xref: /netbsd-src/sys/dev/ic/ath.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: ath.c,v 1.87 2007/10/19 11:59:47 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15  *    redistribution must be conditioned upon including a substantially
16  *    similar Disclaimer requirement for further binary redistribution.
17  * 3. Neither the names of the above-listed copyright holders nor the names
18  *    of any contributors may be used to endorse or promote products derived
19  *    from this software without specific prior written permission.
20  *
21  * Alternatively, this software may be distributed under the terms of the
22  * GNU General Public License ("GPL") version 2 as published by the Free
23  * Software Foundation.
24  *
25  * NO WARRANTY
26  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
30  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
31  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
34  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
36  * THE POSSIBILITY OF SUCH DAMAGES.
37  */
38 
39 #include <sys/cdefs.h>
40 #ifdef __FreeBSD__
41 __FBSDID("$FreeBSD: src/sys/dev/ath/if_ath.c,v 1.104 2005/09/16 10:09:23 ru Exp $");
42 #endif
43 #ifdef __NetBSD__
44 __KERNEL_RCSID(0, "$NetBSD: ath.c,v 1.87 2007/10/19 11:59:47 ad Exp $");
45 #endif
46 
47 /*
48  * Driver for the Atheros Wireless LAN controller.
49  *
50  * This software is derived from work of Atsushi Onoe; his contribution
51  * is greatly appreciated.
52  */
53 
54 #include "opt_inet.h"
55 
56 #ifdef __NetBSD__
57 #include "bpfilter.h"
58 #endif /* __NetBSD__ */
59 
60 #include <sys/param.h>
61 #include <sys/reboot.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/sysctl.h>
65 #include <sys/mbuf.h>
66 #include <sys/malloc.h>
67 #include <sys/lock.h>
68 #include <sys/kernel.h>
69 #include <sys/socket.h>
70 #include <sys/sockio.h>
71 #include <sys/errno.h>
72 #include <sys/callout.h>
73 #include <sys/bus.h>
74 #include <sys/endian.h>
75 
76 #include <net/if.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/if_ether.h>
82 #include <net/if_llc.h>
83 
84 #include <net80211/ieee80211_netbsd.h>
85 #include <net80211/ieee80211_var.h>
86 
87 #if NBPFILTER > 0
88 #include <net/bpf.h>
89 #endif
90 
91 #ifdef INET
92 #include <netinet/in.h>
93 #endif
94 
95 #include <sys/device.h>
96 #include <dev/ic/ath_netbsd.h>
97 
98 #define	AR_DEBUG
99 #include <dev/ic/athvar.h>
100 #include <contrib/dev/ath/ah_desc.h>
101 #include <contrib/dev/ath/ah_devid.h>	/* XXX for softled */
102 #include "athhal_options.h"
103 
104 #ifdef ATH_TX99_DIAG
105 #include <dev/ath/ath_tx99/ath_tx99.h>
106 #endif
107 
108 /* unaligned little endian access */
109 #define LE_READ_2(p)							\
110 	((u_int16_t)							\
111 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112 #define LE_READ_4(p)							\
113 	((u_int32_t)							\
114 	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115 	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116 
117 enum {
118 	ATH_LED_TX,
119 	ATH_LED_RX,
120 	ATH_LED_POLL,
121 };
122 
123 #ifdef	AH_NEED_DESC_SWAP
124 #define	HTOAH32(x)	htole32(x)
125 #else
126 #define	HTOAH32(x)	(x)
127 #endif
128 
129 static int	ath_ifinit(struct ifnet *);
130 static int	ath_init(struct ath_softc *);
131 static void	ath_stop_locked(struct ifnet *, int);
132 static void	ath_stop(struct ifnet *, int);
133 static void	ath_start(struct ifnet *);
134 static int	ath_media_change(struct ifnet *);
135 static void	ath_watchdog(struct ifnet *);
136 static int	ath_ioctl(struct ifnet *, u_long, void *);
137 static void	ath_fatal_proc(void *, int);
138 static void	ath_rxorn_proc(void *, int);
139 static void	ath_bmiss_proc(void *, int);
140 static void	ath_radar_proc(void *, int);
141 static int	ath_key_alloc(struct ieee80211com *,
142 			const struct ieee80211_key *,
143 			ieee80211_keyix *, ieee80211_keyix *);
144 static int	ath_key_delete(struct ieee80211com *,
145 			const struct ieee80211_key *);
146 static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
147 			const u_int8_t mac[IEEE80211_ADDR_LEN]);
148 static void	ath_key_update_begin(struct ieee80211com *);
149 static void	ath_key_update_end(struct ieee80211com *);
150 static void	ath_mode_init(struct ath_softc *);
151 static void	ath_setslottime(struct ath_softc *);
152 static void	ath_updateslot(struct ifnet *);
153 static int	ath_beaconq_setup(struct ath_hal *);
154 static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155 static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
156 static void	ath_beacon_proc(void *, int);
157 static void	ath_bstuck_proc(void *, int);
158 static void	ath_beacon_free(struct ath_softc *);
159 static void	ath_beacon_config(struct ath_softc *);
160 static void	ath_descdma_cleanup(struct ath_softc *sc,
161 			struct ath_descdma *, ath_bufhead *);
162 static int	ath_desc_alloc(struct ath_softc *);
163 static void	ath_desc_free(struct ath_softc *);
164 static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
165 static void	ath_node_free(struct ieee80211_node *);
166 static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
167 static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
168 static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
169 			struct ieee80211_node *ni,
170 			int subtype, int rssi, u_int32_t rstamp);
171 static void	ath_setdefantenna(struct ath_softc *, u_int);
172 static void	ath_rx_proc(void *, int);
173 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
174 static int	ath_tx_setup(struct ath_softc *, int, int);
175 static int	ath_wme_update(struct ieee80211com *);
176 static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
177 static void	ath_tx_cleanup(struct ath_softc *);
178 static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
179 			     struct ath_buf *, struct mbuf *);
180 static void	ath_tx_proc_q0(void *, int);
181 static void	ath_tx_proc_q0123(void *, int);
182 static void	ath_tx_proc(void *, int);
183 static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
184 static void	ath_draintxq(struct ath_softc *);
185 static void	ath_stoprecv(struct ath_softc *);
186 static int	ath_startrecv(struct ath_softc *);
187 static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
188 static void	ath_next_scan(void *);
189 static void	ath_calibrate(void *);
190 static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
191 static void	ath_setup_stationkey(struct ieee80211_node *);
192 static void	ath_newassoc(struct ieee80211_node *, int);
193 static int	ath_getchannels(struct ath_softc *, u_int cc,
194 			HAL_BOOL outdoor, HAL_BOOL xchanmode);
195 static void	ath_led_event(struct ath_softc *, int);
196 static void	ath_update_txpow(struct ath_softc *);
197 static void	ath_freetx(struct mbuf *);
198 
199 static int	ath_rate_setup(struct ath_softc *, u_int mode);
200 static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201 
202 #ifdef __NetBSD__
203 int	ath_enable(struct ath_softc *);
204 void	ath_disable(struct ath_softc *);
205 void	ath_power(int, void *);
206 #endif
207 
208 #if NBPFILTER > 0
209 static void	ath_bpfattach(struct ath_softc *);
210 #endif
211 static void	ath_announce(struct ath_softc *);
212 
213 int ath_dwelltime = 200;		/* 5 channels/second */
214 int ath_calinterval = 30;		/* calibrate every 30 secs */
215 int ath_outdoor = AH_TRUE;		/* outdoor operation */
216 int ath_xchanmode = AH_TRUE;		/* enable extended channels */
217 int ath_countrycode = CTRY_DEFAULT;	/* country code */
218 int ath_regdomain = 0;			/* regulatory domain */
219 int ath_debug = 0;
220 int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
221 int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
222 
223 #ifdef AR_DEBUG
224 enum {
225 	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
226 	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
227 	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
228 	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
229 	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
230 	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
231 	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
232 	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
233 	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
234 	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
235 	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
236 	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
237 	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
238 	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
239 	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
240 	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
241 	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
242 	ATH_DEBUG_LED		= 0x00100000,	/* led management */
243 	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
244 	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
245 	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
246 	ATH_DEBUG_ANY		= 0xffffffff
247 };
248 #define	IFF_DUMPPKTS(sc, m) \
249 	((sc->sc_debug & (m)) || \
250 	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251 #define	DPRINTF(sc, m, fmt, ...) do {				\
252 	if (sc->sc_debug & (m))					\
253 		printf(fmt, __VA_ARGS__);			\
254 } while (0)
255 #define	KEYPRINTF(sc, ix, hk, mac) do {				\
256 	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
257 		ath_keyprint(__func__, ix, hk, mac);		\
258 } while (0)
259 static	void ath_printrxbuf(struct ath_buf *bf, int);
260 static	void ath_printtxbuf(struct ath_buf *bf, int);
261 #else
262 #define	IFF_DUMPPKTS(sc, m) \
263 	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264 #define	DPRINTF(m, fmt, ...)
265 #define	KEYPRINTF(sc, k, ix, mac)
266 #endif
267 
268 #ifdef __NetBSD__
269 int
270 ath_activate(struct device *self, enum devact act)
271 {
272 	struct ath_softc *sc = (struct ath_softc *)self;
273 	int rv = 0, s;
274 
275 	s = splnet();
276 	switch (act) {
277 	case DVACT_ACTIVATE:
278 		rv = EOPNOTSUPP;
279 		break;
280 	case DVACT_DEACTIVATE:
281 		if_deactivate(&sc->sc_if);
282 		break;
283 	}
284 	splx(s);
285 	return rv;
286 }
287 
288 int
289 ath_enable(struct ath_softc *sc)
290 {
291 	if (ATH_IS_ENABLED(sc) == 0) {
292 		if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
293 			printf("%s: device enable failed\n",
294 				sc->sc_dev.dv_xname);
295 			return (EIO);
296 		}
297 		sc->sc_flags |= ATH_ENABLED;
298 	}
299 	return (0);
300 }
301 
302 void
303 ath_disable(struct ath_softc *sc)
304 {
305 	if (!ATH_IS_ENABLED(sc))
306 		return;
307 	if (sc->sc_disable != NULL)
308 		(*sc->sc_disable)(sc);
309 	sc->sc_flags &= ~ATH_ENABLED;
310 }
311 #endif /* __NetBSD__ */
312 
313 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
314 
315 int
316 ath_attach(u_int16_t devid, struct ath_softc *sc)
317 {
318 	struct ifnet *ifp = &sc->sc_if;
319 	struct ieee80211com *ic = &sc->sc_ic;
320 	struct ath_hal *ah = NULL;
321 	HAL_STATUS status;
322 	int error = 0, i;
323 
324 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
325 
326 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
327 
328 	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
329 	if (ah == NULL) {
330 		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
331 			status);
332 		error = ENXIO;
333 		goto bad;
334 	}
335 	if (ah->ah_abi != HAL_ABI_VERSION) {
336 		if_printf(ifp, "HAL ABI mismatch detected "
337 			"(HAL:0x%x != driver:0x%x)\n",
338 			ah->ah_abi, HAL_ABI_VERSION);
339 		error = ENXIO;
340 		goto bad;
341 	}
342 	sc->sc_ah = ah;
343 	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
344 
345 	/*
346 	 * Check if the MAC has multi-rate retry support.
347 	 * We do this by trying to setup a fake extended
348 	 * descriptor.  MAC's that don't have support will
349 	 * return false w/o doing anything.  MAC's that do
350 	 * support it will return true w/o doing anything.
351 	 */
352 	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
353 
354 	/*
355 	 * Check if the device has hardware counters for PHY
356 	 * errors.  If so we need to enable the MIB interrupt
357 	 * so we can act on stat triggers.
358 	 */
359 	if (ath_hal_hwphycounters(ah))
360 		sc->sc_needmib = 1;
361 
362 	/*
363 	 * Get the hardware key cache size.
364 	 */
365 	sc->sc_keymax = ath_hal_keycachesize(ah);
366 	if (sc->sc_keymax > ATH_KEYMAX) {
367 		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
368 			ATH_KEYMAX, sc->sc_keymax);
369 		sc->sc_keymax = ATH_KEYMAX;
370 	}
371 	/*
372 	 * Reset the key cache since some parts do not
373 	 * reset the contents on initial power up.
374 	 */
375 	for (i = 0; i < sc->sc_keymax; i++)
376 		ath_hal_keyreset(ah, i);
377 	/*
378 	 * Mark key cache slots associated with global keys
379 	 * as in use.  If we knew TKIP was not to be used we
380 	 * could leave the +32, +64, and +32+64 slots free.
381 	 * XXX only for splitmic.
382 	 */
383 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
384 		setbit(sc->sc_keymap, i);
385 		setbit(sc->sc_keymap, i+32);
386 		setbit(sc->sc_keymap, i+64);
387 		setbit(sc->sc_keymap, i+32+64);
388 	}
389 
390 	/*
391 	 * Collect the channel list using the default country
392 	 * code and including outdoor channels.  The 802.11 layer
393 	 * is resposible for filtering this list based on settings
394 	 * like the phy mode.
395 	 */
396 	error = ath_getchannels(sc, ath_countrycode,
397 			ath_outdoor, ath_xchanmode);
398 	if (error != 0)
399 		goto bad;
400 
401 	/*
402 	 * Setup rate tables for all potential media types.
403 	 */
404 	ath_rate_setup(sc, IEEE80211_MODE_11A);
405 	ath_rate_setup(sc, IEEE80211_MODE_11B);
406 	ath_rate_setup(sc, IEEE80211_MODE_11G);
407 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
408 	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
409 	/* NB: setup here so ath_rate_update is happy */
410 	ath_setcurmode(sc, IEEE80211_MODE_11A);
411 
412 	/*
413 	 * Allocate tx+rx descriptors and populate the lists.
414 	 */
415 	error = ath_desc_alloc(sc);
416 	if (error != 0) {
417 		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
418 		goto bad;
419 	}
420 	ATH_CALLOUT_INIT(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
421 	ATH_CALLOUT_INIT(&sc->sc_cal_ch, CALLOUT_MPSAFE);
422 	ATH_CALLOUT_INIT(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
423 
424 	ATH_TXBUF_LOCK_INIT(sc);
425 
426 	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
427 	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
428 	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
429 	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
430 	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
431 	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
432 
433 	/*
434 	 * Allocate hardware transmit queues: one queue for
435 	 * beacon frames and one data queue for each QoS
436 	 * priority.  Note that the hal handles reseting
437 	 * these queues at the needed time.
438 	 *
439 	 * XXX PS-Poll
440 	 */
441 	sc->sc_bhalq = ath_beaconq_setup(ah);
442 	if (sc->sc_bhalq == (u_int) -1) {
443 		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
444 		error = EIO;
445 		goto bad2;
446 	}
447 	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
448 	if (sc->sc_cabq == NULL) {
449 		if_printf(ifp, "unable to setup CAB xmit queue!\n");
450 		error = EIO;
451 		goto bad2;
452 	}
453 	/* NB: insure BK queue is the lowest priority h/w queue */
454 	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
455 		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
456 			ieee80211_wme_acnames[WME_AC_BK]);
457 		error = EIO;
458 		goto bad2;
459 	}
460 	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
461 	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
462 	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
463 		/*
464 		 * Not enough hardware tx queues to properly do WME;
465 		 * just punt and assign them all to the same h/w queue.
466 		 * We could do a better job of this if, for example,
467 		 * we allocate queues when we switch from station to
468 		 * AP mode.
469 		 */
470 		if (sc->sc_ac2q[WME_AC_VI] != NULL)
471 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
472 		if (sc->sc_ac2q[WME_AC_BE] != NULL)
473 			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
474 		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
475 		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
476 		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
477 	}
478 
479 	/*
480 	 * Special case certain configurations.  Note the
481 	 * CAB queue is handled by these specially so don't
482 	 * include them when checking the txq setup mask.
483 	 */
484 	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
485 	case 0x01:
486 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
487 		break;
488 	case 0x0f:
489 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
490 		break;
491 	default:
492 		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
493 		break;
494 	}
495 
496 	/*
497 	 * Setup rate control.  Some rate control modules
498 	 * call back to change the anntena state so expose
499 	 * the necessary entry points.
500 	 * XXX maybe belongs in struct ath_ratectrl?
501 	 */
502 	sc->sc_setdefantenna = ath_setdefantenna;
503 	sc->sc_rc = ath_rate_attach(sc);
504 	if (sc->sc_rc == NULL) {
505 		error = EIO;
506 		goto bad2;
507 	}
508 
509 	sc->sc_blinking = 0;
510 	sc->sc_ledstate = 1;
511 	sc->sc_ledon = 0;			/* low true */
512 	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
513 	ATH_CALLOUT_INIT(&sc->sc_ledtimer, CALLOUT_MPSAFE);
514 	/*
515 	 * Auto-enable soft led processing for IBM cards and for
516 	 * 5211 minipci cards.  Users can also manually enable/disable
517 	 * support with a sysctl.
518 	 */
519 	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
520 	if (sc->sc_softled) {
521 		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
522 		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
523 	}
524 
525 	ifp->if_softc = sc;
526 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
527 	ifp->if_start = ath_start;
528 	ifp->if_watchdog = ath_watchdog;
529 	ifp->if_ioctl = ath_ioctl;
530 	ifp->if_init = ath_ifinit;
531 	IFQ_SET_READY(&ifp->if_snd);
532 
533 	ic->ic_ifp = ifp;
534 	ic->ic_reset = ath_reset;
535 	ic->ic_newassoc = ath_newassoc;
536 	ic->ic_updateslot = ath_updateslot;
537 	ic->ic_wme.wme_update = ath_wme_update;
538 	/* XXX not right but it's not used anywhere important */
539 	ic->ic_phytype = IEEE80211_T_OFDM;
540 	ic->ic_opmode = IEEE80211_M_STA;
541 	ic->ic_caps =
542 		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
543 		| IEEE80211_C_HOSTAP		/* hostap mode */
544 		| IEEE80211_C_MONITOR		/* monitor mode */
545 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
546 		| IEEE80211_C_SHSLOT		/* short slot time supported */
547 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
548 		| IEEE80211_C_TXFRAG		/* handle tx frags */
549 		;
550 	/*
551 	 * Query the hal to figure out h/w crypto support.
552 	 */
553 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
554 		ic->ic_caps |= IEEE80211_C_WEP;
555 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
556 		ic->ic_caps |= IEEE80211_C_AES;
557 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
558 		ic->ic_caps |= IEEE80211_C_AES_CCM;
559 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
560 		ic->ic_caps |= IEEE80211_C_CKIP;
561 	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
562 		ic->ic_caps |= IEEE80211_C_TKIP;
563 		/*
564 		 * Check if h/w does the MIC and/or whether the
565 		 * separate key cache entries are required to
566 		 * handle both tx+rx MIC keys.
567 		 */
568 		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
569 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
570 		if (ath_hal_tkipsplit(ah))
571 			sc->sc_splitmic = 1;
572 	}
573 	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
574 	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
575 	/*
576 	 * TPC support can be done either with a global cap or
577 	 * per-packet support.  The latter is not available on
578 	 * all parts.  We're a bit pedantic here as all parts
579 	 * support a global cap.
580 	 */
581 	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
582 		ic->ic_caps |= IEEE80211_C_TXPMGT;
583 
584 	/*
585 	 * Mark WME capability only if we have sufficient
586 	 * hardware queues to do proper priority scheduling.
587 	 */
588 	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
589 		ic->ic_caps |= IEEE80211_C_WME;
590 	/*
591 	 * Check for misc other capabilities.
592 	 */
593 	if (ath_hal_hasbursting(ah))
594 		ic->ic_caps |= IEEE80211_C_BURST;
595 
596 	/*
597 	 * Indicate we need the 802.11 header padded to a
598 	 * 32-bit boundary for 4-address and QoS frames.
599 	 */
600 	ic->ic_flags |= IEEE80211_F_DATAPAD;
601 
602 	/*
603 	 * Query the hal about antenna support.
604 	 */
605 	sc->sc_defant = ath_hal_getdefantenna(ah);
606 
607 	/*
608 	 * Not all chips have the VEOL support we want to
609 	 * use with IBSS beacons; check here for it.
610 	 */
611 	sc->sc_hasveol = ath_hal_hasveol(ah);
612 
613 	/* get mac address from hardware */
614 	ath_hal_getmac(ah, ic->ic_myaddr);
615 
616 	if_attach(ifp);
617 	/* call MI attach routine. */
618 	ieee80211_ifattach(ic);
619 	/* override default methods */
620 	ic->ic_node_alloc = ath_node_alloc;
621 	sc->sc_node_free = ic->ic_node_free;
622 	ic->ic_node_free = ath_node_free;
623 	ic->ic_node_getrssi = ath_node_getrssi;
624 	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
625 	ic->ic_recv_mgmt = ath_recv_mgmt;
626 	sc->sc_newstate = ic->ic_newstate;
627 	ic->ic_newstate = ath_newstate;
628 	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
629 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
630 	ic->ic_crypto.cs_key_delete = ath_key_delete;
631 	ic->ic_crypto.cs_key_set = ath_key_set;
632 	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
633 	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
634 	/* complete initialization */
635 	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
636 
637 #if NBPFILTER > 0
638 	ath_bpfattach(sc);
639 #endif
640 
641 #ifdef __NetBSD__
642 	sc->sc_flags |= ATH_ATTACHED;
643 	sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
644 	    ath_power, sc);
645 	if (sc->sc_powerhook == NULL)
646 		printf("%s: WARNING: unable to establish power hook\n",
647 			sc->sc_dev.dv_xname);
648 #endif
649 
650 	/*
651 	 * Setup dynamic sysctl's now that country code and
652 	 * regdomain are available from the hal.
653 	 */
654 	ath_sysctlattach(sc);
655 
656 	ieee80211_announce(ic);
657 	ath_announce(sc);
658 	return 0;
659 bad2:
660 	ath_tx_cleanup(sc);
661 	ath_desc_free(sc);
662 bad:
663 	if (ah)
664 		ath_hal_detach(ah);
665 	sc->sc_invalid = 1;
666 	return error;
667 }
668 
669 int
670 ath_detach(struct ath_softc *sc)
671 {
672 	struct ifnet *ifp = &sc->sc_if;
673 	int s;
674 
675 	if ((sc->sc_flags & ATH_ATTACHED) == 0)
676 		return (0);
677 
678 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
679 		__func__, ifp->if_flags);
680 
681 	s = splnet();
682 	ath_stop(ifp, 1);
683 #if NBPFILTER > 0
684 	bpfdetach(ifp);
685 #endif
686 	/*
687 	 * NB: the order of these is important:
688 	 * o call the 802.11 layer before detaching the hal to
689 	 *   insure callbacks into the driver to delete global
690 	 *   key cache entries can be handled
691 	 * o reclaim the tx queue data structures after calling
692 	 *   the 802.11 layer as we'll get called back to reclaim
693 	 *   node state and potentially want to use them
694 	 * o to cleanup the tx queues the hal is called, so detach
695 	 *   it last
696 	 * Other than that, it's straightforward...
697 	 */
698 	ieee80211_ifdetach(&sc->sc_ic);
699 #ifdef ATH_TX99_DIAG
700 	if (sc->sc_tx99 != NULL)
701 		sc->sc_tx99->detach(sc->sc_tx99);
702 #endif
703 	ath_rate_detach(sc->sc_rc);
704 	ath_desc_free(sc);
705 	ath_tx_cleanup(sc);
706 	sysctl_teardown(&sc->sc_sysctllog);
707 	ath_hal_detach(sc->sc_ah);
708 	if_detach(ifp);
709 	splx(s);
710 	powerhook_disestablish(sc->sc_powerhook);
711 
712 	return 0;
713 }
714 
715 #ifdef __NetBSD__
716 void
717 ath_power(int why, void *arg)
718 {
719 	struct ath_softc *sc = arg;
720 	int s;
721 
722 	DPRINTF(sc, ATH_DEBUG_ANY, "ath_power(%d)\n", why);
723 
724 	s = splnet();
725 	switch (why) {
726 	case PWR_SUSPEND:
727 	case PWR_STANDBY:
728 		ath_suspend(sc, why);
729 		break;
730 	case PWR_RESUME:
731 		ath_resume(sc, why);
732 		break;
733 	case PWR_SOFTSUSPEND:
734 	case PWR_SOFTSTANDBY:
735 	case PWR_SOFTRESUME:
736 		break;
737 	}
738 	splx(s);
739 }
740 #endif
741 
742 void
743 ath_suspend(struct ath_softc *sc, int why)
744 {
745 	struct ifnet *ifp = &sc->sc_if;
746 
747 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
748 		__func__, ifp->if_flags);
749 
750 	ath_stop(ifp, 1);
751 	if (sc->sc_power != NULL)
752 		(*sc->sc_power)(sc, why);
753 }
754 
755 void
756 ath_resume(struct ath_softc *sc, int why)
757 {
758 	struct ifnet *ifp = &sc->sc_if;
759 
760 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
761 		__func__, ifp->if_flags);
762 
763 	if (ifp->if_flags & IFF_UP) {
764 		ath_init(sc);
765 #if 0
766 		(void)ath_intr(sc);
767 #endif
768 		if (sc->sc_power != NULL)
769 			(*sc->sc_power)(sc, why);
770 		if (ifp->if_flags & IFF_RUNNING)
771 			ath_start(ifp);
772 	}
773 	if (sc->sc_softled) {
774 		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
775 		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
776 	}
777 }
778 
779 void
780 ath_shutdown(void *arg)
781 {
782 	struct ath_softc *sc = arg;
783 
784 	ath_stop(&sc->sc_if, 1);
785 }
786 
787 /*
788  * Interrupt handler.  Most of the actual processing is deferred.
789  */
790 int
791 ath_intr(void *arg)
792 {
793 	struct ath_softc *sc = arg;
794 	struct ifnet *ifp = &sc->sc_if;
795 	struct ath_hal *ah = sc->sc_ah;
796 	HAL_INT status;
797 
798 	if (sc->sc_invalid) {
799 		/*
800 		 * The hardware is not ready/present, don't touch anything.
801 		 * Note this can happen early on if the IRQ is shared.
802 		 */
803 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
804 		return 0;
805 	}
806 
807 	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
808 		return 0;
809 
810 	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
811 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
812 			__func__, ifp->if_flags);
813 		ath_hal_getisr(ah, &status);	/* clear ISR */
814 		ath_hal_intrset(ah, 0);		/* disable further intr's */
815 		return 1; /* XXX */
816 	}
817 	/*
818 	 * Figure out the reason(s) for the interrupt.  Note
819 	 * that the hal returns a pseudo-ISR that may include
820 	 * bits we haven't explicitly enabled so we mask the
821 	 * value to insure we only process bits we requested.
822 	 */
823 	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
824 	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
825 	status &= sc->sc_imask;			/* discard unasked for bits */
826 	if (status & HAL_INT_FATAL) {
827 		/*
828 		 * Fatal errors are unrecoverable.  Typically
829 		 * these are caused by DMA errors.  Unfortunately
830 		 * the exact reason is not (presently) returned
831 		 * by the hal.
832 		 */
833 		sc->sc_stats.ast_hardware++;
834 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
835 		TASK_RUN_OR_ENQUEUE(&sc->sc_fataltask);
836 	} else if (status & HAL_INT_RXORN) {
837 		sc->sc_stats.ast_rxorn++;
838 		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
839 		TASK_RUN_OR_ENQUEUE(&sc->sc_rxorntask);
840 	} else {
841 		if (status & HAL_INT_SWBA) {
842 			/*
843 			 * Software beacon alert--time to send a beacon.
844 			 * Handle beacon transmission directly; deferring
845 			 * this is too slow to meet timing constraints
846 			 * under load.
847 			 */
848 			ath_beacon_proc(sc, 0);
849 		}
850 		if (status & HAL_INT_RXEOL) {
851 			/*
852 			 * NB: the hardware should re-read the link when
853 			 *     RXE bit is written, but it doesn't work at
854 			 *     least on older hardware revs.
855 			 */
856 			sc->sc_stats.ast_rxeol++;
857 			sc->sc_rxlink = NULL;
858 		}
859 		if (status & HAL_INT_TXURN) {
860 			sc->sc_stats.ast_txurn++;
861 			/* bump tx trigger level */
862 			ath_hal_updatetxtriglevel(ah, AH_TRUE);
863 		}
864 		if (status & HAL_INT_RX)
865 			TASK_RUN_OR_ENQUEUE(&sc->sc_rxtask);
866 		if (status & HAL_INT_TX)
867 			TASK_RUN_OR_ENQUEUE(&sc->sc_txtask);
868 		if (status & HAL_INT_BMISS) {
869 			sc->sc_stats.ast_bmiss++;
870 			TASK_RUN_OR_ENQUEUE(&sc->sc_bmisstask);
871 		}
872 		if (status & HAL_INT_MIB) {
873 			sc->sc_stats.ast_mib++;
874 			/*
875 			 * Disable interrupts until we service the MIB
876 			 * interrupt; otherwise it will continue to fire.
877 			 */
878 			ath_hal_intrset(ah, 0);
879 			/*
880 			 * Let the hal handle the event.  We assume it will
881 			 * clear whatever condition caused the interrupt.
882 			 */
883 			ath_hal_mibevent(ah, &sc->sc_halstats);
884 			ath_hal_intrset(ah, sc->sc_imask);
885 		}
886 	}
887 	return 1;
888 }
889 
890 /* Swap transmit descriptor.
891  * if AH_NEED_DESC_SWAP flag is not defined this becomes a "null"
892  * function.
893  */
894 static inline void
895 ath_desc_swap(struct ath_desc *ds)
896 {
897 #ifdef AH_NEED_DESC_SWAP
898 	ds->ds_link = htole32(ds->ds_link);
899 	ds->ds_data = htole32(ds->ds_data);
900 	ds->ds_ctl0 = htole32(ds->ds_ctl0);
901 	ds->ds_ctl1 = htole32(ds->ds_ctl1);
902 	ds->ds_hw[0] = htole32(ds->ds_hw[0]);
903 	ds->ds_hw[1] = htole32(ds->ds_hw[1]);
904 #endif
905 }
906 
907 static void
908 ath_fatal_proc(void *arg, int pending)
909 {
910 	struct ath_softc *sc = arg;
911 	struct ifnet *ifp = &sc->sc_if;
912 
913 	if_printf(ifp, "hardware error; resetting\n");
914 	ath_reset(ifp);
915 }
916 
917 static void
918 ath_rxorn_proc(void *arg, int pending)
919 {
920 	struct ath_softc *sc = arg;
921 	struct ifnet *ifp = &sc->sc_if;
922 
923 	if_printf(ifp, "rx FIFO overrun; resetting\n");
924 	ath_reset(ifp);
925 }
926 
927 static void
928 ath_bmiss_proc(void *arg, int pending)
929 {
930 	struct ath_softc *sc = arg;
931 	struct ieee80211com *ic = &sc->sc_ic;
932 
933 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
934 	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
935 		("unexpect operating mode %u", ic->ic_opmode));
936 	if (ic->ic_state == IEEE80211_S_RUN) {
937 		u_int64_t lastrx = sc->sc_lastrx;
938 		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
939 
940 		DPRINTF(sc, ATH_DEBUG_BEACON,
941 		    "%s: tsf %" PRIu64 " lastrx %" PRId64
942 		    " (%" PRIu64 ") bmiss %u\n",
943 		    __func__, tsf, tsf - lastrx, lastrx,
944 		    ic->ic_bmisstimeout*1024);
945 		/*
946 		 * Workaround phantom bmiss interrupts by sanity-checking
947 		 * the time of our last rx'd frame.  If it is within the
948 		 * beacon miss interval then ignore the interrupt.  If it's
949 		 * truly a bmiss we'll get another interrupt soon and that'll
950 		 * be dispatched up for processing.
951 		 */
952 		if (tsf - lastrx > ic->ic_bmisstimeout*1024) {
953 			NET_LOCK_GIANT();
954 			ieee80211_beacon_miss(ic);
955 			NET_UNLOCK_GIANT();
956 		} else
957 			sc->sc_stats.ast_bmiss_phantom++;
958 	}
959 }
960 
961 static void
962 ath_radar_proc(void *arg, int pending)
963 {
964 	struct ath_softc *sc = arg;
965 	struct ifnet *ifp = &sc->sc_if;
966 	struct ath_hal *ah = sc->sc_ah;
967 	HAL_CHANNEL hchan;
968 
969 	if (ath_hal_procdfs(ah, &hchan)) {
970 		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
971 			hchan.channel, hchan.channelFlags, hchan.privFlags);
972 		/*
973 		 * Initiate channel change.
974 		 */
975 		/* XXX not yet */
976 	}
977 }
978 
979 static u_int
980 ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
981 {
982 #define	N(a)	(sizeof(a) / sizeof(a[0]))
983 	static const u_int modeflags[] = {
984 		0,			/* IEEE80211_MODE_AUTO */
985 		CHANNEL_A,		/* IEEE80211_MODE_11A */
986 		CHANNEL_B,		/* IEEE80211_MODE_11B */
987 		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
988 		0,			/* IEEE80211_MODE_FH */
989 		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
990 		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
991 	};
992 	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
993 
994 	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
995 	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
996 	return modeflags[mode];
997 #undef N
998 }
999 
1000 static int
1001 ath_ifinit(struct ifnet *ifp)
1002 {
1003 	struct ath_softc *sc = (struct ath_softc *)ifp->if_softc;
1004 
1005 	return ath_init(sc);
1006 }
1007 
1008 static int
1009 ath_init(struct ath_softc *sc)
1010 {
1011 	struct ifnet *ifp = &sc->sc_if;
1012 	struct ieee80211com *ic = &sc->sc_ic;
1013 	struct ath_hal *ah = sc->sc_ah;
1014 	HAL_STATUS status;
1015 	int error = 0;
1016 
1017 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1018 		__func__, ifp->if_flags);
1019 
1020 	ATH_LOCK(sc);
1021 
1022 	if ((error = ath_enable(sc)) != 0)
1023 		return error;
1024 
1025 	/*
1026 	 * Stop anything previously setup.  This is safe
1027 	 * whether this is the first time through or not.
1028 	 */
1029 	ath_stop_locked(ifp, 0);
1030 
1031 	/*
1032 	 * The basic interface to setting the hardware in a good
1033 	 * state is ``reset''.  On return the hardware is known to
1034 	 * be powered up and with interrupts disabled.  This must
1035 	 * be followed by initialization of the appropriate bits
1036 	 * and then setup of the interrupt mask.
1037 	 */
1038 	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
1039 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1040 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1041 		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1042 			status);
1043 		error = EIO;
1044 		goto done;
1045 	}
1046 
1047 	/*
1048 	 * This is needed only to setup initial state
1049 	 * but it's best done after a reset.
1050 	 */
1051 	ath_update_txpow(sc);
1052 	/*
1053 	 * Likewise this is set during reset so update
1054 	 * state cached in the driver.
1055 	 */
1056 	sc->sc_diversity = ath_hal_getdiversity(ah);
1057 	sc->sc_calinterval = 1;
1058 	sc->sc_caltries = 0;
1059 
1060 	/*
1061 	 * Setup the hardware after reset: the key cache
1062 	 * is filled as needed and the receive engine is
1063 	 * set going.  Frame transmit is handled entirely
1064 	 * in the frame output path; there's nothing to do
1065 	 * here except setup the interrupt mask.
1066 	 */
1067 	if ((error = ath_startrecv(sc)) != 0) {
1068 		if_printf(ifp, "unable to start recv logic\n");
1069 		goto done;
1070 	}
1071 
1072 	/*
1073 	 * Enable interrupts.
1074 	 */
1075 	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1076 		  | HAL_INT_RXEOL | HAL_INT_RXORN
1077 		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1078 	/*
1079 	 * Enable MIB interrupts when there are hardware phy counters.
1080 	 * Note we only do this (at the moment) for station mode.
1081 	 */
1082 	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1083 		sc->sc_imask |= HAL_INT_MIB;
1084 	ath_hal_intrset(ah, sc->sc_imask);
1085 
1086 	ifp->if_flags |= IFF_RUNNING;
1087 	ic->ic_state = IEEE80211_S_INIT;
1088 
1089 	/*
1090 	 * The hardware should be ready to go now so it's safe
1091 	 * to kick the 802.11 state machine as it's likely to
1092 	 * immediately call back to us to send mgmt frames.
1093 	 */
1094 	ath_chan_change(sc, ic->ic_curchan);
1095 #ifdef ATH_TX99_DIAG
1096 	if (sc->sc_tx99 != NULL)
1097 		sc->sc_tx99->start(sc->sc_tx99);
1098 	else
1099 #endif
1100 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1101 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1102 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1103 	} else
1104 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1105 done:
1106 	ATH_UNLOCK(sc);
1107 	return error;
1108 }
1109 
1110 static void
1111 ath_stop_locked(struct ifnet *ifp, int disable)
1112 {
1113 	struct ath_softc *sc = ifp->if_softc;
1114 	struct ieee80211com *ic = &sc->sc_ic;
1115 	struct ath_hal *ah = sc->sc_ah;
1116 
1117 	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1118 		__func__, sc->sc_invalid, ifp->if_flags);
1119 
1120 	ATH_LOCK_ASSERT(sc);
1121 	if (ifp->if_flags & IFF_RUNNING) {
1122 		/*
1123 		 * Shutdown the hardware and driver:
1124 		 *    reset 802.11 state machine
1125 		 *    turn off timers
1126 		 *    disable interrupts
1127 		 *    turn off the radio
1128 		 *    clear transmit machinery
1129 		 *    clear receive machinery
1130 		 *    drain and release tx queues
1131 		 *    reclaim beacon resources
1132 		 *    power down hardware
1133 		 *
1134 		 * Note that some of this work is not possible if the
1135 		 * hardware is gone (invalid).
1136 		 */
1137 #ifdef ATH_TX99_DIAG
1138 		if (sc->sc_tx99 != NULL)
1139 			sc->sc_tx99->stop(sc->sc_tx99);
1140 #endif
1141 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1142 		ifp->if_flags &= ~IFF_RUNNING;
1143 		ifp->if_timer = 0;
1144 		if (!sc->sc_invalid) {
1145 			if (sc->sc_softled) {
1146 				callout_stop(&sc->sc_ledtimer);
1147 				ath_hal_gpioset(ah, sc->sc_ledpin,
1148 					!sc->sc_ledon);
1149 				sc->sc_blinking = 0;
1150 			}
1151 			ath_hal_intrset(ah, 0);
1152 		}
1153 		ath_draintxq(sc);
1154 		if (!sc->sc_invalid) {
1155 			ath_stoprecv(sc);
1156 			ath_hal_phydisable(ah);
1157 		} else
1158 			sc->sc_rxlink = NULL;
1159 		IF_PURGE(&ifp->if_snd);
1160 		ath_beacon_free(sc);
1161 		if (disable)
1162 			ath_disable(sc);
1163 	}
1164 }
1165 
1166 static void
1167 ath_stop(struct ifnet *ifp, int disable)
1168 {
1169 	struct ath_softc *sc = ifp->if_softc;
1170 
1171 	ATH_LOCK(sc);
1172 	ath_stop_locked(ifp, disable);
1173 	if (!sc->sc_invalid) {
1174 		/*
1175 		 * Set the chip in full sleep mode.  Note that we are
1176 		 * careful to do this only when bringing the interface
1177 		 * completely to a stop.  When the chip is in this state
1178 		 * it must be carefully woken up or references to
1179 		 * registers in the PCI clock domain may freeze the bus
1180 		 * (and system).  This varies by chip and is mostly an
1181 		 * issue with newer parts that go to sleep more quickly.
1182 		 */
1183 		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1184 	}
1185 	ATH_UNLOCK(sc);
1186 }
1187 
1188 /*
1189  * Reset the hardware w/o losing operational state.  This is
1190  * basically a more efficient way of doing ath_stop, ath_init,
1191  * followed by state transitions to the current 802.11
1192  * operational state.  Used to recover from various errors and
1193  * to reset or reload hardware state.
1194  */
1195 int
1196 ath_reset(struct ifnet *ifp)
1197 {
1198 	struct ath_softc *sc = ifp->if_softc;
1199 	struct ieee80211com *ic = &sc->sc_ic;
1200 	struct ath_hal *ah = sc->sc_ah;
1201 	struct ieee80211_channel *c;
1202 	HAL_STATUS status;
1203 
1204 	/*
1205 	 * Convert to a HAL channel description with the flags
1206 	 * constrained to reflect the current operating mode.
1207 	 */
1208 	c = ic->ic_curchan;
1209 	sc->sc_curchan.channel = c->ic_freq;
1210 	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1211 
1212 	ath_hal_intrset(ah, 0);		/* disable interrupts */
1213 	ath_draintxq(sc);		/* stop xmit side */
1214 	ath_stoprecv(sc);		/* stop recv side */
1215 	/* NB: indicate channel change so we do a full reset */
1216 	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1217 		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1218 			__func__, status);
1219 	ath_update_txpow(sc);		/* update tx power state */
1220 	sc->sc_diversity = ath_hal_getdiversity(ah);
1221 	sc->sc_calinterval = 1;
1222 	sc->sc_caltries = 0;
1223 	if (ath_startrecv(sc) != 0)	/* restart recv */
1224 		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1225 	/*
1226 	 * We may be doing a reset in response to an ioctl
1227 	 * that changes the channel so update any state that
1228 	 * might change as a result.
1229 	 */
1230 	ath_chan_change(sc, c);
1231 	if (ic->ic_state == IEEE80211_S_RUN)
1232 		ath_beacon_config(sc);	/* restart beacons */
1233 	ath_hal_intrset(ah, sc->sc_imask);
1234 
1235 	ath_start(ifp);			/* restart xmit */
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Cleanup driver resources when we run out of buffers
1241  * while processing fragments; return the tx buffers
1242  * allocated and drop node references.
1243  */
1244 static void
1245 ath_txfrag_cleanup(struct ath_softc *sc,
1246 	ath_bufhead *frags, struct ieee80211_node *ni)
1247 {
1248 	struct ath_buf *bf;
1249 
1250 	ATH_TXBUF_LOCK_ASSERT(sc);
1251 
1252 	while ((bf = STAILQ_FIRST(frags)) != NULL) {
1253 		STAILQ_REMOVE_HEAD(frags, bf_list);
1254 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1255 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
1256 		ieee80211_node_decref(ni);
1257 	}
1258 }
1259 
1260 /*
1261  * Setup xmit of a fragmented frame.  Allocate a buffer
1262  * for each frag and bump the node reference count to
1263  * reflect the held reference to be setup by ath_tx_start.
1264  */
1265 static int
1266 ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1267 	struct mbuf *m0, struct ieee80211_node *ni)
1268 {
1269 	struct mbuf *m;
1270 	struct ath_buf *bf;
1271 
1272 	ATH_TXBUF_LOCK(sc);
1273 	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1274 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1275 		if (bf == NULL) {       /* out of buffers, cleanup */
1276 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1277 				__func__);
1278 			sc->sc_if.if_flags |= IFF_OACTIVE;
1279 			ath_txfrag_cleanup(sc, frags, ni);
1280 			break;
1281 		}
1282 		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1283 		ieee80211_node_incref(ni);
1284 		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1285 	}
1286 	ATH_TXBUF_UNLOCK(sc);
1287 
1288 	return !STAILQ_EMPTY(frags);
1289 }
1290 
1291 static void
1292 ath_start(struct ifnet *ifp)
1293 {
1294 	struct ath_softc *sc = ifp->if_softc;
1295 	struct ath_hal *ah = sc->sc_ah;
1296 	struct ieee80211com *ic = &sc->sc_ic;
1297 	struct ieee80211_node *ni;
1298 	struct ath_buf *bf;
1299 	struct mbuf *m, *next;
1300 	struct ieee80211_frame *wh;
1301 	struct ether_header *eh;
1302 	ath_bufhead frags;
1303 
1304 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1305 		return;
1306 	for (;;) {
1307 		/*
1308 		 * Grab a TX buffer and associated resources.
1309 		 */
1310 		ATH_TXBUF_LOCK(sc);
1311 		bf = STAILQ_FIRST(&sc->sc_txbuf);
1312 		if (bf != NULL)
1313 			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1314 		ATH_TXBUF_UNLOCK(sc);
1315 		if (bf == NULL) {
1316 			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1317 				__func__);
1318 			sc->sc_stats.ast_tx_qstop++;
1319 			ifp->if_flags |= IFF_OACTIVE;
1320 			break;
1321 		}
1322 		/*
1323 		 * Poll the management queue for frames; they
1324 		 * have priority over normal data frames.
1325 		 */
1326 		IF_DEQUEUE(&ic->ic_mgtq, m);
1327 		if (m == NULL) {
1328 			/*
1329 			 * No data frames go out unless we're associated.
1330 			 */
1331 			if (ic->ic_state != IEEE80211_S_RUN) {
1332 				DPRINTF(sc, ATH_DEBUG_XMIT,
1333 				    "%s: discard data packet, state %s\n",
1334 				    __func__,
1335 				    ieee80211_state_name[ic->ic_state]);
1336 				sc->sc_stats.ast_tx_discard++;
1337 				ATH_TXBUF_LOCK(sc);
1338 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1339 				ATH_TXBUF_UNLOCK(sc);
1340 				break;
1341 			}
1342 			IFQ_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1343 			if (m == NULL) {
1344 				ATH_TXBUF_LOCK(sc);
1345 				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1346 				ATH_TXBUF_UNLOCK(sc);
1347 				break;
1348 			}
1349 			STAILQ_INIT(&frags);
1350 			/*
1351 			 * Find the node for the destination so we can do
1352 			 * things like power save and fast frames aggregation.
1353 			 */
1354 			if (m->m_len < sizeof(struct ether_header) &&
1355 			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1356 				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1357 				ni = NULL;
1358 				goto bad;
1359 			}
1360 			eh = mtod(m, struct ether_header *);
1361 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1362 			if (ni == NULL) {
1363 				/* NB: ieee80211_find_txnode does stat+msg */
1364 				m_freem(m);
1365 				goto bad;
1366 			}
1367 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1368 			    (m->m_flags & M_PWR_SAV) == 0) {
1369 				/*
1370 				 * Station in power save mode; pass the frame
1371 				 * to the 802.11 layer and continue.  We'll get
1372 				 * the frame back when the time is right.
1373 				 */
1374 				ieee80211_pwrsave(ic, ni, m);
1375 				goto reclaim;
1376 			}
1377 			/* calculate priority so we can find the tx queue */
1378 			if (ieee80211_classify(ic, m, ni)) {
1379 				DPRINTF(sc, ATH_DEBUG_XMIT,
1380 					"%s: discard, classification failure\n",
1381 					__func__);
1382 				m_freem(m);
1383 				goto bad;
1384 			}
1385 			ifp->if_opackets++;
1386 
1387 #if NBPFILTER > 0
1388 			if (ifp->if_bpf)
1389 				bpf_mtap(ifp->if_bpf, m);
1390 #endif
1391 			/*
1392 			 * Encapsulate the packet in prep for transmission.
1393 			 */
1394 			m = ieee80211_encap(ic, m, ni);
1395 			if (m == NULL) {
1396 				DPRINTF(sc, ATH_DEBUG_XMIT,
1397 					"%s: encapsulation failure\n",
1398 					__func__);
1399 				sc->sc_stats.ast_tx_encap++;
1400 				goto bad;
1401 			}
1402 			/*
1403 			 * Check for fragmentation.  If this has frame
1404 			 * has been broken up verify we have enough
1405 			 * buffers to send all the fragments so all
1406 			 * go out or none...
1407 			 */
1408 			if ((m->m_flags & M_FRAG) &&
1409 			    !ath_txfrag_setup(sc, &frags, m, ni)) {
1410 				DPRINTF(sc, ATH_DEBUG_ANY,
1411 				    "%s: out of txfrag buffers\n", __func__);
1412 				ic->ic_stats.is_tx_nobuf++;     /* XXX */
1413 				ath_freetx(m);
1414 				goto bad;
1415 			}
1416 		} else {
1417 			/*
1418 			 * Hack!  The referenced node pointer is in the
1419 			 * rcvif field of the packet header.  This is
1420 			 * placed there by ieee80211_mgmt_output because
1421 			 * we need to hold the reference with the frame
1422 			 * and there's no other way (other than packet
1423 			 * tags which we consider too expensive to use)
1424 			 * to pass it along.
1425 			 */
1426 			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1427 			m->m_pkthdr.rcvif = NULL;
1428 
1429 			wh = mtod(m, struct ieee80211_frame *);
1430 			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1431 			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1432 				/* fill time stamp */
1433 				u_int64_t tsf;
1434 				u_int32_t *tstamp;
1435 
1436 				tsf = ath_hal_gettsf64(ah);
1437 				/* XXX: adjust 100us delay to xmit */
1438 				tsf += 100;
1439 				tstamp = (u_int32_t *)&wh[1];
1440 				tstamp[0] = htole32(tsf & 0xffffffff);
1441 				tstamp[1] = htole32(tsf >> 32);
1442 			}
1443 			sc->sc_stats.ast_tx_mgmt++;
1444 		}
1445 
1446 	nextfrag:
1447 		next = m->m_nextpkt;
1448 		if (ath_tx_start(sc, ni, bf, m)) {
1449 	bad:
1450 			ifp->if_oerrors++;
1451 	reclaim:
1452 			ATH_TXBUF_LOCK(sc);
1453 			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1454 			ath_txfrag_cleanup(sc, &frags, ni);
1455 			ATH_TXBUF_UNLOCK(sc);
1456 			if (ni != NULL)
1457 				ieee80211_free_node(ni);
1458 			continue;
1459 		}
1460 		if (next != NULL) {
1461 			m = next;
1462 			bf = STAILQ_FIRST(&frags);
1463 			KASSERT(bf != NULL, ("no buf for txfrag"));
1464 			STAILQ_REMOVE_HEAD(&frags, bf_list);
1465 			goto nextfrag;
1466 		}
1467 
1468 		ifp->if_timer = 1;
1469 	}
1470 }
1471 
1472 static int
1473 ath_media_change(struct ifnet *ifp)
1474 {
1475 #define	IS_UP(ifp) \
1476 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
1477 	int error;
1478 
1479 	error = ieee80211_media_change(ifp);
1480 	if (error == ENETRESET) {
1481 		if (IS_UP(ifp))
1482 			ath_init(ifp->if_softc);	/* XXX lose error */
1483 		error = 0;
1484 	}
1485 	return error;
1486 #undef IS_UP
1487 }
1488 
1489 #ifdef AR_DEBUG
1490 static void
1491 ath_keyprint(const char *tag, u_int ix,
1492 	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1493 {
1494 	static const char *ciphers[] = {
1495 		"WEP",
1496 		"AES-OCB",
1497 		"AES-CCM",
1498 		"CKIP",
1499 		"TKIP",
1500 		"CLR",
1501 	};
1502 	int i, n;
1503 
1504 	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1505 	for (i = 0, n = hk->kv_len; i < n; i++)
1506 		printf("%02x", hk->kv_val[i]);
1507 	printf(" mac %s", ether_sprintf(mac));
1508 	if (hk->kv_type == HAL_CIPHER_TKIP) {
1509 		printf(" mic ");
1510 		for (i = 0; i < sizeof(hk->kv_mic); i++)
1511 			printf("%02x", hk->kv_mic[i]);
1512 	}
1513 	printf("\n");
1514 }
1515 #endif
1516 
1517 /*
1518  * Set a TKIP key into the hardware.  This handles the
1519  * potential distribution of key state to multiple key
1520  * cache slots for TKIP.
1521  */
1522 static int
1523 ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1524 	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1525 {
1526 #define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1527 	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1528 	struct ath_hal *ah = sc->sc_ah;
1529 
1530 	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1531 		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1532 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1533 	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1534 		/*
1535 		 * TX key goes at first index, RX key at the rx index.
1536 		 * The hal handles the MIC keys at index+64.
1537 		 */
1538 		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1539 		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1540 		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1541 			return 0;
1542 
1543 		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1544 		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1545 		/* XXX delete tx key on failure? */
1546 		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1547 	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1548 		/*
1549 		 * TX/RX key goes at first index.
1550 		 * The hal handles the MIC keys are index+64.
1551 		 */
1552 		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1553 			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1554 		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1555 		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1556 	}
1557 	return 0;
1558 #undef IEEE80211_KEY_XR
1559 }
1560 
1561 /*
1562  * Set a net80211 key into the hardware.  This handles the
1563  * potential distribution of key state to multiple key
1564  * cache slots for TKIP with hardware MIC support.
1565  */
1566 static int
1567 ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1568 	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1569 	struct ieee80211_node *bss)
1570 {
1571 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1572 	static const u_int8_t ciphermap[] = {
1573 		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1574 		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1575 		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1576 		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1577 		(u_int8_t) -1,		/* 4 is not allocated */
1578 		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1579 		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1580 	};
1581 	struct ath_hal *ah = sc->sc_ah;
1582 	const struct ieee80211_cipher *cip = k->wk_cipher;
1583 	u_int8_t gmac[IEEE80211_ADDR_LEN];
1584 	const u_int8_t *mac;
1585 	HAL_KEYVAL hk;
1586 
1587 	memset(&hk, 0, sizeof(hk));
1588 	/*
1589 	 * Software crypto uses a "clear key" so non-crypto
1590 	 * state kept in the key cache are maintained and
1591 	 * so that rx frames have an entry to match.
1592 	 */
1593 	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1594 		KASSERT(cip->ic_cipher < N(ciphermap),
1595 			("invalid cipher type %u", cip->ic_cipher));
1596 		hk.kv_type = ciphermap[cip->ic_cipher];
1597 		hk.kv_len = k->wk_keylen;
1598 		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1599 	} else
1600 		hk.kv_type = HAL_CIPHER_CLR;
1601 
1602 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1603 		/*
1604 		 * Group keys on hardware that supports multicast frame
1605 		 * key search use a mac that is the sender's address with
1606 		 * the high bit set instead of the app-specified address.
1607 		 */
1608 		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1609 		gmac[0] |= 0x80;
1610 		mac = gmac;
1611 	} else
1612 		mac = mac0;
1613 
1614 	if (hk.kv_type == HAL_CIPHER_TKIP &&
1615 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1616 	    sc->sc_splitmic) {
1617 		return ath_keyset_tkip(sc, k, &hk, mac);
1618 	} else {
1619 		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1620 		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1621 	}
1622 #undef N
1623 }
1624 
1625 /*
1626  * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1627  * each key, one for decrypt/encrypt and the other for the MIC.
1628  */
1629 static u_int16_t
1630 key_alloc_2pair(struct ath_softc *sc,
1631 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1632 {
1633 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1634 	u_int i, keyix;
1635 
1636 	KASSERT(sc->sc_splitmic, ("key cache !split"));
1637 	/* XXX could optimize */
1638 	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1639 		u_int8_t b = sc->sc_keymap[i];
1640 		if (b != 0xff) {
1641 			/*
1642 			 * One or more slots in this byte are free.
1643 			 */
1644 			keyix = i*NBBY;
1645 			while (b & 1) {
1646 		again:
1647 				keyix++;
1648 				b >>= 1;
1649 			}
1650 			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1651 			if (isset(sc->sc_keymap, keyix+32) ||
1652 			    isset(sc->sc_keymap, keyix+64) ||
1653 			    isset(sc->sc_keymap, keyix+32+64)) {
1654 				/* full pair unavailable */
1655 				/* XXX statistic */
1656 				if (keyix == (i+1)*NBBY) {
1657 					/* no slots were appropriate, advance */
1658 					continue;
1659 				}
1660 				goto again;
1661 			}
1662 			setbit(sc->sc_keymap, keyix);
1663 			setbit(sc->sc_keymap, keyix+64);
1664 			setbit(sc->sc_keymap, keyix+32);
1665 			setbit(sc->sc_keymap, keyix+32+64);
1666 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1667 				"%s: key pair %u,%u %u,%u\n",
1668 				__func__, keyix, keyix+64,
1669 				keyix+32, keyix+32+64);
1670 			*txkeyix = keyix;
1671 			*rxkeyix = keyix+32;
1672 			return 1;
1673 		}
1674 	}
1675 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1676 	return 0;
1677 #undef N
1678 }
1679 
1680 /*
1681  * Allocate a single key cache slot.
1682  */
1683 static int
1684 key_alloc_single(struct ath_softc *sc,
1685 	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1686 {
1687 #define	N(a)	(sizeof(a)/sizeof(a[0]))
1688 	u_int i, keyix;
1689 
1690 	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1691 	for (i = 0; i < N(sc->sc_keymap); i++) {
1692 		u_int8_t b = sc->sc_keymap[i];
1693 		if (b != 0xff) {
1694 			/*
1695 			 * One or more slots are free.
1696 			 */
1697 			keyix = i*NBBY;
1698 			while (b & 1)
1699 				keyix++, b >>= 1;
1700 			setbit(sc->sc_keymap, keyix);
1701 			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1702 				__func__, keyix);
1703 			*txkeyix = *rxkeyix = keyix;
1704 			return 1;
1705 		}
1706 	}
1707 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1708 	return 0;
1709 #undef N
1710 }
1711 
1712 /*
1713  * Allocate one or more key cache slots for a uniacst key.  The
1714  * key itself is needed only to identify the cipher.  For hardware
1715  * TKIP with split cipher+MIC keys we allocate two key cache slot
1716  * pairs so that we can setup separate TX and RX MIC keys.  Note
1717  * that the MIC key for a TKIP key at slot i is assumed by the
1718  * hardware to be at slot i+64.  This limits TKIP keys to the first
1719  * 64 entries.
1720  */
1721 static int
1722 ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1723 	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1724 {
1725 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1726 
1727 	/*
1728 	 * Group key allocation must be handled specially for
1729 	 * parts that do not support multicast key cache search
1730 	 * functionality.  For those parts the key id must match
1731 	 * the h/w key index so lookups find the right key.  On
1732 	 * parts w/ the key search facility we install the sender's
1733 	 * mac address (with the high bit set) and let the hardware
1734 	 * find the key w/o using the key id.  This is preferred as
1735 	 * it permits us to support multiple users for adhoc and/or
1736 	 * multi-station operation.
1737 	 */
1738 	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1739 		if (!(&ic->ic_nw_keys[0] <= k &&
1740 		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1741 			/* should not happen */
1742 			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1743 				"%s: bogus group key\n", __func__);
1744 			return 0;
1745 		}
1746 		/*
1747 		 * XXX we pre-allocate the global keys so
1748 		 * have no way to check if they've already been allocated.
1749 		 */
1750 		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1751 		return 1;
1752 	}
1753 
1754 	/*
1755 	 * We allocate two pair for TKIP when using the h/w to do
1756 	 * the MIC.  For everything else, including software crypto,
1757 	 * we allocate a single entry.  Note that s/w crypto requires
1758 	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1759 	 * not support pass-through cache entries and we map all
1760 	 * those requests to slot 0.
1761 	 */
1762 	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1763 		return key_alloc_single(sc, keyix, rxkeyix);
1764 	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1765 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1766 		return key_alloc_2pair(sc, keyix, rxkeyix);
1767 	} else {
1768 		return key_alloc_single(sc, keyix, rxkeyix);
1769 	}
1770 }
1771 
1772 /*
1773  * Delete an entry in the key cache allocated by ath_key_alloc.
1774  */
1775 static int
1776 ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1777 {
1778 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1779 	struct ath_hal *ah = sc->sc_ah;
1780 	const struct ieee80211_cipher *cip = k->wk_cipher;
1781 	u_int keyix = k->wk_keyix;
1782 
1783 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1784 
1785 	ath_hal_keyreset(ah, keyix);
1786 	/*
1787 	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1788 	 */
1789 	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1790 	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1791 		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1792 	if (keyix >= IEEE80211_WEP_NKID) {
1793 		/*
1794 		 * Don't touch keymap entries for global keys so
1795 		 * they are never considered for dynamic allocation.
1796 		 */
1797 		clrbit(sc->sc_keymap, keyix);
1798 		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1799 		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1800 		    sc->sc_splitmic) {
1801 			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1802 			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1803 			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1804 		}
1805 	}
1806 	return 1;
1807 }
1808 
1809 /*
1810  * Set the key cache contents for the specified key.  Key cache
1811  * slot(s) must already have been allocated by ath_key_alloc.
1812  */
1813 static int
1814 ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1815 	const u_int8_t mac[IEEE80211_ADDR_LEN])
1816 {
1817 	struct ath_softc *sc = ic->ic_ifp->if_softc;
1818 
1819 	return ath_keyset(sc, k, mac, ic->ic_bss);
1820 }
1821 
1822 /*
1823  * Block/unblock tx+rx processing while a key change is done.
1824  * We assume the caller serializes key management operations
1825  * so we only need to worry about synchronization with other
1826  * uses that originate in the driver.
1827  */
1828 static void
1829 ath_key_update_begin(struct ieee80211com *ic)
1830 {
1831 	struct ifnet *ifp = ic->ic_ifp;
1832 	struct ath_softc *sc = ifp->if_softc;
1833 
1834 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1835 #if 0
1836 	tasklet_disable(&sc->sc_rxtq);
1837 #endif
1838 	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1839 }
1840 
1841 static void
1842 ath_key_update_end(struct ieee80211com *ic)
1843 {
1844 	struct ifnet *ifp = ic->ic_ifp;
1845 	struct ath_softc *sc = ifp->if_softc;
1846 
1847 	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1848 	IF_UNLOCK(&ifp->if_snd);
1849 #if 0
1850 	tasklet_enable(&sc->sc_rxtq);
1851 #endif
1852 }
1853 
1854 /*
1855  * Calculate the receive filter according to the
1856  * operating mode and state:
1857  *
1858  * o always accept unicast, broadcast, and multicast traffic
1859  * o maintain current state of phy error reception (the hal
1860  *   may enable phy error frames for noise immunity work)
1861  * o probe request frames are accepted only when operating in
1862  *   hostap, adhoc, or monitor modes
1863  * o enable promiscuous mode according to the interface state
1864  * o accept beacons:
1865  *   - when operating in adhoc mode so the 802.11 layer creates
1866  *     node table entries for peers,
1867  *   - when operating in station mode for collecting rssi data when
1868  *     the station is otherwise quiet, or
1869  *   - when scanning
1870  */
1871 static u_int32_t
1872 ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1873 {
1874 	struct ieee80211com *ic = &sc->sc_ic;
1875 	struct ath_hal *ah = sc->sc_ah;
1876 	struct ifnet *ifp = &sc->sc_if;
1877 	u_int32_t rfilt;
1878 
1879 	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1880 	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1881 	if (ic->ic_opmode != IEEE80211_M_STA)
1882 		rfilt |= HAL_RX_FILTER_PROBEREQ;
1883 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1884 	    (ifp->if_flags & IFF_PROMISC))
1885 		rfilt |= HAL_RX_FILTER_PROM;
1886 	if (ic->ic_opmode == IEEE80211_M_STA ||
1887 	    ic->ic_opmode == IEEE80211_M_IBSS ||
1888 	    state == IEEE80211_S_SCAN)
1889 		rfilt |= HAL_RX_FILTER_BEACON;
1890 	return rfilt;
1891 }
1892 
1893 static void
1894 ath_mcastfilter_accum(void *dl, u_int32_t *mfilt)
1895 {
1896 	u_int32_t val;
1897 	u_int8_t pos;
1898 
1899 	/* calculate XOR of eight 6bit values */
1900 	val = LE_READ_4((char *)dl + 0);
1901 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1902 	val = LE_READ_4((char *)dl + 3);
1903 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1904 	pos &= 0x3f;
1905 	mfilt[pos / 32] |= (1 << (pos % 32));
1906 }
1907 
1908 static void
1909 ath_mcastfilter_compute(struct ath_softc *sc, u_int32_t *mfilt)
1910 {
1911 	struct ifnet *ifp = &sc->sc_if;
1912 	struct ether_multi *enm;
1913 	struct ether_multistep estep;
1914 
1915 	mfilt[0] = mfilt[1] = 0;
1916 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1917 	while (enm != NULL) {
1918 		/* XXX Punt on ranges. */
1919 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi)) {
1920 			mfilt[0] = mfilt[1] = ~((u_int32_t)0);
1921 			ifp->if_flags |= IFF_ALLMULTI;
1922 			return;
1923 		}
1924 		ath_mcastfilter_accum(enm->enm_addrlo, mfilt);
1925 		ETHER_NEXT_MULTI(estep, enm);
1926 	}
1927 	ifp->if_flags &= ~IFF_ALLMULTI;
1928 }
1929 
1930 static void
1931 ath_mode_init(struct ath_softc *sc)
1932 {
1933 	struct ieee80211com *ic = &sc->sc_ic;
1934 	struct ath_hal *ah = sc->sc_ah;
1935 	u_int32_t rfilt, mfilt[2];
1936 	int i;
1937 
1938 	/* configure rx filter */
1939 	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1940 	ath_hal_setrxfilter(ah, rfilt);
1941 
1942 	/* configure operational mode */
1943 	ath_hal_setopmode(ah);
1944 
1945 	/* Write keys to hardware; it may have been powered down. */
1946 	ath_key_update_begin(ic);
1947 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1948 		ath_key_set(ic,
1949 			    &ic->ic_crypto.cs_nw_keys[i],
1950 			    ic->ic_myaddr);
1951 	}
1952 	ath_key_update_end(ic);
1953 
1954 	/*
1955 	 * Handle any link-level address change.  Note that we only
1956 	 * need to force ic_myaddr; any other addresses are handled
1957 	 * as a byproduct of the ifnet code marking the interface
1958 	 * down then up.
1959 	 *
1960 	 * XXX should get from lladdr instead of arpcom but that's more work
1961 	 */
1962 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(sc->sc_if.if_sadl));
1963 	ath_hal_setmac(ah, ic->ic_myaddr);
1964 
1965 	/* calculate and install multicast filter */
1966 #ifdef __FreeBSD__
1967 	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1968 		mfilt[0] = mfilt[1] = 0;
1969 		IF_ADDR_LOCK(ifp);
1970 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1971 			void *dl;
1972 
1973 			/* calculate XOR of eight 6bit values */
1974 			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1975 			val = LE_READ_4((char *)dl + 0);
1976 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1977 			val = LE_READ_4((char *)dl + 3);
1978 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1979 			pos &= 0x3f;
1980 			mfilt[pos / 32] |= (1 << (pos % 32));
1981 		}
1982 		IF_ADDR_UNLOCK(ifp);
1983 	} else {
1984 		mfilt[0] = mfilt[1] = ~0;
1985 	}
1986 #endif
1987 #ifdef __NetBSD__
1988 	ath_mcastfilter_compute(sc, mfilt);
1989 #endif
1990 	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1991 	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1992 		__func__, rfilt, mfilt[0], mfilt[1]);
1993 }
1994 
1995 /*
1996  * Set the slot time based on the current setting.
1997  */
1998 static void
1999 ath_setslottime(struct ath_softc *sc)
2000 {
2001 	struct ieee80211com *ic = &sc->sc_ic;
2002 	struct ath_hal *ah = sc->sc_ah;
2003 
2004 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2005 		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
2006 	else
2007 		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
2008 	sc->sc_updateslot = OK;
2009 }
2010 
2011 /*
2012  * Callback from the 802.11 layer to update the
2013  * slot time based on the current setting.
2014  */
2015 static void
2016 ath_updateslot(struct ifnet *ifp)
2017 {
2018 	struct ath_softc *sc = ifp->if_softc;
2019 	struct ieee80211com *ic = &sc->sc_ic;
2020 
2021 	/*
2022 	 * When not coordinating the BSS, change the hardware
2023 	 * immediately.  For other operation we defer the change
2024 	 * until beacon updates have propagated to the stations.
2025 	 */
2026 	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2027 		sc->sc_updateslot = UPDATE;
2028 	else
2029 		ath_setslottime(sc);
2030 }
2031 
2032 /*
2033  * Setup a h/w transmit queue for beacons.
2034  */
2035 static int
2036 ath_beaconq_setup(struct ath_hal *ah)
2037 {
2038 	HAL_TXQ_INFO qi;
2039 
2040 	memset(&qi, 0, sizeof(qi));
2041 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2042 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2043 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2044 	/* NB: for dynamic turbo, don't enable any other interrupts */
2045 	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2046 	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2047 }
2048 
2049 /*
2050  * Setup the transmit queue parameters for the beacon queue.
2051  */
2052 static int
2053 ath_beaconq_config(struct ath_softc *sc)
2054 {
2055 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2056 	struct ieee80211com *ic = &sc->sc_ic;
2057 	struct ath_hal *ah = sc->sc_ah;
2058 	HAL_TXQ_INFO qi;
2059 
2060 	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2061 	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2062 		/*
2063 		 * Always burst out beacon and CAB traffic.
2064 		 */
2065 		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2066 		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2067 		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2068 	} else {
2069 		struct wmeParams *wmep =
2070 			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2071 		/*
2072 		 * Adhoc mode; important thing is to use 2x cwmin.
2073 		 */
2074 		qi.tqi_aifs = wmep->wmep_aifsn;
2075 		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2076 		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2077 	}
2078 
2079 	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2080 		device_printf(sc->sc_dev, "unable to update parameters for "
2081 			"beacon hardware queue!\n");
2082 		return 0;
2083 	} else {
2084 		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2085 		return 1;
2086 	}
2087 #undef ATH_EXPONENT_TO_VALUE
2088 }
2089 
2090 /*
2091  * Allocate and setup an initial beacon frame.
2092  */
2093 static int
2094 ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2095 {
2096 	struct ieee80211com *ic = ni->ni_ic;
2097 	struct ath_buf *bf;
2098 	struct mbuf *m;
2099 	int error;
2100 
2101 	bf = STAILQ_FIRST(&sc->sc_bbuf);
2102 	if (bf == NULL) {
2103 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
2104 		sc->sc_stats.ast_be_nombuf++;	/* XXX */
2105 		return ENOMEM;			/* XXX */
2106 	}
2107 	/*
2108 	 * NB: the beacon data buffer must be 32-bit aligned;
2109 	 * we assume the mbuf routines will return us something
2110 	 * with this alignment (perhaps should assert).
2111 	 */
2112 	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
2113 	if (m == NULL) {
2114 		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
2115 			__func__);
2116 		sc->sc_stats.ast_be_nombuf++;
2117 		return ENOMEM;
2118 	}
2119 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2120 				     BUS_DMA_NOWAIT);
2121 	if (error == 0) {
2122 		bf->bf_m = m;
2123 		bf->bf_node = ieee80211_ref_node(ni);
2124 	} else {
2125 		m_freem(m);
2126 	}
2127 	return error;
2128 }
2129 
2130 /*
2131  * Setup the beacon frame for transmit.
2132  */
2133 static void
2134 ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2135 {
2136 #define	USE_SHPREAMBLE(_ic) \
2137 	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2138 		== IEEE80211_F_SHPREAMBLE)
2139 	struct ieee80211_node *ni = bf->bf_node;
2140 	struct ieee80211com *ic = ni->ni_ic;
2141 	struct mbuf *m = bf->bf_m;
2142 	struct ath_hal *ah = sc->sc_ah;
2143 	struct ath_desc *ds;
2144 	int flags, antenna;
2145 	const HAL_RATE_TABLE *rt;
2146 	u_int8_t rix, rate;
2147 
2148 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
2149 		__func__, m, m->m_len);
2150 
2151 	/* setup descriptors */
2152 	ds = bf->bf_desc;
2153 
2154 	flags = HAL_TXDESC_NOACK;
2155 	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2156 		ds->ds_link = HTOAH32(bf->bf_daddr);	/* self-linked */
2157 		flags |= HAL_TXDESC_VEOL;
2158 		/*
2159 		 * Let hardware handle antenna switching unless
2160 		 * the user has selected a transmit antenna
2161 		 * (sc_txantenna is not 0).
2162 		 */
2163 		antenna = sc->sc_txantenna;
2164 	} else {
2165 		ds->ds_link = 0;
2166 		/*
2167 		 * Switch antenna every 4 beacons, unless the user
2168 		 * has selected a transmit antenna (sc_txantenna
2169 		 * is not 0).
2170 		 *
2171 		 * XXX assumes two antenna
2172 		 */
2173 		if (sc->sc_txantenna == 0)
2174 			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2175 		else
2176 			antenna = sc->sc_txantenna;
2177 	}
2178 
2179 	KASSERT(bf->bf_nseg == 1,
2180 		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2181 	ds->ds_data = bf->bf_segs[0].ds_addr;
2182 	/*
2183 	 * Calculate rate code.
2184 	 * XXX everything at min xmit rate
2185 	 */
2186 	rix = sc->sc_minrateix;
2187 	rt = sc->sc_currates;
2188 	rate = rt->info[rix].rateCode;
2189 	if (USE_SHPREAMBLE(ic))
2190 		rate |= rt->info[rix].shortPreamble;
2191 	ath_hal_setuptxdesc(ah, ds
2192 		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2193 		, sizeof(struct ieee80211_frame)/* header length */
2194 		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2195 		, ni->ni_txpower		/* txpower XXX */
2196 		, rate, 1			/* series 0 rate/tries */
2197 		, HAL_TXKEYIX_INVALID		/* no encryption */
2198 		, antenna			/* antenna mode */
2199 		, flags				/* no ack, veol for beacons */
2200 		, 0				/* rts/cts rate */
2201 		, 0				/* rts/cts duration */
2202 	);
2203 	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2204 	ath_hal_filltxdesc(ah, ds
2205 		, roundup(m->m_len, 4)		/* buffer length */
2206 		, AH_TRUE			/* first segment */
2207 		, AH_TRUE			/* last segment */
2208 		, ds				/* first descriptor */
2209 	);
2210 
2211 	/* NB: The desc swap function becomes void,
2212 	 * if descriptor swapping is not enabled
2213 	 */
2214 	ath_desc_swap(ds);
2215 
2216 #undef USE_SHPREAMBLE
2217 }
2218 
2219 /*
2220  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2221  * frame contents are done as needed and the slot time is
2222  * also adjusted based on current state.
2223  */
2224 static void
2225 ath_beacon_proc(void *arg, int pending)
2226 {
2227 	struct ath_softc *sc = arg;
2228 	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2229 	struct ieee80211_node *ni = bf->bf_node;
2230 	struct ieee80211com *ic = ni->ni_ic;
2231 	struct ath_hal *ah = sc->sc_ah;
2232 	struct mbuf *m;
2233 	int ncabq, error, otherant;
2234 
2235 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2236 		__func__, pending);
2237 
2238 	if (ic->ic_opmode == IEEE80211_M_STA ||
2239 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2240 	    bf == NULL || bf->bf_m == NULL) {
2241 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2242 			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2243 		return;
2244 	}
2245 	/*
2246 	 * Check if the previous beacon has gone out.  If
2247 	 * not don't try to post another, skip this period
2248 	 * and wait for the next.  Missed beacons indicate
2249 	 * a problem and should not occur.  If we miss too
2250 	 * many consecutive beacons reset the device.
2251 	 */
2252 	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2253 		sc->sc_bmisscount++;
2254 		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2255 			"%s: missed %u consecutive beacons\n",
2256 			__func__, sc->sc_bmisscount);
2257 		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2258 			TASK_RUN_OR_ENQUEUE(&sc->sc_bstucktask);
2259 		return;
2260 	}
2261 	if (sc->sc_bmisscount != 0) {
2262 		DPRINTF(sc, ATH_DEBUG_BEACON,
2263 			"%s: resume beacon xmit after %u misses\n",
2264 			__func__, sc->sc_bmisscount);
2265 		sc->sc_bmisscount = 0;
2266 	}
2267 
2268 	/*
2269 	 * Update dynamic beacon contents.  If this returns
2270 	 * non-zero then we need to remap the memory because
2271 	 * the beacon frame changed size (probably because
2272 	 * of the TIM bitmap).
2273 	 */
2274 	m = bf->bf_m;
2275 	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2276 	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2277 		/* XXX too conservative? */
2278 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2279 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
2280 					     BUS_DMA_NOWAIT);
2281 		if (error != 0) {
2282 			if_printf(&sc->sc_if,
2283 			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
2284 			    __func__, error);
2285 			return;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * Handle slot time change when a non-ERP station joins/leaves
2291 	 * an 11g network.  The 802.11 layer notifies us via callback,
2292 	 * we mark updateslot, then wait one beacon before effecting
2293 	 * the change.  This gives associated stations at least one
2294 	 * beacon interval to note the state change.
2295 	 */
2296 	/* XXX locking */
2297 	if (sc->sc_updateslot == UPDATE)
2298 		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2299 	else if (sc->sc_updateslot == COMMIT)
2300 		ath_setslottime(sc);		/* commit change to h/w */
2301 
2302 	/*
2303 	 * Check recent per-antenna transmit statistics and flip
2304 	 * the default antenna if noticeably more frames went out
2305 	 * on the non-default antenna.
2306 	 * XXX assumes 2 anntenae
2307 	 */
2308 	otherant = sc->sc_defant & 1 ? 2 : 1;
2309 	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2310 		ath_setdefantenna(sc, otherant);
2311 	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2312 
2313 	/*
2314 	 * Construct tx descriptor.
2315 	 */
2316 	ath_beacon_setup(sc, bf);
2317 
2318 	/*
2319 	 * Stop any current dma and put the new frame on the queue.
2320 	 * This should never fail since we check above that no frames
2321 	 * are still pending on the queue.
2322 	 */
2323 	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2324 		DPRINTF(sc, ATH_DEBUG_ANY,
2325 			"%s: beacon queue %u did not stop?\n",
2326 			__func__, sc->sc_bhalq);
2327 	}
2328 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2329 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2330 
2331 	/*
2332 	 * Enable the CAB queue before the beacon queue to
2333 	 * insure cab frames are triggered by this beacon.
2334 	 */
2335 	if (ncabq != 0 && (sc->sc_boff.bo_tim[4] & 1))	/* NB: only at DTIM */
2336 		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2337 	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2338 	ath_hal_txstart(ah, sc->sc_bhalq);
2339 	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2340 	    "%s: TXDP[%u] = %" PRIx64 " (%p)\n", __func__,
2341 	    sc->sc_bhalq, (uint64_t)bf->bf_daddr, bf->bf_desc);
2342 
2343 	sc->sc_stats.ast_be_xmit++;
2344 }
2345 
2346 /*
2347  * Reset the hardware after detecting beacons have stopped.
2348  */
2349 static void
2350 ath_bstuck_proc(void *arg, int pending)
2351 {
2352 	struct ath_softc *sc = arg;
2353 	struct ifnet *ifp = &sc->sc_if;
2354 
2355 	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2356 		sc->sc_bmisscount);
2357 	ath_reset(ifp);
2358 }
2359 
2360 /*
2361  * Reclaim beacon resources.
2362  */
2363 static void
2364 ath_beacon_free(struct ath_softc *sc)
2365 {
2366 	struct ath_buf *bf;
2367 
2368 	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2369 		if (bf->bf_m != NULL) {
2370 			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2371 			m_freem(bf->bf_m);
2372 			bf->bf_m = NULL;
2373 		}
2374 		if (bf->bf_node != NULL) {
2375 			ieee80211_free_node(bf->bf_node);
2376 			bf->bf_node = NULL;
2377 		}
2378 	}
2379 }
2380 
2381 /*
2382  * Configure the beacon and sleep timers.
2383  *
2384  * When operating as an AP this resets the TSF and sets
2385  * up the hardware to notify us when we need to issue beacons.
2386  *
2387  * When operating in station mode this sets up the beacon
2388  * timers according to the timestamp of the last received
2389  * beacon and the current TSF, configures PCF and DTIM
2390  * handling, programs the sleep registers so the hardware
2391  * will wakeup in time to receive beacons, and configures
2392  * the beacon miss handling so we'll receive a BMISS
2393  * interrupt when we stop seeing beacons from the AP
2394  * we've associated with.
2395  */
2396 static void
2397 ath_beacon_config(struct ath_softc *sc)
2398 {
2399 #define	TSF_TO_TU(_h,_l) \
2400 	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2401 #define	FUDGE	2
2402 	struct ath_hal *ah = sc->sc_ah;
2403 	struct ieee80211com *ic = &sc->sc_ic;
2404 	struct ieee80211_node *ni = ic->ic_bss;
2405 	u_int32_t nexttbtt, intval, tsftu;
2406 	u_int64_t tsf;
2407 
2408 	/* extract tstamp from last beacon and convert to TU */
2409 	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2410 			     LE_READ_4(ni->ni_tstamp.data));
2411 	/* NB: the beacon interval is kept internally in TU's */
2412 	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2413 	if (nexttbtt == 0)		/* e.g. for ap mode */
2414 		nexttbtt = intval;
2415 	else if (intval)		/* NB: can be 0 for monitor mode */
2416 		nexttbtt = roundup(nexttbtt, intval);
2417 	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2418 		__func__, nexttbtt, intval, ni->ni_intval);
2419 	if (ic->ic_opmode == IEEE80211_M_STA) {
2420 		HAL_BEACON_STATE bs;
2421 		int dtimperiod, dtimcount;
2422 		int cfpperiod, cfpcount;
2423 
2424 		/*
2425 		 * Setup dtim and cfp parameters according to
2426 		 * last beacon we received (which may be none).
2427 		 */
2428 		dtimperiod = ni->ni_dtim_period;
2429 		if (dtimperiod <= 0)		/* NB: 0 if not known */
2430 			dtimperiod = 1;
2431 		dtimcount = ni->ni_dtim_count;
2432 		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2433 			dtimcount = 0;		/* XXX? */
2434 		cfpperiod = 1;			/* NB: no PCF support yet */
2435 		cfpcount = 0;
2436 		/*
2437 		 * Pull nexttbtt forward to reflect the current
2438 		 * TSF and calculate dtim+cfp state for the result.
2439 		 */
2440 		tsf = ath_hal_gettsf64(ah);
2441 		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2442 		do {
2443 			nexttbtt += intval;
2444 			if (--dtimcount < 0) {
2445 				dtimcount = dtimperiod - 1;
2446 				if (--cfpcount < 0)
2447 					cfpcount = cfpperiod - 1;
2448 			}
2449 		} while (nexttbtt < tsftu);
2450 		memset(&bs, 0, sizeof(bs));
2451 		bs.bs_intval = intval;
2452 		bs.bs_nexttbtt = nexttbtt;
2453 		bs.bs_dtimperiod = dtimperiod*intval;
2454 		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2455 		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2456 		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2457 		bs.bs_cfpmaxduration = 0;
2458 #if 0
2459 		/*
2460 		 * The 802.11 layer records the offset to the DTIM
2461 		 * bitmap while receiving beacons; use it here to
2462 		 * enable h/w detection of our AID being marked in
2463 		 * the bitmap vector (to indicate frames for us are
2464 		 * pending at the AP).
2465 		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2466 		 * XXX enable based on h/w rev for newer chips
2467 		 */
2468 		bs.bs_timoffset = ni->ni_timoff;
2469 #endif
2470 		/*
2471 		 * Calculate the number of consecutive beacons to miss
2472 		 * before taking a BMISS interrupt.  The configuration
2473 		 * is specified in ms, so we need to convert that to
2474 		 * TU's and then calculate based on the beacon interval.
2475 		 * Note that we clamp the result to at most 10 beacons.
2476 		 */
2477 		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2478 		if (bs.bs_bmissthreshold > 10)
2479 			bs.bs_bmissthreshold = 10;
2480 		else if (bs.bs_bmissthreshold <= 0)
2481 			bs.bs_bmissthreshold = 1;
2482 
2483 		/*
2484 		 * Calculate sleep duration.  The configuration is
2485 		 * given in ms.  We insure a multiple of the beacon
2486 		 * period is used.  Also, if the sleep duration is
2487 		 * greater than the DTIM period then it makes senses
2488 		 * to make it a multiple of that.
2489 		 *
2490 		 * XXX fixed at 100ms
2491 		 */
2492 		bs.bs_sleepduration =
2493 			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2494 		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2495 			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2496 
2497 		DPRINTF(sc, ATH_DEBUG_BEACON,
2498 			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2499 			, __func__
2500 			, tsf, tsftu
2501 			, bs.bs_intval
2502 			, bs.bs_nexttbtt
2503 			, bs.bs_dtimperiod
2504 			, bs.bs_nextdtim
2505 			, bs.bs_bmissthreshold
2506 			, bs.bs_sleepduration
2507 			, bs.bs_cfpperiod
2508 			, bs.bs_cfpmaxduration
2509 			, bs.bs_cfpnext
2510 			, bs.bs_timoffset
2511 		);
2512 		ath_hal_intrset(ah, 0);
2513 		ath_hal_beacontimers(ah, &bs);
2514 		sc->sc_imask |= HAL_INT_BMISS;
2515 		ath_hal_intrset(ah, sc->sc_imask);
2516 	} else {
2517 		ath_hal_intrset(ah, 0);
2518 		if (nexttbtt == intval)
2519 			intval |= HAL_BEACON_RESET_TSF;
2520 		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2521 			/*
2522 			 * In IBSS mode enable the beacon timers but only
2523 			 * enable SWBA interrupts if we need to manually
2524 			 * prepare beacon frames.  Otherwise we use a
2525 			 * self-linked tx descriptor and let the hardware
2526 			 * deal with things.
2527 			 */
2528 			intval |= HAL_BEACON_ENA;
2529 			if (!sc->sc_hasveol)
2530 				sc->sc_imask |= HAL_INT_SWBA;
2531 			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2532 				/*
2533 				 * Pull nexttbtt forward to reflect
2534 				 * the current TSF.
2535 				 */
2536 				tsf = ath_hal_gettsf64(ah);
2537 				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2538 				do {
2539 					nexttbtt += intval;
2540 				} while (nexttbtt < tsftu);
2541 			}
2542 			ath_beaconq_config(sc);
2543 		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2544 			/*
2545 			 * In AP mode we enable the beacon timers and
2546 			 * SWBA interrupts to prepare beacon frames.
2547 			 */
2548 			intval |= HAL_BEACON_ENA;
2549 			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2550 			ath_beaconq_config(sc);
2551 		}
2552 		ath_hal_beaconinit(ah, nexttbtt, intval);
2553 		sc->sc_bmisscount = 0;
2554 		ath_hal_intrset(ah, sc->sc_imask);
2555 		/*
2556 		 * When using a self-linked beacon descriptor in
2557 		 * ibss mode load it once here.
2558 		 */
2559 		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2560 			ath_beacon_proc(sc, 0);
2561 	}
2562 	sc->sc_syncbeacon = 0;
2563 #undef UNDEF
2564 #undef TSF_TO_TU
2565 }
2566 
2567 static int
2568 ath_descdma_setup(struct ath_softc *sc,
2569 	struct ath_descdma *dd, ath_bufhead *head,
2570 	const char *name, int nbuf, int ndesc)
2571 {
2572 #define	DS2PHYS(_dd, _ds) \
2573 	((_dd)->dd_desc_paddr + ((char *)(_ds) - (char *)(_dd)->dd_desc))
2574 	struct ifnet *ifp = &sc->sc_if;
2575 	struct ath_desc *ds;
2576 	struct ath_buf *bf;
2577 	int i, bsize, error;
2578 
2579 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2580 	    __func__, name, nbuf, ndesc);
2581 
2582 	dd->dd_name = name;
2583 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2584 
2585 	/*
2586 	 * Setup DMA descriptor area.
2587 	 */
2588 	dd->dd_dmat = sc->sc_dmat;
2589 
2590 	error = bus_dmamem_alloc(dd->dd_dmat, dd->dd_desc_len, PAGE_SIZE,
2591 	    0, &dd->dd_dseg, 1, &dd->dd_dnseg, 0);
2592 
2593 	if (error != 0) {
2594 		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2595 			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2596 		goto fail0;
2597 	}
2598 
2599 	error = bus_dmamem_map(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg,
2600 	    dd->dd_desc_len, (void **)&dd->dd_desc, BUS_DMA_COHERENT);
2601 	if (error != 0) {
2602 		if_printf(ifp, "unable to map %u %s descriptors, error = %u\n",
2603 		    nbuf * ndesc, dd->dd_name, error);
2604 		goto fail1;
2605 	}
2606 
2607 	/* allocate descriptors */
2608 	error = bus_dmamap_create(dd->dd_dmat, dd->dd_desc_len, 1,
2609 	    dd->dd_desc_len, 0, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2610 	if (error != 0) {
2611 		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2612 			"error %u\n", dd->dd_name, error);
2613 		goto fail2;
2614 	}
2615 
2616 	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, dd->dd_desc,
2617 	    dd->dd_desc_len, NULL, BUS_DMA_NOWAIT);
2618 	if (error != 0) {
2619 		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2620 			dd->dd_name, error);
2621 		goto fail3;
2622 	}
2623 
2624 	ds = dd->dd_desc;
2625 	dd->dd_desc_paddr = dd->dd_dmamap->dm_segs[0].ds_addr;
2626 	DPRINTF(sc, ATH_DEBUG_RESET,
2627 	    "%s: %s DMA map: %p (%lu) -> %" PRIx64 " (%lu)\n",
2628 	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2629 	    (uint64_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2630 
2631 	/* allocate rx buffers */
2632 	bsize = sizeof(struct ath_buf) * nbuf;
2633 	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2634 	if (bf == NULL) {
2635 		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2636 			dd->dd_name, bsize);
2637 		goto fail4;
2638 	}
2639 	dd->dd_bufptr = bf;
2640 
2641 	STAILQ_INIT(head);
2642 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2643 		bf->bf_desc = ds;
2644 		bf->bf_daddr = DS2PHYS(dd, ds);
2645 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, ndesc,
2646 				MCLBYTES, 0, BUS_DMA_NOWAIT, &bf->bf_dmamap);
2647 		if (error != 0) {
2648 			if_printf(ifp, "unable to create dmamap for %s "
2649 				"buffer %u, error %u\n", dd->dd_name, i, error);
2650 			ath_descdma_cleanup(sc, dd, head);
2651 			return error;
2652 		}
2653 		STAILQ_INSERT_TAIL(head, bf, bf_list);
2654 	}
2655 	return 0;
2656 fail4:
2657 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2658 fail3:
2659 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2660 fail2:
2661 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2662 fail1:
2663 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2664 fail0:
2665 	memset(dd, 0, sizeof(*dd));
2666 	return error;
2667 #undef DS2PHYS
2668 }
2669 
2670 static void
2671 ath_descdma_cleanup(struct ath_softc *sc,
2672 	struct ath_descdma *dd, ath_bufhead *head)
2673 {
2674 	struct ath_buf *bf;
2675 	struct ieee80211_node *ni;
2676 
2677 	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2678 	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2679 	bus_dmamem_unmap(dd->dd_dmat, (void *)dd->dd_desc, dd->dd_desc_len);
2680 	bus_dmamem_free(dd->dd_dmat, &dd->dd_dseg, dd->dd_dnseg);
2681 
2682 	STAILQ_FOREACH(bf, head, bf_list) {
2683 		if (bf->bf_m) {
2684 			m_freem(bf->bf_m);
2685 			bf->bf_m = NULL;
2686 		}
2687 		if (bf->bf_dmamap != NULL) {
2688 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2689 			bf->bf_dmamap = NULL;
2690 		}
2691 		ni = bf->bf_node;
2692 		bf->bf_node = NULL;
2693 		if (ni != NULL) {
2694 			/*
2695 			 * Reclaim node reference.
2696 			 */
2697 			ieee80211_free_node(ni);
2698 		}
2699 	}
2700 
2701 	STAILQ_INIT(head);
2702 	free(dd->dd_bufptr, M_ATHDEV);
2703 	memset(dd, 0, sizeof(*dd));
2704 }
2705 
2706 static int
2707 ath_desc_alloc(struct ath_softc *sc)
2708 {
2709 	int error;
2710 
2711 	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2712 			"rx", ath_rxbuf, 1);
2713 	if (error != 0)
2714 		return error;
2715 
2716 	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2717 			"tx", ath_txbuf, ATH_TXDESC);
2718 	if (error != 0) {
2719 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2720 		return error;
2721 	}
2722 
2723 	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2724 			"beacon", 1, 1);
2725 	if (error != 0) {
2726 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2727 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2728 		return error;
2729 	}
2730 	return 0;
2731 }
2732 
2733 static void
2734 ath_desc_free(struct ath_softc *sc)
2735 {
2736 
2737 	if (sc->sc_bdma.dd_desc_len != 0)
2738 		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2739 	if (sc->sc_txdma.dd_desc_len != 0)
2740 		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2741 	if (sc->sc_rxdma.dd_desc_len != 0)
2742 		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2743 }
2744 
2745 static struct ieee80211_node *
2746 ath_node_alloc(struct ieee80211_node_table *nt)
2747 {
2748 	struct ieee80211com *ic = nt->nt_ic;
2749 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2750 	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2751 	struct ath_node *an;
2752 
2753 	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2754 	if (an == NULL) {
2755 		/* XXX stat+msg */
2756 		return NULL;
2757 	}
2758 	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2759 	ath_rate_node_init(sc, an);
2760 
2761 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2762 	return &an->an_node;
2763 }
2764 
2765 static void
2766 ath_node_free(struct ieee80211_node *ni)
2767 {
2768 	struct ieee80211com *ic = ni->ni_ic;
2769         struct ath_softc *sc = ic->ic_ifp->if_softc;
2770 
2771 	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2772 
2773 	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2774 	sc->sc_node_free(ni);
2775 }
2776 
2777 static u_int8_t
2778 ath_node_getrssi(const struct ieee80211_node *ni)
2779 {
2780 #define	HAL_EP_RND(x, mul) \
2781 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2782 	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2783 	int32_t rssi;
2784 
2785 	/*
2786 	 * When only one frame is received there will be no state in
2787 	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2788 	 */
2789 	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2790 		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2791 	else
2792 		rssi = ni->ni_rssi;
2793 	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2794 #undef HAL_EP_RND
2795 }
2796 
2797 static int
2798 ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2799 {
2800 	struct ath_hal *ah = sc->sc_ah;
2801 	int error;
2802 	struct mbuf *m;
2803 	struct ath_desc *ds;
2804 
2805 	m = bf->bf_m;
2806 	if (m == NULL) {
2807 		/*
2808 		 * NB: by assigning a page to the rx dma buffer we
2809 		 * implicitly satisfy the Atheros requirement that
2810 		 * this buffer be cache-line-aligned and sized to be
2811 		 * multiple of the cache line size.  Not doing this
2812 		 * causes weird stuff to happen (for the 5210 at least).
2813 		 */
2814 		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2815 		if (m == NULL) {
2816 			DPRINTF(sc, ATH_DEBUG_ANY,
2817 				"%s: no mbuf/cluster\n", __func__);
2818 			sc->sc_stats.ast_rx_nombuf++;
2819 			return ENOMEM;
2820 		}
2821 		bf->bf_m = m;
2822 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2823 
2824 		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2825 					     bf->bf_dmamap, m,
2826 					     BUS_DMA_NOWAIT);
2827 		if (error != 0) {
2828 			DPRINTF(sc, ATH_DEBUG_ANY,
2829 			    "%s: bus_dmamap_load_mbuf failed; error %d\n",
2830 			    __func__, error);
2831 			sc->sc_stats.ast_rx_busdma++;
2832 			return error;
2833 		}
2834 		KASSERT(bf->bf_nseg == 1,
2835 			("multi-segment packet; nseg %u", bf->bf_nseg));
2836 	}
2837 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
2838 	    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2839 
2840 	/*
2841 	 * Setup descriptors.  For receive we always terminate
2842 	 * the descriptor list with a self-linked entry so we'll
2843 	 * not get overrun under high load (as can happen with a
2844 	 * 5212 when ANI processing enables PHY error frames).
2845 	 *
2846 	 * To insure the last descriptor is self-linked we create
2847 	 * each descriptor as self-linked and add it to the end.  As
2848 	 * each additional descriptor is added the previous self-linked
2849 	 * entry is ``fixed'' naturally.  This should be safe even
2850 	 * if DMA is happening.  When processing RX interrupts we
2851 	 * never remove/process the last, self-linked, entry on the
2852 	 * descriptor list.  This insures the hardware always has
2853 	 * someplace to write a new frame.
2854 	 */
2855 	ds = bf->bf_desc;
2856 	ds->ds_link = HTOAH32(bf->bf_daddr);	/* link to self */
2857 	ds->ds_data = bf->bf_segs[0].ds_addr;
2858 	ds->ds_vdata = mtod(m, void *);	/* for radar */
2859 	ath_hal_setuprxdesc(ah, ds
2860 		, m->m_len		/* buffer size */
2861 		, 0
2862 	);
2863 
2864 	if (sc->sc_rxlink != NULL)
2865 		*sc->sc_rxlink = bf->bf_daddr;
2866 	sc->sc_rxlink = &ds->ds_link;
2867 	return 0;
2868 }
2869 
2870 /*
2871  * Extend 15-bit time stamp from rx descriptor to
2872  * a full 64-bit TSF using the specified TSF.
2873  */
2874 static inline u_int64_t
2875 ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2876 {
2877 	if ((tsf & 0x7fff) < rstamp)
2878 		tsf -= 0x8000;
2879 	return ((tsf &~ 0x7fff) | rstamp);
2880 }
2881 
2882 /*
2883  * Intercept management frames to collect beacon rssi data
2884  * and to do ibss merges.
2885  */
2886 static void
2887 ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2888 	struct ieee80211_node *ni,
2889 	int subtype, int rssi, u_int32_t rstamp)
2890 {
2891 	struct ath_softc *sc = ic->ic_ifp->if_softc;
2892 
2893 	/*
2894 	 * Call up first so subsequent work can use information
2895 	 * potentially stored in the node (e.g. for ibss merge).
2896 	 */
2897 	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2898 	switch (subtype) {
2899 	case IEEE80211_FC0_SUBTYPE_BEACON:
2900 		/* update rssi statistics for use by the hal */
2901 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2902 		if (sc->sc_syncbeacon &&
2903 		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2904 			/*
2905 			 * Resync beacon timers using the tsf of the beacon
2906 			 * frame we just received.
2907 			 */
2908 			ath_beacon_config(sc);
2909 		}
2910 		/* fall thru... */
2911 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2912 		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2913 		    ic->ic_state == IEEE80211_S_RUN) {
2914 			u_int64_t tsf = ath_extend_tsf(rstamp,
2915 				ath_hal_gettsf64(sc->sc_ah));
2916 
2917 			/*
2918 			 * Handle ibss merge as needed; check the tsf on the
2919 			 * frame before attempting the merge.  The 802.11 spec
2920 			 * says the station should change it's bssid to match
2921 			 * the oldest station with the same ssid, where oldest
2922 			 * is determined by the tsf.  Note that hardware
2923 			 * reconfiguration happens through callback to
2924 			 * ath_newstate as the state machine will go from
2925 			 * RUN -> RUN when this happens.
2926 			 */
2927 			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2928 				DPRINTF(sc, ATH_DEBUG_STATE,
2929 				    "ibss merge, rstamp %u tsf %ju "
2930 				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2931 				    (uintmax_t)ni->ni_tstamp.tsf);
2932 				(void) ieee80211_ibss_merge(ni);
2933 			}
2934 		}
2935 		break;
2936 	}
2937 }
2938 
2939 /*
2940  * Set the default antenna.
2941  */
2942 static void
2943 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2944 {
2945 	struct ath_hal *ah = sc->sc_ah;
2946 
2947 	/* XXX block beacon interrupts */
2948 	ath_hal_setdefantenna(ah, antenna);
2949 	if (sc->sc_defant != antenna)
2950 		sc->sc_stats.ast_ant_defswitch++;
2951 	sc->sc_defant = antenna;
2952 	sc->sc_rxotherant = 0;
2953 }
2954 
2955 static void
2956 ath_rx_proc(void *arg, int npending)
2957 {
2958 #define	PA2DESC(_sc, _pa) \
2959 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
2960 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2961 	struct ath_softc *sc = arg;
2962 	struct ath_buf *bf;
2963 	struct ieee80211com *ic = &sc->sc_ic;
2964 	struct ifnet *ifp = &sc->sc_if;
2965 	struct ath_hal *ah = sc->sc_ah;
2966 	struct ath_desc *ds;
2967 	struct mbuf *m;
2968 	struct ieee80211_node *ni;
2969 	struct ath_node *an;
2970 	int len, type, ngood;
2971 	u_int phyerr;
2972 	HAL_STATUS status;
2973 	int16_t nf;
2974 	u_int64_t tsf;
2975 
2976 	NET_LOCK_GIANT();		/* XXX */
2977 
2978 	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2979 	ngood = 0;
2980 	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2981 	tsf = ath_hal_gettsf64(ah);
2982 	do {
2983 		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2984 		if (bf == NULL) {		/* NB: shouldn't happen */
2985 			if_printf(ifp, "%s: no buffer!\n", __func__);
2986 			break;
2987 		}
2988 		ds = bf->bf_desc;
2989 		if (ds->ds_link == bf->bf_daddr) {
2990 			/* NB: never process the self-linked entry at the end */
2991 			break;
2992 		}
2993 		m = bf->bf_m;
2994 		if (m == NULL) {		/* NB: shouldn't happen */
2995 			if_printf(ifp, "%s: no mbuf!\n", __func__);
2996 			break;
2997 		}
2998 		/* XXX sync descriptor memory */
2999 		/*
3000 		 * Must provide the virtual address of the current
3001 		 * descriptor, the physical address, and the virtual
3002 		 * address of the next descriptor in the h/w chain.
3003 		 * This allows the HAL to look ahead to see if the
3004 		 * hardware is done with a descriptor by checking the
3005 		 * done bit in the following descriptor and the address
3006 		 * of the current descriptor the DMA engine is working
3007 		 * on.  All this is necessary because of our use of
3008 		 * a self-linked list to avoid rx overruns.
3009 		 */
3010 		status = ath_hal_rxprocdesc(ah, ds,
3011 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3012 #ifdef AR_DEBUG
3013 		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3014 			ath_printrxbuf(bf, status == HAL_OK);
3015 #endif
3016 		if (status == HAL_EINPROGRESS)
3017 			break;
3018 		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3019 		if (ds->ds_rxstat.rs_more) {
3020 			/*
3021 			 * Frame spans multiple descriptors; this
3022 			 * cannot happen yet as we don't support
3023 			 * jumbograms.  If not in monitor mode,
3024 			 * discard the frame.
3025 			 */
3026 			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
3027 				sc->sc_stats.ast_rx_toobig++;
3028 				goto rx_next;
3029 			}
3030 			/* fall thru for monitor mode handling... */
3031 		} else if (ds->ds_rxstat.rs_status != 0) {
3032 			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
3033 				sc->sc_stats.ast_rx_crcerr++;
3034 			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
3035 				sc->sc_stats.ast_rx_fifoerr++;
3036 			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
3037 				sc->sc_stats.ast_rx_phyerr++;
3038 				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
3039 				sc->sc_stats.ast_rx_phy[phyerr]++;
3040 				goto rx_next;
3041 			}
3042 			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
3043 				/*
3044 				 * Decrypt error.  If the error occurred
3045 				 * because there was no hardware key, then
3046 				 * let the frame through so the upper layers
3047 				 * can process it.  This is necessary for 5210
3048 				 * parts which have no way to setup a ``clear''
3049 				 * key cache entry.
3050 				 *
3051 				 * XXX do key cache faulting
3052 				 */
3053 				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
3054 					goto rx_accept;
3055 				sc->sc_stats.ast_rx_badcrypt++;
3056 			}
3057 			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
3058 				sc->sc_stats.ast_rx_badmic++;
3059 				/*
3060 				 * Do minimal work required to hand off
3061 				 * the 802.11 header for notifcation.
3062 				 */
3063 				/* XXX frag's and qos frames */
3064 				len = ds->ds_rxstat.rs_datalen;
3065 				if (len >= sizeof (struct ieee80211_frame)) {
3066 					bus_dmamap_sync(sc->sc_dmat,
3067 					    bf->bf_dmamap,
3068 					    0, bf->bf_dmamap->dm_mapsize,
3069 					    BUS_DMASYNC_POSTREAD);
3070 					ieee80211_notify_michael_failure(ic,
3071 					    mtod(m, struct ieee80211_frame *),
3072 					    sc->sc_splitmic ?
3073 					        ds->ds_rxstat.rs_keyix-32 :
3074 					        ds->ds_rxstat.rs_keyix
3075 					);
3076 				}
3077 			}
3078 			ifp->if_ierrors++;
3079 			/*
3080 			 * Reject error frames, we normally don't want
3081 			 * to see them in monitor mode (in monitor mode
3082 			 * allow through packets that have crypto problems).
3083 			 */
3084 			if ((ds->ds_rxstat.rs_status &~
3085 				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
3086 			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
3087 				goto rx_next;
3088 		}
3089 rx_accept:
3090 		/*
3091 		 * Sync and unmap the frame.  At this point we're
3092 		 * committed to passing the mbuf somewhere so clear
3093 		 * bf_m; this means a new sk_buff must be allocated
3094 		 * when the rx descriptor is setup again to receive
3095 		 * another frame.
3096 		 */
3097 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3098 		    0, bf->bf_dmamap->dm_mapsize,
3099 		    BUS_DMASYNC_POSTREAD);
3100 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3101 		bf->bf_m = NULL;
3102 
3103 		m->m_pkthdr.rcvif = ifp;
3104 		len = ds->ds_rxstat.rs_datalen;
3105 		m->m_pkthdr.len = m->m_len = len;
3106 
3107 		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
3108 
3109 #if NBPFILTER > 0
3110 		if (sc->sc_drvbpf) {
3111 			u_int8_t rix;
3112 
3113 			/*
3114 			 * Discard anything shorter than an ack or cts.
3115 			 */
3116 			if (len < IEEE80211_ACK_LEN) {
3117 				DPRINTF(sc, ATH_DEBUG_RECV,
3118 					"%s: runt packet %d\n",
3119 					__func__, len);
3120 				sc->sc_stats.ast_rx_tooshort++;
3121 				m_freem(m);
3122 				goto rx_next;
3123 			}
3124 			rix = ds->ds_rxstat.rs_rate;
3125 			sc->sc_rx_th.wr_tsf = htole64(
3126 				ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
3127 			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3128 			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3129 			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
3130 			sc->sc_rx_th.wr_antnoise = nf;
3131 			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
3132 
3133 			bpf_mtap2(sc->sc_drvbpf,
3134 				&sc->sc_rx_th, sc->sc_rx_th_len, m);
3135 		}
3136 #endif
3137 
3138 		/*
3139 		 * From this point on we assume the frame is at least
3140 		 * as large as ieee80211_frame_min; verify that.
3141 		 */
3142 		if (len < IEEE80211_MIN_LEN) {
3143 			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
3144 				__func__, len);
3145 			sc->sc_stats.ast_rx_tooshort++;
3146 			m_freem(m);
3147 			goto rx_next;
3148 		}
3149 
3150 		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3151 			ieee80211_dump_pkt(mtod(m, void *), len,
3152 				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
3153 				   ds->ds_rxstat.rs_rssi);
3154 		}
3155 
3156 		m_adj(m, -IEEE80211_CRC_LEN);
3157 
3158 		/*
3159 		 * Locate the node for sender, track state, and then
3160 		 * pass the (referenced) node up to the 802.11 layer
3161 		 * for its use.
3162 		 */
3163 		ni = ieee80211_find_rxnode_withkey(ic,
3164 			mtod(m, const struct ieee80211_frame_min *),
3165 			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
3166 				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
3167 		/*
3168 		 * Track rx rssi and do any rx antenna management.
3169 		 */
3170 		an = ATH_NODE(ni);
3171 		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
3172 		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
3173 		/*
3174 		 * Send frame up for processing.
3175 		 */
3176 		type = ieee80211_input(ic, m, ni,
3177 			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
3178 		ieee80211_free_node(ni);
3179 		if (sc->sc_diversity) {
3180 			/*
3181 			 * When using fast diversity, change the default rx
3182 			 * antenna if diversity chooses the other antenna 3
3183 			 * times in a row.
3184 			 */
3185 			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
3186 				if (++sc->sc_rxotherant >= 3)
3187 					ath_setdefantenna(sc,
3188 						ds->ds_rxstat.rs_antenna);
3189 			} else
3190 				sc->sc_rxotherant = 0;
3191 		}
3192 		if (sc->sc_softled) {
3193 			/*
3194 			 * Blink for any data frame.  Otherwise do a
3195 			 * heartbeat-style blink when idle.  The latter
3196 			 * is mainly for station mode where we depend on
3197 			 * periodic beacon frames to trigger the poll event.
3198 			 */
3199 			if (type == IEEE80211_FC0_TYPE_DATA) {
3200 				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3201 				ath_led_event(sc, ATH_LED_RX);
3202 			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3203 				ath_led_event(sc, ATH_LED_POLL);
3204 		}
3205 		/*
3206 		 * Arrange to update the last rx timestamp only for
3207 		 * frames from our ap when operating in station mode.
3208 		 * This assumes the rx key is always setup when associated.
3209 		 */
3210 		if (ic->ic_opmode == IEEE80211_M_STA &&
3211 		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3212 			ngood++;
3213 rx_next:
3214 		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3215 	} while (ath_rxbuf_init(sc, bf) == 0);
3216 
3217 	/* rx signal state monitoring */
3218 	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3219 	if (ath_hal_radar_event(ah))
3220 		TASK_RUN_OR_ENQUEUE(&sc->sc_radartask);
3221 	if (ngood)
3222 		sc->sc_lastrx = tsf;
3223 
3224 #ifdef __NetBSD__
3225 	/* XXX Why isn't this necessary in FreeBSD? */
3226 	if ((ifp->if_flags & IFF_OACTIVE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd))
3227 		ath_start(ifp);
3228 #endif /* __NetBSD__ */
3229 
3230 	NET_UNLOCK_GIANT();		/* XXX */
3231 #undef PA2DESC
3232 }
3233 
3234 /*
3235  * Setup a h/w transmit queue.
3236  */
3237 static struct ath_txq *
3238 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3239 {
3240 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3241 	struct ath_hal *ah = sc->sc_ah;
3242 	HAL_TXQ_INFO qi;
3243 	int qnum;
3244 
3245 	memset(&qi, 0, sizeof(qi));
3246 	qi.tqi_subtype = subtype;
3247 	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3248 	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3249 	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3250 	/*
3251 	 * Enable interrupts only for EOL and DESC conditions.
3252 	 * We mark tx descriptors to receive a DESC interrupt
3253 	 * when a tx queue gets deep; otherwise waiting for the
3254 	 * EOL to reap descriptors.  Note that this is done to
3255 	 * reduce interrupt load and this only defers reaping
3256 	 * descriptors, never transmitting frames.  Aside from
3257 	 * reducing interrupts this also permits more concurrency.
3258 	 * The only potential downside is if the tx queue backs
3259 	 * up in which case the top half of the kernel may backup
3260 	 * due to a lack of tx descriptors.
3261 	 */
3262 	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3263 	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3264 	if (qnum == -1) {
3265 		/*
3266 		 * NB: don't print a message, this happens
3267 		 * normally on parts with too few tx queues
3268 		 */
3269 		return NULL;
3270 	}
3271 	if (qnum >= N(sc->sc_txq)) {
3272 		device_printf(sc->sc_dev,
3273 			"hal qnum %u out of range, max %zu!\n",
3274 			qnum, N(sc->sc_txq));
3275 		ath_hal_releasetxqueue(ah, qnum);
3276 		return NULL;
3277 	}
3278 	if (!ATH_TXQ_SETUP(sc, qnum)) {
3279 		struct ath_txq *txq = &sc->sc_txq[qnum];
3280 
3281 		txq->axq_qnum = qnum;
3282 		txq->axq_depth = 0;
3283 		txq->axq_intrcnt = 0;
3284 		txq->axq_link = NULL;
3285 		STAILQ_INIT(&txq->axq_q);
3286 		ATH_TXQ_LOCK_INIT(sc, txq);
3287 		sc->sc_txqsetup |= 1<<qnum;
3288 	}
3289 	return &sc->sc_txq[qnum];
3290 #undef N
3291 }
3292 
3293 /*
3294  * Setup a hardware data transmit queue for the specified
3295  * access control.  The hal may not support all requested
3296  * queues in which case it will return a reference to a
3297  * previously setup queue.  We record the mapping from ac's
3298  * to h/w queues for use by ath_tx_start and also track
3299  * the set of h/w queues being used to optimize work in the
3300  * transmit interrupt handler and related routines.
3301  */
3302 static int
3303 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3304 {
3305 #define	N(a)	(sizeof(a)/sizeof(a[0]))
3306 	struct ath_txq *txq;
3307 
3308 	if (ac >= N(sc->sc_ac2q)) {
3309 		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3310 			ac, N(sc->sc_ac2q));
3311 		return 0;
3312 	}
3313 	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3314 	if (txq != NULL) {
3315 		sc->sc_ac2q[ac] = txq;
3316 		return 1;
3317 	} else
3318 		return 0;
3319 #undef N
3320 }
3321 
3322 /*
3323  * Update WME parameters for a transmit queue.
3324  */
3325 static int
3326 ath_txq_update(struct ath_softc *sc, int ac)
3327 {
3328 #define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3329 #define	ATH_TXOP_TO_US(v)		(v<<5)
3330 	struct ieee80211com *ic = &sc->sc_ic;
3331 	struct ath_txq *txq = sc->sc_ac2q[ac];
3332 	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3333 	struct ath_hal *ah = sc->sc_ah;
3334 	HAL_TXQ_INFO qi;
3335 
3336 	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3337 	qi.tqi_aifs = wmep->wmep_aifsn;
3338 	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3339 	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3340 	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3341 
3342 	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3343 		device_printf(sc->sc_dev, "unable to update hardware queue "
3344 			"parameters for %s traffic!\n",
3345 			ieee80211_wme_acnames[ac]);
3346 		return 0;
3347 	} else {
3348 		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3349 		return 1;
3350 	}
3351 #undef ATH_TXOP_TO_US
3352 #undef ATH_EXPONENT_TO_VALUE
3353 }
3354 
3355 /*
3356  * Callback from the 802.11 layer to update WME parameters.
3357  */
3358 static int
3359 ath_wme_update(struct ieee80211com *ic)
3360 {
3361 	struct ath_softc *sc = ic->ic_ifp->if_softc;
3362 
3363 	return !ath_txq_update(sc, WME_AC_BE) ||
3364 	    !ath_txq_update(sc, WME_AC_BK) ||
3365 	    !ath_txq_update(sc, WME_AC_VI) ||
3366 	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3367 }
3368 
3369 /*
3370  * Reclaim resources for a setup queue.
3371  */
3372 static void
3373 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3374 {
3375 
3376 	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3377 	ATH_TXQ_LOCK_DESTROY(txq);
3378 	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3379 }
3380 
3381 /*
3382  * Reclaim all tx queue resources.
3383  */
3384 static void
3385 ath_tx_cleanup(struct ath_softc *sc)
3386 {
3387 	int i;
3388 
3389 	ATH_TXBUF_LOCK_DESTROY(sc);
3390 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3391 		if (ATH_TXQ_SETUP(sc, i))
3392 			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3393 }
3394 
3395 /*
3396  * Defragment an mbuf chain, returning at most maxfrags separate
3397  * mbufs+clusters.  If this is not possible NULL is returned and
3398  * the original mbuf chain is left in it's present (potentially
3399  * modified) state.  We use two techniques: collapsing consecutive
3400  * mbufs and replacing consecutive mbufs by a cluster.
3401  */
3402 static struct mbuf *
3403 ath_defrag(struct mbuf *m0, int how, int maxfrags)
3404 {
3405 	struct mbuf *m, *n, *n2, **prev;
3406 	u_int curfrags;
3407 
3408 	/*
3409 	 * Calculate the current number of frags.
3410 	 */
3411 	curfrags = 0;
3412 	for (m = m0; m != NULL; m = m->m_next)
3413 		curfrags++;
3414 	/*
3415 	 * First, try to collapse mbufs.  Note that we always collapse
3416 	 * towards the front so we don't need to deal with moving the
3417 	 * pkthdr.  This may be suboptimal if the first mbuf has much
3418 	 * less data than the following.
3419 	 */
3420 	m = m0;
3421 again:
3422 	for (;;) {
3423 		n = m->m_next;
3424 		if (n == NULL)
3425 			break;
3426 		if ((m->m_flags & M_RDONLY) == 0 &&
3427 		    n->m_len < M_TRAILINGSPACE(m)) {
3428 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3429 				n->m_len);
3430 			m->m_len += n->m_len;
3431 			m->m_next = n->m_next;
3432 			m_free(n);
3433 			if (--curfrags <= maxfrags)
3434 				return m0;
3435 		} else
3436 			m = n;
3437 	}
3438 	KASSERT(maxfrags > 1,
3439 		("maxfrags %u, but normal collapse failed", maxfrags));
3440 	/*
3441 	 * Collapse consecutive mbufs to a cluster.
3442 	 */
3443 	prev = &m0->m_next;		/* NB: not the first mbuf */
3444 	while ((n = *prev) != NULL) {
3445 		if ((n2 = n->m_next) != NULL &&
3446 		    n->m_len + n2->m_len < MCLBYTES) {
3447 			m = m_getcl(how, MT_DATA, 0);
3448 			if (m == NULL)
3449 				goto bad;
3450 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3451 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3452 				n2->m_len);
3453 			m->m_len = n->m_len + n2->m_len;
3454 			m->m_next = n2->m_next;
3455 			*prev = m;
3456 			m_free(n);
3457 			m_free(n2);
3458 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3459 				return m0;
3460 			/*
3461 			 * Still not there, try the normal collapse
3462 			 * again before we allocate another cluster.
3463 			 */
3464 			goto again;
3465 		}
3466 		prev = &n->m_next;
3467 	}
3468 	/*
3469 	 * No place where we can collapse to a cluster; punt.
3470 	 * This can occur if, for example, you request 2 frags
3471 	 * but the packet requires that both be clusters (we
3472 	 * never reallocate the first mbuf to avoid moving the
3473 	 * packet header).
3474 	 */
3475 bad:
3476 	return NULL;
3477 }
3478 
3479 /*
3480  * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3481  */
3482 static int
3483 ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3484 {
3485 	int i;
3486 
3487 	for (i = 0; i < rt->rateCount; i++)
3488 		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3489 			return i;
3490 	return 0;		/* NB: lowest rate */
3491 }
3492 
3493 static void
3494 ath_freetx(struct mbuf *m)
3495 {
3496 	struct mbuf *next;
3497 
3498 	do {
3499 		next = m->m_nextpkt;
3500 		m->m_nextpkt = NULL;
3501 		m_freem(m);
3502 	} while ((m = next) != NULL);
3503 }
3504 
3505 static int
3506 ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3507     struct mbuf *m0)
3508 {
3509 	struct ieee80211com *ic = &sc->sc_ic;
3510 	struct ath_hal *ah = sc->sc_ah;
3511 	struct ifnet *ifp = &sc->sc_if;
3512 	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3513 	int i, error, iswep, ismcast, isfrag, ismrr;
3514 	int keyix, hdrlen, pktlen, try0;
3515 	u_int8_t rix, txrate, ctsrate;
3516 	u_int8_t cix = 0xff;		/* NB: silence compiler */
3517 	struct ath_desc *ds, *ds0;
3518 	struct ath_txq *txq;
3519 	struct ieee80211_frame *wh;
3520 	u_int subtype, flags, ctsduration;
3521 	HAL_PKT_TYPE atype;
3522 	const HAL_RATE_TABLE *rt;
3523 	HAL_BOOL shortPreamble;
3524 	struct ath_node *an;
3525 	struct mbuf *m;
3526 	u_int pri;
3527 
3528 	wh = mtod(m0, struct ieee80211_frame *);
3529 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3530 	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3531 	isfrag = m0->m_flags & M_FRAG;
3532 	hdrlen = ieee80211_anyhdrsize(wh);
3533 	/*
3534 	 * Packet length must not include any
3535 	 * pad bytes; deduct them here.
3536 	 */
3537 	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3538 
3539 	if (iswep) {
3540 		const struct ieee80211_cipher *cip;
3541 		struct ieee80211_key *k;
3542 
3543 		/*
3544 		 * Construct the 802.11 header+trailer for an encrypted
3545 		 * frame. The only reason this can fail is because of an
3546 		 * unknown or unsupported cipher/key type.
3547 		 */
3548 		k = ieee80211_crypto_encap(ic, ni, m0);
3549 		if (k == NULL) {
3550 			/*
3551 			 * This can happen when the key is yanked after the
3552 			 * frame was queued.  Just discard the frame; the
3553 			 * 802.11 layer counts failures and provides
3554 			 * debugging/diagnostics.
3555 			 */
3556 			ath_freetx(m0);
3557 			return EIO;
3558 		}
3559 		/*
3560 		 * Adjust the packet + header lengths for the crypto
3561 		 * additions and calculate the h/w key index.  When
3562 		 * a s/w mic is done the frame will have had any mic
3563 		 * added to it prior to entry so m0->m_pkthdr.len above will
3564 		 * account for it. Otherwise we need to add it to the
3565 		 * packet length.
3566 		 */
3567 		cip = k->wk_cipher;
3568 		hdrlen += cip->ic_header;
3569 		pktlen += cip->ic_header + cip->ic_trailer;
3570 		/* NB: frags always have any TKIP MIC done in s/w */
3571 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
3572 			pktlen += cip->ic_miclen;
3573 		keyix = k->wk_keyix;
3574 
3575 		/* packet header may have moved, reset our local pointer */
3576 		wh = mtod(m0, struct ieee80211_frame *);
3577 	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3578 		/*
3579 		 * Use station key cache slot, if assigned.
3580 		 */
3581 		keyix = ni->ni_ucastkey.wk_keyix;
3582 		if (keyix == IEEE80211_KEYIX_NONE)
3583 			keyix = HAL_TXKEYIX_INVALID;
3584 	} else
3585 		keyix = HAL_TXKEYIX_INVALID;
3586 
3587 	pktlen += IEEE80211_CRC_LEN;
3588 
3589 	/*
3590 	 * Load the DMA map so any coalescing is done.  This
3591 	 * also calculates the number of descriptors we need.
3592 	 */
3593 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3594 				     BUS_DMA_NOWAIT);
3595 	if (error == EFBIG) {
3596 		/* XXX packet requires too many descriptors */
3597 		bf->bf_nseg = ATH_TXDESC+1;
3598 	} else if (error != 0) {
3599 		sc->sc_stats.ast_tx_busdma++;
3600 		ath_freetx(m0);
3601 		return error;
3602 	}
3603 	/*
3604 	 * Discard null packets and check for packets that
3605 	 * require too many TX descriptors.  We try to convert
3606 	 * the latter to a cluster.
3607 	 */
3608 	if (error == EFBIG) {		/* too many desc's, linearize */
3609 		sc->sc_stats.ast_tx_linear++;
3610 		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3611 		if (m == NULL) {
3612 			ath_freetx(m0);
3613 			sc->sc_stats.ast_tx_nombuf++;
3614 			return ENOMEM;
3615 		}
3616 		m0 = m;
3617 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3618 					     BUS_DMA_NOWAIT);
3619 		if (error != 0) {
3620 			sc->sc_stats.ast_tx_busdma++;
3621 			ath_freetx(m0);
3622 			return error;
3623 		}
3624 		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3625 		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3626 	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3627 		sc->sc_stats.ast_tx_nodata++;
3628 		ath_freetx(m0);
3629 		return EIO;
3630 	}
3631 	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3632 	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
3633             bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
3634 	bf->bf_m = m0;
3635 	bf->bf_node = ni;			/* NB: held reference */
3636 
3637 	/* setup descriptors */
3638 	ds = bf->bf_desc;
3639 	rt = sc->sc_currates;
3640 	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3641 
3642 	/*
3643 	 * NB: the 802.11 layer marks whether or not we should
3644 	 * use short preamble based on the current mode and
3645 	 * negotiated parameters.
3646 	 */
3647 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3648 	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) && !ismcast) {
3649 		shortPreamble = AH_TRUE;
3650 		sc->sc_stats.ast_tx_shortpre++;
3651 	} else {
3652 		shortPreamble = AH_FALSE;
3653 	}
3654 
3655 	an = ATH_NODE(ni);
3656 	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3657 	ismrr = 0;				/* default no multi-rate retry*/
3658 	/*
3659 	 * Calculate Atheros packet type from IEEE80211 packet header,
3660 	 * setup for rate calculations, and select h/w transmit queue.
3661 	 */
3662 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3663 	case IEEE80211_FC0_TYPE_MGT:
3664 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3665 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3666 			atype = HAL_PKT_TYPE_BEACON;
3667 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3668 			atype = HAL_PKT_TYPE_PROBE_RESP;
3669 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3670 			atype = HAL_PKT_TYPE_ATIM;
3671 		else
3672 			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3673 		rix = sc->sc_minrateix;
3674 		txrate = rt->info[rix].rateCode;
3675 		if (shortPreamble)
3676 			txrate |= rt->info[rix].shortPreamble;
3677 		try0 = ATH_TXMGTTRY;
3678 		/* NB: force all management frames to highest queue */
3679 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3680 			/* NB: force all management frames to highest queue */
3681 			pri = WME_AC_VO;
3682 		} else
3683 			pri = WME_AC_BE;
3684 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3685 		break;
3686 	case IEEE80211_FC0_TYPE_CTL:
3687 		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3688 		rix = sc->sc_minrateix;
3689 		txrate = rt->info[rix].rateCode;
3690 		if (shortPreamble)
3691 			txrate |= rt->info[rix].shortPreamble;
3692 		try0 = ATH_TXMGTTRY;
3693 		/* NB: force all ctl frames to highest queue */
3694 		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3695 			/* NB: force all ctl frames to highest queue */
3696 			pri = WME_AC_VO;
3697 		} else
3698 			pri = WME_AC_BE;
3699 		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3700 		break;
3701 	case IEEE80211_FC0_TYPE_DATA:
3702 		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3703 		/*
3704 		 * Data frames: multicast frames go out at a fixed rate,
3705 		 * otherwise consult the rate control module for the
3706 		 * rate to use.
3707 		 */
3708 		if (ismcast) {
3709 			/*
3710 			 * Check mcast rate setting in case it's changed.
3711 			 * XXX move out of fastpath
3712 			 */
3713 			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3714 				sc->sc_mcastrix =
3715 					ath_tx_findrix(rt, ic->ic_mcast_rate);
3716 				sc->sc_mcastrate = ic->ic_mcast_rate;
3717 			}
3718 			rix = sc->sc_mcastrix;
3719 			txrate = rt->info[rix].rateCode;
3720 			try0 = 1;
3721 		} else {
3722 			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3723 				&rix, &try0, &txrate);
3724 			sc->sc_txrate = txrate;		/* for LED blinking */
3725 			if (try0 != ATH_TXMAXTRY)
3726 				ismrr = 1;
3727 		}
3728 		pri = M_WME_GETAC(m0);
3729 		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3730 			flags |= HAL_TXDESC_NOACK;
3731 		break;
3732 	default:
3733 		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3734 			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3735 		/* XXX statistic */
3736 		ath_freetx(m0);
3737 		return EIO;
3738 	}
3739 	txq = sc->sc_ac2q[pri];
3740 
3741 	/*
3742 	 * When servicing one or more stations in power-save mode
3743 	 * multicast frames must be buffered until after the beacon.
3744 	 * We use the CAB queue for that.
3745 	 */
3746 	if (ismcast && ic->ic_ps_sta) {
3747 		txq = sc->sc_cabq;
3748 		/* XXX? more bit in 802.11 frame header */
3749 	}
3750 
3751 	/*
3752 	 * Calculate miscellaneous flags.
3753 	 */
3754 	if (ismcast) {
3755 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3756 	} else if (pktlen > ic->ic_rtsthreshold) {
3757 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3758 		cix = rt->info[rix].controlRate;
3759 		sc->sc_stats.ast_tx_rts++;
3760 	}
3761 	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3762 		sc->sc_stats.ast_tx_noack++;
3763 
3764 	/*
3765 	 * If 802.11g protection is enabled, determine whether
3766 	 * to use RTS/CTS or just CTS.  Note that this is only
3767 	 * done for OFDM unicast frames.
3768 	 */
3769 	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3770 	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3771 	    (flags & HAL_TXDESC_NOACK) == 0) {
3772 		/* XXX fragments must use CCK rates w/ protection */
3773 		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3774 			flags |= HAL_TXDESC_RTSENA;
3775 		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3776 			flags |= HAL_TXDESC_CTSENA;
3777 		if (isfrag) {
3778 			/*
3779 			 * For frags it would be desirable to use the
3780 			 * highest CCK rate for RTS/CTS.  But stations
3781 			 * farther away may detect it at a lower CCK rate
3782 			 * so use the configured protection rate instead
3783 			 * (for now).
3784 			 */
3785 			cix = rt->info[sc->sc_protrix].controlRate;
3786 		} else
3787 			cix = rt->info[sc->sc_protrix].controlRate;
3788 		sc->sc_stats.ast_tx_protect++;
3789 	}
3790 
3791 	/*
3792 	 * Calculate duration.  This logically belongs in the 802.11
3793 	 * layer but it lacks sufficient information to calculate it.
3794 	 */
3795 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3796 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3797 		u_int16_t dur;
3798 		/*
3799 		 * XXX not right with fragmentation.
3800 		 */
3801 		if (shortPreamble)
3802 			dur = rt->info[rix].spAckDuration;
3803 		else
3804 			dur = rt->info[rix].lpAckDuration;
3805 		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
3806 			dur += dur;             /* additional SIFS+ACK */
3807 			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
3808 			/*
3809 			 * Include the size of next fragment so NAV is
3810 			 * updated properly.  The last fragment uses only
3811 			 * the ACK duration
3812 			 */
3813 			dur += ath_hal_computetxtime(ah, rt,
3814 					m0->m_nextpkt->m_pkthdr.len,
3815 					rix, shortPreamble);
3816 		}
3817 		if (isfrag) {
3818 			/*
3819 			 * Force hardware to use computed duration for next
3820 			 * fragment by disabling multi-rate retry which updates
3821 			 * duration based on the multi-rate duration table.
3822 			 */
3823 			try0 = ATH_TXMAXTRY;
3824 		}
3825 		*(u_int16_t *)wh->i_dur = htole16(dur);
3826 	}
3827 
3828 	/*
3829 	 * Calculate RTS/CTS rate and duration if needed.
3830 	 */
3831 	ctsduration = 0;
3832 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3833 		/*
3834 		 * CTS transmit rate is derived from the transmit rate
3835 		 * by looking in the h/w rate table.  We must also factor
3836 		 * in whether or not a short preamble is to be used.
3837 		 */
3838 		/* NB: cix is set above where RTS/CTS is enabled */
3839 		KASSERT(cix != 0xff, ("cix not setup"));
3840 		ctsrate = rt->info[cix].rateCode;
3841 		/*
3842 		 * Compute the transmit duration based on the frame
3843 		 * size and the size of an ACK frame.  We call into the
3844 		 * HAL to do the computation since it depends on the
3845 		 * characteristics of the actual PHY being used.
3846 		 *
3847 		 * NB: CTS is assumed the same size as an ACK so we can
3848 		 *     use the precalculated ACK durations.
3849 		 */
3850 		if (shortPreamble) {
3851 			ctsrate |= rt->info[cix].shortPreamble;
3852 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3853 				ctsduration += rt->info[cix].spAckDuration;
3854 			ctsduration += ath_hal_computetxtime(ah,
3855 				rt, pktlen, rix, AH_TRUE);
3856 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3857 				ctsduration += rt->info[rix].spAckDuration;
3858 		} else {
3859 			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3860 				ctsduration += rt->info[cix].lpAckDuration;
3861 			ctsduration += ath_hal_computetxtime(ah,
3862 				rt, pktlen, rix, AH_FALSE);
3863 			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3864 				ctsduration += rt->info[rix].lpAckDuration;
3865 		}
3866 		/*
3867 		 * Must disable multi-rate retry when using RTS/CTS.
3868 		 */
3869 		ismrr = 0;
3870 		try0 = ATH_TXMGTTRY;		/* XXX */
3871 	} else
3872 		ctsrate = 0;
3873 
3874 	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3875 		ieee80211_dump_pkt(mtod(m0, void *), m0->m_len,
3876 			sc->sc_hwmap[txrate].ieeerate, -1);
3877 #if NBPFILTER > 0
3878 	if (ic->ic_rawbpf)
3879 		bpf_mtap(ic->ic_rawbpf, m0);
3880 	if (sc->sc_drvbpf) {
3881 		u_int64_t tsf = ath_hal_gettsf64(ah);
3882 
3883 		sc->sc_tx_th.wt_tsf = htole64(tsf);
3884 		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3885 		if (iswep)
3886 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3887 		if (isfrag)
3888 			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
3889 		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3890 		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3891 		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3892 
3893 		bpf_mtap2(sc->sc_drvbpf,
3894 			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3895 	}
3896 #endif
3897 
3898 	/*
3899 	 * Determine if a tx interrupt should be generated for
3900 	 * this descriptor.  We take a tx interrupt to reap
3901 	 * descriptors when the h/w hits an EOL condition or
3902 	 * when the descriptor is specifically marked to generate
3903 	 * an interrupt.  We periodically mark descriptors in this
3904 	 * way to insure timely replenishing of the supply needed
3905 	 * for sending frames.  Defering interrupts reduces system
3906 	 * load and potentially allows more concurrent work to be
3907 	 * done but if done to aggressively can cause senders to
3908 	 * backup.
3909 	 *
3910 	 * NB: use >= to deal with sc_txintrperiod changing
3911 	 *     dynamically through sysctl.
3912 	 */
3913 	if (flags & HAL_TXDESC_INTREQ) {
3914 		txq->axq_intrcnt = 0;
3915 	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3916 		flags |= HAL_TXDESC_INTREQ;
3917 		txq->axq_intrcnt = 0;
3918 	}
3919 
3920 	/*
3921 	 * Formulate first tx descriptor with tx controls.
3922 	 */
3923 	/* XXX check return value? */
3924 	ath_hal_setuptxdesc(ah, ds
3925 		, pktlen		/* packet length */
3926 		, hdrlen		/* header length */
3927 		, atype			/* Atheros packet type */
3928 		, ni->ni_txpower	/* txpower */
3929 		, txrate, try0		/* series 0 rate/tries */
3930 		, keyix			/* key cache index */
3931 		, sc->sc_txantenna	/* antenna mode */
3932 		, flags			/* flags */
3933 		, ctsrate		/* rts/cts rate */
3934 		, ctsduration		/* rts/cts duration */
3935 	);
3936 	bf->bf_flags = flags;
3937 	/*
3938 	 * Setup the multi-rate retry state only when we're
3939 	 * going to use it.  This assumes ath_hal_setuptxdesc
3940 	 * initializes the descriptors (so we don't have to)
3941 	 * when the hardware supports multi-rate retry and
3942 	 * we don't use it.
3943 	 */
3944 	if (ismrr)
3945 		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3946 
3947 	/*
3948 	 * Fillin the remainder of the descriptor info.
3949 	 */
3950 	ds0 = ds;
3951 	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3952 		ds->ds_data = bf->bf_segs[i].ds_addr;
3953 		if (i == bf->bf_nseg - 1)
3954 			ds->ds_link = 0;
3955 		else
3956 			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3957 		ath_hal_filltxdesc(ah, ds
3958 			, bf->bf_segs[i].ds_len	/* segment length */
3959 			, i == 0		/* first segment */
3960 			, i == bf->bf_nseg - 1	/* last segment */
3961 			, ds0			/* first descriptor */
3962 		);
3963 
3964 		/* NB: The desc swap function becomes void,
3965 		 * if descriptor swapping is not enabled
3966 		 */
3967 		ath_desc_swap(ds);
3968 
3969 		DPRINTF(sc, ATH_DEBUG_XMIT,
3970 			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3971 			__func__, i, ds->ds_link, ds->ds_data,
3972 			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3973 	}
3974 	/*
3975 	 * Insert the frame on the outbound list and
3976 	 * pass it on to the hardware.
3977 	 */
3978 	ATH_TXQ_LOCK(txq);
3979 	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3980 	if (txq->axq_link == NULL) {
3981 		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3982 		DPRINTF(sc, ATH_DEBUG_XMIT,
3983 		    "%s: TXDP[%u] = %" PRIx64 " (%p) depth %d\n", __func__,
3984 		    txq->axq_qnum, (uint64_t)bf->bf_daddr, bf->bf_desc,
3985 		    txq->axq_depth);
3986 	} else {
3987 		*txq->axq_link = HTOAH32(bf->bf_daddr);
3988 		DPRINTF(sc, ATH_DEBUG_XMIT,
3989 		    "%s: link[%u](%p)=%" PRIx64 " (%p) depth %d\n",
3990 		    __func__, txq->axq_qnum, txq->axq_link,
3991 		    (uint64_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3992 	}
3993 	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3994 	/*
3995 	 * The CAB queue is started from the SWBA handler since
3996 	 * frames only go out on DTIM and to avoid possible races.
3997 	 */
3998 	if (txq != sc->sc_cabq)
3999 		ath_hal_txstart(ah, txq->axq_qnum);
4000 	ATH_TXQ_UNLOCK(txq);
4001 
4002 	return 0;
4003 }
4004 
4005 /*
4006  * Process completed xmit descriptors from the specified queue.
4007  */
4008 static int
4009 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4010 {
4011 	struct ath_hal *ah = sc->sc_ah;
4012 	struct ieee80211com *ic = &sc->sc_ic;
4013 	struct ath_buf *bf;
4014 	struct ath_desc *ds, *ds0;
4015 	struct ieee80211_node *ni;
4016 	struct ath_node *an;
4017 	int sr, lr, pri, nacked;
4018 	HAL_STATUS status;
4019 
4020 	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4021 		__func__, txq->axq_qnum,
4022 		(void *)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4023 		txq->axq_link);
4024 	nacked = 0;
4025 	for (;;) {
4026 		ATH_TXQ_LOCK(txq);
4027 		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4028 		bf = STAILQ_FIRST(&txq->axq_q);
4029 		if (bf == NULL) {
4030 			txq->axq_link = NULL;
4031 			ATH_TXQ_UNLOCK(txq);
4032 			break;
4033 		}
4034 		ds0 = &bf->bf_desc[0];
4035 		ds = &bf->bf_desc[bf->bf_nseg - 1];
4036 		status = ath_hal_txprocdesc(ah, ds);
4037 #ifdef AR_DEBUG
4038 		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4039 			ath_printtxbuf(bf, status == HAL_OK);
4040 #endif
4041 		if (status == HAL_EINPROGRESS) {
4042 			ATH_TXQ_UNLOCK(txq);
4043 			break;
4044 		}
4045 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4046 		ATH_TXQ_UNLOCK(txq);
4047 
4048 		ni = bf->bf_node;
4049 		if (ni != NULL) {
4050 			an = ATH_NODE(ni);
4051 			if (ds->ds_txstat.ts_status == 0) {
4052 				u_int8_t txant = ds->ds_txstat.ts_antenna;
4053 				sc->sc_stats.ast_ant_tx[txant]++;
4054 				sc->sc_ant_tx[txant]++;
4055 				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
4056 					sc->sc_stats.ast_tx_altrate++;
4057 				sc->sc_stats.ast_tx_rssi =
4058 					ds->ds_txstat.ts_rssi;
4059 				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4060 					ds->ds_txstat.ts_rssi);
4061 				pri = M_WME_GETAC(bf->bf_m);
4062 				if (pri >= WME_AC_VO)
4063 					ic->ic_wme.wme_hipri_traffic++;
4064 				ni->ni_inact = ni->ni_inact_reload;
4065 			} else {
4066 				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
4067 					sc->sc_stats.ast_tx_xretries++;
4068 				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
4069 					sc->sc_stats.ast_tx_fifoerr++;
4070 				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
4071 					sc->sc_stats.ast_tx_filtered++;
4072 			}
4073 			sr = ds->ds_txstat.ts_shortretry;
4074 			lr = ds->ds_txstat.ts_longretry;
4075 			sc->sc_stats.ast_tx_shortretry += sr;
4076 			sc->sc_stats.ast_tx_longretry += lr;
4077 			/*
4078 			 * Hand the descriptor to the rate control algorithm.
4079 			 */
4080 			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
4081 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
4082 				/*
4083 				 * If frame was ack'd update the last rx time
4084 				 * used to workaround phantom bmiss interrupts.
4085 				 */
4086 				if (ds->ds_txstat.ts_status == 0)
4087 					nacked++;
4088 				ath_rate_tx_complete(sc, an, ds, ds0);
4089 			}
4090 			/*
4091 			 * Reclaim reference to node.
4092 			 *
4093 			 * NB: the node may be reclaimed here if, for example
4094 			 *     this is a DEAUTH message that was sent and the
4095 			 *     node was timed out due to inactivity.
4096 			 */
4097 			ieee80211_free_node(ni);
4098 		}
4099 		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, 0,
4100 		    bf->bf_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4101 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4102 		m_freem(bf->bf_m);
4103 		bf->bf_m = NULL;
4104 		bf->bf_node = NULL;
4105 
4106 		ATH_TXBUF_LOCK(sc);
4107 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4108 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4109 		ATH_TXBUF_UNLOCK(sc);
4110 	}
4111 	return nacked;
4112 }
4113 
4114 static inline int
4115 txqactive(struct ath_hal *ah, int qnum)
4116 {
4117 	u_int32_t txqs = 1<<qnum;
4118 	ath_hal_gettxintrtxqs(ah, &txqs);
4119 	return (txqs & (1<<qnum));
4120 }
4121 
4122 /*
4123  * Deferred processing of transmit interrupt; special-cased
4124  * for a single hardware transmit queue (e.g. 5210 and 5211).
4125  */
4126 static void
4127 ath_tx_proc_q0(void *arg, int npending)
4128 {
4129 	struct ath_softc *sc = arg;
4130 	struct ifnet *ifp = &sc->sc_if;
4131 
4132 	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]) > 0){
4133 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4134 	}
4135 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4136 		ath_tx_processq(sc, sc->sc_cabq);
4137 
4138 	if (sc->sc_softled)
4139 		ath_led_event(sc, ATH_LED_TX);
4140 
4141 	ath_start(ifp);
4142 }
4143 
4144 /*
4145  * Deferred processing of transmit interrupt; special-cased
4146  * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4147  */
4148 static void
4149 ath_tx_proc_q0123(void *arg, int npending)
4150 {
4151 	struct ath_softc *sc = arg;
4152 	struct ifnet *ifp = &sc->sc_if;
4153 	int nacked;
4154 
4155 	/*
4156 	 * Process each active queue.
4157 	 */
4158 	nacked = 0;
4159 	if (txqactive(sc->sc_ah, 0))
4160 		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4161 	if (txqactive(sc->sc_ah, 1))
4162 		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4163 	if (txqactive(sc->sc_ah, 2))
4164 		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4165 	if (txqactive(sc->sc_ah, 3))
4166 		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4167 	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4168 		ath_tx_processq(sc, sc->sc_cabq);
4169 	if (nacked) {
4170 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4171 	}
4172 	ath_tx_processq(sc, sc->sc_cabq);
4173 
4174 	if (sc->sc_softled)
4175 		ath_led_event(sc, ATH_LED_TX);
4176 
4177 	ath_start(ifp);
4178 }
4179 
4180 /*
4181  * Deferred processing of transmit interrupt.
4182  */
4183 static void
4184 ath_tx_proc(void *arg, int npending)
4185 {
4186 	struct ath_softc *sc = arg;
4187 	struct ifnet *ifp = &sc->sc_if;
4188 	int i, nacked;
4189 
4190 	/*
4191 	 * Process each active queue.
4192 	 */
4193 	nacked = 0;
4194 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4195 		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4196 			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4197 	if (nacked) {
4198 		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4199 	}
4200 
4201 	if (sc->sc_softled)
4202 		ath_led_event(sc, ATH_LED_TX);
4203 
4204 	ath_start(ifp);
4205 }
4206 
4207 static void
4208 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4209 {
4210 	struct ath_hal *ah = sc->sc_ah;
4211 	struct ieee80211_node *ni;
4212 	struct ath_buf *bf;
4213 
4214 	/*
4215 	 * NB: this assumes output has been stopped and
4216 	 *     we do not need to block ath_tx_tasklet
4217 	 */
4218 	for (;;) {
4219 		ATH_TXQ_LOCK(txq);
4220 		bf = STAILQ_FIRST(&txq->axq_q);
4221 		if (bf == NULL) {
4222 			txq->axq_link = NULL;
4223 			ATH_TXQ_UNLOCK(txq);
4224 			break;
4225 		}
4226 		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4227 		ATH_TXQ_UNLOCK(txq);
4228 #ifdef AR_DEBUG
4229 		if (sc->sc_debug & ATH_DEBUG_RESET)
4230 			ath_printtxbuf(bf,
4231 				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4232 #endif /* AR_DEBUG */
4233 		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4234 		m_freem(bf->bf_m);
4235 		bf->bf_m = NULL;
4236 		ni = bf->bf_node;
4237 		bf->bf_node = NULL;
4238 		if (ni != NULL) {
4239 			/*
4240 			 * Reclaim node reference.
4241 			 */
4242 			ieee80211_free_node(ni);
4243 		}
4244 		ATH_TXBUF_LOCK(sc);
4245 		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4246 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4247 		ATH_TXBUF_UNLOCK(sc);
4248 	}
4249 }
4250 
4251 static void
4252 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4253 {
4254 	struct ath_hal *ah = sc->sc_ah;
4255 
4256 	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4257 	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4258 	    __func__, txq->axq_qnum,
4259 	    (void *)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4260 	    txq->axq_link);
4261 }
4262 
4263 /*
4264  * Drain the transmit queues and reclaim resources.
4265  */
4266 static void
4267 ath_draintxq(struct ath_softc *sc)
4268 {
4269 	struct ath_hal *ah = sc->sc_ah;
4270 	int i;
4271 
4272 	/* XXX return value */
4273 	if (!sc->sc_invalid) {
4274 		/* don't touch the hardware if marked invalid */
4275 		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4276 		DPRINTF(sc, ATH_DEBUG_RESET,
4277 		    "%s: beacon queue %p\n", __func__,
4278 		    (void *)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
4279 		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4280 			if (ATH_TXQ_SETUP(sc, i))
4281 				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4282 	}
4283 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4284 		if (ATH_TXQ_SETUP(sc, i))
4285 			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4286 }
4287 
4288 /*
4289  * Disable the receive h/w in preparation for a reset.
4290  */
4291 static void
4292 ath_stoprecv(struct ath_softc *sc)
4293 {
4294 #define	PA2DESC(_sc, _pa) \
4295 	((struct ath_desc *)((char *)(_sc)->sc_rxdma.dd_desc + \
4296 		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4297 	struct ath_hal *ah = sc->sc_ah;
4298 
4299 	ath_hal_stoppcurecv(ah);	/* disable PCU */
4300 	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4301 	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4302 	DELAY(3000);			/* 3ms is long enough for 1 frame */
4303 #ifdef AR_DEBUG
4304 	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4305 		struct ath_buf *bf;
4306 
4307 		printf("%s: rx queue %p, link %p\n", __func__,
4308 			(void *)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4309 		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4310 			struct ath_desc *ds = bf->bf_desc;
4311 			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4312 				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4313 			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4314 				ath_printrxbuf(bf, status == HAL_OK);
4315 		}
4316 	}
4317 #endif
4318 	sc->sc_rxlink = NULL;		/* just in case */
4319 #undef PA2DESC
4320 }
4321 
4322 /*
4323  * Enable the receive h/w following a reset.
4324  */
4325 static int
4326 ath_startrecv(struct ath_softc *sc)
4327 {
4328 	struct ath_hal *ah = sc->sc_ah;
4329 	struct ath_buf *bf;
4330 
4331 	sc->sc_rxlink = NULL;
4332 	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4333 		int error = ath_rxbuf_init(sc, bf);
4334 		if (error != 0) {
4335 			DPRINTF(sc, ATH_DEBUG_RECV,
4336 				"%s: ath_rxbuf_init failed %d\n",
4337 				__func__, error);
4338 			return error;
4339 		}
4340 	}
4341 
4342 	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4343 	ath_hal_putrxbuf(ah, bf->bf_daddr);
4344 	ath_hal_rxena(ah);		/* enable recv descriptors */
4345 	ath_mode_init(sc);		/* set filters, etc. */
4346 	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4347 	return 0;
4348 }
4349 
4350 /*
4351  * Update internal state after a channel change.
4352  */
4353 static void
4354 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4355 {
4356 	struct ieee80211com *ic = &sc->sc_ic;
4357 	enum ieee80211_phymode mode;
4358 	u_int16_t flags;
4359 
4360 	/*
4361 	 * Change channels and update the h/w rate map
4362 	 * if we're switching; e.g. 11a to 11b/g.
4363 	 */
4364 	mode = ieee80211_chan2mode(ic, chan);
4365 	if (mode != sc->sc_curmode)
4366 		ath_setcurmode(sc, mode);
4367 	/*
4368 	 * Update BPF state.  NB: ethereal et. al. don't handle
4369 	 * merged flags well so pick a unique mode for their use.
4370 	 */
4371 	if (IEEE80211_IS_CHAN_A(chan))
4372 		flags = IEEE80211_CHAN_A;
4373 	/* XXX 11g schizophrenia */
4374 	else if (IEEE80211_IS_CHAN_G(chan) ||
4375 	    IEEE80211_IS_CHAN_PUREG(chan))
4376 		flags = IEEE80211_CHAN_G;
4377 	else
4378 		flags = IEEE80211_CHAN_B;
4379 	if (IEEE80211_IS_CHAN_T(chan))
4380 		flags |= IEEE80211_CHAN_TURBO;
4381 	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4382 		htole16(chan->ic_freq);
4383 	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4384 		htole16(flags);
4385 }
4386 
4387 /*
4388  * Poll for a channel clear indication; this is required
4389  * for channels requiring DFS and not previously visited
4390  * and/or with a recent radar detection.
4391  */
4392 static void
4393 ath_dfswait(void *arg)
4394 {
4395 	struct ath_softc *sc = arg;
4396 	struct ath_hal *ah = sc->sc_ah;
4397 	HAL_CHANNEL hchan;
4398 
4399 	ath_hal_radar_wait(ah, &hchan);
4400 	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4401 		if_printf(&sc->sc_if,
4402 		    "channel %u/0x%x/0x%x has interference\n",
4403 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4404 		return;
4405 	}
4406 	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4407 		/* XXX should not happen */
4408 		return;
4409 	}
4410 	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4411 		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4412 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
4413 		if_printf(&sc->sc_if,
4414 		    "channel %u/0x%x/0x%x marked clear\n",
4415 		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4416 	} else
4417 		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4418 }
4419 
4420 /*
4421  * Set/change channels.  If the channel is really being changed,
4422  * it's done by reseting the chip.  To accomplish this we must
4423  * first cleanup any pending DMA, then restart stuff after a la
4424  * ath_init.
4425  */
4426 static int
4427 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4428 {
4429 	struct ath_hal *ah = sc->sc_ah;
4430 	struct ieee80211com *ic = &sc->sc_ic;
4431 	HAL_CHANNEL hchan;
4432 
4433 	/*
4434 	 * Convert to a HAL channel description with
4435 	 * the flags constrained to reflect the current
4436 	 * operating mode.
4437 	 */
4438 	hchan.channel = chan->ic_freq;
4439 	hchan.channelFlags = ath_chan2flags(ic, chan);
4440 
4441 	DPRINTF(sc, ATH_DEBUG_RESET,
4442 	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4443 	    __func__,
4444 	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4445 		sc->sc_curchan.channelFlags),
4446 	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4447 	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4448 	        hchan.channel, hchan.channelFlags);
4449 	if (hchan.channel != sc->sc_curchan.channel ||
4450 	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4451 		HAL_STATUS status;
4452 
4453 		/*
4454 		 * To switch channels clear any pending DMA operations;
4455 		 * wait long enough for the RX fifo to drain, reset the
4456 		 * hardware at the new frequency, and then re-enable
4457 		 * the relevant bits of the h/w.
4458 		 */
4459 		ath_hal_intrset(ah, 0);		/* disable interrupts */
4460 		ath_draintxq(sc);		/* clear pending tx frames */
4461 		ath_stoprecv(sc);		/* turn off frame recv */
4462 		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4463 			if_printf(ic->ic_ifp, "%s: unable to reset "
4464 			    "channel %u (%u MHz, flags 0x%x hal flags 0x%x)\n",
4465 			    __func__, ieee80211_chan2ieee(ic, chan),
4466 			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4467 			return EIO;
4468 		}
4469 		sc->sc_curchan = hchan;
4470 		ath_update_txpow(sc);		/* update tx power state */
4471 		sc->sc_diversity = ath_hal_getdiversity(ah);
4472 		sc->sc_calinterval = 1;
4473 		sc->sc_caltries = 0;
4474 
4475 		/*
4476 		 * Re-enable rx framework.
4477 		 */
4478 		if (ath_startrecv(sc) != 0) {
4479 			if_printf(&sc->sc_if,
4480 				"%s: unable to restart recv logic\n", __func__);
4481 			return EIO;
4482 		}
4483 
4484 		/*
4485 		 * Change channels and update the h/w rate map
4486 		 * if we're switching; e.g. 11a to 11b/g.
4487 		 */
4488 		ic->ic_ibss_chan = chan;
4489 		ath_chan_change(sc, chan);
4490 
4491 		/*
4492 		 * Handle DFS required waiting period to determine
4493 		 * if channel is clear of radar traffic.
4494 		 */
4495 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4496 #define	DFS_AND_NOT_CLEAR(_c) \
4497 	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4498 			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4499 				if_printf(&sc->sc_if,
4500 					"wait for DFS clear channel signal\n");
4501 				/* XXX stop sndq */
4502 				sc->sc_if.if_flags |= IFF_OACTIVE;
4503 				callout_reset(&sc->sc_dfs_ch,
4504 					2 * hz, ath_dfswait, sc);
4505 			} else
4506 				callout_stop(&sc->sc_dfs_ch);
4507 #undef DFS_NOT_CLEAR
4508 		}
4509 
4510 		/*
4511 		 * Re-enable interrupts.
4512 		 */
4513 		ath_hal_intrset(ah, sc->sc_imask);
4514 	}
4515 	return 0;
4516 }
4517 
4518 static void
4519 ath_next_scan(void *arg)
4520 {
4521 	struct ath_softc *sc = arg;
4522 	struct ieee80211com *ic = &sc->sc_ic;
4523 	int s;
4524 
4525 	/* don't call ath_start w/o network interrupts blocked */
4526 	s = splnet();
4527 
4528 	if (ic->ic_state == IEEE80211_S_SCAN)
4529 		ieee80211_next_scan(ic);
4530 	splx(s);
4531 }
4532 
4533 /*
4534  * Periodically recalibrate the PHY to account
4535  * for temperature/environment changes.
4536  */
4537 static void
4538 ath_calibrate(void *arg)
4539 {
4540 	struct ath_softc *sc = arg;
4541 	struct ath_hal *ah = sc->sc_ah;
4542 	HAL_BOOL iqCalDone;
4543 
4544 	sc->sc_stats.ast_per_cal++;
4545 
4546 	ATH_LOCK(sc);
4547 
4548 	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4549 		/*
4550 		 * Rfgain is out of bounds, reset the chip
4551 		 * to load new gain values.
4552 		 */
4553 		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4554 			"%s: rfgain change\n", __func__);
4555 		sc->sc_stats.ast_per_rfgain++;
4556 		ath_reset(&sc->sc_if);
4557 	}
4558 	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4559 		DPRINTF(sc, ATH_DEBUG_ANY,
4560 			"%s: calibration of channel %u failed\n",
4561 			__func__, sc->sc_curchan.channel);
4562 		sc->sc_stats.ast_per_calfail++;
4563 	}
4564 	/*
4565 	 * Calibrate noise floor data again in case of change.
4566 	 */
4567 	ath_hal_process_noisefloor(ah);
4568 	/*
4569 	 * Poll more frequently when the IQ calibration is in
4570 	 * progress to speedup loading the final settings.
4571 	 * We temper this aggressive polling with an exponential
4572 	 * back off after 4 tries up to ath_calinterval.
4573 	 */
4574 	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4575 		sc->sc_caltries = 0;
4576 		sc->sc_calinterval = ath_calinterval;
4577 	} else if (sc->sc_caltries > 4) {
4578 		sc->sc_caltries = 0;
4579 		sc->sc_calinterval <<= 1;
4580 		if (sc->sc_calinterval > ath_calinterval)
4581 			sc->sc_calinterval = ath_calinterval;
4582 	}
4583 	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4584 		("bad calibration interval %u", sc->sc_calinterval));
4585 
4586 	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4587 		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4588 		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4589 	sc->sc_caltries++;
4590 	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4591 		ath_calibrate, sc);
4592 	ATH_UNLOCK(sc);
4593 }
4594 
4595 static int
4596 ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4597 {
4598 	struct ifnet *ifp = ic->ic_ifp;
4599 	struct ath_softc *sc = ifp->if_softc;
4600 	struct ath_hal *ah = sc->sc_ah;
4601 	struct ieee80211_node *ni;
4602 	int i, error;
4603 	const u_int8_t *bssid;
4604 	u_int32_t rfilt;
4605 	static const HAL_LED_STATE leds[] = {
4606 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4607 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4608 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4609 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4610 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4611 	};
4612 
4613 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4614 		ieee80211_state_name[ic->ic_state],
4615 		ieee80211_state_name[nstate]);
4616 
4617 	callout_stop(&sc->sc_scan_ch);
4618 	callout_stop(&sc->sc_cal_ch);
4619 	callout_stop(&sc->sc_dfs_ch);
4620 	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4621 
4622 	if (nstate == IEEE80211_S_INIT) {
4623 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4624 		/*
4625 		 * NB: disable interrupts so we don't rx frames.
4626 		 */
4627 		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4628 		/*
4629 		 * Notify the rate control algorithm.
4630 		 */
4631 		ath_rate_newstate(sc, nstate);
4632 		goto done;
4633 	}
4634 	ni = ic->ic_bss;
4635 	error = ath_chan_set(sc, ic->ic_curchan);
4636 	if (error != 0)
4637 		goto bad;
4638 	rfilt = ath_calcrxfilter(sc, nstate);
4639 	if (nstate == IEEE80211_S_SCAN)
4640 		bssid = ifp->if_broadcastaddr;
4641 	else
4642 		bssid = ni->ni_bssid;
4643 	ath_hal_setrxfilter(ah, rfilt);
4644 	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4645 		 __func__, rfilt, ether_sprintf(bssid));
4646 
4647 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4648 		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4649 	else
4650 		ath_hal_setassocid(ah, bssid, 0);
4651 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4652 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4653 			if (ath_hal_keyisvalid(ah, i))
4654 				ath_hal_keysetmac(ah, i, bssid);
4655 	}
4656 
4657 	/*
4658 	 * Notify the rate control algorithm so rates
4659 	 * are setup should ath_beacon_alloc be called.
4660 	 */
4661 	ath_rate_newstate(sc, nstate);
4662 
4663 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4664 		/* nothing to do */;
4665 	} else if (nstate == IEEE80211_S_RUN) {
4666 		DPRINTF(sc, ATH_DEBUG_STATE,
4667 			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4668 			"capinfo=0x%04x chan=%d\n"
4669 			 , __func__
4670 			 , ic->ic_flags
4671 			 , ni->ni_intval
4672 			 , ether_sprintf(ni->ni_bssid)
4673 			 , ni->ni_capinfo
4674 			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4675 
4676 		switch (ic->ic_opmode) {
4677 		case IEEE80211_M_HOSTAP:
4678 		case IEEE80211_M_IBSS:
4679 			/*
4680 			 * Allocate and setup the beacon frame.
4681 			 *
4682 			 * Stop any previous beacon DMA.  This may be
4683 			 * necessary, for example, when an ibss merge
4684 			 * causes reconfiguration; there will be a state
4685 			 * transition from RUN->RUN that means we may
4686 			 * be called with beacon transmission active.
4687 			 */
4688 			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4689 			ath_beacon_free(sc);
4690 			error = ath_beacon_alloc(sc, ni);
4691 			if (error != 0)
4692 				goto bad;
4693 			/*
4694 			 * If joining an adhoc network defer beacon timer
4695 			 * configuration to the next beacon frame so we
4696 			 * have a current TSF to use.  Otherwise we're
4697 			 * starting an ibss/bss so there's no need to delay.
4698 			 */
4699 			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4700 			    ic->ic_bss->ni_tstamp.tsf != 0)
4701 				sc->sc_syncbeacon = 1;
4702 			else
4703 				ath_beacon_config(sc);
4704 			break;
4705 		case IEEE80211_M_STA:
4706 			/*
4707 			 * Allocate a key cache slot to the station.
4708 			 */
4709 			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4710 			    sc->sc_hasclrkey &&
4711 			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4712 				ath_setup_stationkey(ni);
4713 			/*
4714 			 * Defer beacon timer configuration to the next
4715 			 * beacon frame so we have a current TSF to use
4716 			 * (any TSF collected when scanning is likely old).
4717 			 */
4718 			sc->sc_syncbeacon = 1;
4719 			break;
4720 		default:
4721 			break;
4722 		}
4723 		/*
4724 		 * Let the hal process statistics collected during a
4725 		 * scan so it can provide calibrated noise floor data.
4726 		 */
4727 		ath_hal_process_noisefloor(ah);
4728 		/*
4729 		 * Reset rssi stats; maybe not the best place...
4730 		 */
4731 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4732 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4733 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4734 	} else {
4735 		ath_hal_intrset(ah,
4736 			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4737 		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4738 	}
4739 done:
4740 	/*
4741 	 * Invoke the parent method to complete the work.
4742 	 */
4743 	error = sc->sc_newstate(ic, nstate, arg);
4744 	/*
4745 	 * Finally, start any timers.
4746 	 */
4747 	if (nstate == IEEE80211_S_RUN) {
4748 		/* start periodic recalibration timer */
4749 		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4750 			ath_calibrate, sc);
4751 	} else if (nstate == IEEE80211_S_SCAN) {
4752 		/* start ap/neighbor scan timer */
4753 		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4754 			ath_next_scan, sc);
4755 	}
4756 bad:
4757 	return error;
4758 }
4759 
4760 /*
4761  * Allocate a key cache slot to the station so we can
4762  * setup a mapping from key index to node. The key cache
4763  * slot is needed for managing antenna state and for
4764  * compression when stations do not use crypto.  We do
4765  * it uniliaterally here; if crypto is employed this slot
4766  * will be reassigned.
4767  */
4768 static void
4769 ath_setup_stationkey(struct ieee80211_node *ni)
4770 {
4771 	struct ieee80211com *ic = ni->ni_ic;
4772 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4773 	ieee80211_keyix keyix, rxkeyix;
4774 
4775 	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4776 		/*
4777 		 * Key cache is full; we'll fall back to doing
4778 		 * the more expensive lookup in software.  Note
4779 		 * this also means no h/w compression.
4780 		 */
4781 		/* XXX msg+statistic */
4782 	} else {
4783 		/* XXX locking? */
4784 		ni->ni_ucastkey.wk_keyix = keyix;
4785 		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4786 		/* NB: this will create a pass-thru key entry */
4787 		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4788 	}
4789 }
4790 
4791 /*
4792  * Setup driver-specific state for a newly associated node.
4793  * Note that we're called also on a re-associate, the isnew
4794  * param tells us if this is the first time or not.
4795  */
4796 static void
4797 ath_newassoc(struct ieee80211_node *ni, int isnew)
4798 {
4799 	struct ieee80211com *ic = ni->ni_ic;
4800 	struct ath_softc *sc = ic->ic_ifp->if_softc;
4801 
4802 	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4803 	if (isnew &&
4804 	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4805 		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4806 		    ("new assoc with a unicast key already setup (keyix %u)",
4807 		    ni->ni_ucastkey.wk_keyix));
4808 		ath_setup_stationkey(ni);
4809 	}
4810 }
4811 
4812 static int
4813 ath_getchannels(struct ath_softc *sc, u_int cc,
4814 	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4815 {
4816 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4817 	struct ieee80211com *ic = &sc->sc_ic;
4818 	struct ifnet *ifp = &sc->sc_if;
4819 	struct ath_hal *ah = sc->sc_ah;
4820 	HAL_CHANNEL *chans;
4821 	int i, ix, nchan;
4822 
4823 	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4824 			M_TEMP, M_NOWAIT);
4825 	if (chans == NULL) {
4826 		if_printf(ifp, "unable to allocate channel table\n");
4827 		return ENOMEM;
4828 	}
4829 	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4830 	    NULL, 0, NULL,
4831 	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4832 		u_int32_t rd;
4833 
4834 		(void)ath_hal_getregdomain(ah, &rd);
4835 		if_printf(ifp, "unable to collect channel list from hal; "
4836 			"regdomain likely %u country code %u\n", rd, cc);
4837 		free(chans, M_TEMP);
4838 		return EINVAL;
4839 	}
4840 
4841 	/*
4842 	 * Convert HAL channels to ieee80211 ones and insert
4843 	 * them in the table according to their channel number.
4844 	 */
4845 	for (i = 0; i < nchan; i++) {
4846 		HAL_CHANNEL *c = &chans[i];
4847 		u_int16_t flags;
4848 
4849 		ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4850 		if (ix > IEEE80211_CHAN_MAX) {
4851 			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4852 				ix, c->channel, c->channelFlags);
4853 			continue;
4854 		}
4855 		if (ix < 0) {
4856 			/* XXX can't handle stuff <2400 right now */
4857 			if (bootverbose)
4858 				if_printf(ifp, "hal channel %d (%u/%x) "
4859 				    "cannot be handled; ignored\n",
4860 				    ix, c->channel, c->channelFlags);
4861 			continue;
4862 		}
4863 		/*
4864 		 * Calculate net80211 flags; most are compatible
4865 		 * but some need massaging.  Note the static turbo
4866 		 * conversion can be removed once net80211 is updated
4867 		 * to understand static vs. dynamic turbo.
4868 		 */
4869 		flags = c->channelFlags & COMPAT;
4870 		if (c->channelFlags & CHANNEL_STURBO)
4871 			flags |= IEEE80211_CHAN_TURBO;
4872 		if (ic->ic_channels[ix].ic_freq == 0) {
4873 			ic->ic_channels[ix].ic_freq = c->channel;
4874 			ic->ic_channels[ix].ic_flags = flags;
4875 		} else {
4876 			/* channels overlap; e.g. 11g and 11b */
4877 			ic->ic_channels[ix].ic_flags |= flags;
4878 		}
4879 	}
4880 	free(chans, M_TEMP);
4881 	return 0;
4882 #undef COMPAT
4883 }
4884 
4885 static void
4886 ath_led_done(void *arg)
4887 {
4888 	struct ath_softc *sc = arg;
4889 
4890 	sc->sc_blinking = 0;
4891 }
4892 
4893 /*
4894  * Turn the LED off: flip the pin and then set a timer so no
4895  * update will happen for the specified duration.
4896  */
4897 static void
4898 ath_led_off(void *arg)
4899 {
4900 	struct ath_softc *sc = arg;
4901 
4902 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4903 	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4904 }
4905 
4906 /*
4907  * Blink the LED according to the specified on/off times.
4908  */
4909 static void
4910 ath_led_blink(struct ath_softc *sc, int on, int off)
4911 {
4912 	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4913 	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4914 	sc->sc_blinking = 1;
4915 	sc->sc_ledoff = off;
4916 	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4917 }
4918 
4919 static void
4920 ath_led_event(struct ath_softc *sc, int event)
4921 {
4922 
4923 	sc->sc_ledevent = ticks;	/* time of last event */
4924 	if (sc->sc_blinking)		/* don't interrupt active blink */
4925 		return;
4926 	switch (event) {
4927 	case ATH_LED_POLL:
4928 		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4929 			sc->sc_hwmap[0].ledoff);
4930 		break;
4931 	case ATH_LED_TX:
4932 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4933 			sc->sc_hwmap[sc->sc_txrate].ledoff);
4934 		break;
4935 	case ATH_LED_RX:
4936 		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4937 			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4938 		break;
4939 	}
4940 }
4941 
4942 static void
4943 ath_update_txpow(struct ath_softc *sc)
4944 {
4945 #define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4946 	struct ieee80211com *ic = &sc->sc_ic;
4947 	struct ath_hal *ah = sc->sc_ah;
4948 	u_int32_t txpow;
4949 
4950 	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4951 		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4952 		/* read back in case value is clamped */
4953 		(void)ath_hal_gettxpowlimit(ah, &txpow);
4954 		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4955 	}
4956 	/*
4957 	 * Fetch max tx power level for status requests.
4958 	 */
4959 	(void)ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4960 	ic->ic_bss->ni_txpower = txpow;
4961 }
4962 
4963 static void
4964 rate_setup(struct ath_softc *sc,
4965 	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4966 {
4967 	int i, maxrates;
4968 
4969 	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4970 		DPRINTF(sc, ATH_DEBUG_ANY,
4971 			"%s: rate table too small (%u > %u)\n",
4972 		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4973 		maxrates = IEEE80211_RATE_MAXSIZE;
4974 	} else
4975 		maxrates = rt->rateCount;
4976 	for (i = 0; i < maxrates; i++)
4977 		rs->rs_rates[i] = rt->info[i].dot11Rate;
4978 	rs->rs_nrates = maxrates;
4979 }
4980 
4981 static int
4982 ath_rate_setup(struct ath_softc *sc, u_int mode)
4983 {
4984 	struct ath_hal *ah = sc->sc_ah;
4985 	struct ieee80211com *ic = &sc->sc_ic;
4986 	const HAL_RATE_TABLE *rt;
4987 
4988 	switch (mode) {
4989 	case IEEE80211_MODE_11A:
4990 		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4991 		break;
4992 	case IEEE80211_MODE_11B:
4993 		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4994 		break;
4995 	case IEEE80211_MODE_11G:
4996 		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4997 		break;
4998 	case IEEE80211_MODE_TURBO_A:
4999 		/* XXX until static/dynamic turbo is fixed */
5000 		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5001 		break;
5002 	case IEEE80211_MODE_TURBO_G:
5003 		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5004 		break;
5005 	default:
5006 		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5007 			__func__, mode);
5008 		return 0;
5009 	}
5010 	sc->sc_rates[mode] = rt;
5011 	if (rt != NULL) {
5012 		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
5013 		return 1;
5014 	} else
5015 		return 0;
5016 }
5017 
5018 static void
5019 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5020 {
5021 #define	N(a)	(sizeof(a)/sizeof(a[0]))
5022 	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5023 	static const struct {
5024 		u_int		rate;		/* tx/rx 802.11 rate */
5025 		u_int16_t	timeOn;		/* LED on time (ms) */
5026 		u_int16_t	timeOff;	/* LED off time (ms) */
5027 	} blinkrates[] = {
5028 		{ 108,  40,  10 },
5029 		{  96,  44,  11 },
5030 		{  72,  50,  13 },
5031 		{  48,  57,  14 },
5032 		{  36,  67,  16 },
5033 		{  24,  80,  20 },
5034 		{  22, 100,  25 },
5035 		{  18, 133,  34 },
5036 		{  12, 160,  40 },
5037 		{  10, 200,  50 },
5038 		{   6, 240,  58 },
5039 		{   4, 267,  66 },
5040 		{   2, 400, 100 },
5041 		{   0, 500, 130 },
5042 	};
5043 	const HAL_RATE_TABLE *rt;
5044 	int i, j;
5045 
5046 	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5047 	rt = sc->sc_rates[mode];
5048 	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5049 	for (i = 0; i < rt->rateCount; i++)
5050 		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
5051 	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5052 	for (i = 0; i < 32; i++) {
5053 		u_int8_t ix = rt->rateCodeToIndex[i];
5054 		if (ix == 0xff) {
5055 			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5056 			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5057 			continue;
5058 		}
5059 		sc->sc_hwmap[i].ieeerate =
5060 			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
5061 		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5062 		if (rt->info[ix].shortPreamble ||
5063 		    rt->info[ix].phy == IEEE80211_T_OFDM)
5064 			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5065 		/* NB: receive frames include FCS */
5066 		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
5067 			IEEE80211_RADIOTAP_F_FCS;
5068 		/* setup blink rate table to avoid per-packet lookup */
5069 		for (j = 0; j < N(blinkrates)-1; j++)
5070 			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5071 				break;
5072 		/* NB: this uses the last entry if the rate isn't found */
5073 		/* XXX beware of overlow */
5074 		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5075 		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5076 	}
5077 	sc->sc_currates = rt;
5078 	sc->sc_curmode = mode;
5079 	/*
5080 	 * All protection frames are transmited at 2Mb/s for
5081 	 * 11g, otherwise at 1Mb/s.
5082 	 */
5083 	if (mode == IEEE80211_MODE_11G)
5084 		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
5085 	else
5086 		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
5087 	/* rate index used to send management frames */
5088 	sc->sc_minrateix = 0;
5089 	/*
5090 	 * Setup multicast rate state.
5091 	 */
5092 	/* XXX layering violation */
5093 	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
5094 	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
5095 	/* NB: caller is responsible for reseting rate control state */
5096 #undef N
5097 }
5098 
5099 #ifdef AR_DEBUG
5100 static void
5101 ath_printrxbuf(struct ath_buf *bf, int done)
5102 {
5103 	struct ath_desc *ds;
5104 	int i;
5105 
5106 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5107 		printf("R%d (%p %" PRIx64
5108 		    ") %08x %08x %08x %08x %08x %08x %c\n", i, ds,
5109 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5110 		    ds->ds_link, ds->ds_data,
5111 		    ds->ds_ctl0, ds->ds_ctl1,
5112 		    ds->ds_hw[0], ds->ds_hw[1],
5113 		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
5114 	}
5115 }
5116 
5117 static void
5118 ath_printtxbuf(struct ath_buf *bf, int done)
5119 {
5120 	struct ath_desc *ds;
5121 	int i;
5122 
5123 	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
5124 		printf("T%d (%p %" PRIx64
5125 		    ") %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
5126 		    i, ds,
5127 		    (uint64_t)bf->bf_daddr + sizeof (struct ath_desc) * i,
5128 		    ds->ds_link, ds->ds_data,
5129 		    ds->ds_ctl0, ds->ds_ctl1,
5130 		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
5131 		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
5132 	}
5133 }
5134 #endif /* AR_DEBUG */
5135 
5136 static void
5137 ath_watchdog(struct ifnet *ifp)
5138 {
5139 	struct ath_softc *sc = ifp->if_softc;
5140 	struct ieee80211com *ic = &sc->sc_ic;
5141 	struct ath_txq *axq;
5142 	int i;
5143 
5144 	ifp->if_timer = 0;
5145 	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
5146 		return;
5147 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5148 		if (!ATH_TXQ_SETUP(sc, i))
5149 			continue;
5150 		axq = &sc->sc_txq[i];
5151 		ATH_TXQ_LOCK(axq);
5152 		if (axq->axq_timer == 0)
5153 			;
5154 		else if (--axq->axq_timer == 0) {
5155 			ATH_TXQ_UNLOCK(axq);
5156 			if_printf(ifp, "device timeout (txq %d)\n", i);
5157 			ath_reset(ifp);
5158 			ifp->if_oerrors++;
5159 			sc->sc_stats.ast_watchdog++;
5160 			break;
5161 		} else
5162 			ifp->if_timer = 1;
5163 		ATH_TXQ_UNLOCK(axq);
5164 	}
5165 	ieee80211_watchdog(ic);
5166 }
5167 
5168 /*
5169  * Diagnostic interface to the HAL.  This is used by various
5170  * tools to do things like retrieve register contents for
5171  * debugging.  The mechanism is intentionally opaque so that
5172  * it can change frequently w/o concern for compatiblity.
5173  */
5174 static int
5175 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5176 {
5177 	struct ath_hal *ah = sc->sc_ah;
5178 	u_int id = ad->ad_id & ATH_DIAG_ID;
5179 	void *indata = NULL;
5180 	void *outdata = NULL;
5181 	u_int32_t insize = ad->ad_in_size;
5182 	u_int32_t outsize = ad->ad_out_size;
5183 	int error = 0;
5184 
5185 	if (ad->ad_id & ATH_DIAG_IN) {
5186 		/*
5187 		 * Copy in data.
5188 		 */
5189 		indata = malloc(insize, M_TEMP, M_NOWAIT);
5190 		if (indata == NULL) {
5191 			error = ENOMEM;
5192 			goto bad;
5193 		}
5194 		error = copyin(ad->ad_in_data, indata, insize);
5195 		if (error)
5196 			goto bad;
5197 	}
5198 	if (ad->ad_id & ATH_DIAG_DYN) {
5199 		/*
5200 		 * Allocate a buffer for the results (otherwise the HAL
5201 		 * returns a pointer to a buffer where we can read the
5202 		 * results).  Note that we depend on the HAL leaving this
5203 		 * pointer for us to use below in reclaiming the buffer;
5204 		 * may want to be more defensive.
5205 		 */
5206 		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5207 		if (outdata == NULL) {
5208 			error = ENOMEM;
5209 			goto bad;
5210 		}
5211 	}
5212 	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5213 		if (outsize < ad->ad_out_size)
5214 			ad->ad_out_size = outsize;
5215 		if (outdata != NULL)
5216 			error = copyout(outdata, ad->ad_out_data,
5217 					ad->ad_out_size);
5218 	} else {
5219 		error = EINVAL;
5220 	}
5221 bad:
5222 	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5223 		free(indata, M_TEMP);
5224 	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5225 		free(outdata, M_TEMP);
5226 	return error;
5227 }
5228 
5229 static int
5230 ath_ioctl(struct ifnet *ifp, u_long cmd, void *data)
5231 {
5232 #define	IS_RUNNING(ifp) \
5233 	((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
5234 	struct ath_softc *sc = ifp->if_softc;
5235 	struct ieee80211com *ic = &sc->sc_ic;
5236 	struct ifreq *ifr = (struct ifreq *)data;
5237 	int error = 0;
5238 
5239 	ATH_LOCK(sc);
5240 	switch (cmd) {
5241 	case SIOCSIFFLAGS:
5242 		if (IS_RUNNING(ifp)) {
5243 			/*
5244 			 * To avoid rescanning another access point,
5245 			 * do not call ath_init() here.  Instead,
5246 			 * only reflect promisc mode settings.
5247 			 */
5248 			ath_mode_init(sc);
5249 		} else if (ifp->if_flags & IFF_UP) {
5250 			/*
5251 			 * Beware of being called during attach/detach
5252 			 * to reset promiscuous mode.  In that case we
5253 			 * will still be marked UP but not RUNNING.
5254 			 * However trying to re-init the interface
5255 			 * is the wrong thing to do as we've already
5256 			 * torn down much of our state.  There's
5257 			 * probably a better way to deal with this.
5258 			 */
5259 			if (!sc->sc_invalid && ic->ic_bss != NULL)
5260 				ath_init(sc);	/* XXX lose error */
5261 		} else
5262 			ath_stop_locked(ifp, 1);
5263 		break;
5264 	case SIOCADDMULTI:
5265 	case SIOCDELMULTI:
5266 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
5267 			if (ifp->if_flags & IFF_RUNNING)
5268 				ath_mode_init(sc);
5269 			error = 0;
5270 		}
5271 		break;
5272 	case SIOCGATHSTATS:
5273 		/* NB: embed these numbers to get a consistent view */
5274 		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5275 		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5276 		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5277 		ATH_UNLOCK(sc);
5278 		/*
5279 		 * NB: Drop the softc lock in case of a page fault;
5280 		 * we'll accept any potential inconsisentcy in the
5281 		 * statistics.  The alternative is to copy the data
5282 		 * to a local structure.
5283 		 */
5284 		return copyout(&sc->sc_stats,
5285 				ifr->ifr_data, sizeof (sc->sc_stats));
5286 	case SIOCGATHDIAG:
5287 		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5288 		break;
5289 	default:
5290 		error = ieee80211_ioctl(ic, cmd, data);
5291 		if (error == ENETRESET) {
5292 			if (IS_RUNNING(ifp) &&
5293 			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5294 				ath_init(sc);	/* XXX lose error */
5295 			error = 0;
5296 		}
5297 		if (error == ERESTART)
5298 			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5299 		break;
5300 	}
5301 	ATH_UNLOCK(sc);
5302 	return error;
5303 #undef IS_RUNNING
5304 }
5305 
5306 #if NBPFILTER > 0
5307 static void
5308 ath_bpfattach(struct ath_softc *sc)
5309 {
5310 	struct ifnet *ifp = &sc->sc_if;
5311 
5312 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5313 		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5314 		&sc->sc_drvbpf);
5315 	/*
5316 	 * Initialize constant fields.
5317 	 * XXX make header lengths a multiple of 32-bits so subsequent
5318 	 *     headers are properly aligned; this is a kludge to keep
5319 	 *     certain applications happy.
5320 	 *
5321 	 * NB: the channel is setup each time we transition to the
5322 	 *     RUN state to avoid filling it in for each frame.
5323 	 */
5324 	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5325 	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5326 	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5327 
5328 	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5329 	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5330 	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5331 }
5332 #endif
5333 
5334 /*
5335  * Announce various information on device/driver attach.
5336  */
5337 static void
5338 ath_announce(struct ath_softc *sc)
5339 {
5340 #define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5341 	struct ifnet *ifp = &sc->sc_if;
5342 	struct ath_hal *ah = sc->sc_ah;
5343 	u_int modes, cc;
5344 
5345 	if_printf(ifp, "mac %d.%d phy %d.%d",
5346 		ah->ah_macVersion, ah->ah_macRev,
5347 		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5348 	/*
5349 	 * Print radio revision(s).  We check the wireless modes
5350 	 * to avoid falsely printing revs for inoperable parts.
5351 	 * Dual-band radio revs are returned in the 5 GHz rev number.
5352 	 */
5353 	ath_hal_getcountrycode(ah, &cc);
5354 	modes = ath_hal_getwirelessmodes(ah, cc);
5355 	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5356 		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5357 			printf(" 5 GHz radio %d.%d 2 GHz radio %d.%d",
5358 				ah->ah_analog5GhzRev >> 4,
5359 				ah->ah_analog5GhzRev & 0xf,
5360 				ah->ah_analog2GhzRev >> 4,
5361 				ah->ah_analog2GhzRev & 0xf);
5362 		else
5363 			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5364 				ah->ah_analog5GhzRev & 0xf);
5365 	} else
5366 		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5367 			ah->ah_analog5GhzRev & 0xf);
5368 	printf("\n");
5369 	if (bootverbose) {
5370 		int i;
5371 		for (i = 0; i <= WME_AC_VO; i++) {
5372 			struct ath_txq *txq = sc->sc_ac2q[i];
5373 			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5374 				txq->axq_qnum, ieee80211_wme_acnames[i]);
5375 		}
5376 		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5377 			sc->sc_cabq->axq_qnum);
5378 		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5379 	}
5380 	if (ath_rxbuf != ATH_RXBUF)
5381 		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5382 	if (ath_txbuf != ATH_TXBUF)
5383 		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5384 #undef HAL_MODE_DUALBAND
5385 }
5386