) {
3499 			/*
3500 			 * This can happen when the key is yanked after the
3501 			 * frame was queued.  Just discard the frame; the
3502 			 * 802.11 layer counts failures and provides
3503 			 * debugging/diagnostics.
3504 			 */
3505 			ath_freetx(m0);
3506 			return EIO;
3507 		}
3508 		/*
3509 		 * Adjust the packet + header lengths for the crypto
3510 		 * additions and calculate the h/w key index.  When
3511 		 * a s/w mic is done the frame will have had any mic
3512 		 * added to it prior to entry so m0->m_pkthdr.len above will
3513 		 * account for it. Otherwise we need to add it to the
3514 		 * packet length.
3515 		 */
3516 		cip = k->wk_cipher;
3517 		hdrlen += cip->ic_header;
3518 		pktlen += cip->ic_header + cip->ic_trailer;
3519 		/* NB: frags always have any TKIP MIC done in s/w */
3520 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3521 			pktlen += cip->ic_miclen;
3522 		keyix = k->wk_keyix;
3523 
3524 		/* packet header may have moved, reset our local pointer */
3525 		wh = mtod(m0, struct ieee80211_frame *);
3526 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3527 		/*
3528 		 * Use station key cache slot, if assigned.
3529 		 */
3530 		keyix = ni->ni_ucastkey.wk_keyix;
3531 		if (keyix == IEEE80211_KEYIX_NONE)
3532 			keyix = HAL_TXKEYIX_INVALID;
3533 	} else
3534 		keyix = HAL_TXKEYIX_INVALID;
3535 
3536 	pktlen += IEEE80211_CRC_LEN;
3537 
3538 	/*
3539 	 * Load the DMA map so any coalescing is done.  This
3540 	 * also calculates the number of descriptors we need.
3541 	 */
3542 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3543 				     BUS_DMA_NOWAIT);
3544 	if (error == EFBIG) {
3545 		/* XXX packet requires too many descriptors */
3546 		bf->bf_nseg = ATH_TXDESC+1;
3547 	} else if (error != 0) {
3548 		sc->sc_stats.ast_tx_busdma++;
3549 		ath_freetx(m0);
3550 		return error;
3551 	}
3552 	/*
3553 	 * Discard null packets and check for packets that
3554 	 * require too many TX descriptors.  We try to convert
3555 	 * the latter to a cluster.
3556 	 */
3557 	if (error == EFBIG) {		/* too many desc's, linearize */
3558 		sc->sc_stats.ast_tx_linear++;
3559 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3560 		if (m == NULL) {
3561 			ath_freetx(m0);
3562 			sc->sc_stats.ast_tx_nombuf++;
3563 			return ENOMEM;
3564 		}
3565 		m0 = m;
3566 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3567 					     BUS_DMA_NOWAIT);
3568 		if (error != 0) {
3569 			sc->sc_stats.ast_tx_busdma++;
3570 			ath_freetx(m0);
3571 			return error;
3572 		}
3573 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3574 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3575 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3576 		sc->sc_stats.ast_tx_nodata++;
3577 		ath_freetx(m0);
3578 		return EIO;
3579 	}
3580 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3581 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3582             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3583 	bf->bf_m = m0;
3584 	bf->bf_node = ni;			/* NB: held reference */
3585 
3586 	/* setup descriptors */
3587 	ds = bf->bf_desc;
3588 	rt = sc->sc_currates;
3589 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3590 
3591 	/*
3592 	 * NB: the 802.11 layer marks whether or not we should
3593 	 * use short preamble based on the current mode and
3594 	 * negotiated parameters.
3595 	 */
3596 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3597 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3598 		shortPreamble = AH_TRUE;
3599 		sc->sc_stats.ast_tx_shortpre++;
3600 	} else {
3601 		shortPreamble = AH_FALSE;
3602 	}
3603 
3604 	an = ATH_NODE(ni);
3605 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3606 	ismrr = 0;				/* default no multi-rate retry*/
3607 	/*
3608 	 * Calculate Atheros packet type from IEEE80211 packet header,
3609 	 * setup for rate calculations, and select h/w transmit queue.
3610 	 */
3611 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3612 	case IEEE80211_FC0_TYPE_MGT:
3613 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3614 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3615 			atype = HAL_PKT_TYPE_BEACON;
3616 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3617 			atype = HAL_PKT_TYPE_PROBE_RESP;
3618 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3619 			atype = HAL_PKT_TYPE_ATIM;
3620 		else
3621 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3622 		rix = sc->sc_minrateix;
3623 		txrate = rt->info[rix].rateCode;
3624 		if (shortPreamble)
3625 			txrate |= rt->info[rix].shortPreamble;
3626 		try0 = ATH_TXMGTTRY;
3627 		/* NB: force all management frames to highest queue */
3628 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3629 			/* NB: force all management frames to highest queue */
3630 			pri = WME_AC_VO;
3631 		} else
3632 			pri = WME_AC_BE;
3633 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3634 		break;
3635 	case IEEE80211_FC0_TYPE_CTL:
3636 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3637 		rix = sc->sc_minrateix;
3638 		txrate = rt->info[rix].rateCode;
3639 		if (shortPreamble)
3640 			txrate |= rt->info[rix].shortPreamble;
3641 		try0 = ATH_TXMGTTRY;
3642 		/* NB: force all ctl frames to highest queue */
3643 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3644 			/* NB: force all ctl frames to highest queue */
3645 			pri = WME_AC_VO;
3646 		} else
3647 			pri = WME_AC_BE;
3648 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3649 		break;
3650 	case IEEE80211_FC0_TYPE_DATA:
3651 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3652 		/*
3653 		 * Data frames: multicast frames go out at a fixed rate,
3654 		 * otherwise consult the rate control module for the
3655 		 * rate to use.
3656 		 */
3657 		if (ismcast) {
3658 			/*
3659 			 * Check mcast rate setting in case it's changed.
3660 			 * XXX move out of fastpath
3661 			 */
3662 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3663 				sc->sc_mcastrix =
3664 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3665 				sc->sc_mcastrate = ic->ic_mcast_rate;
3666 			}
3667 			rix = sc->sc_mcastrix;
3668 			txrate = rt->info[rix].rateCode;
3669 			try0 = 1;
3670 		} else {
3671 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3672 				&rix, &try0, &txrate);
3673 			sc->sc_txrate = txrate;		/* for LED blinking */
3674 			if (try0 != ATH_TXMAXTRY)
3675 				ismrr = 1;
3676 		}
3677 		pri = M_WME_GETAC(m0);
3678 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3679 			flags |= HAL_TXDESC_NOACK;
3680 		break;
3681 	default:
3682 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3683 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3684 		/* XXX statistic */
3685 		ath_freetx(m0);
3686 		return EIO;
3687 	}
3688 	txq = sc->sc_ac2q[pri];
3689 
3690 	/*
3691 	 * When servicing one or more stations in power-save mode
3692 	 * multicast frames must be buffered until after the beacon.
3693 	 * We use the CAB queue for that.
3694 	 */
3695 	if (ismcast && ic->ic_ps_sta) {
3696 		txq = sc->sc_cabq;
3697 		/* XXX? more bit in 802.11 frame header */
3698 	}
3699 
3700 	/*
3701 	 * Calculate miscellaneous flags.
3702 	 */
3703 	if (ismcast) {
3704 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3705 	} else if (pktlen > ic->ic_rtsthreshold) {
3706 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3707 		cix = rt->info[rix].controlRate;
3708 		sc->sc_stats.ast_tx_rts++;
3709 	}
3710 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3711 		sc->sc_stats.ast_tx_noack++;
3712 
3713 	/*
3714 	 * If 802.11g protection is enabled, determine whether
3715 	 * to use RTS/CTS or just CTS.  Note that this is only
3716 	 * done for OFDM unicast frames.
3717 	 */
3718 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3719 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3720 	    (flags & HAL_TXDESC_NOACK) == 0) {
3721 		/* XXX fragments must use CCK rates w/ protection */
3722 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3723 			flags |= HAL_TXDESC_RTSENA;
3724 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3725 			flags |= HAL_TXDESC_CTSENA;
3726 		if (isfrag) {
3727 			/*
3728 			 * For frags it would be desirable to use the
3729 			 * highest CCK rate for RTS/CTS.  But stations
3730 			 * farther away may detect it at a lower CCK rate
3731 			 * so use the configured protection rate instead
3732 			 * (for now).
3733 			 */
3734 			cix = rt->info[sc->sc_protrix].controlRate;
3735 		} else
3736 			cix = rt->info[sc->sc_protrix].controlRate;
3737 		sc->sc_stats.ast_tx_protect++;
3738 	}
3739 
3740 	/*
3741 	 * Calculate duration.  This logically belongs in the 802.11
3742 	 * layer but it lacks sufficient information to calculate it.
3743 	 */
3744 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3745 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3746 		u_int16_t dur;
3747 		/*
3748 		 * XXX not right with fragmentation.
3749 		 */
3750 		if (shortPreamble)
3751 			dur = rt->info[rix].spAckDuration;
3752 		else
3753 			dur = rt->info[rix].lpAckDuration;
3754 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3755 			dur += dur;             /* additional SIFS+ACK */
3756 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3757 			/*
3758 			 * Include the size of next fragment so NAV is
3759 			 * updated properly.  The last fragment uses only
3760 			 * the ACK duration
3761 			 */
3762 			dur += ath_hal_computetxtime(ah, rt,
3763 					m0->m_nextpkt->m_pkthdr.len,
3764 					rix, shortPreamble);
3765 		}
3766 		if (isfrag) {
3767 			/*
3768 			 * Force hardware to use computed duration for next
3769 			 * fragment by disabling multi-rate retry which updates
3770 			 * duration based on the multi-rate duration table.
3771 			 */
3772 			try0 = ATH_TXMAXTRY;
3773 		}
3774 		*(u_int16_t *)wh->i_dur = htole16(dur);
3775 	}
3776 
3777 	/*
3778 	 * Calculate RTS/CTS rate and duration if needed.
3779 	 */
3780 	ctsduration = 0;
3781 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3782 		/*
3783 		 * CTS transmit rate is derived from the transmit rate
3784 		 * by looking in the h/w rate table.  We must also factor
3785 		 * in whether or not a short preamble is to be used.
3786 		 */
3787 		/* NB: cix is set above where RTS/CTS is enabled */
3788 		KASSERT(cix != 0xff, ("cix not setup"));
3789 		ctsrate = rt->info[cix].rateCode;
3790 		/*
3791 		 * Compute the transmit duration based on the frame
3792 		 * size and the size of an ACK frame.  We call into the
3793 		 * HAL to do the computation since it depends on the
3794 		 * characteristics of the actual PHY being used.
3795 		 *
3796 		 * NB: CTS is assumed the same size as an ACK so we can
3797 		 *     use the precalculated ACK durations.
3798 		 */
3799 		if (shortPreamble) {
3800 			ctsrate |= rt->info[cix].shortPreamble;
3801 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3802 				ctsduration += rt->info[cix].spAckDuration;
3803 			ctsduration += ath_hal_computetxtime(ah,
3804 				rt, pktlen, rix, AH_TRUE);
3805 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3806 				ctsduration += rt->info[rix].spAckDuration;
3807 		} else {
3808 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3809 				ctsduration += rt->info[cix].lpAckDuration;
3810 			ctsduration += ath_hal_computetxtime(ah,
3811 				rt, pktlen, rix, AH_FALSE);
3812 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3813 				ctsduration += rt->info[rix].lpAckDuration;
3814 		}
3815 		/*
3816 		 * Must disable multi-rate retry when using RTS/CTS.
3817 		 */
3818 		ismrr = 0;
3819 		try0 = ATH_TXMGTTRY;		/* XXX */
3820 	} else
3821 		ctsrate = 0;
3822 
3823 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3824 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3825 			sc->sc_hwmap[txrate].ieeerate, -1);
3826 #if NBPFILTER > 0
3827 	if (ic->ic_rawbpf)
3828 		bpf_mtap(ic->ic_rawbpf, m0);
3829 	if (sc->sc_drvbpf) {
3830 		u_int64_t tsf = ath_hal_gettsf64(ah);
3831 
3832 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3833 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3834 		if (iswep)
3835 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3836 		if (isfrag)
3837 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3838 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3839 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3840 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3841 
3842 		bpf_mtap2(sc->sc_drvbpf,
3843 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3844 	}
3845 #endif
3846 
3847 	/*
3848 	 * Determine if a tx interrupt should be generated for
3849 	 * this descriptor.  We take a tx interrupt to reap
3850 	 * descriptors when the h/w hits an EOL condition or
3851 	 * when the descriptor is specifically marked to generate
3852 	 * an interrupt.  We periodically mark descriptors in this
3853 	 * way to insure timely replenishing of the supply needed
3854 	 * for sending frames.  Defering interrupts reduces system
3855 	 * load and potentially allows more concurrent work to be
3856 	 * done but if done to aggressively can cause senders to
3857 	 * backup.
3858 	 *
3859 	 * NB: use >= to deal with sc_txintrperiod changing
3860 	 *     dynamically through sysctl.
3861 	 */
3862 	if (flags & HAL_TXDESC_INTREQ) {
3863 		txq->axq_intrcnt = 0;
3864 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3865 		flags |= HAL_TXDESC_INTREQ;
3866 		txq->axq_intrcnt = 0;
3867 	}
3868 
3869 	/*
3870 	 * Formulate first tx descriptor with tx controls.
3871 	 */
3872 	/* XXX check return value? */
3873 	ath_hal_setuptxdesc(ah, ds
3874 		, pktlen		/* packet length */
3875 		, hdrlen		/* header length */
3876 		, atype			/* Atheros packet type */
3877 		, ni->ni_txpower	/* txpower */
3878 		, txrate, try0		/* series 0 rate/tries */
3879 		, keyix			/* key cache index */
3880 		, sc->sc_txantenna	/* antenna mode */
3881 		, flags			/* flags */
3882 		, ctsrate		/* rts/cts rate */
3883 		, ctsduration		/* rts/cts duration */
3884 	);
3885 	bf->bf_flags = flags;
3886 	/*
3887 	 * Setup the multi-rate retry state only when we're
3888 	 * going to use it.  This assumes ath_hal_setuptxdesc
3889 	 * initializes the descriptors (so we don't have to)
3890 	 * when the hardware supports multi-rate retry and
3891 	 * we don't use it.
3892 	 */
3893 	if (ismrr)
3894 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3895 
3896 	/*
3897 	 * Fillin the remainder of the descriptor info.
3898 	 */
3899 	ds0 = ds;
3900 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3901 		ds->ds_data = bf->bf_segs[i].ds_addr;
3902 		if (i == bf->bf_nseg - 1)
3903 			ds->ds_link = 0;
3904 		else
3905 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3906 		ath_hal_filltxdesc(ah, ds
3907 			, bf->bf_segs[i].ds_len	/* segment length */
3908 			, i == 0		/* first segment */
3909 			, i == bf->bf_nseg - 1	/* last segment */
3910 			, ds0			/* first descriptor */
3911 		);
3912 
3913 		/* NB: The desc swap function becomes void,
3914 		 * if descriptor swapping is not enabled
3915 		 */
3916 		ath_desc_swap(ds);
3917 
3918 		DPRINTF(sc, ATH_DEBUG_XMIT,
3919 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3920 			__func__, i, ds->ds_link, ds->ds_data,
3921 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3922 	}
3923 	/*
3924 	 * Insert the frame on the outbound list and
3925 	 * pass it on to the hardware.
3926 	 */
3927 	ATH_TXQ_LOCK(txq);
3928 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3929 	if (txq->axq_link == NULL) {
3930 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3931 		DPRINTF(sc, ATH_DEBUG_XMIT,
3932 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3933 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3934 		    txq->axq_depth);
3935 	} else {
3936 		*txq->axq_link = HTOAH32(bf->bf_daddr);
3937 		DPRINTF(sc, ATH_DEBUG_XMIT,
3938 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3939 		    __func__, txq->axq_qnum, txq->axq_link,
3940 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3941 	}
3942 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3943 	/*
3944 	 * The CAB queue is started from the SWBA handler since
3945 	 * frames only go out on DTIM and to avoid possible races.
3946 	 */
3947 	if (txq != sc->sc_cabq)
3948 		ath_hal_txstart(ah, txq->axq_qnum);
3949 	ATH_TXQ_UNLOCK(txq);
3950 
3951 	return 0;
3952 }
3953 
3954 /*
3955  * Process completed xmit descriptors from the specified queue.
3956  */
3957 static int
3958 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3959 {
3960 	struct ath_hal *ah = sc->sc_ah;
3961 	struct ieee80211com *ic = &sc->sc_ic;
3962 	struct ath_buf *bf;
3963 	struct ath_desc *ds, *ds0;
3964 	struct ieee80211_node *ni;
3965 	struct ath_node *an;
3966 	int sr, lr, pri, nacked;
3967 	HAL_STATUS status;
3968 
3969 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3970 		__func__, txq->axq_qnum,
3971 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3972 		txq->axq_link);
3973 	nacked = 0;
3974 	for (;;) {
3975 		ATH_TXQ_LOCK(txq);
3976 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3977 		bf = STAILQ_FIRST(&txq->axq_q);
3978 		if (bf == NULL) {
3979 			txq->axq_link = NULL;
3980 			ATH_TXQ_UNLOCK(txq);
3981 			break;
3982 		}
3983 		ds0 = &bf->bf_desc[0];
3984 		ds = &bf->bf_desc[bf->bf_nseg - 1];
3985 		status = ath_hal_txprocdesc(ah, ds);
3986 #ifdef AR_DEBUG
3987 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3988 			ath_printtxbuf(bf, status == HAL_OK);
3989 #endif
3990 		if (status == HAL_EINPROGRESS) {
3991 			ATH_TXQ_UNLOCK(txq);
3992 			break;
3993 		}
3994 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3995 		ATH_TXQ_UNLOCK(txq);
3996 
3997 		ni = bf->bf_node;
3998 		if (ni != NULL) {
3999 			an = ATH_NODE(ni);
4000 			if (ds->ds_txstat.ts_status == 0) {
4001 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4002 				sc->sc_stats.ast_ant_tx[txant]++;
4003 				sc->sc_ant_tx[txant]++;
4004 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4005 					sc->sc_stats.ast_tx_altrate++;
4006 				sc->sc_stats.ast_tx_rssi =
4007 					ds->ds_txstat.ts_rssi;
4008 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4009 					ds->ds_txstat.ts_rssi);
4010 				pri = M_WME_GETAC(bf->bf_m);
4011 				if (pri >= WME_AC_VO)
4012 					ic->ic_wme.wme_hipri_traffic++;
4013 				ni->ni_inact = ni->ni_inact_reload;
4014 			} else {
4015 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4016 					sc->sc_stats.ast_tx_xretries++;
4017 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4018 					sc->sc_stats.ast_tx_fifoerr++;
4019 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4020 					sc->sc_stats.ast_tx_filtered++;
4021 			}
4022 			sr = ds->ds_txstat.ts_shortretry;
4023 			lr = ds->ds_txstat.ts_longretry;
4024 			sc->sc_stats.ast_tx_shortretry += sr;
4025 			sc->sc_stats.ast_tx_longretry += lr;
4026 			/*
4027 			 * Hand the descriptor to the rate control algorithm.
4028 			 */
4029 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4030 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4031 				/*
4032 				 * If frame was ack'd update the last rx time
4033 				 * used to workaround phantom bmiss interrupts.
4034 				 */
4035 				if (ds->ds_txstat.ts_status == 0)
4036 					nacked++;
4037 				ath_rate_tx_complete(sc, an, ds, ds0);
4038 			}
4039 			/*
4040 			 * Reclaim reference to node.
4041 			 *
4042 			 * NB: the node may be reclaimed here if, for example
4043 			 *     this is a DEAUTH message that was sent and the
4044 			 *     node was timed out due to inactivity.
4045 			 */
4046 			ieee80211_free_node(ni);
4047 		}
4048 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4049 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4050 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4051 		m_freem(bf->bf_m);
4052 		bf->bf_m = NULL;
4053 		bf->bf_node = NULL;
4054 
4055 		ATH_TXBUF_LOCK(sc);
4056 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4057 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4058 		ATH_TXBUF_UNLOCK(sc);
4059 	}
4060 	return nacked;
4061 }
4062 
4063 static inline int
4064 txqactive(struct ath_hal *ah, int qnum)
4065 {
4066 	u_int32_t txqs = 1<<qnum;
4067 	ath_hal_gettxintrtxqs(ah, &txqs);
4068 	return (txqs & (1<<qnum));
4069 }
4070 
4071 /*
4072  * Deferred processing of transmit interrupt; special-cased
4073  * for a single hardware transmit queue (e.g. 5210 and 5211).
4074  */
4075 static void
4076 ath_tx_proc_q0(void *arg, int npending)
4077 {
4078 	struct ath_softc *sc = arg;
4079 	struct ifnet *ifp = &sc->sc_if;
4080 
4081 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4082 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4083 	}
4084 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4085 		ath_tx_processq(sc, sc->sc_cabq);
4086 
4087 	if (sc->sc_softled)
4088 		ath_led_event(sc, ATH_LED_TX);
4089 
4090 	ath_start(ifp);
4091 }
4092 
4093 /*
4094  * Deferred processing of transmit interrupt; special-cased
4095  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4096  */
4097 static void
4098 ath_tx_proc_q0123(void *arg, int npending)
4099 {
4100 	struct ath_softc *sc = arg;
4101 	struct ifnet *ifp = &sc->sc_if;
4102 	int nacked;
4103 
4104 	/*
4105 	 * Process each active queue.
4106 	 */
4107 	nacked = 0;
4108 	if (txqactive(sc->sc_ah, 0))
4109 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4110 	if (txqactive(sc->sc_ah, 1))
4111 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4112 	if (txqactive(sc->sc_ah, 2))
4113 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4114 	if (txqactive(sc->sc_ah, 3))
4115 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4116 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4117 		ath_tx_processq(sc, sc->sc_cabq);
4118 	if (nacked) {
4119 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4120 	}
4121 
4122 	if (sc->sc_softled)
4123 		ath_led_event(sc, ATH_LED_TX);
4124 
4125 	ath_start(ifp);
4126 }
4127 
4128 /*
4129  * Deferred processing of transmit interrupt.
4130  */
4131 static void
4132 ath_tx_proc(void *arg, int npending)
4133 {
4134 	struct ath_softc *sc = arg;
4135 	struct ifnet *ifp = &sc->sc_if;
4136 	int i, nacked;
4137 
4138 	/*
4139 	 * Process each active queue.
4140 	 */
4141 	nacked = 0;
4142 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4143 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4144 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4145 	if (nacked) {
4146 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4147 	}
4148 
4149 	if (sc->sc_softled)
4150 		ath_led_event(sc, ATH_LED_TX);
4151 
4152 	ath_start(ifp);
4153 }
4154 
4155 static void
4156 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4157 {
4158 	struct ath_hal *ah = sc->sc_ah;
4159 	struct ieee80211_node *ni;
4160 	struct ath_buf *bf;
4161 
4162 	/*
4163 	 * NB: this assumes output has been stopped and
4164 	 *     we do not need to block ath_tx_tasklet
4165 	 */
4166 	for (;;) {
4167 		ATH_TXQ_LOCK(txq);
4168 		bf = STAILQ_FIRST(&txq->axq_q);
4169 		if (bf == NULL) {
4170 			txq->axq_link = NULL;
4171 			ATH_TXQ_UNLOCK(txq);
4172 			break;
4173 		}
4174 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4175 		ATH_TXQ_UNLOCK(txq);
4176 #ifdef AR_DEBUG
4177 		if (sc->sc_debug & ATH_DEBUG_RESET)
4178 			ath_printtxbuf(bf,
4179 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4180 #endif /* AR_DEBUG */
4181 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4182 		m_freem(bf->bf_m);
4183 		bf->bf_m = NULL;
4184 		ni = bf->bf_node;
4185 		bf->bf_node = NULL;
4186 		if (ni != NULL) {
4187 			/*
4188 			 * Reclaim node reference.
4189 			 */
4190 			ieee80211_free_node(ni);
4191 		}
4192 		ATH_TXBUF_LOCK(sc);
4193 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4194 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4195 		ATH_TXBUF_UNLOCK(sc);
4196 	}
4197 }
4198 
4199 static void
4200 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4201 {
4202 	struct ath_hal *ah = sc->sc_ah;
4203 
4204 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4205 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4206 	    __func__, txq->axq_qnum,
4207 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4208 	    txq->axq_link);
4209 }
4210 
4211 /*
4212  * Drain the transmit queues and reclaim resources.
4213  */
4214 static void
4215 ath_draintxq(struct ath_softc *sc)
4216 {
4217 	struct ath_hal *ah = sc->sc_ah;
4218 	int i;
4219 
4220 	/* XXX return value */
4221 	if (!sc->sc_invalid) {
4222 		/* don't touch the hardware if marked invalid */
4223 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4224 		DPRINTF(sc, ATH_DEBUG_RESET,
4225 		    "%s: beacon queue %p\n", __func__,
4226 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4227 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4228 			if (ATH_TXQ_SETUP(sc, i))
4229 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4230 	}
4231 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4232 		if (ATH_TXQ_SETUP(sc, i))
4233 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4234 }
4235 
4236 /*
4237  * Disable the receive h/w in preparation for a reset.
4238  */
4239 static void
4240 ath_stoprecv(struct ath_softc *sc)
4241 {
4242 #define	PA2DESC(_sc, _pa) \
4243 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4244 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4245 	struct ath_hal *ah = sc->sc_ah;
4246 
4247 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4248 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4249 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4250 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4251 #ifdef AR_DEBUG
4252 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4253 		struct ath_buf *bf;
4254 
4255 		printf("%s: rx queue %p, link %p\n", __func__,
4256 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4257 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4258 			struct ath_desc *ds = bf->bf_desc;
4259 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4260 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4261 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4262 				ath_printrxbuf(bf, status == HAL_OK);
4263 		}
4264 	}
4265 #endif
4266 	sc->sc_rxlink = NULL;		/* just in case */
4267 #undef PA2DESC
4268 }
4269 
4270 /*
4271  * Enable the receive h/w following a reset.
4272  */
4273 static int
4274 ath_startrecv(struct ath_softc *sc)
4275 {
4276 	struct ath_hal *ah = sc->sc_ah;
4277 	struct ath_buf *bf;
4278 
4279 	sc->sc_rxlink = NULL;
4280 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4281 		int error = ath_rxbuf_init(sc, bf);
4282 		if (error != 0) {
4283 			DPRINTF(sc, ATH_DEBUG_RECV,
4284 				"%s: ath_rxbuf_init failed %d\n",
4285 				__func__, error);
4286 			return error;
4287 		}
4288 	}
4289 
4290 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4291 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4292 	ath_hal_rxena(ah);		/* enable recv descriptors */
4293 	ath_mode_init(sc);		/* set filters, etc. */
4294 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4295 	return 0;
4296 }
4297 
4298 /*
4299  * Update internal state after a channel change.
4300  */
4301 static void
4302 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4303 {
4304 	struct ieee80211com *ic = &sc->sc_ic;
4305 	enum ieee80211_phymode mode;
4306 	u_int16_t flags;
4307 
4308 	/*
4309 	 * Change channels and update the h/w rate map
4310 	 * if we're switching; e.g. 11a to 11b/g.
4311 	 */
4312 	mode = ieee80211_chan2mode(ic, chan);
4313 	if (mode != sc->sc_curmode)
4314 		ath_setcurmode(sc, mode);
4315 	/*
4316 	 * Update BPF state.  NB: ethereal et. al. don't handle
4317 	 * merged flags well so pick a unique mode for their use.
4318 	 */
4319 	if (IEEE80211_IS_CHAN_A(chan))
4320 		flags = IEEE80211_CHAN_A;
4321 	/* XXX 11g schizophrenia */
4322 	else if (IEEE80211_IS_CHAN_G(chan) ||
4323 	    IEEE80211_IS_CHAN_PUREG(chan))
4324 		flags = IEEE80211_CHAN_G;
4325 	else
4326 		flags = IEEE80211_CHAN_B;
4327 	if (IEEE80211_IS_CHAN_T(chan))
4328 		flags |= IEEE80211_CHAN_TURBO;
4329 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4330 		htole16(chan->ic_freq);
4331 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4332 		htole16(flags);
4333 }
4334 
4335 /*
4336  * Poll for a channel clear indication; this is required
4337  * for channels requiring DFS and not previously visited
4338  * and/or with a recent radar detection.
4339  */
4340 static void
4341 ath_dfswait(void *arg)
4342 {
4343 	struct ath_softc *sc = arg;
4344 	struct ath_hal *ah = sc->sc_ah;
4345 	HAL_CHANNEL hchan;
4346 
4347 	ath_hal_radar_wait(ah, &hchan);
4348 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4349 		if_printf(&sc->sc_if,
4350 		    "channel %u/0x%x/0x%x has interference\n",
4351 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4352 		return;
4353 	}
4354 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4355 		/* XXX should not happen */
4356 		return;
4357 	}
4358 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4359 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4360 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4361 		if_printf(&sc->sc_if,
4362 		    "channel %u/0x%x/0x%x marked clear\n",
4363 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4364 	} else
4365 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4366 }
4367 
4368 /*
4369  * Set/change channels.  If the channel is really being changed,
4370  * it's done by reseting the chip.  To accomplish this we must
4371  * first cleanup any pending DMA, then restart stuff after a la
4372  * ath_init.
4373  */
4374 static int
4375 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4376 {
4377 	struct ath_hal *ah = sc->sc_ah;
4378 	struct ieee80211com *ic = &sc->sc_ic;
4379 	HAL_CHANNEL hchan;
4380 
4381 	/*
4382 	 * Convert to a HAL channel description with
4383 	 * the flags constrained to reflect the current
4384 	 * operating mode.
4385 	 */
4386 	hchan.channel = chan->ic_freq;
4387 	hchan.channelFlags = ath_chan2flags(ic, chan);
4388 
4389 	DPRINTF(sc, ATH_DEBUG_RESET,
4390 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4391 	    __func__,
4392 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4393 		sc->sc_curchan.channelFlags),
4394 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4395 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4396 	        hchan.channel, hchan.channelFlags);
4397 	if (hchan.channel != sc->sc_curchan.channel ||
4398 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4399 		HAL_STATUS status;
4400 
4401 		/*
4402 		 * To switch channels clear any pending DMA operations;
4403 		 * wait long enough for the RX fifo to drain, reset the
4404 		 * hardware at the new frequency, and then re-enable
4405 		 * the relevant bits of the h/w.
4406 		 */
4407 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4408 		ath_draintxq(sc);		/* clear pending tx frames */
4409 		ath_stoprecv(sc);		/* turn off frame recv */
4410 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4411 			if_printf(ic->ic_ifp, "%s: unable to reset "
4412 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4413 			    __func__, ieee80211_chan2ieee(ic, chan),
4414 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4415 			return EIO;
4416 		}
4417 		sc->sc_curchan = hchan;
4418 		ath_update_txpow(sc);		/* update tx power state */
4419 		ath_restore_diversity(sc);
4420 		sc->sc_calinterval = 1;
4421 		sc->sc_caltries = 0;
4422 
4423 		/*
4424 		 * Re-enable rx framework.
4425 		 */
4426 		if (ath_startrecv(sc) != 0) {
4427 			if_printf(&sc->sc_if,
4428 				"%s: unable to restart recv logic\n", __func__);
4429 			return EIO;
4430 		}
4431 
4432 		/*
4433 		 * Change channels and update the h/w rate map
4434 		 * if we're switching; e.g. 11a to 11b/g.
4435 		 */
4436 		ic->ic_ibss_chan = chan;
4437 		ath_chan_change(sc, chan);
4438 
4439 		/*
4440 		 * Handle DFS required waiting period to determine
4441 		 * if channel is clear of radar traffic.
4442 		 */
4443 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4444 #define	DFS_AND_NOT_CLEAR(_c) \
4445 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4446 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4447 				if_printf(&sc->sc_if,
4448 					"wait for DFS clear channel signal\n");
4449 				/* XXX stop sndq */
4450 				sc->sc_if.if_flags |= IFF_OACTIVE;
4451 				callout_reset(&sc->sc_dfs_ch,
4452 					2 * hz, ath_dfswait, sc);
4453 			} else
4454 				callout_stop(&sc->sc_dfs_ch);
4455 #undef DFS_NOT_CLEAR
4456 		}
4457 
4458 		/*
4459 		 * Re-enable interrupts.
4460 		 */
4461 		ath_hal_intrset(ah, sc->sc_imask);
4462 	}
4463 	return 0;
4464 }
4465 
4466 static void
4467 ath_next_scan(void *arg)
4468 {
4469 	struct ath_softc *sc = arg;
4470 	struct ieee80211com *ic = &sc->sc_ic;
4471 	int s;
4472 
4473 	/* don't call ath_start w/o network interrupts blocked */
4474 	s = splnet();
4475 
4476 	if (ic->ic_state == IEEE80211_S_SCAN)
4477 		ieee80211_next_scan(ic);
4478 	splx(s);
4479 }
4480 
4481 /*
4482  * Periodically recalibrate the PHY to account
4483  * for temperature/environment changes.
4484  */
4485 static void
4486 ath_calibrate(void *arg)
4487 {
4488 	struct ath_softc *sc = arg;
4489 	struct ath_hal *ah = sc->sc_ah;
4490 	HAL_BOOL iqCalDone;
4491 
4492 	sc->sc_stats.ast_per_cal++;
4493 
4494 	ATH_LOCK(sc);
4495 
4496 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4497 		/*
4498 		 * Rfgain is out of bounds, reset the chip
4499 		 * to load new gain values.
4500 		 */
4501 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4502 			"%s: rfgain change\n", __func__);
4503 		sc->sc_stats.ast_per_rfgain++;
4504 		ath_reset(&sc->sc_if);
4505 	}
4506 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4507 		DPRINTF(sc, ATH_DEBUG_ANY,
4508 			"%s: calibration of channel %u failed\n",
4509 			__func__, sc->sc_curchan.channel);
4510 		sc->sc_stats.ast_per_calfail++;
4511 	}
4512 	/*
4513 	 * Calibrate noise floor data again in case of change.
4514 	 */
4515 	ath_hal_process_noisefloor(ah);
4516 	/*
4517 	 * Poll more frequently when the IQ calibration is in
4518 	 * progress to speedup loading the final settings.
4519 	 * We temper this aggressive polling with an exponential
4520 	 * back off after 4 tries up to ath_calinterval.
4521 	 */
4522 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4523 		sc->sc_caltries = 0;
4524 		sc->sc_calinterval = ath_calinterval;
4525 	} else if (sc->sc_caltries > 4) {
4526 		sc->sc_caltries = 0;
4527 		sc->sc_calinterval <<= 1;
4528 		if (sc->sc_calinterval > ath_calinterval)
4529 			sc->sc_calinterval = ath_calinterval;
4530 	}
4531 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4532 		("bad calibration interval %u", sc->sc_calinterval));
4533 
4534 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4535 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4536 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4537 	sc->sc_caltries++;
4538 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4539 		ath_calibrate, sc);
4540 	ATH_UNLOCK(sc);
4541 }
4542 
4543 static int
4544 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4545 {
4546 	struct ifnet *ifp = ic->ic_ifp;
4547 	struct ath_softc *sc = ifp->if_softc;
4548 	struct ath_hal *ah = sc->sc_ah;
4549 	struct ieee80211_node *ni;
4550 	int i, error;
4551 	const u_int8_t *bssid;
4552 	u_int32_t rfilt;
4553 	static const HAL_LED_STATE leds[] = {
4554 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4555 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4556 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4557 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4558 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4559 	};
4560 
4561 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4562 		ieee80211_state_name[ic->ic_state],
4563 		ieee80211_state_name[nstate]);
4564 
4565 	callout_stop(&sc->sc_scan_ch);
4566 	callout_stop(&sc->sc_cal_ch);
4567 	callout_stop(&sc->sc_dfs_ch);
4568 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4569 
4570 	if (nstate == IEEE80211_S_INIT) {
4571 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4572 		/*
4573 		 * NB: disable interrupts so we don't rx frames.
4574 		 */
4575 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4576 		/*
4577 		 * Notify the rate control algorithm.
4578 		 */
4579 		ath_rate_newstate(sc, nstate);
4580 		goto done;
4581 	}
4582 	ni = ic->ic_bss;
4583 	error = ath_chan_set(sc, ic->ic_curchan);
4584 	if (error != 0)
4585 		goto bad;
4586 	rfilt = ath_calcrxfilter(sc, nstate);
4587 	if (nstate == IEEE80211_S_SCAN)
4588 		bssid = ifp->if_broadcastaddr;
4589 	else
4590 		bssid = ni->ni_bssid;
4591 	ath_hal_setrxfilter(ah, rfilt);
4592 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4593 		 __func__, rfilt, ether_sprintf(bssid));
4594 
4595 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4596 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4597 	else
4598 		ath_hal_setassocid(ah, bssid, 0);
4599 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4600 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4601 			if (ath_hal_keyisvalid(ah, i))
4602 				ath_hal_keysetmac(ah, i, bssid);
4603 	}
4604 
4605 	/*
4606 	 * Notify the rate control algorithm so rates
4607 	 * are setup should ath_beacon_alloc be called.
4608 	 */
4609 	ath_rate_newstate(sc, nstate);
4610 
4611 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4612 		/* nothing to do */;
4613 	} else if (nstate == IEEE80211_S_RUN) {
4614 		DPRINTF(sc, ATH_DEBUG_STATE,
4615 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4616 			"capinfo=0x%04x chan=%d\n"
4617 			 , __func__
4618 			 , ic->ic_flags
4619 			 , ni->ni_intval
4620 			 , ether_sprintf(ni->ni_bssid)
4621 			 , ni->ni_capinfo
4622 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4623 
4624 		switch (ic->ic_opmode) {
4625 		case IEEE80211_M_HOSTAP:
4626 		case IEEE80211_M_IBSS:
4627 			/*
4628 			 * Allocate and setup the beacon frame.
4629 			 *
4630 			 * Stop any previous beacon DMA.  This may be
4631 			 * necessary, for example, when an ibss merge
4632 			 * causes reconfiguration; there will be a state
4633 			 * transition from RUN->RUN that means we may
4634 			 * be called with beacon transmission active.
4635 			 */
4636 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4637 			ath_beacon_free(sc);
4638 			error = ath_beacon_alloc(sc, ni);
4639 			if (error != 0)
4640 				goto bad;
4641 			/*
4642 			 * If joining an adhoc network defer beacon timer
4643 			 * configuration to the next beacon frame so we
4644 			 * have a current TSF to use.  Otherwise we're
4645 			 * starting an ibss/bss so there's no need to delay.
4646 			 */
4647 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4648 			    ic->ic_bss->ni_tstamp.tsf != 0)
4649 				sc->sc_syncbeacon = 1;
4650 			else
4651 				ath_beacon_config(sc);
4652 			break;
4653 		case IEEE80211_M_STA:
4654 			/*
4655 			 * Allocate a key cache slot to the station.
4656 			 */
4657 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4658 			    sc->sc_hasclrkey &&
4659 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4660 				ath_setup_stationkey(ni);
4661 			/*
4662 			 * Defer beacon timer configuration to the next
4663 			 * beacon frame so we have a current TSF to use
4664 			 * (any TSF collected when scanning is likely old).
4665 			 */
4666 			sc->sc_syncbeacon = 1;
4667 			break;
4668 		default:
4669 			break;
4670 		}
4671 		/*
4672 		 * Let the hal process statistics collected during a
4673 		 * scan so it can provide calibrated noise floor data.
4674 		 */
4675 		ath_hal_process_noisefloor(ah);
4676 		/*
4677 		 * Reset rssi stats; maybe not the best place...
4678 		 */
4679 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4680 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4681 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4682 	} else {
4683 		ath_hal_intrset(ah,
4684 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4685 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4686 	}
4687 done:
4688 	/*
4689 	 * Invoke the parent method to complete the work.
4690 	 */
4691 	error = sc->sc_newstate(ic, nstate, arg);
4692 	/*
4693 	 * Finally, start any timers.
4694 	 */
4695 	if (nstate == IEEE80211_S_RUN) {
4696 		/* start periodic recalibration timer */
4697 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4698 			ath_calibrate, sc);
4699 	} else if (nstate == IEEE80211_S_SCAN) {
4700 		/* start ap/neighbor scan timer */
4701 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4702 			ath_next_scan, sc);
4703 	}
4704 bad:
4705 	return error;
4706 }
4707 
4708 /*
4709  * Allocate a key cache slot to the station so we can
4710  * setup a mapping from key index to node. The key cache
4711  * slot is needed for managing antenna state and for
4712  * compression when stations do not use crypto.  We do
4713  * it uniliaterally here; if crypto is employed this slot
4714  * will be reassigned.
4715  */
4716 static void
4717 ath_setup_stationkey(struct ieee80211_node *ni)
4718 {
4719 	struct ieee80211com *ic = ni->ni_ic;
4720 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4721 	ieee80211_keyix keyix, rxkeyix;
4722 
4723 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4724 		/*
4725 		 * Key cache is full; we'll fall back to doing
4726 		 * the more expensive lookup in software.  Note
4727 		 * this also means no h/w compression.
4728 		 */
4729 		/* XXX msg+statistic */
4730 	} else {
4731 		/* XXX locking? */
4732 		ni->ni_ucastkey.wk_keyix = keyix;
4733 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4734 		/* NB: this will create a pass-thru key entry */
4735 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4736 	}
4737 }
4738 
4739 /*
4740  * Setup driver-specific state for a newly associated node.
4741  * Note that we're called also on a re-associate, the isnew
4742  * param tells us if this is the first time or not.
4743  */
4744 static void
4745 ath_newassoc(struct ieee80211_node *ni, int isnew)
4746 {
4747 	struct ieee80211com *ic = ni->ni_ic;
4748 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4749 
4750 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4751 	if (isnew &&
4752 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4753 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4754 		    ("new assoc with a unicast key already setup (keyix %u)",
4755 		    ni->ni_ucastkey.wk_keyix));
4756 		ath_setup_stationkey(ni);
4757 	}
4758 }
4759 
4760 static int
4761 ath_getchannels(struct ath_softc *sc, u_int cc,
4762 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4763 {
4764 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4765 	struct ieee80211com *ic = &sc->sc_ic;
4766 	struct ifnet *ifp = &sc->sc_if;
4767 	struct ath_hal *ah = sc->sc_ah;
4768 	HAL_CHANNEL *chans;
4769 	int i, ix, nchan;
4770 
4771 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4772 			M_TEMP, M_NOWAIT);
4773 	if (chans == NULL) {
4774 		if_printf(ifp, "unable to allocate channel table\n");
4775 		return ENOMEM;
4776 	}
4777 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4778 	    NULL, 0, NULL,
4779 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4780 		u_int32_t rd;
4781 
4782 		(void)ath_hal_getregdomain(ah, &rd);
4783 		if_printf(ifp, "unable to collect channel list from hal; "
4784 			"regdomain likely %u country code %u\n", rd, cc);
4785 		free(chans, M_TEMP);
4786 		return EINVAL;
4787 	}
4788 
4789 	/*
4790 	 * Convert HAL channels to ieee80211 ones and insert
4791 	 * them in the table according to their channel number.
4792 	 */
4793 	for (i = 0; i < nchan; i++) {
4794 		HAL_CHANNEL *c = &chans[i];
4795 		u_int16_t flags;
4796 
4797 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4798 		if (ix > IEEE80211_CHAN_MAX) {
4799 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4800 				ix, c->channel, c->channelFlags);
4801 			continue;
4802 		}
4803 		if (ix < 0) {
4804 			/* XXX can't handle stuff <2400 right now */
4805 			if (bootverbose)
4806 				if_printf(ifp, "hal channel %d (%u/%x) "
4807 				    "cannot be handled; ignored\n",
4808 				    ix, c->channel, c->channelFlags);
4809 			continue;
4810 		}
4811 		/*
4812 		 * Calculate net80211 flags; most are compatible
4813 		 * but some need massaging.  Note the static turbo
4814 		 * conversion can be removed once net80211 is updated
4815 		 * to understand static vs. dynamic turbo.
4816 		 */
4817 		flags = c->channelFlags & COMPAT;
4818 		if (c->channelFlags & CHANNEL_STURBO)
4819 			flags |= IEEE80211_CHAN_TURBO;
4820 		if (ic->ic_channels[ix].ic_freq == 0) {
4821 			ic->ic_channels[ix].ic_freq = c->channel;
4822 			ic->ic_channels[ix].ic_flags = flags;
4823 		} else {
4824 			/* channels overlap; e.g. 11g and 11b */
4825 			ic->ic_channels[ix].ic_flags |= flags;
4826 		}
4827 	}
4828 	free(chans, M_TEMP);
4829 	return 0;
4830 #undef COMPAT
4831 }
4832 
4833 static void
4834 ath_led_done(void *arg)
4835 {
4836 	struct ath_softc *sc = arg;
4837 
4838 	sc->sc_blinking = 0;
4839 }
4840 
4841 /*
4842  * Turn the LED off: flip the pin and then set a timer so no
4843  * update will happen for the specified duration.
4844  */
4845 static void
4846 ath_led_off(void *arg)
4847 {
4848 	struct ath_softc *sc = arg;
4849 
4850 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4851 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4852 }
4853 
4854 /*
4855  * Blink the LED according to the specified on/off times.
4856  */
4857 static void
4858 ath_led_blink(struct ath_softc *sc, int on, int off)
4859 {
4860 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4861 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4862 	sc->sc_blinking = 1;
4863 	sc->sc_ledoff = off;
4864 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4865 }
4866 
4867 static void
4868 ath_led_event(struct ath_softc *sc, int event)
4869 {
4870 
4871 	sc->sc_ledevent = ticks;	/* time of last event */
4872 	if (sc->sc_blinking)		/* don't interrupt active blink */
4873 		return;
4874 	switch (event) {
4875 	case ATH_LED_POLL:
4876 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4877 			sc->sc_hwmap[0].ledoff);
4878 		break;
4879 	case ATH_LED_TX:
4880 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4881 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4882 		break;
4883 	case ATH_LED_RX:
4884 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4885 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4886 		break;
4887 	}
4888 }
4889 
4890 static void
4891 ath_update_txpow(struct ath_softc *sc)
4892 {
4893 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4894 	struct ieee80211com *ic = &sc->sc_ic;
4895 	struct ath_hal *ah = sc->sc_ah;
4896 	u_int32_t txpow;
4897 
4898 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4899 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4900 		/* read back in case value is clamped */
4901 		(void)ath_hal_gettxpowlimit(ah, &txpow);
4902 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4903 	}
4904 	/*
4905 	 * Fetch max tx power level for status requests.
4906 	 */
4907 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4908 	ic->ic_bss->ni_txpower = txpow;
4909 }
4910 
4911 static void
4912 rate_setup(struct ath_softc *sc,
4913 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4914 {
4915 	int i, maxrates;
4916 
4917 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4918 		DPRINTF(sc, ATH_DEBUG_ANY,
4919 			"%s: rate table too small (%u > %u)\n",
4920 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4921 		maxrates = IEEE80211_RATE_MAXSIZE;
4922 	} else
4923 		maxrates = rt->rateCount;
4924 	for (i = 0; i < maxrates; i++)
4925 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4926 	rs->rs_nrates = maxrates;
4927 }
4928 
4929 static int
4930 ath_rate_setup(struct ath_softc *sc, u_int mode)
4931 {
4932 	struct ath_hal *ah = sc->sc_ah;
4933 	struct ieee80211com *ic = &sc->sc_ic;
4934 	const HAL_RATE_TABLE *rt;
4935 
4936 	switch (mode) {
4937 	case IEEE80211_MODE_11A:
4938 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4939 		break;
4940 	case IEEE80211_MODE_11B:
4941 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4942 		break;
4943 	case IEEE80211_MODE_11G:
4944 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4945 		break;
4946 	case IEEE80211_MODE_TURBO_A:
4947 		/* XXX until static/dynamic turbo is fixed */
4948 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4949 		break;
4950 	case IEEE80211_MODE_TURBO_G:
4951 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4952 		break;
4953 	default:
4954 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4955 			__func__, mode);
4956 		return 0;
4957 	}
4958 	sc->sc_rates[mode] = rt;
4959 	if (rt != NULL) {
4960 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4961 		return 1;
4962 	} else
4963 		return 0;
4964 }
4965 
4966 static void
4967 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4968 {
4969 #define	N(a)	(sizeof(a)/sizeof(a[0]))
4970 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4971 	static const struct {
4972 		u_int		rate;		/* tx/rx 802.11 rate */
4973 		u_int16_t	timeOn;		/* LED on time (ms) */
4974 		u_int16_t	timeOff;	/* LED off time (ms) */
4975 	} blinkrates[] = {
4976 		{ 108,  40,  10 },
4977 		{  96,  44,  11 },
4978 		{  72,  50,  13 },
4979 		{  48,  57,  14 },
4980 		{  36,  67,  16 },
4981 		{  24,  80,  20 },
4982 		{  22, 100,  25 },
4983 		{  18, 133,  34 },
4984 		{  12, 160,  40 },
4985 		{  10, 200,  50 },
4986 		{   6, 240,  58 },
4987 		{   4, 267,  66 },
4988 		{   2, 400, 100 },
4989 		{   0, 500, 130 },
4990 	};
4991 	const HAL_RATE_TABLE *rt;
4992 	int i, j;
4993 
4994 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4995 	rt = sc->sc_rates[mode];
4996 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4997 	for (i = 0; i < rt->rateCount; i++)
4998 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4999 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5000 	for (i = 0; i < 32; i++) {
5001 		u_int8_t ix = rt->rateCodeToIndex[i];
5002 		if (ix == 0xff) {
5003 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5004 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5005 			continue;
5006 		}
5007 		sc->sc_hwmap[i].ieeerate =
5008 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5009 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5010 		if (rt->info[ix].shortPreamble ||
5011 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5012 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5013 		/* NB: receive frames include FCS */
5014 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5015 			IEEE80211_RADIOTAP_F_FCS;
5016 		/* setup blink rate table to avoid per-packet lookup */
5017 		for (j = 0; j < N(blinkrates)-1; j++)
5018 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5019 				break;
5020 		/* NB: this uses the last entry if the rate isn't found */
5021 		/* XXX beware of overlow */
5022 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5023 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5024 	}
5025 	sc->sc_currates = rt;
5026 	sc->sc_curmode = mode;
5027 	/*
5028 	 * All protection frames are transmited at 2Mb/s for
5029 	 * 11g, otherwise at 1Mb/s.
5030 	 */
5031 	if (mode == IEEE80211_MODE_11G)
5032 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5033 	else
5034 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5035 	/* rate index used to send management frames */
5036 	sc->sc_minrateix = 0;
5037 	/*
5038 	 * Setup multicast rate state.
5039 	 */
5040 	/* XXX layering violation */
5041 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5042 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5043 	/* NB: caller is responsible for reseting rate control state */
5044 #undef N
5045 }
5046 
5047 #ifdef AR_DEBUG
5048 static void
5049 ath_printrxbuf(struct ath_buf *bf, int done)
5050 {
5051 	struct ath_desc *ds;
5052 	int i;
5053 
5054 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5055 		printf("R%d (%p %" PRIx64
5056 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5057 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5058 		    ds->ds_link, ds->ds_data,
5059 		    ds->ds_ctl0, ds->ds_ctl1,
5060 		    ds->ds_hw[0], ds->ds_hw[1],
5061 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5062 	}
5063 }
5064 
5065 static void
5066 ath_printtxbuf(struct ath_buf *bf, int done)
5067 {
5068 	struct ath_desc *ds;
5069 	int i;
5070 
5071 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5072 		printf("T%d (%p %" PRIx64
5073 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5074 		    i, ds,
5075 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5076 		    ds->ds_link, ds->ds_data,
5077 		    ds->ds_ctl0, ds->ds_ctl1,
5078 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5079 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5080 	}
5081 }
5082 #endif /* AR_DEBUG */
5083 
5084 static void
5085 ath_watchdog(struct ifnet *ifp)
5086 {
5087 	struct ath_softc *sc = ifp->if_softc;
5088 	struct ieee80211com *ic = &sc->sc_ic;
5089 	struct ath_txq *axq;
5090 	int i;
5091 
5092 	ifp->if_timer = 0;
5093 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5094 		return;
5095 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5096 		if (!ATH_TXQ_SETUP(sc, i))
5097 			continue;
5098 		axq = &sc->sc_txq[i];
5099 		ATH_TXQ_LOCK(axq);
5100 		if (axq->axq_timer == 0)
5101 			;
5102 		else if (--axq->axq_timer == 0) {
5103 			ATH_TXQ_UNLOCK(axq);
5104 			if_printf(ifp, "device timeout (txq %d)\n", i);
5105 			ath_reset(ifp);
5106 			ifp->if_oerrors++;
5107 			sc->sc_stats.ast_watchdog++;
5108 			break;
5109 		} else
5110 			ifp->if_timer = 1;
5111 		ATH_TXQ_UNLOCK(axq);
5112 	}
5113 	ieee80211_watchdog(ic);
5114 }
5115 
5116 /*
5117  * Diagnostic interface to the HAL.  This is used by various
5118  * tools to do things like retrieve register contents for
5119  * debugging.  The mechanism is intentionally opaque so that
5120  * it can change frequently w/o concern for compatiblity.
5121  */
5122 static int
5123 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5124 {
5125 	struct ath_hal *ah = sc->sc_ah;
5126 	u_int id = ad->ad_id & ATH_DIAG_ID;
5127 	void *indata = NULL;
5128 	void *outdata = NULL;
5129 	u_int32_t insize = ad->ad_in_size;
5130 	u_int32_t outsize = ad->ad_out_size;
5131 	int error = 0;
5132 
5133 	if (ad->ad_id & ATH_DIAG_IN) {
5134 		/*
5135 		 * Copy in data.
5136 		 */
5137 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5138 		if (indata == NULL) {
5139 			error = ENOMEM;
5140 			goto bad;
5141 		}
5142 		error = copyin(ad->ad_in_data, indata, insize);
5143 		if (error)
5144 			goto bad;
5145 	}
5146 	if (ad->ad_id & ATH_DIAG_DYN) {
5147 		/*
5148 		 * Allocate a buffer for the results (otherwise the HAL
5149 		 * returns a pointer to a buffer where we can read the
5150 		 * results).  Note that we depend on the HAL leaving this
5151 		 * pointer for us to use below in reclaiming the buffer;
5152 		 * may want to be more defensive.
5153 		 */
5154 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5155 		if (outdata == NULL) {
5156 			error = ENOMEM;
5157 			goto bad;
5158 		}
5159 	}
5160 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5161 		if (outsize < ad->ad_out_size)
5162 			ad->ad_out_size = outsize;
5163 		if (outdata != NULL)
5164 			error = copyout(outdata, ad->ad_out_data,
5165 					ad->ad_out_size);
5166 	} else {
5167 		error = EINVAL;
5168 	}
5169 bad:
5170 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5171 		free(indata, M_TEMP);
5172 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5173 		free(outdata, M_TEMP);
5174 	return error;
5175 }
5176 
5177 static int
5178 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5179 {
5180 #define	IS_RUNNING(ifp) \
5181 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5182 	struct ath_softc *sc = ifp->if_softc;
5183 	struct ieee80211com *ic = &sc->sc_ic;
5184 	struct ifreq *ifr = (struct ifreq *)data;
5185 	int error = 0;
5186 
5187 	ATH_LOCK(sc);
5188 	switch (cmd) {
5189 	case SIOCSIFFLAGS:
5190 		if (IS_RUNNING(ifp)) {
5191 			/*
5192 			 * To avoid rescanning another access point,
5193 			 * do not call ath_init() here.  Instead,
5194 			 * only reflect promisc mode settings.
5195 			 */
5196 			ath_mode_init(sc);
5197 		} else if (ifp->if_flags & IFF_UP) {
5198 			/*
5199 			 * Beware of being called during attach/detach
5200 			 * to reset promiscuous mode.  In that case we
5201 			 * will still be marked UP but not RUNNING.
5202 			 * However trying to re-init the interface
5203 			 * is the wrong thing to do as we've already
5204 			 * torn down much of our state.  There's
5205 			 * probably a better way to deal with this.
5206 			 */
5207 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5208 				ath_init(sc);	/* XXX lose error */
5209 		} else
5210 			ath_stop_locked(ifp, 1);
5211 		break;
5212 	case SIOCADDMULTI:
5213 	case SIOCDELMULTI:
5214 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5215 			if (ifp->if_flags & IFF_RUNNING)
5216 				ath_mode_init(sc);
5217 			error = 0;
5218 		}
5219 		break;
5220 	case SIOCGATHSTATS:
5221 		/* NB: embed these numbers to get a consistent view */
5222 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5223 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5224 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5225 		ATH_UNLOCK(sc);
5226 		/*
5227 		 * NB: Drop the softc lock in case of a page fault;
5228 		 * we'll accept any potential inconsisentcy in the
5229 		 * statistics.  The alternative is to copy the data
5230 		 * to a local structure.
5231 		 */
5232 		return copyout(&sc->sc_stats,
5233 				ifr->ifr_data, sizeof (sc->sc_stats));
5234 	case SIOCGATHDIAG:
5235 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5236 		break;
5237 	default:
5238 		error = ieee80211_ioctl(ic, cmd, data);
5239 		if (error == ENETRESET) {
5240 			if (IS_RUNNING(ifp) &&
5241 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5242 				ath_init(sc);	/* XXX lose error */
5243 			error = 0;
5244 		}
5245 		if (error == ERESTART)
5246 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5247 		break;
5248 	}
5249 	ATH_UNLOCK(sc);
5250 	return error;
5251 #undef IS_RUNNING
5252 }
5253 
5254 #if NBPFILTER > 0
5255 static void
5256 ath_bpfattach(struct ath_softc *sc)
5257 {
5258 	struct ifnet *ifp = &sc->sc_if;
5259 
5260 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5261 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5262 		&sc->sc_drvbpf);
5263 	/*
5264 	 * Initialize constant fields.
5265 	 * XXX make header lengths a multiple of 32-bits so subsequent
5266 	 *     headers are properly aligned; this is a kludge to keep
5267 	 *     certain applications happy.
5268 	 *
5269 	 * NB: the channel is setup each time we transition to the
5270 	 *     RUN state to avoid filling it in for each frame.
5271 	 */
5272 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5273 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5274 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5275 
5276 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5277 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5278 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5279 }
5280 #endif
5281 
5282 /*
5283  * Announce various information on device/driver attach.
5284  */
5285 static void
5286 ath_announce(struct ath_softc *sc)
5287 {
5288 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5289 	struct ifnet *ifp = &sc->sc_if;
5290 	struct ath_hal *ah = sc->sc_ah;
5291 	u_int modes, cc;
5292 
5293 	if_printf(ifp, "mac %d.%d phy %d.%d",
5294 		ah->ah_macVersion, ah->ah_macRev,
5295 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5296 	/*
5297 	 * Print radio revision(s).  We check the wireless modes
5298 	 * to avoid falsely printing revs for inoperable parts.
5299 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5300 	 */
5301 	ath_hal_getcountrycode(ah, &cc);
5302 	modes = ath_hal_getwirelessmodes(ah, cc);
5303 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5304 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5305 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5306 				ah->ah_analog5GhzRev >> 4,
5307 				ah->ah_analog5GhzRev & 0xf,
5308 				ah->ah_analog2GhzRev >> 4,
5309 				ah->ah_analog2GhzRev & 0xf);
5310 		else
5311 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5312 				ah->ah_analog5GhzRev & 0xf);
5313 	} else
5314 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5315 			ah->ah_analog5GhzRev & 0xf);
5316 	printf("\n");
5317 	if (bootverbose) {
5318 		int i;
5319 		for (i = 0; i <= WME_AC_VO; i++) {
5320 			struct ath_txq *txq = sc->sc_ac2q[i];
5321 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5322 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5323 		}
5324 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5325 			sc->sc_cabq->axq_qnum);
5326 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5327 	}
5328 	if (ath_rxbuf != ATH_RXBUF)
5329 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5330 	if (ath_txbuf != ATH_TXBUF)
5331 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5332 #undef HAL_MODE_DUALBAND
5333 }
5334